ARMCodeEmitter.cpp revision a2b50b300ec32dc223a82a256a3d93b8eaf41662
1//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the pass that transforms the ARM machine instructions into
11// relocatable machine code.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "ARM.h"
17#include "ARMAddressingModes.h"
18#include "ARMConstantPoolValue.h"
19#include "ARMInstrInfo.h"
20#include "ARMRelocations.h"
21#include "ARMSubtarget.h"
22#include "ARMTargetMachine.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/PassManager.h"
27#include "llvm/CodeGen/JITCodeEmitter.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/Passes.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#ifndef NDEBUG
39#include <iomanip>
40#endif
41using namespace llvm;
42
43STATISTIC(NumEmitted, "Number of machine instructions emitted");
44
45namespace {
46
47  class ARMCodeEmitter : public MachineFunctionPass {
48    ARMJITInfo                *JTI;
49    const ARMInstrInfo        *II;
50    const TargetData          *TD;
51    const ARMSubtarget        *Subtarget;
52    TargetMachine             &TM;
53    JITCodeEmitter            &MCE;
54    MachineModuleInfo *MMI;
55    const std::vector<MachineConstantPoolEntry> *MCPEs;
56    const std::vector<MachineJumpTableEntry> *MJTEs;
57    bool IsPIC;
58    bool IsThumb;
59
60    void getAnalysisUsage(AnalysisUsage &AU) const {
61      AU.addRequired<MachineModuleInfo>();
62      MachineFunctionPass::getAnalysisUsage(AU);
63    }
64
65    static char ID;
66  public:
67    ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
68      : MachineFunctionPass(ID), JTI(0),
69        II((const ARMInstrInfo *)tm.getInstrInfo()),
70        TD(tm.getTargetData()), TM(tm),
71        MCE(mce), MCPEs(0), MJTEs(0),
72        IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {}
73
74    /// getBinaryCodeForInstr - This function, generated by the
75    /// CodeEmitterGenerator using TableGen, produces the binary encoding for
76    /// machine instructions.
77    unsigned getBinaryCodeForInstr(const MachineInstr &MI) const;
78
79    bool runOnMachineFunction(MachineFunction &MF);
80
81    virtual const char *getPassName() const {
82      return "ARM Machine Code Emitter";
83    }
84
85    void emitInstruction(const MachineInstr &MI);
86
87  private:
88
89    void emitWordLE(unsigned Binary);
90    void emitDWordLE(uint64_t Binary);
91    void emitConstPoolInstruction(const MachineInstr &MI);
92    void emitMOVi32immInstruction(const MachineInstr &MI);
93    void emitMOVi2piecesInstruction(const MachineInstr &MI);
94    void emitLEApcrelJTInstruction(const MachineInstr &MI);
95    void emitPseudoMoveInstruction(const MachineInstr &MI);
96    void addPCLabel(unsigned LabelID);
97    void emitPseudoInstruction(const MachineInstr &MI);
98    unsigned getMachineSoRegOpValue(const MachineInstr &MI,
99                                    const TargetInstrDesc &TID,
100                                    const MachineOperand &MO,
101                                    unsigned OpIdx);
102
103    unsigned getMachineSoImmOpValue(unsigned SoImm);
104    unsigned getAddrModeSBit(const MachineInstr &MI,
105                             const TargetInstrDesc &TID) const;
106
107    void emitDataProcessingInstruction(const MachineInstr &MI,
108                                       unsigned ImplicitRd = 0,
109                                       unsigned ImplicitRn = 0);
110
111    void emitLoadStoreInstruction(const MachineInstr &MI,
112                                  unsigned ImplicitRd = 0,
113                                  unsigned ImplicitRn = 0);
114
115    void emitMiscLoadStoreInstruction(const MachineInstr &MI,
116                                      unsigned ImplicitRn = 0);
117
118    void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
119
120    void emitMulFrmInstruction(const MachineInstr &MI);
121
122    void emitExtendInstruction(const MachineInstr &MI);
123
124    void emitMiscArithInstruction(const MachineInstr &MI);
125
126    void emitSaturateInstruction(const MachineInstr &MI);
127
128    void emitBranchInstruction(const MachineInstr &MI);
129
130    void emitInlineJumpTable(unsigned JTIndex);
131
132    void emitMiscBranchInstruction(const MachineInstr &MI);
133
134    void emitVFPArithInstruction(const MachineInstr &MI);
135
136    void emitVFPConversionInstruction(const MachineInstr &MI);
137
138    void emitVFPLoadStoreInstruction(const MachineInstr &MI);
139
140    void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
141
142    void emitNEONLaneInstruction(const MachineInstr &MI);
143    void emitNEONDupInstruction(const MachineInstr &MI);
144    void emitNEON1RegModImmInstruction(const MachineInstr &MI);
145    void emitNEON2RegInstruction(const MachineInstr &MI);
146    void emitNEON3RegInstruction(const MachineInstr &MI);
147
148    /// getMachineOpValue - Return binary encoding of operand. If the machine
149    /// operand requires relocation, record the relocation and return zero.
150    unsigned getMachineOpValue(const MachineInstr &MI,
151                               const MachineOperand &MO) const;
152    unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const {
153      return getMachineOpValue(MI, MI.getOperand(OpIdx));
154    }
155
156    // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the
157    //  TableGen'erated getBinaryCodeForInstr() function to encode any
158    //  operand values, instead querying getMachineOpValue() directly for
159    //  each operand it needs to encode. Thus, any of the new encoder
160    //  helper functions can simply return 0 as the values the return
161    //  are already handled elsewhere. They are placeholders to allow this
162    //  encoder to continue to function until the MC encoder is sufficiently
163    //  far along that this one can be eliminated entirely.
164    unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op)
165      const { return 0; }
166    unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op)
167      const { return 0; }
168    unsigned getSORegOpValue(const MachineInstr &MI, unsigned Op)
169      const { return 0; }
170    unsigned getRotImmOpValue(const MachineInstr &MI, unsigned Op)
171      const { return 0; }
172    unsigned getImmMinusOneOpValue(const MachineInstr &MI, unsigned Op)
173      const { return 0; }
174    unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op)
175      const { return 0; }
176    unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op)
177      const { return 0; }
178    unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI,
179                                            unsigned Op) const { return 0; }
180    unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
181      const {
182        // {17-13} = reg
183        // {12}    = (U)nsigned (add == '1', sub == '0')
184        // {11-0}  = imm12
185        const MachineOperand &MO  = MI.getOperand(Op);
186        const MachineOperand &MO1 = MI.getOperand(Op + 1);
187        if (!MO.isReg()) {
188          emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
189          return 0;
190        }
191        unsigned Reg = getARMRegisterNumbering(MO.getReg());
192        int32_t Imm12 = MO1.getImm();
193        uint32_t Binary;
194        Binary = Imm12 & 0xfff;
195        if (Imm12 >= 0)
196          Binary |= (1 << 12);
197        Binary |= (Reg << 13);
198        return Binary;
199      }
200    unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op)
201      const { return 0; }
202
203    unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op)
204      const { return 0; }
205
206    /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
207    /// machine operand requires relocation, record the relocation and return
208    /// zero.
209    unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
210                            unsigned Reloc);
211
212    /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
213    ///
214    unsigned getShiftOp(unsigned Imm) const ;
215
216    /// Routines that handle operands which add machine relocations which are
217    /// fixed up by the relocation stage.
218    void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
219                           bool MayNeedFarStub,  bool Indirect,
220                           intptr_t ACPV = 0) const;
221    void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
222    void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
223    void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const;
224    void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
225                               intptr_t JTBase = 0) const;
226  };
227}
228
229char ARMCodeEmitter::ID = 0;
230
231/// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
232/// code to the specified MCE object.
233FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
234                                                JITCodeEmitter &JCE) {
235  return new ARMCodeEmitter(TM, JCE);
236}
237
238bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
239  assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
240          MF.getTarget().getRelocationModel() != Reloc::Static) &&
241         "JIT relocation model must be set to static or default!");
242  JTI = ((ARMTargetMachine &)MF.getTarget()).getJITInfo();
243  II = ((const ARMTargetMachine &)MF.getTarget()).getInstrInfo();
244  TD = ((const ARMTargetMachine &)MF.getTarget()).getTargetData();
245  Subtarget = &TM.getSubtarget<ARMSubtarget>();
246  MCPEs = &MF.getConstantPool()->getConstants();
247  MJTEs = 0;
248  if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
249  IsPIC = TM.getRelocationModel() == Reloc::PIC_;
250  IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction();
251  JTI->Initialize(MF, IsPIC);
252  MMI = &getAnalysis<MachineModuleInfo>();
253  MCE.setModuleInfo(MMI);
254
255  do {
256    DEBUG(errs() << "JITTing function '"
257          << MF.getFunction()->getName() << "'\n");
258    MCE.startFunction(MF);
259    for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
260         MBB != E; ++MBB) {
261      MCE.StartMachineBasicBlock(MBB);
262      for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
263           I != E; ++I)
264        emitInstruction(*I);
265    }
266  } while (MCE.finishFunction(MF));
267
268  return false;
269}
270
271/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
272///
273unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
274  switch (ARM_AM::getAM2ShiftOpc(Imm)) {
275  default: llvm_unreachable("Unknown shift opc!");
276  case ARM_AM::asr: return 2;
277  case ARM_AM::lsl: return 0;
278  case ARM_AM::lsr: return 1;
279  case ARM_AM::ror:
280  case ARM_AM::rrx: return 3;
281  }
282  return 0;
283}
284
285/// getMovi32Value - Return binary encoding of operand for movw/movt. If the
286/// machine operand requires relocation, record the relocation and return zero.
287unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
288                                        const MachineOperand &MO,
289                                        unsigned Reloc) {
290  assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
291      && "Relocation to this function should be for movt or movw");
292
293  if (MO.isImm())
294    return static_cast<unsigned>(MO.getImm());
295  else if (MO.isGlobal())
296    emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
297  else if (MO.isSymbol())
298    emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
299  else if (MO.isMBB())
300    emitMachineBasicBlock(MO.getMBB(), Reloc);
301  else {
302#ifndef NDEBUG
303    errs() << MO;
304#endif
305    llvm_unreachable("Unsupported operand type for movw/movt");
306  }
307  return 0;
308}
309
310/// getMachineOpValue - Return binary encoding of operand. If the machine
311/// operand requires relocation, record the relocation and return zero.
312unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
313                                           const MachineOperand &MO) const {
314  if (MO.isReg())
315    return getARMRegisterNumbering(MO.getReg());
316  else if (MO.isImm())
317    return static_cast<unsigned>(MO.getImm());
318  else if (MO.isGlobal())
319    emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
320  else if (MO.isSymbol())
321    emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
322  else if (MO.isCPI()) {
323    const TargetInstrDesc &TID = MI.getDesc();
324    // For VFP load, the immediate offset is multiplied by 4.
325    unsigned Reloc =  ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
326      ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
327    emitConstPoolAddress(MO.getIndex(), Reloc);
328  } else if (MO.isJTI())
329    emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
330  else if (MO.isMBB())
331    emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
332  else {
333#ifndef NDEBUG
334    errs() << MO;
335#endif
336    llvm_unreachable(0);
337  }
338  return 0;
339}
340
341/// emitGlobalAddress - Emit the specified address to the code stream.
342///
343void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
344                                       bool MayNeedFarStub, bool Indirect,
345                                       intptr_t ACPV) const {
346  MachineRelocation MR = Indirect
347    ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
348                                           const_cast<GlobalValue *>(GV),
349                                           ACPV, MayNeedFarStub)
350    : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
351                               const_cast<GlobalValue *>(GV), ACPV,
352                               MayNeedFarStub);
353  MCE.addRelocation(MR);
354}
355
356/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
357/// be emitted to the current location in the function, and allow it to be PC
358/// relative.
359void ARMCodeEmitter::
360emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
361  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
362                                                 Reloc, ES));
363}
364
365/// emitConstPoolAddress - Arrange for the address of an constant pool
366/// to be emitted to the current location in the function, and allow it to be PC
367/// relative.
368void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
369  // Tell JIT emitter we'll resolve the address.
370  MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
371                                                    Reloc, CPI, 0, true));
372}
373
374/// emitJumpTableAddress - Arrange for the address of a jump table to
375/// be emitted to the current location in the function, and allow it to be PC
376/// relative.
377void ARMCodeEmitter::
378emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const {
379  MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
380                                                    Reloc, JTIndex, 0, true));
381}
382
383/// emitMachineBasicBlock - Emit the specified address basic block.
384void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
385                                           unsigned Reloc,
386                                           intptr_t JTBase) const {
387  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
388                                             Reloc, BB, JTBase));
389}
390
391void ARMCodeEmitter::emitWordLE(unsigned Binary) {
392  DEBUG(errs() << "  0x";
393        errs().write_hex(Binary) << "\n");
394  MCE.emitWordLE(Binary);
395}
396
397void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
398  DEBUG(errs() << "  0x";
399        errs().write_hex(Binary) << "\n");
400  MCE.emitDWordLE(Binary);
401}
402
403void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
404  DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
405
406  MCE.processDebugLoc(MI.getDebugLoc(), true);
407
408  ++NumEmitted;  // Keep track of the # of mi's emitted
409  switch (MI.getDesc().TSFlags & ARMII::FormMask) {
410  default: {
411    llvm_unreachable("Unhandled instruction encoding format!");
412    break;
413  }
414  case ARMII::Pseudo:
415    emitPseudoInstruction(MI);
416    break;
417  case ARMII::DPFrm:
418  case ARMII::DPSoRegFrm:
419    emitDataProcessingInstruction(MI);
420    break;
421  case ARMII::LdFrm:
422  case ARMII::StFrm:
423    emitLoadStoreInstruction(MI);
424    break;
425  case ARMII::LdMiscFrm:
426  case ARMII::StMiscFrm:
427    emitMiscLoadStoreInstruction(MI);
428    break;
429  case ARMII::LdStMulFrm:
430    emitLoadStoreMultipleInstruction(MI);
431    break;
432  case ARMII::MulFrm:
433    emitMulFrmInstruction(MI);
434    break;
435  case ARMII::ExtFrm:
436    emitExtendInstruction(MI);
437    break;
438  case ARMII::ArithMiscFrm:
439    emitMiscArithInstruction(MI);
440    break;
441  case ARMII::SatFrm:
442    emitSaturateInstruction(MI);
443    break;
444  case ARMII::BrFrm:
445    emitBranchInstruction(MI);
446    break;
447  case ARMII::BrMiscFrm:
448    emitMiscBranchInstruction(MI);
449    break;
450  // VFP instructions.
451  case ARMII::VFPUnaryFrm:
452  case ARMII::VFPBinaryFrm:
453    emitVFPArithInstruction(MI);
454    break;
455  case ARMII::VFPConv1Frm:
456  case ARMII::VFPConv2Frm:
457  case ARMII::VFPConv3Frm:
458  case ARMII::VFPConv4Frm:
459  case ARMII::VFPConv5Frm:
460    emitVFPConversionInstruction(MI);
461    break;
462  case ARMII::VFPLdStFrm:
463    emitVFPLoadStoreInstruction(MI);
464    break;
465  case ARMII::VFPLdStMulFrm:
466    emitVFPLoadStoreMultipleInstruction(MI);
467    break;
468
469  // NEON instructions.
470  case ARMII::NGetLnFrm:
471  case ARMII::NSetLnFrm:
472    emitNEONLaneInstruction(MI);
473    break;
474  case ARMII::NDupFrm:
475    emitNEONDupInstruction(MI);
476    break;
477  case ARMII::N1RegModImmFrm:
478    emitNEON1RegModImmInstruction(MI);
479    break;
480  case ARMII::N2RegFrm:
481    emitNEON2RegInstruction(MI);
482    break;
483  case ARMII::N3RegFrm:
484    emitNEON3RegInstruction(MI);
485    break;
486  }
487  MCE.processDebugLoc(MI.getDebugLoc(), false);
488}
489
490void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
491  unsigned CPI = MI.getOperand(0).getImm();       // CP instruction index.
492  unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
493  const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
494
495  // Remember the CONSTPOOL_ENTRY address for later relocation.
496  JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
497
498  // Emit constpool island entry. In most cases, the actual values will be
499  // resolved and relocated after code emission.
500  if (MCPE.isMachineConstantPoolEntry()) {
501    ARMConstantPoolValue *ACPV =
502      static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
503
504    DEBUG(errs() << "  ** ARM constant pool #" << CPI << " @ "
505          << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
506
507    assert(ACPV->isGlobalValue() && "unsupported constant pool value");
508    const GlobalValue *GV = ACPV->getGV();
509    if (GV) {
510      Reloc::Model RelocM = TM.getRelocationModel();
511      emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
512                        isa<Function>(GV),
513                        Subtarget->GVIsIndirectSymbol(GV, RelocM),
514                        (intptr_t)ACPV);
515     } else  {
516      emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute);
517    }
518    emitWordLE(0);
519  } else {
520    const Constant *CV = MCPE.Val.ConstVal;
521
522    DEBUG({
523        errs() << "  ** Constant pool #" << CPI << " @ "
524               << (void*)MCE.getCurrentPCValue() << " ";
525        if (const Function *F = dyn_cast<Function>(CV))
526          errs() << F->getName();
527        else
528          errs() << *CV;
529        errs() << '\n';
530      });
531
532    if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
533      emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV), false);
534      emitWordLE(0);
535    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
536      uint32_t Val = uint32_t(*CI->getValue().getRawData());
537      emitWordLE(Val);
538    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
539      if (CFP->getType()->isFloatTy())
540        emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
541      else if (CFP->getType()->isDoubleTy())
542        emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
543      else {
544        llvm_unreachable("Unable to handle this constantpool entry!");
545      }
546    } else {
547      llvm_unreachable("Unable to handle this constantpool entry!");
548    }
549  }
550}
551
552void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
553  const MachineOperand &MO0 = MI.getOperand(0);
554  const MachineOperand &MO1 = MI.getOperand(1);
555
556  // Emit the 'movw' instruction.
557  unsigned Binary = 0x30 << 20;  // mov: Insts{27-20} = 0b00110000
558
559  unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;
560
561  // Set the conditional execution predicate.
562  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
563
564  // Encode Rd.
565  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
566
567  // Encode imm16 as imm4:imm12
568  Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
569  Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
570  emitWordLE(Binary);
571
572  unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
573  // Emit the 'movt' instruction.
574  Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100
575
576  // Set the conditional execution predicate.
577  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
578
579  // Encode Rd.
580  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
581
582  // Encode imm16 as imm4:imm1, same as movw above.
583  Binary |= Hi16 & 0xFFF;
584  Binary |= ((Hi16 >> 12) & 0xF) << 16;
585  emitWordLE(Binary);
586}
587
588void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
589  const MachineOperand &MO0 = MI.getOperand(0);
590  const MachineOperand &MO1 = MI.getOperand(1);
591  assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
592                                                  "Not a valid so_imm value!");
593  unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
594  unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
595
596  // Emit the 'mov' instruction.
597  unsigned Binary = 0xd << 21;  // mov: Insts{24-21} = 0b1101
598
599  // Set the conditional execution predicate.
600  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
601
602  // Encode Rd.
603  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
604
605  // Encode so_imm.
606  // Set bit I(25) to identify this is the immediate form of <shifter_op>
607  Binary |= 1 << ARMII::I_BitShift;
608  Binary |= getMachineSoImmOpValue(V1);
609  emitWordLE(Binary);
610
611  // Now the 'orr' instruction.
612  Binary = 0xc << 21;  // orr: Insts{24-21} = 0b1100
613
614  // Set the conditional execution predicate.
615  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
616
617  // Encode Rd.
618  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
619
620  // Encode Rn.
621  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
622
623  // Encode so_imm.
624  // Set bit I(25) to identify this is the immediate form of <shifter_op>
625  Binary |= 1 << ARMII::I_BitShift;
626  Binary |= getMachineSoImmOpValue(V2);
627  emitWordLE(Binary);
628}
629
630void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
631  // It's basically add r, pc, (LJTI - $+8)
632
633  const TargetInstrDesc &TID = MI.getDesc();
634
635  // Emit the 'add' instruction.
636  unsigned Binary = 0x4 << 21;  // add: Insts{24-31} = 0b0100
637
638  // Set the conditional execution predicate
639  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
640
641  // Encode S bit if MI modifies CPSR.
642  Binary |= getAddrModeSBit(MI, TID);
643
644  // Encode Rd.
645  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
646
647  // Encode Rn which is PC.
648  Binary |= getARMRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
649
650  // Encode the displacement.
651  Binary |= 1 << ARMII::I_BitShift;
652  emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
653
654  emitWordLE(Binary);
655}
656
657void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
658  unsigned Opcode = MI.getDesc().Opcode;
659
660  // Part of binary is determined by TableGn.
661  unsigned Binary = getBinaryCodeForInstr(MI);
662
663  // Set the conditional execution predicate
664  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
665
666  // Encode S bit if MI modifies CPSR.
667  if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
668    Binary |= 1 << ARMII::S_BitShift;
669
670  // Encode register def if there is one.
671  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
672
673  // Encode the shift operation.
674  switch (Opcode) {
675  default: break;
676  case ARM::RRX:
677    // rrx
678    Binary |= 0x6 << 4;
679    break;
680  case ARM::MOVsrl_flag:
681    // lsr #1
682    Binary |= (0x2 << 4) | (1 << 7);
683    break;
684  case ARM::MOVsra_flag:
685    // asr #1
686    Binary |= (0x4 << 4) | (1 << 7);
687    break;
688  }
689
690  // Encode register Rm.
691  Binary |= getMachineOpValue(MI, 1);
692
693  emitWordLE(Binary);
694}
695
696void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
697  DEBUG(errs() << "  ** LPC" << LabelID << " @ "
698        << (void*)MCE.getCurrentPCValue() << '\n');
699  JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
700}
701
702void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
703  unsigned Opcode = MI.getDesc().Opcode;
704  switch (Opcode) {
705  default:
706    llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
707  case ARM::BX:
708  case ARM::BMOVPCRX:
709  case ARM::BXr9:
710  case ARM::BMOVPCRXr9: {
711    // First emit mov lr, pc
712    unsigned Binary = 0x01a0e00f;
713    Binary |= II->getPredicate(&MI) << ARMII::CondShift;
714    emitWordLE(Binary);
715
716    // and then emit the branch.
717    emitMiscBranchInstruction(MI);
718    break;
719  }
720  case TargetOpcode::INLINEASM: {
721    // We allow inline assembler nodes with empty bodies - they can
722    // implicitly define registers, which is ok for JIT.
723    if (MI.getOperand(0).getSymbolName()[0]) {
724      report_fatal_error("JIT does not support inline asm!");
725    }
726    break;
727  }
728  case TargetOpcode::PROLOG_LABEL:
729  case TargetOpcode::EH_LABEL:
730    MCE.emitLabel(MI.getOperand(0).getMCSymbol());
731    break;
732  case TargetOpcode::IMPLICIT_DEF:
733  case TargetOpcode::KILL:
734    // Do nothing.
735    break;
736  case ARM::CONSTPOOL_ENTRY:
737    emitConstPoolInstruction(MI);
738    break;
739  case ARM::PICADD: {
740    // Remember of the address of the PC label for relocation later.
741    addPCLabel(MI.getOperand(2).getImm());
742    // PICADD is just an add instruction that implicitly read pc.
743    emitDataProcessingInstruction(MI, 0, ARM::PC);
744    break;
745  }
746  case ARM::PICLDR:
747  case ARM::PICLDRB:
748  case ARM::PICSTR:
749  case ARM::PICSTRB: {
750    // Remember of the address of the PC label for relocation later.
751    addPCLabel(MI.getOperand(2).getImm());
752    // These are just load / store instructions that implicitly read pc.
753    emitLoadStoreInstruction(MI, 0, ARM::PC);
754    break;
755  }
756  case ARM::PICLDRH:
757  case ARM::PICLDRSH:
758  case ARM::PICLDRSB:
759  case ARM::PICSTRH: {
760    // Remember of the address of the PC label for relocation later.
761    addPCLabel(MI.getOperand(2).getImm());
762    // These are just load / store instructions that implicitly read pc.
763    emitMiscLoadStoreInstruction(MI, ARM::PC);
764    break;
765  }
766
767  case ARM::MOVi32imm:
768    emitMOVi32immInstruction(MI);
769    break;
770
771  case ARM::MOVi2pieces:
772    // Two instructions to materialize a constant.
773    emitMOVi2piecesInstruction(MI);
774    break;
775  case ARM::LEApcrelJT:
776    // Materialize jumptable address.
777    emitLEApcrelJTInstruction(MI);
778    break;
779  case ARM::RRX:
780  case ARM::MOVsrl_flag:
781  case ARM::MOVsra_flag:
782    emitPseudoMoveInstruction(MI);
783    break;
784  }
785}
786
787unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
788                                                const TargetInstrDesc &TID,
789                                                const MachineOperand &MO,
790                                                unsigned OpIdx) {
791  unsigned Binary = getMachineOpValue(MI, MO);
792
793  const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
794  const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
795  ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
796
797  // Encode the shift opcode.
798  unsigned SBits = 0;
799  unsigned Rs = MO1.getReg();
800  if (Rs) {
801    // Set shift operand (bit[7:4]).
802    // LSL - 0001
803    // LSR - 0011
804    // ASR - 0101
805    // ROR - 0111
806    // RRX - 0110 and bit[11:8] clear.
807    switch (SOpc) {
808    default: llvm_unreachable("Unknown shift opc!");
809    case ARM_AM::lsl: SBits = 0x1; break;
810    case ARM_AM::lsr: SBits = 0x3; break;
811    case ARM_AM::asr: SBits = 0x5; break;
812    case ARM_AM::ror: SBits = 0x7; break;
813    case ARM_AM::rrx: SBits = 0x6; break;
814    }
815  } else {
816    // Set shift operand (bit[6:4]).
817    // LSL - 000
818    // LSR - 010
819    // ASR - 100
820    // ROR - 110
821    switch (SOpc) {
822    default: llvm_unreachable("Unknown shift opc!");
823    case ARM_AM::lsl: SBits = 0x0; break;
824    case ARM_AM::lsr: SBits = 0x2; break;
825    case ARM_AM::asr: SBits = 0x4; break;
826    case ARM_AM::ror: SBits = 0x6; break;
827    }
828  }
829  Binary |= SBits << 4;
830  if (SOpc == ARM_AM::rrx)
831    return Binary;
832
833  // Encode the shift operation Rs or shift_imm (except rrx).
834  if (Rs) {
835    // Encode Rs bit[11:8].
836    assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
837    return Binary | (getARMRegisterNumbering(Rs) << ARMII::RegRsShift);
838  }
839
840  // Encode shift_imm bit[11:7].
841  return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
842}
843
844unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
845  int SoImmVal = ARM_AM::getSOImmVal(SoImm);
846  assert(SoImmVal != -1 && "Not a valid so_imm value!");
847
848  // Encode rotate_imm.
849  unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
850    << ARMII::SoRotImmShift;
851
852  // Encode immed_8.
853  Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
854  return Binary;
855}
856
857unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
858                                         const TargetInstrDesc &TID) const {
859  for (unsigned i = MI.getNumOperands(), e = TID.getNumOperands(); i != e; --i){
860    const MachineOperand &MO = MI.getOperand(i-1);
861    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
862      return 1 << ARMII::S_BitShift;
863  }
864  return 0;
865}
866
867void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
868                                                   unsigned ImplicitRd,
869                                                   unsigned ImplicitRn) {
870  const TargetInstrDesc &TID = MI.getDesc();
871
872  // Part of binary is determined by TableGn.
873  unsigned Binary = getBinaryCodeForInstr(MI);
874
875  // Set the conditional execution predicate
876  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
877
878  // Encode S bit if MI modifies CPSR.
879  Binary |= getAddrModeSBit(MI, TID);
880
881  // Encode register def if there is one.
882  unsigned NumDefs = TID.getNumDefs();
883  unsigned OpIdx = 0;
884  if (NumDefs)
885    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
886  else if (ImplicitRd)
887    // Special handling for implicit use (e.g. PC).
888    Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
889
890  if (TID.Opcode == ARM::MOVi16) {
891      // Get immediate from MI.
892      unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
893                      ARM::reloc_arm_movw);
894      // Encode imm which is the same as in emitMOVi32immInstruction().
895      Binary |= Lo16 & 0xFFF;
896      Binary |= ((Lo16 >> 12) & 0xF) << 16;
897      emitWordLE(Binary);
898      return;
899  } else if(TID.Opcode == ARM::MOVTi16) {
900      unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
901                       ARM::reloc_arm_movt) >> 16);
902      Binary |= Hi16 & 0xFFF;
903      Binary |= ((Hi16 >> 12) & 0xF) << 16;
904      emitWordLE(Binary);
905      return;
906  } else if ((TID.Opcode == ARM::BFC) || (TID.Opcode == ARM::BFI)) {
907      uint32_t v = ~MI.getOperand(2).getImm();
908      int32_t lsb = CountTrailingZeros_32(v);
909      int32_t msb = (32 - CountLeadingZeros_32(v)) - 1;
910      // Instr{20-16} = msb, Instr{11-7} = lsb
911      Binary |= (msb & 0x1F) << 16;
912      Binary |= (lsb & 0x1F) << 7;
913      emitWordLE(Binary);
914      return;
915  } else if ((TID.Opcode == ARM::UBFX) || (TID.Opcode == ARM::SBFX)) {
916      // Encode Rn in Instr{0-3}
917      Binary |= getMachineOpValue(MI, OpIdx++);
918
919      uint32_t lsb = MI.getOperand(OpIdx++).getImm();
920      uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1;
921
922      // Instr{20-16} = widthm1, Instr{11-7} = lsb
923      Binary |= (widthm1 & 0x1F) << 16;
924      Binary |= (lsb & 0x1F) << 7;
925      emitWordLE(Binary);
926      return;
927  }
928
929  // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
930  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
931    ++OpIdx;
932
933  // Encode first non-shifter register operand if there is one.
934  bool isUnary = TID.TSFlags & ARMII::UnaryDP;
935  if (!isUnary) {
936    if (ImplicitRn)
937      // Special handling for implicit use (e.g. PC).
938      Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
939    else {
940      Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
941      ++OpIdx;
942    }
943  }
944
945  // Encode shifter operand.
946  const MachineOperand &MO = MI.getOperand(OpIdx);
947  if ((TID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
948    // Encode SoReg.
949    emitWordLE(Binary | getMachineSoRegOpValue(MI, TID, MO, OpIdx));
950    return;
951  }
952
953  if (MO.isReg()) {
954    // Encode register Rm.
955    emitWordLE(Binary | getARMRegisterNumbering(MO.getReg()));
956    return;
957  }
958
959  // Encode so_imm.
960  Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
961
962  emitWordLE(Binary);
963}
964
965void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
966                                              unsigned ImplicitRd,
967                                              unsigned ImplicitRn) {
968  const TargetInstrDesc &TID = MI.getDesc();
969  unsigned Form = TID.TSFlags & ARMII::FormMask;
970  bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
971
972  // Part of binary is determined by TableGn.
973  unsigned Binary = getBinaryCodeForInstr(MI);
974
975  // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done.
976  if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp ||
977      MI.getOpcode() == ARM::STRi12) {
978    emitWordLE(Binary);
979    return;
980  }
981
982  // Set the conditional execution predicate
983  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
984
985  unsigned OpIdx = 0;
986
987  // Operand 0 of a pre- and post-indexed store is the address base
988  // writeback. Skip it.
989  bool Skipped = false;
990  if (IsPrePost && Form == ARMII::StFrm) {
991    ++OpIdx;
992    Skipped = true;
993  }
994
995  // Set first operand
996  if (ImplicitRd)
997    // Special handling for implicit use (e.g. PC).
998    Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
999  else
1000    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1001
1002  // Set second operand
1003  if (ImplicitRn)
1004    // Special handling for implicit use (e.g. PC).
1005    Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1006  else
1007    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1008
1009  // If this is a two-address operand, skip it. e.g. LDR_PRE.
1010  if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1011    ++OpIdx;
1012
1013  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1014  unsigned AM2Opc = (ImplicitRn == ARM::PC)
1015    ? 0 : MI.getOperand(OpIdx+1).getImm();
1016
1017  // Set bit U(23) according to sign of immed value (positive or negative).
1018  Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
1019             ARMII::U_BitShift);
1020  if (!MO2.getReg()) { // is immediate
1021    if (ARM_AM::getAM2Offset(AM2Opc))
1022      // Set the value of offset_12 field
1023      Binary |= ARM_AM::getAM2Offset(AM2Opc);
1024    emitWordLE(Binary);
1025    return;
1026  }
1027
1028  // Set bit I(25), because this is not in immediate encoding.
1029  Binary |= 1 << ARMII::I_BitShift;
1030  assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
1031  // Set bit[3:0] to the corresponding Rm register
1032  Binary |= getARMRegisterNumbering(MO2.getReg());
1033
1034  // If this instr is in scaled register offset/index instruction, set
1035  // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
1036  if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
1037    Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift;  // shift
1038    Binary |= ShImm              << ARMII::ShiftShift;     // shift_immed
1039  }
1040
1041  emitWordLE(Binary);
1042}
1043
1044void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
1045                                                  unsigned ImplicitRn) {
1046  const TargetInstrDesc &TID = MI.getDesc();
1047  unsigned Form = TID.TSFlags & ARMII::FormMask;
1048  bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1049
1050  // Part of binary is determined by TableGn.
1051  unsigned Binary = getBinaryCodeForInstr(MI);
1052
1053  // Set the conditional execution predicate
1054  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1055
1056  unsigned OpIdx = 0;
1057
1058  // Operand 0 of a pre- and post-indexed store is the address base
1059  // writeback. Skip it.
1060  bool Skipped = false;
1061  if (IsPrePost && Form == ARMII::StMiscFrm) {
1062    ++OpIdx;
1063    Skipped = true;
1064  }
1065
1066  // Set first operand
1067  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1068
1069  // Skip LDRD and STRD's second operand.
1070  if (TID.Opcode == ARM::LDRD || TID.Opcode == ARM::STRD)
1071    ++OpIdx;
1072
1073  // Set second operand
1074  if (ImplicitRn)
1075    // Special handling for implicit use (e.g. PC).
1076    Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
1077  else
1078    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1079
1080  // If this is a two-address operand, skip it. e.g. LDRH_POST.
1081  if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1082    ++OpIdx;
1083
1084  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1085  unsigned AM3Opc = (ImplicitRn == ARM::PC)
1086    ? 0 : MI.getOperand(OpIdx+1).getImm();
1087
1088  // Set bit U(23) according to sign of immed value (positive or negative)
1089  Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
1090             ARMII::U_BitShift);
1091
1092  // If this instr is in register offset/index encoding, set bit[3:0]
1093  // to the corresponding Rm register.
1094  if (MO2.getReg()) {
1095    Binary |= getARMRegisterNumbering(MO2.getReg());
1096    emitWordLE(Binary);
1097    return;
1098  }
1099
1100  // This instr is in immediate offset/index encoding, set bit 22 to 1.
1101  Binary |= 1 << ARMII::AM3_I_BitShift;
1102  if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
1103    // Set operands
1104    Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift;  // immedH
1105    Binary |= (ImmOffs & 0xF);                      // immedL
1106  }
1107
1108  emitWordLE(Binary);
1109}
1110
1111static unsigned getAddrModeUPBits(unsigned Mode) {
1112  unsigned Binary = 0;
1113
1114  // Set addressing mode by modifying bits U(23) and P(24)
1115  // IA - Increment after  - bit U = 1 and bit P = 0
1116  // IB - Increment before - bit U = 1 and bit P = 1
1117  // DA - Decrement after  - bit U = 0 and bit P = 0
1118  // DB - Decrement before - bit U = 0 and bit P = 1
1119  switch (Mode) {
1120  default: llvm_unreachable("Unknown addressing sub-mode!");
1121  case ARM_AM::da:                                     break;
1122  case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
1123  case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
1124  case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
1125  }
1126
1127  return Binary;
1128}
1129
1130void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
1131  const TargetInstrDesc &TID = MI.getDesc();
1132  bool IsUpdating = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1133
1134  // Part of binary is determined by TableGn.
1135  unsigned Binary = getBinaryCodeForInstr(MI);
1136
1137  // Set the conditional execution predicate
1138  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1139
1140  // Skip operand 0 of an instruction with base register update.
1141  unsigned OpIdx = 0;
1142  if (IsUpdating)
1143    ++OpIdx;
1144
1145  // Set base address operand
1146  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1147
1148  // Set addressing mode by modifying bits U(23) and P(24)
1149  const MachineOperand &MO = MI.getOperand(OpIdx++);
1150  Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(MO.getImm()));
1151
1152  // Set bit W(21)
1153  if (IsUpdating)
1154    Binary |= 0x1 << ARMII::W_BitShift;
1155
1156  // Set registers
1157  for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
1158    const MachineOperand &MO = MI.getOperand(i);
1159    if (!MO.isReg() || MO.isImplicit())
1160      break;
1161    unsigned RegNum = getARMRegisterNumbering(MO.getReg());
1162    assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
1163           RegNum < 16);
1164    Binary |= 0x1 << RegNum;
1165  }
1166
1167  emitWordLE(Binary);
1168}
1169
1170void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
1171  const TargetInstrDesc &TID = MI.getDesc();
1172
1173  // Part of binary is determined by TableGn.
1174  unsigned Binary = getBinaryCodeForInstr(MI);
1175
1176  // Set the conditional execution predicate
1177  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1178
1179  // Encode S bit if MI modifies CPSR.
1180  Binary |= getAddrModeSBit(MI, TID);
1181
1182  // 32x32->64bit operations have two destination registers. The number
1183  // of register definitions will tell us if that's what we're dealing with.
1184  unsigned OpIdx = 0;
1185  if (TID.getNumDefs() == 2)
1186    Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
1187
1188  // Encode Rd
1189  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
1190
1191  // Encode Rm
1192  Binary |= getMachineOpValue(MI, OpIdx++);
1193
1194  // Encode Rs
1195  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
1196
1197  // Many multiple instructions (e.g. MLA) have three src operands. Encode
1198  // it as Rn (for multiply, that's in the same offset as RdLo.
1199  if (TID.getNumOperands() > OpIdx &&
1200      !TID.OpInfo[OpIdx].isPredicate() &&
1201      !TID.OpInfo[OpIdx].isOptionalDef())
1202    Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
1203
1204  emitWordLE(Binary);
1205}
1206
1207void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
1208  const TargetInstrDesc &TID = MI.getDesc();
1209
1210  // Part of binary is determined by TableGn.
1211  unsigned Binary = getBinaryCodeForInstr(MI);
1212
1213  // Set the conditional execution predicate
1214  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1215
1216  unsigned OpIdx = 0;
1217
1218  // Encode Rd
1219  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1220
1221  const MachineOperand &MO1 = MI.getOperand(OpIdx++);
1222  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1223  if (MO2.isReg()) {
1224    // Two register operand form.
1225    // Encode Rn.
1226    Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
1227
1228    // Encode Rm.
1229    Binary |= getMachineOpValue(MI, MO2);
1230    ++OpIdx;
1231  } else {
1232    Binary |= getMachineOpValue(MI, MO1);
1233  }
1234
1235  // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
1236  if (MI.getOperand(OpIdx).isImm() &&
1237      !TID.OpInfo[OpIdx].isPredicate() &&
1238      !TID.OpInfo[OpIdx].isOptionalDef())
1239    Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
1240
1241  emitWordLE(Binary);
1242}
1243
1244void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
1245  const TargetInstrDesc &TID = MI.getDesc();
1246
1247  // Part of binary is determined by TableGn.
1248  unsigned Binary = getBinaryCodeForInstr(MI);
1249
1250  // Set the conditional execution predicate
1251  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1252
1253  unsigned OpIdx = 0;
1254
1255  // Encode Rd
1256  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1257
1258  const MachineOperand &MO = MI.getOperand(OpIdx++);
1259  if (OpIdx == TID.getNumOperands() ||
1260      TID.OpInfo[OpIdx].isPredicate() ||
1261      TID.OpInfo[OpIdx].isOptionalDef()) {
1262    // Encode Rm and it's done.
1263    Binary |= getMachineOpValue(MI, MO);
1264    emitWordLE(Binary);
1265    return;
1266  }
1267
1268  // Encode Rn.
1269  Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
1270
1271  // Encode Rm.
1272  Binary |= getMachineOpValue(MI, OpIdx++);
1273
1274  // Encode shift_imm.
1275  unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
1276  if (TID.Opcode == ARM::PKHTB) {
1277    assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!");
1278    if (ShiftAmt == 32)
1279      ShiftAmt = 0;
1280  }
1281  assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1282  Binary |= ShiftAmt << ARMII::ShiftShift;
1283
1284  emitWordLE(Binary);
1285}
1286
1287void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) {
1288  const TargetInstrDesc &TID = MI.getDesc();
1289
1290  // Part of binary is determined by TableGen.
1291  unsigned Binary = getBinaryCodeForInstr(MI);
1292
1293  // Set the conditional execution predicate
1294  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1295
1296  // Encode Rd
1297  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
1298
1299  // Encode saturate bit position.
1300  unsigned Pos = MI.getOperand(1).getImm();
1301  if (TID.Opcode == ARM::SSAT || TID.Opcode == ARM::SSAT16)
1302    Pos -= 1;
1303  assert((Pos < 16 || (Pos < 32 &&
1304                       TID.Opcode != ARM::SSAT16 &&
1305                       TID.Opcode != ARM::USAT16)) &&
1306         "saturate bit position out of range");
1307  Binary |= Pos << 16;
1308
1309  // Encode Rm
1310  Binary |= getMachineOpValue(MI, 2);
1311
1312  // Encode shift_imm.
1313  if (TID.getNumOperands() == 4) {
1314    unsigned ShiftOp = MI.getOperand(3).getImm();
1315    ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp);
1316    if (Opc == ARM_AM::asr)
1317      Binary |= (1 << 6);
1318    unsigned ShiftAmt = MI.getOperand(3).getImm();
1319    if (ShiftAmt == 32 && Opc == ARM_AM::asr)
1320      ShiftAmt = 0;
1321    assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1322    Binary |= ShiftAmt << ARMII::ShiftShift;
1323  }
1324
1325  emitWordLE(Binary);
1326}
1327
1328void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
1329  const TargetInstrDesc &TID = MI.getDesc();
1330
1331  if (TID.Opcode == ARM::TPsoft) {
1332    llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
1333  }
1334
1335  // Part of binary is determined by TableGn.
1336  unsigned Binary = getBinaryCodeForInstr(MI);
1337
1338  // Set the conditional execution predicate
1339  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1340
1341  // Set signed_immed_24 field
1342  Binary |= getMachineOpValue(MI, 0);
1343
1344  emitWordLE(Binary);
1345}
1346
1347void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
1348  // Remember the base address of the inline jump table.
1349  uintptr_t JTBase = MCE.getCurrentPCValue();
1350  JTI->addJumpTableBaseAddr(JTIndex, JTBase);
1351  DEBUG(errs() << "  ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
1352               << '\n');
1353
1354  // Now emit the jump table entries.
1355  const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
1356  for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
1357    if (IsPIC)
1358      // DestBB address - JT base.
1359      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
1360    else
1361      // Absolute DestBB address.
1362      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
1363    emitWordLE(0);
1364  }
1365}
1366
1367void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
1368  const TargetInstrDesc &TID = MI.getDesc();
1369
1370  // Handle jump tables.
1371  if (TID.Opcode == ARM::BR_JTr || TID.Opcode == ARM::BR_JTadd) {
1372    // First emit a ldr pc, [] instruction.
1373    emitDataProcessingInstruction(MI, ARM::PC);
1374
1375    // Then emit the inline jump table.
1376    unsigned JTIndex =
1377      (TID.Opcode == ARM::BR_JTr)
1378      ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
1379    emitInlineJumpTable(JTIndex);
1380    return;
1381  } else if (TID.Opcode == ARM::BR_JTm) {
1382    // First emit a ldr pc, [] instruction.
1383    emitLoadStoreInstruction(MI, ARM::PC);
1384
1385    // Then emit the inline jump table.
1386    emitInlineJumpTable(MI.getOperand(3).getIndex());
1387    return;
1388  }
1389
1390  // Part of binary is determined by TableGn.
1391  unsigned Binary = getBinaryCodeForInstr(MI);
1392
1393  // Set the conditional execution predicate
1394  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1395
1396  if (TID.Opcode == ARM::BX_RET || TID.Opcode == ARM::MOVPCLR)
1397    // The return register is LR.
1398    Binary |= getARMRegisterNumbering(ARM::LR);
1399  else
1400    // otherwise, set the return register
1401    Binary |= getMachineOpValue(MI, 0);
1402
1403  emitWordLE(Binary);
1404}
1405
1406static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) {
1407  unsigned RegD = MI.getOperand(OpIdx).getReg();
1408  unsigned Binary = 0;
1409  bool isSPVFP = ARM::SPRRegisterClass->contains(RegD);
1410  RegD = getARMRegisterNumbering(RegD);
1411  if (!isSPVFP)
1412    Binary |=   RegD               << ARMII::RegRdShift;
1413  else {
1414    Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
1415    Binary |=  (RegD & 0x01)       << ARMII::D_BitShift;
1416  }
1417  return Binary;
1418}
1419
1420static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) {
1421  unsigned RegN = MI.getOperand(OpIdx).getReg();
1422  unsigned Binary = 0;
1423  bool isSPVFP = ARM::SPRRegisterClass->contains(RegN);
1424  RegN = getARMRegisterNumbering(RegN);
1425  if (!isSPVFP)
1426    Binary |=   RegN               << ARMII::RegRnShift;
1427  else {
1428    Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
1429    Binary |=  (RegN & 0x01)       << ARMII::N_BitShift;
1430  }
1431  return Binary;
1432}
1433
1434static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) {
1435  unsigned RegM = MI.getOperand(OpIdx).getReg();
1436  unsigned Binary = 0;
1437  bool isSPVFP = ARM::SPRRegisterClass->contains(RegM);
1438  RegM = getARMRegisterNumbering(RegM);
1439  if (!isSPVFP)
1440    Binary |=   RegM;
1441  else {
1442    Binary |= ((RegM & 0x1E) >> 1);
1443    Binary |=  (RegM & 0x01)       << ARMII::M_BitShift;
1444  }
1445  return Binary;
1446}
1447
1448void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
1449  const TargetInstrDesc &TID = MI.getDesc();
1450
1451  // Part of binary is determined by TableGn.
1452  unsigned Binary = getBinaryCodeForInstr(MI);
1453
1454  // Set the conditional execution predicate
1455  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1456
1457  unsigned OpIdx = 0;
1458  assert((Binary & ARMII::D_BitShift) == 0 &&
1459         (Binary & ARMII::N_BitShift) == 0 &&
1460         (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!");
1461
1462  // Encode Dd / Sd.
1463  Binary |= encodeVFPRd(MI, OpIdx++);
1464
1465  // If this is a two-address operand, skip it, e.g. FMACD.
1466  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1467    ++OpIdx;
1468
1469  // Encode Dn / Sn.
1470  if ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
1471    Binary |= encodeVFPRn(MI, OpIdx++);
1472
1473  if (OpIdx == TID.getNumOperands() ||
1474      TID.OpInfo[OpIdx].isPredicate() ||
1475      TID.OpInfo[OpIdx].isOptionalDef()) {
1476    // FCMPEZD etc. has only one operand.
1477    emitWordLE(Binary);
1478    return;
1479  }
1480
1481  // Encode Dm / Sm.
1482  Binary |= encodeVFPRm(MI, OpIdx);
1483
1484  emitWordLE(Binary);
1485}
1486
1487void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
1488  const TargetInstrDesc &TID = MI.getDesc();
1489  unsigned Form = TID.TSFlags & ARMII::FormMask;
1490
1491  // Part of binary is determined by TableGn.
1492  unsigned Binary = getBinaryCodeForInstr(MI);
1493
1494  // Set the conditional execution predicate
1495  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1496
1497  switch (Form) {
1498  default: break;
1499  case ARMII::VFPConv1Frm:
1500  case ARMII::VFPConv2Frm:
1501  case ARMII::VFPConv3Frm:
1502    // Encode Dd / Sd.
1503    Binary |= encodeVFPRd(MI, 0);
1504    break;
1505  case ARMII::VFPConv4Frm:
1506    // Encode Dn / Sn.
1507    Binary |= encodeVFPRn(MI, 0);
1508    break;
1509  case ARMII::VFPConv5Frm:
1510    // Encode Dm / Sm.
1511    Binary |= encodeVFPRm(MI, 0);
1512    break;
1513  }
1514
1515  switch (Form) {
1516  default: break;
1517  case ARMII::VFPConv1Frm:
1518    // Encode Dm / Sm.
1519    Binary |= encodeVFPRm(MI, 1);
1520    break;
1521  case ARMII::VFPConv2Frm:
1522  case ARMII::VFPConv3Frm:
1523    // Encode Dn / Sn.
1524    Binary |= encodeVFPRn(MI, 1);
1525    break;
1526  case ARMII::VFPConv4Frm:
1527  case ARMII::VFPConv5Frm:
1528    // Encode Dd / Sd.
1529    Binary |= encodeVFPRd(MI, 1);
1530    break;
1531  }
1532
1533  if (Form == ARMII::VFPConv5Frm)
1534    // Encode Dn / Sn.
1535    Binary |= encodeVFPRn(MI, 2);
1536  else if (Form == ARMII::VFPConv3Frm)
1537    // Encode Dm / Sm.
1538    Binary |= encodeVFPRm(MI, 2);
1539
1540  emitWordLE(Binary);
1541}
1542
1543void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
1544  // Part of binary is determined by TableGn.
1545  unsigned Binary = getBinaryCodeForInstr(MI);
1546
1547  // Set the conditional execution predicate
1548  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1549
1550  unsigned OpIdx = 0;
1551
1552  // Encode Dd / Sd.
1553  Binary |= encodeVFPRd(MI, OpIdx++);
1554
1555  // Encode address base.
1556  const MachineOperand &Base = MI.getOperand(OpIdx++);
1557  Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
1558
1559  // If there is a non-zero immediate offset, encode it.
1560  if (Base.isReg()) {
1561    const MachineOperand &Offset = MI.getOperand(OpIdx);
1562    if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
1563      if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
1564        Binary |= 1 << ARMII::U_BitShift;
1565      Binary |= ImmOffs;
1566      emitWordLE(Binary);
1567      return;
1568    }
1569  }
1570
1571  // If immediate offset is omitted, default to +0.
1572  Binary |= 1 << ARMII::U_BitShift;
1573
1574  emitWordLE(Binary);
1575}
1576
1577void
1578ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
1579  const TargetInstrDesc &TID = MI.getDesc();
1580  bool IsUpdating = (TID.TSFlags & ARMII::IndexModeMask) != 0;
1581
1582  // Part of binary is determined by TableGn.
1583  unsigned Binary = getBinaryCodeForInstr(MI);
1584
1585  // Set the conditional execution predicate
1586  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1587
1588  // Skip operand 0 of an instruction with base register update.
1589  unsigned OpIdx = 0;
1590  if (IsUpdating)
1591    ++OpIdx;
1592
1593  // Set base address operand
1594  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1595
1596  // Set addressing mode by modifying bits U(23) and P(24)
1597  const MachineOperand &MO = MI.getOperand(OpIdx++);
1598  Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(MO.getImm()));
1599
1600  // Set bit W(21)
1601  if (IsUpdating)
1602    Binary |= 0x1 << ARMII::W_BitShift;
1603
1604  // First register is encoded in Dd.
1605  Binary |= encodeVFPRd(MI, OpIdx+2);
1606
1607  // Count the number of registers.
1608  unsigned NumRegs = 1;
1609  for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
1610    const MachineOperand &MO = MI.getOperand(i);
1611    if (!MO.isReg() || MO.isImplicit())
1612      break;
1613    ++NumRegs;
1614  }
1615  // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
1616  // Otherwise, it will be 0, in the case of 32-bit registers.
1617  if(Binary & 0x100)
1618    Binary |= NumRegs * 2;
1619  else
1620    Binary |= NumRegs;
1621
1622  emitWordLE(Binary);
1623}
1624
1625static unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) {
1626  unsigned RegD = MI.getOperand(OpIdx).getReg();
1627  unsigned Binary = 0;
1628  RegD = getARMRegisterNumbering(RegD);
1629  Binary |= (RegD & 0xf) << ARMII::RegRdShift;
1630  Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift;
1631  return Binary;
1632}
1633
1634static unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) {
1635  unsigned RegN = MI.getOperand(OpIdx).getReg();
1636  unsigned Binary = 0;
1637  RegN = getARMRegisterNumbering(RegN);
1638  Binary |= (RegN & 0xf) << ARMII::RegRnShift;
1639  Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift;
1640  return Binary;
1641}
1642
1643static unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) {
1644  unsigned RegM = MI.getOperand(OpIdx).getReg();
1645  unsigned Binary = 0;
1646  RegM = getARMRegisterNumbering(RegM);
1647  Binary |= (RegM & 0xf);
1648  Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift;
1649  return Binary;
1650}
1651
1652/// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON
1653/// data-processing instruction to the corresponding Thumb encoding.
1654static unsigned convertNEONDataProcToThumb(unsigned Binary) {
1655  assert((Binary & 0xfe000000) == 0xf2000000 &&
1656         "not an ARM NEON data-processing instruction");
1657  unsigned UBit = (Binary >> 24) & 1;
1658  return 0xef000000 | (UBit << 28) | (Binary & 0xffffff);
1659}
1660
1661void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) {
1662  unsigned Binary = getBinaryCodeForInstr(MI);
1663
1664  unsigned RegTOpIdx, RegNOpIdx, LnOpIdx;
1665  const TargetInstrDesc &TID = MI.getDesc();
1666  if ((TID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) {
1667    RegTOpIdx = 0;
1668    RegNOpIdx = 1;
1669    LnOpIdx = 2;
1670  } else { // ARMII::NSetLnFrm
1671    RegTOpIdx = 2;
1672    RegNOpIdx = 0;
1673    LnOpIdx = 3;
1674  }
1675
1676  // Set the conditional execution predicate
1677  Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1678
1679  unsigned RegT = MI.getOperand(RegTOpIdx).getReg();
1680  RegT = getARMRegisterNumbering(RegT);
1681  Binary |= (RegT << ARMII::RegRdShift);
1682  Binary |= encodeNEONRn(MI, RegNOpIdx);
1683
1684  unsigned LaneShift;
1685  if ((Binary & (1 << 22)) != 0)
1686    LaneShift = 0; // 8-bit elements
1687  else if ((Binary & (1 << 5)) != 0)
1688    LaneShift = 1; // 16-bit elements
1689  else
1690    LaneShift = 2; // 32-bit elements
1691
1692  unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift;
1693  unsigned Opc1 = Lane >> 2;
1694  unsigned Opc2 = Lane & 3;
1695  assert((Opc1 & 3) == 0 && "out-of-range lane number operand");
1696  Binary |= (Opc1 << 21);
1697  Binary |= (Opc2 << 5);
1698
1699  emitWordLE(Binary);
1700}
1701
1702void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) {
1703  unsigned Binary = getBinaryCodeForInstr(MI);
1704
1705  // Set the conditional execution predicate
1706  Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1707
1708  unsigned RegT = MI.getOperand(1).getReg();
1709  RegT = getARMRegisterNumbering(RegT);
1710  Binary |= (RegT << ARMII::RegRdShift);
1711  Binary |= encodeNEONRn(MI, 0);
1712  emitWordLE(Binary);
1713}
1714
1715void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) {
1716  unsigned Binary = getBinaryCodeForInstr(MI);
1717  // Destination register is encoded in Dd.
1718  Binary |= encodeNEONRd(MI, 0);
1719  // Immediate fields: Op, Cmode, I, Imm3, Imm4
1720  unsigned Imm = MI.getOperand(1).getImm();
1721  unsigned Op = (Imm >> 12) & 1;
1722  unsigned Cmode = (Imm >> 8) & 0xf;
1723  unsigned I = (Imm >> 7) & 1;
1724  unsigned Imm3 = (Imm >> 4) & 0x7;
1725  unsigned Imm4 = Imm & 0xf;
1726  Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4;
1727  if (IsThumb)
1728    Binary = convertNEONDataProcToThumb(Binary);
1729  emitWordLE(Binary);
1730}
1731
1732void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) {
1733  const TargetInstrDesc &TID = MI.getDesc();
1734  unsigned Binary = getBinaryCodeForInstr(MI);
1735  // Destination register is encoded in Dd; source register in Dm.
1736  unsigned OpIdx = 0;
1737  Binary |= encodeNEONRd(MI, OpIdx++);
1738  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1739    ++OpIdx;
1740  Binary |= encodeNEONRm(MI, OpIdx);
1741  if (IsThumb)
1742    Binary = convertNEONDataProcToThumb(Binary);
1743  // FIXME: This does not handle VDUPfdf or VDUPfqf.
1744  emitWordLE(Binary);
1745}
1746
1747void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) {
1748  const TargetInstrDesc &TID = MI.getDesc();
1749  unsigned Binary = getBinaryCodeForInstr(MI);
1750  // Destination register is encoded in Dd; source registers in Dn and Dm.
1751  unsigned OpIdx = 0;
1752  Binary |= encodeNEONRd(MI, OpIdx++);
1753  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1754    ++OpIdx;
1755  Binary |= encodeNEONRn(MI, OpIdx++);
1756  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1757    ++OpIdx;
1758  Binary |= encodeNEONRm(MI, OpIdx);
1759  if (IsThumb)
1760    Binary = convertNEONDataProcToThumb(Binary);
1761  // FIXME: This does not handle VMOVDneon or VMOVQ.
1762  emitWordLE(Binary);
1763}
1764
1765#include "ARMGenCodeEmitter.inc"
1766