ARMCodeEmitter.cpp revision cd81d94322a39503e4a3e87b6ee03d4fcb3465fb
1//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the pass that transforms the ARM machine instructions into
11// relocatable machine code.
12//
13//===----------------------------------------------------------------------===//
14
15#include "ARM.h"
16#include "ARMBaseInstrInfo.h"
17#include "ARMConstantPoolValue.h"
18#include "ARMMachineFunctionInfo.h"
19#include "ARMRelocations.h"
20#include "ARMSubtarget.h"
21#include "ARMTargetMachine.h"
22#include "MCTargetDesc/ARMAddressingModes.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/CodeGen/JITCodeEmitter.h"
25#include "llvm/CodeGen/MachineConstantPool.h"
26#include "llvm/CodeGen/MachineFunctionPass.h"
27#include "llvm/CodeGen/MachineInstr.h"
28#include "llvm/CodeGen/MachineJumpTableInfo.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/Passes.h"
31#include "llvm/IR/Constants.h"
32#include "llvm/IR/DerivedTypes.h"
33#include "llvm/IR/Function.h"
34#include "llvm/PassManager.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#ifndef NDEBUG
39#include <iomanip>
40#endif
41using namespace llvm;
42
43#define DEBUG_TYPE "jit"
44
45STATISTIC(NumEmitted, "Number of machine instructions emitted");
46
47namespace {
48
49  class ARMCodeEmitter : public MachineFunctionPass {
50    ARMJITInfo                *JTI;
51    const ARMBaseInstrInfo    *II;
52    const DataLayout          *TD;
53    const ARMSubtarget        *Subtarget;
54    TargetMachine             &TM;
55    JITCodeEmitter            &MCE;
56    MachineModuleInfo *MMI;
57    const std::vector<MachineConstantPoolEntry> *MCPEs;
58    const std::vector<MachineJumpTableEntry> *MJTEs;
59    bool IsPIC;
60    bool IsThumb;
61
62    void getAnalysisUsage(AnalysisUsage &AU) const override {
63      AU.addRequired<MachineModuleInfo>();
64      MachineFunctionPass::getAnalysisUsage(AU);
65    }
66
67    static char ID;
68  public:
69    ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
70      : MachineFunctionPass(ID), JTI(nullptr),
71        II((const ARMBaseInstrInfo *)tm.getInstrInfo()),
72        TD(tm.getDataLayout()), TM(tm),
73        MCE(mce), MCPEs(nullptr), MJTEs(nullptr),
74        IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {}
75
76    /// getBinaryCodeForInstr - This function, generated by the
77    /// CodeEmitterGenerator using TableGen, produces the binary encoding for
78    /// machine instructions.
79    uint64_t getBinaryCodeForInstr(const MachineInstr &MI) const;
80
81    bool runOnMachineFunction(MachineFunction &MF) override;
82
83    const char *getPassName() const override {
84      return "ARM Machine Code Emitter";
85    }
86
87    void emitInstruction(const MachineInstr &MI);
88
89  private:
90
91    void emitWordLE(unsigned Binary);
92    void emitDWordLE(uint64_t Binary);
93    void emitConstPoolInstruction(const MachineInstr &MI);
94    void emitMOVi32immInstruction(const MachineInstr &MI);
95    void emitMOVi2piecesInstruction(const MachineInstr &MI);
96    void emitLEApcrelJTInstruction(const MachineInstr &MI);
97    void emitPseudoMoveInstruction(const MachineInstr &MI);
98    void addPCLabel(unsigned LabelID);
99    void emitPseudoInstruction(const MachineInstr &MI);
100    unsigned getMachineSoRegOpValue(const MachineInstr &MI,
101                                    const MCInstrDesc &MCID,
102                                    const MachineOperand &MO,
103                                    unsigned OpIdx);
104
105    unsigned getMachineSoImmOpValue(unsigned SoImm);
106    unsigned getAddrModeSBit(const MachineInstr &MI,
107                             const MCInstrDesc &MCID) const;
108
109    void emitDataProcessingInstruction(const MachineInstr &MI,
110                                       unsigned ImplicitRd = 0,
111                                       unsigned ImplicitRn = 0);
112
113    void emitLoadStoreInstruction(const MachineInstr &MI,
114                                  unsigned ImplicitRd = 0,
115                                  unsigned ImplicitRn = 0);
116
117    void emitMiscLoadStoreInstruction(const MachineInstr &MI,
118                                      unsigned ImplicitRn = 0);
119
120    void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
121
122    void emitMulFrmInstruction(const MachineInstr &MI);
123
124    void emitExtendInstruction(const MachineInstr &MI);
125
126    void emitMiscArithInstruction(const MachineInstr &MI);
127
128    void emitSaturateInstruction(const MachineInstr &MI);
129
130    void emitBranchInstruction(const MachineInstr &MI);
131
132    void emitInlineJumpTable(unsigned JTIndex);
133
134    void emitMiscBranchInstruction(const MachineInstr &MI);
135
136    void emitVFPArithInstruction(const MachineInstr &MI);
137
138    void emitVFPConversionInstruction(const MachineInstr &MI);
139
140    void emitVFPLoadStoreInstruction(const MachineInstr &MI);
141
142    void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
143
144    void emitNEONLaneInstruction(const MachineInstr &MI);
145    void emitNEONDupInstruction(const MachineInstr &MI);
146    void emitNEON1RegModImmInstruction(const MachineInstr &MI);
147    void emitNEON2RegInstruction(const MachineInstr &MI);
148    void emitNEON3RegInstruction(const MachineInstr &MI);
149
150    /// getMachineOpValue - Return binary encoding of operand. If the machine
151    /// operand requires relocation, record the relocation and return zero.
152    unsigned getMachineOpValue(const MachineInstr &MI,
153                               const MachineOperand &MO) const;
154    unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const {
155      return getMachineOpValue(MI, MI.getOperand(OpIdx));
156    }
157
158    // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the
159    //  TableGen'erated getBinaryCodeForInstr() function to encode any
160    //  operand values, instead querying getMachineOpValue() directly for
161    //  each operand it needs to encode. Thus, any of the new encoder
162    //  helper functions can simply return 0 as the values the return
163    //  are already handled elsewhere. They are placeholders to allow this
164    //  encoder to continue to function until the MC encoder is sufficiently
165    //  far along that this one can be eliminated entirely.
166    unsigned NEONThumb2DataIPostEncoder(const MachineInstr &MI, unsigned Val)
167      const { return 0; }
168    unsigned NEONThumb2LoadStorePostEncoder(const MachineInstr &MI,unsigned Val)
169      const { return 0; }
170    unsigned NEONThumb2DupPostEncoder(const MachineInstr &MI,unsigned Val)
171      const { return 0; }
172    unsigned NEONThumb2V8PostEncoder(const MachineInstr &MI,unsigned Val)
173      const { return 0; }
174    unsigned VFPThumb2PostEncoder(const MachineInstr&MI, unsigned Val)
175      const { return 0; }
176    unsigned getAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
177      const { return 0; }
178    unsigned getThumbAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
179      const { return 0; }
180    unsigned getThumbBLTargetOpValue(const MachineInstr &MI, unsigned Op)
181      const { return 0; }
182    unsigned getThumbBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
183      const { return 0; }
184    unsigned getThumbBRTargetOpValue(const MachineInstr &MI, unsigned Op)
185      const { return 0; }
186    unsigned getThumbBCCTargetOpValue(const MachineInstr &MI, unsigned Op)
187      const { return 0; }
188    unsigned getThumbCBTargetOpValue(const MachineInstr &MI, unsigned Op)
189      const { return 0; }
190    unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
191      const { return 0; }
192    unsigned getUnconditionalBranchTargetOpValue(const MachineInstr &MI,
193      unsigned Op) const { return 0; }
194    unsigned getARMBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
195      const { return 0; }
196    unsigned getARMBLTargetOpValue(const MachineInstr &MI, unsigned Op)
197      const { return 0; }
198    unsigned getARMBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
199      const { return 0; }
200    unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op)
201      const { return 0; }
202    unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op)
203      const { return 0; }
204    unsigned getT2SOImmOpValue(const MachineInstr &MI, unsigned Op)
205      const { return 0; }
206    unsigned getSORegRegOpValue(const MachineInstr &MI, unsigned Op)
207      const { return 0; }
208    unsigned getSORegImmOpValue(const MachineInstr &MI, unsigned Op)
209      const { return 0; }
210    unsigned getThumbAddrModeRegRegOpValue(const MachineInstr &MI, unsigned Op)
211      const { return 0; }
212    unsigned getT2AddrModeImm8OpValue(const MachineInstr &MI, unsigned Op)
213      const { return 0; }
214    unsigned getT2Imm8s4OpValue(const MachineInstr &MI, unsigned Op)
215      const { return 0; }
216    unsigned getT2AddrModeImm8s4OpValue(const MachineInstr &MI, unsigned Op)
217      const { return 0; }
218    unsigned getT2AddrModeImm0_1020s4OpValue(const MachineInstr &MI,unsigned Op)
219      const { return 0; }
220    unsigned getT2AddrModeImm8OffsetOpValue(const MachineInstr &MI, unsigned Op)
221      const { return 0; }
222    unsigned getT2AddrModeSORegOpValue(const MachineInstr &MI, unsigned Op)
223      const { return 0; }
224    unsigned getT2SORegOpValue(const MachineInstr &MI, unsigned Op)
225      const { return 0; }
226    unsigned getT2AdrLabelOpValue(const MachineInstr &MI, unsigned Op)
227      const { return 0; }
228    unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op)
229      const { return 0; }
230    unsigned getAddrMode6OneLane32AddressOpValue(const MachineInstr &MI,
231                                                 unsigned Op)
232      const { return 0; }
233    unsigned getAddrMode6DupAddressOpValue(const MachineInstr &MI, unsigned Op)
234      const { return 0; }
235    unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op)
236      const { return 0; }
237    unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI,
238                                            unsigned Op) const { return 0; }
239    uint32_t getLdStSORegOpValue(const MachineInstr &MI, unsigned OpIdx)
240      const { return 0; }
241
242    unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
243      const {
244      // {17-13} = reg
245      // {12}    = (U)nsigned (add == '1', sub == '0')
246      // {11-0}  = imm12
247      const MachineOperand &MO  = MI.getOperand(Op);
248      const MachineOperand &MO1 = MI.getOperand(Op + 1);
249      if (!MO.isReg()) {
250        emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
251        return 0;
252      }
253      unsigned Reg = II->getRegisterInfo().getEncodingValue(MO.getReg());
254      int32_t Imm12 = MO1.getImm();
255      uint32_t Binary;
256      Binary = Imm12 & 0xfff;
257      if (Imm12 >= 0)
258        Binary |= (1 << 12);
259      Binary |= (Reg << 13);
260      return Binary;
261    }
262
263    unsigned getHiLo16ImmOpValue(const MachineInstr &MI, unsigned Op) const {
264      return 0;
265    }
266
267    uint32_t getAddrMode2OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
268      const { return 0;}
269    uint32_t getPostIdxRegOpValue(const MachineInstr &MI, unsigned OpIdx)
270      const { return 0;}
271    uint32_t getAddrMode3OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
272      const { return 0;}
273    uint32_t getAddrMode3OpValue(const MachineInstr &MI, unsigned Op)
274      const { return 0; }
275    uint32_t getAddrModeThumbSPOpValue(const MachineInstr &MI, unsigned Op)
276      const { return 0; }
277    uint32_t getAddrModeISOpValue(const MachineInstr &MI, unsigned Op)
278      const { return 0; }
279    uint32_t getAddrModePCOpValue(const MachineInstr &MI, unsigned Op)
280      const { return 0; }
281    uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const {
282      // {17-13} = reg
283      // {12}    = (U)nsigned (add == '1', sub == '0')
284      // {11-0}  = imm12
285      const MachineOperand &MO  = MI.getOperand(Op);
286      const MachineOperand &MO1 = MI.getOperand(Op + 1);
287      if (!MO.isReg()) {
288        emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
289        return 0;
290      }
291      unsigned Reg = II->getRegisterInfo().getEncodingValue(MO.getReg());
292      int32_t Imm12 = MO1.getImm();
293
294      // Special value for #-0
295      if (Imm12 == INT32_MIN)
296        Imm12 = 0;
297
298      // Immediate is always encoded as positive. The 'U' bit controls add vs
299      // sub.
300      bool isAdd = true;
301      if (Imm12 < 0) {
302        Imm12 = -Imm12;
303        isAdd = false;
304      }
305
306      uint32_t Binary = Imm12 & 0xfff;
307      if (isAdd)
308        Binary |= (1 << 12);
309      Binary |= (Reg << 13);
310      return Binary;
311    }
312    unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op)
313      const { return 0; }
314
315    unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op)
316      const { return 0; }
317
318    unsigned getShiftRight8Imm(const MachineInstr &MI, unsigned Op)
319      const { return 0; }
320    unsigned getShiftRight16Imm(const MachineInstr &MI, unsigned Op)
321      const { return 0; }
322    unsigned getShiftRight32Imm(const MachineInstr &MI, unsigned Op)
323      const { return 0; }
324    unsigned getShiftRight64Imm(const MachineInstr &MI, unsigned Op)
325      const { return 0; }
326
327    /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
328    /// machine operand requires relocation, record the relocation and return
329    /// zero.
330    unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
331                            unsigned Reloc);
332
333    /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
334    ///
335    unsigned getShiftOp(unsigned Imm) const ;
336
337    /// Routines that handle operands which add machine relocations which are
338    /// fixed up by the relocation stage.
339    void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
340                           bool MayNeedFarStub,  bool Indirect,
341                           intptr_t ACPV = 0) const;
342    void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
343    void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
344    void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const;
345    void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
346                               intptr_t JTBase = 0) const;
347    unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) const;
348    unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) const;
349    unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) const;
350    unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) const;
351    unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) const;
352    unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) const;
353  };
354}
355
356char ARMCodeEmitter::ID = 0;
357
358/// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
359/// code to the specified MCE object.
360FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
361                                                JITCodeEmitter &JCE) {
362  return new ARMCodeEmitter(TM, JCE);
363}
364
365bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
366  TargetMachine &Target = const_cast<TargetMachine&>(MF.getTarget());
367
368  assert((Target.getRelocationModel() != Reloc::Default ||
369          Target.getRelocationModel() != Reloc::Static) &&
370         "JIT relocation model must be set to static or default!");
371
372  JTI = static_cast<ARMJITInfo*>(Target.getJITInfo());
373  II = static_cast<const ARMBaseInstrInfo*>(Target.getInstrInfo());
374  TD = Target.getDataLayout();
375
376  Subtarget = &TM.getSubtarget<ARMSubtarget>();
377  MCPEs = &MF.getConstantPool()->getConstants();
378  MJTEs = nullptr;
379  if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
380  IsPIC = TM.getRelocationModel() == Reloc::PIC_;
381  IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction();
382  JTI->Initialize(MF, IsPIC);
383  MMI = &getAnalysis<MachineModuleInfo>();
384  MCE.setModuleInfo(MMI);
385
386  do {
387    DEBUG(errs() << "JITTing function '"
388          << MF.getName() << "'\n");
389    MCE.startFunction(MF);
390    for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
391         MBB != E; ++MBB) {
392      MCE.StartMachineBasicBlock(MBB);
393      for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
394           I != E; ++I)
395        emitInstruction(*I);
396    }
397  } while (MCE.finishFunction(MF));
398
399  return false;
400}
401
402/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
403///
404unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
405  switch (ARM_AM::getAM2ShiftOpc(Imm)) {
406  default: llvm_unreachable("Unknown shift opc!");
407  case ARM_AM::asr: return 2;
408  case ARM_AM::lsl: return 0;
409  case ARM_AM::lsr: return 1;
410  case ARM_AM::ror:
411  case ARM_AM::rrx: return 3;
412  }
413}
414
415/// getMovi32Value - Return binary encoding of operand for movw/movt. If the
416/// machine operand requires relocation, record the relocation and return zero.
417unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
418                                        const MachineOperand &MO,
419                                        unsigned Reloc) {
420  assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
421      && "Relocation to this function should be for movt or movw");
422
423  if (MO.isImm())
424    return static_cast<unsigned>(MO.getImm());
425  else if (MO.isGlobal())
426    emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
427  else if (MO.isSymbol())
428    emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
429  else if (MO.isMBB())
430    emitMachineBasicBlock(MO.getMBB(), Reloc);
431  else {
432#ifndef NDEBUG
433    errs() << MO;
434#endif
435    llvm_unreachable("Unsupported operand type for movw/movt");
436  }
437  return 0;
438}
439
440/// getMachineOpValue - Return binary encoding of operand. If the machine
441/// operand requires relocation, record the relocation and return zero.
442unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
443                                           const MachineOperand &MO) const {
444  if (MO.isReg())
445    return II->getRegisterInfo().getEncodingValue(MO.getReg());
446  else if (MO.isImm())
447    return static_cast<unsigned>(MO.getImm());
448  else if (MO.isGlobal())
449    emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
450  else if (MO.isSymbol())
451    emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
452  else if (MO.isCPI()) {
453    const MCInstrDesc &MCID = MI.getDesc();
454    // For VFP load, the immediate offset is multiplied by 4.
455    unsigned Reloc =  ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
456      ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
457    emitConstPoolAddress(MO.getIndex(), Reloc);
458  } else if (MO.isJTI())
459    emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
460  else if (MO.isMBB())
461    emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
462  else
463    llvm_unreachable("Unable to encode MachineOperand!");
464  return 0;
465}
466
467/// emitGlobalAddress - Emit the specified address to the code stream.
468///
469void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
470                                       bool MayNeedFarStub, bool Indirect,
471                                       intptr_t ACPV) const {
472  MachineRelocation MR = Indirect
473    ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
474                                           const_cast<GlobalValue *>(GV),
475                                           ACPV, MayNeedFarStub)
476    : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
477                               const_cast<GlobalValue *>(GV), ACPV,
478                               MayNeedFarStub);
479  MCE.addRelocation(MR);
480}
481
482/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
483/// be emitted to the current location in the function, and allow it to be PC
484/// relative.
485void ARMCodeEmitter::
486emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
487  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
488                                                 Reloc, ES));
489}
490
491/// emitConstPoolAddress - Arrange for the address of an constant pool
492/// to be emitted to the current location in the function, and allow it to be PC
493/// relative.
494void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
495  // Tell JIT emitter we'll resolve the address.
496  MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
497                                                    Reloc, CPI, 0, true));
498}
499
500/// emitJumpTableAddress - Arrange for the address of a jump table to
501/// be emitted to the current location in the function, and allow it to be PC
502/// relative.
503void ARMCodeEmitter::
504emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const {
505  MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
506                                                    Reloc, JTIndex, 0, true));
507}
508
509/// emitMachineBasicBlock - Emit the specified address basic block.
510void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
511                                           unsigned Reloc,
512                                           intptr_t JTBase) const {
513  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
514                                             Reloc, BB, JTBase));
515}
516
517void ARMCodeEmitter::emitWordLE(unsigned Binary) {
518  DEBUG(errs() << "  0x";
519        errs().write_hex(Binary) << "\n");
520  MCE.emitWordLE(Binary);
521}
522
523void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
524  DEBUG(errs() << "  0x";
525        errs().write_hex(Binary) << "\n");
526  MCE.emitDWordLE(Binary);
527}
528
529void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
530  DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
531
532  MCE.processDebugLoc(MI.getDebugLoc(), true);
533
534  ++NumEmitted;  // Keep track of the # of mi's emitted
535  switch (MI.getDesc().TSFlags & ARMII::FormMask) {
536  default: {
537    llvm_unreachable("Unhandled instruction encoding format!");
538  }
539  case ARMII::MiscFrm:
540    if (MI.getOpcode() == ARM::LEApcrelJT) {
541      // Materialize jumptable address.
542      emitLEApcrelJTInstruction(MI);
543      break;
544    }
545    llvm_unreachable("Unhandled instruction encoding!");
546  case ARMII::Pseudo:
547    emitPseudoInstruction(MI);
548    break;
549  case ARMII::DPFrm:
550  case ARMII::DPSoRegFrm:
551    emitDataProcessingInstruction(MI);
552    break;
553  case ARMII::LdFrm:
554  case ARMII::StFrm:
555    emitLoadStoreInstruction(MI);
556    break;
557  case ARMII::LdMiscFrm:
558  case ARMII::StMiscFrm:
559    emitMiscLoadStoreInstruction(MI);
560    break;
561  case ARMII::LdStMulFrm:
562    emitLoadStoreMultipleInstruction(MI);
563    break;
564  case ARMII::MulFrm:
565    emitMulFrmInstruction(MI);
566    break;
567  case ARMII::ExtFrm:
568    emitExtendInstruction(MI);
569    break;
570  case ARMII::ArithMiscFrm:
571    emitMiscArithInstruction(MI);
572    break;
573  case ARMII::SatFrm:
574    emitSaturateInstruction(MI);
575    break;
576  case ARMII::BrFrm:
577    emitBranchInstruction(MI);
578    break;
579  case ARMII::BrMiscFrm:
580    emitMiscBranchInstruction(MI);
581    break;
582  // VFP instructions.
583  case ARMII::VFPUnaryFrm:
584  case ARMII::VFPBinaryFrm:
585    emitVFPArithInstruction(MI);
586    break;
587  case ARMII::VFPConv1Frm:
588  case ARMII::VFPConv2Frm:
589  case ARMII::VFPConv3Frm:
590  case ARMII::VFPConv4Frm:
591  case ARMII::VFPConv5Frm:
592    emitVFPConversionInstruction(MI);
593    break;
594  case ARMII::VFPLdStFrm:
595    emitVFPLoadStoreInstruction(MI);
596    break;
597  case ARMII::VFPLdStMulFrm:
598    emitVFPLoadStoreMultipleInstruction(MI);
599    break;
600
601  // NEON instructions.
602  case ARMII::NGetLnFrm:
603  case ARMII::NSetLnFrm:
604    emitNEONLaneInstruction(MI);
605    break;
606  case ARMII::NDupFrm:
607    emitNEONDupInstruction(MI);
608    break;
609  case ARMII::N1RegModImmFrm:
610    emitNEON1RegModImmInstruction(MI);
611    break;
612  case ARMII::N2RegFrm:
613    emitNEON2RegInstruction(MI);
614    break;
615  case ARMII::N3RegFrm:
616    emitNEON3RegInstruction(MI);
617    break;
618  }
619  MCE.processDebugLoc(MI.getDebugLoc(), false);
620}
621
622void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
623  unsigned CPI = MI.getOperand(0).getImm();       // CP instruction index.
624  unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
625  const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
626
627  // Remember the CONSTPOOL_ENTRY address for later relocation.
628  JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
629
630  // Emit constpool island entry. In most cases, the actual values will be
631  // resolved and relocated after code emission.
632  if (MCPE.isMachineConstantPoolEntry()) {
633    ARMConstantPoolValue *ACPV =
634      static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
635
636    DEBUG(errs() << "  ** ARM constant pool #" << CPI << " @ "
637          << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
638
639    assert(ACPV->isGlobalValue() && "unsupported constant pool value");
640    const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
641    if (GV) {
642      Reloc::Model RelocM = TM.getRelocationModel();
643      emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
644                        isa<Function>(GV),
645                        Subtarget->GVIsIndirectSymbol(GV, RelocM),
646                        (intptr_t)ACPV);
647    } else  {
648      const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
649      emitExternalSymbolAddress(Sym, ARM::reloc_arm_absolute);
650    }
651    emitWordLE(0);
652  } else {
653    const Constant *CV = MCPE.Val.ConstVal;
654
655    DEBUG({
656        errs() << "  ** Constant pool #" << CPI << " @ "
657               << (void*)MCE.getCurrentPCValue() << " ";
658        if (const Function *F = dyn_cast<Function>(CV))
659          errs() << F->getName();
660        else
661          errs() << *CV;
662        errs() << '\n';
663      });
664
665    if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
666      emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV), false);
667      emitWordLE(0);
668    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
669      uint32_t Val = uint32_t(*CI->getValue().getRawData());
670      emitWordLE(Val);
671    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
672      if (CFP->getType()->isFloatTy())
673        emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
674      else if (CFP->getType()->isDoubleTy())
675        emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
676      else {
677        llvm_unreachable("Unable to handle this constantpool entry!");
678      }
679    } else {
680      llvm_unreachable("Unable to handle this constantpool entry!");
681    }
682  }
683}
684
685void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
686  const MachineOperand &MO0 = MI.getOperand(0);
687  const MachineOperand &MO1 = MI.getOperand(1);
688
689  // Emit the 'movw' instruction.
690  unsigned Binary = 0x30 << 20;  // mov: Insts{27-20} = 0b00110000
691
692  unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;
693
694  // Set the conditional execution predicate.
695  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
696
697  // Encode Rd.
698  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
699
700  // Encode imm16 as imm4:imm12
701  Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
702  Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
703  emitWordLE(Binary);
704
705  unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
706  // Emit the 'movt' instruction.
707  Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100
708
709  // Set the conditional execution predicate.
710  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
711
712  // Encode Rd.
713  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
714
715  // Encode imm16 as imm4:imm1, same as movw above.
716  Binary |= Hi16 & 0xFFF;
717  Binary |= ((Hi16 >> 12) & 0xF) << 16;
718  emitWordLE(Binary);
719}
720
721void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
722  const MachineOperand &MO0 = MI.getOperand(0);
723  const MachineOperand &MO1 = MI.getOperand(1);
724  assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
725                                                  "Not a valid so_imm value!");
726  unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
727  unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
728
729  // Emit the 'mov' instruction.
730  unsigned Binary = 0xd << 21;  // mov: Insts{24-21} = 0b1101
731
732  // Set the conditional execution predicate.
733  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
734
735  // Encode Rd.
736  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
737
738  // Encode so_imm.
739  // Set bit I(25) to identify this is the immediate form of <shifter_op>
740  Binary |= 1 << ARMII::I_BitShift;
741  Binary |= getMachineSoImmOpValue(V1);
742  emitWordLE(Binary);
743
744  // Now the 'orr' instruction.
745  Binary = 0xc << 21;  // orr: Insts{24-21} = 0b1100
746
747  // Set the conditional execution predicate.
748  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
749
750  // Encode Rd.
751  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
752
753  // Encode Rn.
754  Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
755
756  // Encode so_imm.
757  // Set bit I(25) to identify this is the immediate form of <shifter_op>
758  Binary |= 1 << ARMII::I_BitShift;
759  Binary |= getMachineSoImmOpValue(V2);
760  emitWordLE(Binary);
761}
762
763void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
764  // It's basically add r, pc, (LJTI - $+8)
765
766  const MCInstrDesc &MCID = MI.getDesc();
767
768  // Emit the 'add' instruction.
769  unsigned Binary = 0x4 << 21;  // add: Insts{24-21} = 0b0100
770
771  // Set the conditional execution predicate
772  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
773
774  // Encode S bit if MI modifies CPSR.
775  Binary |= getAddrModeSBit(MI, MCID);
776
777  // Encode Rd.
778  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
779
780  // Encode Rn which is PC.
781  Binary |= II->getRegisterInfo().getEncodingValue(ARM::PC) << ARMII::RegRnShift;
782
783  // Encode the displacement.
784  Binary |= 1 << ARMII::I_BitShift;
785  emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
786
787  emitWordLE(Binary);
788}
789
790void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
791  unsigned Opcode = MI.getDesc().Opcode;
792
793  // Part of binary is determined by TableGn.
794  unsigned Binary = getBinaryCodeForInstr(MI);
795
796  // Set the conditional execution predicate
797  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
798
799  // Encode S bit if MI modifies CPSR.
800  if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
801    Binary |= 1 << ARMII::S_BitShift;
802
803  // Encode register def if there is one.
804  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
805
806  // Encode the shift operation.
807  switch (Opcode) {
808  default: break;
809  case ARM::RRX:
810    // rrx
811    Binary |= 0x6 << 4;
812    break;
813  case ARM::MOVsrl_flag:
814    // lsr #1
815    Binary |= (0x2 << 4) | (1 << 7);
816    break;
817  case ARM::MOVsra_flag:
818    // asr #1
819    Binary |= (0x4 << 4) | (1 << 7);
820    break;
821  }
822
823  // Encode register Rm.
824  Binary |= getMachineOpValue(MI, 1);
825
826  emitWordLE(Binary);
827}
828
829void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
830  DEBUG(errs() << "  ** LPC" << LabelID << " @ "
831        << (void*)MCE.getCurrentPCValue() << '\n');
832  JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
833}
834
835void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
836  unsigned Opcode = MI.getDesc().Opcode;
837  switch (Opcode) {
838  default:
839    llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
840  case ARM::BX_CALL:
841  case ARM::BMOVPCRX_CALL: {
842    // First emit mov lr, pc
843    unsigned Binary = 0x01a0e00f;
844    Binary |= II->getPredicate(&MI) << ARMII::CondShift;
845    emitWordLE(Binary);
846
847    // and then emit the branch.
848    emitMiscBranchInstruction(MI);
849    break;
850  }
851  case TargetOpcode::INLINEASM: {
852    // We allow inline assembler nodes with empty bodies - they can
853    // implicitly define registers, which is ok for JIT.
854    if (MI.getOperand(0).getSymbolName()[0]) {
855      report_fatal_error("JIT does not support inline asm!");
856    }
857    break;
858  }
859  case TargetOpcode::CFI_INSTRUCTION:
860    break;
861  case TargetOpcode::EH_LABEL:
862    MCE.emitLabel(MI.getOperand(0).getMCSymbol());
863    break;
864  case TargetOpcode::IMPLICIT_DEF:
865  case TargetOpcode::KILL:
866    // Do nothing.
867    break;
868  case ARM::CONSTPOOL_ENTRY:
869    emitConstPoolInstruction(MI);
870    break;
871  case ARM::PICADD: {
872    // Remember of the address of the PC label for relocation later.
873    addPCLabel(MI.getOperand(2).getImm());
874    // PICADD is just an add instruction that implicitly read pc.
875    emitDataProcessingInstruction(MI, 0, ARM::PC);
876    break;
877  }
878  case ARM::PICLDR:
879  case ARM::PICLDRB:
880  case ARM::PICSTR:
881  case ARM::PICSTRB: {
882    // Remember of the address of the PC label for relocation later.
883    addPCLabel(MI.getOperand(2).getImm());
884    // These are just load / store instructions that implicitly read pc.
885    emitLoadStoreInstruction(MI, 0, ARM::PC);
886    break;
887  }
888  case ARM::PICLDRH:
889  case ARM::PICLDRSH:
890  case ARM::PICLDRSB:
891  case ARM::PICSTRH: {
892    // Remember of the address of the PC label for relocation later.
893    addPCLabel(MI.getOperand(2).getImm());
894    // These are just load / store instructions that implicitly read pc.
895    emitMiscLoadStoreInstruction(MI, ARM::PC);
896    break;
897  }
898
899  case ARM::MOVi32imm:
900    // Two instructions to materialize a constant.
901    if (Subtarget->hasV6T2Ops())
902      emitMOVi32immInstruction(MI);
903    else
904      emitMOVi2piecesInstruction(MI);
905    break;
906
907  case ARM::LEApcrelJT:
908    // Materialize jumptable address.
909    emitLEApcrelJTInstruction(MI);
910    break;
911  case ARM::RRX:
912  case ARM::MOVsrl_flag:
913  case ARM::MOVsra_flag:
914    emitPseudoMoveInstruction(MI);
915    break;
916  }
917}
918
919unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
920                                                const MCInstrDesc &MCID,
921                                                const MachineOperand &MO,
922                                                unsigned OpIdx) {
923  unsigned Binary = getMachineOpValue(MI, MO);
924
925  const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
926  const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
927  ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
928
929  // Encode the shift opcode.
930  unsigned SBits = 0;
931  unsigned Rs = MO1.getReg();
932  if (Rs) {
933    // Set shift operand (bit[7:4]).
934    // LSL - 0001
935    // LSR - 0011
936    // ASR - 0101
937    // ROR - 0111
938    // RRX - 0110 and bit[11:8] clear.
939    switch (SOpc) {
940    default: llvm_unreachable("Unknown shift opc!");
941    case ARM_AM::lsl: SBits = 0x1; break;
942    case ARM_AM::lsr: SBits = 0x3; break;
943    case ARM_AM::asr: SBits = 0x5; break;
944    case ARM_AM::ror: SBits = 0x7; break;
945    case ARM_AM::rrx: SBits = 0x6; break;
946    }
947  } else {
948    // Set shift operand (bit[6:4]).
949    // LSL - 000
950    // LSR - 010
951    // ASR - 100
952    // ROR - 110
953    switch (SOpc) {
954    default: llvm_unreachable("Unknown shift opc!");
955    case ARM_AM::lsl: SBits = 0x0; break;
956    case ARM_AM::lsr: SBits = 0x2; break;
957    case ARM_AM::asr: SBits = 0x4; break;
958    case ARM_AM::ror: SBits = 0x6; break;
959    }
960  }
961  Binary |= SBits << 4;
962  if (SOpc == ARM_AM::rrx)
963    return Binary;
964
965  // Encode the shift operation Rs or shift_imm (except rrx).
966  if (Rs) {
967    // Encode Rs bit[11:8].
968    assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
969    return Binary | (II->getRegisterInfo().getEncodingValue(Rs) << ARMII::RegRsShift);
970  }
971
972  // Encode shift_imm bit[11:7].
973  return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
974}
975
976unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
977  int SoImmVal = ARM_AM::getSOImmVal(SoImm);
978  assert(SoImmVal != -1 && "Not a valid so_imm value!");
979
980  // Encode rotate_imm.
981  unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
982    << ARMII::SoRotImmShift;
983
984  // Encode immed_8.
985  Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
986  return Binary;
987}
988
989unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
990                                         const MCInstrDesc &MCID) const {
991  for (unsigned i = MI.getNumOperands(), e = MCID.getNumOperands(); i >= e;--i){
992    const MachineOperand &MO = MI.getOperand(i-1);
993    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
994      return 1 << ARMII::S_BitShift;
995  }
996  return 0;
997}
998
999void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
1000                                                   unsigned ImplicitRd,
1001                                                   unsigned ImplicitRn) {
1002  const MCInstrDesc &MCID = MI.getDesc();
1003
1004  // Part of binary is determined by TableGn.
1005  unsigned Binary = getBinaryCodeForInstr(MI);
1006
1007  // Set the conditional execution predicate
1008  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1009
1010  // Encode S bit if MI modifies CPSR.
1011  Binary |= getAddrModeSBit(MI, MCID);
1012
1013  // Encode register def if there is one.
1014  unsigned NumDefs = MCID.getNumDefs();
1015  unsigned OpIdx = 0;
1016  if (NumDefs)
1017    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1018  else if (ImplicitRd)
1019    // Special handling for implicit use (e.g. PC).
1020    Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRd) << ARMII::RegRdShift);
1021
1022  if (MCID.Opcode == ARM::MOVi16) {
1023      // Get immediate from MI.
1024      unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
1025                      ARM::reloc_arm_movw);
1026      // Encode imm which is the same as in emitMOVi32immInstruction().
1027      Binary |= Lo16 & 0xFFF;
1028      Binary |= ((Lo16 >> 12) & 0xF) << 16;
1029      emitWordLE(Binary);
1030      return;
1031  } else if(MCID.Opcode == ARM::MOVTi16) {
1032      unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
1033                       ARM::reloc_arm_movt) >> 16);
1034      Binary |= Hi16 & 0xFFF;
1035      Binary |= ((Hi16 >> 12) & 0xF) << 16;
1036      emitWordLE(Binary);
1037      return;
1038  } else if ((MCID.Opcode == ARM::BFC) || (MCID.Opcode == ARM::BFI)) {
1039      uint32_t v = ~MI.getOperand(2).getImm();
1040      int32_t lsb = countTrailingZeros(v);
1041      int32_t msb = (32 - countLeadingZeros(v)) - 1;
1042      // Instr{20-16} = msb, Instr{11-7} = lsb
1043      Binary |= (msb & 0x1F) << 16;
1044      Binary |= (lsb & 0x1F) << 7;
1045      emitWordLE(Binary);
1046      return;
1047  } else if ((MCID.Opcode == ARM::UBFX) || (MCID.Opcode == ARM::SBFX)) {
1048      // Encode Rn in Instr{0-3}
1049      Binary |= getMachineOpValue(MI, OpIdx++);
1050
1051      uint32_t lsb = MI.getOperand(OpIdx++).getImm();
1052      uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1;
1053
1054      // Instr{20-16} = widthm1, Instr{11-7} = lsb
1055      Binary |= (widthm1 & 0x1F) << 16;
1056      Binary |= (lsb & 0x1F) << 7;
1057      emitWordLE(Binary);
1058      return;
1059  }
1060
1061  // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
1062  if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1063    ++OpIdx;
1064
1065  // Encode first non-shifter register operand if there is one.
1066  bool isUnary = MCID.TSFlags & ARMII::UnaryDP;
1067  if (!isUnary) {
1068    if (ImplicitRn)
1069      // Special handling for implicit use (e.g. PC).
1070      Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
1071    else {
1072      Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
1073      ++OpIdx;
1074    }
1075  }
1076
1077  // Encode shifter operand.
1078  const MachineOperand &MO = MI.getOperand(OpIdx);
1079  if ((MCID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
1080    // Encode SoReg.
1081    emitWordLE(Binary | getMachineSoRegOpValue(MI, MCID, MO, OpIdx));
1082    return;
1083  }
1084
1085  if (MO.isReg()) {
1086    // Encode register Rm.
1087    emitWordLE(Binary | II->getRegisterInfo().getEncodingValue(MO.getReg()));
1088    return;
1089  }
1090
1091  // Encode so_imm.
1092  Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
1093
1094  emitWordLE(Binary);
1095}
1096
1097void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
1098                                              unsigned ImplicitRd,
1099                                              unsigned ImplicitRn) {
1100  const MCInstrDesc &MCID = MI.getDesc();
1101  unsigned Form = MCID.TSFlags & ARMII::FormMask;
1102  bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1103
1104  // Part of binary is determined by TableGn.
1105  unsigned Binary = getBinaryCodeForInstr(MI);
1106
1107  // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done.
1108  if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp ||
1109      MI.getOpcode() == ARM::STRi12) {
1110    emitWordLE(Binary);
1111    return;
1112  }
1113
1114  // Set the conditional execution predicate
1115  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1116
1117  unsigned OpIdx = 0;
1118
1119  // Operand 0 of a pre- and post-indexed store is the address base
1120  // writeback. Skip it.
1121  bool Skipped = false;
1122  if (IsPrePost && Form == ARMII::StFrm) {
1123    ++OpIdx;
1124    Skipped = true;
1125  }
1126
1127  // Set first operand
1128  if (ImplicitRd)
1129    // Special handling for implicit use (e.g. PC).
1130    Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRd) << ARMII::RegRdShift);
1131  else
1132    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1133
1134  // Set second operand
1135  if (ImplicitRn)
1136    // Special handling for implicit use (e.g. PC).
1137    Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
1138  else
1139    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1140
1141  // If this is a two-address operand, skip it. e.g. LDR_PRE.
1142  if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1143    ++OpIdx;
1144
1145  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1146  unsigned AM2Opc = (ImplicitRn == ARM::PC)
1147    ? 0 : MI.getOperand(OpIdx+1).getImm();
1148
1149  // Set bit U(23) according to sign of immed value (positive or negative).
1150  Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
1151             ARMII::U_BitShift);
1152  if (!MO2.getReg()) { // is immediate
1153    if (ARM_AM::getAM2Offset(AM2Opc))
1154      // Set the value of offset_12 field
1155      Binary |= ARM_AM::getAM2Offset(AM2Opc);
1156    emitWordLE(Binary);
1157    return;
1158  }
1159
1160  // Set bit I(25), because this is not in immediate encoding.
1161  Binary |= 1 << ARMII::I_BitShift;
1162  assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
1163  // Set bit[3:0] to the corresponding Rm register
1164  Binary |= II->getRegisterInfo().getEncodingValue(MO2.getReg());
1165
1166  // If this instr is in scaled register offset/index instruction, set
1167  // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
1168  if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
1169    Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift;  // shift
1170    Binary |= ShImm              << ARMII::ShiftShift;     // shift_immed
1171  }
1172
1173  emitWordLE(Binary);
1174}
1175
1176void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
1177                                                  unsigned ImplicitRn) {
1178  const MCInstrDesc &MCID = MI.getDesc();
1179  unsigned Form = MCID.TSFlags & ARMII::FormMask;
1180  bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1181
1182  // Part of binary is determined by TableGn.
1183  unsigned Binary = getBinaryCodeForInstr(MI);
1184
1185  // Set the conditional execution predicate
1186  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1187
1188  unsigned OpIdx = 0;
1189
1190  // Operand 0 of a pre- and post-indexed store is the address base
1191  // writeback. Skip it.
1192  bool Skipped = false;
1193  if (IsPrePost && Form == ARMII::StMiscFrm) {
1194    ++OpIdx;
1195    Skipped = true;
1196  }
1197
1198  // Set first operand
1199  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1200
1201  // Skip LDRD and STRD's second operand.
1202  if (MCID.Opcode == ARM::LDRD || MCID.Opcode == ARM::STRD)
1203    ++OpIdx;
1204
1205  // Set second operand
1206  if (ImplicitRn)
1207    // Special handling for implicit use (e.g. PC).
1208    Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
1209  else
1210    Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1211
1212  // If this is a two-address operand, skip it. e.g. LDRH_POST.
1213  if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1214    ++OpIdx;
1215
1216  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1217  unsigned AM3Opc = (ImplicitRn == ARM::PC)
1218    ? 0 : MI.getOperand(OpIdx+1).getImm();
1219
1220  // Set bit U(23) according to sign of immed value (positive or negative)
1221  Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
1222             ARMII::U_BitShift);
1223
1224  // If this instr is in register offset/index encoding, set bit[3:0]
1225  // to the corresponding Rm register.
1226  if (MO2.getReg()) {
1227    Binary |= II->getRegisterInfo().getEncodingValue(MO2.getReg());
1228    emitWordLE(Binary);
1229    return;
1230  }
1231
1232  // This instr is in immediate offset/index encoding, set bit 22 to 1.
1233  Binary |= 1 << ARMII::AM3_I_BitShift;
1234  if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
1235    // Set operands
1236    Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift;  // immedH
1237    Binary |= (ImmOffs & 0xF);                      // immedL
1238  }
1239
1240  emitWordLE(Binary);
1241}
1242
1243static unsigned getAddrModeUPBits(unsigned Mode) {
1244  unsigned Binary = 0;
1245
1246  // Set addressing mode by modifying bits U(23) and P(24)
1247  // IA - Increment after  - bit U = 1 and bit P = 0
1248  // IB - Increment before - bit U = 1 and bit P = 1
1249  // DA - Decrement after  - bit U = 0 and bit P = 0
1250  // DB - Decrement before - bit U = 0 and bit P = 1
1251  switch (Mode) {
1252  default: llvm_unreachable("Unknown addressing sub-mode!");
1253  case ARM_AM::da:                                     break;
1254  case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
1255  case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
1256  case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
1257  }
1258
1259  return Binary;
1260}
1261
1262void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
1263  const MCInstrDesc &MCID = MI.getDesc();
1264  bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1265
1266  // Part of binary is determined by TableGn.
1267  unsigned Binary = getBinaryCodeForInstr(MI);
1268
1269  // Set the conditional execution predicate
1270  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1271
1272  // Skip operand 0 of an instruction with base register update.
1273  unsigned OpIdx = 0;
1274  if (IsUpdating)
1275    ++OpIdx;
1276
1277  // Set base address operand
1278  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1279
1280  // Set addressing mode by modifying bits U(23) and P(24)
1281  ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
1282  Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
1283
1284  // Set bit W(21)
1285  if (IsUpdating)
1286    Binary |= 0x1 << ARMII::W_BitShift;
1287
1288  // Set registers
1289  for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
1290    const MachineOperand &MO = MI.getOperand(i);
1291    if (!MO.isReg() || MO.isImplicit())
1292      break;
1293    unsigned RegNum = II->getRegisterInfo().getEncodingValue(MO.getReg());
1294    assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
1295           RegNum < 16);
1296    Binary |= 0x1 << RegNum;
1297  }
1298
1299  emitWordLE(Binary);
1300}
1301
1302void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
1303  const MCInstrDesc &MCID = MI.getDesc();
1304
1305  // Part of binary is determined by TableGn.
1306  unsigned Binary = getBinaryCodeForInstr(MI);
1307
1308  // Set the conditional execution predicate
1309  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1310
1311  // Encode S bit if MI modifies CPSR.
1312  Binary |= getAddrModeSBit(MI, MCID);
1313
1314  // 32x32->64bit operations have two destination registers. The number
1315  // of register definitions will tell us if that's what we're dealing with.
1316  unsigned OpIdx = 0;
1317  if (MCID.getNumDefs() == 2)
1318    Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
1319
1320  // Encode Rd
1321  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
1322
1323  // Encode Rm
1324  Binary |= getMachineOpValue(MI, OpIdx++);
1325
1326  // Encode Rs
1327  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
1328
1329  // Many multiple instructions (e.g. MLA) have three src operands. Encode
1330  // it as Rn (for multiply, that's in the same offset as RdLo.
1331  if (MCID.getNumOperands() > OpIdx &&
1332      !MCID.OpInfo[OpIdx].isPredicate() &&
1333      !MCID.OpInfo[OpIdx].isOptionalDef())
1334    Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
1335
1336  emitWordLE(Binary);
1337}
1338
1339void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
1340  const MCInstrDesc &MCID = MI.getDesc();
1341
1342  // Part of binary is determined by TableGn.
1343  unsigned Binary = getBinaryCodeForInstr(MI);
1344
1345  // Set the conditional execution predicate
1346  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1347
1348  unsigned OpIdx = 0;
1349
1350  // Encode Rd
1351  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1352
1353  const MachineOperand &MO1 = MI.getOperand(OpIdx++);
1354  const MachineOperand &MO2 = MI.getOperand(OpIdx);
1355  if (MO2.isReg()) {
1356    // Two register operand form.
1357    // Encode Rn.
1358    Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
1359
1360    // Encode Rm.
1361    Binary |= getMachineOpValue(MI, MO2);
1362    ++OpIdx;
1363  } else {
1364    Binary |= getMachineOpValue(MI, MO1);
1365  }
1366
1367  // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
1368  if (MI.getOperand(OpIdx).isImm() &&
1369      !MCID.OpInfo[OpIdx].isPredicate() &&
1370      !MCID.OpInfo[OpIdx].isOptionalDef())
1371    Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
1372
1373  emitWordLE(Binary);
1374}
1375
1376void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
1377  const MCInstrDesc &MCID = MI.getDesc();
1378
1379  // Part of binary is determined by TableGn.
1380  unsigned Binary = getBinaryCodeForInstr(MI);
1381
1382  // Set the conditional execution predicate
1383  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1384
1385  // PKH instructions are finished at this point
1386  if (MCID.Opcode == ARM::PKHBT || MCID.Opcode == ARM::PKHTB) {
1387    emitWordLE(Binary);
1388    return;
1389  }
1390
1391  unsigned OpIdx = 0;
1392
1393  // Encode Rd
1394  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1395
1396  const MachineOperand &MO = MI.getOperand(OpIdx++);
1397  if (OpIdx == MCID.getNumOperands() ||
1398      MCID.OpInfo[OpIdx].isPredicate() ||
1399      MCID.OpInfo[OpIdx].isOptionalDef()) {
1400    // Encode Rm and it's done.
1401    Binary |= getMachineOpValue(MI, MO);
1402    emitWordLE(Binary);
1403    return;
1404  }
1405
1406  // Encode Rn.
1407  Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
1408
1409  // Encode Rm.
1410  Binary |= getMachineOpValue(MI, OpIdx++);
1411
1412  // Encode shift_imm.
1413  unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
1414  if (MCID.Opcode == ARM::PKHTB) {
1415    assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!");
1416    if (ShiftAmt == 32)
1417      ShiftAmt = 0;
1418  }
1419  assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1420  Binary |= ShiftAmt << ARMII::ShiftShift;
1421
1422  emitWordLE(Binary);
1423}
1424
1425void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) {
1426  const MCInstrDesc &MCID = MI.getDesc();
1427
1428  // Part of binary is determined by TableGen.
1429  unsigned Binary = getBinaryCodeForInstr(MI);
1430
1431  // Set the conditional execution predicate
1432  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1433
1434  // Encode Rd
1435  Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
1436
1437  // Encode saturate bit position.
1438  unsigned Pos = MI.getOperand(1).getImm();
1439  if (MCID.Opcode == ARM::SSAT || MCID.Opcode == ARM::SSAT16)
1440    Pos -= 1;
1441  assert((Pos < 16 || (Pos < 32 &&
1442                       MCID.Opcode != ARM::SSAT16 &&
1443                       MCID.Opcode != ARM::USAT16)) &&
1444         "saturate bit position out of range");
1445  Binary |= Pos << 16;
1446
1447  // Encode Rm
1448  Binary |= getMachineOpValue(MI, 2);
1449
1450  // Encode shift_imm.
1451  if (MCID.getNumOperands() == 4) {
1452    unsigned ShiftOp = MI.getOperand(3).getImm();
1453    ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp);
1454    if (Opc == ARM_AM::asr)
1455      Binary |= (1 << 6);
1456    unsigned ShiftAmt = MI.getOperand(3).getImm();
1457    if (ShiftAmt == 32 && Opc == ARM_AM::asr)
1458      ShiftAmt = 0;
1459    assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1460    Binary |= ShiftAmt << ARMII::ShiftShift;
1461  }
1462
1463  emitWordLE(Binary);
1464}
1465
1466void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
1467  const MCInstrDesc &MCID = MI.getDesc();
1468
1469  if (MCID.Opcode == ARM::TPsoft) {
1470    llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
1471  }
1472
1473  // Part of binary is determined by TableGn.
1474  unsigned Binary = getBinaryCodeForInstr(MI);
1475
1476  // Set the conditional execution predicate
1477  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1478
1479  // Set signed_immed_24 field
1480  Binary |= getMachineOpValue(MI, 0);
1481
1482  emitWordLE(Binary);
1483}
1484
1485void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
1486  // Remember the base address of the inline jump table.
1487  uintptr_t JTBase = MCE.getCurrentPCValue();
1488  JTI->addJumpTableBaseAddr(JTIndex, JTBase);
1489  DEBUG(errs() << "  ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
1490               << '\n');
1491
1492  // Now emit the jump table entries.
1493  const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
1494  for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
1495    if (IsPIC)
1496      // DestBB address - JT base.
1497      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
1498    else
1499      // Absolute DestBB address.
1500      emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
1501    emitWordLE(0);
1502  }
1503}
1504
1505void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
1506  const MCInstrDesc &MCID = MI.getDesc();
1507
1508  // Handle jump tables.
1509  if (MCID.Opcode == ARM::BR_JTr || MCID.Opcode == ARM::BR_JTadd) {
1510    // First emit a ldr pc, [] instruction.
1511    emitDataProcessingInstruction(MI, ARM::PC);
1512
1513    // Then emit the inline jump table.
1514    unsigned JTIndex =
1515      (MCID.Opcode == ARM::BR_JTr)
1516      ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
1517    emitInlineJumpTable(JTIndex);
1518    return;
1519  } else if (MCID.Opcode == ARM::BR_JTm) {
1520    // First emit a ldr pc, [] instruction.
1521    emitLoadStoreInstruction(MI, ARM::PC);
1522
1523    // Then emit the inline jump table.
1524    emitInlineJumpTable(MI.getOperand(3).getIndex());
1525    return;
1526  }
1527
1528  // Part of binary is determined by TableGn.
1529  unsigned Binary = getBinaryCodeForInstr(MI);
1530
1531  // Set the conditional execution predicate
1532  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1533
1534  if (MCID.Opcode == ARM::BX_RET || MCID.Opcode == ARM::MOVPCLR)
1535    // The return register is LR.
1536    Binary |= II->getRegisterInfo().getEncodingValue(ARM::LR);
1537  else
1538    // otherwise, set the return register
1539    Binary |= getMachineOpValue(MI, 0);
1540
1541  emitWordLE(Binary);
1542}
1543
1544unsigned ARMCodeEmitter::encodeVFPRd(const MachineInstr &MI,
1545                                     unsigned OpIdx) const {
1546  unsigned RegD = MI.getOperand(OpIdx).getReg();
1547  unsigned Binary = 0;
1548  bool isSPVFP = ARM::SPRRegClass.contains(RegD);
1549  RegD = II->getRegisterInfo().getEncodingValue(RegD);
1550  if (!isSPVFP)
1551    Binary |=   RegD               << ARMII::RegRdShift;
1552  else {
1553    Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
1554    Binary |=  (RegD & 0x01)       << ARMII::D_BitShift;
1555  }
1556  return Binary;
1557}
1558
1559unsigned ARMCodeEmitter::encodeVFPRn(const MachineInstr &MI,
1560                                     unsigned OpIdx) const {
1561  unsigned RegN = MI.getOperand(OpIdx).getReg();
1562  unsigned Binary = 0;
1563  bool isSPVFP = ARM::SPRRegClass.contains(RegN);
1564  RegN = II->getRegisterInfo().getEncodingValue(RegN);
1565  if (!isSPVFP)
1566    Binary |=   RegN               << ARMII::RegRnShift;
1567  else {
1568    Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
1569    Binary |=  (RegN & 0x01)       << ARMII::N_BitShift;
1570  }
1571  return Binary;
1572}
1573
1574unsigned ARMCodeEmitter::encodeVFPRm(const MachineInstr &MI,
1575                                     unsigned OpIdx) const {
1576  unsigned RegM = MI.getOperand(OpIdx).getReg();
1577  unsigned Binary = 0;
1578  bool isSPVFP = ARM::SPRRegClass.contains(RegM);
1579  RegM = II->getRegisterInfo().getEncodingValue(RegM);
1580  if (!isSPVFP)
1581    Binary |=   RegM;
1582  else {
1583    Binary |= ((RegM & 0x1E) >> 1);
1584    Binary |=  (RegM & 0x01)       << ARMII::M_BitShift;
1585  }
1586  return Binary;
1587}
1588
1589void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
1590  const MCInstrDesc &MCID = MI.getDesc();
1591
1592  // Part of binary is determined by TableGn.
1593  unsigned Binary = getBinaryCodeForInstr(MI);
1594
1595  // Set the conditional execution predicate
1596  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1597
1598  unsigned OpIdx = 0;
1599  assert((Binary & ARMII::D_BitShift) == 0 &&
1600         (Binary & ARMII::N_BitShift) == 0 &&
1601         (Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!");
1602
1603  // Encode Dd / Sd.
1604  Binary |= encodeVFPRd(MI, OpIdx++);
1605
1606  // If this is a two-address operand, skip it, e.g. FMACD.
1607  if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1608    ++OpIdx;
1609
1610  // Encode Dn / Sn.
1611  if ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
1612    Binary |= encodeVFPRn(MI, OpIdx++);
1613
1614  if (OpIdx == MCID.getNumOperands() ||
1615      MCID.OpInfo[OpIdx].isPredicate() ||
1616      MCID.OpInfo[OpIdx].isOptionalDef()) {
1617    // FCMPEZD etc. has only one operand.
1618    emitWordLE(Binary);
1619    return;
1620  }
1621
1622  // Encode Dm / Sm.
1623  Binary |= encodeVFPRm(MI, OpIdx);
1624
1625  emitWordLE(Binary);
1626}
1627
1628void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
1629  const MCInstrDesc &MCID = MI.getDesc();
1630  unsigned Form = MCID.TSFlags & ARMII::FormMask;
1631
1632  // Part of binary is determined by TableGn.
1633  unsigned Binary = getBinaryCodeForInstr(MI);
1634
1635  // Set the conditional execution predicate
1636  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1637
1638  switch (Form) {
1639  default: break;
1640  case ARMII::VFPConv1Frm:
1641  case ARMII::VFPConv2Frm:
1642  case ARMII::VFPConv3Frm:
1643    // Encode Dd / Sd.
1644    Binary |= encodeVFPRd(MI, 0);
1645    break;
1646  case ARMII::VFPConv4Frm:
1647    // Encode Dn / Sn.
1648    Binary |= encodeVFPRn(MI, 0);
1649    break;
1650  case ARMII::VFPConv5Frm:
1651    // Encode Dm / Sm.
1652    Binary |= encodeVFPRm(MI, 0);
1653    break;
1654  }
1655
1656  switch (Form) {
1657  default: break;
1658  case ARMII::VFPConv1Frm:
1659    // Encode Dm / Sm.
1660    Binary |= encodeVFPRm(MI, 1);
1661    break;
1662  case ARMII::VFPConv2Frm:
1663  case ARMII::VFPConv3Frm:
1664    // Encode Dn / Sn.
1665    Binary |= encodeVFPRn(MI, 1);
1666    break;
1667  case ARMII::VFPConv4Frm:
1668  case ARMII::VFPConv5Frm:
1669    // Encode Dd / Sd.
1670    Binary |= encodeVFPRd(MI, 1);
1671    break;
1672  }
1673
1674  if (Form == ARMII::VFPConv5Frm)
1675    // Encode Dn / Sn.
1676    Binary |= encodeVFPRn(MI, 2);
1677  else if (Form == ARMII::VFPConv3Frm)
1678    // Encode Dm / Sm.
1679    Binary |= encodeVFPRm(MI, 2);
1680
1681  emitWordLE(Binary);
1682}
1683
1684void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
1685  // Part of binary is determined by TableGn.
1686  unsigned Binary = getBinaryCodeForInstr(MI);
1687
1688  // Set the conditional execution predicate
1689  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1690
1691  unsigned OpIdx = 0;
1692
1693  // Encode Dd / Sd.
1694  Binary |= encodeVFPRd(MI, OpIdx++);
1695
1696  // Encode address base.
1697  const MachineOperand &Base = MI.getOperand(OpIdx++);
1698  Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
1699
1700  // If there is a non-zero immediate offset, encode it.
1701  if (Base.isReg()) {
1702    const MachineOperand &Offset = MI.getOperand(OpIdx);
1703    if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
1704      if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
1705        Binary |= 1 << ARMII::U_BitShift;
1706      Binary |= ImmOffs;
1707      emitWordLE(Binary);
1708      return;
1709    }
1710  }
1711
1712  // If immediate offset is omitted, default to +0.
1713  Binary |= 1 << ARMII::U_BitShift;
1714
1715  emitWordLE(Binary);
1716}
1717
1718void
1719ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
1720  const MCInstrDesc &MCID = MI.getDesc();
1721  bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1722
1723  // Part of binary is determined by TableGn.
1724  unsigned Binary = getBinaryCodeForInstr(MI);
1725
1726  // Set the conditional execution predicate
1727  Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1728
1729  // Skip operand 0 of an instruction with base register update.
1730  unsigned OpIdx = 0;
1731  if (IsUpdating)
1732    ++OpIdx;
1733
1734  // Set base address operand
1735  Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1736
1737  // Set addressing mode by modifying bits U(23) and P(24)
1738  ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
1739  Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
1740
1741  // Set bit W(21)
1742  if (IsUpdating)
1743    Binary |= 0x1 << ARMII::W_BitShift;
1744
1745  // First register is encoded in Dd.
1746  Binary |= encodeVFPRd(MI, OpIdx+2);
1747
1748  // Count the number of registers.
1749  unsigned NumRegs = 1;
1750  for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
1751    const MachineOperand &MO = MI.getOperand(i);
1752    if (!MO.isReg() || MO.isImplicit())
1753      break;
1754    ++NumRegs;
1755  }
1756  // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
1757  // Otherwise, it will be 0, in the case of 32-bit registers.
1758  if(Binary & 0x100)
1759    Binary |= NumRegs * 2;
1760  else
1761    Binary |= NumRegs;
1762
1763  emitWordLE(Binary);
1764}
1765
1766unsigned ARMCodeEmitter::encodeNEONRd(const MachineInstr &MI,
1767                                      unsigned OpIdx) const {
1768  unsigned RegD = MI.getOperand(OpIdx).getReg();
1769  unsigned Binary = 0;
1770  RegD = II->getRegisterInfo().getEncodingValue(RegD);
1771  Binary |= (RegD & 0xf) << ARMII::RegRdShift;
1772  Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift;
1773  return Binary;
1774}
1775
1776unsigned ARMCodeEmitter::encodeNEONRn(const MachineInstr &MI,
1777                                      unsigned OpIdx) const {
1778  unsigned RegN = MI.getOperand(OpIdx).getReg();
1779  unsigned Binary = 0;
1780  RegN = II->getRegisterInfo().getEncodingValue(RegN);
1781  Binary |= (RegN & 0xf) << ARMII::RegRnShift;
1782  Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift;
1783  return Binary;
1784}
1785
1786unsigned ARMCodeEmitter::encodeNEONRm(const MachineInstr &MI,
1787                                      unsigned OpIdx) const {
1788  unsigned RegM = MI.getOperand(OpIdx).getReg();
1789  unsigned Binary = 0;
1790  RegM = II->getRegisterInfo().getEncodingValue(RegM);
1791  Binary |= (RegM & 0xf);
1792  Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift;
1793  return Binary;
1794}
1795
1796/// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON
1797/// data-processing instruction to the corresponding Thumb encoding.
1798static unsigned convertNEONDataProcToThumb(unsigned Binary) {
1799  assert((Binary & 0xfe000000) == 0xf2000000 &&
1800         "not an ARM NEON data-processing instruction");
1801  unsigned UBit = (Binary >> 24) & 1;
1802  return 0xef000000 | (UBit << 28) | (Binary & 0xffffff);
1803}
1804
1805void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) {
1806  unsigned Binary = getBinaryCodeForInstr(MI);
1807
1808  unsigned RegTOpIdx, RegNOpIdx, LnOpIdx;
1809  const MCInstrDesc &MCID = MI.getDesc();
1810  if ((MCID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) {
1811    RegTOpIdx = 0;
1812    RegNOpIdx = 1;
1813    LnOpIdx = 2;
1814  } else { // ARMII::NSetLnFrm
1815    RegTOpIdx = 2;
1816    RegNOpIdx = 0;
1817    LnOpIdx = 3;
1818  }
1819
1820  // Set the conditional execution predicate
1821  Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1822
1823  unsigned RegT = MI.getOperand(RegTOpIdx).getReg();
1824  RegT = II->getRegisterInfo().getEncodingValue(RegT);
1825  Binary |= (RegT << ARMII::RegRdShift);
1826  Binary |= encodeNEONRn(MI, RegNOpIdx);
1827
1828  unsigned LaneShift;
1829  if ((Binary & (1 << 22)) != 0)
1830    LaneShift = 0; // 8-bit elements
1831  else if ((Binary & (1 << 5)) != 0)
1832    LaneShift = 1; // 16-bit elements
1833  else
1834    LaneShift = 2; // 32-bit elements
1835
1836  unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift;
1837  unsigned Opc1 = Lane >> 2;
1838  unsigned Opc2 = Lane & 3;
1839  assert((Opc1 & 3) == 0 && "out-of-range lane number operand");
1840  Binary |= (Opc1 << 21);
1841  Binary |= (Opc2 << 5);
1842
1843  emitWordLE(Binary);
1844}
1845
1846void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) {
1847  unsigned Binary = getBinaryCodeForInstr(MI);
1848
1849  // Set the conditional execution predicate
1850  Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1851
1852  unsigned RegT = MI.getOperand(1).getReg();
1853  RegT = II->getRegisterInfo().getEncodingValue(RegT);
1854  Binary |= (RegT << ARMII::RegRdShift);
1855  Binary |= encodeNEONRn(MI, 0);
1856  emitWordLE(Binary);
1857}
1858
1859void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) {
1860  unsigned Binary = getBinaryCodeForInstr(MI);
1861  // Destination register is encoded in Dd.
1862  Binary |= encodeNEONRd(MI, 0);
1863  // Immediate fields: Op, Cmode, I, Imm3, Imm4
1864  unsigned Imm = MI.getOperand(1).getImm();
1865  unsigned Op = (Imm >> 12) & 1;
1866  unsigned Cmode = (Imm >> 8) & 0xf;
1867  unsigned I = (Imm >> 7) & 1;
1868  unsigned Imm3 = (Imm >> 4) & 0x7;
1869  unsigned Imm4 = Imm & 0xf;
1870  Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4;
1871  if (IsThumb)
1872    Binary = convertNEONDataProcToThumb(Binary);
1873  emitWordLE(Binary);
1874}
1875
1876void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) {
1877  const MCInstrDesc &MCID = MI.getDesc();
1878  unsigned Binary = getBinaryCodeForInstr(MI);
1879  // Destination register is encoded in Dd; source register in Dm.
1880  unsigned OpIdx = 0;
1881  Binary |= encodeNEONRd(MI, OpIdx++);
1882  if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1883    ++OpIdx;
1884  Binary |= encodeNEONRm(MI, OpIdx);
1885  if (IsThumb)
1886    Binary = convertNEONDataProcToThumb(Binary);
1887  // FIXME: This does not handle VDUPfdf or VDUPfqf.
1888  emitWordLE(Binary);
1889}
1890
1891void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) {
1892  const MCInstrDesc &MCID = MI.getDesc();
1893  unsigned Binary = getBinaryCodeForInstr(MI);
1894  // Destination register is encoded in Dd; source registers in Dn and Dm.
1895  unsigned OpIdx = 0;
1896  Binary |= encodeNEONRd(MI, OpIdx++);
1897  if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1898    ++OpIdx;
1899  Binary |= encodeNEONRn(MI, OpIdx++);
1900  if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1901    ++OpIdx;
1902  Binary |= encodeNEONRm(MI, OpIdx);
1903  if (IsThumb)
1904    Binary = convertNEONDataProcToThumb(Binary);
1905  // FIXME: This does not handle VMOVDneon or VMOVQ.
1906  emitWordLE(Binary);
1907}
1908
1909#include "ARMGenCodeEmitter.inc"
1910