ARMCodeEmitter.cpp revision c23197a26f34f559ea9797de51e187087c039c42
1//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the pass that transforms the ARM machine instructions into
11// relocatable machine code.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "jit"
16#include "ARM.h"
17#include "ARMAddressingModes.h"
18#include "ARMConstantPoolValue.h"
19#include "ARMInstrInfo.h"
20#include "ARMRelocations.h"
21#include "ARMSubtarget.h"
22#include "ARMTargetMachine.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/PassManager.h"
27#include "llvm/CodeGen/MachineCodeEmitter.h"
28#include "llvm/CodeGen/JITCodeEmitter.h"
29#include "llvm/CodeGen/ObjectCodeEmitter.h"
30#include "llvm/CodeGen/MachineConstantPool.h"
31#include "llvm/CodeGen/MachineFunctionPass.h"
32#include "llvm/CodeGen/MachineInstr.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/Passes.h"
35#include "llvm/ADT/Statistic.h"
36#include "llvm/Support/Compiler.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/raw_ostream.h"
40#ifndef NDEBUG
41#include <iomanip>
42#endif
43using namespace llvm;
44
45STATISTIC(NumEmitted, "Number of machine instructions emitted");
46
47namespace {
48
49  class ARMCodeEmitter {
50  public:
51    /// getBinaryCodeForInstr - This function, generated by the
52    /// CodeEmitterGenerator using TableGen, produces the binary encoding for
53    /// machine instructions.
54    unsigned getBinaryCodeForInstr(const MachineInstr &MI);
55  };
56
57  template<class CodeEmitter>
58  class VISIBILITY_HIDDEN Emitter : public MachineFunctionPass,
59                                    public ARMCodeEmitter {
60    ARMJITInfo                *JTI;
61    const ARMInstrInfo        *II;
62    const TargetData          *TD;
63    TargetMachine             &TM;
64    CodeEmitter               &MCE;
65    const std::vector<MachineConstantPoolEntry> *MCPEs;
66    const std::vector<MachineJumpTableEntry> *MJTEs;
67    bool IsPIC;
68
69  public:
70    static char ID;
71    explicit Emitter(TargetMachine &tm, CodeEmitter &mce)
72      : MachineFunctionPass(&ID), JTI(0), II(0), TD(0), TM(tm),
73      MCE(mce), MCPEs(0), MJTEs(0),
74      IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
75    Emitter(TargetMachine &tm, CodeEmitter &mce,
76            const ARMInstrInfo &ii, const TargetData &td)
77      : MachineFunctionPass(&ID), JTI(0), II(&ii), TD(&td), TM(tm),
78      MCE(mce), MCPEs(0), MJTEs(0),
79      IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
80
81    bool runOnMachineFunction(MachineFunction &MF);
82
83    virtual const char *getPassName() const {
84      return "ARM Machine Code Emitter";
85    }
86
87    void emitInstruction(const MachineInstr &MI);
88
89  private:
90
91    void emitWordLE(unsigned Binary);
92
93    void emitDWordLE(uint64_t Binary);
94
95    void emitConstPoolInstruction(const MachineInstr &MI);
96
97    void emitMOVi2piecesInstruction(const MachineInstr &MI);
98
99    void emitLEApcrelJTInstruction(const MachineInstr &MI);
100
101    void emitPseudoMoveInstruction(const MachineInstr &MI);
102
103    void addPCLabel(unsigned LabelID);
104
105    void emitPseudoInstruction(const MachineInstr &MI);
106
107    unsigned getMachineSoRegOpValue(const MachineInstr &MI,
108                                    const TargetInstrDesc &TID,
109                                    const MachineOperand &MO,
110                                    unsigned OpIdx);
111
112    unsigned getMachineSoImmOpValue(unsigned SoImm);
113
114    unsigned getAddrModeSBit(const MachineInstr &MI,
115                             const TargetInstrDesc &TID) const;
116
117    void emitDataProcessingInstruction(const MachineInstr &MI,
118                                       unsigned ImplicitRd = 0,
119                                       unsigned ImplicitRn = 0);
120
121    void emitLoadStoreInstruction(const MachineInstr &MI,
122                                  unsigned ImplicitRd = 0,
123                                  unsigned ImplicitRn = 0);
124
125    void emitMiscLoadStoreInstruction(const MachineInstr &MI,
126                                      unsigned ImplicitRn = 0);
127
128    void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
129
130    void emitMulFrmInstruction(const MachineInstr &MI);
131
132    void emitExtendInstruction(const MachineInstr &MI);
133
134    void emitMiscArithInstruction(const MachineInstr &MI);
135
136    void emitBranchInstruction(const MachineInstr &MI);
137
138    void emitInlineJumpTable(unsigned JTIndex);
139
140    void emitMiscBranchInstruction(const MachineInstr &MI);
141
142    void emitVFPArithInstruction(const MachineInstr &MI);
143
144    void emitVFPConversionInstruction(const MachineInstr &MI);
145
146    void emitVFPLoadStoreInstruction(const MachineInstr &MI);
147
148    void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
149
150    void emitMiscInstruction(const MachineInstr &MI);
151
152    /// getMachineOpValue - Return binary encoding of operand. If the machine
153    /// operand requires relocation, record the relocation and return zero.
154    unsigned getMachineOpValue(const MachineInstr &MI,const MachineOperand &MO);
155    unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) {
156      return getMachineOpValue(MI, MI.getOperand(OpIdx));
157    }
158
159    /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
160    ///
161    unsigned getShiftOp(unsigned Imm) const ;
162
163    /// Routines that handle operands which add machine relocations which are
164    /// fixed up by the relocation stage.
165    void emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
166                           bool NeedStub, intptr_t ACPV = 0);
167    void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
168    void emitConstPoolAddress(unsigned CPI, unsigned Reloc);
169    void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc);
170    void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
171                               intptr_t JTBase = 0);
172  };
173  template <class CodeEmitter>
174  char Emitter<CodeEmitter>::ID = 0;
175}
176
177/// createARMCodeEmitterPass - Return a pass that emits the collected ARM code
178/// to the specified MCE object.
179
180FunctionPass *llvm::createARMCodeEmitterPass(ARMBaseTargetMachine &TM,
181                                             MachineCodeEmitter &MCE) {
182  return new Emitter<MachineCodeEmitter>(TM, MCE);
183}
184FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
185                                                JITCodeEmitter &JCE) {
186  return new Emitter<JITCodeEmitter>(TM, JCE);
187}
188FunctionPass *llvm::createARMObjectCodeEmitterPass(ARMBaseTargetMachine &TM,
189                                                   ObjectCodeEmitter &OCE) {
190  return new Emitter<ObjectCodeEmitter>(TM, OCE);
191}
192
193template<class CodeEmitter>
194bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
195  assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
196          MF.getTarget().getRelocationModel() != Reloc::Static) &&
197         "JIT relocation model must be set to static or default!");
198  II = ((ARMTargetMachine&)MF.getTarget()).getInstrInfo();
199  TD = ((ARMTargetMachine&)MF.getTarget()).getTargetData();
200  JTI = ((ARMTargetMachine&)MF.getTarget()).getJITInfo();
201  MCPEs = &MF.getConstantPool()->getConstants();
202  MJTEs = &MF.getJumpTableInfo()->getJumpTables();
203  IsPIC = TM.getRelocationModel() == Reloc::PIC_;
204  JTI->Initialize(MF, IsPIC);
205
206  do {
207    DOUT << "JITTing function '" << MF.getFunction()->getName() << "'\n";
208    MCE.startFunction(MF);
209    for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
210         MBB != E; ++MBB) {
211      MCE.StartMachineBasicBlock(MBB);
212      for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
213           I != E; ++I)
214        emitInstruction(*I);
215    }
216  } while (MCE.finishFunction(MF));
217
218  return false;
219}
220
221/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
222///
223template<class CodeEmitter>
224unsigned Emitter<CodeEmitter>::getShiftOp(unsigned Imm) const {
225  switch (ARM_AM::getAM2ShiftOpc(Imm)) {
226  default: llvm_unreachable("Unknown shift opc!");
227  case ARM_AM::asr: return 2;
228  case ARM_AM::lsl: return 0;
229  case ARM_AM::lsr: return 1;
230  case ARM_AM::ror:
231  case ARM_AM::rrx: return 3;
232  }
233  return 0;
234}
235
236/// getMachineOpValue - Return binary encoding of operand. If the machine
237/// operand requires relocation, record the relocation and return zero.
238template<class CodeEmitter>
239unsigned Emitter<CodeEmitter>::getMachineOpValue(const MachineInstr &MI,
240                                                 const MachineOperand &MO) {
241  if (MO.isReg())
242    return ARMRegisterInfo::getRegisterNumbering(MO.getReg());
243  else if (MO.isImm())
244    return static_cast<unsigned>(MO.getImm());
245  else if (MO.isGlobal())
246    emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true);
247  else if (MO.isSymbol())
248    emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
249  else if (MO.isCPI()) {
250    const TargetInstrDesc &TID = MI.getDesc();
251    // For VFP load, the immediate offset is multiplied by 4.
252    unsigned Reloc =  ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
253      ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
254    emitConstPoolAddress(MO.getIndex(), Reloc);
255  } else if (MO.isJTI())
256    emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
257  else if (MO.isMBB())
258    emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
259  else {
260#ifndef NDEBUG
261    cerr << MO;
262#endif
263    llvm_unreachable(0);
264  }
265  return 0;
266}
267
268/// emitGlobalAddress - Emit the specified address to the code stream.
269///
270template<class CodeEmitter>
271void Emitter<CodeEmitter>::emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
272                                             bool NeedStub, intptr_t ACPV) {
273  MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
274                                             GV, ACPV, NeedStub));
275}
276
277/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
278/// be emitted to the current location in the function, and allow it to be PC
279/// relative.
280template<class CodeEmitter>
281void Emitter<CodeEmitter>::emitExternalSymbolAddress(const char *ES,
282                                                     unsigned Reloc) {
283  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
284                                                 Reloc, ES));
285}
286
287/// emitConstPoolAddress - Arrange for the address of an constant pool
288/// to be emitted to the current location in the function, and allow it to be PC
289/// relative.
290template<class CodeEmitter>
291void Emitter<CodeEmitter>::emitConstPoolAddress(unsigned CPI,
292                                                unsigned Reloc) {
293  // Tell JIT emitter we'll resolve the address.
294  MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
295                                                    Reloc, CPI, 0, true));
296}
297
298/// emitJumpTableAddress - Arrange for the address of a jump table to
299/// be emitted to the current location in the function, and allow it to be PC
300/// relative.
301template<class CodeEmitter>
302void Emitter<CodeEmitter>::emitJumpTableAddress(unsigned JTIndex,
303                                                unsigned Reloc) {
304  MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
305                                                    Reloc, JTIndex, 0, true));
306}
307
308/// emitMachineBasicBlock - Emit the specified address basic block.
309template<class CodeEmitter>
310void Emitter<CodeEmitter>::emitMachineBasicBlock(MachineBasicBlock *BB,
311                                              unsigned Reloc, intptr_t JTBase) {
312  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
313                                             Reloc, BB, JTBase));
314}
315
316template<class CodeEmitter>
317void Emitter<CodeEmitter>::emitWordLE(unsigned Binary) {
318#ifndef NDEBUG
319  DOUT << "  0x" << std::hex << std::setw(8) << std::setfill('0')
320       << Binary << std::dec << "\n";
321#endif
322  MCE.emitWordLE(Binary);
323}
324
325template<class CodeEmitter>
326void Emitter<CodeEmitter>::emitDWordLE(uint64_t Binary) {
327#ifndef NDEBUG
328  DOUT << "  0x" << std::hex << std::setw(8) << std::setfill('0')
329       << (unsigned)Binary << std::dec << "\n";
330  DOUT << "  0x" << std::hex << std::setw(8) << std::setfill('0')
331       << (unsigned)(Binary >> 32) << std::dec << "\n";
332#endif
333  MCE.emitDWordLE(Binary);
334}
335
336template<class CodeEmitter>
337void Emitter<CodeEmitter>::emitInstruction(const MachineInstr &MI) {
338  DOUT << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI;
339
340  NumEmitted++;  // Keep track of the # of mi's emitted
341  switch (MI.getDesc().TSFlags & ARMII::FormMask) {
342  default: {
343    llvm_unreachable("Unhandled instruction encoding format!");
344    break;
345  }
346  case ARMII::Pseudo:
347    emitPseudoInstruction(MI);
348    break;
349  case ARMII::DPFrm:
350  case ARMII::DPSoRegFrm:
351    emitDataProcessingInstruction(MI);
352    break;
353  case ARMII::LdFrm:
354  case ARMII::StFrm:
355    emitLoadStoreInstruction(MI);
356    break;
357  case ARMII::LdMiscFrm:
358  case ARMII::StMiscFrm:
359    emitMiscLoadStoreInstruction(MI);
360    break;
361  case ARMII::LdStMulFrm:
362    emitLoadStoreMultipleInstruction(MI);
363    break;
364  case ARMII::MulFrm:
365    emitMulFrmInstruction(MI);
366    break;
367  case ARMII::ExtFrm:
368    emitExtendInstruction(MI);
369    break;
370  case ARMII::ArithMiscFrm:
371    emitMiscArithInstruction(MI);
372    break;
373  case ARMII::BrFrm:
374    emitBranchInstruction(MI);
375    break;
376  case ARMII::BrMiscFrm:
377    emitMiscBranchInstruction(MI);
378    break;
379  // VFP instructions.
380  case ARMII::VFPUnaryFrm:
381  case ARMII::VFPBinaryFrm:
382    emitVFPArithInstruction(MI);
383    break;
384  case ARMII::VFPConv1Frm:
385  case ARMII::VFPConv2Frm:
386  case ARMII::VFPConv3Frm:
387  case ARMII::VFPConv4Frm:
388  case ARMII::VFPConv5Frm:
389    emitVFPConversionInstruction(MI);
390    break;
391  case ARMII::VFPLdStFrm:
392    emitVFPLoadStoreInstruction(MI);
393    break;
394  case ARMII::VFPLdStMulFrm:
395    emitVFPLoadStoreMultipleInstruction(MI);
396    break;
397  case ARMII::VFPMiscFrm:
398    emitMiscInstruction(MI);
399    break;
400  }
401}
402
403template<class CodeEmitter>
404void Emitter<CodeEmitter>::emitConstPoolInstruction(const MachineInstr &MI) {
405  unsigned CPI = MI.getOperand(0).getImm();       // CP instruction index.
406  unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
407  const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
408
409  // Remember the CONSTPOOL_ENTRY address for later relocation.
410  JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
411
412  // Emit constpool island entry. In most cases, the actual values will be
413  // resolved and relocated after code emission.
414  if (MCPE.isMachineConstantPoolEntry()) {
415    ARMConstantPoolValue *ACPV =
416      static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
417
418    DOUT << "  ** ARM constant pool #" << CPI << " @ "
419         << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n';
420
421    GlobalValue *GV = ACPV->getGV();
422    if (GV) {
423      assert(!ACPV->isStub() && "Don't know how to deal this yet!");
424      if (ACPV->isNonLazyPointer())
425        MCE.addRelocation(MachineRelocation::getIndirectSymbol(
426                  MCE.getCurrentPCOffset(), ARM::reloc_arm_machine_cp_entry, GV,
427                  (intptr_t)ACPV, false));
428      else
429        emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
430                          ACPV->isStub() || isa<Function>(GV), (intptr_t)ACPV);
431     } else  {
432      assert(!ACPV->isNonLazyPointer() && "Don't know how to deal this yet!");
433      emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute);
434    }
435    emitWordLE(0);
436  } else {
437    Constant *CV = MCPE.Val.ConstVal;
438
439#ifndef NDEBUG
440    DOUT << "  ** Constant pool #" << CPI << " @ "
441         << (void*)MCE.getCurrentPCValue() << " ";
442    if (const Function *F = dyn_cast<Function>(CV))
443      DOUT << F->getName();
444    else
445      DOUT << *CV;
446    DOUT << '\n';
447#endif
448
449    if (GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
450      emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV));
451      emitWordLE(0);
452    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
453      uint32_t Val = *(uint32_t*)CI->getValue().getRawData();
454      emitWordLE(Val);
455    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
456      if (CFP->getType() == Type::FloatTy)
457        emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
458      else if (CFP->getType() == Type::DoubleTy)
459        emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
460      else {
461        llvm_unreachable("Unable to handle this constantpool entry!");
462      }
463    } else {
464      llvm_unreachable("Unable to handle this constantpool entry!");
465    }
466  }
467}
468
469template<class CodeEmitter>
470void Emitter<CodeEmitter>::emitMOVi2piecesInstruction(const MachineInstr &MI) {
471  const MachineOperand &MO0 = MI.getOperand(0);
472  const MachineOperand &MO1 = MI.getOperand(1);
473  assert(MO1.isImm() && ARM_AM::getSOImmVal(MO1.isImm()) != -1 &&
474                                            "Not a valid so_imm value!");
475  unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
476  unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
477
478  // Emit the 'mov' instruction.
479  unsigned Binary = 0xd << 21;  // mov: Insts{24-21} = 0b1101
480
481  // Set the conditional execution predicate.
482  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
483
484  // Encode Rd.
485  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
486
487  // Encode so_imm.
488  // Set bit I(25) to identify this is the immediate form of <shifter_op>
489  Binary |= 1 << ARMII::I_BitShift;
490  Binary |= getMachineSoImmOpValue(V1);
491  emitWordLE(Binary);
492
493  // Now the 'orr' instruction.
494  Binary = 0xc << 21;  // orr: Insts{24-21} = 0b1100
495
496  // Set the conditional execution predicate.
497  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
498
499  // Encode Rd.
500  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
501
502  // Encode Rn.
503  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
504
505  // Encode so_imm.
506  // Set bit I(25) to identify this is the immediate form of <shifter_op>
507  Binary |= 1 << ARMII::I_BitShift;
508  Binary |= getMachineSoImmOpValue(V2);
509  emitWordLE(Binary);
510}
511
512template<class CodeEmitter>
513void Emitter<CodeEmitter>::emitLEApcrelJTInstruction(const MachineInstr &MI) {
514  // It's basically add r, pc, (LJTI - $+8)
515
516  const TargetInstrDesc &TID = MI.getDesc();
517
518  // Emit the 'add' instruction.
519  unsigned Binary = 0x4 << 21;  // add: Insts{24-31} = 0b0100
520
521  // Set the conditional execution predicate
522  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
523
524  // Encode S bit if MI modifies CPSR.
525  Binary |= getAddrModeSBit(MI, TID);
526
527  // Encode Rd.
528  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
529
530  // Encode Rn which is PC.
531  Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
532
533  // Encode the displacement.
534  Binary |= 1 << ARMII::I_BitShift;
535  emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
536
537  emitWordLE(Binary);
538}
539
540template<class CodeEmitter>
541void Emitter<CodeEmitter>::emitPseudoMoveInstruction(const MachineInstr &MI) {
542  unsigned Opcode = MI.getDesc().Opcode;
543
544  // Part of binary is determined by TableGn.
545  unsigned Binary = getBinaryCodeForInstr(MI);
546
547  // Set the conditional execution predicate
548  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
549
550  // Encode S bit if MI modifies CPSR.
551  if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
552    Binary |= 1 << ARMII::S_BitShift;
553
554  // Encode register def if there is one.
555  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
556
557  // Encode the shift operation.
558  switch (Opcode) {
559  default: break;
560  case ARM::MOVrx:
561    // rrx
562    Binary |= 0x6 << 4;
563    break;
564  case ARM::MOVsrl_flag:
565    // lsr #1
566    Binary |= (0x2 << 4) | (1 << 7);
567    break;
568  case ARM::MOVsra_flag:
569    // asr #1
570    Binary |= (0x4 << 4) | (1 << 7);
571    break;
572  }
573
574  // Encode register Rm.
575  Binary |= getMachineOpValue(MI, 1);
576
577  emitWordLE(Binary);
578}
579
580template<class CodeEmitter>
581void Emitter<CodeEmitter>::addPCLabel(unsigned LabelID) {
582  DOUT << "  ** LPC" << LabelID << " @ "
583       << (void*)MCE.getCurrentPCValue() << '\n';
584  JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
585}
586
587template<class CodeEmitter>
588void Emitter<CodeEmitter>::emitPseudoInstruction(const MachineInstr &MI) {
589  unsigned Opcode = MI.getDesc().Opcode;
590  switch (Opcode) {
591  default:
592    llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");//FIXME:
593  case TargetInstrInfo::INLINEASM: {
594    // We allow inline assembler nodes with empty bodies - they can
595    // implicitly define registers, which is ok for JIT.
596    if (MI.getOperand(0).getSymbolName()[0]) {
597      llvm_report_error("JIT does not support inline asm!");
598    }
599    break;
600  }
601  case TargetInstrInfo::DBG_LABEL:
602  case TargetInstrInfo::EH_LABEL:
603    MCE.emitLabel(MI.getOperand(0).getImm());
604    break;
605  case TargetInstrInfo::IMPLICIT_DEF:
606  case TargetInstrInfo::DECLARE:
607  case ARM::DWARF_LOC:
608    // Do nothing.
609    break;
610  case ARM::CONSTPOOL_ENTRY:
611    emitConstPoolInstruction(MI);
612    break;
613  case ARM::PICADD: {
614    // Remember of the address of the PC label for relocation later.
615    addPCLabel(MI.getOperand(2).getImm());
616    // PICADD is just an add instruction that implicitly read pc.
617    emitDataProcessingInstruction(MI, 0, ARM::PC);
618    break;
619  }
620  case ARM::PICLDR:
621  case ARM::PICLDRB:
622  case ARM::PICSTR:
623  case ARM::PICSTRB: {
624    // Remember of the address of the PC label for relocation later.
625    addPCLabel(MI.getOperand(2).getImm());
626    // These are just load / store instructions that implicitly read pc.
627    emitLoadStoreInstruction(MI, 0, ARM::PC);
628    break;
629  }
630  case ARM::PICLDRH:
631  case ARM::PICLDRSH:
632  case ARM::PICLDRSB:
633  case ARM::PICSTRH: {
634    // Remember of the address of the PC label for relocation later.
635    addPCLabel(MI.getOperand(2).getImm());
636    // These are just load / store instructions that implicitly read pc.
637    emitMiscLoadStoreInstruction(MI, ARM::PC);
638    break;
639  }
640  case ARM::MOVi2pieces:
641    // Two instructions to materialize a constant.
642    emitMOVi2piecesInstruction(MI);
643    break;
644  case ARM::LEApcrelJT:
645    // Materialize jumptable address.
646    emitLEApcrelJTInstruction(MI);
647    break;
648  case ARM::MOVrx:
649  case ARM::MOVsrl_flag:
650  case ARM::MOVsra_flag:
651    emitPseudoMoveInstruction(MI);
652    break;
653  }
654}
655
656template<class CodeEmitter>
657unsigned Emitter<CodeEmitter>::getMachineSoRegOpValue(
658                                                const MachineInstr &MI,
659                                                const TargetInstrDesc &TID,
660                                                const MachineOperand &MO,
661                                                unsigned OpIdx) {
662  unsigned Binary = getMachineOpValue(MI, MO);
663
664  const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
665  const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
666  ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
667
668  // Encode the shift opcode.
669  unsigned SBits = 0;
670  unsigned Rs = MO1.getReg();
671  if (Rs) {
672    // Set shift operand (bit[7:4]).
673    // LSL - 0001
674    // LSR - 0011
675    // ASR - 0101
676    // ROR - 0111
677    // RRX - 0110 and bit[11:8] clear.
678    switch (SOpc) {
679    default: llvm_unreachable("Unknown shift opc!");
680    case ARM_AM::lsl: SBits = 0x1; break;
681    case ARM_AM::lsr: SBits = 0x3; break;
682    case ARM_AM::asr: SBits = 0x5; break;
683    case ARM_AM::ror: SBits = 0x7; break;
684    case ARM_AM::rrx: SBits = 0x6; break;
685    }
686  } else {
687    // Set shift operand (bit[6:4]).
688    // LSL - 000
689    // LSR - 010
690    // ASR - 100
691    // ROR - 110
692    switch (SOpc) {
693    default: llvm_unreachable("Unknown shift opc!");
694    case ARM_AM::lsl: SBits = 0x0; break;
695    case ARM_AM::lsr: SBits = 0x2; break;
696    case ARM_AM::asr: SBits = 0x4; break;
697    case ARM_AM::ror: SBits = 0x6; break;
698    }
699  }
700  Binary |= SBits << 4;
701  if (SOpc == ARM_AM::rrx)
702    return Binary;
703
704  // Encode the shift operation Rs or shift_imm (except rrx).
705  if (Rs) {
706    // Encode Rs bit[11:8].
707    assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
708    return Binary |
709      (ARMRegisterInfo::getRegisterNumbering(Rs) << ARMII::RegRsShift);
710  }
711
712  // Encode shift_imm bit[11:7].
713  return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
714}
715
716template<class CodeEmitter>
717unsigned Emitter<CodeEmitter>::getMachineSoImmOpValue(unsigned SoImm) {
718  int SoImmVal = ARM_AM::getSOImmVal(SoImm);
719  assert(SoImmVal != -1 && "Not a valid so_imm value!");
720
721  // Encode rotate_imm.
722  unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
723    << ARMII::SoRotImmShift;
724
725  // Encode immed_8.
726  Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
727  return Binary;
728}
729
730template<class CodeEmitter>
731unsigned Emitter<CodeEmitter>::getAddrModeSBit(const MachineInstr &MI,
732                                             const TargetInstrDesc &TID) const {
733  for (unsigned i = MI.getNumOperands(), e = TID.getNumOperands(); i != e; --i){
734    const MachineOperand &MO = MI.getOperand(i-1);
735    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
736      return 1 << ARMII::S_BitShift;
737  }
738  return 0;
739}
740
741template<class CodeEmitter>
742void Emitter<CodeEmitter>::emitDataProcessingInstruction(
743                                                   const MachineInstr &MI,
744                                                   unsigned ImplicitRd,
745                                                   unsigned ImplicitRn) {
746  const TargetInstrDesc &TID = MI.getDesc();
747
748  if (TID.Opcode == ARM::BFC) {
749    llvm_report_error("ERROR: ARMv6t2 JIT is not yet supported.");
750  }
751
752  // Part of binary is determined by TableGn.
753  unsigned Binary = getBinaryCodeForInstr(MI);
754
755  // Set the conditional execution predicate
756  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
757
758  // Encode S bit if MI modifies CPSR.
759  Binary |= getAddrModeSBit(MI, TID);
760
761  // Encode register def if there is one.
762  unsigned NumDefs = TID.getNumDefs();
763  unsigned OpIdx = 0;
764  if (NumDefs)
765    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
766  else if (ImplicitRd)
767    // Special handling for implicit use (e.g. PC).
768    Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd)
769               << ARMII::RegRdShift);
770
771  // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
772  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
773    ++OpIdx;
774
775  // Encode first non-shifter register operand if there is one.
776  bool isUnary = TID.TSFlags & ARMII::UnaryDP;
777  if (!isUnary) {
778    if (ImplicitRn)
779      // Special handling for implicit use (e.g. PC).
780      Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
781                 << ARMII::RegRnShift);
782    else {
783      Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
784      ++OpIdx;
785    }
786  }
787
788  // Encode shifter operand.
789  const MachineOperand &MO = MI.getOperand(OpIdx);
790  if ((TID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
791    // Encode SoReg.
792    emitWordLE(Binary | getMachineSoRegOpValue(MI, TID, MO, OpIdx));
793    return;
794  }
795
796  if (MO.isReg()) {
797    // Encode register Rm.
798    emitWordLE(Binary | ARMRegisterInfo::getRegisterNumbering(MO.getReg()));
799    return;
800  }
801
802  // Encode so_imm.
803  Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
804
805  emitWordLE(Binary);
806}
807
808template<class CodeEmitter>
809void Emitter<CodeEmitter>::emitLoadStoreInstruction(
810                                              const MachineInstr &MI,
811                                              unsigned ImplicitRd,
812                                              unsigned ImplicitRn) {
813  const TargetInstrDesc &TID = MI.getDesc();
814  unsigned Form = TID.TSFlags & ARMII::FormMask;
815  bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
816
817  // Part of binary is determined by TableGn.
818  unsigned Binary = getBinaryCodeForInstr(MI);
819
820  // Set the conditional execution predicate
821  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
822
823  unsigned OpIdx = 0;
824
825  // Operand 0 of a pre- and post-indexed store is the address base
826  // writeback. Skip it.
827  bool Skipped = false;
828  if (IsPrePost && Form == ARMII::StFrm) {
829    ++OpIdx;
830    Skipped = true;
831  }
832
833  // Set first operand
834  if (ImplicitRd)
835    // Special handling for implicit use (e.g. PC).
836    Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd)
837               << ARMII::RegRdShift);
838  else
839    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
840
841  // Set second operand
842  if (ImplicitRn)
843    // Special handling for implicit use (e.g. PC).
844    Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
845               << ARMII::RegRnShift);
846  else
847    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
848
849  // If this is a two-address operand, skip it. e.g. LDR_PRE.
850  if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
851    ++OpIdx;
852
853  const MachineOperand &MO2 = MI.getOperand(OpIdx);
854  unsigned AM2Opc = (ImplicitRn == ARM::PC)
855    ? 0 : MI.getOperand(OpIdx+1).getImm();
856
857  // Set bit U(23) according to sign of immed value (positive or negative).
858  Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
859             ARMII::U_BitShift);
860  if (!MO2.getReg()) { // is immediate
861    if (ARM_AM::getAM2Offset(AM2Opc))
862      // Set the value of offset_12 field
863      Binary |= ARM_AM::getAM2Offset(AM2Opc);
864    emitWordLE(Binary);
865    return;
866  }
867
868  // Set bit I(25), because this is not in immediate enconding.
869  Binary |= 1 << ARMII::I_BitShift;
870  assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
871  // Set bit[3:0] to the corresponding Rm register
872  Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
873
874  // If this instr is in scaled register offset/index instruction, set
875  // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
876  if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
877    Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift;  // shift
878    Binary |= ShImm              << ARMII::ShiftShift;     // shift_immed
879  }
880
881  emitWordLE(Binary);
882}
883
884template<class CodeEmitter>
885void Emitter<CodeEmitter>::emitMiscLoadStoreInstruction(const MachineInstr &MI,
886                                                        unsigned ImplicitRn) {
887  const TargetInstrDesc &TID = MI.getDesc();
888  unsigned Form = TID.TSFlags & ARMII::FormMask;
889  bool IsPrePost = (TID.TSFlags & ARMII::IndexModeMask) != 0;
890
891  // Part of binary is determined by TableGn.
892  unsigned Binary = getBinaryCodeForInstr(MI);
893
894  // Set the conditional execution predicate
895  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
896
897  unsigned OpIdx = 0;
898
899  // Operand 0 of a pre- and post-indexed store is the address base
900  // writeback. Skip it.
901  bool Skipped = false;
902  if (IsPrePost && Form == ARMII::StMiscFrm) {
903    ++OpIdx;
904    Skipped = true;
905  }
906
907  // Set first operand
908  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
909
910  // Skip LDRD and STRD's second operand.
911  if (TID.Opcode == ARM::LDRD || TID.Opcode == ARM::STRD)
912    ++OpIdx;
913
914  // Set second operand
915  if (ImplicitRn)
916    // Special handling for implicit use (e.g. PC).
917    Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn)
918               << ARMII::RegRnShift);
919  else
920    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
921
922  // If this is a two-address operand, skip it. e.g. LDRH_POST.
923  if (!Skipped && TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
924    ++OpIdx;
925
926  const MachineOperand &MO2 = MI.getOperand(OpIdx);
927  unsigned AM3Opc = (ImplicitRn == ARM::PC)
928    ? 0 : MI.getOperand(OpIdx+1).getImm();
929
930  // Set bit U(23) according to sign of immed value (positive or negative)
931  Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
932             ARMII::U_BitShift);
933
934  // If this instr is in register offset/index encoding, set bit[3:0]
935  // to the corresponding Rm register.
936  if (MO2.getReg()) {
937    Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
938    emitWordLE(Binary);
939    return;
940  }
941
942  // This instr is in immediate offset/index encoding, set bit 22 to 1.
943  Binary |= 1 << ARMII::AM3_I_BitShift;
944  if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
945    // Set operands
946    Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift;  // immedH
947    Binary |= (ImmOffs & 0xF);                      // immedL
948  }
949
950  emitWordLE(Binary);
951}
952
953static unsigned getAddrModeUPBits(unsigned Mode) {
954  unsigned Binary = 0;
955
956  // Set addressing mode by modifying bits U(23) and P(24)
957  // IA - Increment after  - bit U = 1 and bit P = 0
958  // IB - Increment before - bit U = 1 and bit P = 1
959  // DA - Decrement after  - bit U = 0 and bit P = 0
960  // DB - Decrement before - bit U = 0 and bit P = 1
961  switch (Mode) {
962  default: llvm_unreachable("Unknown addressing sub-mode!");
963  case ARM_AM::da:                      break;
964  case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
965  case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
966  case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
967  }
968
969  return Binary;
970}
971
972template<class CodeEmitter>
973void Emitter<CodeEmitter>::emitLoadStoreMultipleInstruction(
974                                                       const MachineInstr &MI) {
975  // Part of binary is determined by TableGn.
976  unsigned Binary = getBinaryCodeForInstr(MI);
977
978  // Set the conditional execution predicate
979  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
980
981  // Set base address operand
982  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRnShift;
983
984  // Set addressing mode by modifying bits U(23) and P(24)
985  const MachineOperand &MO = MI.getOperand(1);
986  Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(MO.getImm()));
987
988  // Set bit W(21)
989  if (ARM_AM::getAM4WBFlag(MO.getImm()))
990    Binary |= 0x1 << ARMII::W_BitShift;
991
992  // Set registers
993  for (unsigned i = 4, e = MI.getNumOperands(); i != e; ++i) {
994    const MachineOperand &MO = MI.getOperand(i);
995    if (!MO.isReg() || MO.isImplicit())
996      break;
997    unsigned RegNum = ARMRegisterInfo::getRegisterNumbering(MO.getReg());
998    assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
999           RegNum < 16);
1000    Binary |= 0x1 << RegNum;
1001  }
1002
1003  emitWordLE(Binary);
1004}
1005
1006template<class CodeEmitter>
1007void Emitter<CodeEmitter>::emitMulFrmInstruction(const MachineInstr &MI) {
1008  const TargetInstrDesc &TID = MI.getDesc();
1009
1010  // Part of binary is determined by TableGn.
1011  unsigned Binary = getBinaryCodeForInstr(MI);
1012
1013  // Set the conditional execution predicate
1014  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1015
1016  // Encode S bit if MI modifies CPSR.
1017  Binary |= getAddrModeSBit(MI, TID);
1018
1019  // 32x32->64bit operations have two destination registers. The number
1020  // of register definitions will tell us if that's what we're dealing with.
1021  unsigned OpIdx = 0;
1022  if (TID.getNumDefs() == 2)
1023    Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
1024
1025  // Encode Rd
1026  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
1027
1028  // Encode Rm
1029  Binary |= getMachineOpValue(MI, OpIdx++);
1030
1031  // Encode Rs
1032  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
1033
1034  // Many multiple instructions (e.g. MLA) have three src operands. Encode
1035  // it as Rn (for multiply, that's in the same offset as RdLo.
1036  if (TID.getNumOperands() > OpIdx &&
1037      !TID.OpInfo[OpIdx].isPredicate() &&
1038      !TID.OpInfo[OpIdx].isOptionalDef())
1039    Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
1040
1041  emitWordLE(Binary);
1042}
1043
1044template<class CodeEmitter>
1045void Emitter<CodeEmitter>::emitExtendInstruction(const MachineInstr &MI) {
1046  const TargetInstrDesc &TID = MI.getDesc();
1047
1048  // Part of binary is determined by TableGn.
1049  unsigned Binary = getBinaryCodeForInstr(MI);
1050
1051  // Set the conditional execution predicate
1052  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1053
1054  unsigned OpIdx = 0;
1055
1056  // Encode Rd
1057  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1058
1059  const MachineOperand &MO1 = MI.getOperand(OpIdx++);
1060  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1061  if (MO2.isReg()) {
1062    // Two register operand form.
1063    // Encode Rn.
1064    Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
1065
1066    // Encode Rm.
1067    Binary |= getMachineOpValue(MI, MO2);
1068    ++OpIdx;
1069  } else {
1070    Binary |= getMachineOpValue(MI, MO1);
1071  }
1072
1073  // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
1074  if (MI.getOperand(OpIdx).isImm() &&
1075      !TID.OpInfo[OpIdx].isPredicate() &&
1076      !TID.OpInfo[OpIdx].isOptionalDef())
1077    Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
1078
1079  emitWordLE(Binary);
1080}
1081
1082template<class CodeEmitter>
1083void Emitter<CodeEmitter>::emitMiscArithInstruction(const MachineInstr &MI) {
1084  const TargetInstrDesc &TID = MI.getDesc();
1085
1086  // Part of binary is determined by TableGn.
1087  unsigned Binary = getBinaryCodeForInstr(MI);
1088
1089  // Set the conditional execution predicate
1090  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1091
1092  unsigned OpIdx = 0;
1093
1094  // Encode Rd
1095  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1096
1097  const MachineOperand &MO = MI.getOperand(OpIdx++);
1098  if (OpIdx == TID.getNumOperands() ||
1099      TID.OpInfo[OpIdx].isPredicate() ||
1100      TID.OpInfo[OpIdx].isOptionalDef()) {
1101    // Encode Rm and it's done.
1102    Binary |= getMachineOpValue(MI, MO);
1103    emitWordLE(Binary);
1104    return;
1105  }
1106
1107  // Encode Rn.
1108  Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
1109
1110  // Encode Rm.
1111  Binary |= getMachineOpValue(MI, OpIdx++);
1112
1113  // Encode shift_imm.
1114  unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
1115  assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1116  Binary |= ShiftAmt << ARMII::ShiftShift;
1117
1118  emitWordLE(Binary);
1119}
1120
1121template<class CodeEmitter>
1122void Emitter<CodeEmitter>::emitBranchInstruction(const MachineInstr &MI) {
1123  const TargetInstrDesc &TID = MI.getDesc();
1124
1125  if (TID.Opcode == ARM::TPsoft) {
1126    llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
1127  }
1128
1129  // Part of binary is determined by TableGn.
1130  unsigned Binary = getBinaryCodeForInstr(MI);
1131
1132  // Set the conditional execution predicate
1133  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1134
1135  // Set signed_immed_24 field
1136  Binary |= getMachineOpValue(MI, 0);
1137
1138  emitWordLE(Binary);
1139}
1140
1141template<class CodeEmitter>
1142void Emitter<CodeEmitter>::emitInlineJumpTable(unsigned JTIndex) {
1143  // Remember the base address of the inline jump table.
1144  uintptr_t JTBase = MCE.getCurrentPCValue();
1145  JTI->addJumpTableBaseAddr(JTIndex, JTBase);
1146  DOUT << "  ** Jump Table #" << JTIndex << " @ " << (void*)JTBase << '\n';
1147
1148  // Now emit the jump table entries.
1149  const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
1150  for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
1151    if (IsPIC)
1152      // DestBB address - JT base.
1153      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
1154    else
1155      // Absolute DestBB address.
1156      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
1157    emitWordLE(0);
1158  }
1159}
1160
1161template<class CodeEmitter>
1162void Emitter<CodeEmitter>::emitMiscBranchInstruction(const MachineInstr &MI) {
1163  const TargetInstrDesc &TID = MI.getDesc();
1164
1165  // Handle jump tables.
1166  if (TID.Opcode == ARM::BR_JTr || TID.Opcode == ARM::BR_JTadd ||
1167      TID.Opcode == ARM::t2BR_JTr || TID.Opcode == ARM::t2BR_JTadd) {
1168    // First emit a ldr pc, [] instruction.
1169    emitDataProcessingInstruction(MI, ARM::PC);
1170
1171    // Then emit the inline jump table.
1172    unsigned JTIndex =
1173      (TID.Opcode == ARM::BR_JTr || TID.Opcode == ARM::t2BR_JTr)
1174      ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
1175    emitInlineJumpTable(JTIndex);
1176    return;
1177  } else if (TID.Opcode == ARM::BR_JTm || TID.Opcode == ARM::t2BR_JTm) {
1178    // First emit a ldr pc, [] instruction.
1179    emitLoadStoreInstruction(MI, ARM::PC);
1180
1181    // Then emit the inline jump table.
1182    emitInlineJumpTable(MI.getOperand(3).getIndex());
1183    return;
1184  }
1185
1186  // Part of binary is determined by TableGn.
1187  unsigned Binary = getBinaryCodeForInstr(MI);
1188
1189  // Set the conditional execution predicate
1190  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1191
1192  if (TID.Opcode == ARM::BX_RET)
1193    // The return register is LR.
1194    Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::LR);
1195  else
1196    // otherwise, set the return register
1197    Binary |= getMachineOpValue(MI, 0);
1198
1199  emitWordLE(Binary);
1200}
1201
1202static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) {
1203  unsigned RegD = MI.getOperand(OpIdx).getReg();
1204  unsigned Binary = 0;
1205  bool isSPVFP = false;
1206  RegD = ARMRegisterInfo::getRegisterNumbering(RegD, isSPVFP);
1207  if (!isSPVFP)
1208    Binary |=   RegD               << ARMII::RegRdShift;
1209  else {
1210    Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
1211    Binary |=  (RegD & 0x01)       << ARMII::D_BitShift;
1212  }
1213  return Binary;
1214}
1215
1216static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) {
1217  unsigned RegN = MI.getOperand(OpIdx).getReg();
1218  unsigned Binary = 0;
1219  bool isSPVFP = false;
1220  RegN = ARMRegisterInfo::getRegisterNumbering(RegN, isSPVFP);
1221  if (!isSPVFP)
1222    Binary |=   RegN               << ARMII::RegRnShift;
1223  else {
1224    Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
1225    Binary |=  (RegN & 0x01)       << ARMII::N_BitShift;
1226  }
1227  return Binary;
1228}
1229
1230static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) {
1231  unsigned RegM = MI.getOperand(OpIdx).getReg();
1232  unsigned Binary = 0;
1233  bool isSPVFP = false;
1234  RegM = ARMRegisterInfo::getRegisterNumbering(RegM, isSPVFP);
1235  if (!isSPVFP)
1236    Binary |=   RegM;
1237  else {
1238    Binary |= ((RegM & 0x1E) >> 1);
1239    Binary |=  (RegM & 0x01)       << ARMII::M_BitShift;
1240  }
1241  return Binary;
1242}
1243
1244template<class CodeEmitter>
1245void Emitter<CodeEmitter>::emitVFPArithInstruction(const MachineInstr &MI) {
1246  const TargetInstrDesc &TID = MI.getDesc();
1247
1248  // Part of binary is determined by TableGn.
1249  unsigned Binary = getBinaryCodeForInstr(MI);
1250
1251  // Set the conditional execution predicate
1252  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1253
1254  unsigned OpIdx = 0;
1255  assert((Binary & ARMII::D_BitShift) == 0 &&
1256         (Binary & ARMII::N_BitShift) == 0 &&
1257         (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!");
1258
1259  // Encode Dd / Sd.
1260  Binary |= encodeVFPRd(MI, OpIdx++);
1261
1262  // If this is a two-address operand, skip it, e.g. FMACD.
1263  if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)
1264    ++OpIdx;
1265
1266  // Encode Dn / Sn.
1267  if ((TID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
1268    Binary |= encodeVFPRn(MI, OpIdx++);
1269
1270  if (OpIdx == TID.getNumOperands() ||
1271      TID.OpInfo[OpIdx].isPredicate() ||
1272      TID.OpInfo[OpIdx].isOptionalDef()) {
1273    // FCMPEZD etc. has only one operand.
1274    emitWordLE(Binary);
1275    return;
1276  }
1277
1278  // Encode Dm / Sm.
1279  Binary |= encodeVFPRm(MI, OpIdx);
1280
1281  emitWordLE(Binary);
1282}
1283
1284template<class CodeEmitter>
1285void Emitter<CodeEmitter>::emitVFPConversionInstruction(
1286      const MachineInstr &MI) {
1287  const TargetInstrDesc &TID = MI.getDesc();
1288  unsigned Form = TID.TSFlags & ARMII::FormMask;
1289
1290  // Part of binary is determined by TableGn.
1291  unsigned Binary = getBinaryCodeForInstr(MI);
1292
1293  // Set the conditional execution predicate
1294  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1295
1296  switch (Form) {
1297  default: break;
1298  case ARMII::VFPConv1Frm:
1299  case ARMII::VFPConv2Frm:
1300  case ARMII::VFPConv3Frm:
1301    // Encode Dd / Sd.
1302    Binary |= encodeVFPRd(MI, 0);
1303    break;
1304  case ARMII::VFPConv4Frm:
1305    // Encode Dn / Sn.
1306    Binary |= encodeVFPRn(MI, 0);
1307    break;
1308  case ARMII::VFPConv5Frm:
1309    // Encode Dm / Sm.
1310    Binary |= encodeVFPRm(MI, 0);
1311    break;
1312  }
1313
1314  switch (Form) {
1315  default: break;
1316  case ARMII::VFPConv1Frm:
1317    // Encode Dm / Sm.
1318    Binary |= encodeVFPRm(MI, 1);
1319    break;
1320  case ARMII::VFPConv2Frm:
1321  case ARMII::VFPConv3Frm:
1322    // Encode Dn / Sn.
1323    Binary |= encodeVFPRn(MI, 1);
1324    break;
1325  case ARMII::VFPConv4Frm:
1326  case ARMII::VFPConv5Frm:
1327    // Encode Dd / Sd.
1328    Binary |= encodeVFPRd(MI, 1);
1329    break;
1330  }
1331
1332  if (Form == ARMII::VFPConv5Frm)
1333    // Encode Dn / Sn.
1334    Binary |= encodeVFPRn(MI, 2);
1335  else if (Form == ARMII::VFPConv3Frm)
1336    // Encode Dm / Sm.
1337    Binary |= encodeVFPRm(MI, 2);
1338
1339  emitWordLE(Binary);
1340}
1341
1342template<class CodeEmitter>
1343void Emitter<CodeEmitter>::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
1344  // Part of binary is determined by TableGn.
1345  unsigned Binary = getBinaryCodeForInstr(MI);
1346
1347  // Set the conditional execution predicate
1348  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1349
1350  unsigned OpIdx = 0;
1351
1352  // Encode Dd / Sd.
1353  Binary |= encodeVFPRd(MI, OpIdx++);
1354
1355  // Encode address base.
1356  const MachineOperand &Base = MI.getOperand(OpIdx++);
1357  Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
1358
1359  // If there is a non-zero immediate offset, encode it.
1360  if (Base.isReg()) {
1361    const MachineOperand &Offset = MI.getOperand(OpIdx);
1362    if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
1363      if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
1364        Binary |= 1 << ARMII::U_BitShift;
1365      Binary |= ImmOffs;
1366      emitWordLE(Binary);
1367      return;
1368    }
1369  }
1370
1371  // If immediate offset is omitted, default to +0.
1372  Binary |= 1 << ARMII::U_BitShift;
1373
1374  emitWordLE(Binary);
1375}
1376
1377template<class CodeEmitter>
1378void Emitter<CodeEmitter>::emitVFPLoadStoreMultipleInstruction(
1379                                                       const MachineInstr &MI) {
1380  // Part of binary is determined by TableGn.
1381  unsigned Binary = getBinaryCodeForInstr(MI);
1382
1383  // Set the conditional execution predicate
1384  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1385
1386  // Set base address operand
1387  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRnShift;
1388
1389  // Set addressing mode by modifying bits U(23) and P(24)
1390  const MachineOperand &MO = MI.getOperand(1);
1391  Binary |= getAddrModeUPBits(ARM_AM::getAM5SubMode(MO.getImm()));
1392
1393  // Set bit W(21)
1394  if (ARM_AM::getAM5WBFlag(MO.getImm()))
1395    Binary |= 0x1 << ARMII::W_BitShift;
1396
1397  // First register is encoded in Dd.
1398  Binary |= encodeVFPRd(MI, 4);
1399
1400  // Number of registers are encoded in offset field.
1401  unsigned NumRegs = 1;
1402  for (unsigned i = 5, e = MI.getNumOperands(); i != e; ++i) {
1403    const MachineOperand &MO = MI.getOperand(i);
1404    if (!MO.isReg() || MO.isImplicit())
1405      break;
1406    ++NumRegs;
1407  }
1408  Binary |= NumRegs * 2;
1409
1410  emitWordLE(Binary);
1411}
1412
1413template<class CodeEmitter>
1414void Emitter<CodeEmitter>::emitMiscInstruction(const MachineInstr &MI) {
1415  // Part of binary is determined by TableGn.
1416  unsigned Binary = getBinaryCodeForInstr(MI);
1417
1418  // Set the conditional execution predicate
1419  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1420
1421  emitWordLE(Binary);
1422}
1423
1424#include "ARMGenCodeEmitter.inc"
1425
1426