ARMCodeEmitter.cpp revision 521a8d4fa73593c22976fc4ad509d46840ef512b
1//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the pass that transforms the ARM machine instructions into
11// relocatable machine code.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "ARM.h"
17#include "ARMAddressingModes.h"
18#include "ARMConstantPoolValue.h"
19#include "ARMInstrInfo.h"
20#include "ARMRelocations.h"
21#include "ARMSubtarget.h"
22#include "ARMTargetMachine.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/PassManager.h"
27#include "llvm/CodeGen/JITCodeEmitter.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/Passes.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#ifndef NDEBUG
39#include <iomanip>
40#endif
41using namespace llvm;
42
43STATISTIC(NumEmitted, "Number of machine instructions emitted");
44
45namespace {
46
47  class ARMCodeEmitter : public MachineFunctionPass {
48    ARMJITInfo                *JTI;
49    const ARMInstrInfo        *II;
50    const TargetData          *TD;
51    const ARMSubtarget        *Subtarget;
52    TargetMachine             &TM;
53    JITCodeEmitter            &MCE;
54    MachineModuleInfo *MMI;
55    const std::vector<MachineConstantPoolEntry> *MCPEs;
56    const std::vector<MachineJumpTableEntry> *MJTEs;
57    bool IsPIC;
58
59    void getAnalysisUsage(AnalysisUsage &AU) const {
60      AU.addRequired<MachineModuleInfo>();
61      MachineFunctionPass::getAnalysisUsage(AU);
62    }
63
64    static char ID;
65  public:
66    ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
67      : MachineFunctionPass(&ID), JTI(0),
68        II((const ARMInstrInfo *)tm.getInstrInfo()),
69        TD(tm.getTargetData()), TM(tm),
70    MCE(mce), MCPEs(0), MJTEs(0),
71    IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
72
73    /// getBinaryCodeForInstr - This function, generated by the
74    /// CodeEmitterGenerator using TableGen, produces the binary encoding for
75    /// machine instructions.
76    unsigned getBinaryCodeForInstr(const MachineInstr &MI);
77
78    bool runOnMachineFunction(MachineFunction &MF);
79
80    virtual const char *getPassName() const {
81      return "ARM Machine Code Emitter";
82    }
83
84    void emitInstruction(const MachineInstr &MI);
85
86  private:
87
88    void emitWordLE(unsigned Binary);
89    void emitDWordLE(uint64_t Binary);
90    void emitConstPoolInstruction(const MachineInstr &MI);
91    void emitMOVi32immInstruction(const MachineInstr &MI);
92    void emitMOVi2piecesInstruction(const MachineInstr &MI);
93    void emitLEApcrelJTInstruction(const MachineInstr &MI);
94    void emitPseudoMoveInstruction(const MachineInstr &MI);
95    void addPCLabel(unsigned LabelID);
96    void emitPseudoInstruction(const MachineInstr &MI);
97    unsigned getMachineSoRegOpValue(const MachineInstr &MI,
98                                    const TargetInstrDesc &TID,
99                                    const MachineOperand &MO,
100                                    unsigned OpIdx);
101
102    unsigned getMachineSoImmOpValue(unsigned SoImm);
103
104    unsigned getAddrModeSBit(const MachineInstr &MI,
105                             const TargetInstrDesc &TID) const;
106
107    void emitDataProcessingInstruction(const MachineInstr &MI,
108                                       unsigned ImplicitRd = 0,
109                                       unsigned ImplicitRn = 0);
110
111    void emitLoadStoreInstruction(const MachineInstr &MI,
112                                  unsigned ImplicitRd = 0,
113                                  unsigned ImplicitRn = 0);
114
115    void emitMiscLoadStoreInstruction(const MachineInstr &MI,
116                                      unsigned ImplicitRn = 0);
117
118    void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
119
120    void emitMulFrmInstruction(const MachineInstr &MI);
121
122    void emitExtendInstruction(const MachineInstr &MI);
123
124    void emitMiscArithInstruction(const MachineInstr &MI);
125
126    void emitBranchInstruction(const MachineInstr &MI);
127
128    void emitInlineJumpTable(unsigned JTIndex);
129
130    void emitMiscBranchInstruction(const MachineInstr &MI);
131
132    void emitVFPArithInstruction(const MachineInstr &MI);
133
134    void emitVFPConversionInstruction(const MachineInstr &MI);
135
136    void emitVFPLoadStoreInstruction(const MachineInstr &MI);
137
138    void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
139
140    void emitMiscInstruction(const MachineInstr &MI);
141
142    /// getMachineOpValue - Return binary encoding of operand. If the machine
143    /// operand requires relocation, record the relocation and return zero.
144    unsigned getMachineOpValue(const MachineInstr &MI,const MachineOperand &MO);
145    unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) {
146      return getMachineOpValue(MI, MI.getOperand(OpIdx));
147    }
148
149    /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
150    /// machine operand requires relocation, record the relocation and return zero.
151    unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
152                            unsigned Reloc);
153    unsigned getMovi32Value(const MachineInstr &MI, unsigned OpIdx,
154                            unsigned Reloc) {
155      return getMovi32Value(MI, MI.getOperand(OpIdx), Reloc);
156    }
157
158    /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
159    ///
160    unsigned getShiftOp(unsigned Imm) const ;
161
162    /// Routines that handle operands which add machine relocations which are
163    /// fixed up by the relocation stage.
164    void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
165                           bool MayNeedFarStub,  bool Indirect,
166                           intptr_t ACPV = 0);
167    void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
168    void emitConstPoolAddress(unsigned CPI, unsigned Reloc);
169    void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc);
170    void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
171                               intptr_t JTBase = 0);
172  };
173}
174
175char ARMCodeEmitter::ID = 0;
176
177/// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
178/// code to the specified MCE object.
179FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
180                                                JITCodeEmitter &JCE) {
181  return new ARMCodeEmitter(TM, JCE);
182}
183
184bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
185  assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
186          MF.getTarget().getRelocationModel() != Reloc::Static) &&
187         "JIT relocation model must be set to static or default!");
188  JTI = ((ARMTargetMachine &)MF.getTarget()).getJITInfo();
189  II = ((const ARMTargetMachine &)MF.getTarget()).getInstrInfo();
190  TD = ((const ARMTargetMachine &)MF.getTarget()).getTargetData();
191  Subtarget = &TM.getSubtarget<ARMSubtarget>();
192  MCPEs = &MF.getConstantPool()->getConstants();
193  MJTEs = 0;
194  if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
195  IsPIC = TM.getRelocationModel() == Reloc::PIC_;
196  JTI->Initialize(MF, IsPIC);
197  MMI = &getAnalysis<MachineModuleInfo>();
198  MCE.setModuleInfo(MMI);
199
200  do {
201    DEBUG(errs() << "JITTing function '"
202          << MF.getFunction()->getName() << "'\n");
203    MCE.startFunction(MF);
204    for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
205         MBB != E; ++MBB) {
206      MCE.StartMachineBasicBlock(MBB);
207      for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
208           I != E; ++I)
209        emitInstruction(*I);
210    }
211  } while (MCE.finishFunction(MF));
212
213  return false;
214}
215
216/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
217///
218unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
219  switch (ARM_AM::getAM2ShiftOpc(Imm)) {
220  default: llvm_unreachable("Unknown shift opc!");
221  case ARM_AM::asr: return 2;
222  case ARM_AM::lsl: return 0;
223  case ARM_AM::lsr: return 1;
224  case ARM_AM::ror:
225  case ARM_AM::rrx: return 3;
226  }
227  return 0;
228}
229
230/// getMovi32Value - Return binary encoding of operand for movw/movt. If the
231/// machine operand requires relocation, record the relocation and return zero.
232unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
233                                        const MachineOperand &MO,
234                                        unsigned Reloc) {
235  assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
236      && "Relocation to this function should be for movt or movw");
237
238  if (MO.isImm())
239    return static_cast<unsigned>(MO.getImm());
240  else if (MO.isGlobal())
241    emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
242  else if (MO.isSymbol())
243    emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
244  else if (MO.isMBB())
245    emitMachineBasicBlock(MO.getMBB(), Reloc);
246  else {
247#ifndef NDEBUG
248    errs() << MO;
249#endif
250    llvm_unreachable("Unsupported operand type for movw/movt");
251  }
252  return 0;
253}
254
255/// getMachineOpValue - Return binary encoding of operand. If the machine
256/// operand requires relocation, record the relocation and return zero.
257unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
258                                           const MachineOperand &MO) {
259  if (MO.isReg())
260    return ARMRegisterInfo::getRegisterNumbering(MO.getReg());
261  else if (MO.isImm())
262    return static_cast<unsigned>(MO.getImm());
263  else if (MO.isGlobal())
264    emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
265  else if (MO.isSymbol())
266    emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
267  else if (MO.isCPI()) {
268    const TargetInstrDesc &TID = MI.getDesc();
269    // For VFP load, the immediate offset is multiplied by 4.
270    unsigned Reloc =  ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
271      ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
272    emitConstPoolAddress(MO.getIndex(), Reloc);
273  } else if (MO.isJTI())
274    emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
275  else if (MO.isMBB())
276    emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
277  else {
278#ifndef NDEBUG
279    errs() << MO;
280#endif
281    llvm_unreachable(0);
282  }
283  return 0;
284}
285
286/// emitGlobalAddress - Emit the specified address to the code stream.
287///
288void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
289                                       bool MayNeedFarStub, bool Indirect,
290                                       intptr_t ACPV) {
291  MachineRelocation MR = Indirect
292    ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
293                                           const_cast<GlobalValue *>(GV),
294                                           ACPV, MayNeedFarStub)
295    : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
296                               const_cast<GlobalValue *>(GV), ACPV,
297                               MayNeedFarStub);
298  MCE.addRelocation(MR);
299}
300
301/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
302/// be emitted to the current location in the function, and allow it to be PC
303/// relative.
304void ARMCodeEmitter::emitExternalSymbolAddress(const char *ES, unsigned Reloc) {
305  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
306                                                 Reloc, ES));
307}
308
309/// emitConstPoolAddress - Arrange for the address of an constant pool
310/// to be emitted to the current location in the function, and allow it to be PC
311/// relative.
312void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) {
313  // Tell JIT emitter we'll resolve the address.
314  MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
315                                                    Reloc, CPI, 0, true));
316}
317
318/// emitJumpTableAddress - Arrange for the address of a jump table to
319/// be emitted to the current location in the function, and allow it to be PC
320/// relative.
321void ARMCodeEmitter::emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) {
322  MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
323                                                    Reloc, JTIndex, 0, true));
324}
325
326/// emitMachineBasicBlock - Emit the specified address basic block.
327void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
328                                           unsigned Reloc, intptr_t JTBase) {
329  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
330                                             Reloc, BB, JTBase));
331}
332
333void ARMCodeEmitter::emitWordLE(unsigned Binary) {
334  DEBUG(errs() << "  0x";
335        errs().write_hex(Binary) << "\n");
336  MCE.emitWordLE(Binary);
337}
338
339void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
340  DEBUG(errs() << "  0x";
341        errs().write_hex(Binary) << "\n");
342  MCE.emitDWordLE(Binary);
343}
344
345void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
346  DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
347
348  MCE.processDebugLoc(MI.getDebugLoc(), true);
349
350  NumEmitted++;  // Keep track of the # of mi's emitted
351  switch (MI.getDesc().TSFlags & ARMII::FormMask) {
352  default: {
353    llvm_unreachable("Unhandled instruction encoding format!");
354    break;
355  }
356  case ARMII::Pseudo:
357    emitPseudoInstruction(MI);
358    break;
359  case ARMII::DPFrm:
360  case ARMII::DPSoRegFrm:
361    emitDataProcessingInstruction(MI);
362    break;
363  case ARMII::LdFrm:
364  case ARMII::StFrm:
365    emitLoadStoreInstruction(MI);
366    break;
367  case ARMII::LdMiscFrm:
368  case ARMII::StMiscFrm:
369    emitMiscLoadStoreInstruction(MI);
370    break;
371  case ARMII::LdStMulFrm:
372    emitLoadStoreMultipleInstruction(MI);
373    break;
374  case ARMII::MulFrm:
375    emitMulFrmInstruction(MI);
376    break;
377  case ARMII::ExtFrm:
378    emitExtendInstruction(MI);
379    break;
380  case ARMII::ArithMiscFrm:
381    emitMiscArithInstruction(MI);
382    break;
383  case ARMII::BrFrm:
384    emitBranchInstruction(MI);
385    break;
386  case ARMII::BrMiscFrm:
387    emitMiscBranchInstruction(MI);
388    break;
389  // VFP instructions.
390  case ARMII::VFPUnaryFrm:
391  case ARMII::VFPBinaryFrm:
392    emitVFPArithInstruction(MI);
393    break;
394  case ARMII::VFPConv1Frm:
395  case ARMII::VFPConv2Frm:
396  case ARMII::VFPConv3Frm:
397  case ARMII::VFPConv4Frm:
398  case ARMII::VFPConv5Frm:
399    emitVFPConversionInstruction(MI);
400    break;
401  case ARMII::VFPLdStFrm:
402    emitVFPLoadStoreInstruction(MI);
403    break;
404  case ARMII::VFPLdStMulFrm:
405    emitVFPLoadStoreMultipleInstruction(MI);
406    break;
407  case ARMII::VFPMiscFrm:
408    emitMiscInstruction(MI);
409    break;
410  }
411  MCE.processDebugLoc(MI.getDebugLoc(), false);
412}
413
414void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
415  unsigned CPI = MI.getOperand(0).getImm();       // CP instruction index.
416  unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
417  const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
418
419  // Remember the CONSTPOOL_ENTRY address for later relocation.
420  JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
421
422  // Emit constpool island entry. In most cases, the actual values will be
423  // resolved and relocated after code emission.
424  if (MCPE.isMachineConstantPoolEntry()) {
425    ARMConstantPoolValue *ACPV =
426      static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
427
428    DEBUG(errs() << "  ** ARM constant pool #" << CPI << " @ "
429          << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
430
431    assert(ACPV->isGlobalValue() && "unsupported constant pool value");
432    const GlobalValue *GV = ACPV->getGV();
433    if (GV) {
434      Reloc::Model RelocM = TM.getRelocationModel();
435      emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
436                        isa<Function>(GV),
437                        Subtarget->GVIsIndirectSymbol(GV, RelocM),
438                        (intptr_t)ACPV);
439     } else  {
440      emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute);
441    }
442    emitWordLE(0);
443  } else {
444    const Constant *CV = MCPE.Val.ConstVal;
445
446    DEBUG({
447        errs() << "  ** Constant pool #" << CPI << " @ "
448               << (void*)MCE.getCurrentPCValue() << " ";
449        if (const Function *F = dyn_cast<Function>(CV))
450          errs() << F->getName();
451        else
452          errs() << *CV;
453        errs() << '\n';
454      });
455
456    if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
457      emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV), false);
458      emitWordLE(0);
459    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
460      uint32_t Val = *(uint32_t*)CI->getValue().getRawData();
461      emitWordLE(Val);
462    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
463      if (CFP->getType()->isFloatTy())
464        emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
465      else if (CFP->getType()->isDoubleTy())
466        emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
467      else {
468        llvm_unreachable("Unable to handle this constantpool entry!");
469      }
470    } else {
471      llvm_unreachable("Unable to handle this constantpool entry!");
472    }
473  }
474}
475
476void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
477  const MachineOperand &MO0 = MI.getOperand(0);
478  const MachineOperand &MO1 = MI.getOperand(1);
479
480  // Emit the 'movw' instruction.
481  unsigned Binary = 0x30 << 20;  // mov: Insts{27-20} = 0b00110000
482
483  unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;
484
485  // Set the conditional execution predicate.
486  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
487
488  // Encode Rd.
489  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
490
491  // Encode imm16 as imm4:imm12
492  Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
493  Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
494  emitWordLE(Binary);
495
496  unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
497  // Emit the 'movt' instruction.
498  Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100
499
500  // Set the conditional execution predicate.
501  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
502
503  // Encode Rd.
504  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
505
506  // Encode imm16 as imm4:imm1, same as movw above.
507  Binary |= Hi16 & 0xFFF;
508  Binary |= ((Hi16 >> 12) & 0xF) << 16;
509  emitWordLE(Binary);
510}
511
512void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
513  const MachineOperand &MO0 = MI.getOperand(0);
514  const MachineOperand &MO1 = MI.getOperand(1);
515  assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
516                                                  "Not a valid so_imm value!");
517  unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
518  unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
519
520  // Emit the 'mov' instruction.
521  unsigned Binary = 0xd << 21;  // mov: Insts{24-21} = 0b1101
522
523  // Set the conditional execution predicate.
524  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
525
526  // Encode Rd.
527  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
528
529  // Encode so_imm.
530  // Set bit I(25) to identify this is the immediate form of <shifter_op>
531  Binary |= 1 << ARMII::I_BitShift;
532  Binary |= getMachineSoImmOpValue(V1);
533  emitWordLE(Binary);
534
535  // Now the 'orr' instruction.
536  Binary = 0xc << 21;  // orr: Insts{24-21} = 0b1100
537
538  // Set the conditional execution predicate.
539  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
540
541  // Encode Rd.
542  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
543
544  // Encode Rn.
545  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
546
547  // Encode so_imm.
548  // Set bit I(25) to identify this is the immediate form of <shifter_op>
549  Binary |= 1 << ARMII::I_BitShift;
550  Binary |= getMachineSoImmOpValue(V2);
551  emitWordLE(Binary);
552}
553
554void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
555  // It's basically add r, pc, (LJTI - $+8)
556
557  const TargetInstrDesc &TID = MI.getDesc();
558
559  // Emit the 'add' instruction.
560  unsigned Binary = 0x4 << 21;  // add: Insts{24-31} = 0b0100
561
562  // Set the conditional execution predicate
563  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
564
565  // Encode S bit if MI modifies CPSR.
566  Binary |= getAddrModeSBit(MI, TID);
567
568  // Encode Rd.
569  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
570
571  // Encode Rn which is PC.
572  Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
573
574  // Encode the displacement.
575  Binary |= 1 << ARMII::I_BitShift;
576  emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
577
578  emitWordLE(Binary);
579}
580
581void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
582  unsigned Opcode = MI.getDesc().Opcode;
583
584  // Part of binary is determined by TableGn.
585  unsigned Binary = getBinaryCodeForInstr(MI);
586
587  // Set the conditional execution predicate
588  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
589
590  // Encode S bit if MI modifies CPSR.
591  if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
592    Binary |= 1 << ARMII::S_BitShift;
593
594  // Encode register def if there is one.
595  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
596
597  // Encode the shift operation.
598  switch (Opcode) {
599  default: break;
600  case ARM::MOVrx:
601    // rrx
602    Binary |= 0x6 << 4;
603    break;
604  case ARM::MOVsrl_flag:
605    // lsr #1
606    Binary |= (0x2 << 4) | (1 << 7);
607    break;
608  case ARM::MOVsra_flag:
609    // asr #1
610    Binary |= (0x4 << 4) | (1 << 7);
611    break;
612  }
613
614  // Encode register Rm.
615  Binary |= getMachineOpValue(MI, 1);
616
617  emitWordLE(Binary);
618}
619
620void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
621  DEBUG(errs() << "  ** LPC" << LabelID << " @ "
622        << (void*)MCE.getCurrentPCValue() << '\n');
623  JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
624}
625
626void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
627  unsigned Opcode = MI.getDesc().Opcode;
628  switch (Opcode) {
629  default:
630    llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
631  case TargetOpcode::INLINEASM: {
632    // We allow inline assembler nodes with empty bodies - they can
633    // implicitly define registers, which is ok for JIT.
634    if (MI.getOperand(0).getSymbolName()[0]) {
635      report_fatal_error("JIT does not support inline asm!");
636    }
637    break;
638  }
639  case TargetOpcode::DBG_LABEL:
640  case TargetOpcode::EH_LABEL:
641    MCE.emitLabel(MI.getOperand(0).getMCSymbol());
642    break;
643  case TargetOpcode::IMPLICIT_DEF:
644  case TargetOpcode::KILL:
645    // Do nothing.
646    break;
647  case ARM::CONSTPOOL_ENTRY:
648    emitConstPoolInstruction(MI);
649    break;
650  case ARM::PICADD: {
651    // Remember of the address of the PC label for relocation later.
652    addPCLabel(MI.getOperand(2).getImm());
653    // PICADD is just an add instruction that implicitly read pc.
654    emitDataProcessingInstruction(MI, 0, ARM::PC);
655    break;
656  }
657  case ARM::PICLDR:
658  case ARM::PICLDRB:
659  case ARM::PICSTR:
660  case ARM::PICSTRB: {
661    // Remember of the address of the PC label for relocation later.
662    addPCLabel(MI.getOperand(2).getImm());
663    // These are just load / store instructions that implicitly read pc.
664    emitLoadStoreInstruction(MI, 0, ARM::PC);
665    break;
666  }
667  case ARM::PICLDRH:
668  case ARM::PICLDRSH:
669  case ARM::PICLDRSB:
670  case ARM::PICSTRH: {
671    // Remember of the address of the PC label for relocation later.
672    addPCLabel(MI.getOperand(2).getImm());
673    // These are just load / store instructions that implicitly read pc.
674    emitMiscLoadStoreInstruction(MI, ARM::PC);
675    break;
676  }
677
678  case ARM::MOVi32imm:
679    emitMOVi32immInstruction(MI);
680    break;
681
682  case ARM::MOVi2pieces:
683    // Two instructions to materialize a constant.
684    emitMOVi2piecesInstruction(MI);
685    break;
686  case ARM::LEApcrelJT:
687    // Materialize jumptable address.
688    emitLEApcrelJTInstruction(MI);
689    break;
690  case ARM::MOVrx:
691  case ARM::MOVsrl_flag:
692  case ARM::MOVsra_flag:
693    emitPseudoMoveInstruction(MI);
694    break;
695  }
696}
697
698unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
699                                                const TargetInstrDesc &TID,
700                                                const MachineOperand &MO,
701                                                unsigned OpIdx) {
702  unsigned Binary = getMachineOpValue(MI, MO);
703
704  const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
705  const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
706  ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
707
708  // Encode the shift opcode.
709  unsigned SBits = 0;
710  unsigned Rs = MO1.getReg();
711  if (Rs) {
712    // Set shift operand (bit[7:4]).
713    // LSL - 0001
714    // LSR - 0011
715    // ASR - 0101
716    // ROR - 0111
717    // RRX - 0110 and bit[11:8] clear.
718    switch (SOpc) {
719    default: llvm_unreachable("Unknown shift opc!");
720    case ARM_AM::lsl: SBits = 0x1; break;
721    case ARM_AM::lsr: SBits = 0x3; break;
722    case ARM_AM::asr: SBits = 0x5; break;
723    case ARM_AM::ror: SBits = 0x7; break;
724    case ARM_AM::rrx: SBits = 0x6; break;
725    }
726  } else {
727    // Set shift operand (bit[6:4]).
728    // LSL - 000
729    // LSR - 010
730    // ASR - 100
731    // ROR - 110
732    switch (SOpc) {
733    default: llvm_unreachable("Unknown shift opc!");
734    case ARM_AM::lsl: SBits = 0x0; break;
735    case ARM_AM::lsr: SBits = 0x2; break;
736    case ARM_AM::asr: SBits = 0x4; break;
737    case ARM_AM::ror: SBits = 0x6; break;
738    }
739  }
740  Binary |= SBits << 4;
741  if (SOpc == ARM_AM::rrx)
742    return Binary;
743
744  // Encode the shift operation Rs or shift_imm (except rrx).
745  if (Rs) {
746    // Encode Rs bit[11:8].
747    assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
748    return Binary |
749      (ARMRegisterInfo::getRegisterNumbering(Rs) << ARMII::RegRsShift);
750  }
751
752  // Encode shift_imm bit[11:7].
753  return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
754}
755
756unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
757  int SoImmVal = ARM_AM::getSOImmVal(SoImm);
758  assert(SoImmVal != -1 && "Not a valid so_imm value!");
759
760  // Encode rotate_imm.
761  unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
762    << ARMII::SoRotImmShift;
763
764  // Encode immed_8.
765  Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
766  return Binary;
767}
768
769unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
770                                         const TargetInstrDesc &TID) const {
771  for (unsigned i = MI.getNumOperands(), e = TID.getNumOperands(); i != e; --i){
772    const MachineOperand &MO = MI.getOperand(i-1);
773    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
774      return 1 << ARMII::S_BitShift;
775  }
776  return 0;
777}
778
779void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
780                                                   unsigned ImplicitRd,
781                                                   unsigned ImplicitRn) {
782  const TargetInstrDesc &TID = MI.getDesc();
783
784  if (TID.Opcode == ARM::BFC) {
785    report_fatal_error("ARMv6t2 JIT is not yet supported.");
786  }
787
788  // Part of binary is determined by TableGn.
789  unsigned Binary = getBinaryCodeForInstr(MI);
790
791  // Set the conditional execution predicate
792  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
793
794  // Encode S bit if MI modifies CPSR.
795  Binary |= getAddrModeSBit(MI, TID);
796
797  // Encode register def if there is one.
798  unsigned NumDefs = TID.getNumDefs();
799  unsigned OpIdx = 0;
800  if (NumDefs)
801    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
802  else if (ImplicitRd)
803    // Special handling for implicit use (e.g. PC).
804    Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd)
805               << ARMII::RegRdShift);
806
807  if (TID.Opcode == ARM::MOVi16) {
808      // Get immediate from MI.
809      unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
810                      ARM::reloc_arm_movw);
811      // Encode imm which is the same as in emitMOVi32immInstruction().
812      Binary |= Lo16 & 0xFFF;
813      Binary |= ((Lo16 >> 12) & 0xF) << 16;
814      emitWordLE(Binary);
815      return;
816  } else if(TID.Opcode == ARM::MOVTi16) {
817      unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
818                       ARM::reloc_arm_movt) >> 16);
819      Binary |= Hi16 & 0xFFF;
820      Binary |= ((Hi16 >> 12) & 0xF) << 16;
821      emitWordLE(Binary);
822      return;
823  }
824
825  // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
826  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
827    ++OpIdx;
828
829  // Encode first non-shifter register operand if there is one.
830  bool isUnary = TID.TSFlags & ARMII::UnaryDP;
831  if (!isUnary) {
832    if (ImplicitRn)
833      // Special handling for implicit use (e.g. PC).
834      Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
835                 << ARMII::RegRnShift);
836    else {
837      Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
838      ++OpIdx;
839    }
840  }
841
842  // Encode shifter operand.
843  const MachineOperand &MO = MI.getOperand(OpIdx);
844  if ((TID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
845    // Encode SoReg.
846    emitWordLE(Binary | getMachineSoRegOpValue(MI, TID, MO, OpIdx));
847    return;
848  }
849
850  if (MO.isReg()) {
851    // Encode register Rm.
852    emitWordLE(Binary | ARMRegisterInfo::getRegisterNumbering(MO.getReg()));
853    return;
854  }
855
856  // Encode so_imm.
857  Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
858
859  emitWordLE(Binary);
860}
861
862void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
863                                              unsigned ImplicitRd,
864                                              unsigned ImplicitRn) {
865  const TargetInstrDesc &TID = MI.getDesc();
866  unsigned Form = TID.TSFlags & ARMII::FormMask;
867  bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
868
869  // Part of binary is determined by TableGn.
870  unsigned Binary = getBinaryCodeForInstr(MI);
871
872  // Set the conditional execution predicate
873  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
874
875  unsigned OpIdx = 0;
876
877  // Operand 0 of a pre- and post-indexed store is the address base
878  // writeback. Skip it.
879  bool Skipped = false;
880  if (IsPrePost && Form == ARMII::StFrm) {
881    ++OpIdx;
882    Skipped = true;
883  }
884
885  // Set first operand
886  if (ImplicitRd)
887    // Special handling for implicit use (e.g. PC).
888    Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd)
889               << ARMII::RegRdShift);
890  else
891    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
892
893  // Set second operand
894  if (ImplicitRn)
895    // Special handling for implicit use (e.g. PC).
896    Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
897               << ARMII::RegRnShift);
898  else
899    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
900
901  // If this is a two-address operand, skip it. e.g. LDR_PRE.
902  if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
903    ++OpIdx;
904
905  const MachineOperand &MO2 = MI.getOperand(OpIdx);
906  unsigned AM2Opc = (ImplicitRn == ARM::PC)
907    ? 0 : MI.getOperand(OpIdx+1).getImm();
908
909  // Set bit U(23) according to sign of immed value (positive or negative).
910  Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
911             ARMII::U_BitShift);
912  if (!MO2.getReg()) { // is immediate
913    if (ARM_AM::getAM2Offset(AM2Opc))
914      // Set the value of offset_12 field
915      Binary |= ARM_AM::getAM2Offset(AM2Opc);
916    emitWordLE(Binary);
917    return;
918  }
919
920  // Set bit I(25), because this is not in immediate enconding.
921  Binary |= 1 << ARMII::I_BitShift;
922  assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
923  // Set bit[3:0] to the corresponding Rm register
924  Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
925
926  // If this instr is in scaled register offset/index instruction, set
927  // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
928  if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
929    Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift;  // shift
930    Binary |= ShImm              << ARMII::ShiftShift;     // shift_immed
931  }
932
933  emitWordLE(Binary);
934}
935
936void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
937                                                  unsigned ImplicitRn) {
938  const TargetInstrDesc &TID = MI.getDesc();
939  unsigned Form = TID.TSFlags & ARMII::FormMask;
940  bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
941
942  // Part of binary is determined by TableGn.
943  unsigned Binary = getBinaryCodeForInstr(MI);
944
945  // Set the conditional execution predicate
946  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
947
948  unsigned OpIdx = 0;
949
950  // Operand 0 of a pre- and post-indexed store is the address base
951  // writeback. Skip it.
952  bool Skipped = false;
953  if (IsPrePost && Form == ARMII::StMiscFrm) {
954    ++OpIdx;
955    Skipped = true;
956  }
957
958  // Set first operand
959  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
960
961  // Skip LDRD and STRD's second operand.
962  if (TID.Opcode == ARM::LDRD || TID.Opcode == ARM::STRD)
963    ++OpIdx;
964
965  // Set second operand
966  if (ImplicitRn)
967    // Special handling for implicit use (e.g. PC).
968    Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
969               << ARMII::RegRnShift);
970  else
971    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
972
973  // If this is a two-address operand, skip it. e.g. LDRH_POST.
974  if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
975    ++OpIdx;
976
977  const MachineOperand &MO2 = MI.getOperand(OpIdx);
978  unsigned AM3Opc = (ImplicitRn == ARM::PC)
979    ? 0 : MI.getOperand(OpIdx+1).getImm();
980
981  // Set bit U(23) according to sign of immed value (positive or negative)
982  Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
983             ARMII::U_BitShift);
984
985  // If this instr is in register offset/index encoding, set bit[3:0]
986  // to the corresponding Rm register.
987  if (MO2.getReg()) {
988    Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
989    emitWordLE(Binary);
990    return;
991  }
992
993  // This instr is in immediate offset/index encoding, set bit 22 to 1.
994  Binary |= 1 << ARMII::AM3_I_BitShift;
995  if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
996    // Set operands
997    Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift;  // immedH
998    Binary |= (ImmOffs & 0xF);                      // immedL
999  }
1000
1001  emitWordLE(Binary);
1002}
1003
1004static unsigned getAddrModeUPBits(unsigned Mode) {
1005  unsigned Binary = 0;
1006
1007  // Set addressing mode by modifying bits U(23) and P(24)
1008  // IA - Increment after  - bit U = 1 and bit P = 0
1009  // IB - Increment before - bit U = 1 and bit P = 1
1010  // DA - Decrement after  - bit U = 0 and bit P = 0
1011  // DB - Decrement before - bit U = 0 and bit P = 1
1012  switch (Mode) {
1013  default: llvm_unreachable("Unknown addressing sub-mode!");
1014  case ARM_AM::da:                                     break;
1015  case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
1016  case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
1017  case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
1018  }
1019
1020  return Binary;
1021}
1022
1023void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
1024  const TargetInstrDesc &TID = MI.getDesc();
1025  bool IsUpdating = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1026
1027  // Part of binary is determined by TableGn.
1028  unsigned Binary = getBinaryCodeForInstr(MI);
1029
1030  // Set the conditional execution predicate
1031  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1032
1033  // Skip operand 0 of an instruction with base register update.
1034  unsigned OpIdx = 0;
1035  if (IsUpdating)
1036    ++OpIdx;
1037
1038  // Set base address operand
1039  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1040
1041  // Set addressing mode by modifying bits U(23) and P(24)
1042  const MachineOperand &MO = MI.getOperand(OpIdx++);
1043  Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(MO.getImm()));
1044
1045  // Set bit W(21)
1046  if (IsUpdating)
1047    Binary |= 0x1 << ARMII::W_BitShift;
1048
1049  // Set registers
1050  for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
1051    const MachineOperand &MO = MI.getOperand(i);
1052    if (!MO.isReg() || MO.isImplicit())
1053      break;
1054    unsigned RegNum = ARMRegisterInfo::getRegisterNumbering(MO.getReg());
1055    assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
1056           RegNum < 16);
1057    Binary |= 0x1 << RegNum;
1058  }
1059
1060  emitWordLE(Binary);
1061}
1062
1063void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
1064  const TargetInstrDesc &TID = MI.getDesc();
1065
1066  // Part of binary is determined by TableGn.
1067  unsigned Binary = getBinaryCodeForInstr(MI);
1068
1069  // Set the conditional execution predicate
1070  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1071
1072  // Encode S bit if MI modifies CPSR.
1073  Binary |= getAddrModeSBit(MI, TID);
1074
1075  // 32x32->64bit operations have two destination registers. The number
1076  // of register definitions will tell us if that's what we're dealing with.
1077  unsigned OpIdx = 0;
1078  if (TID.getNumDefs() == 2)
1079    Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
1080
1081  // Encode Rd
1082  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
1083
1084  // Encode Rm
1085  Binary |= getMachineOpValue(MI, OpIdx++);
1086
1087  // Encode Rs
1088  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
1089
1090  // Many multiple instructions (e.g. MLA) have three src operands. Encode
1091  // it as Rn (for multiply, that's in the same offset as RdLo.
1092  if (TID.getNumOperands() > OpIdx &&
1093      !TID.OpInfo[OpIdx].isPredicate() &&
1094      !TID.OpInfo[OpIdx].isOptionalDef())
1095    Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
1096
1097  emitWordLE(Binary);
1098}
1099
1100void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
1101  const TargetInstrDesc &TID = MI.getDesc();
1102
1103  // Part of binary is determined by TableGn.
1104  unsigned Binary = getBinaryCodeForInstr(MI);
1105
1106  // Set the conditional execution predicate
1107  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1108
1109  unsigned OpIdx = 0;
1110
1111  // Encode Rd
1112  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1113
1114  const MachineOperand &MO1 = MI.getOperand(OpIdx++);
1115  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1116  if (MO2.isReg()) {
1117    // Two register operand form.
1118    // Encode Rn.
1119    Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
1120
1121    // Encode Rm.
1122    Binary |= getMachineOpValue(MI, MO2);
1123    ++OpIdx;
1124  } else {
1125    Binary |= getMachineOpValue(MI, MO1);
1126  }
1127
1128  // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
1129  if (MI.getOperand(OpIdx).isImm() &&
1130      !TID.OpInfo[OpIdx].isPredicate() &&
1131      !TID.OpInfo[OpIdx].isOptionalDef())
1132    Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
1133
1134  emitWordLE(Binary);
1135}
1136
1137void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
1138  const TargetInstrDesc &TID = MI.getDesc();
1139
1140  // Part of binary is determined by TableGn.
1141  unsigned Binary = getBinaryCodeForInstr(MI);
1142
1143  // Set the conditional execution predicate
1144  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1145
1146  unsigned OpIdx = 0;
1147
1148  // Encode Rd
1149  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1150
1151  const MachineOperand &MO = MI.getOperand(OpIdx++);
1152  if (OpIdx == TID.getNumOperands() ||
1153      TID.OpInfo[OpIdx].isPredicate() ||
1154      TID.OpInfo[OpIdx].isOptionalDef()) {
1155    // Encode Rm and it's done.
1156    Binary |= getMachineOpValue(MI, MO);
1157    emitWordLE(Binary);
1158    return;
1159  }
1160
1161  // Encode Rn.
1162  Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
1163
1164  // Encode Rm.
1165  Binary |= getMachineOpValue(MI, OpIdx++);
1166
1167  // Encode shift_imm.
1168  unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
1169  assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1170  Binary |= ShiftAmt << ARMII::ShiftShift;
1171
1172  emitWordLE(Binary);
1173}
1174
1175void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
1176  const TargetInstrDesc &TID = MI.getDesc();
1177
1178  if (TID.Opcode == ARM::TPsoft) {
1179    llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
1180  }
1181
1182  // Part of binary is determined by TableGn.
1183  unsigned Binary = getBinaryCodeForInstr(MI);
1184
1185  // Set the conditional execution predicate
1186  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1187
1188  // Set signed_immed_24 field
1189  Binary |= getMachineOpValue(MI, 0);
1190
1191  emitWordLE(Binary);
1192}
1193
1194void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
1195  // Remember the base address of the inline jump table.
1196  uintptr_t JTBase = MCE.getCurrentPCValue();
1197  JTI->addJumpTableBaseAddr(JTIndex, JTBase);
1198  DEBUG(errs() << "  ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
1199               << '\n');
1200
1201  // Now emit the jump table entries.
1202  const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
1203  for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
1204    if (IsPIC)
1205      // DestBB address - JT base.
1206      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
1207    else
1208      // Absolute DestBB address.
1209      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
1210    emitWordLE(0);
1211  }
1212}
1213
1214void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
1215  const TargetInstrDesc &TID = MI.getDesc();
1216
1217  // Handle jump tables.
1218  if (TID.Opcode == ARM::BR_JTr || TID.Opcode == ARM::BR_JTadd) {
1219    // First emit a ldr pc, [] instruction.
1220    emitDataProcessingInstruction(MI, ARM::PC);
1221
1222    // Then emit the inline jump table.
1223    unsigned JTIndex =
1224      (TID.Opcode == ARM::BR_JTr)
1225      ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
1226    emitInlineJumpTable(JTIndex);
1227    return;
1228  } else if (TID.Opcode == ARM::BR_JTm) {
1229    // First emit a ldr pc, [] instruction.
1230    emitLoadStoreInstruction(MI, ARM::PC);
1231
1232    // Then emit the inline jump table.
1233    emitInlineJumpTable(MI.getOperand(3).getIndex());
1234    return;
1235  }
1236
1237  // Part of binary is determined by TableGn.
1238  unsigned Binary = getBinaryCodeForInstr(MI);
1239
1240  // Set the conditional execution predicate
1241  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1242
1243  if (TID.Opcode == ARM::BX_RET || TID.Opcode == ARM::MOVPCLR)
1244    // The return register is LR.
1245    Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::LR);
1246  else
1247    // otherwise, set the return register
1248    Binary |= getMachineOpValue(MI, 0);
1249
1250  emitWordLE(Binary);
1251}
1252
1253static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) {
1254  unsigned RegD = MI.getOperand(OpIdx).getReg();
1255  unsigned Binary = 0;
1256  bool isSPVFP = false;
1257  RegD = ARMRegisterInfo::getRegisterNumbering(RegD, &isSPVFP);
1258  if (!isSPVFP)
1259    Binary |=   RegD               << ARMII::RegRdShift;
1260  else {
1261    Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
1262    Binary |=  (RegD & 0x01)       << ARMII::D_BitShift;
1263  }
1264  return Binary;
1265}
1266
1267static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) {
1268  unsigned RegN = MI.getOperand(OpIdx).getReg();
1269  unsigned Binary = 0;
1270  bool isSPVFP = false;
1271  RegN = ARMRegisterInfo::getRegisterNumbering(RegN, &isSPVFP);
1272  if (!isSPVFP)
1273    Binary |=   RegN               << ARMII::RegRnShift;
1274  else {
1275    Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
1276    Binary |=  (RegN & 0x01)       << ARMII::N_BitShift;
1277  }
1278  return Binary;
1279}
1280
1281static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) {
1282  unsigned RegM = MI.getOperand(OpIdx).getReg();
1283  unsigned Binary = 0;
1284  bool isSPVFP = false;
1285  RegM = ARMRegisterInfo::getRegisterNumbering(RegM, &isSPVFP);
1286  if (!isSPVFP)
1287    Binary |=   RegM;
1288  else {
1289    Binary |= ((RegM & 0x1E) >> 1);
1290    Binary |=  (RegM & 0x01)       << ARMII::M_BitShift;
1291  }
1292  return Binary;
1293}
1294
1295void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
1296  const TargetInstrDesc &TID = MI.getDesc();
1297
1298  // Part of binary is determined by TableGn.
1299  unsigned Binary = getBinaryCodeForInstr(MI);
1300
1301  // Set the conditional execution predicate
1302  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1303
1304  unsigned OpIdx = 0;
1305  assert((Binary & ARMII::D_BitShift) == 0 &&
1306         (Binary & ARMII::N_BitShift) == 0 &&
1307         (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!");
1308
1309  // Encode Dd / Sd.
1310  Binary |= encodeVFPRd(MI, OpIdx++);
1311
1312  // If this is a two-address operand, skip it, e.g. FMACD.
1313  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1314    ++OpIdx;
1315
1316  // Encode Dn / Sn.
1317  if ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
1318    Binary |= encodeVFPRn(MI, OpIdx++);
1319
1320  if (OpIdx == TID.getNumOperands() ||
1321      TID.OpInfo[OpIdx].isPredicate() ||
1322      TID.OpInfo[OpIdx].isOptionalDef()) {
1323    // FCMPEZD etc. has only one operand.
1324    emitWordLE(Binary);
1325    return;
1326  }
1327
1328  // Encode Dm / Sm.
1329  Binary |= encodeVFPRm(MI, OpIdx);
1330
1331  emitWordLE(Binary);
1332}
1333
1334void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
1335  const TargetInstrDesc &TID = MI.getDesc();
1336  unsigned Form = TID.TSFlags & ARMII::FormMask;
1337
1338  // Part of binary is determined by TableGn.
1339  unsigned Binary = getBinaryCodeForInstr(MI);
1340
1341  // Set the conditional execution predicate
1342  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1343
1344  switch (Form) {
1345  default: break;
1346  case ARMII::VFPConv1Frm:
1347  case ARMII::VFPConv2Frm:
1348  case ARMII::VFPConv3Frm:
1349    // Encode Dd / Sd.
1350    Binary |= encodeVFPRd(MI, 0);
1351    break;
1352  case ARMII::VFPConv4Frm:
1353    // Encode Dn / Sn.
1354    Binary |= encodeVFPRn(MI, 0);
1355    break;
1356  case ARMII::VFPConv5Frm:
1357    // Encode Dm / Sm.
1358    Binary |= encodeVFPRm(MI, 0);
1359    break;
1360  }
1361
1362  switch (Form) {
1363  default: break;
1364  case ARMII::VFPConv1Frm:
1365    // Encode Dm / Sm.
1366    Binary |= encodeVFPRm(MI, 1);
1367    break;
1368  case ARMII::VFPConv2Frm:
1369  case ARMII::VFPConv3Frm:
1370    // Encode Dn / Sn.
1371    Binary |= encodeVFPRn(MI, 1);
1372    break;
1373  case ARMII::VFPConv4Frm:
1374  case ARMII::VFPConv5Frm:
1375    // Encode Dd / Sd.
1376    Binary |= encodeVFPRd(MI, 1);
1377    break;
1378  }
1379
1380  if (Form == ARMII::VFPConv5Frm)
1381    // Encode Dn / Sn.
1382    Binary |= encodeVFPRn(MI, 2);
1383  else if (Form == ARMII::VFPConv3Frm)
1384    // Encode Dm / Sm.
1385    Binary |= encodeVFPRm(MI, 2);
1386
1387  emitWordLE(Binary);
1388}
1389
1390void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
1391  // Part of binary is determined by TableGn.
1392  unsigned Binary = getBinaryCodeForInstr(MI);
1393
1394  // Set the conditional execution predicate
1395  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1396
1397  unsigned OpIdx = 0;
1398
1399  // Encode Dd / Sd.
1400  Binary |= encodeVFPRd(MI, OpIdx++);
1401
1402  // Encode address base.
1403  const MachineOperand &Base = MI.getOperand(OpIdx++);
1404  Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
1405
1406  // If there is a non-zero immediate offset, encode it.
1407  if (Base.isReg()) {
1408    const MachineOperand &Offset = MI.getOperand(OpIdx);
1409    if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
1410      if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
1411        Binary |= 1 << ARMII::U_BitShift;
1412      Binary |= ImmOffs;
1413      emitWordLE(Binary);
1414      return;
1415    }
1416  }
1417
1418  // If immediate offset is omitted, default to +0.
1419  Binary |= 1 << ARMII::U_BitShift;
1420
1421  emitWordLE(Binary);
1422}
1423
1424void
1425ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
1426  const TargetInstrDesc &TID = MI.getDesc();
1427  bool IsUpdating = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1428
1429  // Part of binary is determined by TableGn.
1430  unsigned Binary = getBinaryCodeForInstr(MI);
1431
1432  // Set the conditional execution predicate
1433  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1434
1435  // Skip operand 0 of an instruction with base register update.
1436  unsigned OpIdx = 0;
1437  if (IsUpdating)
1438    ++OpIdx;
1439
1440  // Set base address operand
1441  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1442
1443  // Set addressing mode by modifying bits U(23) and P(24)
1444  const MachineOperand &MO = MI.getOperand(OpIdx++);
1445  Binary |= getAddrModeUPBits(ARM_AM::getAM5SubMode(MO.getImm()));
1446
1447  // Set bit W(21)
1448  if (IsUpdating)
1449    Binary |= 0x1 << ARMII::W_BitShift;
1450
1451  // First register is encoded in Dd.
1452  Binary |= encodeVFPRd(MI, OpIdx+2);
1453
1454  // Number of registers are encoded in offset field.
1455  unsigned NumRegs = 1;
1456  for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
1457    const MachineOperand &MO = MI.getOperand(i);
1458    if (!MO.isReg() || MO.isImplicit())
1459      break;
1460    ++NumRegs;
1461  }
1462  // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
1463  // Otherwise, it will be 0, in the case of 32-bit registers.
1464  if(Binary & 0x100)
1465    Binary |= NumRegs * 2;
1466  else
1467    Binary |= NumRegs;
1468
1469  emitWordLE(Binary);
1470}
1471
1472void ARMCodeEmitter::emitMiscInstruction(const MachineInstr &MI) {
1473  unsigned Opcode = MI.getDesc().Opcode;
1474  // Part of binary is determined by TableGn.
1475  unsigned Binary = getBinaryCodeForInstr(MI);
1476
1477  // Set the conditional execution predicate
1478  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1479
1480  switch(Opcode) {
1481  default:
1482    llvm_unreachable("ARMCodeEmitter::emitMiscInstruction");
1483
1484  case ARM::FMSTAT:
1485    // No further encoding needed.
1486    break;
1487
1488  case ARM::VMRS:
1489  case ARM::VMSR: {
1490    const MachineOperand &MO0 = MI.getOperand(0);
1491    // Encode Rt.
1492    Binary |= ARMRegisterInfo::getRegisterNumbering(MO0.getReg())
1493                << ARMII::RegRdShift;
1494    break;
1495  }
1496
1497  case ARM::FCONSTD:
1498  case ARM::FCONSTS: {
1499    // Encode Dd / Sd.
1500    Binary |= encodeVFPRd(MI, 0);
1501
1502    // Encode imm., Table A7-18 VFP modified immediate constants
1503    const MachineOperand &MO1 = MI.getOperand(1);
1504    unsigned Imm = static_cast<unsigned>(MO1.getFPImm()->getValueAPF()
1505                      .bitcastToAPInt().getHiBits(32).getLimitedValue());
1506    unsigned ModifiedImm;
1507
1508    if(Opcode == ARM::FCONSTS)
1509      ModifiedImm = (Imm & 0x80000000) >> 24 | // a
1510                    (Imm & 0x03F80000) >> 19;  // bcdefgh
1511    else // Opcode == ARM::FCONSTD
1512      ModifiedImm = (Imm & 0x80000000) >> 24 | // a
1513                    (Imm & 0x007F0000) >> 16;  // bcdefgh
1514
1515    // Insts{19-16} = abcd, Insts{3-0} = efgh
1516    Binary |= ((ModifiedImm & 0xF0) >> 4) << 16;
1517    Binary |= (ModifiedImm & 0xF);
1518    break;
1519  }
1520  }
1521
1522  emitWordLE(Binary);
1523}
1524
1525#include "ARMGenCodeEmitter.inc"
1526