ARMConstantIslandPass.cpp revision 1ee29257428960fede862fcfdbe80d5d007927e9
1//===-- ARMConstantIslandPass.cpp - ARM constant islands --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a pass that splits the constant pool up into 'islands'
11// which are scattered through-out the function.  This is required due to the
12// limited pc-relative displacements that ARM has.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "arm-cp-islands"
17#include "ARM.h"
18#include "ARMMachineFunctionInfo.h"
19#include "ARMInstrInfo.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineFunctionPass.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineJumpTableInfo.h"
24#include "llvm/Target/TargetAsmInfo.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Support/Compiler.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/Statistic.h"
31#include <iostream>
32using namespace llvm;
33
34STATISTIC(NumSplit, "Number of uncond branches inserted");
35
36namespace {
37  /// ARMConstantIslands - Due to limited pc-relative displacements, ARM
38  /// requires constant pool entries to be scattered among the instructions
39  /// inside a function.  To do this, it completely ignores the normal LLVM
40  /// constant pool, instead, it places constants where-ever it feels like with
41  /// special instructions.
42  ///
43  /// The terminology used in this pass includes:
44  ///   Islands - Clumps of constants placed in the function.
45  ///   Water   - Potential places where an island could be formed.
46  ///   CPE     - A constant pool entry that has been placed somewhere, which
47  ///             tracks a list of users.
48  class VISIBILITY_HIDDEN ARMConstantIslands : public MachineFunctionPass {
49    /// NextUID - Assign unique ID's to CPE's.
50    unsigned NextUID;
51
52    /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed
53    /// by MBB Number.
54    std::vector<unsigned> BBSizes;
55
56    /// WaterList - A sorted list of basic blocks where islands could be placed
57    /// (i.e. blocks that don't fall through to the following block, due
58    /// to a return, unreachable, or unconditional branch).
59    std::vector<MachineBasicBlock*> WaterList;
60
61    /// CPUser - One user of a constant pool, keeping the machine instruction
62    /// pointer, the constant pool being referenced, and the max displacement
63    /// allowed from the instruction to the CP.
64    struct CPUser {
65      MachineInstr *MI;
66      MachineInstr *CPEMI;
67      unsigned MaxDisp;
68      CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp)
69        : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp) {}
70    };
71
72    /// CPUsers - Keep track of all of the machine instructions that use various
73    /// constant pools and their max displacement.
74    std::vector<CPUser> CPUsers;
75
76    /// ImmBranch - One per immediate branch, keeping the machine instruction
77    /// pointer, conditional or unconditional, the max displacement,
78    /// and (if isCond is true) the corresponding unconditional branch
79    /// opcode.
80    struct ImmBranch {
81      MachineInstr *MI;
82      unsigned MaxDisp : 31;
83      bool isCond : 1;
84      int UncondBr;
85      ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
86        : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
87    };
88
89    /// Branches - Keep track of all the immediate branch instructions.
90    ///
91    std::vector<ImmBranch> ImmBranches;
92
93    const TargetInstrInfo *TII;
94    const TargetAsmInfo   *TAI;
95  public:
96    virtual bool runOnMachineFunction(MachineFunction &Fn);
97
98    virtual const char *getPassName() const {
99      return "ARM constant island placement and branch shortening pass";
100    }
101
102  private:
103    void DoInitialPlacement(MachineFunction &Fn,
104                            std::vector<MachineInstr*> &CPEMIs);
105    void InitialFunctionScan(MachineFunction &Fn,
106                             const std::vector<MachineInstr*> &CPEMIs);
107    void SplitBlockBeforeInstr(MachineInstr *MI);
108    void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB);
109    bool HandleConstantPoolUser(MachineFunction &Fn, CPUser &U);
110    bool FixUpImmediateBranch(MachineFunction &Fn, ImmBranch &Br);
111
112    unsigned GetInstSize(MachineInstr *MI) const;
113    unsigned GetOffsetOf(MachineInstr *MI) const;
114    unsigned GetOffsetOf(MachineBasicBlock *MBB) const;
115  };
116}
117
118/// createARMConstantIslandPass - returns an instance of the constpool
119/// island pass.
120FunctionPass *llvm::createARMConstantIslandPass() {
121  return new ARMConstantIslands();
122}
123
124bool ARMConstantIslands::runOnMachineFunction(MachineFunction &Fn) {
125  MachineConstantPool &MCP = *Fn.getConstantPool();
126
127  TII = Fn.getTarget().getInstrInfo();
128  TAI = Fn.getTarget().getTargetAsmInfo();
129
130  // Renumber all of the machine basic blocks in the function, guaranteeing that
131  // the numbers agree with the position of the block in the function.
132  Fn.RenumberBlocks();
133
134  // Perform the initial placement of the constant pool entries.  To start with,
135  // we put them all at the end of the function.
136  std::vector<MachineInstr*> CPEMIs;
137  if (!MCP.isEmpty())
138    DoInitialPlacement(Fn, CPEMIs);
139
140  /// The next UID to take is the first unused one.
141  NextUID = CPEMIs.size();
142
143  // Do the initial scan of the function, building up information about the
144  // sizes of each block, the location of all the water, and finding all of the
145  // constant pool users.
146  InitialFunctionScan(Fn, CPEMIs);
147  CPEMIs.clear();
148
149  // Iteratively place constant pool entries until there is no change.
150  bool MadeChange;
151  do {
152    MadeChange = false;
153    for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
154      MadeChange |= HandleConstantPoolUser(Fn, CPUsers[i]);
155    for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
156      MadeChange |= FixUpImmediateBranch(Fn, ImmBranches[i]);
157  } while (MadeChange);
158
159  BBSizes.clear();
160  WaterList.clear();
161  CPUsers.clear();
162  ImmBranches.clear();
163
164  return true;
165}
166
167/// DoInitialPlacement - Perform the initial placement of the constant pool
168/// entries.  To start with, we put them all at the end of the function.
169void ARMConstantIslands::DoInitialPlacement(MachineFunction &Fn,
170                                            std::vector<MachineInstr*> &CPEMIs){
171  // Create the basic block to hold the CPE's.
172  MachineBasicBlock *BB = new MachineBasicBlock();
173  Fn.getBasicBlockList().push_back(BB);
174
175  // Add all of the constants from the constant pool to the end block, use an
176  // identity mapping of CPI's to CPE's.
177  const std::vector<MachineConstantPoolEntry> &CPs =
178    Fn.getConstantPool()->getConstants();
179
180  const TargetData &TD = *Fn.getTarget().getTargetData();
181  for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
182    unsigned Size = TD.getTypeSize(CPs[i].getType());
183    // Verify that all constant pool entries are a multiple of 4 bytes.  If not,
184    // we would have to pad them out or something so that instructions stay
185    // aligned.
186    assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!");
187    MachineInstr *CPEMI =
188      BuildMI(BB, TII->get(ARM::CONSTPOOL_ENTRY))
189                           .addImm(i).addConstantPoolIndex(i).addImm(Size);
190    CPEMIs.push_back(CPEMI);
191    DEBUG(std::cerr << "Moved CPI#" << i << " to end of function as #"
192                    << i << "\n");
193  }
194}
195
196/// BBHasFallthrough - Return true of the specified basic block can fallthrough
197/// into the block immediately after it.
198static bool BBHasFallthrough(MachineBasicBlock *MBB) {
199  // Get the next machine basic block in the function.
200  MachineFunction::iterator MBBI = MBB;
201  if (next(MBBI) == MBB->getParent()->end())  // Can't fall off end of function.
202    return false;
203
204  MachineBasicBlock *NextBB = next(MBBI);
205  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
206       E = MBB->succ_end(); I != E; ++I)
207    if (*I == NextBB)
208      return true;
209
210  return false;
211}
212
213/// InitialFunctionScan - Do the initial scan of the function, building up
214/// information about the sizes of each block, the location of all the water,
215/// and finding all of the constant pool users.
216void ARMConstantIslands::InitialFunctionScan(MachineFunction &Fn,
217                                     const std::vector<MachineInstr*> &CPEMIs) {
218  for (MachineFunction::iterator MBBI = Fn.begin(), E = Fn.end();
219       MBBI != E; ++MBBI) {
220    MachineBasicBlock &MBB = *MBBI;
221
222    // If this block doesn't fall through into the next MBB, then this is
223    // 'water' that a constant pool island could be placed.
224    if (!BBHasFallthrough(&MBB))
225      WaterList.push_back(&MBB);
226
227    unsigned MBBSize = 0;
228    for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
229         I != E; ++I) {
230      // Add instruction size to MBBSize.
231      MBBSize += GetInstSize(I);
232
233      int Opc = I->getOpcode();
234      if (TII->isBranch(Opc)) {
235        bool isCond = false;
236        unsigned Bits = 0;
237        unsigned Scale = 1;
238        int UOpc = Opc;
239        switch (Opc) {
240        default:
241          continue;  // Ignore JT branches
242        case ARM::Bcc:
243          isCond = true;
244          UOpc = ARM::B;
245          // Fallthrough
246        case ARM::B:
247          Bits = 24;
248          Scale = 4;
249          break;
250        case ARM::tBcc:
251          isCond = true;
252          UOpc = ARM::tB;
253          Bits = 8;
254          Scale = 2;
255          break;
256        case ARM::tB:
257          Bits = 11;
258          Scale = 2;
259          break;
260        }
261        unsigned MaxDisp = (1 << (Bits-1)) * Scale;
262        ImmBranches.push_back(ImmBranch(I, MaxDisp, isCond, UOpc));
263      }
264
265      // Scan the instructions for constant pool operands.
266      for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
267        if (I->getOperand(op).isConstantPoolIndex()) {
268          // We found one.  The addressing mode tells us the max displacement
269          // from the PC that this instruction permits.
270          unsigned MaxOffs = 0;
271
272          // Basic size info comes from the TSFlags field.
273          unsigned TSFlags = I->getInstrDescriptor()->TSFlags;
274          switch (TSFlags & ARMII::AddrModeMask) {
275          default:
276            // Constant pool entries can reach anything.
277            if (I->getOpcode() == ARM::CONSTPOOL_ENTRY)
278              continue;
279            assert(0 && "Unknown addressing mode for CP reference!");
280          case ARMII::AddrMode1: // AM1: 8 bits << 2
281            MaxOffs = 1 << (8+2);   // Taking the address of a CP entry.
282            break;
283          case ARMII::AddrMode2:
284            MaxOffs = 1 << 12;   // +-offset_12
285            break;
286          case ARMII::AddrMode3:
287            MaxOffs = 1 << 8;   // +-offset_8
288            break;
289            // addrmode4 has no immediate offset.
290          case ARMII::AddrMode5:
291            MaxOffs = 1 << (8+2);   // +-(offset_8*4)
292            break;
293          case ARMII::AddrModeT1:
294            MaxOffs = 1 << 5;
295            break;
296          case ARMII::AddrModeT2:
297            MaxOffs = 1 << (5+1);
298            break;
299          case ARMII::AddrModeT4:
300            MaxOffs = 1 << (5+2);
301            break;
302          case ARMII::AddrModeTs:
303            MaxOffs = 1 << (8+2);
304            break;
305          }
306
307          // Remember that this is a user of a CP entry.
308          MachineInstr *CPEMI =CPEMIs[I->getOperand(op).getConstantPoolIndex()];
309          CPUsers.push_back(CPUser(I, CPEMI, MaxOffs));
310
311          // Instructions can only use one CP entry, don't bother scanning the
312          // rest of the operands.
313          break;
314        }
315    }
316    BBSizes.push_back(MBBSize);
317  }
318}
319
320/// FIXME: Works around a gcc miscompilation with -fstrict-aliasing
321static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
322                                unsigned JTI) DISABLE_INLINE;
323static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
324                                unsigned JTI) {
325  return JT[JTI].MBBs.size();
326}
327
328/// GetInstSize - Return the size of the specified MachineInstr.
329///
330unsigned ARMConstantIslands::GetInstSize(MachineInstr *MI) const {
331  // Basic size info comes from the TSFlags field.
332  unsigned TSFlags = MI->getInstrDescriptor()->TSFlags;
333
334  switch ((TSFlags & ARMII::SizeMask) >> ARMII::SizeShift) {
335  default:
336    // If this machine instr is an inline asm, measure it.
337    if (MI->getOpcode() == ARM::INLINEASM)
338      return TAI->getInlineAsmLength(MI->getOperand(0).getSymbolName());
339    if (MI->getOpcode() == ARM::LABEL)
340      return 0;
341    assert(0 && "Unknown or unset size field for instr!");
342    break;
343  case ARMII::Size8Bytes: return 8;          // Arm instruction x 2.
344  case ARMII::Size4Bytes: return 4;          // Arm instruction.
345  case ARMII::Size2Bytes: return 2;          // Thumb instruction.
346  case ARMII::SizeSpecial: {
347    switch (MI->getOpcode()) {
348    case ARM::CONSTPOOL_ENTRY:
349      // If this machine instr is a constant pool entry, its size is recorded as
350      // operand #2.
351      return MI->getOperand(2).getImm();
352    case ARM::BR_JTr:
353    case ARM::BR_JTm:
354    case ARM::BR_JTadd: {
355      // These are jumptable branches, i.e. a branch followed by an inlined
356      // jumptable. The size is 4 + 4 * number of entries.
357      unsigned JTI = MI->getOperand(MI->getNumOperands()-2).getJumpTableIndex();
358      const MachineFunction *MF = MI->getParent()->getParent();
359      MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
360      const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
361      assert(JTI < JT.size());
362      return getNumJTEntries(JT, JTI) * 4 + 4;
363    }
364    default:
365      // Otherwise, pseudo-instruction sizes are zero.
366      return 0;
367    }
368  }
369  }
370}
371
372/// GetOffsetOf - Return the current offset of the specified machine instruction
373/// from the start of the function.  This offset changes as stuff is moved
374/// around inside the function.
375unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const {
376  MachineBasicBlock *MBB = MI->getParent();
377
378  // The offset is composed of two things: the sum of the sizes of all MBB's
379  // before this instruction's block, and the offset from the start of the block
380  // it is in.
381  unsigned Offset = 0;
382
383  // Sum block sizes before MBB.
384  for (unsigned BB = 0, e = MBB->getNumber(); BB != e; ++BB)
385    Offset += BBSizes[BB];
386
387  // Sum instructions before MI in MBB.
388  for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) {
389    assert(I != MBB->end() && "Didn't find MI in its own basic block?");
390    if (&*I == MI) return Offset;
391    Offset += GetInstSize(I);
392  }
393}
394
395/// GetOffsetOf - Return the current offset of the specified machine BB
396/// from the start of the function.  This offset changes as stuff is moved
397/// around inside the function.
398unsigned ARMConstantIslands::GetOffsetOf(MachineBasicBlock *MBB) const {
399  // Sum block sizes before MBB.
400  unsigned Offset = 0;
401  for (unsigned BB = 0, e = MBB->getNumber(); BB != e; ++BB)
402    Offset += BBSizes[BB];
403
404  return Offset;
405}
406
407/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
408/// ID.
409static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
410                              const MachineBasicBlock *RHS) {
411  return LHS->getNumber() < RHS->getNumber();
412}
413
414/// UpdateForInsertedWaterBlock - When a block is newly inserted into the
415/// machine function, it upsets all of the block numbers.  Renumber the blocks
416/// and update the arrays that parallel this numbering.
417void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
418  // Renumber the MBB's to keep them consequtive.
419  NewBB->getParent()->RenumberBlocks(NewBB);
420
421  // Insert a size into BBSizes to align it properly with the (newly
422  // renumbered) block numbers.
423  BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);
424
425  // Next, update WaterList.  Specifically, we need to add NewMBB as having
426  // available water after it.
427  std::vector<MachineBasicBlock*>::iterator IP =
428    std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
429                     CompareMBBNumbers);
430  WaterList.insert(IP, NewBB);
431}
432
433
434/// Split the basic block containing MI into two blocks, which are joined by
435/// an unconditional branch.  Update datastructures and renumber blocks to
436/// account for this change.
437void ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) {
438  MachineBasicBlock *OrigBB = MI->getParent();
439  const ARMFunctionInfo *AFI = OrigBB->getParent()->getInfo<ARMFunctionInfo>();
440  bool isThumb = AFI->isThumbFunction();
441
442  // Create a new MBB for the code after the OrigBB.
443  MachineBasicBlock *NewBB = new MachineBasicBlock(OrigBB->getBasicBlock());
444  MachineFunction::iterator MBBI = OrigBB; ++MBBI;
445  OrigBB->getParent()->getBasicBlockList().insert(MBBI, NewBB);
446
447  // Splice the instructions starting with MI over to NewBB.
448  NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
449
450  // Add an unconditional branch from OrigBB to NewBB.
451  BuildMI(OrigBB, TII->get(isThumb ? ARM::tB : ARM::B)).addMBB(NewBB);
452  NumSplit++;
453
454  // Update the CFG.  All succs of OrigBB are now succs of NewBB.
455  while (!OrigBB->succ_empty()) {
456    MachineBasicBlock *Succ = *OrigBB->succ_begin();
457    OrigBB->removeSuccessor(Succ);
458    NewBB->addSuccessor(Succ);
459
460    // This pass should be run after register allocation, so there should be no
461    // PHI nodes to update.
462    assert((Succ->empty() || Succ->begin()->getOpcode() != TargetInstrInfo::PHI)
463           && "PHI nodes should be eliminated by now!");
464  }
465
466  // OrigBB branches to NewBB.
467  OrigBB->addSuccessor(NewBB);
468
469  // Update internal data structures to account for the newly inserted MBB.
470  UpdateForInsertedWaterBlock(NewBB);
471
472  // Figure out how large the first NewMBB is.
473  unsigned NewBBSize = 0;
474  for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end();
475       I != E; ++I)
476    NewBBSize += GetInstSize(I);
477
478  // Set the size of NewBB in BBSizes.
479  BBSizes[NewBB->getNumber()] = NewBBSize;
480
481  // We removed instructions from UserMBB, subtract that off from its size.
482  // Add 2 or 4 to the block to count the unconditional branch we added to it.
483  BBSizes[OrigBB->getNumber()] -= NewBBSize - (isThumb ? 2 : 4);
484}
485
486/// HandleConstantPoolUser - Analyze the specified user, checking to see if it
487/// is out-of-range.  If so, pick it up the constant pool value and move it some
488/// place in-range.
489bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &Fn, CPUser &U){
490  MachineInstr *UserMI = U.MI;
491  MachineInstr *CPEMI  = U.CPEMI;
492
493  unsigned UserOffset = GetOffsetOf(UserMI);
494  unsigned CPEOffset  = GetOffsetOf(CPEMI);
495
496  DEBUG(std::cerr << "User of CPE#" << CPEMI->getOperand(0).getImm()
497                  << " max delta=" << U.MaxDisp
498                  << " at offset " << int(UserOffset-CPEOffset) << "\t"
499                  << *UserMI);
500
501  // Check to see if the CPE is already in-range.
502  if (UserOffset < CPEOffset) {
503    // User before the CPE.
504    if (CPEOffset-UserOffset <= U.MaxDisp)
505      return false;
506  } else {
507    if (UserOffset-CPEOffset <= U.MaxDisp)
508      return false;
509  }
510
511
512  // Solution guaranteed to work: split the user's MBB right before the user and
513  // insert a clone the CPE into the newly created water.
514
515  // If the user isn't at the start of its MBB, or if there is a fall-through
516  // into the user's MBB, split the MBB before the User.
517  MachineBasicBlock *UserMBB = UserMI->getParent();
518  if (&UserMBB->front() != UserMI ||
519      UserMBB == &Fn.front() || // entry MBB of function.
520      BBHasFallthrough(prior(MachineFunction::iterator(UserMBB)))) {
521    // TODO: Search for the best place to split the code.  In practice, using
522    // loop nesting information to insert these guys outside of loops would be
523    // sufficient.
524    SplitBlockBeforeInstr(UserMI);
525
526    // UserMI's BB may have changed.
527    UserMBB = UserMI->getParent();
528  }
529
530  // Okay, we know we can put an island before UserMBB now, do it!
531  MachineBasicBlock *NewIsland = new MachineBasicBlock();
532  Fn.getBasicBlockList().insert(UserMBB, NewIsland);
533
534  // Update internal data structures to account for the newly inserted MBB.
535  UpdateForInsertedWaterBlock(NewIsland);
536
537  // Now that we have an island to add the CPE to, clone the original CPE and
538  // add it to the island.
539  unsigned ID  = NextUID++;
540  unsigned CPI = CPEMI->getOperand(1).getConstantPoolIndex();
541  unsigned Size = CPEMI->getOperand(2).getImm();
542
543  // Build a new CPE for this user.
544  U.CPEMI = BuildMI(NewIsland, TII->get(ARM::CONSTPOOL_ENTRY))
545                .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
546
547  // Increase the size of the island block to account for the new entry.
548  BBSizes[NewIsland->getNumber()] += Size;
549
550  // Finally, change the CPI in the instruction operand to be ID.
551  for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
552    if (UserMI->getOperand(i).isConstantPoolIndex()) {
553      UserMI->getOperand(i).setConstantPoolIndex(ID);
554      break;
555    }
556
557  DEBUG(std::cerr << "  Moved CPE to #" << ID << " CPI=" << CPI << "\t"
558                  << *UserMI);
559
560
561  return true;
562}
563
564/// FixUpImmediateBranch - Fix up immediate branches whose destination is too
565/// far away to fit in its displacement field. If it is a conditional branch,
566/// then it is converted to an inverse conditional branch + an unconditional
567/// branch to the destination. If it is an unconditional branch, then it is
568/// converted to a branch to a branch.
569bool
570ARMConstantIslands::FixUpImmediateBranch(MachineFunction &Fn, ImmBranch &Br) {
571  MachineInstr *MI = Br.MI;
572  MachineBasicBlock *DestBB = MI->getOperand(0).getMachineBasicBlock();
573
574  unsigned BrOffset   = GetOffsetOf(MI);
575  unsigned DestOffset = GetOffsetOf(DestBB);
576
577  // Check to see if the destination BB is in range.
578  if (BrOffset < DestOffset) {
579    if (DestOffset - BrOffset < Br.MaxDisp)
580      return false;
581  } else {
582    if (BrOffset - DestOffset <= Br.MaxDisp)
583      return false;
584  }
585
586  if (!Br.isCond) {
587    // Unconditional branch. We have to insert a branch somewhere to perform
588    // a two level branch (branch to branch). FIXME: not yet implemented.
589    assert(false && "Can't handle unconditional branch yet!");
590    return false;
591  }
592
593  // Otherwise, add a unconditional branch to the destination and
594  // invert the branch condition to jump over it:
595  // blt L1
596  // =>
597  // bge L2
598  // b   L1
599  // L2:
600  ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImmedValue();
601  CC = ARMCC::getOppositeCondition(CC);
602
603  // If the branch is at the end of its MBB and that has a fall-through block,
604  // direct the updated conditional branch to the fall-through block. Otherwise,
605  // split the MBB before the next instruction.
606  MachineBasicBlock *MBB = MI->getParent();
607  if (&MBB->back() != MI || !BBHasFallthrough(MBB)) {
608    SplitBlockBeforeInstr(MI);
609    // No need for the branch to the next block. We're adding a unconditional
610    // branch to the destination.
611    MBB->back().eraseFromParent();
612  }
613  MachineBasicBlock *NextBB = next(MachineFunction::iterator(MBB));
614
615  // Insert a unconditional branch and replace the conditional branch.
616  // Also update the ImmBranch as well as adding a new entry for the new branch.
617  BuildMI(MBB, TII->get(MI->getOpcode())).addMBB(NextBB).addImm(CC);
618  Br.MI = &MBB->back();
619  BuildMI(MBB, TII->get(Br.UncondBr)).addMBB(DestBB);
620  unsigned MaxDisp = (Br.UncondBr == ARM::tB) ? (1<<10)*2 : (1<<23)*4;
621  ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
622  MI->eraseFromParent();
623
624  // Increase the size of MBB to account for the new unconditional branch.
625  BBSizes[MBB->getNumber()] += GetInstSize(&MBB->back());
626  return true;
627}
628