ARMCodeEmitter.cpp revision 5bb779976a7d8e48408051ec2289fe69206dc072
1//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the pass that transforms the ARM machine instructions into
11// relocatable machine code.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "ARM.h"
17#include "ARMConstantPoolValue.h"
18#include "ARMInstrInfo.h"
19#include "ARMRelocations.h"
20#include "ARMSubtarget.h"
21#include "ARMTargetMachine.h"
22#include "MCTargetDesc/ARMAddressingModes.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/PassManager.h"
27#include "llvm/CodeGen/JITCodeEmitter.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/Passes.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#ifndef NDEBUG
39#include <iomanip>
40#endif
41using namespace llvm;
42
43STATISTIC(NumEmitted, "Number of machine instructions emitted");
44
45namespace {
46
47  class ARMCodeEmitter : public MachineFunctionPass {
48    ARMJITInfo                *JTI;
49    const ARMInstrInfo        *II;
50    const TargetData          *TD;
51    const ARMSubtarget        *Subtarget;
52    TargetMachine             &TM;
53    JITCodeEmitter            &MCE;
54    MachineModuleInfo *MMI;
55    const std::vector<MachineConstantPoolEntry> *MCPEs;
56    const std::vector<MachineJumpTableEntry> *MJTEs;
57    bool IsPIC;
58    bool IsThumb;
59
60    void getAnalysisUsage(AnalysisUsage &AU) const {
61      AU.addRequired<MachineModuleInfo>();
62      MachineFunctionPass::getAnalysisUsage(AU);
63    }
64
65    static char ID;
66  public:
67    ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
68      : MachineFunctionPass(ID), JTI(0),
69        II((const ARMInstrInfo *)tm.getInstrInfo()),
70        TD(tm.getTargetData()), TM(tm),
71        MCE(mce), MCPEs(0), MJTEs(0),
72        IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {}
73
74    /// getBinaryCodeForInstr - This function, generated by the
75    /// CodeEmitterGenerator using TableGen, produces the binary encoding for
76    /// machine instructions.
77    unsigned getBinaryCodeForInstr(const MachineInstr &MI) const;
78
79    bool runOnMachineFunction(MachineFunction &MF);
80
81    virtual const char *getPassName() const {
82      return "ARM Machine Code Emitter";
83    }
84
85    void emitInstruction(const MachineInstr &MI);
86
87  private:
88
89    void emitWordLE(unsigned Binary);
90    void emitDWordLE(uint64_t Binary);
91    void emitConstPoolInstruction(const MachineInstr &MI);
92    void emitMOVi32immInstruction(const MachineInstr &MI);
93    void emitMOVi2piecesInstruction(const MachineInstr &MI);
94    void emitLEApcrelJTInstruction(const MachineInstr &MI);
95    void emitPseudoMoveInstruction(const MachineInstr &MI);
96    void addPCLabel(unsigned LabelID);
97    void emitPseudoInstruction(const MachineInstr &MI);
98    unsigned getMachineSoRegOpValue(const MachineInstr &MI,
99                                    const MCInstrDesc &MCID,
100                                    const MachineOperand &MO,
101                                    unsigned OpIdx);
102
103    unsigned getMachineSoImmOpValue(unsigned SoImm);
104    unsigned getAddrModeSBit(const MachineInstr &MI,
105                             const MCInstrDesc &MCID) const;
106
107    void emitDataProcessingInstruction(const MachineInstr &MI,
108                                       unsigned ImplicitRd = 0,
109                                       unsigned ImplicitRn = 0);
110
111    void emitLoadStoreInstruction(const MachineInstr &MI,
112                                  unsigned ImplicitRd = 0,
113                                  unsigned ImplicitRn = 0);
114
115    void emitMiscLoadStoreInstruction(const MachineInstr &MI,
116                                      unsigned ImplicitRn = 0);
117
118    void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
119
120    void emitMulFrmInstruction(const MachineInstr &MI);
121
122    void emitExtendInstruction(const MachineInstr &MI);
123
124    void emitMiscArithInstruction(const MachineInstr &MI);
125
126    void emitSaturateInstruction(const MachineInstr &MI);
127
128    void emitBranchInstruction(const MachineInstr &MI);
129
130    void emitInlineJumpTable(unsigned JTIndex);
131
132    void emitMiscBranchInstruction(const MachineInstr &MI);
133
134    void emitVFPArithInstruction(const MachineInstr &MI);
135
136    void emitVFPConversionInstruction(const MachineInstr &MI);
137
138    void emitVFPLoadStoreInstruction(const MachineInstr &MI);
139
140    void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
141
142    void emitNEONLaneInstruction(const MachineInstr &MI);
143    void emitNEONDupInstruction(const MachineInstr &MI);
144    void emitNEON1RegModImmInstruction(const MachineInstr &MI);
145    void emitNEON2RegInstruction(const MachineInstr &MI);
146    void emitNEON3RegInstruction(const MachineInstr &MI);
147
148    /// getMachineOpValue - Return binary encoding of operand. If the machine
149    /// operand requires relocation, record the relocation and return zero.
150    unsigned getMachineOpValue(const MachineInstr &MI,
151                               const MachineOperand &MO) const;
152    unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const {
153      return getMachineOpValue(MI, MI.getOperand(OpIdx));
154    }
155
156    // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the
157    //  TableGen'erated getBinaryCodeForInstr() function to encode any
158    //  operand values, instead querying getMachineOpValue() directly for
159    //  each operand it needs to encode. Thus, any of the new encoder
160    //  helper functions can simply return 0 as the values the return
161    //  are already handled elsewhere. They are placeholders to allow this
162    //  encoder to continue to function until the MC encoder is sufficiently
163    //  far along that this one can be eliminated entirely.
164    unsigned NEONThumb2DataIPostEncoder(const MachineInstr &MI, unsigned Val)
165      const { return 0; }
166    unsigned NEONThumb2LoadStorePostEncoder(const MachineInstr &MI,unsigned Val)
167      const { return 0; }
168    unsigned NEONThumb2DupPostEncoder(const MachineInstr &MI,unsigned Val)
169      const { return 0; }
170    unsigned VFPThumb2PostEncoder(const MachineInstr&MI, unsigned Val)
171      const { return 0; }
172    unsigned getAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
173      const { return 0; }
174    unsigned getThumbAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
175      const { return 0; }
176    unsigned getThumbBLTargetOpValue(const MachineInstr &MI, unsigned Op)
177      const { return 0; }
178    unsigned getThumbBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
179      const { return 0; }
180    unsigned getThumbBRTargetOpValue(const MachineInstr &MI, unsigned Op)
181      const { return 0; }
182    unsigned getThumbBCCTargetOpValue(const MachineInstr &MI, unsigned Op)
183      const { return 0; }
184    unsigned getThumbCBTargetOpValue(const MachineInstr &MI, unsigned Op)
185      const { return 0; }
186    unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
187      const { return 0; }
188    unsigned getUnconditionalBranchTargetOpValue(const MachineInstr &MI,
189      unsigned Op) const { return 0; }
190    unsigned getARMBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
191      const { return 0; }
192    unsigned getARMBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
193      const { return 0; }
194    unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op)
195      const { return 0; }
196    unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op)
197      const { return 0; }
198    unsigned getT2SOImmOpValue(const MachineInstr &MI, unsigned Op)
199      const { return 0; }
200    unsigned getSORegRegOpValue(const MachineInstr &MI, unsigned Op)
201      const { return 0; }
202    unsigned getSORegImmOpValue(const MachineInstr &MI, unsigned Op)
203      const { return 0; }
204    unsigned getThumbAddrModeRegRegOpValue(const MachineInstr &MI, unsigned Op)
205      const { return 0; }
206    unsigned getT2AddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
207      const { return 0; }
208    unsigned getT2AddrModeImm8OpValue(const MachineInstr &MI, unsigned Op)
209      const { return 0; }
210    unsigned getT2Imm8s4OpValue(const MachineInstr &MI, unsigned Op)
211      const { return 0; }
212    unsigned getT2AddrModeImm8s4OpValue(const MachineInstr &MI, unsigned Op)
213      const { return 0; }
214    unsigned getT2AddrModeImm0_1020s4OpValue(const MachineInstr &MI,unsigned Op)
215      const { return 0; }
216    unsigned getT2AddrModeImm8OffsetOpValue(const MachineInstr &MI, unsigned Op)
217      const { return 0; }
218    unsigned getT2AddrModeImm12OffsetOpValue(const MachineInstr &MI,unsigned Op)
219      const { return 0; }
220    unsigned getT2AddrModeSORegOpValue(const MachineInstr &MI, unsigned Op)
221      const { return 0; }
222    unsigned getT2SORegOpValue(const MachineInstr &MI, unsigned Op)
223      const { return 0; }
224    unsigned getT2AdrLabelOpValue(const MachineInstr &MI, unsigned Op)
225      const { return 0; }
226    unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op)
227      const { return 0; }
228    unsigned getAddrMode6OneLane32AddressOpValue(const MachineInstr &MI,
229                                                 unsigned Op)
230      const { return 0; }
231    unsigned getAddrMode6DupAddressOpValue(const MachineInstr &MI, unsigned Op)
232      const { return 0; }
233    unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op)
234      const { return 0; }
235    unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI,
236                                            unsigned Op) const { return 0; }
237    unsigned getSsatBitPosValue(const MachineInstr &MI,
238                                unsigned Op) const { return 0; }
239    uint32_t getLdStmModeOpValue(const MachineInstr &MI, unsigned OpIdx)
240      const {return 0; }
241    uint32_t getLdStSORegOpValue(const MachineInstr &MI, unsigned OpIdx)
242      const { return 0; }
243
244    unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
245      const {
246      // {17-13} = reg
247      // {12}    = (U)nsigned (add == '1', sub == '0')
248      // {11-0}  = imm12
249      const MachineOperand &MO  = MI.getOperand(Op);
250      const MachineOperand &MO1 = MI.getOperand(Op + 1);
251      if (!MO.isReg()) {
252        emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
253        return 0;
254      }
255      unsigned Reg = getARMRegisterNumbering(MO.getReg());
256      int32_t Imm12 = MO1.getImm();
257      uint32_t Binary;
258      Binary = Imm12 & 0xfff;
259      if (Imm12 >= 0)
260        Binary |= (1 << 12);
261      Binary |= (Reg << 13);
262      return Binary;
263    }
264
265    unsigned getHiLo16ImmOpValue(const MachineInstr &MI, unsigned Op) const {
266      return 0;
267    }
268
269    uint32_t getAddrMode2OpValue(const MachineInstr &MI, unsigned OpIdx)
270      const { return 0;}
271    uint32_t getAddrMode2OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
272      const { return 0;}
273    uint32_t getPostIdxRegOpValue(const MachineInstr &MI, unsigned OpIdx)
274      const { return 0;}
275    uint32_t getAddrMode3OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
276      const { return 0;}
277    uint32_t getAddrMode3OpValue(const MachineInstr &MI, unsigned Op)
278      const { return 0; }
279    uint32_t getAddrModeThumbSPOpValue(const MachineInstr &MI, unsigned Op)
280      const { return 0; }
281    uint32_t getAddrModeSOpValue(const MachineInstr &MI, unsigned Op)
282      const { return 0; }
283    uint32_t getAddrModeISOpValue(const MachineInstr &MI, unsigned Op)
284      const { return 0; }
285    uint32_t getAddrModePCOpValue(const MachineInstr &MI, unsigned Op)
286      const { return 0; }
287    uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const {
288      // {17-13} = reg
289      // {12}    = (U)nsigned (add == '1', sub == '0')
290      // {11-0}  = imm12
291      const MachineOperand &MO  = MI.getOperand(Op);
292      const MachineOperand &MO1 = MI.getOperand(Op + 1);
293      if (!MO.isReg()) {
294        emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
295        return 0;
296      }
297      unsigned Reg = getARMRegisterNumbering(MO.getReg());
298      int32_t Imm12 = MO1.getImm();
299
300      // Special value for #-0
301      if (Imm12 == INT32_MIN)
302        Imm12 = 0;
303
304      // Immediate is always encoded as positive. The 'U' bit controls add vs
305      // sub.
306      bool isAdd = true;
307      if (Imm12 < 0) {
308        Imm12 = -Imm12;
309        isAdd = false;
310      }
311
312      uint32_t Binary = Imm12 & 0xfff;
313      if (isAdd)
314        Binary |= (1 << 12);
315      Binary |= (Reg << 13);
316      return Binary;
317    }
318    unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op)
319      const { return 0; }
320
321    unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op)
322      const { return 0; }
323
324    unsigned getShiftRight8Imm(const MachineInstr &MI, unsigned Op)
325      const { return 0; }
326    unsigned getShiftRight16Imm(const MachineInstr &MI, unsigned Op)
327      const { return 0; }
328    unsigned getShiftRight32Imm(const MachineInstr &MI, unsigned Op)
329      const { return 0; }
330    unsigned getShiftRight64Imm(const MachineInstr &MI, unsigned Op)
331      const { return 0; }
332
333    /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
334    /// machine operand requires relocation, record the relocation and return
335    /// zero.
336    unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
337                            unsigned Reloc);
338
339    /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
340    ///
341    unsigned getShiftOp(unsigned Imm) const ;
342
343    /// Routines that handle operands which add machine relocations which are
344    /// fixed up by the relocation stage.
345    void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
346                           bool MayNeedFarStub,  bool Indirect,
347                           intptr_t ACPV = 0) const;
348    void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
349    void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
350    void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const;
351    void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
352                               intptr_t JTBase = 0) const;
353  };
354}
355
356char ARMCodeEmitter::ID = 0;
357
358/// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
359/// code to the specified MCE object.
360FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
361                                                JITCodeEmitter &JCE) {
362  return new ARMCodeEmitter(TM, JCE);
363}
364
365bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
366  assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
367          MF.getTarget().getRelocationModel() != Reloc::Static) &&
368         "JIT relocation model must be set to static or default!");
369  JTI = ((ARMTargetMachine &)MF.getTarget()).getJITInfo();
370  II = ((const ARMTargetMachine &)MF.getTarget()).getInstrInfo();
371  TD = ((const ARMTargetMachine &)MF.getTarget()).getTargetData();
372  Subtarget = &TM.getSubtarget<ARMSubtarget>();
373  MCPEs = &MF.getConstantPool()->getConstants();
374  MJTEs = 0;
375  if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
376  IsPIC = TM.getRelocationModel() == Reloc::PIC_;
377  IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction();
378  JTI->Initialize(MF, IsPIC);
379  MMI = &getAnalysis<MachineModuleInfo>();
380  MCE.setModuleInfo(MMI);
381
382  do {
383    DEBUG(errs() << "JITTing function '"
384          << MF.getFunction()->getName() << "'\n");
385    MCE.startFunction(MF);
386    for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
387         MBB != E; ++MBB) {
388      MCE.StartMachineBasicBlock(MBB);
389      for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
390           I != E; ++I)
391        emitInstruction(*I);
392    }
393  } while (MCE.finishFunction(MF));
394
395  return false;
396}
397
398/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
399///
400unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
401  switch (ARM_AM::getAM2ShiftOpc(Imm)) {
402  default: llvm_unreachable("Unknown shift opc!");
403  case ARM_AM::asr: return 2;
404  case ARM_AM::lsl: return 0;
405  case ARM_AM::lsr: return 1;
406  case ARM_AM::ror:
407  case ARM_AM::rrx: return 3;
408  }
409  return 0;
410}
411
412/// getMovi32Value - Return binary encoding of operand for movw/movt. If the
413/// machine operand requires relocation, record the relocation and return zero.
414unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
415                                        const MachineOperand &MO,
416                                        unsigned Reloc) {
417  assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
418      && "Relocation to this function should be for movt or movw");
419
420  if (MO.isImm())
421    return static_cast<unsigned>(MO.getImm());
422  else if (MO.isGlobal())
423    emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
424  else if (MO.isSymbol())
425    emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
426  else if (MO.isMBB())
427    emitMachineBasicBlock(MO.getMBB(), Reloc);
428  else {
429#ifndef NDEBUG
430    errs() << MO;
431#endif
432    llvm_unreachable("Unsupported operand type for movw/movt");
433  }
434  return 0;
435}
436
437/// getMachineOpValue - Return binary encoding of operand. If the machine
438/// operand requires relocation, record the relocation and return zero.
439unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
440                                           const MachineOperand &MO) const {
441  if (MO.isReg())
442    return getARMRegisterNumbering(MO.getReg());
443  else if (MO.isImm())
444    return static_cast<unsigned>(MO.getImm());
445  else if (MO.isGlobal())
446    emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
447  else if (MO.isSymbol())
448    emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
449  else if (MO.isCPI()) {
450    const MCInstrDesc &MCID = MI.getDesc();
451    // For VFP load, the immediate offset is multiplied by 4.
452    unsigned Reloc =  ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
453      ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
454    emitConstPoolAddress(MO.getIndex(), Reloc);
455  } else if (MO.isJTI())
456    emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
457  else if (MO.isMBB())
458    emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
459  else
460    llvm_unreachable("Unable to encode MachineOperand!");
461  return 0;
462}
463
464/// emitGlobalAddress - Emit the specified address to the code stream.
465///
466void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
467                                       bool MayNeedFarStub, bool Indirect,
468                                       intptr_t ACPV) const {
469  MachineRelocation MR = Indirect
470    ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
471                                           const_cast<GlobalValue *>(GV),
472                                           ACPV, MayNeedFarStub)
473    : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
474                               const_cast<GlobalValue *>(GV), ACPV,
475                               MayNeedFarStub);
476  MCE.addRelocation(MR);
477}
478
479/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
480/// be emitted to the current location in the function, and allow it to be PC
481/// relative.
482void ARMCodeEmitter::
483emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
484  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
485                                                 Reloc, ES));
486}
487
488/// emitConstPoolAddress - Arrange for the address of an constant pool
489/// to be emitted to the current location in the function, and allow it to be PC
490/// relative.
491void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
492  // Tell JIT emitter we'll resolve the address.
493  MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
494                                                    Reloc, CPI, 0, true));
495}
496
497/// emitJumpTableAddress - Arrange for the address of a jump table to
498/// be emitted to the current location in the function, and allow it to be PC
499/// relative.
500void ARMCodeEmitter::
501emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const {
502  MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
503                                                    Reloc, JTIndex, 0, true));
504}
505
506/// emitMachineBasicBlock - Emit the specified address basic block.
507void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
508                                           unsigned Reloc,
509                                           intptr_t JTBase) const {
510  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
511                                             Reloc, BB, JTBase));
512}
513
514void ARMCodeEmitter::emitWordLE(unsigned Binary) {
515  DEBUG(errs() << "  0x";
516        errs().write_hex(Binary) << "\n");
517  MCE.emitWordLE(Binary);
518}
519
520void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
521  DEBUG(errs() << "  0x";
522        errs().write_hex(Binary) << "\n");
523  MCE.emitDWordLE(Binary);
524}
525
526void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
527  DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
528
529  MCE.processDebugLoc(MI.getDebugLoc(), true);
530
531  ++NumEmitted;  // Keep track of the # of mi's emitted
532  switch (MI.getDesc().TSFlags & ARMII::FormMask) {
533  default: {
534    llvm_unreachable("Unhandled instruction encoding format!");
535    break;
536  }
537  case ARMII::MiscFrm:
538    if (MI.getOpcode() == ARM::LEApcrelJT) {
539      // Materialize jumptable address.
540      emitLEApcrelJTInstruction(MI);
541      break;
542    }
543    llvm_unreachable("Unhandled instruction encoding!");
544    break;
545  case ARMII::Pseudo:
546    emitPseudoInstruction(MI);
547    break;
548  case ARMII::DPFrm:
549  case ARMII::DPSoRegFrm:
550    emitDataProcessingInstruction(MI);
551    break;
552  case ARMII::LdFrm:
553  case ARMII::StFrm:
554    emitLoadStoreInstruction(MI);
555    break;
556  case ARMII::LdMiscFrm:
557  case ARMII::StMiscFrm:
558    emitMiscLoadStoreInstruction(MI);
559    break;
560  case ARMII::LdStMulFrm:
561    emitLoadStoreMultipleInstruction(MI);
562    break;
563  case ARMII::MulFrm:
564    emitMulFrmInstruction(MI);
565    break;
566  case ARMII::ExtFrm:
567    emitExtendInstruction(MI);
568    break;
569  case ARMII::ArithMiscFrm:
570    emitMiscArithInstruction(MI);
571    break;
572  case ARMII::SatFrm:
573    emitSaturateInstruction(MI);
574    break;
575  case ARMII::BrFrm:
576    emitBranchInstruction(MI);
577    break;
578  case ARMII::BrMiscFrm:
579    emitMiscBranchInstruction(MI);
580    break;
581  // VFP instructions.
582  case ARMII::VFPUnaryFrm:
583  case ARMII::VFPBinaryFrm:
584    emitVFPArithInstruction(MI);
585    break;
586  case ARMII::VFPConv1Frm:
587  case ARMII::VFPConv2Frm:
588  case ARMII::VFPConv3Frm:
589  case ARMII::VFPConv4Frm:
590  case ARMII::VFPConv5Frm:
591    emitVFPConversionInstruction(MI);
592    break;
593  case ARMII::VFPLdStFrm:
594    emitVFPLoadStoreInstruction(MI);
595    break;
596  case ARMII::VFPLdStMulFrm:
597    emitVFPLoadStoreMultipleInstruction(MI);
598    break;
599
600  // NEON instructions.
601  case ARMII::NGetLnFrm:
602  case ARMII::NSetLnFrm:
603    emitNEONLaneInstruction(MI);
604    break;
605  case ARMII::NDupFrm:
606    emitNEONDupInstruction(MI);
607    break;
608  case ARMII::N1RegModImmFrm:
609    emitNEON1RegModImmInstruction(MI);
610    break;
611  case ARMII::N2RegFrm:
612    emitNEON2RegInstruction(MI);
613    break;
614  case ARMII::N3RegFrm:
615    emitNEON3RegInstruction(MI);
616    break;
617  }
618  MCE.processDebugLoc(MI.getDebugLoc(), false);
619}
620
621void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
622  unsigned CPI = MI.getOperand(0).getImm();       // CP instruction index.
623  unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
624  const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
625
626  // Remember the CONSTPOOL_ENTRY address for later relocation.
627  JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
628
629  // Emit constpool island entry. In most cases, the actual values will be
630  // resolved and relocated after code emission.
631  if (MCPE.isMachineConstantPoolEntry()) {
632    ARMConstantPoolValue *ACPV =
633      static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
634
635    DEBUG(errs() << "  ** ARM constant pool #" << CPI << " @ "
636          << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
637
638    assert(ACPV->isGlobalValue() && "unsupported constant pool value");
639    const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
640    if (GV) {
641      Reloc::Model RelocM = TM.getRelocationModel();
642      emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
643                        isa<Function>(GV),
644                        Subtarget->GVIsIndirectSymbol(GV, RelocM),
645                        (intptr_t)ACPV);
646     } else  {
647      emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute);
648    }
649    emitWordLE(0);
650  } else {
651    const Constant *CV = MCPE.Val.ConstVal;
652
653    DEBUG({
654        errs() << "  ** Constant pool #" << CPI << " @ "
655               << (void*)MCE.getCurrentPCValue() << " ";
656        if (const Function *F = dyn_cast<Function>(CV))
657          errs() << F->getName();
658        else
659          errs() << *CV;
660        errs() << '\n';
661      });
662
663    if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
664      emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV), false);
665      emitWordLE(0);
666    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
667      uint32_t Val = uint32_t(*CI->getValue().getRawData());
668      emitWordLE(Val);
669    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
670      if (CFP->getType()->isFloatTy())
671        emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
672      else if (CFP->getType()->isDoubleTy())
673        emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
674      else {
675        llvm_unreachable("Unable to handle this constantpool entry!");
676      }
677    } else {
678      llvm_unreachable("Unable to handle this constantpool entry!");
679    }
680  }
681}
682
683void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
684  const MachineOperand &MO0 = MI.getOperand(0);
685  const MachineOperand &MO1 = MI.getOperand(1);
686
687  // Emit the 'movw' instruction.
688  unsigned Binary = 0x30 << 20;  // mov: Insts{27-20} = 0b00110000
689
690  unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;
691
692  // Set the conditional execution predicate.
693  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
694
695  // Encode Rd.
696  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
697
698  // Encode imm16 as imm4:imm12
699  Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
700  Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
701  emitWordLE(Binary);
702
703  unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
704  // Emit the 'movt' instruction.
705  Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100
706
707  // Set the conditional execution predicate.
708  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
709
710  // Encode Rd.
711  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
712
713  // Encode imm16 as imm4:imm1, same as movw above.
714  Binary |= Hi16 & 0xFFF;
715  Binary |= ((Hi16 >> 12) & 0xF) << 16;
716  emitWordLE(Binary);
717}
718
719void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
720  const MachineOperand &MO0 = MI.getOperand(0);
721  const MachineOperand &MO1 = MI.getOperand(1);
722  assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
723                                                  "Not a valid so_imm value!");
724  unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
725  unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
726
727  // Emit the 'mov' instruction.
728  unsigned Binary = 0xd << 21;  // mov: Insts{24-21} = 0b1101
729
730  // Set the conditional execution predicate.
731  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
732
733  // Encode Rd.
734  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
735
736  // Encode so_imm.
737  // Set bit I(25) to identify this is the immediate form of <shifter_op>
738  Binary |= 1 << ARMII::I_BitShift;
739  Binary |= getMachineSoImmOpValue(V1);
740  emitWordLE(Binary);
741
742  // Now the 'orr' instruction.
743  Binary = 0xc << 21;  // orr: Insts{24-21} = 0b1100
744
745  // Set the conditional execution predicate.
746  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
747
748  // Encode Rd.
749  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
750
751  // Encode Rn.
752  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
753
754  // Encode so_imm.
755  // Set bit I(25) to identify this is the immediate form of <shifter_op>
756  Binary |= 1 << ARMII::I_BitShift;
757  Binary |= getMachineSoImmOpValue(V2);
758  emitWordLE(Binary);
759}
760
761void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
762  // It's basically add r, pc, (LJTI - $+8)
763
764  const MCInstrDesc &MCID = MI.getDesc();
765
766  // Emit the 'add' instruction.
767  unsigned Binary = 0x4 << 21;  // add: Insts{24-21} = 0b0100
768
769  // Set the conditional execution predicate
770  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
771
772  // Encode S bit if MI modifies CPSR.
773  Binary |= getAddrModeSBit(MI, MCID);
774
775  // Encode Rd.
776  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
777
778  // Encode Rn which is PC.
779  Binary |= getARMRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
780
781  // Encode the displacement.
782  Binary |= 1 << ARMII::I_BitShift;
783  emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
784
785  emitWordLE(Binary);
786}
787
788void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
789  unsigned Opcode = MI.getDesc().Opcode;
790
791  // Part of binary is determined by TableGn.
792  unsigned Binary = getBinaryCodeForInstr(MI);
793
794  // Set the conditional execution predicate
795  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
796
797  // Encode S bit if MI modifies CPSR.
798  if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
799    Binary |= 1 << ARMII::S_BitShift;
800
801  // Encode register def if there is one.
802  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
803
804  // Encode the shift operation.
805  switch (Opcode) {
806  default: break;
807  case ARM::RRX:
808    // rrx
809    Binary |= 0x6 << 4;
810    break;
811  case ARM::MOVsrl_flag:
812    // lsr #1
813    Binary |= (0x2 << 4) | (1 << 7);
814    break;
815  case ARM::MOVsra_flag:
816    // asr #1
817    Binary |= (0x4 << 4) | (1 << 7);
818    break;
819  }
820
821  // Encode register Rm.
822  Binary |= getMachineOpValue(MI, 1);
823
824  emitWordLE(Binary);
825}
826
827void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
828  DEBUG(errs() << "  ** LPC" << LabelID << " @ "
829        << (void*)MCE.getCurrentPCValue() << '\n');
830  JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
831}
832
833void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
834  unsigned Opcode = MI.getDesc().Opcode;
835  switch (Opcode) {
836  default:
837    llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
838  case ARM::BX_CALL:
839  case ARM::BMOVPCRX_CALL:
840  case ARM::BXr9_CALL:
841  case ARM::BMOVPCRXr9_CALL: {
842    // First emit mov lr, pc
843    unsigned Binary = 0x01a0e00f;
844    Binary |= II->getPredicate(&MI) << ARMII::CondShift;
845    emitWordLE(Binary);
846
847    // and then emit the branch.
848    emitMiscBranchInstruction(MI);
849    break;
850  }
851  case TargetOpcode::INLINEASM: {
852    // We allow inline assembler nodes with empty bodies - they can
853    // implicitly define registers, which is ok for JIT.
854    if (MI.getOperand(0).getSymbolName()[0]) {
855      report_fatal_error("JIT does not support inline asm!");
856    }
857    break;
858  }
859  case TargetOpcode::PROLOG_LABEL:
860  case TargetOpcode::EH_LABEL:
861    MCE.emitLabel(MI.getOperand(0).getMCSymbol());
862    break;
863  case TargetOpcode::IMPLICIT_DEF:
864  case TargetOpcode::KILL:
865    // Do nothing.
866    break;
867  case ARM::CONSTPOOL_ENTRY:
868    emitConstPoolInstruction(MI);
869    break;
870  case ARM::PICADD: {
871    // Remember of the address of the PC label for relocation later.
872    addPCLabel(MI.getOperand(2).getImm());
873    // PICADD is just an add instruction that implicitly read pc.
874    emitDataProcessingInstruction(MI, 0, ARM::PC);
875    break;
876  }
877  case ARM::PICLDR:
878  case ARM::PICLDRB:
879  case ARM::PICSTR:
880  case ARM::PICSTRB: {
881    // Remember of the address of the PC label for relocation later.
882    addPCLabel(MI.getOperand(2).getImm());
883    // These are just load / store instructions that implicitly read pc.
884    emitLoadStoreInstruction(MI, 0, ARM::PC);
885    break;
886  }
887  case ARM::PICLDRH:
888  case ARM::PICLDRSH:
889  case ARM::PICLDRSB:
890  case ARM::PICSTRH: {
891    // Remember of the address of the PC label for relocation later.
892    addPCLabel(MI.getOperand(2).getImm());
893    // These are just load / store instructions that implicitly read pc.
894    emitMiscLoadStoreInstruction(MI, ARM::PC);
895    break;
896  }
897
898  case ARM::MOVi32imm:
899    // Two instructions to materialize a constant.
900    if (Subtarget->hasV6T2Ops())
901      emitMOVi32immInstruction(MI);
902    else
903      emitMOVi2piecesInstruction(MI);
904    break;
905
906  case ARM::LEApcrelJT:
907    // Materialize jumptable address.
908    emitLEApcrelJTInstruction(MI);
909    break;
910  case ARM::RRX:
911  case ARM::MOVsrl_flag:
912  case ARM::MOVsra_flag:
913    emitPseudoMoveInstruction(MI);
914    break;
915  }
916}
917
918unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
919                                                const MCInstrDesc &MCID,
920                                                const MachineOperand &MO,
921                                                unsigned OpIdx) {
922  unsigned Binary = getMachineOpValue(MI, MO);
923
924  const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
925  const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
926  ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
927
928  // Encode the shift opcode.
929  unsigned SBits = 0;
930  unsigned Rs = MO1.getReg();
931  if (Rs) {
932    // Set shift operand (bit[7:4]).
933    // LSL - 0001
934    // LSR - 0011
935    // ASR - 0101
936    // ROR - 0111
937    // RRX - 0110 and bit[11:8] clear.
938    switch (SOpc) {
939    default: llvm_unreachable("Unknown shift opc!");
940    case ARM_AM::lsl: SBits = 0x1; break;
941    case ARM_AM::lsr: SBits = 0x3; break;
942    case ARM_AM::asr: SBits = 0x5; break;
943    case ARM_AM::ror: SBits = 0x7; break;
944    case ARM_AM::rrx: SBits = 0x6; break;
945    }
946  } else {
947    // Set shift operand (bit[6:4]).
948    // LSL - 000
949    // LSR - 010
950    // ASR - 100
951    // ROR - 110
952    switch (SOpc) {
953    default: llvm_unreachable("Unknown shift opc!");
954    case ARM_AM::lsl: SBits = 0x0; break;
955    case ARM_AM::lsr: SBits = 0x2; break;
956    case ARM_AM::asr: SBits = 0x4; break;
957    case ARM_AM::ror: SBits = 0x6; break;
958    }
959  }
960  Binary |= SBits << 4;
961  if (SOpc == ARM_AM::rrx)
962    return Binary;
963
964  // Encode the shift operation Rs or shift_imm (except rrx).
965  if (Rs) {
966    // Encode Rs bit[11:8].
967    assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
968    return Binary | (getARMRegisterNumbering(Rs) << ARMII::RegRsShift);
969  }
970
971  // Encode shift_imm bit[11:7].
972  return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
973}
974
975unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
976  int SoImmVal = ARM_AM::getSOImmVal(SoImm);
977  assert(SoImmVal != -1 && "Not a valid so_imm value!");
978
979  // Encode rotate_imm.
980  unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
981    << ARMII::SoRotImmShift;
982
983  // Encode immed_8.
984  Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
985  return Binary;
986}
987
988unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
989                                         const MCInstrDesc &MCID) const {
990  for (unsigned i = MI.getNumOperands(), e = MCID.getNumOperands(); i >= e;--i){
991    const MachineOperand &MO = MI.getOperand(i-1);
992    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
993      return 1 << ARMII::S_BitShift;
994  }
995  return 0;
996}
997
998void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
999                                                   unsigned ImplicitRd,
1000                                                   unsigned ImplicitRn) {
1001  const MCInstrDesc &MCID = MI.getDesc();
1002
1003  // Part of binary is determined by TableGn.
1004  unsigned Binary = getBinaryCodeForInstr(MI);
1005
1006  // Set the conditional execution predicate
1007  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1008
1009  // Encode S bit if MI modifies CPSR.
1010  Binary |= getAddrModeSBit(MI, MCID);
1011
1012  // Encode register def if there is one.
1013  unsigned NumDefs = MCID.getNumDefs();
1014  unsigned OpIdx = 0;
1015  if (NumDefs)
1016    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1017  else if (ImplicitRd)
1018    // Special handling for implicit use (e.g. PC).
1019    Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
1020
1021  if (MCID.Opcode == ARM::MOVi16) {
1022      // Get immediate from MI.
1023      unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
1024                      ARM::reloc_arm_movw);
1025      // Encode imm which is the same as in emitMOVi32immInstruction().
1026      Binary |= Lo16 & 0xFFF;
1027      Binary |= ((Lo16 >> 12) & 0xF) << 16;
1028      emitWordLE(Binary);
1029      return;
1030  } else if(MCID.Opcode == ARM::MOVTi16) {
1031      unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
1032                       ARM::reloc_arm_movt) >> 16);
1033      Binary |= Hi16 & 0xFFF;
1034      Binary |= ((Hi16 >> 12) & 0xF) << 16;
1035      emitWordLE(Binary);
1036      return;
1037  } else if ((MCID.Opcode == ARM::BFC) || (MCID.Opcode == ARM::BFI)) {
1038      uint32_t v = ~MI.getOperand(2).getImm();
1039      int32_t lsb = CountTrailingZeros_32(v);
1040      int32_t msb = (32 - CountLeadingZeros_32(v)) - 1;
1041      // Instr{20-16} = msb, Instr{11-7} = lsb
1042      Binary |= (msb & 0x1F) << 16;
1043      Binary |= (lsb & 0x1F) << 7;
1044      emitWordLE(Binary);
1045      return;
1046  } else if ((MCID.Opcode == ARM::UBFX) || (MCID.Opcode == ARM::SBFX)) {
1047      // Encode Rn in Instr{0-3}
1048      Binary |= getMachineOpValue(MI, OpIdx++);
1049
1050      uint32_t lsb = MI.getOperand(OpIdx++).getImm();
1051      uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1;
1052
1053      // Instr{20-16} = widthm1, Instr{11-7} = lsb
1054      Binary |= (widthm1 & 0x1F) << 16;
1055      Binary |= (lsb & 0x1F) << 7;
1056      emitWordLE(Binary);
1057      return;
1058  }
1059
1060  // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
1061  if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1062    ++OpIdx;
1063
1064  // Encode first non-shifter register operand if there is one.
1065  bool isUnary = MCID.TSFlags & ARMII::UnaryDP;
1066  if (!isUnary) {
1067    if (ImplicitRn)
1068      // Special handling for implicit use (e.g. PC).
1069      Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1070    else {
1071      Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
1072      ++OpIdx;
1073    }
1074  }
1075
1076  // Encode shifter operand.
1077  const MachineOperand &MO = MI.getOperand(OpIdx);
1078  if ((MCID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
1079    // Encode SoReg.
1080    emitWordLE(Binary | getMachineSoRegOpValue(MI, MCID, MO, OpIdx));
1081    return;
1082  }
1083
1084  if (MO.isReg()) {
1085    // Encode register Rm.
1086    emitWordLE(Binary | getARMRegisterNumbering(MO.getReg()));
1087    return;
1088  }
1089
1090  // Encode so_imm.
1091  Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
1092
1093  emitWordLE(Binary);
1094}
1095
1096void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
1097                                              unsigned ImplicitRd,
1098                                              unsigned ImplicitRn) {
1099  const MCInstrDesc &MCID = MI.getDesc();
1100  unsigned Form = MCID.TSFlags & ARMII::FormMask;
1101  bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1102
1103  // Part of binary is determined by TableGn.
1104  unsigned Binary = getBinaryCodeForInstr(MI);
1105
1106  // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done.
1107  if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp ||
1108      MI.getOpcode() == ARM::STRi12) {
1109    emitWordLE(Binary);
1110    return;
1111  }
1112
1113  // Set the conditional execution predicate
1114  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1115
1116  unsigned OpIdx = 0;
1117
1118  // Operand 0 of a pre- and post-indexed store is the address base
1119  // writeback. Skip it.
1120  bool Skipped = false;
1121  if (IsPrePost && Form == ARMII::StFrm) {
1122    ++OpIdx;
1123    Skipped = true;
1124  }
1125
1126  // Set first operand
1127  if (ImplicitRd)
1128    // Special handling for implicit use (e.g. PC).
1129    Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
1130  else
1131    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1132
1133  // Set second operand
1134  if (ImplicitRn)
1135    // Special handling for implicit use (e.g. PC).
1136    Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1137  else
1138    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1139
1140  // If this is a two-address operand, skip it. e.g. LDR_PRE.
1141  if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1142    ++OpIdx;
1143
1144  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1145  unsigned AM2Opc = (ImplicitRn == ARM::PC)
1146    ? 0 : MI.getOperand(OpIdx+1).getImm();
1147
1148  // Set bit U(23) according to sign of immed value (positive or negative).
1149  Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
1150             ARMII::U_BitShift);
1151  if (!MO2.getReg()) { // is immediate
1152    if (ARM_AM::getAM2Offset(AM2Opc))
1153      // Set the value of offset_12 field
1154      Binary |= ARM_AM::getAM2Offset(AM2Opc);
1155    emitWordLE(Binary);
1156    return;
1157  }
1158
1159  // Set bit I(25), because this is not in immediate encoding.
1160  Binary |= 1 << ARMII::I_BitShift;
1161  assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
1162  // Set bit[3:0] to the corresponding Rm register
1163  Binary |= getARMRegisterNumbering(MO2.getReg());
1164
1165  // If this instr is in scaled register offset/index instruction, set
1166  // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
1167  if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
1168    Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift;  // shift
1169    Binary |= ShImm              << ARMII::ShiftShift;     // shift_immed
1170  }
1171
1172  emitWordLE(Binary);
1173}
1174
1175void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
1176                                                  unsigned ImplicitRn) {
1177  const MCInstrDesc &MCID = MI.getDesc();
1178  unsigned Form = MCID.TSFlags & ARMII::FormMask;
1179  bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1180
1181  // Part of binary is determined by TableGn.
1182  unsigned Binary = getBinaryCodeForInstr(MI);
1183
1184  // Set the conditional execution predicate
1185  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1186
1187  unsigned OpIdx = 0;
1188
1189  // Operand 0 of a pre- and post-indexed store is the address base
1190  // writeback. Skip it.
1191  bool Skipped = false;
1192  if (IsPrePost && Form == ARMII::StMiscFrm) {
1193    ++OpIdx;
1194    Skipped = true;
1195  }
1196
1197  // Set first operand
1198  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1199
1200  // Skip LDRD and STRD's second operand.
1201  if (MCID.Opcode == ARM::LDRD || MCID.Opcode == ARM::STRD)
1202    ++OpIdx;
1203
1204  // Set second operand
1205  if (ImplicitRn)
1206    // Special handling for implicit use (e.g. PC).
1207    Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1208  else
1209    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1210
1211  // If this is a two-address operand, skip it. e.g. LDRH_POST.
1212  if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1213    ++OpIdx;
1214
1215  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1216  unsigned AM3Opc = (ImplicitRn == ARM::PC)
1217    ? 0 : MI.getOperand(OpIdx+1).getImm();
1218
1219  // Set bit U(23) according to sign of immed value (positive or negative)
1220  Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
1221             ARMII::U_BitShift);
1222
1223  // If this instr is in register offset/index encoding, set bit[3:0]
1224  // to the corresponding Rm register.
1225  if (MO2.getReg()) {
1226    Binary |= getARMRegisterNumbering(MO2.getReg());
1227    emitWordLE(Binary);
1228    return;
1229  }
1230
1231  // This instr is in immediate offset/index encoding, set bit 22 to 1.
1232  Binary |= 1 << ARMII::AM3_I_BitShift;
1233  if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
1234    // Set operands
1235    Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift;  // immedH
1236    Binary |= (ImmOffs & 0xF);                      // immedL
1237  }
1238
1239  emitWordLE(Binary);
1240}
1241
1242static unsigned getAddrModeUPBits(unsigned Mode) {
1243  unsigned Binary = 0;
1244
1245  // Set addressing mode by modifying bits U(23) and P(24)
1246  // IA - Increment after  - bit U = 1 and bit P = 0
1247  // IB - Increment before - bit U = 1 and bit P = 1
1248  // DA - Decrement after  - bit U = 0 and bit P = 0
1249  // DB - Decrement before - bit U = 0 and bit P = 1
1250  switch (Mode) {
1251  default: llvm_unreachable("Unknown addressing sub-mode!");
1252  case ARM_AM::da:                                     break;
1253  case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
1254  case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
1255  case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
1256  }
1257
1258  return Binary;
1259}
1260
1261void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
1262  const MCInstrDesc &MCID = MI.getDesc();
1263  bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1264
1265  // Part of binary is determined by TableGn.
1266  unsigned Binary = getBinaryCodeForInstr(MI);
1267
1268  // Set the conditional execution predicate
1269  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1270
1271  // Skip operand 0 of an instruction with base register update.
1272  unsigned OpIdx = 0;
1273  if (IsUpdating)
1274    ++OpIdx;
1275
1276  // Set base address operand
1277  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1278
1279  // Set addressing mode by modifying bits U(23) and P(24)
1280  ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
1281  Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
1282
1283  // Set bit W(21)
1284  if (IsUpdating)
1285    Binary |= 0x1 << ARMII::W_BitShift;
1286
1287  // Set registers
1288  for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
1289    const MachineOperand &MO = MI.getOperand(i);
1290    if (!MO.isReg() || MO.isImplicit())
1291      break;
1292    unsigned RegNum = getARMRegisterNumbering(MO.getReg());
1293    assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
1294           RegNum < 16);
1295    Binary |= 0x1 << RegNum;
1296  }
1297
1298  emitWordLE(Binary);
1299}
1300
1301void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
1302  const MCInstrDesc &MCID = MI.getDesc();
1303
1304  // Part of binary is determined by TableGn.
1305  unsigned Binary = getBinaryCodeForInstr(MI);
1306
1307  // Set the conditional execution predicate
1308  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1309
1310  // Encode S bit if MI modifies CPSR.
1311  Binary |= getAddrModeSBit(MI, MCID);
1312
1313  // 32x32->64bit operations have two destination registers. The number
1314  // of register definitions will tell us if that's what we're dealing with.
1315  unsigned OpIdx = 0;
1316  if (MCID.getNumDefs() == 2)
1317    Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
1318
1319  // Encode Rd
1320  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
1321
1322  // Encode Rm
1323  Binary |= getMachineOpValue(MI, OpIdx++);
1324
1325  // Encode Rs
1326  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
1327
1328  // Many multiple instructions (e.g. MLA) have three src operands. Encode
1329  // it as Rn (for multiply, that's in the same offset as RdLo.
1330  if (MCID.getNumOperands() > OpIdx &&
1331      !MCID.OpInfo[OpIdx].isPredicate() &&
1332      !MCID.OpInfo[OpIdx].isOptionalDef())
1333    Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
1334
1335  emitWordLE(Binary);
1336}
1337
1338void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
1339  const MCInstrDesc &MCID = MI.getDesc();
1340
1341  // Part of binary is determined by TableGn.
1342  unsigned Binary = getBinaryCodeForInstr(MI);
1343
1344  // Set the conditional execution predicate
1345  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1346
1347  unsigned OpIdx = 0;
1348
1349  // Encode Rd
1350  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1351
1352  const MachineOperand &MO1 = MI.getOperand(OpIdx++);
1353  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1354  if (MO2.isReg()) {
1355    // Two register operand form.
1356    // Encode Rn.
1357    Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
1358
1359    // Encode Rm.
1360    Binary |= getMachineOpValue(MI, MO2);
1361    ++OpIdx;
1362  } else {
1363    Binary |= getMachineOpValue(MI, MO1);
1364  }
1365
1366  // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
1367  if (MI.getOperand(OpIdx).isImm() &&
1368      !MCID.OpInfo[OpIdx].isPredicate() &&
1369      !MCID.OpInfo[OpIdx].isOptionalDef())
1370    Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
1371
1372  emitWordLE(Binary);
1373}
1374
1375void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
1376  const MCInstrDesc &MCID = MI.getDesc();
1377
1378  // Part of binary is determined by TableGn.
1379  unsigned Binary = getBinaryCodeForInstr(MI);
1380
1381  // Set the conditional execution predicate
1382  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1383
1384  // PKH instructions are finished at this point
1385  if (MCID.Opcode == ARM::PKHBT || MCID.Opcode == ARM::PKHTB) {
1386    emitWordLE(Binary);
1387    return;
1388  }
1389
1390  unsigned OpIdx = 0;
1391
1392  // Encode Rd
1393  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1394
1395  const MachineOperand &MO = MI.getOperand(OpIdx++);
1396  if (OpIdx == MCID.getNumOperands() ||
1397      MCID.OpInfo[OpIdx].isPredicate() ||
1398      MCID.OpInfo[OpIdx].isOptionalDef()) {
1399    // Encode Rm and it's done.
1400    Binary |= getMachineOpValue(MI, MO);
1401    emitWordLE(Binary);
1402    return;
1403  }
1404
1405  // Encode Rn.
1406  Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
1407
1408  // Encode Rm.
1409  Binary |= getMachineOpValue(MI, OpIdx++);
1410
1411  // Encode shift_imm.
1412  unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
1413  if (MCID.Opcode == ARM::PKHTB) {
1414    assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!");
1415    if (ShiftAmt == 32)
1416      ShiftAmt = 0;
1417  }
1418  assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1419  Binary |= ShiftAmt << ARMII::ShiftShift;
1420
1421  emitWordLE(Binary);
1422}
1423
1424void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) {
1425  const MCInstrDesc &MCID = MI.getDesc();
1426
1427  // Part of binary is determined by TableGen.
1428  unsigned Binary = getBinaryCodeForInstr(MI);
1429
1430  // Set the conditional execution predicate
1431  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1432
1433  // Encode Rd
1434  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
1435
1436  // Encode saturate bit position.
1437  unsigned Pos = MI.getOperand(1).getImm();
1438  if (MCID.Opcode == ARM::SSAT || MCID.Opcode == ARM::SSAT16)
1439    Pos -= 1;
1440  assert((Pos < 16 || (Pos < 32 &&
1441                       MCID.Opcode != ARM::SSAT16 &&
1442                       MCID.Opcode != ARM::USAT16)) &&
1443         "saturate bit position out of range");
1444  Binary |= Pos << 16;
1445
1446  // Encode Rm
1447  Binary |= getMachineOpValue(MI, 2);
1448
1449  // Encode shift_imm.
1450  if (MCID.getNumOperands() == 4) {
1451    unsigned ShiftOp = MI.getOperand(3).getImm();
1452    ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp);
1453    if (Opc == ARM_AM::asr)
1454      Binary |= (1 << 6);
1455    unsigned ShiftAmt = MI.getOperand(3).getImm();
1456    if (ShiftAmt == 32 && Opc == ARM_AM::asr)
1457      ShiftAmt = 0;
1458    assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1459    Binary |= ShiftAmt << ARMII::ShiftShift;
1460  }
1461
1462  emitWordLE(Binary);
1463}
1464
1465void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
1466  const MCInstrDesc &MCID = MI.getDesc();
1467
1468  if (MCID.Opcode == ARM::TPsoft) {
1469    llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
1470  }
1471
1472  // Part of binary is determined by TableGn.
1473  unsigned Binary = getBinaryCodeForInstr(MI);
1474
1475  // Set the conditional execution predicate
1476  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1477
1478  // Set signed_immed_24 field
1479  Binary |= getMachineOpValue(MI, 0);
1480
1481  emitWordLE(Binary);
1482}
1483
1484void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
1485  // Remember the base address of the inline jump table.
1486  uintptr_t JTBase = MCE.getCurrentPCValue();
1487  JTI->addJumpTableBaseAddr(JTIndex, JTBase);
1488  DEBUG(errs() << "  ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
1489               << '\n');
1490
1491  // Now emit the jump table entries.
1492  const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
1493  for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
1494    if (IsPIC)
1495      // DestBB address - JT base.
1496      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
1497    else
1498      // Absolute DestBB address.
1499      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
1500    emitWordLE(0);
1501  }
1502}
1503
1504void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
1505  const MCInstrDesc &MCID = MI.getDesc();
1506
1507  // Handle jump tables.
1508  if (MCID.Opcode == ARM::BR_JTr || MCID.Opcode == ARM::BR_JTadd) {
1509    // First emit a ldr pc, [] instruction.
1510    emitDataProcessingInstruction(MI, ARM::PC);
1511
1512    // Then emit the inline jump table.
1513    unsigned JTIndex =
1514      (MCID.Opcode == ARM::BR_JTr)
1515      ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
1516    emitInlineJumpTable(JTIndex);
1517    return;
1518  } else if (MCID.Opcode == ARM::BR_JTm) {
1519    // First emit a ldr pc, [] instruction.
1520    emitLoadStoreInstruction(MI, ARM::PC);
1521
1522    // Then emit the inline jump table.
1523    emitInlineJumpTable(MI.getOperand(3).getIndex());
1524    return;
1525  }
1526
1527  // Part of binary is determined by TableGn.
1528  unsigned Binary = getBinaryCodeForInstr(MI);
1529
1530  // Set the conditional execution predicate
1531  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1532
1533  if (MCID.Opcode == ARM::BX_RET || MCID.Opcode == ARM::MOVPCLR)
1534    // The return register is LR.
1535    Binary |= getARMRegisterNumbering(ARM::LR);
1536  else
1537    // otherwise, set the return register
1538    Binary |= getMachineOpValue(MI, 0);
1539
1540  emitWordLE(Binary);
1541}
1542
1543static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) {
1544  unsigned RegD = MI.getOperand(OpIdx).getReg();
1545  unsigned Binary = 0;
1546  bool isSPVFP = ARM::SPRRegisterClass->contains(RegD);
1547  RegD = getARMRegisterNumbering(RegD);
1548  if (!isSPVFP)
1549    Binary |=   RegD               << ARMII::RegRdShift;
1550  else {
1551    Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
1552    Binary |=  (RegD & 0x01)       << ARMII::D_BitShift;
1553  }
1554  return Binary;
1555}
1556
1557static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) {
1558  unsigned RegN = MI.getOperand(OpIdx).getReg();
1559  unsigned Binary = 0;
1560  bool isSPVFP = ARM::SPRRegisterClass->contains(RegN);
1561  RegN = getARMRegisterNumbering(RegN);
1562  if (!isSPVFP)
1563    Binary |=   RegN               << ARMII::RegRnShift;
1564  else {
1565    Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
1566    Binary |=  (RegN & 0x01)       << ARMII::N_BitShift;
1567  }
1568  return Binary;
1569}
1570
1571static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) {
1572  unsigned RegM = MI.getOperand(OpIdx).getReg();
1573  unsigned Binary = 0;
1574  bool isSPVFP = ARM::SPRRegisterClass->contains(RegM);
1575  RegM = getARMRegisterNumbering(RegM);
1576  if (!isSPVFP)
1577    Binary |=   RegM;
1578  else {
1579    Binary |= ((RegM & 0x1E) >> 1);
1580    Binary |=  (RegM & 0x01)       << ARMII::M_BitShift;
1581  }
1582  return Binary;
1583}
1584
1585void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
1586  const MCInstrDesc &MCID = MI.getDesc();
1587
1588  // Part of binary is determined by TableGn.
1589  unsigned Binary = getBinaryCodeForInstr(MI);
1590
1591  // Set the conditional execution predicate
1592  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1593
1594  unsigned OpIdx = 0;
1595  assert((Binary & ARMII::D_BitShift) == 0 &&
1596         (Binary & ARMII::N_BitShift) == 0 &&
1597         (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!");
1598
1599  // Encode Dd / Sd.
1600  Binary |= encodeVFPRd(MI, OpIdx++);
1601
1602  // If this is a two-address operand, skip it, e.g. FMACD.
1603  if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1604    ++OpIdx;
1605
1606  // Encode Dn / Sn.
1607  if ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
1608    Binary |= encodeVFPRn(MI, OpIdx++);
1609
1610  if (OpIdx == MCID.getNumOperands() ||
1611      MCID.OpInfo[OpIdx].isPredicate() ||
1612      MCID.OpInfo[OpIdx].isOptionalDef()) {
1613    // FCMPEZD etc. has only one operand.
1614    emitWordLE(Binary);
1615    return;
1616  }
1617
1618  // Encode Dm / Sm.
1619  Binary |= encodeVFPRm(MI, OpIdx);
1620
1621  emitWordLE(Binary);
1622}
1623
1624void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
1625  const MCInstrDesc &MCID = MI.getDesc();
1626  unsigned Form = MCID.TSFlags & ARMII::FormMask;
1627
1628  // Part of binary is determined by TableGn.
1629  unsigned Binary = getBinaryCodeForInstr(MI);
1630
1631  // Set the conditional execution predicate
1632  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1633
1634  switch (Form) {
1635  default: break;
1636  case ARMII::VFPConv1Frm:
1637  case ARMII::VFPConv2Frm:
1638  case ARMII::VFPConv3Frm:
1639    // Encode Dd / Sd.
1640    Binary |= encodeVFPRd(MI, 0);
1641    break;
1642  case ARMII::VFPConv4Frm:
1643    // Encode Dn / Sn.
1644    Binary |= encodeVFPRn(MI, 0);
1645    break;
1646  case ARMII::VFPConv5Frm:
1647    // Encode Dm / Sm.
1648    Binary |= encodeVFPRm(MI, 0);
1649    break;
1650  }
1651
1652  switch (Form) {
1653  default: break;
1654  case ARMII::VFPConv1Frm:
1655    // Encode Dm / Sm.
1656    Binary |= encodeVFPRm(MI, 1);
1657    break;
1658  case ARMII::VFPConv2Frm:
1659  case ARMII::VFPConv3Frm:
1660    // Encode Dn / Sn.
1661    Binary |= encodeVFPRn(MI, 1);
1662    break;
1663  case ARMII::VFPConv4Frm:
1664  case ARMII::VFPConv5Frm:
1665    // Encode Dd / Sd.
1666    Binary |= encodeVFPRd(MI, 1);
1667    break;
1668  }
1669
1670  if (Form == ARMII::VFPConv5Frm)
1671    // Encode Dn / Sn.
1672    Binary |= encodeVFPRn(MI, 2);
1673  else if (Form == ARMII::VFPConv3Frm)
1674    // Encode Dm / Sm.
1675    Binary |= encodeVFPRm(MI, 2);
1676
1677  emitWordLE(Binary);
1678}
1679
1680void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
1681  // Part of binary is determined by TableGn.
1682  unsigned Binary = getBinaryCodeForInstr(MI);
1683
1684  // Set the conditional execution predicate
1685  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1686
1687  unsigned OpIdx = 0;
1688
1689  // Encode Dd / Sd.
1690  Binary |= encodeVFPRd(MI, OpIdx++);
1691
1692  // Encode address base.
1693  const MachineOperand &Base = MI.getOperand(OpIdx++);
1694  Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
1695
1696  // If there is a non-zero immediate offset, encode it.
1697  if (Base.isReg()) {
1698    const MachineOperand &Offset = MI.getOperand(OpIdx);
1699    if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
1700      if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
1701        Binary |= 1 << ARMII::U_BitShift;
1702      Binary |= ImmOffs;
1703      emitWordLE(Binary);
1704      return;
1705    }
1706  }
1707
1708  // If immediate offset is omitted, default to +0.
1709  Binary |= 1 << ARMII::U_BitShift;
1710
1711  emitWordLE(Binary);
1712}
1713
1714void
1715ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
1716  const MCInstrDesc &MCID = MI.getDesc();
1717  bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1718
1719  // Part of binary is determined by TableGn.
1720  unsigned Binary = getBinaryCodeForInstr(MI);
1721
1722  // Set the conditional execution predicate
1723  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1724
1725  // Skip operand 0 of an instruction with base register update.
1726  unsigned OpIdx = 0;
1727  if (IsUpdating)
1728    ++OpIdx;
1729
1730  // Set base address operand
1731  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1732
1733  // Set addressing mode by modifying bits U(23) and P(24)
1734  ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
1735  Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
1736
1737  // Set bit W(21)
1738  if (IsUpdating)
1739    Binary |= 0x1 << ARMII::W_BitShift;
1740
1741  // First register is encoded in Dd.
1742  Binary |= encodeVFPRd(MI, OpIdx+2);
1743
1744  // Count the number of registers.
1745  unsigned NumRegs = 1;
1746  for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
1747    const MachineOperand &MO = MI.getOperand(i);
1748    if (!MO.isReg() || MO.isImplicit())
1749      break;
1750    ++NumRegs;
1751  }
1752  // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
1753  // Otherwise, it will be 0, in the case of 32-bit registers.
1754  if(Binary & 0x100)
1755    Binary |= NumRegs * 2;
1756  else
1757    Binary |= NumRegs;
1758
1759  emitWordLE(Binary);
1760}
1761
1762static unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) {
1763  unsigned RegD = MI.getOperand(OpIdx).getReg();
1764  unsigned Binary = 0;
1765  RegD = getARMRegisterNumbering(RegD);
1766  Binary |= (RegD & 0xf) << ARMII::RegRdShift;
1767  Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift;
1768  return Binary;
1769}
1770
1771static unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) {
1772  unsigned RegN = MI.getOperand(OpIdx).getReg();
1773  unsigned Binary = 0;
1774  RegN = getARMRegisterNumbering(RegN);
1775  Binary |= (RegN & 0xf) << ARMII::RegRnShift;
1776  Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift;
1777  return Binary;
1778}
1779
1780static unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) {
1781  unsigned RegM = MI.getOperand(OpIdx).getReg();
1782  unsigned Binary = 0;
1783  RegM = getARMRegisterNumbering(RegM);
1784  Binary |= (RegM & 0xf);
1785  Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift;
1786  return Binary;
1787}
1788
1789/// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON
1790/// data-processing instruction to the corresponding Thumb encoding.
1791static unsigned convertNEONDataProcToThumb(unsigned Binary) {
1792  assert((Binary & 0xfe000000) == 0xf2000000 &&
1793         "not an ARM NEON data-processing instruction");
1794  unsigned UBit = (Binary >> 24) & 1;
1795  return 0xef000000 | (UBit << 28) | (Binary & 0xffffff);
1796}
1797
1798void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) {
1799  unsigned Binary = getBinaryCodeForInstr(MI);
1800
1801  unsigned RegTOpIdx, RegNOpIdx, LnOpIdx;
1802  const MCInstrDesc &MCID = MI.getDesc();
1803  if ((MCID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) {
1804    RegTOpIdx = 0;
1805    RegNOpIdx = 1;
1806    LnOpIdx = 2;
1807  } else { // ARMII::NSetLnFrm
1808    RegTOpIdx = 2;
1809    RegNOpIdx = 0;
1810    LnOpIdx = 3;
1811  }
1812
1813  // Set the conditional execution predicate
1814  Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1815
1816  unsigned RegT = MI.getOperand(RegTOpIdx).getReg();
1817  RegT = getARMRegisterNumbering(RegT);
1818  Binary |= (RegT << ARMII::RegRdShift);
1819  Binary |= encodeNEONRn(MI, RegNOpIdx);
1820
1821  unsigned LaneShift;
1822  if ((Binary & (1 << 22)) != 0)
1823    LaneShift = 0; // 8-bit elements
1824  else if ((Binary & (1 << 5)) != 0)
1825    LaneShift = 1; // 16-bit elements
1826  else
1827    LaneShift = 2; // 32-bit elements
1828
1829  unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift;
1830  unsigned Opc1 = Lane >> 2;
1831  unsigned Opc2 = Lane & 3;
1832  assert((Opc1 & 3) == 0 && "out-of-range lane number operand");
1833  Binary |= (Opc1 << 21);
1834  Binary |= (Opc2 << 5);
1835
1836  emitWordLE(Binary);
1837}
1838
1839void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) {
1840  unsigned Binary = getBinaryCodeForInstr(MI);
1841
1842  // Set the conditional execution predicate
1843  Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1844
1845  unsigned RegT = MI.getOperand(1).getReg();
1846  RegT = getARMRegisterNumbering(RegT);
1847  Binary |= (RegT << ARMII::RegRdShift);
1848  Binary |= encodeNEONRn(MI, 0);
1849  emitWordLE(Binary);
1850}
1851
1852void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) {
1853  unsigned Binary = getBinaryCodeForInstr(MI);
1854  // Destination register is encoded in Dd.
1855  Binary |= encodeNEONRd(MI, 0);
1856  // Immediate fields: Op, Cmode, I, Imm3, Imm4
1857  unsigned Imm = MI.getOperand(1).getImm();
1858  unsigned Op = (Imm >> 12) & 1;
1859  unsigned Cmode = (Imm >> 8) & 0xf;
1860  unsigned I = (Imm >> 7) & 1;
1861  unsigned Imm3 = (Imm >> 4) & 0x7;
1862  unsigned Imm4 = Imm & 0xf;
1863  Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4;
1864  if (IsThumb)
1865    Binary = convertNEONDataProcToThumb(Binary);
1866  emitWordLE(Binary);
1867}
1868
1869void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) {
1870  const MCInstrDesc &MCID = MI.getDesc();
1871  unsigned Binary = getBinaryCodeForInstr(MI);
1872  // Destination register is encoded in Dd; source register in Dm.
1873  unsigned OpIdx = 0;
1874  Binary |= encodeNEONRd(MI, OpIdx++);
1875  if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1876    ++OpIdx;
1877  Binary |= encodeNEONRm(MI, OpIdx);
1878  if (IsThumb)
1879    Binary = convertNEONDataProcToThumb(Binary);
1880  // FIXME: This does not handle VDUPfdf or VDUPfqf.
1881  emitWordLE(Binary);
1882}
1883
1884void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) {
1885  const MCInstrDesc &MCID = MI.getDesc();
1886  unsigned Binary = getBinaryCodeForInstr(MI);
1887  // Destination register is encoded in Dd; source registers in Dn and Dm.
1888  unsigned OpIdx = 0;
1889  Binary |= encodeNEONRd(MI, OpIdx++);
1890  if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1891    ++OpIdx;
1892  Binary |= encodeNEONRn(MI, OpIdx++);
1893  if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1894    ++OpIdx;
1895  Binary |= encodeNEONRm(MI, OpIdx);
1896  if (IsThumb)
1897    Binary = convertNEONDataProcToThumb(Binary);
1898  // FIXME: This does not handle VMOVDneon or VMOVQ.
1899  emitWordLE(Binary);
1900}
1901
1902#include "ARMGenCodeEmitter.inc"
1903