ARMCodeEmitter.cpp revision 63ff440fd17c797cebb3c64c7198dad46ef7c90a
1//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the pass that transforms the ARM machine instructions into
11// relocatable machine code.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "ARM.h"
17#include "ARMAddressingModes.h"
18#include "ARMConstantPoolValue.h"
19#include "ARMInstrInfo.h"
20#include "ARMRelocations.h"
21#include "ARMSubtarget.h"
22#include "ARMTargetMachine.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/PassManager.h"
27#include "llvm/CodeGen/JITCodeEmitter.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/Passes.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#ifndef NDEBUG
39#include <iomanip>
40#endif
41using namespace llvm;
42
43STATISTIC(NumEmitted, "Number of machine instructions emitted");
44
45namespace {
46
47  class ARMCodeEmitter : public MachineFunctionPass {
48    ARMJITInfo                *JTI;
49    const ARMInstrInfo        *II;
50    const TargetData          *TD;
51    const ARMSubtarget        *Subtarget;
52    TargetMachine             &TM;
53    JITCodeEmitter            &MCE;
54    MachineModuleInfo *MMI;
55    const std::vector<MachineConstantPoolEntry> *MCPEs;
56    const std::vector<MachineJumpTableEntry> *MJTEs;
57    bool IsPIC;
58
59    void getAnalysisUsage(AnalysisUsage &AU) const {
60      AU.addRequired<MachineModuleInfo>();
61      MachineFunctionPass::getAnalysisUsage(AU);
62    }
63
64    static char ID;
65  public:
66    ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
67      : MachineFunctionPass(&ID), JTI(0),
68        II((const ARMInstrInfo *)tm.getInstrInfo()),
69        TD(tm.getTargetData()), TM(tm),
70    MCE(mce), MCPEs(0), MJTEs(0),
71    IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
72
73    /// getBinaryCodeForInstr - This function, generated by the
74    /// CodeEmitterGenerator using TableGen, produces the binary encoding for
75    /// machine instructions.
76    unsigned getBinaryCodeForInstr(const MachineInstr &MI);
77
78    bool runOnMachineFunction(MachineFunction &MF);
79
80    virtual const char *getPassName() const {
81      return "ARM Machine Code Emitter";
82    }
83
84    void emitInstruction(const MachineInstr &MI);
85
86  private:
87
88    void emitWordLE(unsigned Binary);
89    void emitDWordLE(uint64_t Binary);
90    void emitConstPoolInstruction(const MachineInstr &MI);
91    void emitMOVi32immInstruction(const MachineInstr &MI);
92    void emitMOVi2piecesInstruction(const MachineInstr &MI);
93    void emitLEApcrelJTInstruction(const MachineInstr &MI);
94    void emitPseudoMoveInstruction(const MachineInstr &MI);
95    void addPCLabel(unsigned LabelID);
96    void emitPseudoInstruction(const MachineInstr &MI);
97    unsigned getMachineSoRegOpValue(const MachineInstr &MI,
98                                    const TargetInstrDesc &TID,
99                                    const MachineOperand &MO,
100                                    unsigned OpIdx);
101
102    unsigned getMachineSoImmOpValue(unsigned SoImm);
103
104    unsigned getAddrModeSBit(const MachineInstr &MI,
105                             const TargetInstrDesc &TID) const;
106
107    void emitDataProcessingInstruction(const MachineInstr &MI,
108                                       unsigned ImplicitRd = 0,
109                                       unsigned ImplicitRn = 0);
110
111    void emitLoadStoreInstruction(const MachineInstr &MI,
112                                  unsigned ImplicitRd = 0,
113                                  unsigned ImplicitRn = 0);
114
115    void emitMiscLoadStoreInstruction(const MachineInstr &MI,
116                                      unsigned ImplicitRn = 0);
117
118    void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
119
120    void emitMulFrmInstruction(const MachineInstr &MI);
121
122    void emitExtendInstruction(const MachineInstr &MI);
123
124    void emitMiscArithInstruction(const MachineInstr &MI);
125
126    void emitBranchInstruction(const MachineInstr &MI);
127
128    void emitInlineJumpTable(unsigned JTIndex);
129
130    void emitMiscBranchInstruction(const MachineInstr &MI);
131
132    void emitVFPArithInstruction(const MachineInstr &MI);
133
134    void emitVFPConversionInstruction(const MachineInstr &MI);
135
136    void emitVFPLoadStoreInstruction(const MachineInstr &MI);
137
138    void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
139
140    void emitMiscInstruction(const MachineInstr &MI);
141
142    /// getMachineOpValue - Return binary encoding of operand. If the machine
143    /// operand requires relocation, record the relocation and return zero.
144    unsigned getMachineOpValue(const MachineInstr &MI,const MachineOperand &MO);
145    unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) {
146      return getMachineOpValue(MI, MI.getOperand(OpIdx));
147    }
148
149    /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
150    /// machine operand requires relocation, record the relocation and return zero.
151    unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
152                            unsigned Reloc);
153    unsigned getMovi32Value(const MachineInstr &MI, unsigned OpIdx,
154                            unsigned Reloc) {
155      return getMovi32Value(MI, MI.getOperand(OpIdx), Reloc);
156    }
157
158    /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
159    ///
160    unsigned getShiftOp(unsigned Imm) const ;
161
162    /// Routines that handle operands which add machine relocations which are
163    /// fixed up by the relocation stage.
164    void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
165                           bool MayNeedFarStub,  bool Indirect,
166                           intptr_t ACPV = 0);
167    void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
168    void emitConstPoolAddress(unsigned CPI, unsigned Reloc);
169    void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc);
170    void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
171                               intptr_t JTBase = 0);
172  };
173}
174
175char ARMCodeEmitter::ID = 0;
176
177/// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
178/// code to the specified MCE object.
179FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
180                                                JITCodeEmitter &JCE) {
181  return new ARMCodeEmitter(TM, JCE);
182}
183
184bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
185  assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
186          MF.getTarget().getRelocationModel() != Reloc::Static) &&
187         "JIT relocation model must be set to static or default!");
188  JTI = ((ARMTargetMachine &)MF.getTarget()).getJITInfo();
189  II = ((const ARMTargetMachine &)MF.getTarget()).getInstrInfo();
190  TD = ((const ARMTargetMachine &)MF.getTarget()).getTargetData();
191  Subtarget = &TM.getSubtarget<ARMSubtarget>();
192  MCPEs = &MF.getConstantPool()->getConstants();
193  MJTEs = 0;
194  if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
195  IsPIC = TM.getRelocationModel() == Reloc::PIC_;
196  JTI->Initialize(MF, IsPIC);
197  MMI = &getAnalysis<MachineModuleInfo>();
198  MCE.setModuleInfo(MMI);
199
200  do {
201    DEBUG(errs() << "JITTing function '"
202          << MF.getFunction()->getName() << "'\n");
203    MCE.startFunction(MF);
204    for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
205         MBB != E; ++MBB) {
206      MCE.StartMachineBasicBlock(MBB);
207      for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
208           I != E; ++I)
209        emitInstruction(*I);
210    }
211  } while (MCE.finishFunction(MF));
212
213  return false;
214}
215
216/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
217///
218unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
219  switch (ARM_AM::getAM2ShiftOpc(Imm)) {
220  default: llvm_unreachable("Unknown shift opc!");
221  case ARM_AM::asr: return 2;
222  case ARM_AM::lsl: return 0;
223  case ARM_AM::lsr: return 1;
224  case ARM_AM::ror:
225  case ARM_AM::rrx: return 3;
226  }
227  return 0;
228}
229
230/// getMovi32Value - Return binary encoding of operand for movw/movt. If the
231/// machine operand requires relocation, record the relocation and return zero.
232unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
233                                        const MachineOperand &MO,
234                                        unsigned Reloc) {
235  assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
236      && "Relocation to this function should be for movt or movw");
237
238  if (MO.isImm())
239    return static_cast<unsigned>(MO.getImm());
240  else if (MO.isGlobal())
241    emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
242  else if (MO.isSymbol())
243    emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
244  else if (MO.isMBB())
245    emitMachineBasicBlock(MO.getMBB(), Reloc);
246  else {
247#ifndef NDEBUG
248    errs() << MO;
249#endif
250    llvm_unreachable("Unsupported operand type for movw/movt");
251  }
252  return 0;
253}
254
255/// getMachineOpValue - Return binary encoding of operand. If the machine
256/// operand requires relocation, record the relocation and return zero.
257unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
258                                           const MachineOperand &MO) {
259  if (MO.isReg())
260    return ARMRegisterInfo::getRegisterNumbering(MO.getReg());
261  else if (MO.isImm())
262    return static_cast<unsigned>(MO.getImm());
263  else if (MO.isGlobal())
264    emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
265  else if (MO.isSymbol())
266    emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
267  else if (MO.isCPI()) {
268    const TargetInstrDesc &TID = MI.getDesc();
269    // For VFP load, the immediate offset is multiplied by 4.
270    unsigned Reloc =  ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
271      ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
272    emitConstPoolAddress(MO.getIndex(), Reloc);
273  } else if (MO.isJTI())
274    emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
275  else if (MO.isMBB())
276    emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
277  else {
278#ifndef NDEBUG
279    errs() << MO;
280#endif
281    llvm_unreachable(0);
282  }
283  return 0;
284}
285
286/// emitGlobalAddress - Emit the specified address to the code stream.
287///
288void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
289                                       bool MayNeedFarStub, bool Indirect,
290                                       intptr_t ACPV) {
291  MachineRelocation MR = Indirect
292    ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
293                                           const_cast<GlobalValue *>(GV),
294                                           ACPV, MayNeedFarStub)
295    : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
296                               const_cast<GlobalValue *>(GV), ACPV,
297                               MayNeedFarStub);
298  MCE.addRelocation(MR);
299}
300
301/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
302/// be emitted to the current location in the function, and allow it to be PC
303/// relative.
304void ARMCodeEmitter::emitExternalSymbolAddress(const char *ES, unsigned Reloc) {
305  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
306                                                 Reloc, ES));
307}
308
309/// emitConstPoolAddress - Arrange for the address of an constant pool
310/// to be emitted to the current location in the function, and allow it to be PC
311/// relative.
312void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) {
313  // Tell JIT emitter we'll resolve the address.
314  MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
315                                                    Reloc, CPI, 0, true));
316}
317
318/// emitJumpTableAddress - Arrange for the address of a jump table to
319/// be emitted to the current location in the function, and allow it to be PC
320/// relative.
321void ARMCodeEmitter::emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) {
322  MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
323                                                    Reloc, JTIndex, 0, true));
324}
325
326/// emitMachineBasicBlock - Emit the specified address basic block.
327void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
328                                           unsigned Reloc, intptr_t JTBase) {
329  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
330                                             Reloc, BB, JTBase));
331}
332
333void ARMCodeEmitter::emitWordLE(unsigned Binary) {
334  DEBUG(errs() << "  0x";
335        errs().write_hex(Binary) << "\n");
336  MCE.emitWordLE(Binary);
337}
338
339void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
340  DEBUG(errs() << "  0x";
341        errs().write_hex(Binary) << "\n");
342  MCE.emitDWordLE(Binary);
343}
344
345void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
346  DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
347
348  MCE.processDebugLoc(MI.getDebugLoc(), true);
349
350  NumEmitted++;  // Keep track of the # of mi's emitted
351  switch (MI.getDesc().TSFlags & ARMII::FormMask) {
352  default: {
353    llvm_unreachable("Unhandled instruction encoding format!");
354    break;
355  }
356  case ARMII::Pseudo:
357    emitPseudoInstruction(MI);
358    break;
359  case ARMII::DPFrm:
360  case ARMII::DPSoRegFrm:
361    emitDataProcessingInstruction(MI);
362    break;
363  case ARMII::LdFrm:
364  case ARMII::StFrm:
365    emitLoadStoreInstruction(MI);
366    break;
367  case ARMII::LdMiscFrm:
368  case ARMII::StMiscFrm:
369    emitMiscLoadStoreInstruction(MI);
370    break;
371  case ARMII::LdStMulFrm:
372    emitLoadStoreMultipleInstruction(MI);
373    break;
374  case ARMII::MulFrm:
375    emitMulFrmInstruction(MI);
376    break;
377  case ARMII::ExtFrm:
378    emitExtendInstruction(MI);
379    break;
380  case ARMII::ArithMiscFrm:
381    emitMiscArithInstruction(MI);
382    break;
383  case ARMII::BrFrm:
384    emitBranchInstruction(MI);
385    break;
386  case ARMII::BrMiscFrm:
387    emitMiscBranchInstruction(MI);
388    break;
389  // VFP instructions.
390  case ARMII::VFPUnaryFrm:
391  case ARMII::VFPBinaryFrm:
392    emitVFPArithInstruction(MI);
393    break;
394  case ARMII::VFPConv1Frm:
395  case ARMII::VFPConv2Frm:
396  case ARMII::VFPConv3Frm:
397  case ARMII::VFPConv4Frm:
398  case ARMII::VFPConv5Frm:
399    emitVFPConversionInstruction(MI);
400    break;
401  case ARMII::VFPLdStFrm:
402    emitVFPLoadStoreInstruction(MI);
403    break;
404  case ARMII::VFPLdStMulFrm:
405    emitVFPLoadStoreMultipleInstruction(MI);
406    break;
407  case ARMII::VFPMiscFrm:
408    emitMiscInstruction(MI);
409    break;
410  }
411  MCE.processDebugLoc(MI.getDebugLoc(), false);
412}
413
414void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
415  unsigned CPI = MI.getOperand(0).getImm();       // CP instruction index.
416  unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
417  const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
418
419  // Remember the CONSTPOOL_ENTRY address for later relocation.
420  JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
421
422  // Emit constpool island entry. In most cases, the actual values will be
423  // resolved and relocated after code emission.
424  if (MCPE.isMachineConstantPoolEntry()) {
425    ARMConstantPoolValue *ACPV =
426      static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
427
428    DEBUG(errs() << "  ** ARM constant pool #" << CPI << " @ "
429          << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
430
431    assert(ACPV->isGlobalValue() && "unsupported constant pool value");
432    const GlobalValue *GV = ACPV->getGV();
433    if (GV) {
434      Reloc::Model RelocM = TM.getRelocationModel();
435      emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
436                        isa<Function>(GV),
437                        Subtarget->GVIsIndirectSymbol(GV, RelocM),
438                        (intptr_t)ACPV);
439     } else  {
440      emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute);
441    }
442    emitWordLE(0);
443  } else {
444    const Constant *CV = MCPE.Val.ConstVal;
445
446    DEBUG({
447        errs() << "  ** Constant pool #" << CPI << " @ "
448               << (void*)MCE.getCurrentPCValue() << " ";
449        if (const Function *F = dyn_cast<Function>(CV))
450          errs() << F->getName();
451        else
452          errs() << *CV;
453        errs() << '\n';
454      });
455
456    if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
457      emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV), false);
458      emitWordLE(0);
459    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
460      uint32_t Val = *(uint32_t*)CI->getValue().getRawData();
461      emitWordLE(Val);
462    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
463      if (CFP->getType()->isFloatTy())
464        emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
465      else if (CFP->getType()->isDoubleTy())
466        emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
467      else {
468        llvm_unreachable("Unable to handle this constantpool entry!");
469      }
470    } else {
471      llvm_unreachable("Unable to handle this constantpool entry!");
472    }
473  }
474}
475
476void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
477  const MachineOperand &MO0 = MI.getOperand(0);
478  const MachineOperand &MO1 = MI.getOperand(1);
479
480  // Emit the 'movw' instruction.
481  unsigned Binary = 0x30 << 20;  // mov: Insts{27-20} = 0b00110000
482
483  unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;
484
485  // Set the conditional execution predicate.
486  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
487
488  // Encode Rd.
489  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
490
491  // Encode imm16 as imm4:imm12
492  Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
493  Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
494  emitWordLE(Binary);
495
496  unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
497  // Emit the 'movt' instruction.
498  Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100
499
500  // Set the conditional execution predicate.
501  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
502
503  // Encode Rd.
504  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
505
506  // Encode imm16 as imm4:imm1, same as movw above.
507  Binary |= Hi16 & 0xFFF;
508  Binary |= ((Hi16 >> 12) & 0xF) << 16;
509  emitWordLE(Binary);
510}
511
512void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
513  const MachineOperand &MO0 = MI.getOperand(0);
514  const MachineOperand &MO1 = MI.getOperand(1);
515  assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
516                                                  "Not a valid so_imm value!");
517  unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
518  unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
519
520  // Emit the 'mov' instruction.
521  unsigned Binary = 0xd << 21;  // mov: Insts{24-21} = 0b1101
522
523  // Set the conditional execution predicate.
524  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
525
526  // Encode Rd.
527  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
528
529  // Encode so_imm.
530  // Set bit I(25) to identify this is the immediate form of <shifter_op>
531  Binary |= 1 << ARMII::I_BitShift;
532  Binary |= getMachineSoImmOpValue(V1);
533  emitWordLE(Binary);
534
535  // Now the 'orr' instruction.
536  Binary = 0xc << 21;  // orr: Insts{24-21} = 0b1100
537
538  // Set the conditional execution predicate.
539  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
540
541  // Encode Rd.
542  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
543
544  // Encode Rn.
545  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
546
547  // Encode so_imm.
548  // Set bit I(25) to identify this is the immediate form of <shifter_op>
549  Binary |= 1 << ARMII::I_BitShift;
550  Binary |= getMachineSoImmOpValue(V2);
551  emitWordLE(Binary);
552}
553
554void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
555  // It's basically add r, pc, (LJTI - $+8)
556
557  const TargetInstrDesc &TID = MI.getDesc();
558
559  // Emit the 'add' instruction.
560  unsigned Binary = 0x4 << 21;  // add: Insts{24-31} = 0b0100
561
562  // Set the conditional execution predicate
563  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
564
565  // Encode S bit if MI modifies CPSR.
566  Binary |= getAddrModeSBit(MI, TID);
567
568  // Encode Rd.
569  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
570
571  // Encode Rn which is PC.
572  Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
573
574  // Encode the displacement.
575  Binary |= 1 << ARMII::I_BitShift;
576  emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
577
578  emitWordLE(Binary);
579}
580
581void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
582  unsigned Opcode = MI.getDesc().Opcode;
583
584  // Part of binary is determined by TableGn.
585  unsigned Binary = getBinaryCodeForInstr(MI);
586
587  // Set the conditional execution predicate
588  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
589
590  // Encode S bit if MI modifies CPSR.
591  if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
592    Binary |= 1 << ARMII::S_BitShift;
593
594  // Encode register def if there is one.
595  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
596
597  // Encode the shift operation.
598  switch (Opcode) {
599  default: break;
600  case ARM::MOVrx:
601    // rrx
602    Binary |= 0x6 << 4;
603    break;
604  case ARM::MOVsrl_flag:
605    // lsr #1
606    Binary |= (0x2 << 4) | (1 << 7);
607    break;
608  case ARM::MOVsra_flag:
609    // asr #1
610    Binary |= (0x4 << 4) | (1 << 7);
611    break;
612  }
613
614  // Encode register Rm.
615  Binary |= getMachineOpValue(MI, 1);
616
617  emitWordLE(Binary);
618}
619
620void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
621  DEBUG(errs() << "  ** LPC" << LabelID << " @ "
622        << (void*)MCE.getCurrentPCValue() << '\n');
623  JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
624}
625
626void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
627  unsigned Opcode = MI.getDesc().Opcode;
628  switch (Opcode) {
629  default:
630    llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
631  case TargetOpcode::INLINEASM: {
632    // We allow inline assembler nodes with empty bodies - they can
633    // implicitly define registers, which is ok for JIT.
634    if (MI.getOperand(0).getSymbolName()[0]) {
635      report_fatal_error("JIT does not support inline asm!");
636    }
637    break;
638  }
639  case TargetOpcode::DBG_LABEL:
640  case TargetOpcode::EH_LABEL:
641    MCE.emitLabel(MI.getOperand(0).getMCSymbol());
642    break;
643  case TargetOpcode::IMPLICIT_DEF:
644  case TargetOpcode::KILL:
645    // Do nothing.
646    break;
647  case ARM::CONSTPOOL_ENTRY:
648    emitConstPoolInstruction(MI);
649    break;
650  case ARM::PICADD: {
651    // Remember of the address of the PC label for relocation later.
652    addPCLabel(MI.getOperand(2).getImm());
653    // PICADD is just an add instruction that implicitly read pc.
654    emitDataProcessingInstruction(MI, 0, ARM::PC);
655    break;
656  }
657  case ARM::PICLDR:
658  case ARM::PICLDRB:
659  case ARM::PICSTR:
660  case ARM::PICSTRB: {
661    // Remember of the address of the PC label for relocation later.
662    addPCLabel(MI.getOperand(2).getImm());
663    // These are just load / store instructions that implicitly read pc.
664    emitLoadStoreInstruction(MI, 0, ARM::PC);
665    break;
666  }
667  case ARM::PICLDRH:
668  case ARM::PICLDRSH:
669  case ARM::PICLDRSB:
670  case ARM::PICSTRH: {
671    // Remember of the address of the PC label for relocation later.
672    addPCLabel(MI.getOperand(2).getImm());
673    // These are just load / store instructions that implicitly read pc.
674    emitMiscLoadStoreInstruction(MI, ARM::PC);
675    break;
676  }
677
678  case ARM::MOVi32imm:
679    emitMOVi32immInstruction(MI);
680    break;
681
682  case ARM::MOVi2pieces:
683    // Two instructions to materialize a constant.
684    emitMOVi2piecesInstruction(MI);
685    break;
686  case ARM::LEApcrelJT:
687    // Materialize jumptable address.
688    emitLEApcrelJTInstruction(MI);
689    break;
690  case ARM::MOVrx:
691  case ARM::MOVsrl_flag:
692  case ARM::MOVsra_flag:
693    emitPseudoMoveInstruction(MI);
694    break;
695  }
696}
697
698unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
699                                                const TargetInstrDesc &TID,
700                                                const MachineOperand &MO,
701                                                unsigned OpIdx) {
702  unsigned Binary = getMachineOpValue(MI, MO);
703
704  const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
705  const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
706  ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
707
708  // Encode the shift opcode.
709  unsigned SBits = 0;
710  unsigned Rs = MO1.getReg();
711  if (Rs) {
712    // Set shift operand (bit[7:4]).
713    // LSL - 0001
714    // LSR - 0011
715    // ASR - 0101
716    // ROR - 0111
717    // RRX - 0110 and bit[11:8] clear.
718    switch (SOpc) {
719    default: llvm_unreachable("Unknown shift opc!");
720    case ARM_AM::lsl: SBits = 0x1; break;
721    case ARM_AM::lsr: SBits = 0x3; break;
722    case ARM_AM::asr: SBits = 0x5; break;
723    case ARM_AM::ror: SBits = 0x7; break;
724    case ARM_AM::rrx: SBits = 0x6; break;
725    }
726  } else {
727    // Set shift operand (bit[6:4]).
728    // LSL - 000
729    // LSR - 010
730    // ASR - 100
731    // ROR - 110
732    switch (SOpc) {
733    default: llvm_unreachable("Unknown shift opc!");
734    case ARM_AM::lsl: SBits = 0x0; break;
735    case ARM_AM::lsr: SBits = 0x2; break;
736    case ARM_AM::asr: SBits = 0x4; break;
737    case ARM_AM::ror: SBits = 0x6; break;
738    }
739  }
740  Binary |= SBits << 4;
741  if (SOpc == ARM_AM::rrx)
742    return Binary;
743
744  // Encode the shift operation Rs or shift_imm (except rrx).
745  if (Rs) {
746    // Encode Rs bit[11:8].
747    assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
748    return Binary |
749      (ARMRegisterInfo::getRegisterNumbering(Rs) << ARMII::RegRsShift);
750  }
751
752  // Encode shift_imm bit[11:7].
753  return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
754}
755
756unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
757  int SoImmVal = ARM_AM::getSOImmVal(SoImm);
758  assert(SoImmVal != -1 && "Not a valid so_imm value!");
759
760  // Encode rotate_imm.
761  unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
762    << ARMII::SoRotImmShift;
763
764  // Encode immed_8.
765  Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
766  return Binary;
767}
768
769unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
770                                         const TargetInstrDesc &TID) const {
771  for (unsigned i = MI.getNumOperands(), e = TID.getNumOperands(); i != e; --i){
772    const MachineOperand &MO = MI.getOperand(i-1);
773    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
774      return 1 << ARMII::S_BitShift;
775  }
776  return 0;
777}
778
779void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
780                                                   unsigned ImplicitRd,
781                                                   unsigned ImplicitRn) {
782  const TargetInstrDesc &TID = MI.getDesc();
783
784  // Part of binary is determined by TableGn.
785  unsigned Binary = getBinaryCodeForInstr(MI);
786
787  // Set the conditional execution predicate
788  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
789
790  // Encode S bit if MI modifies CPSR.
791  Binary |= getAddrModeSBit(MI, TID);
792
793  // Encode register def if there is one.
794  unsigned NumDefs = TID.getNumDefs();
795  unsigned OpIdx = 0;
796  if (NumDefs)
797    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
798  else if (ImplicitRd)
799    // Special handling for implicit use (e.g. PC).
800    Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd)
801               << ARMII::RegRdShift);
802
803  if (TID.Opcode == ARM::MOVi16) {
804      // Get immediate from MI.
805      unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
806                      ARM::reloc_arm_movw);
807      // Encode imm which is the same as in emitMOVi32immInstruction().
808      Binary |= Lo16 & 0xFFF;
809      Binary |= ((Lo16 >> 12) & 0xF) << 16;
810      emitWordLE(Binary);
811      return;
812  } else if(TID.Opcode == ARM::MOVTi16) {
813      unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
814                       ARM::reloc_arm_movt) >> 16);
815      Binary |= Hi16 & 0xFFF;
816      Binary |= ((Hi16 >> 12) & 0xF) << 16;
817      emitWordLE(Binary);
818      return;
819  } else if((TID.Opcode == ARM::BFC) || (TID.Opcode == ARM::BFI)) {
820      uint32_t v = ~MI.getOperand(2).getImm();
821      int32_t lsb = CountTrailingZeros_32(v);
822      int32_t msb = (32 - CountLeadingZeros_32(v)) - 1;
823      // Instr{20-16} = msb, Instr{11-7} = lsb
824      Binary |= (msb & 0x1F) << 16;
825      Binary |= (lsb & 0x1F) << 7;
826      emitWordLE(Binary);
827      return;
828  } else if ((TID.Opcode == ARM::UBFX) || (TID.Opcode == ARM::SBFX)) {
829      // Encode Rn in Instr{0-3}
830      Binary |= getMachineOpValue(MI, OpIdx++);
831
832      uint32_t lsb = MI.getOperand(OpIdx++).getImm();
833      uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1;
834
835      // Instr{20-16} = widthm1, Instr{11-7} = lsb
836      Binary |= (widthm1 & 0x1F) << 16;
837      Binary |= (lsb & 0x1F) << 7;
838      emitWordLE(Binary);
839      return;
840  }
841
842  // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
843  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
844    ++OpIdx;
845
846  // Encode first non-shifter register operand if there is one.
847  bool isUnary = TID.TSFlags & ARMII::UnaryDP;
848  if (!isUnary) {
849    if (ImplicitRn)
850      // Special handling for implicit use (e.g. PC).
851      Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
852                 << ARMII::RegRnShift);
853    else {
854      Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
855      ++OpIdx;
856    }
857  }
858
859  // Encode shifter operand.
860  const MachineOperand &MO = MI.getOperand(OpIdx);
861  if ((TID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
862    // Encode SoReg.
863    emitWordLE(Binary | getMachineSoRegOpValue(MI, TID, MO, OpIdx));
864    return;
865  }
866
867  if (MO.isReg()) {
868    // Encode register Rm.
869    emitWordLE(Binary | ARMRegisterInfo::getRegisterNumbering(MO.getReg()));
870    return;
871  }
872
873  // Encode so_imm.
874  Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
875
876  emitWordLE(Binary);
877}
878
879void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
880                                              unsigned ImplicitRd,
881                                              unsigned ImplicitRn) {
882  const TargetInstrDesc &TID = MI.getDesc();
883  unsigned Form = TID.TSFlags & ARMII::FormMask;
884  bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
885
886  // Part of binary is determined by TableGn.
887  unsigned Binary = getBinaryCodeForInstr(MI);
888
889  // Set the conditional execution predicate
890  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
891
892  unsigned OpIdx = 0;
893
894  // Operand 0 of a pre- and post-indexed store is the address base
895  // writeback. Skip it.
896  bool Skipped = false;
897  if (IsPrePost && Form == ARMII::StFrm) {
898    ++OpIdx;
899    Skipped = true;
900  }
901
902  // Set first operand
903  if (ImplicitRd)
904    // Special handling for implicit use (e.g. PC).
905    Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd)
906               << ARMII::RegRdShift);
907  else
908    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
909
910  // Set second operand
911  if (ImplicitRn)
912    // Special handling for implicit use (e.g. PC).
913    Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
914               << ARMII::RegRnShift);
915  else
916    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
917
918  // If this is a two-address operand, skip it. e.g. LDR_PRE.
919  if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
920    ++OpIdx;
921
922  const MachineOperand &MO2 = MI.getOperand(OpIdx);
923  unsigned AM2Opc = (ImplicitRn == ARM::PC)
924    ? 0 : MI.getOperand(OpIdx+1).getImm();
925
926  // Set bit U(23) according to sign of immed value (positive or negative).
927  Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
928             ARMII::U_BitShift);
929  if (!MO2.getReg()) { // is immediate
930    if (ARM_AM::getAM2Offset(AM2Opc))
931      // Set the value of offset_12 field
932      Binary |= ARM_AM::getAM2Offset(AM2Opc);
933    emitWordLE(Binary);
934    return;
935  }
936
937  // Set bit I(25), because this is not in immediate enconding.
938  Binary |= 1 << ARMII::I_BitShift;
939  assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
940  // Set bit[3:0] to the corresponding Rm register
941  Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
942
943  // If this instr is in scaled register offset/index instruction, set
944  // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
945  if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
946    Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift;  // shift
947    Binary |= ShImm              << ARMII::ShiftShift;     // shift_immed
948  }
949
950  emitWordLE(Binary);
951}
952
953void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
954                                                  unsigned ImplicitRn) {
955  const TargetInstrDesc &TID = MI.getDesc();
956  unsigned Form = TID.TSFlags & ARMII::FormMask;
957  bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
958
959  // Part of binary is determined by TableGn.
960  unsigned Binary = getBinaryCodeForInstr(MI);
961
962  // Set the conditional execution predicate
963  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
964
965  unsigned OpIdx = 0;
966
967  // Operand 0 of a pre- and post-indexed store is the address base
968  // writeback. Skip it.
969  bool Skipped = false;
970  if (IsPrePost && Form == ARMII::StMiscFrm) {
971    ++OpIdx;
972    Skipped = true;
973  }
974
975  // Set first operand
976  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
977
978  // Skip LDRD and STRD's second operand.
979  if (TID.Opcode == ARM::LDRD || TID.Opcode == ARM::STRD)
980    ++OpIdx;
981
982  // Set second operand
983  if (ImplicitRn)
984    // Special handling for implicit use (e.g. PC).
985    Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
986               << ARMII::RegRnShift);
987  else
988    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
989
990  // If this is a two-address operand, skip it. e.g. LDRH_POST.
991  if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
992    ++OpIdx;
993
994  const MachineOperand &MO2 = MI.getOperand(OpIdx);
995  unsigned AM3Opc = (ImplicitRn == ARM::PC)
996    ? 0 : MI.getOperand(OpIdx+1).getImm();
997
998  // Set bit U(23) according to sign of immed value (positive or negative)
999  Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
1000             ARMII::U_BitShift);
1001
1002  // If this instr is in register offset/index encoding, set bit[3:0]
1003  // to the corresponding Rm register.
1004  if (MO2.getReg()) {
1005    Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
1006    emitWordLE(Binary);
1007    return;
1008  }
1009
1010  // This instr is in immediate offset/index encoding, set bit 22 to 1.
1011  Binary |= 1 << ARMII::AM3_I_BitShift;
1012  if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
1013    // Set operands
1014    Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift;  // immedH
1015    Binary |= (ImmOffs & 0xF);                      // immedL
1016  }
1017
1018  emitWordLE(Binary);
1019}
1020
1021static unsigned getAddrModeUPBits(unsigned Mode) {
1022  unsigned Binary = 0;
1023
1024  // Set addressing mode by modifying bits U(23) and P(24)
1025  // IA - Increment after  - bit U = 1 and bit P = 0
1026  // IB - Increment before - bit U = 1 and bit P = 1
1027  // DA - Decrement after  - bit U = 0 and bit P = 0
1028  // DB - Decrement before - bit U = 0 and bit P = 1
1029  switch (Mode) {
1030  default: llvm_unreachable("Unknown addressing sub-mode!");
1031  case ARM_AM::da:                                     break;
1032  case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
1033  case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
1034  case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
1035  }
1036
1037  return Binary;
1038}
1039
1040void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
1041  const TargetInstrDesc &TID = MI.getDesc();
1042  bool IsUpdating = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1043
1044  // Part of binary is determined by TableGn.
1045  unsigned Binary = getBinaryCodeForInstr(MI);
1046
1047  // Set the conditional execution predicate
1048  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1049
1050  // Skip operand 0 of an instruction with base register update.
1051  unsigned OpIdx = 0;
1052  if (IsUpdating)
1053    ++OpIdx;
1054
1055  // Set base address operand
1056  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1057
1058  // Set addressing mode by modifying bits U(23) and P(24)
1059  const MachineOperand &MO = MI.getOperand(OpIdx++);
1060  Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(MO.getImm()));
1061
1062  // Set bit W(21)
1063  if (IsUpdating)
1064    Binary |= 0x1 << ARMII::W_BitShift;
1065
1066  // Set registers
1067  for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
1068    const MachineOperand &MO = MI.getOperand(i);
1069    if (!MO.isReg() || MO.isImplicit())
1070      break;
1071    unsigned RegNum = ARMRegisterInfo::getRegisterNumbering(MO.getReg());
1072    assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
1073           RegNum < 16);
1074    Binary |= 0x1 << RegNum;
1075  }
1076
1077  emitWordLE(Binary);
1078}
1079
1080void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
1081  const TargetInstrDesc &TID = MI.getDesc();
1082
1083  // Part of binary is determined by TableGn.
1084  unsigned Binary = getBinaryCodeForInstr(MI);
1085
1086  // Set the conditional execution predicate
1087  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1088
1089  // Encode S bit if MI modifies CPSR.
1090  Binary |= getAddrModeSBit(MI, TID);
1091
1092  // 32x32->64bit operations have two destination registers. The number
1093  // of register definitions will tell us if that's what we're dealing with.
1094  unsigned OpIdx = 0;
1095  if (TID.getNumDefs() == 2)
1096    Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
1097
1098  // Encode Rd
1099  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
1100
1101  // Encode Rm
1102  Binary |= getMachineOpValue(MI, OpIdx++);
1103
1104  // Encode Rs
1105  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
1106
1107  // Many multiple instructions (e.g. MLA) have three src operands. Encode
1108  // it as Rn (for multiply, that's in the same offset as RdLo.
1109  if (TID.getNumOperands() > OpIdx &&
1110      !TID.OpInfo[OpIdx].isPredicate() &&
1111      !TID.OpInfo[OpIdx].isOptionalDef())
1112    Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
1113
1114  emitWordLE(Binary);
1115}
1116
1117void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
1118  const TargetInstrDesc &TID = MI.getDesc();
1119
1120  // Part of binary is determined by TableGn.
1121  unsigned Binary = getBinaryCodeForInstr(MI);
1122
1123  // Set the conditional execution predicate
1124  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1125
1126  unsigned OpIdx = 0;
1127
1128  // Encode Rd
1129  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1130
1131  const MachineOperand &MO1 = MI.getOperand(OpIdx++);
1132  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1133  if (MO2.isReg()) {
1134    // Two register operand form.
1135    // Encode Rn.
1136    Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
1137
1138    // Encode Rm.
1139    Binary |= getMachineOpValue(MI, MO2);
1140    ++OpIdx;
1141  } else {
1142    Binary |= getMachineOpValue(MI, MO1);
1143  }
1144
1145  // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
1146  if (MI.getOperand(OpIdx).isImm() &&
1147      !TID.OpInfo[OpIdx].isPredicate() &&
1148      !TID.OpInfo[OpIdx].isOptionalDef())
1149    Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
1150
1151  emitWordLE(Binary);
1152}
1153
1154void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
1155  const TargetInstrDesc &TID = MI.getDesc();
1156
1157  // Part of binary is determined by TableGn.
1158  unsigned Binary = getBinaryCodeForInstr(MI);
1159
1160  // Set the conditional execution predicate
1161  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1162
1163  unsigned OpIdx = 0;
1164
1165  // Encode Rd
1166  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1167
1168  const MachineOperand &MO = MI.getOperand(OpIdx++);
1169  if (OpIdx == TID.getNumOperands() ||
1170      TID.OpInfo[OpIdx].isPredicate() ||
1171      TID.OpInfo[OpIdx].isOptionalDef()) {
1172    // Encode Rm and it's done.
1173    Binary |= getMachineOpValue(MI, MO);
1174    emitWordLE(Binary);
1175    return;
1176  }
1177
1178  // Encode Rn.
1179  Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
1180
1181  // Encode Rm.
1182  Binary |= getMachineOpValue(MI, OpIdx++);
1183
1184  // Encode shift_imm.
1185  unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
1186  assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1187  Binary |= ShiftAmt << ARMII::ShiftShift;
1188
1189  emitWordLE(Binary);
1190}
1191
1192void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
1193  const TargetInstrDesc &TID = MI.getDesc();
1194
1195  if (TID.Opcode == ARM::TPsoft) {
1196    llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
1197  }
1198
1199  // Part of binary is determined by TableGn.
1200  unsigned Binary = getBinaryCodeForInstr(MI);
1201
1202  // Set the conditional execution predicate
1203  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1204
1205  // Set signed_immed_24 field
1206  Binary |= getMachineOpValue(MI, 0);
1207
1208  emitWordLE(Binary);
1209}
1210
1211void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
1212  // Remember the base address of the inline jump table.
1213  uintptr_t JTBase = MCE.getCurrentPCValue();
1214  JTI->addJumpTableBaseAddr(JTIndex, JTBase);
1215  DEBUG(errs() << "  ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
1216               << '\n');
1217
1218  // Now emit the jump table entries.
1219  const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
1220  for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
1221    if (IsPIC)
1222      // DestBB address - JT base.
1223      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
1224    else
1225      // Absolute DestBB address.
1226      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
1227    emitWordLE(0);
1228  }
1229}
1230
1231void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
1232  const TargetInstrDesc &TID = MI.getDesc();
1233
1234  // Handle jump tables.
1235  if (TID.Opcode == ARM::BR_JTr || TID.Opcode == ARM::BR_JTadd) {
1236    // First emit a ldr pc, [] instruction.
1237    emitDataProcessingInstruction(MI, ARM::PC);
1238
1239    // Then emit the inline jump table.
1240    unsigned JTIndex =
1241      (TID.Opcode == ARM::BR_JTr)
1242      ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
1243    emitInlineJumpTable(JTIndex);
1244    return;
1245  } else if (TID.Opcode == ARM::BR_JTm) {
1246    // First emit a ldr pc, [] instruction.
1247    emitLoadStoreInstruction(MI, ARM::PC);
1248
1249    // Then emit the inline jump table.
1250    emitInlineJumpTable(MI.getOperand(3).getIndex());
1251    return;
1252  }
1253
1254  // Part of binary is determined by TableGn.
1255  unsigned Binary = getBinaryCodeForInstr(MI);
1256
1257  // Set the conditional execution predicate
1258  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1259
1260  if (TID.Opcode == ARM::BX_RET || TID.Opcode == ARM::MOVPCLR)
1261    // The return register is LR.
1262    Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::LR);
1263  else
1264    // otherwise, set the return register
1265    Binary |= getMachineOpValue(MI, 0);
1266
1267  emitWordLE(Binary);
1268}
1269
1270static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) {
1271  unsigned RegD = MI.getOperand(OpIdx).getReg();
1272  unsigned Binary = 0;
1273  bool isSPVFP = false;
1274  RegD = ARMRegisterInfo::getRegisterNumbering(RegD, &isSPVFP);
1275  if (!isSPVFP)
1276    Binary |=   RegD               << ARMII::RegRdShift;
1277  else {
1278    Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
1279    Binary |=  (RegD & 0x01)       << ARMII::D_BitShift;
1280  }
1281  return Binary;
1282}
1283
1284static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) {
1285  unsigned RegN = MI.getOperand(OpIdx).getReg();
1286  unsigned Binary = 0;
1287  bool isSPVFP = false;
1288  RegN = ARMRegisterInfo::getRegisterNumbering(RegN, &isSPVFP);
1289  if (!isSPVFP)
1290    Binary |=   RegN               << ARMII::RegRnShift;
1291  else {
1292    Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
1293    Binary |=  (RegN & 0x01)       << ARMII::N_BitShift;
1294  }
1295  return Binary;
1296}
1297
1298static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) {
1299  unsigned RegM = MI.getOperand(OpIdx).getReg();
1300  unsigned Binary = 0;
1301  bool isSPVFP = false;
1302  RegM = ARMRegisterInfo::getRegisterNumbering(RegM, &isSPVFP);
1303  if (!isSPVFP)
1304    Binary |=   RegM;
1305  else {
1306    Binary |= ((RegM & 0x1E) >> 1);
1307    Binary |=  (RegM & 0x01)       << ARMII::M_BitShift;
1308  }
1309  return Binary;
1310}
1311
1312void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
1313  const TargetInstrDesc &TID = MI.getDesc();
1314
1315  // Part of binary is determined by TableGn.
1316  unsigned Binary = getBinaryCodeForInstr(MI);
1317
1318  // Set the conditional execution predicate
1319  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1320
1321  unsigned OpIdx = 0;
1322  assert((Binary & ARMII::D_BitShift) == 0 &&
1323         (Binary & ARMII::N_BitShift) == 0 &&
1324         (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!");
1325
1326  // Encode Dd / Sd.
1327  Binary |= encodeVFPRd(MI, OpIdx++);
1328
1329  // If this is a two-address operand, skip it, e.g. FMACD.
1330  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1331    ++OpIdx;
1332
1333  // Encode Dn / Sn.
1334  if ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
1335    Binary |= encodeVFPRn(MI, OpIdx++);
1336
1337  if (OpIdx == TID.getNumOperands() ||
1338      TID.OpInfo[OpIdx].isPredicate() ||
1339      TID.OpInfo[OpIdx].isOptionalDef()) {
1340    // FCMPEZD etc. has only one operand.
1341    emitWordLE(Binary);
1342    return;
1343  }
1344
1345  // Encode Dm / Sm.
1346  Binary |= encodeVFPRm(MI, OpIdx);
1347
1348  emitWordLE(Binary);
1349}
1350
1351void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
1352  const TargetInstrDesc &TID = MI.getDesc();
1353  unsigned Form = TID.TSFlags & ARMII::FormMask;
1354
1355  // Part of binary is determined by TableGn.
1356  unsigned Binary = getBinaryCodeForInstr(MI);
1357
1358  // Set the conditional execution predicate
1359  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1360
1361  switch (Form) {
1362  default: break;
1363  case ARMII::VFPConv1Frm:
1364  case ARMII::VFPConv2Frm:
1365  case ARMII::VFPConv3Frm:
1366    // Encode Dd / Sd.
1367    Binary |= encodeVFPRd(MI, 0);
1368    break;
1369  case ARMII::VFPConv4Frm:
1370    // Encode Dn / Sn.
1371    Binary |= encodeVFPRn(MI, 0);
1372    break;
1373  case ARMII::VFPConv5Frm:
1374    // Encode Dm / Sm.
1375    Binary |= encodeVFPRm(MI, 0);
1376    break;
1377  }
1378
1379  switch (Form) {
1380  default: break;
1381  case ARMII::VFPConv1Frm:
1382    // Encode Dm / Sm.
1383    Binary |= encodeVFPRm(MI, 1);
1384    break;
1385  case ARMII::VFPConv2Frm:
1386  case ARMII::VFPConv3Frm:
1387    // Encode Dn / Sn.
1388    Binary |= encodeVFPRn(MI, 1);
1389    break;
1390  case ARMII::VFPConv4Frm:
1391  case ARMII::VFPConv5Frm:
1392    // Encode Dd / Sd.
1393    Binary |= encodeVFPRd(MI, 1);
1394    break;
1395  }
1396
1397  if (Form == ARMII::VFPConv5Frm)
1398    // Encode Dn / Sn.
1399    Binary |= encodeVFPRn(MI, 2);
1400  else if (Form == ARMII::VFPConv3Frm)
1401    // Encode Dm / Sm.
1402    Binary |= encodeVFPRm(MI, 2);
1403
1404  emitWordLE(Binary);
1405}
1406
1407void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
1408  // Part of binary is determined by TableGn.
1409  unsigned Binary = getBinaryCodeForInstr(MI);
1410
1411  // Set the conditional execution predicate
1412  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1413
1414  unsigned OpIdx = 0;
1415
1416  // Encode Dd / Sd.
1417  Binary |= encodeVFPRd(MI, OpIdx++);
1418
1419  // Encode address base.
1420  const MachineOperand &Base = MI.getOperand(OpIdx++);
1421  Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
1422
1423  // If there is a non-zero immediate offset, encode it.
1424  if (Base.isReg()) {
1425    const MachineOperand &Offset = MI.getOperand(OpIdx);
1426    if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
1427      if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
1428        Binary |= 1 << ARMII::U_BitShift;
1429      Binary |= ImmOffs;
1430      emitWordLE(Binary);
1431      return;
1432    }
1433  }
1434
1435  // If immediate offset is omitted, default to +0.
1436  Binary |= 1 << ARMII::U_BitShift;
1437
1438  emitWordLE(Binary);
1439}
1440
1441void
1442ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
1443  const TargetInstrDesc &TID = MI.getDesc();
1444  bool IsUpdating = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1445
1446  // Part of binary is determined by TableGn.
1447  unsigned Binary = getBinaryCodeForInstr(MI);
1448
1449  // Set the conditional execution predicate
1450  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1451
1452  // Skip operand 0 of an instruction with base register update.
1453  unsigned OpIdx = 0;
1454  if (IsUpdating)
1455    ++OpIdx;
1456
1457  // Set base address operand
1458  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1459
1460  // Set addressing mode by modifying bits U(23) and P(24)
1461  const MachineOperand &MO = MI.getOperand(OpIdx++);
1462  Binary |= getAddrModeUPBits(ARM_AM::getAM5SubMode(MO.getImm()));
1463
1464  // Set bit W(21)
1465  if (IsUpdating)
1466    Binary |= 0x1 << ARMII::W_BitShift;
1467
1468  // First register is encoded in Dd.
1469  Binary |= encodeVFPRd(MI, OpIdx+2);
1470
1471  // Number of registers are encoded in offset field.
1472  unsigned NumRegs = 1;
1473  for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
1474    const MachineOperand &MO = MI.getOperand(i);
1475    if (!MO.isReg() || MO.isImplicit())
1476      break;
1477    ++NumRegs;
1478  }
1479  // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
1480  // Otherwise, it will be 0, in the case of 32-bit registers.
1481  if(Binary & 0x100)
1482    Binary |= NumRegs * 2;
1483  else
1484    Binary |= NumRegs;
1485
1486  emitWordLE(Binary);
1487}
1488
1489void ARMCodeEmitter::emitMiscInstruction(const MachineInstr &MI) {
1490  unsigned Opcode = MI.getDesc().Opcode;
1491  // Part of binary is determined by TableGn.
1492  unsigned Binary = getBinaryCodeForInstr(MI);
1493
1494  // Set the conditional execution predicate
1495  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1496
1497  switch(Opcode) {
1498  default:
1499    llvm_unreachable("ARMCodeEmitter::emitMiscInstruction");
1500
1501  case ARM::FMSTAT:
1502    // No further encoding needed.
1503    break;
1504
1505  case ARM::VMRS:
1506  case ARM::VMSR: {
1507    const MachineOperand &MO0 = MI.getOperand(0);
1508    // Encode Rt.
1509    Binary |= ARMRegisterInfo::getRegisterNumbering(MO0.getReg())
1510                << ARMII::RegRdShift;
1511    break;
1512  }
1513
1514  case ARM::FCONSTD:
1515  case ARM::FCONSTS: {
1516    // Encode Dd / Sd.
1517    Binary |= encodeVFPRd(MI, 0);
1518
1519    // Encode imm., Table A7-18 VFP modified immediate constants
1520    const MachineOperand &MO1 = MI.getOperand(1);
1521    unsigned Imm = static_cast<unsigned>(MO1.getFPImm()->getValueAPF()
1522                      .bitcastToAPInt().getHiBits(32).getLimitedValue());
1523    unsigned ModifiedImm;
1524
1525    if(Opcode == ARM::FCONSTS)
1526      ModifiedImm = (Imm & 0x80000000) >> 24 | // a
1527                    (Imm & 0x03F80000) >> 19;  // bcdefgh
1528    else // Opcode == ARM::FCONSTD
1529      ModifiedImm = (Imm & 0x80000000) >> 24 | // a
1530                    (Imm & 0x007F0000) >> 16;  // bcdefgh
1531
1532    // Insts{19-16} = abcd, Insts{3-0} = efgh
1533    Binary |= ((ModifiedImm & 0xF0) >> 4) << 16;
1534    Binary |= (ModifiedImm & 0xF);
1535    break;
1536  }
1537  }
1538
1539  emitWordLE(Binary);
1540}
1541
1542#include "ARMGenCodeEmitter.inc"
1543