ARMCodeEmitter.cpp revision cd40d8954058f9dbfd9192fd0d5f8e0f8d00fa10
1//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the pass that transforms the ARM machine instructions into
11// relocatable machine code.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-emitter"
16#include "ARM.h"
17#include "ARMAddressingModes.h"
18#include "ARMInstrInfo.h"
19#include "ARMRelocations.h"
20#include "ARMSubtarget.h"
21#include "ARMTargetMachine.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/PassManager.h"
26#include "llvm/CodeGen/MachineCodeEmitter.h"
27#include "llvm/CodeGen/MachineConstantPool.h"
28#include "llvm/CodeGen/MachineFunctionPass.h"
29#include "llvm/CodeGen/MachineInstr.h"
30#include "llvm/CodeGen/Passes.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/Support/Compiler.h"
33#include "llvm/Support/Debug.h"
34using namespace llvm;
35
36STATISTIC(NumEmitted, "Number of machine instructions emitted");
37
38namespace {
39  class VISIBILITY_HIDDEN ARMCodeEmitter : public MachineFunctionPass {
40    ARMJITInfo                *JTI;
41    const ARMInstrInfo        *II;
42    const TargetData          *TD;
43    TargetMachine             &TM;
44    MachineCodeEmitter        &MCE;
45    const MachineConstantPool *MCP;
46  public:
47    static char ID;
48    explicit ARMCodeEmitter(TargetMachine &tm, MachineCodeEmitter &mce)
49      : MachineFunctionPass(&ID), JTI(0), II(0), TD(0), TM(tm),
50      MCE(mce), MCP(0) {}
51    ARMCodeEmitter(TargetMachine &tm, MachineCodeEmitter &mce,
52            const ARMInstrInfo &ii, const TargetData &td)
53      : MachineFunctionPass(&ID), JTI(0), II(&ii), TD(&td), TM(tm),
54      MCE(mce), MCP(0) {}
55
56    bool runOnMachineFunction(MachineFunction &MF);
57
58    virtual const char *getPassName() const {
59      return "ARM Machine Code Emitter";
60    }
61
62    void emitInstruction(const MachineInstr &MI);
63
64  private:
65
66    void emitConstPoolInstruction(const MachineInstr &MI);
67
68    void emitPseudoInstruction(const MachineInstr &MI);
69
70    unsigned getAddrModeNoneInstrBinary(const MachineInstr &MI,
71                                        const TargetInstrDesc &TID,
72                                        unsigned Binary);
73
74    unsigned getMachineSoRegOpValue(const MachineInstr &MI,
75                                    const TargetInstrDesc &TID,
76                                    unsigned OpIdx);
77
78    unsigned getAddrMode1SBit(const MachineInstr &MI,
79                              const TargetInstrDesc &TID) const;
80
81    unsigned getAddrMode1InstrBinary(const MachineInstr &MI,
82                                     const TargetInstrDesc &TID,
83                                     unsigned Binary);
84    unsigned getAddrMode2InstrBinary(const MachineInstr &MI,
85                                     const TargetInstrDesc &TID,
86                                     unsigned Binary);
87    unsigned getAddrMode3InstrBinary(const MachineInstr &MI,
88                                     const TargetInstrDesc &TID,
89                                     unsigned Binary);
90    unsigned getAddrMode4InstrBinary(const MachineInstr &MI,
91                                     const TargetInstrDesc &TID,
92                                     unsigned Binary);
93
94    /// getInstrBinary - Return binary encoding for the specified
95    /// machine instruction.
96    unsigned getInstrBinary(const MachineInstr &MI);
97
98    /// getBinaryCodeForInstr - This function, generated by the
99    /// CodeEmitterGenerator using TableGen, produces the binary encoding for
100    /// machine instructions.
101    ///
102    unsigned getBinaryCodeForInstr(const MachineInstr &MI);
103
104    /// getMachineOpValue - Return binary encoding of operand. If the machine
105    /// operand requires relocation, record the relocation and return zero.
106    unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) {
107      return getMachineOpValue(MI, MI.getOperand(OpIdx));
108    }
109    unsigned getMachineOpValue(const MachineInstr &MI,
110                               const MachineOperand &MO);
111
112    /// getBaseOpcodeFor - Return the opcode value.
113    ///
114    unsigned getBaseOpcodeFor(const TargetInstrDesc &TID) const {
115      return (TID.TSFlags & ARMII::OpcodeMask) >> ARMII::OpcodeShift;
116    }
117
118    /// getShiftOp - Return the shift opcode (bit[6:5]) of the machine operand.
119    ///
120    unsigned getShiftOp(const MachineOperand &MO) const ;
121
122    /// Routines that handle operands which add machine relocations which are
123    /// fixed up by the JIT fixup stage.
124    void emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
125                           bool NeedStub);
126    void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
127    void emitConstPoolAddress(unsigned CPI, unsigned Reloc,
128                              int Disp = 0, unsigned PCAdj = 0 );
129    void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc,
130                              unsigned PCAdj = 0);
131    void emitGlobalConstant(const Constant *CV);
132    void emitMachineBasicBlock(MachineBasicBlock *BB);
133  };
134  char ARMCodeEmitter::ID = 0;
135}
136
137/// createARMCodeEmitterPass - Return a pass that emits the collected ARM code
138/// to the specified MCE object.
139FunctionPass *llvm::createARMCodeEmitterPass(ARMTargetMachine &TM,
140                                             MachineCodeEmitter &MCE) {
141  return new ARMCodeEmitter(TM, MCE);
142}
143
144bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
145  assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
146          MF.getTarget().getRelocationModel() != Reloc::Static) &&
147         "JIT relocation model must be set to static or default!");
148  II = ((ARMTargetMachine&)MF.getTarget()).getInstrInfo();
149  TD = ((ARMTargetMachine&)MF.getTarget()).getTargetData();
150  JTI = ((ARMTargetMachine&)MF.getTarget()).getJITInfo();
151  MCP = MF.getConstantPool();
152
153  do {
154    DOUT << "JITTing function '" << MF.getFunction()->getName() << "'\n";
155    MCE.startFunction(MF);
156    for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
157         MBB != E; ++MBB) {
158      MCE.StartMachineBasicBlock(MBB);
159      for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
160           I != E; ++I)
161        emitInstruction(*I);
162    }
163  } while (MCE.finishFunction(MF));
164
165  return false;
166}
167
168/// getShiftOp - Return the shift opcode (bit[6:5]) of the machine operand.
169///
170unsigned ARMCodeEmitter::getShiftOp(const MachineOperand &MO) const {
171  switch (ARM_AM::getAM2ShiftOpc(MO.getImm())) {
172  default: assert(0 && "Unknown shift opc!");
173  case ARM_AM::asr: return 2;
174  case ARM_AM::lsl: return 0;
175  case ARM_AM::lsr: return 1;
176  case ARM_AM::ror:
177  case ARM_AM::rrx: return 3;
178  }
179  return 0;
180}
181
182/// getMachineOpValue - Return binary encoding of operand. If the machine
183/// operand requires relocation, record the relocation and return zero.
184unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
185                                           const MachineOperand &MO) {
186  if (MO.isReg())
187    return ARMRegisterInfo::getRegisterNumbering(MO.getReg());
188  else if (MO.isImm())
189    return static_cast<unsigned>(MO.getImm());
190  else if (MO.isGlobal())
191    emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true);
192  else if (MO.isSymbol())
193    emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_relative);
194  else if (MO.isCPI())
195    emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_relative);
196  else if (MO.isJTI())
197    emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
198  else if (MO.isMBB())
199    emitMachineBasicBlock(MO.getMBB());
200  else {
201    cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n";
202    abort();
203  }
204  return 0;
205}
206
207/// emitGlobalAddress - Emit the specified address to the code stream.
208///
209void ARMCodeEmitter::emitGlobalAddress(GlobalValue *GV,
210                                       unsigned Reloc, bool NeedStub) {
211  MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(),
212                                             Reloc, GV, 0, NeedStub));
213}
214
215/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
216/// be emitted to the current location in the function, and allow it to be PC
217/// relative.
218void ARMCodeEmitter::emitExternalSymbolAddress(const char *ES, unsigned Reloc) {
219  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
220                                                 Reloc, ES));
221}
222
223/// emitConstPoolAddress - Arrange for the address of an constant pool
224/// to be emitted to the current location in the function, and allow it to be PC
225/// relative.
226void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc,
227                                          int Disp /* = 0 */,
228                                          unsigned PCAdj /* = 0 */) {
229  MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
230                                                    Reloc, CPI, PCAdj));
231}
232
233/// emitJumpTableAddress - Arrange for the address of a jump table to
234/// be emitted to the current location in the function, and allow it to be PC
235/// relative.
236void ARMCodeEmitter::emitJumpTableAddress(unsigned JTIndex, unsigned Reloc,
237                                          unsigned PCAdj /* = 0 */) {
238  MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
239                                                    Reloc, JTIndex, PCAdj));
240}
241
242/// emitMachineBasicBlock - Emit the specified address basic block.
243void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB) {
244  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
245                                             ARM::reloc_arm_branch, BB));
246}
247
248void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
249  DOUT << MI;
250
251  NumEmitted++;  // Keep track of the # of mi's emitted
252  if ((MI.getDesc().TSFlags & ARMII::FormMask) == ARMII::Pseudo)
253    emitPseudoInstruction(MI);
254  else
255    MCE.emitWordLE(getInstrBinary(MI));
256}
257
258unsigned ARMCodeEmitter::getAddrModeNoneInstrBinary(const MachineInstr &MI,
259                                                    const TargetInstrDesc &TID,
260                                                    unsigned Binary) {
261  // Set the conditional execution predicate
262  Binary |= II->getPredicate(&MI) << 28;
263
264  switch (TID.TSFlags & ARMII::FormMask) {
265  default:
266    assert(0 && "Unknown instruction subtype!");
267    break;
268  case ARMII::Branch: {
269    // Set signed_immed_24 field
270    Binary |= getMachineOpValue(MI, 0);
271
272    // if it is a conditional branch, set cond field
273    if (TID.Opcode == ARM::Bcc) {
274      Binary &= 0x0FFFFFFF;                      // clear conditional field
275      Binary |= getMachineOpValue(MI, 1) << 28;  // set conditional field
276    }
277    break;
278  }
279  case ARMII::BranchMisc: {
280    if (TID.Opcode == ARM::BX)
281      abort(); // FIXME
282    if (TID.Opcode == ARM::BX_RET)
283      Binary |= 0xe; // the return register is LR
284    else
285      // otherwise, set the return register
286      Binary |= getMachineOpValue(MI, 0);
287    break;
288  }
289  }
290
291  return Binary;
292}
293
294unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
295                                                const TargetInstrDesc &TID,
296                                                unsigned OpIdx) {
297  // Set last operand (register Rm)
298  unsigned Binary = getMachineOpValue(MI, OpIdx);
299
300  const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
301  const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
302  ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
303
304  // Encode the shift opcode.
305  unsigned SBits = 0;
306  unsigned Rs = MO1.getReg();
307  if (Rs) {
308    // Set shift operand (bit[7:4]).
309    // LSL - 0001
310    // LSR - 0011
311    // ASR - 0101
312    // ROR - 0111
313    // RRX - 0110 and bit[11:8] clear.
314    switch (SOpc) {
315    default: assert(0 && "Unknown shift opc!");
316    case ARM_AM::lsl: SBits = 0x1; break;
317    case ARM_AM::lsr: SBits = 0x3; break;
318    case ARM_AM::asr: SBits = 0x5; break;
319    case ARM_AM::ror: SBits = 0x7; break;
320    case ARM_AM::rrx: SBits = 0x6; break;
321    }
322  } else {
323    // Set shift operand (bit[6:4]).
324    // LSL - 000
325    // LSR - 010
326    // ASR - 100
327    // ROR - 110
328    switch (SOpc) {
329    default: assert(0 && "Unknown shift opc!");
330    case ARM_AM::lsl: SBits = 0x0; break;
331    case ARM_AM::lsr: SBits = 0x2; break;
332    case ARM_AM::asr: SBits = 0x4; break;
333    case ARM_AM::ror: SBits = 0x6; break;
334    }
335  }
336  Binary |= SBits << 4;
337  if (SOpc == ARM_AM::rrx)
338    return Binary;
339
340  // Encode the shift operation Rs or shift_imm (except rrx).
341  if (Rs) {
342    // Encode Rs bit[11:8].
343    assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
344    return Binary |
345      (ARMRegisterInfo::getRegisterNumbering(Rs) << ARMII::RegRsShift);
346  }
347
348  // Encode shift_imm bit[11:7].
349  return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
350}
351
352unsigned ARMCodeEmitter::getAddrMode1SBit(const MachineInstr &MI,
353                                          const TargetInstrDesc &TID) const {
354  for (unsigned i = MI.getNumOperands(), e = TID.getNumOperands(); i != e; --i){
355    const MachineOperand &MO = MI.getOperand(i-1);
356    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
357      return 1 << ARMII::S_BitShift;
358  }
359  return 0;
360}
361
362void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
363  unsigned CPID = MI.getOperand(0).getImm();
364  unsigned CPIndex = MI.getOperand(1).getIndex();
365  const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIndex];
366
367  //FIXME: Can we get these here?
368  assert (!MCPE.isMachineConstantPoolEntry());
369
370  const Constant *CV = MCPE.Val.ConstVal;
371  // FIXME: We can get other types here. Need to handle them.
372  // According to the constant island pass, everything is multiples,
373  // of 4-bytes in size, though, so that helps.
374  assert (CV->getType()->isInteger());
375  assert (cast<IntegerType>(CV->getType())->getBitWidth() == 32);
376
377  const ConstantInt *CI = dyn_cast<ConstantInt>(CV);
378  uint32_t Val = *(uint32_t*)CI->getValue().getRawData();
379
380  DOUT << "Constant pool #" << CPID << ", value '" << Val << "' @ " <<
381    (void*)MCE.getCurrentPCValue() << "\n";
382
383  if (JTI)
384    JTI->mapCPIDtoAddress(CPID, MCE.getCurrentPCValue());
385  MCE.emitWordLE(Val);
386}
387
388void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
389  unsigned Opcode = MI.getDesc().Opcode;
390  switch (Opcode) {
391  default:
392    abort(); // FIXME:
393  case ARM::CONSTPOOL_ENTRY: {
394    emitConstPoolInstruction(MI);
395    break;
396  }
397  }
398}
399
400unsigned ARMCodeEmitter::getAddrMode1InstrBinary(const MachineInstr &MI,
401                                                 const TargetInstrDesc &TID,
402                                                 unsigned Binary) {
403  // Set the conditional execution predicate
404  Binary |= II->getPredicate(&MI) << 28;
405
406  // Encode S bit if MI modifies CPSR.
407  Binary |= getAddrMode1SBit(MI, TID);
408
409  // Encode register def if there is one.
410  unsigned NumDefs = TID.getNumDefs();
411  unsigned OpIdx = 0;
412  if (NumDefs) {
413    Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdShift;
414    ++OpIdx;
415  }
416
417  // Encode first non-shifter register operand if there is one.
418  unsigned Format = TID.TSFlags & ARMII::FormMask;
419  bool hasRnOperand= !(Format == ARMII::DPRdMisc  ||
420                       Format == ARMII::DPRdIm    ||
421                       Format == ARMII::DPRdReg   ||
422                       Format == ARMII::DPRdSoReg);
423  if (hasRnOperand) {
424    Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
425    ++OpIdx;
426  }
427
428  // Encode shifter operand.
429  bool HasSoReg = (Format == ARMII::DPRdSoReg ||
430                   Format == ARMII::DPRnSoReg ||
431                   Format == ARMII::DPRSoReg  ||
432                   Format == ARMII::DPRSoRegS);
433  if (HasSoReg)
434    // Encode SoReg.
435    return Binary | getMachineSoRegOpValue(MI, TID, OpIdx);
436
437  const MachineOperand &MO = MI.getOperand(OpIdx);
438  if (MO.isReg())
439    // Encode register Rm.
440    return Binary | getMachineOpValue(MI, NumDefs);
441
442  // Encode so_imm.
443  // Set bit I(25) to identify this is the immediate form of <shifter_op>
444  Binary |= 1 << ARMII::I_BitShift;
445  unsigned SoImm = MO.getImm();
446  // Encode rotate_imm.
447  Binary |= ARM_AM::getSOImmValRot(SoImm) << ARMII::RotImmShift;
448  // Encode immed_8.
449  Binary |= ARM_AM::getSOImmVal(SoImm);
450  return Binary;
451}
452
453unsigned ARMCodeEmitter::getAddrMode2InstrBinary(const MachineInstr &MI,
454                                                 const TargetInstrDesc &TID,
455                                                 unsigned Binary) {
456  // Set the conditional execution predicate
457  Binary |= II->getPredicate(&MI) << 28;
458
459  // Set first operand
460  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
461
462  // Set second operand
463  Binary |= getMachineOpValue(MI, 1) << ARMII::RegRnShift;
464
465  const MachineOperand &MO2 = MI.getOperand(2);
466  const MachineOperand &MO3 = MI.getOperand(3);
467
468  // Set bit U(23) according to sign of immed value (positive or negative).
469  Binary |= ((ARM_AM::getAM2Op(MO3.getImm()) == ARM_AM::add ? 1 : 0) <<
470             ARMII::U_BitShift);
471  if (!MO2.getReg()) { // is immediate
472    if (ARM_AM::getAM2Offset(MO3.getImm()))
473      // Set the value of offset_12 field
474      Binary |= ARM_AM::getAM2Offset(MO3.getImm());
475    return Binary;
476  }
477
478  // Set bit I(25), because this is not in immediate enconding.
479  Binary |= 1 << ARMII::I_BitShift;
480  assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
481  // Set bit[3:0] to the corresponding Rm register
482  Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
483
484  // if this instr is in scaled register offset/index instruction, set
485  // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
486  if (unsigned ShImm = ARM_AM::getAM2Offset(MO3.getImm())) {
487    Binary |= getShiftOp(MO3) << 5;  // shift
488    Binary |= ShImm           << 7;  // shift_immed
489  }
490
491  return Binary;
492}
493
494unsigned ARMCodeEmitter::getAddrMode3InstrBinary(const MachineInstr &MI,
495                                                 const TargetInstrDesc &TID,
496                                                 unsigned Binary) {
497  // Set the conditional execution predicate
498  Binary |= II->getPredicate(&MI) << 28;
499
500  // Set first operand
501  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
502
503  // Set second operand
504  Binary |= getMachineOpValue(MI, 1) << ARMII::RegRnShift;
505
506  const MachineOperand &MO2 = MI.getOperand(2);
507  const MachineOperand &MO3 = MI.getOperand(3);
508
509  // Set bit U(23) according to sign of immed value (positive or negative)
510  Binary |= ((ARM_AM::getAM2Op(MO3.getImm()) == ARM_AM::add ? 1 : 0) <<
511             ARMII::U_BitShift);
512
513  // If this instr is in register offset/index encoding, set bit[3:0]
514  // to the corresponding Rm register.
515  if (MO2.getReg()) {
516    Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg());
517    return Binary;
518  }
519
520  // if this instr is in immediate offset/index encoding, set bit 22 to 1
521  if (unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm())) {
522    Binary |= 1 << 22;
523    // Set operands
524    Binary |= (ImmOffs >> 4) << 8;  // immedH
525    Binary |= (ImmOffs & ~0xF);     // immedL
526  }
527
528  return Binary;
529}
530
531unsigned ARMCodeEmitter::getAddrMode4InstrBinary(const MachineInstr &MI,
532                                                 const TargetInstrDesc &TID,
533                                                 unsigned Binary) {
534  // Set the conditional execution predicate
535  Binary |= II->getPredicate(&MI) << 28;
536
537  // Set first operand
538  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRnShift;
539
540  // Set addressing mode by modifying bits U(23) and P(24)
541  // IA - Increment after  - bit U = 1 and bit P = 0
542  // IB - Increment before - bit U = 1 and bit P = 1
543  // DA - Decrement after  - bit U = 0 and bit P = 0
544  // DB - Decrement before - bit U = 0 and bit P = 1
545  const MachineOperand &MO = MI.getOperand(1);
546  ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MO.getImm());
547  switch (Mode) {
548  default: assert(0 && "Unknown addressing sub-mode!");
549  case ARM_AM::da:                      break;
550  case ARM_AM::db: Binary |= 0x1 << 24; break;
551  case ARM_AM::ia: Binary |= 0x1 << 23; break;
552  case ARM_AM::ib: Binary |= 0x3 << 23; break;
553  }
554
555  // Set bit W(21)
556  if (ARM_AM::getAM4WBFlag(MO.getImm()))
557    Binary |= 0x1 << 21;
558
559  // Set registers
560  for (unsigned i = 4, e = MI.getNumOperands(); i != e; ++i) {
561    const MachineOperand &MO = MI.getOperand(i);
562    if (MO.isReg() && MO.isImplicit())
563      continue;
564    unsigned RegNum = ARMRegisterInfo::getRegisterNumbering(MO.getReg());
565    assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
566           RegNum < 16);
567    Binary |= 0x1 << RegNum;
568  }
569
570  return Binary;
571}
572
573/// getInstrBinary - Return binary encoding for the specified
574/// machine instruction.
575unsigned ARMCodeEmitter::getInstrBinary(const MachineInstr &MI) {
576  // Part of binary is determined by TableGn.
577  unsigned Binary = getBinaryCodeForInstr(MI);
578
579  const TargetInstrDesc &TID = MI.getDesc();
580  switch (TID.TSFlags & ARMII::AddrModeMask) {
581  case ARMII::AddrModeNone:
582    return getAddrModeNoneInstrBinary(MI, TID, Binary);
583  case ARMII::AddrMode1:
584    return getAddrMode1InstrBinary(MI, TID, Binary);
585  case ARMII::AddrMode2:
586    return getAddrMode2InstrBinary(MI, TID, Binary);
587  case ARMII::AddrMode3:
588    return getAddrMode3InstrBinary(MI, TID, Binary);
589  case ARMII::AddrMode4:
590    return getAddrMode4InstrBinary(MI, TID, Binary);
591  }
592
593  abort();
594  return 0;
595}
596
597#include "ARMGenCodeEmitter.inc"
598