ARMCodeEmitter.cpp revision 9d63d90de5e57ad96f467b270544443a9284eb2b
1//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the pass that transforms the ARM machine instructions into
11// relocatable machine code.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "ARM.h"
17#include "ARMAddressingModes.h"
18#include "ARMConstantPoolValue.h"
19#include "ARMInstrInfo.h"
20#include "ARMRelocations.h"
21#include "ARMSubtarget.h"
22#include "ARMTargetMachine.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/PassManager.h"
27#include "llvm/CodeGen/JITCodeEmitter.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/Passes.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#ifndef NDEBUG
39#include <iomanip>
40#endif
41using namespace llvm;
42
43STATISTIC(NumEmitted, "Number of machine instructions emitted");
44
45namespace {
46
47  class ARMCodeEmitter : public MachineFunctionPass {
48    ARMJITInfo                *JTI;
49    const ARMInstrInfo        *II;
50    const TargetData          *TD;
51    const ARMSubtarget        *Subtarget;
52    TargetMachine             &TM;
53    JITCodeEmitter            &MCE;
54    MachineModuleInfo *MMI;
55    const std::vector<MachineConstantPoolEntry> *MCPEs;
56    const std::vector<MachineJumpTableEntry> *MJTEs;
57    bool IsPIC;
58    bool IsThumb;
59
60    void getAnalysisUsage(AnalysisUsage &AU) const {
61      AU.addRequired<MachineModuleInfo>();
62      MachineFunctionPass::getAnalysisUsage(AU);
63    }
64
65    static char ID;
66  public:
67    ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
68      : MachineFunctionPass(ID), JTI(0),
69        II((const ARMInstrInfo *)tm.getInstrInfo()),
70        TD(tm.getTargetData()), TM(tm),
71        MCE(mce), MCPEs(0), MJTEs(0),
72        IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {}
73
74    /// getBinaryCodeForInstr - This function, generated by the
75    /// CodeEmitterGenerator using TableGen, produces the binary encoding for
76    /// machine instructions.
77    unsigned getBinaryCodeForInstr(const MachineInstr &MI) const;
78
79    bool runOnMachineFunction(MachineFunction &MF);
80
81    virtual const char *getPassName() const {
82      return "ARM Machine Code Emitter";
83    }
84
85    void emitInstruction(const MachineInstr &MI);
86
87  private:
88
89    void emitWordLE(unsigned Binary);
90    void emitDWordLE(uint64_t Binary);
91    void emitConstPoolInstruction(const MachineInstr &MI);
92    void emitMOVi32immInstruction(const MachineInstr &MI);
93    void emitMOVi2piecesInstruction(const MachineInstr &MI);
94    void emitLEApcrelJTInstruction(const MachineInstr &MI);
95    void emitPseudoMoveInstruction(const MachineInstr &MI);
96    void addPCLabel(unsigned LabelID);
97    void emitPseudoInstruction(const MachineInstr &MI);
98    unsigned getMachineSoRegOpValue(const MachineInstr &MI,
99                                    const TargetInstrDesc &TID,
100                                    const MachineOperand &MO,
101                                    unsigned OpIdx);
102
103    unsigned getMachineSoImmOpValue(unsigned SoImm);
104    unsigned getAddrModeSBit(const MachineInstr &MI,
105                             const TargetInstrDesc &TID) const;
106
107    void emitDataProcessingInstruction(const MachineInstr &MI,
108                                       unsigned ImplicitRd = 0,
109                                       unsigned ImplicitRn = 0);
110
111    void emitLoadStoreInstruction(const MachineInstr &MI,
112                                  unsigned ImplicitRd = 0,
113                                  unsigned ImplicitRn = 0);
114
115    void emitMiscLoadStoreInstruction(const MachineInstr &MI,
116                                      unsigned ImplicitRn = 0);
117
118    void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
119
120    void emitMulFrmInstruction(const MachineInstr &MI);
121
122    void emitExtendInstruction(const MachineInstr &MI);
123
124    void emitMiscArithInstruction(const MachineInstr &MI);
125
126    void emitSaturateInstruction(const MachineInstr &MI);
127
128    void emitBranchInstruction(const MachineInstr &MI);
129
130    void emitInlineJumpTable(unsigned JTIndex);
131
132    void emitMiscBranchInstruction(const MachineInstr &MI);
133
134    void emitVFPArithInstruction(const MachineInstr &MI);
135
136    void emitVFPConversionInstruction(const MachineInstr &MI);
137
138    void emitVFPLoadStoreInstruction(const MachineInstr &MI);
139
140    void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
141
142    void emitNEONLaneInstruction(const MachineInstr &MI);
143    void emitNEONDupInstruction(const MachineInstr &MI);
144    void emitNEON1RegModImmInstruction(const MachineInstr &MI);
145    void emitNEON2RegInstruction(const MachineInstr &MI);
146    void emitNEON3RegInstruction(const MachineInstr &MI);
147
148    /// getMachineOpValue - Return binary encoding of operand. If the machine
149    /// operand requires relocation, record the relocation and return zero.
150    unsigned getMachineOpValue(const MachineInstr &MI,
151                               const MachineOperand &MO) const;
152    unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const {
153      return getMachineOpValue(MI, MI.getOperand(OpIdx));
154    }
155
156    // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the
157    //  TableGen'erated getBinaryCodeForInstr() function to encode any
158    //  operand values, instead querying getMachineOpValue() directly for
159    //  each operand it needs to encode. Thus, any of the new encoder
160    //  helper functions can simply return 0 as the values the return
161    //  are already handled elsewhere. They are placeholders to allow this
162    //  encoder to continue to function until the MC encoder is sufficiently
163    //  far along that this one can be eliminated entirely.
164    unsigned NEONThumb2DataIPostEncoder(const MachineInstr &MI, unsigned Val)
165      const { return 0; }
166    unsigned NEONThumb2LoadStorePostEncoder(const MachineInstr &MI,unsigned Val)
167      const { return 0; }
168    unsigned NEONThumb2DupPostEncoder(const MachineInstr &MI,unsigned Val)
169      const { return 0; }
170    unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
171      const { return 0; }
172    unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op)
173      const { return 0; }
174    unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op)
175      const { return 0; }
176    unsigned getT2SOImmOpValue(const MachineInstr &MI, unsigned Op)
177      const { return 0; }
178    unsigned getSORegOpValue(const MachineInstr &MI, unsigned Op)
179      const { return 0; }
180    unsigned getT2AddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
181      const { return 0; }
182    unsigned getT2AddrModeImm8OpValue(const MachineInstr &MI, unsigned Op)
183      const { return 0; }
184    unsigned getT2AddrModeImm8s4OpValue(const MachineInstr &MI, unsigned Op)
185      const { return 0; }
186    unsigned getT2AddrModeImm8OffsetOpValue(const MachineInstr &MI, unsigned Op)
187      const { return 0; }
188    unsigned getT2AddrModeImm12OffsetOpValue(const MachineInstr &MI,unsigned Op)
189      const { return 0; }
190    unsigned getT2AddrModeSORegOpValue(const MachineInstr &MI, unsigned Op)
191      const { return 0; }
192    unsigned getT2SORegOpValue(const MachineInstr &MI, unsigned Op)
193      const { return 0; }
194    unsigned getRotImmOpValue(const MachineInstr &MI, unsigned Op)
195      const { return 0; }
196    unsigned getImmMinusOneOpValue(const MachineInstr &MI, unsigned Op)
197      const { return 0; }
198    unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op)
199      const { return 0; }
200    unsigned getAddrMode6DupAddressOpValue(const MachineInstr &MI, unsigned Op)
201      const { return 0; }
202    unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op)
203      const { return 0; }
204    unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI,
205                                            unsigned Op) const { return 0; }
206    uint32_t getLdStmModeOpValue(const MachineInstr &MI, unsigned OpIdx)
207      const {return 0; }
208    uint32_t getLdStSORegOpValue(const MachineInstr &MI, unsigned OpIdx)
209      const { return 0; }
210
211    unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
212      const {
213      // {17-13} = reg
214      // {12}    = (U)nsigned (add == '1', sub == '0')
215      // {11-0}  = imm12
216      const MachineOperand &MO  = MI.getOperand(Op);
217      const MachineOperand &MO1 = MI.getOperand(Op + 1);
218      if (!MO.isReg()) {
219        emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
220        return 0;
221      }
222      unsigned Reg = getARMRegisterNumbering(MO.getReg());
223      int32_t Imm12 = MO1.getImm();
224      uint32_t Binary;
225      Binary = Imm12 & 0xfff;
226      if (Imm12 >= 0)
227        Binary |= (1 << 12);
228      Binary |= (Reg << 13);
229      return Binary;
230    }
231
232    unsigned getMovtImmOpValue(const MachineInstr &MI, unsigned Op) const {
233      return 0;
234    }
235
236    uint32_t getAddrMode2OpValue(const MachineInstr &MI, unsigned OpIdx)
237      const { return 0;}
238    uint32_t getAddrMode2OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
239      const { return 0;}
240    uint32_t getAddrMode3OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
241      const { return 0;}
242    uint32_t getAddrMode3OpValue(const MachineInstr &MI, unsigned Op)
243      const { return 0; }
244    uint32_t getAddrModeS4OpValue(const MachineInstr &MI, unsigned Op)
245      const { return 0; }
246    uint32_t getAddrModeS2OpValue(const MachineInstr &MI, unsigned Op)
247      const { return 0; }
248    uint32_t getAddrModeS1OpValue(const MachineInstr &MI, unsigned Op)
249      const { return 0; }
250    uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const {
251      // {17-13} = reg
252      // {12}    = (U)nsigned (add == '1', sub == '0')
253      // {11-0}  = imm12
254      const MachineOperand &MO  = MI.getOperand(Op);
255      const MachineOperand &MO1 = MI.getOperand(Op + 1);
256      if (!MO.isReg()) {
257        emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
258        return 0;
259      }
260      unsigned Reg = getARMRegisterNumbering(MO.getReg());
261      int32_t Imm12 = MO1.getImm();
262
263      // Special value for #-0
264      if (Imm12 == INT32_MIN)
265        Imm12 = 0;
266
267      // Immediate is always encoded as positive. The 'U' bit controls add vs
268      // sub.
269      bool isAdd = true;
270      if (Imm12 < 0) {
271        Imm12 = -Imm12;
272        isAdd = false;
273      }
274
275      uint32_t Binary = Imm12 & 0xfff;
276      if (isAdd)
277        Binary |= (1 << 12);
278      Binary |= (Reg << 13);
279      return Binary;
280    }
281    unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op)
282      const { return 0; }
283
284    unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op)
285      const { return 0; }
286
287    /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
288    /// machine operand requires relocation, record the relocation and return
289    /// zero.
290    unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
291                            unsigned Reloc);
292
293    /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
294    ///
295    unsigned getShiftOp(unsigned Imm) const ;
296
297    /// Routines that handle operands which add machine relocations which are
298    /// fixed up by the relocation stage.
299    void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
300                           bool MayNeedFarStub,  bool Indirect,
301                           intptr_t ACPV = 0) const;
302    void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
303    void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
304    void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const;
305    void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
306                               intptr_t JTBase = 0) const;
307  };
308}
309
310char ARMCodeEmitter::ID = 0;
311
312/// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
313/// code to the specified MCE object.
314FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
315                                                JITCodeEmitter &JCE) {
316  return new ARMCodeEmitter(TM, JCE);
317}
318
319bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
320  assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
321          MF.getTarget().getRelocationModel() != Reloc::Static) &&
322         "JIT relocation model must be set to static or default!");
323  JTI = ((ARMTargetMachine &)MF.getTarget()).getJITInfo();
324  II = ((const ARMTargetMachine &)MF.getTarget()).getInstrInfo();
325  TD = ((const ARMTargetMachine &)MF.getTarget()).getTargetData();
326  Subtarget = &TM.getSubtarget<ARMSubtarget>();
327  MCPEs = &MF.getConstantPool()->getConstants();
328  MJTEs = 0;
329  if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
330  IsPIC = TM.getRelocationModel() == Reloc::PIC_;
331  IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction();
332  JTI->Initialize(MF, IsPIC);
333  MMI = &getAnalysis<MachineModuleInfo>();
334  MCE.setModuleInfo(MMI);
335
336  do {
337    DEBUG(errs() << "JITTing function '"
338          << MF.getFunction()->getName() << "'\n");
339    MCE.startFunction(MF);
340    for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
341         MBB != E; ++MBB) {
342      MCE.StartMachineBasicBlock(MBB);
343      for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
344           I != E; ++I)
345        emitInstruction(*I);
346    }
347  } while (MCE.finishFunction(MF));
348
349  return false;
350}
351
352/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
353///
354unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
355  switch (ARM_AM::getAM2ShiftOpc(Imm)) {
356  default: llvm_unreachable("Unknown shift opc!");
357  case ARM_AM::asr: return 2;
358  case ARM_AM::lsl: return 0;
359  case ARM_AM::lsr: return 1;
360  case ARM_AM::ror:
361  case ARM_AM::rrx: return 3;
362  }
363  return 0;
364}
365
366/// getMovi32Value - Return binary encoding of operand for movw/movt. If the
367/// machine operand requires relocation, record the relocation and return zero.
368unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
369                                        const MachineOperand &MO,
370                                        unsigned Reloc) {
371  assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
372      && "Relocation to this function should be for movt or movw");
373
374  if (MO.isImm())
375    return static_cast<unsigned>(MO.getImm());
376  else if (MO.isGlobal())
377    emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
378  else if (MO.isSymbol())
379    emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
380  else if (MO.isMBB())
381    emitMachineBasicBlock(MO.getMBB(), Reloc);
382  else {
383#ifndef NDEBUG
384    errs() << MO;
385#endif
386    llvm_unreachable("Unsupported operand type for movw/movt");
387  }
388  return 0;
389}
390
391/// getMachineOpValue - Return binary encoding of operand. If the machine
392/// operand requires relocation, record the relocation and return zero.
393unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
394                                           const MachineOperand &MO) const {
395  if (MO.isReg())
396    return getARMRegisterNumbering(MO.getReg());
397  else if (MO.isImm())
398    return static_cast<unsigned>(MO.getImm());
399  else if (MO.isGlobal())
400    emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
401  else if (MO.isSymbol())
402    emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
403  else if (MO.isCPI()) {
404    const TargetInstrDesc &TID = MI.getDesc();
405    // For VFP load, the immediate offset is multiplied by 4.
406    unsigned Reloc =  ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
407      ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
408    emitConstPoolAddress(MO.getIndex(), Reloc);
409  } else if (MO.isJTI())
410    emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
411  else if (MO.isMBB())
412    emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
413  else
414    llvm_unreachable("Unable to encode MachineOperand!");
415  return 0;
416}
417
418/// emitGlobalAddress - Emit the specified address to the code stream.
419///
420void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
421                                       bool MayNeedFarStub, bool Indirect,
422                                       intptr_t ACPV) const {
423  MachineRelocation MR = Indirect
424    ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
425                                           const_cast<GlobalValue *>(GV),
426                                           ACPV, MayNeedFarStub)
427    : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
428                               const_cast<GlobalValue *>(GV), ACPV,
429                               MayNeedFarStub);
430  MCE.addRelocation(MR);
431}
432
433/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
434/// be emitted to the current location in the function, and allow it to be PC
435/// relative.
436void ARMCodeEmitter::
437emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
438  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
439                                                 Reloc, ES));
440}
441
442/// emitConstPoolAddress - Arrange for the address of an constant pool
443/// to be emitted to the current location in the function, and allow it to be PC
444/// relative.
445void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
446  // Tell JIT emitter we'll resolve the address.
447  MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
448                                                    Reloc, CPI, 0, true));
449}
450
451/// emitJumpTableAddress - Arrange for the address of a jump table to
452/// be emitted to the current location in the function, and allow it to be PC
453/// relative.
454void ARMCodeEmitter::
455emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const {
456  MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
457                                                    Reloc, JTIndex, 0, true));
458}
459
460/// emitMachineBasicBlock - Emit the specified address basic block.
461void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
462                                           unsigned Reloc,
463                                           intptr_t JTBase) const {
464  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
465                                             Reloc, BB, JTBase));
466}
467
468void ARMCodeEmitter::emitWordLE(unsigned Binary) {
469  DEBUG(errs() << "  0x";
470        errs().write_hex(Binary) << "\n");
471  MCE.emitWordLE(Binary);
472}
473
474void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
475  DEBUG(errs() << "  0x";
476        errs().write_hex(Binary) << "\n");
477  MCE.emitDWordLE(Binary);
478}
479
480void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
481  DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
482
483  MCE.processDebugLoc(MI.getDebugLoc(), true);
484
485  ++NumEmitted;  // Keep track of the # of mi's emitted
486  switch (MI.getDesc().TSFlags & ARMII::FormMask) {
487  default: {
488    llvm_unreachable("Unhandled instruction encoding format!");
489    break;
490  }
491  case ARMII::MiscFrm:
492    if (MI.getOpcode() == ARM::LEApcrelJT) {
493      // Materialize jumptable address.
494      emitLEApcrelJTInstruction(MI);
495      break;
496    }
497    llvm_unreachable("Unhandled instruction encoding!");
498    break;
499  case ARMII::Pseudo:
500    emitPseudoInstruction(MI);
501    break;
502  case ARMII::DPFrm:
503  case ARMII::DPSoRegFrm:
504    emitDataProcessingInstruction(MI);
505    break;
506  case ARMII::LdFrm:
507  case ARMII::StFrm:
508    emitLoadStoreInstruction(MI);
509    break;
510  case ARMII::LdMiscFrm:
511  case ARMII::StMiscFrm:
512    emitMiscLoadStoreInstruction(MI);
513    break;
514  case ARMII::LdStMulFrm:
515    emitLoadStoreMultipleInstruction(MI);
516    break;
517  case ARMII::MulFrm:
518    emitMulFrmInstruction(MI);
519    break;
520  case ARMII::ExtFrm:
521    emitExtendInstruction(MI);
522    break;
523  case ARMII::ArithMiscFrm:
524    emitMiscArithInstruction(MI);
525    break;
526  case ARMII::SatFrm:
527    emitSaturateInstruction(MI);
528    break;
529  case ARMII::BrFrm:
530    emitBranchInstruction(MI);
531    break;
532  case ARMII::BrMiscFrm:
533    emitMiscBranchInstruction(MI);
534    break;
535  // VFP instructions.
536  case ARMII::VFPUnaryFrm:
537  case ARMII::VFPBinaryFrm:
538    emitVFPArithInstruction(MI);
539    break;
540  case ARMII::VFPConv1Frm:
541  case ARMII::VFPConv2Frm:
542  case ARMII::VFPConv3Frm:
543  case ARMII::VFPConv4Frm:
544  case ARMII::VFPConv5Frm:
545    emitVFPConversionInstruction(MI);
546    break;
547  case ARMII::VFPLdStFrm:
548    emitVFPLoadStoreInstruction(MI);
549    break;
550  case ARMII::VFPLdStMulFrm:
551    emitVFPLoadStoreMultipleInstruction(MI);
552    break;
553
554  // NEON instructions.
555  case ARMII::NGetLnFrm:
556  case ARMII::NSetLnFrm:
557    emitNEONLaneInstruction(MI);
558    break;
559  case ARMII::NDupFrm:
560    emitNEONDupInstruction(MI);
561    break;
562  case ARMII::N1RegModImmFrm:
563    emitNEON1RegModImmInstruction(MI);
564    break;
565  case ARMII::N2RegFrm:
566    emitNEON2RegInstruction(MI);
567    break;
568  case ARMII::N3RegFrm:
569    emitNEON3RegInstruction(MI);
570    break;
571  }
572  MCE.processDebugLoc(MI.getDebugLoc(), false);
573}
574
575void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
576  unsigned CPI = MI.getOperand(0).getImm();       // CP instruction index.
577  unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
578  const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
579
580  // Remember the CONSTPOOL_ENTRY address for later relocation.
581  JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
582
583  // Emit constpool island entry. In most cases, the actual values will be
584  // resolved and relocated after code emission.
585  if (MCPE.isMachineConstantPoolEntry()) {
586    ARMConstantPoolValue *ACPV =
587      static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
588
589    DEBUG(errs() << "  ** ARM constant pool #" << CPI << " @ "
590          << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
591
592    assert(ACPV->isGlobalValue() && "unsupported constant pool value");
593    const GlobalValue *GV = ACPV->getGV();
594    if (GV) {
595      Reloc::Model RelocM = TM.getRelocationModel();
596      emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
597                        isa<Function>(GV),
598                        Subtarget->GVIsIndirectSymbol(GV, RelocM),
599                        (intptr_t)ACPV);
600     } else  {
601      emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute);
602    }
603    emitWordLE(0);
604  } else {
605    const Constant *CV = MCPE.Val.ConstVal;
606
607    DEBUG({
608        errs() << "  ** Constant pool #" << CPI << " @ "
609               << (void*)MCE.getCurrentPCValue() << " ";
610        if (const Function *F = dyn_cast<Function>(CV))
611          errs() << F->getName();
612        else
613          errs() << *CV;
614        errs() << '\n';
615      });
616
617    if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
618      emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV), false);
619      emitWordLE(0);
620    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
621      uint32_t Val = uint32_t(*CI->getValue().getRawData());
622      emitWordLE(Val);
623    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
624      if (CFP->getType()->isFloatTy())
625        emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
626      else if (CFP->getType()->isDoubleTy())
627        emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
628      else {
629        llvm_unreachable("Unable to handle this constantpool entry!");
630      }
631    } else {
632      llvm_unreachable("Unable to handle this constantpool entry!");
633    }
634  }
635}
636
637void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
638  const MachineOperand &MO0 = MI.getOperand(0);
639  const MachineOperand &MO1 = MI.getOperand(1);
640
641  // Emit the 'movw' instruction.
642  unsigned Binary = 0x30 << 20;  // mov: Insts{27-20} = 0b00110000
643
644  unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;
645
646  // Set the conditional execution predicate.
647  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
648
649  // Encode Rd.
650  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
651
652  // Encode imm16 as imm4:imm12
653  Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
654  Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
655  emitWordLE(Binary);
656
657  unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
658  // Emit the 'movt' instruction.
659  Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100
660
661  // Set the conditional execution predicate.
662  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
663
664  // Encode Rd.
665  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
666
667  // Encode imm16 as imm4:imm1, same as movw above.
668  Binary |= Hi16 & 0xFFF;
669  Binary |= ((Hi16 >> 12) & 0xF) << 16;
670  emitWordLE(Binary);
671}
672
673void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
674  const MachineOperand &MO0 = MI.getOperand(0);
675  const MachineOperand &MO1 = MI.getOperand(1);
676  assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
677                                                  "Not a valid so_imm value!");
678  unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
679  unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
680
681  // Emit the 'mov' instruction.
682  unsigned Binary = 0xd << 21;  // mov: Insts{24-21} = 0b1101
683
684  // Set the conditional execution predicate.
685  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
686
687  // Encode Rd.
688  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
689
690  // Encode so_imm.
691  // Set bit I(25) to identify this is the immediate form of <shifter_op>
692  Binary |= 1 << ARMII::I_BitShift;
693  Binary |= getMachineSoImmOpValue(V1);
694  emitWordLE(Binary);
695
696  // Now the 'orr' instruction.
697  Binary = 0xc << 21;  // orr: Insts{24-21} = 0b1100
698
699  // Set the conditional execution predicate.
700  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
701
702  // Encode Rd.
703  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
704
705  // Encode Rn.
706  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
707
708  // Encode so_imm.
709  // Set bit I(25) to identify this is the immediate form of <shifter_op>
710  Binary |= 1 << ARMII::I_BitShift;
711  Binary |= getMachineSoImmOpValue(V2);
712  emitWordLE(Binary);
713}
714
715void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
716  // It's basically add r, pc, (LJTI - $+8)
717
718  const TargetInstrDesc &TID = MI.getDesc();
719
720  // Emit the 'add' instruction.
721  unsigned Binary = 0x4 << 21;  // add: Insts{24-21} = 0b0100
722
723  // Set the conditional execution predicate
724  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
725
726  // Encode S bit if MI modifies CPSR.
727  Binary |= getAddrModeSBit(MI, TID);
728
729  // Encode Rd.
730  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
731
732  // Encode Rn which is PC.
733  Binary |= getARMRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
734
735  // Encode the displacement.
736  Binary |= 1 << ARMII::I_BitShift;
737  emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
738
739  emitWordLE(Binary);
740}
741
742void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
743  unsigned Opcode = MI.getDesc().Opcode;
744
745  // Part of binary is determined by TableGn.
746  unsigned Binary = getBinaryCodeForInstr(MI);
747
748  // Set the conditional execution predicate
749  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
750
751  // Encode S bit if MI modifies CPSR.
752  if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
753    Binary |= 1 << ARMII::S_BitShift;
754
755  // Encode register def if there is one.
756  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
757
758  // Encode the shift operation.
759  switch (Opcode) {
760  default: break;
761  case ARM::RRX:
762    // rrx
763    Binary |= 0x6 << 4;
764    break;
765  case ARM::MOVsrl_flag:
766    // lsr #1
767    Binary |= (0x2 << 4) | (1 << 7);
768    break;
769  case ARM::MOVsra_flag:
770    // asr #1
771    Binary |= (0x4 << 4) | (1 << 7);
772    break;
773  }
774
775  // Encode register Rm.
776  Binary |= getMachineOpValue(MI, 1);
777
778  emitWordLE(Binary);
779}
780
781void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
782  DEBUG(errs() << "  ** LPC" << LabelID << " @ "
783        << (void*)MCE.getCurrentPCValue() << '\n');
784  JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
785}
786
787void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
788  unsigned Opcode = MI.getDesc().Opcode;
789  switch (Opcode) {
790  default:
791    llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
792  case ARM::BX_CALL:
793  case ARM::BMOVPCRX_CALL:
794  case ARM::BXr9_CALL:
795  case ARM::BMOVPCRXr9_CALL: {
796    // First emit mov lr, pc
797    unsigned Binary = 0x01a0e00f;
798    Binary |= II->getPredicate(&MI) << ARMII::CondShift;
799    emitWordLE(Binary);
800
801    // and then emit the branch.
802    emitMiscBranchInstruction(MI);
803    break;
804  }
805  case TargetOpcode::INLINEASM: {
806    // We allow inline assembler nodes with empty bodies - they can
807    // implicitly define registers, which is ok for JIT.
808    if (MI.getOperand(0).getSymbolName()[0]) {
809      report_fatal_error("JIT does not support inline asm!");
810    }
811    break;
812  }
813  case TargetOpcode::PROLOG_LABEL:
814  case TargetOpcode::EH_LABEL:
815    MCE.emitLabel(MI.getOperand(0).getMCSymbol());
816    break;
817  case TargetOpcode::IMPLICIT_DEF:
818  case TargetOpcode::KILL:
819    // Do nothing.
820    break;
821  case ARM::CONSTPOOL_ENTRY:
822    emitConstPoolInstruction(MI);
823    break;
824  case ARM::PICADD: {
825    // Remember of the address of the PC label for relocation later.
826    addPCLabel(MI.getOperand(2).getImm());
827    // PICADD is just an add instruction that implicitly read pc.
828    emitDataProcessingInstruction(MI, 0, ARM::PC);
829    break;
830  }
831  case ARM::PICLDR:
832  case ARM::PICLDRB:
833  case ARM::PICSTR:
834  case ARM::PICSTRB: {
835    // Remember of the address of the PC label for relocation later.
836    addPCLabel(MI.getOperand(2).getImm());
837    // These are just load / store instructions that implicitly read pc.
838    emitLoadStoreInstruction(MI, 0, ARM::PC);
839    break;
840  }
841  case ARM::PICLDRH:
842  case ARM::PICLDRSH:
843  case ARM::PICLDRSB:
844  case ARM::PICSTRH: {
845    // Remember of the address of the PC label for relocation later.
846    addPCLabel(MI.getOperand(2).getImm());
847    // These are just load / store instructions that implicitly read pc.
848    emitMiscLoadStoreInstruction(MI, ARM::PC);
849    break;
850  }
851
852  case ARM::MOVi32imm:
853    // Two instructions to materialize a constant.
854    if (Subtarget->hasV6T2Ops())
855      emitMOVi32immInstruction(MI);
856    else
857      emitMOVi2piecesInstruction(MI);
858    break;
859
860  case ARM::LEApcrelJT:
861    // Materialize jumptable address.
862    emitLEApcrelJTInstruction(MI);
863    break;
864  case ARM::RRX:
865  case ARM::MOVsrl_flag:
866  case ARM::MOVsra_flag:
867    emitPseudoMoveInstruction(MI);
868    break;
869  }
870}
871
872unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
873                                                const TargetInstrDesc &TID,
874                                                const MachineOperand &MO,
875                                                unsigned OpIdx) {
876  unsigned Binary = getMachineOpValue(MI, MO);
877
878  const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
879  const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
880  ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
881
882  // Encode the shift opcode.
883  unsigned SBits = 0;
884  unsigned Rs = MO1.getReg();
885  if (Rs) {
886    // Set shift operand (bit[7:4]).
887    // LSL - 0001
888    // LSR - 0011
889    // ASR - 0101
890    // ROR - 0111
891    // RRX - 0110 and bit[11:8] clear.
892    switch (SOpc) {
893    default: llvm_unreachable("Unknown shift opc!");
894    case ARM_AM::lsl: SBits = 0x1; break;
895    case ARM_AM::lsr: SBits = 0x3; break;
896    case ARM_AM::asr: SBits = 0x5; break;
897    case ARM_AM::ror: SBits = 0x7; break;
898    case ARM_AM::rrx: SBits = 0x6; break;
899    }
900  } else {
901    // Set shift operand (bit[6:4]).
902    // LSL - 000
903    // LSR - 010
904    // ASR - 100
905    // ROR - 110
906    switch (SOpc) {
907    default: llvm_unreachable("Unknown shift opc!");
908    case ARM_AM::lsl: SBits = 0x0; break;
909    case ARM_AM::lsr: SBits = 0x2; break;
910    case ARM_AM::asr: SBits = 0x4; break;
911    case ARM_AM::ror: SBits = 0x6; break;
912    }
913  }
914  Binary |= SBits << 4;
915  if (SOpc == ARM_AM::rrx)
916    return Binary;
917
918  // Encode the shift operation Rs or shift_imm (except rrx).
919  if (Rs) {
920    // Encode Rs bit[11:8].
921    assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
922    return Binary | (getARMRegisterNumbering(Rs) << ARMII::RegRsShift);
923  }
924
925  // Encode shift_imm bit[11:7].
926  return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
927}
928
929unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
930  int SoImmVal = ARM_AM::getSOImmVal(SoImm);
931  assert(SoImmVal != -1 && "Not a valid so_imm value!");
932
933  // Encode rotate_imm.
934  unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
935    << ARMII::SoRotImmShift;
936
937  // Encode immed_8.
938  Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
939  return Binary;
940}
941
942unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
943                                         const TargetInstrDesc &TID) const {
944  for (unsigned i = MI.getNumOperands(), e = TID.getNumOperands(); i != e; --i){
945    const MachineOperand &MO = MI.getOperand(i-1);
946    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
947      return 1 << ARMII::S_BitShift;
948  }
949  return 0;
950}
951
952void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
953                                                   unsigned ImplicitRd,
954                                                   unsigned ImplicitRn) {
955  const TargetInstrDesc &TID = MI.getDesc();
956
957  // Part of binary is determined by TableGn.
958  unsigned Binary = getBinaryCodeForInstr(MI);
959
960  // Set the conditional execution predicate
961  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
962
963  // Encode S bit if MI modifies CPSR.
964  Binary |= getAddrModeSBit(MI, TID);
965
966  // Encode register def if there is one.
967  unsigned NumDefs = TID.getNumDefs();
968  unsigned OpIdx = 0;
969  if (NumDefs)
970    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
971  else if (ImplicitRd)
972    // Special handling for implicit use (e.g. PC).
973    Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
974
975  if (TID.Opcode == ARM::MOVi16) {
976      // Get immediate from MI.
977      unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
978                      ARM::reloc_arm_movw);
979      // Encode imm which is the same as in emitMOVi32immInstruction().
980      Binary |= Lo16 & 0xFFF;
981      Binary |= ((Lo16 >> 12) & 0xF) << 16;
982      emitWordLE(Binary);
983      return;
984  } else if(TID.Opcode == ARM::MOVTi16) {
985      unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
986                       ARM::reloc_arm_movt) >> 16);
987      Binary |= Hi16 & 0xFFF;
988      Binary |= ((Hi16 >> 12) & 0xF) << 16;
989      emitWordLE(Binary);
990      return;
991  } else if ((TID.Opcode == ARM::BFC) || (TID.Opcode == ARM::BFI)) {
992      uint32_t v = ~MI.getOperand(2).getImm();
993      int32_t lsb = CountTrailingZeros_32(v);
994      int32_t msb = (32 - CountLeadingZeros_32(v)) - 1;
995      // Instr{20-16} = msb, Instr{11-7} = lsb
996      Binary |= (msb & 0x1F) << 16;
997      Binary |= (lsb & 0x1F) << 7;
998      emitWordLE(Binary);
999      return;
1000  } else if ((TID.Opcode == ARM::UBFX) || (TID.Opcode == ARM::SBFX)) {
1001      // Encode Rn in Instr{0-3}
1002      Binary |= getMachineOpValue(MI, OpIdx++);
1003
1004      uint32_t lsb = MI.getOperand(OpIdx++).getImm();
1005      uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1;
1006
1007      // Instr{20-16} = widthm1, Instr{11-7} = lsb
1008      Binary |= (widthm1 & 0x1F) << 16;
1009      Binary |= (lsb & 0x1F) << 7;
1010      emitWordLE(Binary);
1011      return;
1012  }
1013
1014  // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
1015  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1016    ++OpIdx;
1017
1018  // Encode first non-shifter register operand if there is one.
1019  bool isUnary = TID.TSFlags & ARMII::UnaryDP;
1020  if (!isUnary) {
1021    if (ImplicitRn)
1022      // Special handling for implicit use (e.g. PC).
1023      Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1024    else {
1025      Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
1026      ++OpIdx;
1027    }
1028  }
1029
1030  // Encode shifter operand.
1031  const MachineOperand &MO = MI.getOperand(OpIdx);
1032  if ((TID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
1033    // Encode SoReg.
1034    emitWordLE(Binary | getMachineSoRegOpValue(MI, TID, MO, OpIdx));
1035    return;
1036  }
1037
1038  if (MO.isReg()) {
1039    // Encode register Rm.
1040    emitWordLE(Binary | getARMRegisterNumbering(MO.getReg()));
1041    return;
1042  }
1043
1044  // Encode so_imm.
1045  Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
1046
1047  emitWordLE(Binary);
1048}
1049
1050void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
1051                                              unsigned ImplicitRd,
1052                                              unsigned ImplicitRn) {
1053  const TargetInstrDesc &TID = MI.getDesc();
1054  unsigned Form = TID.TSFlags & ARMII::FormMask;
1055  bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1056
1057  // Part of binary is determined by TableGn.
1058  unsigned Binary = getBinaryCodeForInstr(MI);
1059
1060  // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done.
1061  if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp ||
1062      MI.getOpcode() == ARM::STRi12) {
1063    emitWordLE(Binary);
1064    return;
1065  }
1066
1067  // Set the conditional execution predicate
1068  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1069
1070  unsigned OpIdx = 0;
1071
1072  // Operand 0 of a pre- and post-indexed store is the address base
1073  // writeback. Skip it.
1074  bool Skipped = false;
1075  if (IsPrePost && Form == ARMII::StFrm) {
1076    ++OpIdx;
1077    Skipped = true;
1078  }
1079
1080  // Set first operand
1081  if (ImplicitRd)
1082    // Special handling for implicit use (e.g. PC).
1083    Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
1084  else
1085    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1086
1087  // Set second operand
1088  if (ImplicitRn)
1089    // Special handling for implicit use (e.g. PC).
1090    Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1091  else
1092    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1093
1094  // If this is a two-address operand, skip it. e.g. LDR_PRE.
1095  if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1096    ++OpIdx;
1097
1098  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1099  unsigned AM2Opc = (ImplicitRn == ARM::PC)
1100    ? 0 : MI.getOperand(OpIdx+1).getImm();
1101
1102  // Set bit U(23) according to sign of immed value (positive or negative).
1103  Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
1104             ARMII::U_BitShift);
1105  if (!MO2.getReg()) { // is immediate
1106    if (ARM_AM::getAM2Offset(AM2Opc))
1107      // Set the value of offset_12 field
1108      Binary |= ARM_AM::getAM2Offset(AM2Opc);
1109    emitWordLE(Binary);
1110    return;
1111  }
1112
1113  // Set bit I(25), because this is not in immediate encoding.
1114  Binary |= 1 << ARMII::I_BitShift;
1115  assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
1116  // Set bit[3:0] to the corresponding Rm register
1117  Binary |= getARMRegisterNumbering(MO2.getReg());
1118
1119  // If this instr is in scaled register offset/index instruction, set
1120  // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
1121  if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
1122    Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift;  // shift
1123    Binary |= ShImm              << ARMII::ShiftShift;     // shift_immed
1124  }
1125
1126  emitWordLE(Binary);
1127}
1128
1129void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
1130                                                  unsigned ImplicitRn) {
1131  const TargetInstrDesc &TID = MI.getDesc();
1132  unsigned Form = TID.TSFlags & ARMII::FormMask;
1133  bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1134
1135  // Part of binary is determined by TableGn.
1136  unsigned Binary = getBinaryCodeForInstr(MI);
1137
1138  // Set the conditional execution predicate
1139  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1140
1141  unsigned OpIdx = 0;
1142
1143  // Operand 0 of a pre- and post-indexed store is the address base
1144  // writeback. Skip it.
1145  bool Skipped = false;
1146  if (IsPrePost && Form == ARMII::StMiscFrm) {
1147    ++OpIdx;
1148    Skipped = true;
1149  }
1150
1151  // Set first operand
1152  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1153
1154  // Skip LDRD and STRD's second operand.
1155  if (TID.Opcode == ARM::LDRD || TID.Opcode == ARM::STRD)
1156    ++OpIdx;
1157
1158  // Set second operand
1159  if (ImplicitRn)
1160    // Special handling for implicit use (e.g. PC).
1161    Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1162  else
1163    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1164
1165  // If this is a two-address operand, skip it. e.g. LDRH_POST.
1166  if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1167    ++OpIdx;
1168
1169  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1170  unsigned AM3Opc = (ImplicitRn == ARM::PC)
1171    ? 0 : MI.getOperand(OpIdx+1).getImm();
1172
1173  // Set bit U(23) according to sign of immed value (positive or negative)
1174  Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
1175             ARMII::U_BitShift);
1176
1177  // If this instr is in register offset/index encoding, set bit[3:0]
1178  // to the corresponding Rm register.
1179  if (MO2.getReg()) {
1180    Binary |= getARMRegisterNumbering(MO2.getReg());
1181    emitWordLE(Binary);
1182    return;
1183  }
1184
1185  // This instr is in immediate offset/index encoding, set bit 22 to 1.
1186  Binary |= 1 << ARMII::AM3_I_BitShift;
1187  if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
1188    // Set operands
1189    Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift;  // immedH
1190    Binary |= (ImmOffs & 0xF);                      // immedL
1191  }
1192
1193  emitWordLE(Binary);
1194}
1195
1196static unsigned getAddrModeUPBits(unsigned Mode) {
1197  unsigned Binary = 0;
1198
1199  // Set addressing mode by modifying bits U(23) and P(24)
1200  // IA - Increment after  - bit U = 1 and bit P = 0
1201  // IB - Increment before - bit U = 1 and bit P = 1
1202  // DA - Decrement after  - bit U = 0 and bit P = 0
1203  // DB - Decrement before - bit U = 0 and bit P = 1
1204  switch (Mode) {
1205  default: llvm_unreachable("Unknown addressing sub-mode!");
1206  case ARM_AM::da:                                     break;
1207  case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
1208  case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
1209  case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
1210  }
1211
1212  return Binary;
1213}
1214
1215void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
1216  const TargetInstrDesc &TID = MI.getDesc();
1217  bool IsUpdating = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1218
1219  // Part of binary is determined by TableGn.
1220  unsigned Binary = getBinaryCodeForInstr(MI);
1221
1222  // Set the conditional execution predicate
1223  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1224
1225  // Skip operand 0 of an instruction with base register update.
1226  unsigned OpIdx = 0;
1227  if (IsUpdating)
1228    ++OpIdx;
1229
1230  // Set base address operand
1231  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1232
1233  // Set addressing mode by modifying bits U(23) and P(24)
1234  ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
1235  Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
1236
1237  // Set bit W(21)
1238  if (IsUpdating)
1239    Binary |= 0x1 << ARMII::W_BitShift;
1240
1241  // Set registers
1242  for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
1243    const MachineOperand &MO = MI.getOperand(i);
1244    if (!MO.isReg() || MO.isImplicit())
1245      break;
1246    unsigned RegNum = getARMRegisterNumbering(MO.getReg());
1247    assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
1248           RegNum < 16);
1249    Binary |= 0x1 << RegNum;
1250  }
1251
1252  emitWordLE(Binary);
1253}
1254
1255void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
1256  const TargetInstrDesc &TID = MI.getDesc();
1257
1258  // Part of binary is determined by TableGn.
1259  unsigned Binary = getBinaryCodeForInstr(MI);
1260
1261  // Set the conditional execution predicate
1262  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1263
1264  // Encode S bit if MI modifies CPSR.
1265  Binary |= getAddrModeSBit(MI, TID);
1266
1267  // 32x32->64bit operations have two destination registers. The number
1268  // of register definitions will tell us if that's what we're dealing with.
1269  unsigned OpIdx = 0;
1270  if (TID.getNumDefs() == 2)
1271    Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
1272
1273  // Encode Rd
1274  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
1275
1276  // Encode Rm
1277  Binary |= getMachineOpValue(MI, OpIdx++);
1278
1279  // Encode Rs
1280  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
1281
1282  // Many multiple instructions (e.g. MLA) have three src operands. Encode
1283  // it as Rn (for multiply, that's in the same offset as RdLo.
1284  if (TID.getNumOperands() > OpIdx &&
1285      !TID.OpInfo[OpIdx].isPredicate() &&
1286      !TID.OpInfo[OpIdx].isOptionalDef())
1287    Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
1288
1289  emitWordLE(Binary);
1290}
1291
1292void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
1293  const TargetInstrDesc &TID = MI.getDesc();
1294
1295  // Part of binary is determined by TableGn.
1296  unsigned Binary = getBinaryCodeForInstr(MI);
1297
1298  // Set the conditional execution predicate
1299  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1300
1301  unsigned OpIdx = 0;
1302
1303  // Encode Rd
1304  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1305
1306  const MachineOperand &MO1 = MI.getOperand(OpIdx++);
1307  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1308  if (MO2.isReg()) {
1309    // Two register operand form.
1310    // Encode Rn.
1311    Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
1312
1313    // Encode Rm.
1314    Binary |= getMachineOpValue(MI, MO2);
1315    ++OpIdx;
1316  } else {
1317    Binary |= getMachineOpValue(MI, MO1);
1318  }
1319
1320  // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
1321  if (MI.getOperand(OpIdx).isImm() &&
1322      !TID.OpInfo[OpIdx].isPredicate() &&
1323      !TID.OpInfo[OpIdx].isOptionalDef())
1324    Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
1325
1326  emitWordLE(Binary);
1327}
1328
1329void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
1330  const TargetInstrDesc &TID = MI.getDesc();
1331
1332  // Part of binary is determined by TableGn.
1333  unsigned Binary = getBinaryCodeForInstr(MI);
1334
1335  // Set the conditional execution predicate
1336  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1337
1338  unsigned OpIdx = 0;
1339
1340  // Encode Rd
1341  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1342
1343  const MachineOperand &MO = MI.getOperand(OpIdx++);
1344  if (OpIdx == TID.getNumOperands() ||
1345      TID.OpInfo[OpIdx].isPredicate() ||
1346      TID.OpInfo[OpIdx].isOptionalDef()) {
1347    // Encode Rm and it's done.
1348    Binary |= getMachineOpValue(MI, MO);
1349    emitWordLE(Binary);
1350    return;
1351  }
1352
1353  // Encode Rn.
1354  Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
1355
1356  // Encode Rm.
1357  Binary |= getMachineOpValue(MI, OpIdx++);
1358
1359  // Encode shift_imm.
1360  unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
1361  if (TID.Opcode == ARM::PKHTB) {
1362    assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!");
1363    if (ShiftAmt == 32)
1364      ShiftAmt = 0;
1365  }
1366  assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1367  Binary |= ShiftAmt << ARMII::ShiftShift;
1368
1369  emitWordLE(Binary);
1370}
1371
1372void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) {
1373  const TargetInstrDesc &TID = MI.getDesc();
1374
1375  // Part of binary is determined by TableGen.
1376  unsigned Binary = getBinaryCodeForInstr(MI);
1377
1378  // Set the conditional execution predicate
1379  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1380
1381  // Encode Rd
1382  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
1383
1384  // Encode saturate bit position.
1385  unsigned Pos = MI.getOperand(1).getImm();
1386  if (TID.Opcode == ARM::SSAT || TID.Opcode == ARM::SSAT16)
1387    Pos -= 1;
1388  assert((Pos < 16 || (Pos < 32 &&
1389                       TID.Opcode != ARM::SSAT16 &&
1390                       TID.Opcode != ARM::USAT16)) &&
1391         "saturate bit position out of range");
1392  Binary |= Pos << 16;
1393
1394  // Encode Rm
1395  Binary |= getMachineOpValue(MI, 2);
1396
1397  // Encode shift_imm.
1398  if (TID.getNumOperands() == 4) {
1399    unsigned ShiftOp = MI.getOperand(3).getImm();
1400    ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp);
1401    if (Opc == ARM_AM::asr)
1402      Binary |= (1 << 6);
1403    unsigned ShiftAmt = MI.getOperand(3).getImm();
1404    if (ShiftAmt == 32 && Opc == ARM_AM::asr)
1405      ShiftAmt = 0;
1406    assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1407    Binary |= ShiftAmt << ARMII::ShiftShift;
1408  }
1409
1410  emitWordLE(Binary);
1411}
1412
1413void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
1414  const TargetInstrDesc &TID = MI.getDesc();
1415
1416  if (TID.Opcode == ARM::TPsoft) {
1417    llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
1418  }
1419
1420  // Part of binary is determined by TableGn.
1421  unsigned Binary = getBinaryCodeForInstr(MI);
1422
1423  // Set the conditional execution predicate
1424  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1425
1426  // Set signed_immed_24 field
1427  Binary |= getMachineOpValue(MI, 0);
1428
1429  emitWordLE(Binary);
1430}
1431
1432void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
1433  // Remember the base address of the inline jump table.
1434  uintptr_t JTBase = MCE.getCurrentPCValue();
1435  JTI->addJumpTableBaseAddr(JTIndex, JTBase);
1436  DEBUG(errs() << "  ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
1437               << '\n');
1438
1439  // Now emit the jump table entries.
1440  const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
1441  for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
1442    if (IsPIC)
1443      // DestBB address - JT base.
1444      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
1445    else
1446      // Absolute DestBB address.
1447      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
1448    emitWordLE(0);
1449  }
1450}
1451
1452void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
1453  const TargetInstrDesc &TID = MI.getDesc();
1454
1455  // Handle jump tables.
1456  if (TID.Opcode == ARM::BR_JTr || TID.Opcode == ARM::BR_JTadd) {
1457    // First emit a ldr pc, [] instruction.
1458    emitDataProcessingInstruction(MI, ARM::PC);
1459
1460    // Then emit the inline jump table.
1461    unsigned JTIndex =
1462      (TID.Opcode == ARM::BR_JTr)
1463      ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
1464    emitInlineJumpTable(JTIndex);
1465    return;
1466  } else if (TID.Opcode == ARM::BR_JTm) {
1467    // First emit a ldr pc, [] instruction.
1468    emitLoadStoreInstruction(MI, ARM::PC);
1469
1470    // Then emit the inline jump table.
1471    emitInlineJumpTable(MI.getOperand(3).getIndex());
1472    return;
1473  }
1474
1475  // Part of binary is determined by TableGn.
1476  unsigned Binary = getBinaryCodeForInstr(MI);
1477
1478  // Set the conditional execution predicate
1479  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1480
1481  if (TID.Opcode == ARM::BX_RET || TID.Opcode == ARM::MOVPCLR)
1482    // The return register is LR.
1483    Binary |= getARMRegisterNumbering(ARM::LR);
1484  else
1485    // otherwise, set the return register
1486    Binary |= getMachineOpValue(MI, 0);
1487
1488  emitWordLE(Binary);
1489}
1490
1491static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) {
1492  unsigned RegD = MI.getOperand(OpIdx).getReg();
1493  unsigned Binary = 0;
1494  bool isSPVFP = ARM::SPRRegisterClass->contains(RegD);
1495  RegD = getARMRegisterNumbering(RegD);
1496  if (!isSPVFP)
1497    Binary |=   RegD               << ARMII::RegRdShift;
1498  else {
1499    Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
1500    Binary |=  (RegD & 0x01)       << ARMII::D_BitShift;
1501  }
1502  return Binary;
1503}
1504
1505static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) {
1506  unsigned RegN = MI.getOperand(OpIdx).getReg();
1507  unsigned Binary = 0;
1508  bool isSPVFP = ARM::SPRRegisterClass->contains(RegN);
1509  RegN = getARMRegisterNumbering(RegN);
1510  if (!isSPVFP)
1511    Binary |=   RegN               << ARMII::RegRnShift;
1512  else {
1513    Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
1514    Binary |=  (RegN & 0x01)       << ARMII::N_BitShift;
1515  }
1516  return Binary;
1517}
1518
1519static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) {
1520  unsigned RegM = MI.getOperand(OpIdx).getReg();
1521  unsigned Binary = 0;
1522  bool isSPVFP = ARM::SPRRegisterClass->contains(RegM);
1523  RegM = getARMRegisterNumbering(RegM);
1524  if (!isSPVFP)
1525    Binary |=   RegM;
1526  else {
1527    Binary |= ((RegM & 0x1E) >> 1);
1528    Binary |=  (RegM & 0x01)       << ARMII::M_BitShift;
1529  }
1530  return Binary;
1531}
1532
1533void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
1534  const TargetInstrDesc &TID = MI.getDesc();
1535
1536  // Part of binary is determined by TableGn.
1537  unsigned Binary = getBinaryCodeForInstr(MI);
1538
1539  // Set the conditional execution predicate
1540  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1541
1542  unsigned OpIdx = 0;
1543  assert((Binary & ARMII::D_BitShift) == 0 &&
1544         (Binary & ARMII::N_BitShift) == 0 &&
1545         (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!");
1546
1547  // Encode Dd / Sd.
1548  Binary |= encodeVFPRd(MI, OpIdx++);
1549
1550  // If this is a two-address operand, skip it, e.g. FMACD.
1551  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1552    ++OpIdx;
1553
1554  // Encode Dn / Sn.
1555  if ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
1556    Binary |= encodeVFPRn(MI, OpIdx++);
1557
1558  if (OpIdx == TID.getNumOperands() ||
1559      TID.OpInfo[OpIdx].isPredicate() ||
1560      TID.OpInfo[OpIdx].isOptionalDef()) {
1561    // FCMPEZD etc. has only one operand.
1562    emitWordLE(Binary);
1563    return;
1564  }
1565
1566  // Encode Dm / Sm.
1567  Binary |= encodeVFPRm(MI, OpIdx);
1568
1569  emitWordLE(Binary);
1570}
1571
1572void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
1573  const TargetInstrDesc &TID = MI.getDesc();
1574  unsigned Form = TID.TSFlags & ARMII::FormMask;
1575
1576  // Part of binary is determined by TableGn.
1577  unsigned Binary = getBinaryCodeForInstr(MI);
1578
1579  // Set the conditional execution predicate
1580  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1581
1582  switch (Form) {
1583  default: break;
1584  case ARMII::VFPConv1Frm:
1585  case ARMII::VFPConv2Frm:
1586  case ARMII::VFPConv3Frm:
1587    // Encode Dd / Sd.
1588    Binary |= encodeVFPRd(MI, 0);
1589    break;
1590  case ARMII::VFPConv4Frm:
1591    // Encode Dn / Sn.
1592    Binary |= encodeVFPRn(MI, 0);
1593    break;
1594  case ARMII::VFPConv5Frm:
1595    // Encode Dm / Sm.
1596    Binary |= encodeVFPRm(MI, 0);
1597    break;
1598  }
1599
1600  switch (Form) {
1601  default: break;
1602  case ARMII::VFPConv1Frm:
1603    // Encode Dm / Sm.
1604    Binary |= encodeVFPRm(MI, 1);
1605    break;
1606  case ARMII::VFPConv2Frm:
1607  case ARMII::VFPConv3Frm:
1608    // Encode Dn / Sn.
1609    Binary |= encodeVFPRn(MI, 1);
1610    break;
1611  case ARMII::VFPConv4Frm:
1612  case ARMII::VFPConv5Frm:
1613    // Encode Dd / Sd.
1614    Binary |= encodeVFPRd(MI, 1);
1615    break;
1616  }
1617
1618  if (Form == ARMII::VFPConv5Frm)
1619    // Encode Dn / Sn.
1620    Binary |= encodeVFPRn(MI, 2);
1621  else if (Form == ARMII::VFPConv3Frm)
1622    // Encode Dm / Sm.
1623    Binary |= encodeVFPRm(MI, 2);
1624
1625  emitWordLE(Binary);
1626}
1627
1628void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
1629  // Part of binary is determined by TableGn.
1630  unsigned Binary = getBinaryCodeForInstr(MI);
1631
1632  // Set the conditional execution predicate
1633  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1634
1635  unsigned OpIdx = 0;
1636
1637  // Encode Dd / Sd.
1638  Binary |= encodeVFPRd(MI, OpIdx++);
1639
1640  // Encode address base.
1641  const MachineOperand &Base = MI.getOperand(OpIdx++);
1642  Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
1643
1644  // If there is a non-zero immediate offset, encode it.
1645  if (Base.isReg()) {
1646    const MachineOperand &Offset = MI.getOperand(OpIdx);
1647    if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
1648      if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
1649        Binary |= 1 << ARMII::U_BitShift;
1650      Binary |= ImmOffs;
1651      emitWordLE(Binary);
1652      return;
1653    }
1654  }
1655
1656  // If immediate offset is omitted, default to +0.
1657  Binary |= 1 << ARMII::U_BitShift;
1658
1659  emitWordLE(Binary);
1660}
1661
1662void
1663ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
1664  const TargetInstrDesc &TID = MI.getDesc();
1665  bool IsUpdating = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1666
1667  // Part of binary is determined by TableGn.
1668  unsigned Binary = getBinaryCodeForInstr(MI);
1669
1670  // Set the conditional execution predicate
1671  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1672
1673  // Skip operand 0 of an instruction with base register update.
1674  unsigned OpIdx = 0;
1675  if (IsUpdating)
1676    ++OpIdx;
1677
1678  // Set base address operand
1679  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1680
1681  // Set addressing mode by modifying bits U(23) and P(24)
1682  ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
1683  Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
1684
1685  // Set bit W(21)
1686  if (IsUpdating)
1687    Binary |= 0x1 << ARMII::W_BitShift;
1688
1689  // First register is encoded in Dd.
1690  Binary |= encodeVFPRd(MI, OpIdx+2);
1691
1692  // Count the number of registers.
1693  unsigned NumRegs = 1;
1694  for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
1695    const MachineOperand &MO = MI.getOperand(i);
1696    if (!MO.isReg() || MO.isImplicit())
1697      break;
1698    ++NumRegs;
1699  }
1700  // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
1701  // Otherwise, it will be 0, in the case of 32-bit registers.
1702  if(Binary & 0x100)
1703    Binary |= NumRegs * 2;
1704  else
1705    Binary |= NumRegs;
1706
1707  emitWordLE(Binary);
1708}
1709
1710static unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) {
1711  unsigned RegD = MI.getOperand(OpIdx).getReg();
1712  unsigned Binary = 0;
1713  RegD = getARMRegisterNumbering(RegD);
1714  Binary |= (RegD & 0xf) << ARMII::RegRdShift;
1715  Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift;
1716  return Binary;
1717}
1718
1719static unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) {
1720  unsigned RegN = MI.getOperand(OpIdx).getReg();
1721  unsigned Binary = 0;
1722  RegN = getARMRegisterNumbering(RegN);
1723  Binary |= (RegN & 0xf) << ARMII::RegRnShift;
1724  Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift;
1725  return Binary;
1726}
1727
1728static unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) {
1729  unsigned RegM = MI.getOperand(OpIdx).getReg();
1730  unsigned Binary = 0;
1731  RegM = getARMRegisterNumbering(RegM);
1732  Binary |= (RegM & 0xf);
1733  Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift;
1734  return Binary;
1735}
1736
1737/// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON
1738/// data-processing instruction to the corresponding Thumb encoding.
1739static unsigned convertNEONDataProcToThumb(unsigned Binary) {
1740  assert((Binary & 0xfe000000) == 0xf2000000 &&
1741         "not an ARM NEON data-processing instruction");
1742  unsigned UBit = (Binary >> 24) & 1;
1743  return 0xef000000 | (UBit << 28) | (Binary & 0xffffff);
1744}
1745
1746void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) {
1747  unsigned Binary = getBinaryCodeForInstr(MI);
1748
1749  unsigned RegTOpIdx, RegNOpIdx, LnOpIdx;
1750  const TargetInstrDesc &TID = MI.getDesc();
1751  if ((TID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) {
1752    RegTOpIdx = 0;
1753    RegNOpIdx = 1;
1754    LnOpIdx = 2;
1755  } else { // ARMII::NSetLnFrm
1756    RegTOpIdx = 2;
1757    RegNOpIdx = 0;
1758    LnOpIdx = 3;
1759  }
1760
1761  // Set the conditional execution predicate
1762  Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1763
1764  unsigned RegT = MI.getOperand(RegTOpIdx).getReg();
1765  RegT = getARMRegisterNumbering(RegT);
1766  Binary |= (RegT << ARMII::RegRdShift);
1767  Binary |= encodeNEONRn(MI, RegNOpIdx);
1768
1769  unsigned LaneShift;
1770  if ((Binary & (1 << 22)) != 0)
1771    LaneShift = 0; // 8-bit elements
1772  else if ((Binary & (1 << 5)) != 0)
1773    LaneShift = 1; // 16-bit elements
1774  else
1775    LaneShift = 2; // 32-bit elements
1776
1777  unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift;
1778  unsigned Opc1 = Lane >> 2;
1779  unsigned Opc2 = Lane & 3;
1780  assert((Opc1 & 3) == 0 && "out-of-range lane number operand");
1781  Binary |= (Opc1 << 21);
1782  Binary |= (Opc2 << 5);
1783
1784  emitWordLE(Binary);
1785}
1786
1787void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) {
1788  unsigned Binary = getBinaryCodeForInstr(MI);
1789
1790  // Set the conditional execution predicate
1791  Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1792
1793  unsigned RegT = MI.getOperand(1).getReg();
1794  RegT = getARMRegisterNumbering(RegT);
1795  Binary |= (RegT << ARMII::RegRdShift);
1796  Binary |= encodeNEONRn(MI, 0);
1797  emitWordLE(Binary);
1798}
1799
1800void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) {
1801  unsigned Binary = getBinaryCodeForInstr(MI);
1802  // Destination register is encoded in Dd.
1803  Binary |= encodeNEONRd(MI, 0);
1804  // Immediate fields: Op, Cmode, I, Imm3, Imm4
1805  unsigned Imm = MI.getOperand(1).getImm();
1806  unsigned Op = (Imm >> 12) & 1;
1807  unsigned Cmode = (Imm >> 8) & 0xf;
1808  unsigned I = (Imm >> 7) & 1;
1809  unsigned Imm3 = (Imm >> 4) & 0x7;
1810  unsigned Imm4 = Imm & 0xf;
1811  Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4;
1812  if (IsThumb)
1813    Binary = convertNEONDataProcToThumb(Binary);
1814  emitWordLE(Binary);
1815}
1816
1817void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) {
1818  const TargetInstrDesc &TID = MI.getDesc();
1819  unsigned Binary = getBinaryCodeForInstr(MI);
1820  // Destination register is encoded in Dd; source register in Dm.
1821  unsigned OpIdx = 0;
1822  Binary |= encodeNEONRd(MI, OpIdx++);
1823  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1824    ++OpIdx;
1825  Binary |= encodeNEONRm(MI, OpIdx);
1826  if (IsThumb)
1827    Binary = convertNEONDataProcToThumb(Binary);
1828  // FIXME: This does not handle VDUPfdf or VDUPfqf.
1829  emitWordLE(Binary);
1830}
1831
1832void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) {
1833  const TargetInstrDesc &TID = MI.getDesc();
1834  unsigned Binary = getBinaryCodeForInstr(MI);
1835  // Destination register is encoded in Dd; source registers in Dn and Dm.
1836  unsigned OpIdx = 0;
1837  Binary |= encodeNEONRd(MI, OpIdx++);
1838  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1839    ++OpIdx;
1840  Binary |= encodeNEONRn(MI, OpIdx++);
1841  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1842    ++OpIdx;
1843  Binary |= encodeNEONRm(MI, OpIdx);
1844  if (IsThumb)
1845    Binary = convertNEONDataProcToThumb(Binary);
1846  // FIXME: This does not handle VMOVDneon or VMOVQ.
1847  emitWordLE(Binary);
1848}
1849
1850#include "ARMGenCodeEmitter.inc"
1851