ARMCodeEmitter.cpp revision 99f53d13efc259b47c93dc0d90a5db763cbe371a
1//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the pass that transforms the ARM machine instructions into
11// relocatable machine code.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "ARM.h"
17#include "ARMAddressingModes.h"
18#include "ARMConstantPoolValue.h"
19#include "ARMInstrInfo.h"
20#include "ARMRelocations.h"
21#include "ARMSubtarget.h"
22#include "ARMTargetMachine.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/PassManager.h"
27#include "llvm/CodeGen/JITCodeEmitter.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/Passes.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#ifndef NDEBUG
39#include <iomanip>
40#endif
41using namespace llvm;
42
43STATISTIC(NumEmitted, "Number of machine instructions emitted");
44
45namespace {
46
47  class ARMCodeEmitter : public MachineFunctionPass {
48    ARMJITInfo                *JTI;
49    const ARMInstrInfo        *II;
50    const TargetData          *TD;
51    const ARMSubtarget        *Subtarget;
52    TargetMachine             &TM;
53    JITCodeEmitter            &MCE;
54    MachineModuleInfo *MMI;
55    const std::vector<MachineConstantPoolEntry> *MCPEs;
56    const std::vector<MachineJumpTableEntry> *MJTEs;
57    bool IsPIC;
58    bool IsThumb;
59
60    void getAnalysisUsage(AnalysisUsage &AU) const {
61      AU.addRequired<MachineModuleInfo>();
62      MachineFunctionPass::getAnalysisUsage(AU);
63    }
64
65    static char ID;
66  public:
67    ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
68      : MachineFunctionPass(ID), JTI(0),
69        II((const ARMInstrInfo *)tm.getInstrInfo()),
70        TD(tm.getTargetData()), TM(tm),
71        MCE(mce), MCPEs(0), MJTEs(0),
72        IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {}
73
74    /// getBinaryCodeForInstr - This function, generated by the
75    /// CodeEmitterGenerator using TableGen, produces the binary encoding for
76    /// machine instructions.
77    unsigned getBinaryCodeForInstr(const MachineInstr &MI) const;
78
79    bool runOnMachineFunction(MachineFunction &MF);
80
81    virtual const char *getPassName() const {
82      return "ARM Machine Code Emitter";
83    }
84
85    void emitInstruction(const MachineInstr &MI);
86
87  private:
88
89    void emitWordLE(unsigned Binary);
90    void emitDWordLE(uint64_t Binary);
91    void emitConstPoolInstruction(const MachineInstr &MI);
92    void emitMOVi32immInstruction(const MachineInstr &MI);
93    void emitMOVi2piecesInstruction(const MachineInstr &MI);
94    void emitLEApcrelJTInstruction(const MachineInstr &MI);
95    void emitPseudoMoveInstruction(const MachineInstr &MI);
96    void addPCLabel(unsigned LabelID);
97    void emitPseudoInstruction(const MachineInstr &MI);
98    unsigned getMachineSoRegOpValue(const MachineInstr &MI,
99                                    const TargetInstrDesc &TID,
100                                    const MachineOperand &MO,
101                                    unsigned OpIdx);
102
103    unsigned getMachineSoImmOpValue(unsigned SoImm);
104    unsigned getAddrModeSBit(const MachineInstr &MI,
105                             const TargetInstrDesc &TID) const;
106
107    void emitDataProcessingInstruction(const MachineInstr &MI,
108                                       unsigned ImplicitRd = 0,
109                                       unsigned ImplicitRn = 0);
110
111    void emitLoadStoreInstruction(const MachineInstr &MI,
112                                  unsigned ImplicitRd = 0,
113                                  unsigned ImplicitRn = 0);
114
115    void emitMiscLoadStoreInstruction(const MachineInstr &MI,
116                                      unsigned ImplicitRn = 0);
117
118    void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
119
120    void emitMulFrmInstruction(const MachineInstr &MI);
121
122    void emitExtendInstruction(const MachineInstr &MI);
123
124    void emitMiscArithInstruction(const MachineInstr &MI);
125
126    void emitSaturateInstruction(const MachineInstr &MI);
127
128    void emitBranchInstruction(const MachineInstr &MI);
129
130    void emitInlineJumpTable(unsigned JTIndex);
131
132    void emitMiscBranchInstruction(const MachineInstr &MI);
133
134    void emitVFPArithInstruction(const MachineInstr &MI);
135
136    void emitVFPConversionInstruction(const MachineInstr &MI);
137
138    void emitVFPLoadStoreInstruction(const MachineInstr &MI);
139
140    void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
141
142    void emitNEONLaneInstruction(const MachineInstr &MI);
143    void emitNEONDupInstruction(const MachineInstr &MI);
144    void emitNEON1RegModImmInstruction(const MachineInstr &MI);
145    void emitNEON2RegInstruction(const MachineInstr &MI);
146    void emitNEON3RegInstruction(const MachineInstr &MI);
147
148    /// getMachineOpValue - Return binary encoding of operand. If the machine
149    /// operand requires relocation, record the relocation and return zero.
150    unsigned getMachineOpValue(const MachineInstr &MI,
151                               const MachineOperand &MO) const;
152    unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const {
153      return getMachineOpValue(MI, MI.getOperand(OpIdx));
154    }
155
156    // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the
157    //  TableGen'erated getBinaryCodeForInstr() function to encode any
158    //  operand values, instead querying getMachineOpValue() directly for
159    //  each operand it needs to encode. Thus, any of the new encoder
160    //  helper functions can simply return 0 as the values the return
161    //  are already handled elsewhere. They are placeholders to allow this
162    //  encoder to continue to function until the MC encoder is sufficiently
163    //  far along that this one can be eliminated entirely.
164    unsigned NEONThumb2DataIPostEncoder(const MachineInstr &MI, unsigned Val)
165      const { return 0; }
166    unsigned NEONThumb2LoadStorePostEncoder(const MachineInstr &MI,unsigned Val)
167      const { return 0; }
168    unsigned NEONThumb2DupPostEncoder(const MachineInstr &MI,unsigned Val)
169      const { return 0; }
170    unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
171      const { return 0; }
172    unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op)
173      const { return 0; }
174    unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op)
175      const { return 0; }
176    unsigned getT2SOImmOpValue(const MachineInstr &MI, unsigned Op)
177      const { return 0; }
178    unsigned getSORegOpValue(const MachineInstr &MI, unsigned Op)
179      const { return 0; }
180    unsigned getT2SORegOpValue(const MachineInstr &MI, unsigned Op)
181      const { return 0; }
182    unsigned getRotImmOpValue(const MachineInstr &MI, unsigned Op)
183      const { return 0; }
184    unsigned getImmMinusOneOpValue(const MachineInstr &MI, unsigned Op)
185      const { return 0; }
186    unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op)
187      const { return 0; }
188    unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op)
189      const { return 0; }
190    unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI,
191                                            unsigned Op) const { return 0; }
192    uint32_t getLdStmModeOpValue(const MachineInstr &MI, unsigned OpIdx)
193      const {return 0; }
194    uint32_t getLdStSORegOpValue(const MachineInstr &MI, unsigned OpIdx)
195      const { return 0; }
196
197    unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
198      const {
199      // {17-13} = reg
200      // {12}    = (U)nsigned (add == '1', sub == '0')
201      // {11-0}  = imm12
202      const MachineOperand &MO  = MI.getOperand(Op);
203      const MachineOperand &MO1 = MI.getOperand(Op + 1);
204      if (!MO.isReg()) {
205        emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
206        return 0;
207      }
208      unsigned Reg = getARMRegisterNumbering(MO.getReg());
209      int32_t Imm12 = MO1.getImm();
210      uint32_t Binary;
211      Binary = Imm12 & 0xfff;
212      if (Imm12 >= 0)
213        Binary |= (1 << 12);
214      Binary |= (Reg << 13);
215      return Binary;
216    }
217    uint32_t getAddrMode2OpValue(const MachineInstr &MI, unsigned OpIdx)
218      const { return 0;}
219    uint32_t getAddrMode2OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
220      const { return 0;}
221    uint32_t getAddrMode3OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
222      const { return 0;}
223    uint32_t getAddrMode3OpValue(const MachineInstr &MI, unsigned Op) const
224      { return 0; }
225    uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const {
226      // {12-9}  = reg
227      // {8}     = (U)nsigned (add == '1', sub == '0')
228      // {7-0}   = imm12
229      const MachineOperand &MO  = MI.getOperand(Op);
230      const MachineOperand &MO1 = MI.getOperand(Op + 1);
231      if (!MO.isReg()) {
232        emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
233        return 0;
234      }
235      unsigned Reg = getARMRegisterNumbering(MO.getReg());
236      int32_t Imm8 = MO1.getImm();
237      uint32_t Binary;
238      Binary = Imm8 & 0xff;
239      if (Imm8 >= 0)
240        Binary |= (1 << 8);
241      Binary |= (Reg << 9);
242      return Binary;
243    }
244    unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op)
245      const { return 0; }
246
247    unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op)
248      const { return 0; }
249
250    /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
251    /// machine operand requires relocation, record the relocation and return
252    /// zero.
253    unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
254                            unsigned Reloc);
255
256    /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
257    ///
258    unsigned getShiftOp(unsigned Imm) const ;
259
260    /// Routines that handle operands which add machine relocations which are
261    /// fixed up by the relocation stage.
262    void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
263                           bool MayNeedFarStub,  bool Indirect,
264                           intptr_t ACPV = 0) const;
265    void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
266    void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
267    void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const;
268    void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
269                               intptr_t JTBase = 0) const;
270  };
271}
272
273char ARMCodeEmitter::ID = 0;
274
275/// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
276/// code to the specified MCE object.
277FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
278                                                JITCodeEmitter &JCE) {
279  return new ARMCodeEmitter(TM, JCE);
280}
281
282bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
283  assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
284          MF.getTarget().getRelocationModel() != Reloc::Static) &&
285         "JIT relocation model must be set to static or default!");
286  JTI = ((ARMTargetMachine &)MF.getTarget()).getJITInfo();
287  II = ((const ARMTargetMachine &)MF.getTarget()).getInstrInfo();
288  TD = ((const ARMTargetMachine &)MF.getTarget()).getTargetData();
289  Subtarget = &TM.getSubtarget<ARMSubtarget>();
290  MCPEs = &MF.getConstantPool()->getConstants();
291  MJTEs = 0;
292  if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
293  IsPIC = TM.getRelocationModel() == Reloc::PIC_;
294  IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction();
295  JTI->Initialize(MF, IsPIC);
296  MMI = &getAnalysis<MachineModuleInfo>();
297  MCE.setModuleInfo(MMI);
298
299  do {
300    DEBUG(errs() << "JITTing function '"
301          << MF.getFunction()->getName() << "'\n");
302    MCE.startFunction(MF);
303    for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
304         MBB != E; ++MBB) {
305      MCE.StartMachineBasicBlock(MBB);
306      for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
307           I != E; ++I)
308        emitInstruction(*I);
309    }
310  } while (MCE.finishFunction(MF));
311
312  return false;
313}
314
315/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
316///
317unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
318  switch (ARM_AM::getAM2ShiftOpc(Imm)) {
319  default: llvm_unreachable("Unknown shift opc!");
320  case ARM_AM::asr: return 2;
321  case ARM_AM::lsl: return 0;
322  case ARM_AM::lsr: return 1;
323  case ARM_AM::ror:
324  case ARM_AM::rrx: return 3;
325  }
326  return 0;
327}
328
329/// getMovi32Value - Return binary encoding of operand for movw/movt. If the
330/// machine operand requires relocation, record the relocation and return zero.
331unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
332                                        const MachineOperand &MO,
333                                        unsigned Reloc) {
334  assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
335      && "Relocation to this function should be for movt or movw");
336
337  if (MO.isImm())
338    return static_cast<unsigned>(MO.getImm());
339  else if (MO.isGlobal())
340    emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
341  else if (MO.isSymbol())
342    emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
343  else if (MO.isMBB())
344    emitMachineBasicBlock(MO.getMBB(), Reloc);
345  else {
346#ifndef NDEBUG
347    errs() << MO;
348#endif
349    llvm_unreachable("Unsupported operand type for movw/movt");
350  }
351  return 0;
352}
353
354/// getMachineOpValue - Return binary encoding of operand. If the machine
355/// operand requires relocation, record the relocation and return zero.
356unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
357                                           const MachineOperand &MO) const {
358  if (MO.isReg())
359    return getARMRegisterNumbering(MO.getReg());
360  else if (MO.isImm())
361    return static_cast<unsigned>(MO.getImm());
362  else if (MO.isGlobal())
363    emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
364  else if (MO.isSymbol())
365    emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
366  else if (MO.isCPI()) {
367    const TargetInstrDesc &TID = MI.getDesc();
368    // For VFP load, the immediate offset is multiplied by 4.
369    unsigned Reloc =  ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
370      ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
371    emitConstPoolAddress(MO.getIndex(), Reloc);
372  } else if (MO.isJTI())
373    emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
374  else if (MO.isMBB())
375    emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
376  else {
377#ifndef NDEBUG
378    errs() << MO;
379#endif
380    llvm_unreachable(0);
381  }
382  return 0;
383}
384
385/// emitGlobalAddress - Emit the specified address to the code stream.
386///
387void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
388                                       bool MayNeedFarStub, bool Indirect,
389                                       intptr_t ACPV) const {
390  MachineRelocation MR = Indirect
391    ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
392                                           const_cast<GlobalValue *>(GV),
393                                           ACPV, MayNeedFarStub)
394    : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
395                               const_cast<GlobalValue *>(GV), ACPV,
396                               MayNeedFarStub);
397  MCE.addRelocation(MR);
398}
399
400/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
401/// be emitted to the current location in the function, and allow it to be PC
402/// relative.
403void ARMCodeEmitter::
404emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
405  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
406                                                 Reloc, ES));
407}
408
409/// emitConstPoolAddress - Arrange for the address of an constant pool
410/// to be emitted to the current location in the function, and allow it to be PC
411/// relative.
412void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
413  // Tell JIT emitter we'll resolve the address.
414  MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
415                                                    Reloc, CPI, 0, true));
416}
417
418/// emitJumpTableAddress - Arrange for the address of a jump table to
419/// be emitted to the current location in the function, and allow it to be PC
420/// relative.
421void ARMCodeEmitter::
422emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const {
423  MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
424                                                    Reloc, JTIndex, 0, true));
425}
426
427/// emitMachineBasicBlock - Emit the specified address basic block.
428void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
429                                           unsigned Reloc,
430                                           intptr_t JTBase) const {
431  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
432                                             Reloc, BB, JTBase));
433}
434
435void ARMCodeEmitter::emitWordLE(unsigned Binary) {
436  DEBUG(errs() << "  0x";
437        errs().write_hex(Binary) << "\n");
438  MCE.emitWordLE(Binary);
439}
440
441void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
442  DEBUG(errs() << "  0x";
443        errs().write_hex(Binary) << "\n");
444  MCE.emitDWordLE(Binary);
445}
446
447void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
448  DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
449
450  MCE.processDebugLoc(MI.getDebugLoc(), true);
451
452  ++NumEmitted;  // Keep track of the # of mi's emitted
453  switch (MI.getDesc().TSFlags & ARMII::FormMask) {
454  default: {
455    llvm_unreachable("Unhandled instruction encoding format!");
456    break;
457  }
458  case ARMII::Pseudo:
459    emitPseudoInstruction(MI);
460    break;
461  case ARMII::DPFrm:
462  case ARMII::DPSoRegFrm:
463    emitDataProcessingInstruction(MI);
464    break;
465  case ARMII::LdFrm:
466  case ARMII::StFrm:
467    emitLoadStoreInstruction(MI);
468    break;
469  case ARMII::LdMiscFrm:
470  case ARMII::StMiscFrm:
471    emitMiscLoadStoreInstruction(MI);
472    break;
473  case ARMII::LdStMulFrm:
474    emitLoadStoreMultipleInstruction(MI);
475    break;
476  case ARMII::MulFrm:
477    emitMulFrmInstruction(MI);
478    break;
479  case ARMII::ExtFrm:
480    emitExtendInstruction(MI);
481    break;
482  case ARMII::ArithMiscFrm:
483    emitMiscArithInstruction(MI);
484    break;
485  case ARMII::SatFrm:
486    emitSaturateInstruction(MI);
487    break;
488  case ARMII::BrFrm:
489    emitBranchInstruction(MI);
490    break;
491  case ARMII::BrMiscFrm:
492    emitMiscBranchInstruction(MI);
493    break;
494  // VFP instructions.
495  case ARMII::VFPUnaryFrm:
496  case ARMII::VFPBinaryFrm:
497    emitVFPArithInstruction(MI);
498    break;
499  case ARMII::VFPConv1Frm:
500  case ARMII::VFPConv2Frm:
501  case ARMII::VFPConv3Frm:
502  case ARMII::VFPConv4Frm:
503  case ARMII::VFPConv5Frm:
504    emitVFPConversionInstruction(MI);
505    break;
506  case ARMII::VFPLdStFrm:
507    emitVFPLoadStoreInstruction(MI);
508    break;
509  case ARMII::VFPLdStMulFrm:
510    emitVFPLoadStoreMultipleInstruction(MI);
511    break;
512
513  // NEON instructions.
514  case ARMII::NGetLnFrm:
515  case ARMII::NSetLnFrm:
516    emitNEONLaneInstruction(MI);
517    break;
518  case ARMII::NDupFrm:
519    emitNEONDupInstruction(MI);
520    break;
521  case ARMII::N1RegModImmFrm:
522    emitNEON1RegModImmInstruction(MI);
523    break;
524  case ARMII::N2RegFrm:
525    emitNEON2RegInstruction(MI);
526    break;
527  case ARMII::N3RegFrm:
528    emitNEON3RegInstruction(MI);
529    break;
530  }
531  MCE.processDebugLoc(MI.getDebugLoc(), false);
532}
533
534void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
535  unsigned CPI = MI.getOperand(0).getImm();       // CP instruction index.
536  unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
537  const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
538
539  // Remember the CONSTPOOL_ENTRY address for later relocation.
540  JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
541
542  // Emit constpool island entry. In most cases, the actual values will be
543  // resolved and relocated after code emission.
544  if (MCPE.isMachineConstantPoolEntry()) {
545    ARMConstantPoolValue *ACPV =
546      static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
547
548    DEBUG(errs() << "  ** ARM constant pool #" << CPI << " @ "
549          << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
550
551    assert(ACPV->isGlobalValue() && "unsupported constant pool value");
552    const GlobalValue *GV = ACPV->getGV();
553    if (GV) {
554      Reloc::Model RelocM = TM.getRelocationModel();
555      emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
556                        isa<Function>(GV),
557                        Subtarget->GVIsIndirectSymbol(GV, RelocM),
558                        (intptr_t)ACPV);
559     } else  {
560      emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute);
561    }
562    emitWordLE(0);
563  } else {
564    const Constant *CV = MCPE.Val.ConstVal;
565
566    DEBUG({
567        errs() << "  ** Constant pool #" << CPI << " @ "
568               << (void*)MCE.getCurrentPCValue() << " ";
569        if (const Function *F = dyn_cast<Function>(CV))
570          errs() << F->getName();
571        else
572          errs() << *CV;
573        errs() << '\n';
574      });
575
576    if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
577      emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV), false);
578      emitWordLE(0);
579    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
580      uint32_t Val = uint32_t(*CI->getValue().getRawData());
581      emitWordLE(Val);
582    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
583      if (CFP->getType()->isFloatTy())
584        emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
585      else if (CFP->getType()->isDoubleTy())
586        emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
587      else {
588        llvm_unreachable("Unable to handle this constantpool entry!");
589      }
590    } else {
591      llvm_unreachable("Unable to handle this constantpool entry!");
592    }
593  }
594}
595
596void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
597  const MachineOperand &MO0 = MI.getOperand(0);
598  const MachineOperand &MO1 = MI.getOperand(1);
599
600  // Emit the 'movw' instruction.
601  unsigned Binary = 0x30 << 20;  // mov: Insts{27-20} = 0b00110000
602
603  unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;
604
605  // Set the conditional execution predicate.
606  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
607
608  // Encode Rd.
609  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
610
611  // Encode imm16 as imm4:imm12
612  Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
613  Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
614  emitWordLE(Binary);
615
616  unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
617  // Emit the 'movt' instruction.
618  Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100
619
620  // Set the conditional execution predicate.
621  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
622
623  // Encode Rd.
624  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
625
626  // Encode imm16 as imm4:imm1, same as movw above.
627  Binary |= Hi16 & 0xFFF;
628  Binary |= ((Hi16 >> 12) & 0xF) << 16;
629  emitWordLE(Binary);
630}
631
632void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
633  const MachineOperand &MO0 = MI.getOperand(0);
634  const MachineOperand &MO1 = MI.getOperand(1);
635  assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
636                                                  "Not a valid so_imm value!");
637  unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
638  unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
639
640  // Emit the 'mov' instruction.
641  unsigned Binary = 0xd << 21;  // mov: Insts{24-21} = 0b1101
642
643  // Set the conditional execution predicate.
644  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
645
646  // Encode Rd.
647  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
648
649  // Encode so_imm.
650  // Set bit I(25) to identify this is the immediate form of <shifter_op>
651  Binary |= 1 << ARMII::I_BitShift;
652  Binary |= getMachineSoImmOpValue(V1);
653  emitWordLE(Binary);
654
655  // Now the 'orr' instruction.
656  Binary = 0xc << 21;  // orr: Insts{24-21} = 0b1100
657
658  // Set the conditional execution predicate.
659  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
660
661  // Encode Rd.
662  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
663
664  // Encode Rn.
665  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
666
667  // Encode so_imm.
668  // Set bit I(25) to identify this is the immediate form of <shifter_op>
669  Binary |= 1 << ARMII::I_BitShift;
670  Binary |= getMachineSoImmOpValue(V2);
671  emitWordLE(Binary);
672}
673
674void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
675  // It's basically add r, pc, (LJTI - $+8)
676
677  const TargetInstrDesc &TID = MI.getDesc();
678
679  // Emit the 'add' instruction.
680  unsigned Binary = 0x4 << 21;  // add: Insts{24-31} = 0b0100
681
682  // Set the conditional execution predicate
683  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
684
685  // Encode S bit if MI modifies CPSR.
686  Binary |= getAddrModeSBit(MI, TID);
687
688  // Encode Rd.
689  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
690
691  // Encode Rn which is PC.
692  Binary |= getARMRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
693
694  // Encode the displacement.
695  Binary |= 1 << ARMII::I_BitShift;
696  emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
697
698  emitWordLE(Binary);
699}
700
701void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
702  unsigned Opcode = MI.getDesc().Opcode;
703
704  // Part of binary is determined by TableGn.
705  unsigned Binary = getBinaryCodeForInstr(MI);
706
707  // Set the conditional execution predicate
708  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
709
710  // Encode S bit if MI modifies CPSR.
711  if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
712    Binary |= 1 << ARMII::S_BitShift;
713
714  // Encode register def if there is one.
715  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
716
717  // Encode the shift operation.
718  switch (Opcode) {
719  default: break;
720  case ARM::RRX:
721    // rrx
722    Binary |= 0x6 << 4;
723    break;
724  case ARM::MOVsrl_flag:
725    // lsr #1
726    Binary |= (0x2 << 4) | (1 << 7);
727    break;
728  case ARM::MOVsra_flag:
729    // asr #1
730    Binary |= (0x4 << 4) | (1 << 7);
731    break;
732  }
733
734  // Encode register Rm.
735  Binary |= getMachineOpValue(MI, 1);
736
737  emitWordLE(Binary);
738}
739
740void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
741  DEBUG(errs() << "  ** LPC" << LabelID << " @ "
742        << (void*)MCE.getCurrentPCValue() << '\n');
743  JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
744}
745
746void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
747  unsigned Opcode = MI.getDesc().Opcode;
748  switch (Opcode) {
749  default:
750    llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
751  case ARM::BX:
752  case ARM::BMOVPCRX:
753  case ARM::BXr9:
754  case ARM::BMOVPCRXr9: {
755    // First emit mov lr, pc
756    unsigned Binary = 0x01a0e00f;
757    Binary |= II->getPredicate(&MI) << ARMII::CondShift;
758    emitWordLE(Binary);
759
760    // and then emit the branch.
761    emitMiscBranchInstruction(MI);
762    break;
763  }
764  case TargetOpcode::INLINEASM: {
765    // We allow inline assembler nodes with empty bodies - they can
766    // implicitly define registers, which is ok for JIT.
767    if (MI.getOperand(0).getSymbolName()[0]) {
768      report_fatal_error("JIT does not support inline asm!");
769    }
770    break;
771  }
772  case TargetOpcode::PROLOG_LABEL:
773  case TargetOpcode::EH_LABEL:
774    MCE.emitLabel(MI.getOperand(0).getMCSymbol());
775    break;
776  case TargetOpcode::IMPLICIT_DEF:
777  case TargetOpcode::KILL:
778    // Do nothing.
779    break;
780  case ARM::CONSTPOOL_ENTRY:
781    emitConstPoolInstruction(MI);
782    break;
783  case ARM::PICADD: {
784    // Remember of the address of the PC label for relocation later.
785    addPCLabel(MI.getOperand(2).getImm());
786    // PICADD is just an add instruction that implicitly read pc.
787    emitDataProcessingInstruction(MI, 0, ARM::PC);
788    break;
789  }
790  case ARM::PICLDR:
791  case ARM::PICLDRB:
792  case ARM::PICSTR:
793  case ARM::PICSTRB: {
794    // Remember of the address of the PC label for relocation later.
795    addPCLabel(MI.getOperand(2).getImm());
796    // These are just load / store instructions that implicitly read pc.
797    emitLoadStoreInstruction(MI, 0, ARM::PC);
798    break;
799  }
800  case ARM::PICLDRH:
801  case ARM::PICLDRSH:
802  case ARM::PICLDRSB:
803  case ARM::PICSTRH: {
804    // Remember of the address of the PC label for relocation later.
805    addPCLabel(MI.getOperand(2).getImm());
806    // These are just load / store instructions that implicitly read pc.
807    emitMiscLoadStoreInstruction(MI, ARM::PC);
808    break;
809  }
810
811  case ARM::MOVi32imm:
812    // Two instructions to materialize a constant.
813    if (Subtarget->hasV6T2Ops())
814      emitMOVi32immInstruction(MI);
815    else
816      emitMOVi2piecesInstruction(MI);
817    break;
818
819  case ARM::LEApcrelJT:
820    // Materialize jumptable address.
821    emitLEApcrelJTInstruction(MI);
822    break;
823  case ARM::RRX:
824  case ARM::MOVsrl_flag:
825  case ARM::MOVsra_flag:
826    emitPseudoMoveInstruction(MI);
827    break;
828  }
829}
830
831unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
832                                                const TargetInstrDesc &TID,
833                                                const MachineOperand &MO,
834                                                unsigned OpIdx) {
835  unsigned Binary = getMachineOpValue(MI, MO);
836
837  const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
838  const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
839  ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
840
841  // Encode the shift opcode.
842  unsigned SBits = 0;
843  unsigned Rs = MO1.getReg();
844  if (Rs) {
845    // Set shift operand (bit[7:4]).
846    // LSL - 0001
847    // LSR - 0011
848    // ASR - 0101
849    // ROR - 0111
850    // RRX - 0110 and bit[11:8] clear.
851    switch (SOpc) {
852    default: llvm_unreachable("Unknown shift opc!");
853    case ARM_AM::lsl: SBits = 0x1; break;
854    case ARM_AM::lsr: SBits = 0x3; break;
855    case ARM_AM::asr: SBits = 0x5; break;
856    case ARM_AM::ror: SBits = 0x7; break;
857    case ARM_AM::rrx: SBits = 0x6; break;
858    }
859  } else {
860    // Set shift operand (bit[6:4]).
861    // LSL - 000
862    // LSR - 010
863    // ASR - 100
864    // ROR - 110
865    switch (SOpc) {
866    default: llvm_unreachable("Unknown shift opc!");
867    case ARM_AM::lsl: SBits = 0x0; break;
868    case ARM_AM::lsr: SBits = 0x2; break;
869    case ARM_AM::asr: SBits = 0x4; break;
870    case ARM_AM::ror: SBits = 0x6; break;
871    }
872  }
873  Binary |= SBits << 4;
874  if (SOpc == ARM_AM::rrx)
875    return Binary;
876
877  // Encode the shift operation Rs or shift_imm (except rrx).
878  if (Rs) {
879    // Encode Rs bit[11:8].
880    assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
881    return Binary | (getARMRegisterNumbering(Rs) << ARMII::RegRsShift);
882  }
883
884  // Encode shift_imm bit[11:7].
885  return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
886}
887
888unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
889  int SoImmVal = ARM_AM::getSOImmVal(SoImm);
890  assert(SoImmVal != -1 && "Not a valid so_imm value!");
891
892  // Encode rotate_imm.
893  unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
894    << ARMII::SoRotImmShift;
895
896  // Encode immed_8.
897  Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
898  return Binary;
899}
900
901unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
902                                         const TargetInstrDesc &TID) const {
903  for (unsigned i = MI.getNumOperands(), e = TID.getNumOperands(); i != e; --i){
904    const MachineOperand &MO = MI.getOperand(i-1);
905    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
906      return 1 << ARMII::S_BitShift;
907  }
908  return 0;
909}
910
911void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
912                                                   unsigned ImplicitRd,
913                                                   unsigned ImplicitRn) {
914  const TargetInstrDesc &TID = MI.getDesc();
915
916  // Part of binary is determined by TableGn.
917  unsigned Binary = getBinaryCodeForInstr(MI);
918
919  // Set the conditional execution predicate
920  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
921
922  // Encode S bit if MI modifies CPSR.
923  Binary |= getAddrModeSBit(MI, TID);
924
925  // Encode register def if there is one.
926  unsigned NumDefs = TID.getNumDefs();
927  unsigned OpIdx = 0;
928  if (NumDefs)
929    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
930  else if (ImplicitRd)
931    // Special handling for implicit use (e.g. PC).
932    Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
933
934  if (TID.Opcode == ARM::MOVi16) {
935      // Get immediate from MI.
936      unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
937                      ARM::reloc_arm_movw);
938      // Encode imm which is the same as in emitMOVi32immInstruction().
939      Binary |= Lo16 & 0xFFF;
940      Binary |= ((Lo16 >> 12) & 0xF) << 16;
941      emitWordLE(Binary);
942      return;
943  } else if(TID.Opcode == ARM::MOVTi16) {
944      unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
945                       ARM::reloc_arm_movt) >> 16);
946      Binary |= Hi16 & 0xFFF;
947      Binary |= ((Hi16 >> 12) & 0xF) << 16;
948      emitWordLE(Binary);
949      return;
950  } else if ((TID.Opcode == ARM::BFC) || (TID.Opcode == ARM::BFI)) {
951      uint32_t v = ~MI.getOperand(2).getImm();
952      int32_t lsb = CountTrailingZeros_32(v);
953      int32_t msb = (32 - CountLeadingZeros_32(v)) - 1;
954      // Instr{20-16} = msb, Instr{11-7} = lsb
955      Binary |= (msb & 0x1F) << 16;
956      Binary |= (lsb & 0x1F) << 7;
957      emitWordLE(Binary);
958      return;
959  } else if ((TID.Opcode == ARM::UBFX) || (TID.Opcode == ARM::SBFX)) {
960      // Encode Rn in Instr{0-3}
961      Binary |= getMachineOpValue(MI, OpIdx++);
962
963      uint32_t lsb = MI.getOperand(OpIdx++).getImm();
964      uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1;
965
966      // Instr{20-16} = widthm1, Instr{11-7} = lsb
967      Binary |= (widthm1 & 0x1F) << 16;
968      Binary |= (lsb & 0x1F) << 7;
969      emitWordLE(Binary);
970      return;
971  }
972
973  // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
974  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
975    ++OpIdx;
976
977  // Encode first non-shifter register operand if there is one.
978  bool isUnary = TID.TSFlags & ARMII::UnaryDP;
979  if (!isUnary) {
980    if (ImplicitRn)
981      // Special handling for implicit use (e.g. PC).
982      Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
983    else {
984      Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
985      ++OpIdx;
986    }
987  }
988
989  // Encode shifter operand.
990  const MachineOperand &MO = MI.getOperand(OpIdx);
991  if ((TID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
992    // Encode SoReg.
993    emitWordLE(Binary | getMachineSoRegOpValue(MI, TID, MO, OpIdx));
994    return;
995  }
996
997  if (MO.isReg()) {
998    // Encode register Rm.
999    emitWordLE(Binary | getARMRegisterNumbering(MO.getReg()));
1000    return;
1001  }
1002
1003  // Encode so_imm.
1004  Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
1005
1006  emitWordLE(Binary);
1007}
1008
1009void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
1010                                              unsigned ImplicitRd,
1011                                              unsigned ImplicitRn) {
1012  const TargetInstrDesc &TID = MI.getDesc();
1013  unsigned Form = TID.TSFlags & ARMII::FormMask;
1014  bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1015
1016  // Part of binary is determined by TableGn.
1017  unsigned Binary = getBinaryCodeForInstr(MI);
1018
1019  // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done.
1020  if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp ||
1021      MI.getOpcode() == ARM::STRi12) {
1022    emitWordLE(Binary);
1023    return;
1024  }
1025
1026  // Set the conditional execution predicate
1027  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1028
1029  unsigned OpIdx = 0;
1030
1031  // Operand 0 of a pre- and post-indexed store is the address base
1032  // writeback. Skip it.
1033  bool Skipped = false;
1034  if (IsPrePost && Form == ARMII::StFrm) {
1035    ++OpIdx;
1036    Skipped = true;
1037  }
1038
1039  // Set first operand
1040  if (ImplicitRd)
1041    // Special handling for implicit use (e.g. PC).
1042    Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
1043  else
1044    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1045
1046  // Set second operand
1047  if (ImplicitRn)
1048    // Special handling for implicit use (e.g. PC).
1049    Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1050  else
1051    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1052
1053  // If this is a two-address operand, skip it. e.g. LDR_PRE.
1054  if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1055    ++OpIdx;
1056
1057  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1058  unsigned AM2Opc = (ImplicitRn == ARM::PC)
1059    ? 0 : MI.getOperand(OpIdx+1).getImm();
1060
1061  // Set bit U(23) according to sign of immed value (positive or negative).
1062  Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
1063             ARMII::U_BitShift);
1064  if (!MO2.getReg()) { // is immediate
1065    if (ARM_AM::getAM2Offset(AM2Opc))
1066      // Set the value of offset_12 field
1067      Binary |= ARM_AM::getAM2Offset(AM2Opc);
1068    emitWordLE(Binary);
1069    return;
1070  }
1071
1072  // Set bit I(25), because this is not in immediate encoding.
1073  Binary |= 1 << ARMII::I_BitShift;
1074  assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
1075  // Set bit[3:0] to the corresponding Rm register
1076  Binary |= getARMRegisterNumbering(MO2.getReg());
1077
1078  // If this instr is in scaled register offset/index instruction, set
1079  // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
1080  if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
1081    Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift;  // shift
1082    Binary |= ShImm              << ARMII::ShiftShift;     // shift_immed
1083  }
1084
1085  emitWordLE(Binary);
1086}
1087
1088void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
1089                                                  unsigned ImplicitRn) {
1090  const TargetInstrDesc &TID = MI.getDesc();
1091  unsigned Form = TID.TSFlags & ARMII::FormMask;
1092  bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1093
1094  // Part of binary is determined by TableGn.
1095  unsigned Binary = getBinaryCodeForInstr(MI);
1096
1097  // Set the conditional execution predicate
1098  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1099
1100  unsigned OpIdx = 0;
1101
1102  // Operand 0 of a pre- and post-indexed store is the address base
1103  // writeback. Skip it.
1104  bool Skipped = false;
1105  if (IsPrePost && Form == ARMII::StMiscFrm) {
1106    ++OpIdx;
1107    Skipped = true;
1108  }
1109
1110  // Set first operand
1111  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1112
1113  // Skip LDRD and STRD's second operand.
1114  if (TID.Opcode == ARM::LDRD || TID.Opcode == ARM::STRD)
1115    ++OpIdx;
1116
1117  // Set second operand
1118  if (ImplicitRn)
1119    // Special handling for implicit use (e.g. PC).
1120    Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1121  else
1122    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1123
1124  // If this is a two-address operand, skip it. e.g. LDRH_POST.
1125  if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1126    ++OpIdx;
1127
1128  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1129  unsigned AM3Opc = (ImplicitRn == ARM::PC)
1130    ? 0 : MI.getOperand(OpIdx+1).getImm();
1131
1132  // Set bit U(23) according to sign of immed value (positive or negative)
1133  Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
1134             ARMII::U_BitShift);
1135
1136  // If this instr is in register offset/index encoding, set bit[3:0]
1137  // to the corresponding Rm register.
1138  if (MO2.getReg()) {
1139    Binary |= getARMRegisterNumbering(MO2.getReg());
1140    emitWordLE(Binary);
1141    return;
1142  }
1143
1144  // This instr is in immediate offset/index encoding, set bit 22 to 1.
1145  Binary |= 1 << ARMII::AM3_I_BitShift;
1146  if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
1147    // Set operands
1148    Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift;  // immedH
1149    Binary |= (ImmOffs & 0xF);                      // immedL
1150  }
1151
1152  emitWordLE(Binary);
1153}
1154
1155static unsigned getAddrModeUPBits(unsigned Mode) {
1156  unsigned Binary = 0;
1157
1158  // Set addressing mode by modifying bits U(23) and P(24)
1159  // IA - Increment after  - bit U = 1 and bit P = 0
1160  // IB - Increment before - bit U = 1 and bit P = 1
1161  // DA - Decrement after  - bit U = 0 and bit P = 0
1162  // DB - Decrement before - bit U = 0 and bit P = 1
1163  switch (Mode) {
1164  default: llvm_unreachable("Unknown addressing sub-mode!");
1165  case ARM_AM::da:                                     break;
1166  case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
1167  case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
1168  case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
1169  }
1170
1171  return Binary;
1172}
1173
1174void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
1175  const TargetInstrDesc &TID = MI.getDesc();
1176  bool IsUpdating = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1177
1178  // Part of binary is determined by TableGn.
1179  unsigned Binary = getBinaryCodeForInstr(MI);
1180
1181  // Set the conditional execution predicate
1182  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1183
1184  // Skip operand 0 of an instruction with base register update.
1185  unsigned OpIdx = 0;
1186  if (IsUpdating)
1187    ++OpIdx;
1188
1189  // Set base address operand
1190  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1191
1192  // Set addressing mode by modifying bits U(23) and P(24)
1193  const MachineOperand &MO = MI.getOperand(OpIdx++);
1194  Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(MO.getImm()));
1195
1196  // Set bit W(21)
1197  if (IsUpdating)
1198    Binary |= 0x1 << ARMII::W_BitShift;
1199
1200  // Set registers
1201  for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
1202    const MachineOperand &MO = MI.getOperand(i);
1203    if (!MO.isReg() || MO.isImplicit())
1204      break;
1205    unsigned RegNum = getARMRegisterNumbering(MO.getReg());
1206    assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
1207           RegNum < 16);
1208    Binary |= 0x1 << RegNum;
1209  }
1210
1211  emitWordLE(Binary);
1212}
1213
1214void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
1215  const TargetInstrDesc &TID = MI.getDesc();
1216
1217  // Part of binary is determined by TableGn.
1218  unsigned Binary = getBinaryCodeForInstr(MI);
1219
1220  // Set the conditional execution predicate
1221  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1222
1223  // Encode S bit if MI modifies CPSR.
1224  Binary |= getAddrModeSBit(MI, TID);
1225
1226  // 32x32->64bit operations have two destination registers. The number
1227  // of register definitions will tell us if that's what we're dealing with.
1228  unsigned OpIdx = 0;
1229  if (TID.getNumDefs() == 2)
1230    Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
1231
1232  // Encode Rd
1233  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
1234
1235  // Encode Rm
1236  Binary |= getMachineOpValue(MI, OpIdx++);
1237
1238  // Encode Rs
1239  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
1240
1241  // Many multiple instructions (e.g. MLA) have three src operands. Encode
1242  // it as Rn (for multiply, that's in the same offset as RdLo.
1243  if (TID.getNumOperands() > OpIdx &&
1244      !TID.OpInfo[OpIdx].isPredicate() &&
1245      !TID.OpInfo[OpIdx].isOptionalDef())
1246    Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
1247
1248  emitWordLE(Binary);
1249}
1250
1251void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
1252  const TargetInstrDesc &TID = MI.getDesc();
1253
1254  // Part of binary is determined by TableGn.
1255  unsigned Binary = getBinaryCodeForInstr(MI);
1256
1257  // Set the conditional execution predicate
1258  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1259
1260  unsigned OpIdx = 0;
1261
1262  // Encode Rd
1263  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1264
1265  const MachineOperand &MO1 = MI.getOperand(OpIdx++);
1266  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1267  if (MO2.isReg()) {
1268    // Two register operand form.
1269    // Encode Rn.
1270    Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
1271
1272    // Encode Rm.
1273    Binary |= getMachineOpValue(MI, MO2);
1274    ++OpIdx;
1275  } else {
1276    Binary |= getMachineOpValue(MI, MO1);
1277  }
1278
1279  // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
1280  if (MI.getOperand(OpIdx).isImm() &&
1281      !TID.OpInfo[OpIdx].isPredicate() &&
1282      !TID.OpInfo[OpIdx].isOptionalDef())
1283    Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
1284
1285  emitWordLE(Binary);
1286}
1287
1288void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
1289  const TargetInstrDesc &TID = MI.getDesc();
1290
1291  // Part of binary is determined by TableGn.
1292  unsigned Binary = getBinaryCodeForInstr(MI);
1293
1294  // Set the conditional execution predicate
1295  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1296
1297  unsigned OpIdx = 0;
1298
1299  // Encode Rd
1300  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1301
1302  const MachineOperand &MO = MI.getOperand(OpIdx++);
1303  if (OpIdx == TID.getNumOperands() ||
1304      TID.OpInfo[OpIdx].isPredicate() ||
1305      TID.OpInfo[OpIdx].isOptionalDef()) {
1306    // Encode Rm and it's done.
1307    Binary |= getMachineOpValue(MI, MO);
1308    emitWordLE(Binary);
1309    return;
1310  }
1311
1312  // Encode Rn.
1313  Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
1314
1315  // Encode Rm.
1316  Binary |= getMachineOpValue(MI, OpIdx++);
1317
1318  // Encode shift_imm.
1319  unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
1320  if (TID.Opcode == ARM::PKHTB) {
1321    assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!");
1322    if (ShiftAmt == 32)
1323      ShiftAmt = 0;
1324  }
1325  assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1326  Binary |= ShiftAmt << ARMII::ShiftShift;
1327
1328  emitWordLE(Binary);
1329}
1330
1331void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) {
1332  const TargetInstrDesc &TID = MI.getDesc();
1333
1334  // Part of binary is determined by TableGen.
1335  unsigned Binary = getBinaryCodeForInstr(MI);
1336
1337  // Set the conditional execution predicate
1338  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1339
1340  // Encode Rd
1341  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
1342
1343  // Encode saturate bit position.
1344  unsigned Pos = MI.getOperand(1).getImm();
1345  if (TID.Opcode == ARM::SSAT || TID.Opcode == ARM::SSAT16)
1346    Pos -= 1;
1347  assert((Pos < 16 || (Pos < 32 &&
1348                       TID.Opcode != ARM::SSAT16 &&
1349                       TID.Opcode != ARM::USAT16)) &&
1350         "saturate bit position out of range");
1351  Binary |= Pos << 16;
1352
1353  // Encode Rm
1354  Binary |= getMachineOpValue(MI, 2);
1355
1356  // Encode shift_imm.
1357  if (TID.getNumOperands() == 4) {
1358    unsigned ShiftOp = MI.getOperand(3).getImm();
1359    ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp);
1360    if (Opc == ARM_AM::asr)
1361      Binary |= (1 << 6);
1362    unsigned ShiftAmt = MI.getOperand(3).getImm();
1363    if (ShiftAmt == 32 && Opc == ARM_AM::asr)
1364      ShiftAmt = 0;
1365    assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1366    Binary |= ShiftAmt << ARMII::ShiftShift;
1367  }
1368
1369  emitWordLE(Binary);
1370}
1371
1372void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
1373  const TargetInstrDesc &TID = MI.getDesc();
1374
1375  if (TID.Opcode == ARM::TPsoft) {
1376    llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
1377  }
1378
1379  // Part of binary is determined by TableGn.
1380  unsigned Binary = getBinaryCodeForInstr(MI);
1381
1382  // Set the conditional execution predicate
1383  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1384
1385  // Set signed_immed_24 field
1386  Binary |= getMachineOpValue(MI, 0);
1387
1388  emitWordLE(Binary);
1389}
1390
1391void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
1392  // Remember the base address of the inline jump table.
1393  uintptr_t JTBase = MCE.getCurrentPCValue();
1394  JTI->addJumpTableBaseAddr(JTIndex, JTBase);
1395  DEBUG(errs() << "  ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
1396               << '\n');
1397
1398  // Now emit the jump table entries.
1399  const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
1400  for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
1401    if (IsPIC)
1402      // DestBB address - JT base.
1403      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
1404    else
1405      // Absolute DestBB address.
1406      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
1407    emitWordLE(0);
1408  }
1409}
1410
1411void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
1412  const TargetInstrDesc &TID = MI.getDesc();
1413
1414  // Handle jump tables.
1415  if (TID.Opcode == ARM::BR_JTr || TID.Opcode == ARM::BR_JTadd) {
1416    // First emit a ldr pc, [] instruction.
1417    emitDataProcessingInstruction(MI, ARM::PC);
1418
1419    // Then emit the inline jump table.
1420    unsigned JTIndex =
1421      (TID.Opcode == ARM::BR_JTr)
1422      ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
1423    emitInlineJumpTable(JTIndex);
1424    return;
1425  } else if (TID.Opcode == ARM::BR_JTm) {
1426    // First emit a ldr pc, [] instruction.
1427    emitLoadStoreInstruction(MI, ARM::PC);
1428
1429    // Then emit the inline jump table.
1430    emitInlineJumpTable(MI.getOperand(3).getIndex());
1431    return;
1432  }
1433
1434  // Part of binary is determined by TableGn.
1435  unsigned Binary = getBinaryCodeForInstr(MI);
1436
1437  // Set the conditional execution predicate
1438  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1439
1440  if (TID.Opcode == ARM::BX_RET || TID.Opcode == ARM::MOVPCLR)
1441    // The return register is LR.
1442    Binary |= getARMRegisterNumbering(ARM::LR);
1443  else
1444    // otherwise, set the return register
1445    Binary |= getMachineOpValue(MI, 0);
1446
1447  emitWordLE(Binary);
1448}
1449
1450static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) {
1451  unsigned RegD = MI.getOperand(OpIdx).getReg();
1452  unsigned Binary = 0;
1453  bool isSPVFP = ARM::SPRRegisterClass->contains(RegD);
1454  RegD = getARMRegisterNumbering(RegD);
1455  if (!isSPVFP)
1456    Binary |=   RegD               << ARMII::RegRdShift;
1457  else {
1458    Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
1459    Binary |=  (RegD & 0x01)       << ARMII::D_BitShift;
1460  }
1461  return Binary;
1462}
1463
1464static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) {
1465  unsigned RegN = MI.getOperand(OpIdx).getReg();
1466  unsigned Binary = 0;
1467  bool isSPVFP = ARM::SPRRegisterClass->contains(RegN);
1468  RegN = getARMRegisterNumbering(RegN);
1469  if (!isSPVFP)
1470    Binary |=   RegN               << ARMII::RegRnShift;
1471  else {
1472    Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
1473    Binary |=  (RegN & 0x01)       << ARMII::N_BitShift;
1474  }
1475  return Binary;
1476}
1477
1478static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) {
1479  unsigned RegM = MI.getOperand(OpIdx).getReg();
1480  unsigned Binary = 0;
1481  bool isSPVFP = ARM::SPRRegisterClass->contains(RegM);
1482  RegM = getARMRegisterNumbering(RegM);
1483  if (!isSPVFP)
1484    Binary |=   RegM;
1485  else {
1486    Binary |= ((RegM & 0x1E) >> 1);
1487    Binary |=  (RegM & 0x01)       << ARMII::M_BitShift;
1488  }
1489  return Binary;
1490}
1491
1492void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
1493  const TargetInstrDesc &TID = MI.getDesc();
1494
1495  // Part of binary is determined by TableGn.
1496  unsigned Binary = getBinaryCodeForInstr(MI);
1497
1498  // Set the conditional execution predicate
1499  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1500
1501  unsigned OpIdx = 0;
1502  assert((Binary & ARMII::D_BitShift) == 0 &&
1503         (Binary & ARMII::N_BitShift) == 0 &&
1504         (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!");
1505
1506  // Encode Dd / Sd.
1507  Binary |= encodeVFPRd(MI, OpIdx++);
1508
1509  // If this is a two-address operand, skip it, e.g. FMACD.
1510  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1511    ++OpIdx;
1512
1513  // Encode Dn / Sn.
1514  if ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
1515    Binary |= encodeVFPRn(MI, OpIdx++);
1516
1517  if (OpIdx == TID.getNumOperands() ||
1518      TID.OpInfo[OpIdx].isPredicate() ||
1519      TID.OpInfo[OpIdx].isOptionalDef()) {
1520    // FCMPEZD etc. has only one operand.
1521    emitWordLE(Binary);
1522    return;
1523  }
1524
1525  // Encode Dm / Sm.
1526  Binary |= encodeVFPRm(MI, OpIdx);
1527
1528  emitWordLE(Binary);
1529}
1530
1531void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
1532  const TargetInstrDesc &TID = MI.getDesc();
1533  unsigned Form = TID.TSFlags & ARMII::FormMask;
1534
1535  // Part of binary is determined by TableGn.
1536  unsigned Binary = getBinaryCodeForInstr(MI);
1537
1538  // Set the conditional execution predicate
1539  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1540
1541  switch (Form) {
1542  default: break;
1543  case ARMII::VFPConv1Frm:
1544  case ARMII::VFPConv2Frm:
1545  case ARMII::VFPConv3Frm:
1546    // Encode Dd / Sd.
1547    Binary |= encodeVFPRd(MI, 0);
1548    break;
1549  case ARMII::VFPConv4Frm:
1550    // Encode Dn / Sn.
1551    Binary |= encodeVFPRn(MI, 0);
1552    break;
1553  case ARMII::VFPConv5Frm:
1554    // Encode Dm / Sm.
1555    Binary |= encodeVFPRm(MI, 0);
1556    break;
1557  }
1558
1559  switch (Form) {
1560  default: break;
1561  case ARMII::VFPConv1Frm:
1562    // Encode Dm / Sm.
1563    Binary |= encodeVFPRm(MI, 1);
1564    break;
1565  case ARMII::VFPConv2Frm:
1566  case ARMII::VFPConv3Frm:
1567    // Encode Dn / Sn.
1568    Binary |= encodeVFPRn(MI, 1);
1569    break;
1570  case ARMII::VFPConv4Frm:
1571  case ARMII::VFPConv5Frm:
1572    // Encode Dd / Sd.
1573    Binary |= encodeVFPRd(MI, 1);
1574    break;
1575  }
1576
1577  if (Form == ARMII::VFPConv5Frm)
1578    // Encode Dn / Sn.
1579    Binary |= encodeVFPRn(MI, 2);
1580  else if (Form == ARMII::VFPConv3Frm)
1581    // Encode Dm / Sm.
1582    Binary |= encodeVFPRm(MI, 2);
1583
1584  emitWordLE(Binary);
1585}
1586
1587void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
1588  // Part of binary is determined by TableGn.
1589  unsigned Binary = getBinaryCodeForInstr(MI);
1590
1591  // Set the conditional execution predicate
1592  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1593
1594  unsigned OpIdx = 0;
1595
1596  // Encode Dd / Sd.
1597  Binary |= encodeVFPRd(MI, OpIdx++);
1598
1599  // Encode address base.
1600  const MachineOperand &Base = MI.getOperand(OpIdx++);
1601  Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
1602
1603  // If there is a non-zero immediate offset, encode it.
1604  if (Base.isReg()) {
1605    const MachineOperand &Offset = MI.getOperand(OpIdx);
1606    if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
1607      if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
1608        Binary |= 1 << ARMII::U_BitShift;
1609      Binary |= ImmOffs;
1610      emitWordLE(Binary);
1611      return;
1612    }
1613  }
1614
1615  // If immediate offset is omitted, default to +0.
1616  Binary |= 1 << ARMII::U_BitShift;
1617
1618  emitWordLE(Binary);
1619}
1620
1621void
1622ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
1623  const TargetInstrDesc &TID = MI.getDesc();
1624  bool IsUpdating = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1625
1626  // Part of binary is determined by TableGn.
1627  unsigned Binary = getBinaryCodeForInstr(MI);
1628
1629  // Set the conditional execution predicate
1630  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1631
1632  // Skip operand 0 of an instruction with base register update.
1633  unsigned OpIdx = 0;
1634  if (IsUpdating)
1635    ++OpIdx;
1636
1637  // Set base address operand
1638  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1639
1640  // Set addressing mode by modifying bits U(23) and P(24)
1641  const MachineOperand &MO = MI.getOperand(OpIdx++);
1642  Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(MO.getImm()));
1643
1644  // Set bit W(21)
1645  if (IsUpdating)
1646    Binary |= 0x1 << ARMII::W_BitShift;
1647
1648  // First register is encoded in Dd.
1649  Binary |= encodeVFPRd(MI, OpIdx+2);
1650
1651  // Count the number of registers.
1652  unsigned NumRegs = 1;
1653  for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
1654    const MachineOperand &MO = MI.getOperand(i);
1655    if (!MO.isReg() || MO.isImplicit())
1656      break;
1657    ++NumRegs;
1658  }
1659  // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
1660  // Otherwise, it will be 0, in the case of 32-bit registers.
1661  if(Binary & 0x100)
1662    Binary |= NumRegs * 2;
1663  else
1664    Binary |= NumRegs;
1665
1666  emitWordLE(Binary);
1667}
1668
1669static unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) {
1670  unsigned RegD = MI.getOperand(OpIdx).getReg();
1671  unsigned Binary = 0;
1672  RegD = getARMRegisterNumbering(RegD);
1673  Binary |= (RegD & 0xf) << ARMII::RegRdShift;
1674  Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift;
1675  return Binary;
1676}
1677
1678static unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) {
1679  unsigned RegN = MI.getOperand(OpIdx).getReg();
1680  unsigned Binary = 0;
1681  RegN = getARMRegisterNumbering(RegN);
1682  Binary |= (RegN & 0xf) << ARMII::RegRnShift;
1683  Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift;
1684  return Binary;
1685}
1686
1687static unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) {
1688  unsigned RegM = MI.getOperand(OpIdx).getReg();
1689  unsigned Binary = 0;
1690  RegM = getARMRegisterNumbering(RegM);
1691  Binary |= (RegM & 0xf);
1692  Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift;
1693  return Binary;
1694}
1695
1696/// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON
1697/// data-processing instruction to the corresponding Thumb encoding.
1698static unsigned convertNEONDataProcToThumb(unsigned Binary) {
1699  assert((Binary & 0xfe000000) == 0xf2000000 &&
1700         "not an ARM NEON data-processing instruction");
1701  unsigned UBit = (Binary >> 24) & 1;
1702  return 0xef000000 | (UBit << 28) | (Binary & 0xffffff);
1703}
1704
1705void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) {
1706  unsigned Binary = getBinaryCodeForInstr(MI);
1707
1708  unsigned RegTOpIdx, RegNOpIdx, LnOpIdx;
1709  const TargetInstrDesc &TID = MI.getDesc();
1710  if ((TID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) {
1711    RegTOpIdx = 0;
1712    RegNOpIdx = 1;
1713    LnOpIdx = 2;
1714  } else { // ARMII::NSetLnFrm
1715    RegTOpIdx = 2;
1716    RegNOpIdx = 0;
1717    LnOpIdx = 3;
1718  }
1719
1720  // Set the conditional execution predicate
1721  Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1722
1723  unsigned RegT = MI.getOperand(RegTOpIdx).getReg();
1724  RegT = getARMRegisterNumbering(RegT);
1725  Binary |= (RegT << ARMII::RegRdShift);
1726  Binary |= encodeNEONRn(MI, RegNOpIdx);
1727
1728  unsigned LaneShift;
1729  if ((Binary & (1 << 22)) != 0)
1730    LaneShift = 0; // 8-bit elements
1731  else if ((Binary & (1 << 5)) != 0)
1732    LaneShift = 1; // 16-bit elements
1733  else
1734    LaneShift = 2; // 32-bit elements
1735
1736  unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift;
1737  unsigned Opc1 = Lane >> 2;
1738  unsigned Opc2 = Lane & 3;
1739  assert((Opc1 & 3) == 0 && "out-of-range lane number operand");
1740  Binary |= (Opc1 << 21);
1741  Binary |= (Opc2 << 5);
1742
1743  emitWordLE(Binary);
1744}
1745
1746void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) {
1747  unsigned Binary = getBinaryCodeForInstr(MI);
1748
1749  // Set the conditional execution predicate
1750  Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1751
1752  unsigned RegT = MI.getOperand(1).getReg();
1753  RegT = getARMRegisterNumbering(RegT);
1754  Binary |= (RegT << ARMII::RegRdShift);
1755  Binary |= encodeNEONRn(MI, 0);
1756  emitWordLE(Binary);
1757}
1758
1759void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) {
1760  unsigned Binary = getBinaryCodeForInstr(MI);
1761  // Destination register is encoded in Dd.
1762  Binary |= encodeNEONRd(MI, 0);
1763  // Immediate fields: Op, Cmode, I, Imm3, Imm4
1764  unsigned Imm = MI.getOperand(1).getImm();
1765  unsigned Op = (Imm >> 12) & 1;
1766  unsigned Cmode = (Imm >> 8) & 0xf;
1767  unsigned I = (Imm >> 7) & 1;
1768  unsigned Imm3 = (Imm >> 4) & 0x7;
1769  unsigned Imm4 = Imm & 0xf;
1770  Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4;
1771  if (IsThumb)
1772    Binary = convertNEONDataProcToThumb(Binary);
1773  emitWordLE(Binary);
1774}
1775
1776void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) {
1777  const TargetInstrDesc &TID = MI.getDesc();
1778  unsigned Binary = getBinaryCodeForInstr(MI);
1779  // Destination register is encoded in Dd; source register in Dm.
1780  unsigned OpIdx = 0;
1781  Binary |= encodeNEONRd(MI, OpIdx++);
1782  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1783    ++OpIdx;
1784  Binary |= encodeNEONRm(MI, OpIdx);
1785  if (IsThumb)
1786    Binary = convertNEONDataProcToThumb(Binary);
1787  // FIXME: This does not handle VDUPfdf or VDUPfqf.
1788  emitWordLE(Binary);
1789}
1790
1791void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) {
1792  const TargetInstrDesc &TID = MI.getDesc();
1793  unsigned Binary = getBinaryCodeForInstr(MI);
1794  // Destination register is encoded in Dd; source registers in Dn and Dm.
1795  unsigned OpIdx = 0;
1796  Binary |= encodeNEONRd(MI, OpIdx++);
1797  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1798    ++OpIdx;
1799  Binary |= encodeNEONRn(MI, OpIdx++);
1800  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1801    ++OpIdx;
1802  Binary |= encodeNEONRm(MI, OpIdx);
1803  if (IsThumb)
1804    Binary = convertNEONDataProcToThumb(Binary);
1805  // FIXME: This does not handle VMOVDneon or VMOVQ.
1806  emitWordLE(Binary);
1807}
1808
1809#include "ARMGenCodeEmitter.inc"
1810