ARMConstantIslandPass.cpp revision f9340efbd7e65a62da55ab23b8d79deb8aa5a85c
1//===-- ARMConstantIslandPass.cpp - ARM constant islands --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a pass that splits the constant pool up into 'islands'
11// which are scattered through-out the function.  This is required due to the
12// limited pc-relative displacements that ARM has.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "arm-cp-islands"
17#include "ARM.h"
18#include "ARMAddressingModes.h"
19#include "ARMMachineFunctionInfo.h"
20#include "ARMInstrInfo.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFunctionPass.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineJumpTableInfo.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/raw_ostream.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/Support/CommandLine.h"
35#include <algorithm>
36using namespace llvm;
37
38STATISTIC(NumCPEs,       "Number of constpool entries");
39STATISTIC(NumSplit,      "Number of uncond branches inserted");
40STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
41STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");
42STATISTIC(NumTBs,        "Number of table branches generated");
43STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
44STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
45STATISTIC(NumCBZ,        "Number of CBZ / CBNZ formed");
46STATISTIC(NumJTMoved,    "Number of jump table destination blocks moved");
47STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted");
48
49
50static cl::opt<bool>
51AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true),
52          cl::desc("Adjust basic block layout to better use TB[BH]"));
53
54namespace {
55  /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
56  /// requires constant pool entries to be scattered among the instructions
57  /// inside a function.  To do this, it completely ignores the normal LLVM
58  /// constant pool; instead, it places constants wherever it feels like with
59  /// special instructions.
60  ///
61  /// The terminology used in this pass includes:
62  ///   Islands - Clumps of constants placed in the function.
63  ///   Water   - Potential places where an island could be formed.
64  ///   CPE     - A constant pool entry that has been placed somewhere, which
65  ///             tracks a list of users.
66  class ARMConstantIslands : public MachineFunctionPass {
67    /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed
68    /// by MBB Number.  The two-byte pads required for Thumb alignment are
69    /// counted as part of the following block (i.e., the offset and size for
70    /// a padded block will both be ==2 mod 4).
71    std::vector<unsigned> BBSizes;
72
73    /// BBOffsets - the offset of each MBB in bytes, starting from 0.
74    /// The two-byte pads required for Thumb alignment are counted as part of
75    /// the following block.
76    std::vector<unsigned> BBOffsets;
77
78    /// WaterList - A sorted list of basic blocks where islands could be placed
79    /// (i.e. blocks that don't fall through to the following block, due
80    /// to a return, unreachable, or unconditional branch).
81    std::vector<MachineBasicBlock*> WaterList;
82
83    /// NewWaterList - The subset of WaterList that was created since the
84    /// previous iteration by inserting unconditional branches.
85    SmallSet<MachineBasicBlock*, 4> NewWaterList;
86
87    typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
88
89    /// CPUser - One user of a constant pool, keeping the machine instruction
90    /// pointer, the constant pool being referenced, and the max displacement
91    /// allowed from the instruction to the CP.  The HighWaterMark records the
92    /// highest basic block where a new CPEntry can be placed.  To ensure this
93    /// pass terminates, the CP entries are initially placed at the end of the
94    /// function and then move monotonically to lower addresses.  The
95    /// exception to this rule is when the current CP entry for a particular
96    /// CPUser is out of range, but there is another CP entry for the same
97    /// constant value in range.  We want to use the existing in-range CP
98    /// entry, but if it later moves out of range, the search for new water
99    /// should resume where it left off.  The HighWaterMark is used to record
100    /// that point.
101    struct CPUser {
102      MachineInstr *MI;
103      MachineInstr *CPEMI;
104      MachineBasicBlock *HighWaterMark;
105      unsigned MaxDisp;
106      bool NegOk;
107      bool IsSoImm;
108      CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
109             bool neg, bool soimm)
110        : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) {
111        HighWaterMark = CPEMI->getParent();
112      }
113    };
114
115    /// CPUsers - Keep track of all of the machine instructions that use various
116    /// constant pools and their max displacement.
117    std::vector<CPUser> CPUsers;
118
119    /// CPEntry - One per constant pool entry, keeping the machine instruction
120    /// pointer, the constpool index, and the number of CPUser's which
121    /// reference this entry.
122    struct CPEntry {
123      MachineInstr *CPEMI;
124      unsigned CPI;
125      unsigned RefCount;
126      CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
127        : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
128    };
129
130    /// CPEntries - Keep track of all of the constant pool entry machine
131    /// instructions. For each original constpool index (i.e. those that
132    /// existed upon entry to this pass), it keeps a vector of entries.
133    /// Original elements are cloned as we go along; the clones are
134    /// put in the vector of the original element, but have distinct CPIs.
135    std::vector<std::vector<CPEntry> > CPEntries;
136
137    /// ImmBranch - One per immediate branch, keeping the machine instruction
138    /// pointer, conditional or unconditional, the max displacement,
139    /// and (if isCond is true) the corresponding unconditional branch
140    /// opcode.
141    struct ImmBranch {
142      MachineInstr *MI;
143      unsigned MaxDisp : 31;
144      bool isCond : 1;
145      int UncondBr;
146      ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
147        : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
148    };
149
150    /// ImmBranches - Keep track of all the immediate branch instructions.
151    ///
152    std::vector<ImmBranch> ImmBranches;
153
154    /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
155    ///
156    SmallVector<MachineInstr*, 4> PushPopMIs;
157
158    /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
159    SmallVector<MachineInstr*, 4> T2JumpTables;
160
161    /// HasFarJump - True if any far jump instruction has been emitted during
162    /// the branch fix up pass.
163    bool HasFarJump;
164
165    /// HasInlineAsm - True if the function contains inline assembly.
166    bool HasInlineAsm;
167
168    const TargetInstrInfo *TII;
169    const ARMSubtarget *STI;
170    ARMFunctionInfo *AFI;
171    bool isThumb;
172    bool isThumb1;
173    bool isThumb2;
174  public:
175    static char ID;
176    ARMConstantIslands() : MachineFunctionPass(&ID) {}
177
178    virtual bool runOnMachineFunction(MachineFunction &MF);
179
180    virtual const char *getPassName() const {
181      return "ARM constant island placement and branch shortening pass";
182    }
183
184  private:
185    void DoInitialPlacement(MachineFunction &MF,
186                            std::vector<MachineInstr*> &CPEMIs);
187    CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
188    void JumpTableFunctionScan(MachineFunction &MF);
189    void InitialFunctionScan(MachineFunction &MF,
190                             const std::vector<MachineInstr*> &CPEMIs);
191    MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI);
192    void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB);
193    void AdjustBBOffsetsAfter(MachineBasicBlock *BB, int delta);
194    bool DecrementOldEntry(unsigned CPI, MachineInstr* CPEMI);
195    int LookForExistingCPEntry(CPUser& U, unsigned UserOffset);
196    bool LookForWater(CPUser&U, unsigned UserOffset, water_iterator &WaterIter);
197    void CreateNewWater(unsigned CPUserIndex, unsigned UserOffset,
198                        MachineBasicBlock *&NewMBB);
199    bool HandleConstantPoolUser(MachineFunction &MF, unsigned CPUserIndex);
200    void RemoveDeadCPEMI(MachineInstr *CPEMI);
201    bool RemoveUnusedCPEntries();
202    bool CPEIsInRange(MachineInstr *MI, unsigned UserOffset,
203                      MachineInstr *CPEMI, unsigned Disp, bool NegOk,
204                      bool DoDump = false);
205    bool WaterIsInRange(unsigned UserOffset, MachineBasicBlock *Water,
206                        CPUser &U);
207    bool OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset,
208                         unsigned Disp, bool NegativeOK, bool IsSoImm = false);
209    bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
210    bool FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br);
211    bool FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br);
212    bool FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br);
213    bool UndoLRSpillRestore();
214    bool OptimizeThumb2Instructions(MachineFunction &MF);
215    bool OptimizeThumb2Branches(MachineFunction &MF);
216    bool ReorderThumb2JumpTables(MachineFunction &MF);
217    bool OptimizeThumb2JumpTables(MachineFunction &MF);
218    MachineBasicBlock *AdjustJTTargetBlockForward(MachineBasicBlock *BB,
219                                                  MachineBasicBlock *JTBB);
220
221    unsigned GetOffsetOf(MachineInstr *MI) const;
222    void dumpBBs();
223    void verify(MachineFunction &MF);
224  };
225  char ARMConstantIslands::ID = 0;
226}
227
228/// verify - check BBOffsets, BBSizes, alignment of islands
229void ARMConstantIslands::verify(MachineFunction &MF) {
230  assert(BBOffsets.size() == BBSizes.size());
231  for (unsigned i = 1, e = BBOffsets.size(); i != e; ++i)
232    assert(BBOffsets[i-1]+BBSizes[i-1] == BBOffsets[i]);
233  if (!isThumb)
234    return;
235#ifndef NDEBUG
236  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
237       MBBI != E; ++MBBI) {
238    MachineBasicBlock *MBB = MBBI;
239    if (!MBB->empty() &&
240        MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) {
241      unsigned MBBId = MBB->getNumber();
242      assert(HasInlineAsm ||
243             (BBOffsets[MBBId]%4 == 0 && BBSizes[MBBId]%4 == 0) ||
244             (BBOffsets[MBBId]%4 != 0 && BBSizes[MBBId]%4 != 0));
245    }
246  }
247  for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
248    CPUser &U = CPUsers[i];
249    unsigned UserOffset = GetOffsetOf(U.MI) + (isThumb ? 4 : 8);
250    unsigned CPEOffset  = GetOffsetOf(U.CPEMI);
251    unsigned Disp = UserOffset < CPEOffset ? CPEOffset - UserOffset :
252      UserOffset - CPEOffset;
253    assert(Disp <= U.MaxDisp || "Constant pool entry out of range!");
254  }
255#endif
256}
257
258/// print block size and offset information - debugging
259void ARMConstantIslands::dumpBBs() {
260  for (unsigned J = 0, E = BBOffsets.size(); J !=E; ++J) {
261    DEBUG(errs() << "block " << J << " offset " << BBOffsets[J]
262                 << " size " << BBSizes[J] << "\n");
263  }
264}
265
266/// createARMConstantIslandPass - returns an instance of the constpool
267/// island pass.
268FunctionPass *llvm::createARMConstantIslandPass() {
269  return new ARMConstantIslands();
270}
271
272bool ARMConstantIslands::runOnMachineFunction(MachineFunction &MF) {
273  MachineConstantPool &MCP = *MF.getConstantPool();
274
275  TII = MF.getTarget().getInstrInfo();
276  AFI = MF.getInfo<ARMFunctionInfo>();
277  STI = &MF.getTarget().getSubtarget<ARMSubtarget>();
278
279  isThumb = AFI->isThumbFunction();
280  isThumb1 = AFI->isThumb1OnlyFunction();
281  isThumb2 = AFI->isThumb2Function();
282
283  HasFarJump = false;
284  HasInlineAsm = false;
285
286  // Renumber all of the machine basic blocks in the function, guaranteeing that
287  // the numbers agree with the position of the block in the function.
288  MF.RenumberBlocks();
289
290  // Try to reorder and otherwise adjust the block layout to make good use
291  // of the TB[BH] instructions.
292  bool MadeChange = false;
293  if (isThumb2 && AdjustJumpTableBlocks) {
294    JumpTableFunctionScan(MF);
295    MadeChange |= ReorderThumb2JumpTables(MF);
296    // Data is out of date, so clear it. It'll be re-computed later.
297    T2JumpTables.clear();
298    // Blocks may have shifted around. Keep the numbering up to date.
299    MF.RenumberBlocks();
300  }
301
302  // Thumb1 functions containing constant pools get 4-byte alignment.
303  // This is so we can keep exact track of where the alignment padding goes.
304
305  // ARM and Thumb2 functions need to be 4-byte aligned.
306  if (!isThumb1)
307    MF.EnsureAlignment(2);  // 2 = log2(4)
308
309  // Perform the initial placement of the constant pool entries.  To start with,
310  // we put them all at the end of the function.
311  std::vector<MachineInstr*> CPEMIs;
312  if (!MCP.isEmpty()) {
313    DoInitialPlacement(MF, CPEMIs);
314    if (isThumb1)
315      MF.EnsureAlignment(2);  // 2 = log2(4)
316  }
317
318  /// The next UID to take is the first unused one.
319  AFI->initConstPoolEntryUId(CPEMIs.size());
320
321  // Do the initial scan of the function, building up information about the
322  // sizes of each block, the location of all the water, and finding all of the
323  // constant pool users.
324  InitialFunctionScan(MF, CPEMIs);
325  CPEMIs.clear();
326
327  /// Remove dead constant pool entries.
328  RemoveUnusedCPEntries();
329
330  // Iteratively place constant pool entries and fix up branches until there
331  // is no change.
332  unsigned NoCPIters = 0, NoBRIters = 0;
333  while (true) {
334    bool CPChange = false;
335    for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
336      CPChange |= HandleConstantPoolUser(MF, i);
337    if (CPChange && ++NoCPIters > 30)
338      llvm_unreachable("Constant Island pass failed to converge!");
339    DEBUG(dumpBBs());
340
341    // Clear NewWaterList now.  If we split a block for branches, it should
342    // appear as "new water" for the next iteration of constant pool placement.
343    NewWaterList.clear();
344
345    bool BRChange = false;
346    for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
347      BRChange |= FixUpImmediateBr(MF, ImmBranches[i]);
348    if (BRChange && ++NoBRIters > 30)
349      llvm_unreachable("Branch Fix Up pass failed to converge!");
350    DEBUG(dumpBBs());
351
352    if (!CPChange && !BRChange)
353      break;
354    MadeChange = true;
355  }
356
357  // Shrink 32-bit Thumb2 branch, load, and store instructions.
358  if (isThumb2)
359    MadeChange |= OptimizeThumb2Instructions(MF);
360
361  // After a while, this might be made debug-only, but it is not expensive.
362  verify(MF);
363
364  // If LR has been forced spilled and no far jump (i.e. BL) has been issued,
365  // undo the spill / restore of LR if possible.
366  if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump())
367    MadeChange |= UndoLRSpillRestore();
368
369  BBSizes.clear();
370  BBOffsets.clear();
371  WaterList.clear();
372  CPUsers.clear();
373  CPEntries.clear();
374  ImmBranches.clear();
375  PushPopMIs.clear();
376  T2JumpTables.clear();
377
378  return MadeChange;
379}
380
381/// DoInitialPlacement - Perform the initial placement of the constant pool
382/// entries.  To start with, we put them all at the end of the function.
383void ARMConstantIslands::DoInitialPlacement(MachineFunction &MF,
384                                        std::vector<MachineInstr*> &CPEMIs) {
385  // Create the basic block to hold the CPE's.
386  MachineBasicBlock *BB = MF.CreateMachineBasicBlock();
387  MF.push_back(BB);
388
389  // Add all of the constants from the constant pool to the end block, use an
390  // identity mapping of CPI's to CPE's.
391  const std::vector<MachineConstantPoolEntry> &CPs =
392    MF.getConstantPool()->getConstants();
393
394  const TargetData &TD = *MF.getTarget().getTargetData();
395  for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
396    unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
397    // Verify that all constant pool entries are a multiple of 4 bytes.  If not,
398    // we would have to pad them out or something so that instructions stay
399    // aligned.
400    assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!");
401    MachineInstr *CPEMI =
402      BuildMI(BB, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
403        .addImm(i).addConstantPoolIndex(i).addImm(Size);
404    CPEMIs.push_back(CPEMI);
405
406    // Add a new CPEntry, but no corresponding CPUser yet.
407    std::vector<CPEntry> CPEs;
408    CPEs.push_back(CPEntry(CPEMI, i));
409    CPEntries.push_back(CPEs);
410    ++NumCPEs;
411    DEBUG(errs() << "Moved CPI#" << i << " to end of function as #" << i
412                 << "\n");
413  }
414}
415
416/// BBHasFallthrough - Return true if the specified basic block can fallthrough
417/// into the block immediately after it.
418static bool BBHasFallthrough(MachineBasicBlock *MBB) {
419  // Get the next machine basic block in the function.
420  MachineFunction::iterator MBBI = MBB;
421  // Can't fall off end of function.
422  if (llvm::next(MBBI) == MBB->getParent()->end())
423    return false;
424
425  MachineBasicBlock *NextBB = llvm::next(MBBI);
426  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
427       E = MBB->succ_end(); I != E; ++I)
428    if (*I == NextBB)
429      return true;
430
431  return false;
432}
433
434/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
435/// look up the corresponding CPEntry.
436ARMConstantIslands::CPEntry
437*ARMConstantIslands::findConstPoolEntry(unsigned CPI,
438                                        const MachineInstr *CPEMI) {
439  std::vector<CPEntry> &CPEs = CPEntries[CPI];
440  // Number of entries per constpool index should be small, just do a
441  // linear search.
442  for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
443    if (CPEs[i].CPEMI == CPEMI)
444      return &CPEs[i];
445  }
446  return NULL;
447}
448
449/// JumpTableFunctionScan - Do a scan of the function, building up
450/// information about the sizes of each block and the locations of all
451/// the jump tables.
452void ARMConstantIslands::JumpTableFunctionScan(MachineFunction &MF) {
453  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
454       MBBI != E; ++MBBI) {
455    MachineBasicBlock &MBB = *MBBI;
456
457    for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
458         I != E; ++I)
459      if (I->getDesc().isBranch() && I->getOpcode() == ARM::t2BR_JT)
460        T2JumpTables.push_back(I);
461  }
462}
463
464/// InitialFunctionScan - Do the initial scan of the function, building up
465/// information about the sizes of each block, the location of all the water,
466/// and finding all of the constant pool users.
467void ARMConstantIslands::InitialFunctionScan(MachineFunction &MF,
468                                 const std::vector<MachineInstr*> &CPEMIs) {
469  // First thing, see if the function has any inline assembly in it. If so,
470  // we have to be conservative about alignment assumptions, as we don't
471  // know for sure the size of any instructions in the inline assembly.
472  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
473       MBBI != E; ++MBBI) {
474    MachineBasicBlock &MBB = *MBBI;
475    for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
476         I != E; ++I)
477      if (I->getOpcode() == ARM::INLINEASM)
478        HasInlineAsm = true;
479  }
480
481  // Now go back through the instructions and build up our data structures
482  unsigned Offset = 0;
483  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
484       MBBI != E; ++MBBI) {
485    MachineBasicBlock &MBB = *MBBI;
486
487    // If this block doesn't fall through into the next MBB, then this is
488    // 'water' that a constant pool island could be placed.
489    if (!BBHasFallthrough(&MBB))
490      WaterList.push_back(&MBB);
491
492    unsigned MBBSize = 0;
493    for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
494         I != E; ++I) {
495      if (I->isDebugValue())
496        continue;
497      // Add instruction size to MBBSize.
498      MBBSize += TII->GetInstSizeInBytes(I);
499
500      int Opc = I->getOpcode();
501      if (I->getDesc().isBranch()) {
502        bool isCond = false;
503        unsigned Bits = 0;
504        unsigned Scale = 1;
505        int UOpc = Opc;
506        switch (Opc) {
507        default:
508          continue;  // Ignore other JT branches
509        case ARM::tBR_JTr:
510          // A Thumb1 table jump may involve padding; for the offsets to
511          // be right, functions containing these must be 4-byte aligned.
512          MF.EnsureAlignment(2U);
513          if ((Offset+MBBSize)%4 != 0 || HasInlineAsm)
514            // FIXME: Add a pseudo ALIGN instruction instead.
515            MBBSize += 2;           // padding
516          continue;   // Does not get an entry in ImmBranches
517        case ARM::t2BR_JT:
518          T2JumpTables.push_back(I);
519          continue;   // Does not get an entry in ImmBranches
520        case ARM::Bcc:
521          isCond = true;
522          UOpc = ARM::B;
523          // Fallthrough
524        case ARM::B:
525          Bits = 24;
526          Scale = 4;
527          break;
528        case ARM::tBcc:
529          isCond = true;
530          UOpc = ARM::tB;
531          Bits = 8;
532          Scale = 2;
533          break;
534        case ARM::tB:
535          Bits = 11;
536          Scale = 2;
537          break;
538        case ARM::t2Bcc:
539          isCond = true;
540          UOpc = ARM::t2B;
541          Bits = 20;
542          Scale = 2;
543          break;
544        case ARM::t2B:
545          Bits = 24;
546          Scale = 2;
547          break;
548        }
549
550        // Record this immediate branch.
551        unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
552        ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
553      }
554
555      if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
556        PushPopMIs.push_back(I);
557
558      if (Opc == ARM::CONSTPOOL_ENTRY)
559        continue;
560
561      // Scan the instructions for constant pool operands.
562      for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
563        if (I->getOperand(op).isCPI()) {
564          // We found one.  The addressing mode tells us the max displacement
565          // from the PC that this instruction permits.
566
567          // Basic size info comes from the TSFlags field.
568          unsigned Bits = 0;
569          unsigned Scale = 1;
570          bool NegOk = false;
571          bool IsSoImm = false;
572
573          switch (Opc) {
574          default:
575            llvm_unreachable("Unknown addressing mode for CP reference!");
576            break;
577
578          // Taking the address of a CP entry.
579          case ARM::LEApcrel:
580            // This takes a SoImm, which is 8 bit immediate rotated. We'll
581            // pretend the maximum offset is 255 * 4. Since each instruction
582            // 4 byte wide, this is always correct. We'll check for other
583            // displacements that fits in a SoImm as well.
584            Bits = 8;
585            Scale = 4;
586            NegOk = true;
587            IsSoImm = true;
588            break;
589          case ARM::t2LEApcrel:
590            Bits = 12;
591            NegOk = true;
592            break;
593          case ARM::tLEApcrel:
594            Bits = 8;
595            Scale = 4;
596            break;
597
598          case ARM::LDR:
599          case ARM::LDRcp:
600          case ARM::t2LDRpci:
601            Bits = 12;  // +-offset_12
602            NegOk = true;
603            break;
604
605          case ARM::tLDRpci:
606          case ARM::tLDRcp:
607            Bits = 8;
608            Scale = 4;  // +(offset_8*4)
609            break;
610
611          case ARM::VLDRD:
612          case ARM::VLDRS:
613            Bits = 8;
614            Scale = 4;  // +-(offset_8*4)
615            NegOk = true;
616            break;
617          }
618
619          // Remember that this is a user of a CP entry.
620          unsigned CPI = I->getOperand(op).getIndex();
621          MachineInstr *CPEMI = CPEMIs[CPI];
622          unsigned MaxOffs = ((1 << Bits)-1) * Scale;
623          CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm));
624
625          // Increment corresponding CPEntry reference count.
626          CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
627          assert(CPE && "Cannot find a corresponding CPEntry!");
628          CPE->RefCount++;
629
630          // Instructions can only use one CP entry, don't bother scanning the
631          // rest of the operands.
632          break;
633        }
634    }
635
636    // In thumb mode, if this block is a constpool island, we may need padding
637    // so it's aligned on 4 byte boundary.
638    if (isThumb &&
639        !MBB.empty() &&
640        MBB.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY &&
641        ((Offset%4) != 0 || HasInlineAsm))
642      MBBSize += 2;
643
644    BBSizes.push_back(MBBSize);
645    BBOffsets.push_back(Offset);
646    Offset += MBBSize;
647  }
648}
649
650/// GetOffsetOf - Return the current offset of the specified machine instruction
651/// from the start of the function.  This offset changes as stuff is moved
652/// around inside the function.
653unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const {
654  MachineBasicBlock *MBB = MI->getParent();
655
656  // The offset is composed of two things: the sum of the sizes of all MBB's
657  // before this instruction's block, and the offset from the start of the block
658  // it is in.
659  unsigned Offset = BBOffsets[MBB->getNumber()];
660
661  // If we're looking for a CONSTPOOL_ENTRY in Thumb, see if this block has
662  // alignment padding, and compensate if so.
663  if (isThumb &&
664      MI->getOpcode() == ARM::CONSTPOOL_ENTRY &&
665      (Offset%4 != 0 || HasInlineAsm))
666    Offset += 2;
667
668  // Sum instructions before MI in MBB.
669  for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) {
670    assert(I != MBB->end() && "Didn't find MI in its own basic block?");
671    if (&*I == MI) return Offset;
672    Offset += TII->GetInstSizeInBytes(I);
673  }
674}
675
676/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
677/// ID.
678static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
679                              const MachineBasicBlock *RHS) {
680  return LHS->getNumber() < RHS->getNumber();
681}
682
683/// UpdateForInsertedWaterBlock - When a block is newly inserted into the
684/// machine function, it upsets all of the block numbers.  Renumber the blocks
685/// and update the arrays that parallel this numbering.
686void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
687  // Renumber the MBB's to keep them consequtive.
688  NewBB->getParent()->RenumberBlocks(NewBB);
689
690  // Insert a size into BBSizes to align it properly with the (newly
691  // renumbered) block numbers.
692  BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);
693
694  // Likewise for BBOffsets.
695  BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0);
696
697  // Next, update WaterList.  Specifically, we need to add NewMBB as having
698  // available water after it.
699  water_iterator IP =
700    std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
701                     CompareMBBNumbers);
702  WaterList.insert(IP, NewBB);
703}
704
705
706/// Split the basic block containing MI into two blocks, which are joined by
707/// an unconditional branch.  Update data structures and renumber blocks to
708/// account for this change and returns the newly created block.
709MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) {
710  MachineBasicBlock *OrigBB = MI->getParent();
711  MachineFunction &MF = *OrigBB->getParent();
712
713  // Create a new MBB for the code after the OrigBB.
714  MachineBasicBlock *NewBB =
715    MF.CreateMachineBasicBlock(OrigBB->getBasicBlock());
716  MachineFunction::iterator MBBI = OrigBB; ++MBBI;
717  MF.insert(MBBI, NewBB);
718
719  // Splice the instructions starting with MI over to NewBB.
720  NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
721
722  // Add an unconditional branch from OrigBB to NewBB.
723  // Note the new unconditional branch is not being recorded.
724  // There doesn't seem to be meaningful DebugInfo available; this doesn't
725  // correspond to anything in the source.
726  unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
727  BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB);
728  ++NumSplit;
729
730  // Update the CFG.  All succs of OrigBB are now succs of NewBB.
731  while (!OrigBB->succ_empty()) {
732    MachineBasicBlock *Succ = *OrigBB->succ_begin();
733    OrigBB->removeSuccessor(Succ);
734    NewBB->addSuccessor(Succ);
735
736    // This pass should be run after register allocation, so there should be no
737    // PHI nodes to update.
738    assert((Succ->empty() || !Succ->begin()->isPHI())
739           && "PHI nodes should be eliminated by now!");
740  }
741
742  // OrigBB branches to NewBB.
743  OrigBB->addSuccessor(NewBB);
744
745  // Update internal data structures to account for the newly inserted MBB.
746  // This is almost the same as UpdateForInsertedWaterBlock, except that
747  // the Water goes after OrigBB, not NewBB.
748  MF.RenumberBlocks(NewBB);
749
750  // Insert a size into BBSizes to align it properly with the (newly
751  // renumbered) block numbers.
752  BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);
753
754  // Likewise for BBOffsets.
755  BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0);
756
757  // Next, update WaterList.  Specifically, we need to add OrigMBB as having
758  // available water after it (but not if it's already there, which happens
759  // when splitting before a conditional branch that is followed by an
760  // unconditional branch - in that case we want to insert NewBB).
761  water_iterator IP =
762    std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
763                     CompareMBBNumbers);
764  MachineBasicBlock* WaterBB = *IP;
765  if (WaterBB == OrigBB)
766    WaterList.insert(llvm::next(IP), NewBB);
767  else
768    WaterList.insert(IP, OrigBB);
769  NewWaterList.insert(OrigBB);
770
771  // Figure out how large the first NewMBB is.  (It cannot
772  // contain a constpool_entry or tablejump.)
773  unsigned NewBBSize = 0;
774  for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end();
775       I != E; ++I)
776    NewBBSize += TII->GetInstSizeInBytes(I);
777
778  unsigned OrigBBI = OrigBB->getNumber();
779  unsigned NewBBI = NewBB->getNumber();
780  // Set the size of NewBB in BBSizes.
781  BBSizes[NewBBI] = NewBBSize;
782
783  // We removed instructions from UserMBB, subtract that off from its size.
784  // Add 2 or 4 to the block to count the unconditional branch we added to it.
785  int delta = isThumb1 ? 2 : 4;
786  BBSizes[OrigBBI] -= NewBBSize - delta;
787
788  // ...and adjust BBOffsets for NewBB accordingly.
789  BBOffsets[NewBBI] = BBOffsets[OrigBBI] + BBSizes[OrigBBI];
790
791  // All BBOffsets following these blocks must be modified.
792  AdjustBBOffsetsAfter(NewBB, delta);
793
794  return NewBB;
795}
796
797/// OffsetIsInRange - Checks whether UserOffset (the location of a constant pool
798/// reference) is within MaxDisp of TrialOffset (a proposed location of a
799/// constant pool entry).
800bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset,
801                                         unsigned TrialOffset, unsigned MaxDisp,
802                                         bool NegativeOK, bool IsSoImm) {
803  // On Thumb offsets==2 mod 4 are rounded down by the hardware for
804  // purposes of the displacement computation; compensate for that here.
805  // Effectively, the valid range of displacements is 2 bytes smaller for such
806  // references.
807  unsigned TotalAdj = 0;
808  if (isThumb && UserOffset%4 !=0) {
809    UserOffset -= 2;
810    TotalAdj = 2;
811  }
812  // CPEs will be rounded up to a multiple of 4.
813  if (isThumb && TrialOffset%4 != 0) {
814    TrialOffset += 2;
815    TotalAdj += 2;
816  }
817
818  // In Thumb2 mode, later branch adjustments can shift instructions up and
819  // cause alignment change. In the worst case scenario this can cause the
820  // user's effective address to be subtracted by 2 and the CPE's address to
821  // be plus 2.
822  if (isThumb2 && TotalAdj != 4)
823    MaxDisp -= (4 - TotalAdj);
824
825  if (UserOffset <= TrialOffset) {
826    // User before the Trial.
827    if (TrialOffset - UserOffset <= MaxDisp)
828      return true;
829    // FIXME: Make use full range of soimm values.
830  } else if (NegativeOK) {
831    if (UserOffset - TrialOffset <= MaxDisp)
832      return true;
833    // FIXME: Make use full range of soimm values.
834  }
835  return false;
836}
837
838/// WaterIsInRange - Returns true if a CPE placed after the specified
839/// Water (a basic block) will be in range for the specific MI.
840
841bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset,
842                                        MachineBasicBlock* Water, CPUser &U) {
843  unsigned MaxDisp = U.MaxDisp;
844  unsigned CPEOffset = BBOffsets[Water->getNumber()] +
845                       BBSizes[Water->getNumber()];
846
847  // If the CPE is to be inserted before the instruction, that will raise
848  // the offset of the instruction.
849  if (CPEOffset < UserOffset)
850    UserOffset += U.CPEMI->getOperand(2).getImm();
851
852  return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, U.NegOk, U.IsSoImm);
853}
854
855/// CPEIsInRange - Returns true if the distance between specific MI and
856/// specific ConstPool entry instruction can fit in MI's displacement field.
857bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, unsigned UserOffset,
858                                      MachineInstr *CPEMI, unsigned MaxDisp,
859                                      bool NegOk, bool DoDump) {
860  unsigned CPEOffset  = GetOffsetOf(CPEMI);
861  assert((CPEOffset%4 == 0 || HasInlineAsm) && "Misaligned CPE");
862
863  if (DoDump) {
864    DEBUG(errs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
865                 << " max delta=" << MaxDisp
866                 << " insn address=" << UserOffset
867                 << " CPE address=" << CPEOffset
868                 << " offset=" << int(CPEOffset-UserOffset) << "\t" << *MI);
869  }
870
871  return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
872}
873
874#ifndef NDEBUG
875/// BBIsJumpedOver - Return true of the specified basic block's only predecessor
876/// unconditionally branches to its only successor.
877static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
878  if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
879    return false;
880
881  MachineBasicBlock *Succ = *MBB->succ_begin();
882  MachineBasicBlock *Pred = *MBB->pred_begin();
883  MachineInstr *PredMI = &Pred->back();
884  if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
885      || PredMI->getOpcode() == ARM::t2B)
886    return PredMI->getOperand(0).getMBB() == Succ;
887  return false;
888}
889#endif // NDEBUG
890
891void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock *BB,
892                                              int delta) {
893  MachineFunction::iterator MBBI = BB; MBBI = llvm::next(MBBI);
894  for(unsigned i = BB->getNumber()+1, e = BB->getParent()->getNumBlockIDs();
895      i < e; ++i) {
896    BBOffsets[i] += delta;
897    // If some existing blocks have padding, adjust the padding as needed, a
898    // bit tricky.  delta can be negative so don't use % on that.
899    if (!isThumb)
900      continue;
901    MachineBasicBlock *MBB = MBBI;
902    if (!MBB->empty() && !HasInlineAsm) {
903      // Constant pool entries require padding.
904      if (MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) {
905        unsigned OldOffset = BBOffsets[i] - delta;
906        if ((OldOffset%4) == 0 && (BBOffsets[i]%4) != 0) {
907          // add new padding
908          BBSizes[i] += 2;
909          delta += 2;
910        } else if ((OldOffset%4) != 0 && (BBOffsets[i]%4) == 0) {
911          // remove existing padding
912          BBSizes[i] -= 2;
913          delta -= 2;
914        }
915      }
916      // Thumb1 jump tables require padding.  They should be at the end;
917      // following unconditional branches are removed by AnalyzeBranch.
918      MachineInstr *ThumbJTMI = prior(MBB->end());
919      if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) {
920        unsigned NewMIOffset = GetOffsetOf(ThumbJTMI);
921        unsigned OldMIOffset = NewMIOffset - delta;
922        if ((OldMIOffset%4) == 0 && (NewMIOffset%4) != 0) {
923          // remove existing padding
924          BBSizes[i] -= 2;
925          delta -= 2;
926        } else if ((OldMIOffset%4) != 0 && (NewMIOffset%4) == 0) {
927          // add new padding
928          BBSizes[i] += 2;
929          delta += 2;
930        }
931      }
932      if (delta==0)
933        return;
934    }
935    MBBI = llvm::next(MBBI);
936  }
937}
938
939/// DecrementOldEntry - find the constant pool entry with index CPI
940/// and instruction CPEMI, and decrement its refcount.  If the refcount
941/// becomes 0 remove the entry and instruction.  Returns true if we removed
942/// the entry, false if we didn't.
943
944bool ARMConstantIslands::DecrementOldEntry(unsigned CPI, MachineInstr *CPEMI) {
945  // Find the old entry. Eliminate it if it is no longer used.
946  CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
947  assert(CPE && "Unexpected!");
948  if (--CPE->RefCount == 0) {
949    RemoveDeadCPEMI(CPEMI);
950    CPE->CPEMI = NULL;
951    --NumCPEs;
952    return true;
953  }
954  return false;
955}
956
957/// LookForCPEntryInRange - see if the currently referenced CPE is in range;
958/// if not, see if an in-range clone of the CPE is in range, and if so,
959/// change the data structures so the user references the clone.  Returns:
960/// 0 = no existing entry found
961/// 1 = entry found, and there were no code insertions or deletions
962/// 2 = entry found, and there were code insertions or deletions
963int ARMConstantIslands::LookForExistingCPEntry(CPUser& U, unsigned UserOffset)
964{
965  MachineInstr *UserMI = U.MI;
966  MachineInstr *CPEMI  = U.CPEMI;
967
968  // Check to see if the CPE is already in-range.
969  if (CPEIsInRange(UserMI, UserOffset, CPEMI, U.MaxDisp, U.NegOk, true)) {
970    DEBUG(errs() << "In range\n");
971    return 1;
972  }
973
974  // No.  Look for previously created clones of the CPE that are in range.
975  unsigned CPI = CPEMI->getOperand(1).getIndex();
976  std::vector<CPEntry> &CPEs = CPEntries[CPI];
977  for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
978    // We already tried this one
979    if (CPEs[i].CPEMI == CPEMI)
980      continue;
981    // Removing CPEs can leave empty entries, skip
982    if (CPEs[i].CPEMI == NULL)
983      continue;
984    if (CPEIsInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.MaxDisp, U.NegOk)) {
985      DEBUG(errs() << "Replacing CPE#" << CPI << " with CPE#"
986                   << CPEs[i].CPI << "\n");
987      // Point the CPUser node to the replacement
988      U.CPEMI = CPEs[i].CPEMI;
989      // Change the CPI in the instruction operand to refer to the clone.
990      for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
991        if (UserMI->getOperand(j).isCPI()) {
992          UserMI->getOperand(j).setIndex(CPEs[i].CPI);
993          break;
994        }
995      // Adjust the refcount of the clone...
996      CPEs[i].RefCount++;
997      // ...and the original.  If we didn't remove the old entry, none of the
998      // addresses changed, so we don't need another pass.
999      return DecrementOldEntry(CPI, CPEMI) ? 2 : 1;
1000    }
1001  }
1002  return 0;
1003}
1004
1005/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1006/// the specific unconditional branch instruction.
1007static inline unsigned getUnconditionalBrDisp(int Opc) {
1008  switch (Opc) {
1009  case ARM::tB:
1010    return ((1<<10)-1)*2;
1011  case ARM::t2B:
1012    return ((1<<23)-1)*2;
1013  default:
1014    break;
1015  }
1016
1017  return ((1<<23)-1)*4;
1018}
1019
1020/// LookForWater - Look for an existing entry in the WaterList in which
1021/// we can place the CPE referenced from U so it's within range of U's MI.
1022/// Returns true if found, false if not.  If it returns true, WaterIter
1023/// is set to the WaterList entry.  For Thumb, prefer water that will not
1024/// introduce padding to water that will.  To ensure that this pass
1025/// terminates, the CPE location for a particular CPUser is only allowed to
1026/// move to a lower address, so search backward from the end of the list and
1027/// prefer the first water that is in range.
1028bool ARMConstantIslands::LookForWater(CPUser &U, unsigned UserOffset,
1029                                      water_iterator &WaterIter) {
1030  if (WaterList.empty())
1031    return false;
1032
1033  bool FoundWaterThatWouldPad = false;
1034  water_iterator IPThatWouldPad;
1035  for (water_iterator IP = prior(WaterList.end()),
1036         B = WaterList.begin();; --IP) {
1037    MachineBasicBlock* WaterBB = *IP;
1038    // Check if water is in range and is either at a lower address than the
1039    // current "high water mark" or a new water block that was created since
1040    // the previous iteration by inserting an unconditional branch.  In the
1041    // latter case, we want to allow resetting the high water mark back to
1042    // this new water since we haven't seen it before.  Inserting branches
1043    // should be relatively uncommon and when it does happen, we want to be
1044    // sure to take advantage of it for all the CPEs near that block, so that
1045    // we don't insert more branches than necessary.
1046    if (WaterIsInRange(UserOffset, WaterBB, U) &&
1047        (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1048         NewWaterList.count(WaterBB))) {
1049      unsigned WBBId = WaterBB->getNumber();
1050      if (isThumb &&
1051          (BBOffsets[WBBId] + BBSizes[WBBId])%4 != 0) {
1052        // This is valid Water, but would introduce padding.  Remember
1053        // it in case we don't find any Water that doesn't do this.
1054        if (!FoundWaterThatWouldPad) {
1055          FoundWaterThatWouldPad = true;
1056          IPThatWouldPad = IP;
1057        }
1058      } else {
1059        WaterIter = IP;
1060        return true;
1061      }
1062    }
1063    if (IP == B)
1064      break;
1065  }
1066  if (FoundWaterThatWouldPad) {
1067    WaterIter = IPThatWouldPad;
1068    return true;
1069  }
1070  return false;
1071}
1072
1073/// CreateNewWater - No existing WaterList entry will work for
1074/// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
1075/// block is used if in range, and the conditional branch munged so control
1076/// flow is correct.  Otherwise the block is split to create a hole with an
1077/// unconditional branch around it.  In either case NewMBB is set to a
1078/// block following which the new island can be inserted (the WaterList
1079/// is not adjusted).
1080void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex,
1081                                        unsigned UserOffset,
1082                                        MachineBasicBlock *&NewMBB) {
1083  CPUser &U = CPUsers[CPUserIndex];
1084  MachineInstr *UserMI = U.MI;
1085  MachineInstr *CPEMI  = U.CPEMI;
1086  MachineBasicBlock *UserMBB = UserMI->getParent();
1087  unsigned OffsetOfNextBlock = BBOffsets[UserMBB->getNumber()] +
1088                               BBSizes[UserMBB->getNumber()];
1089  assert(OffsetOfNextBlock== BBOffsets[UserMBB->getNumber()+1]);
1090
1091  // If the block does not end in an unconditional branch already, and if the
1092  // end of the block is within range, make new water there.  (The addition
1093  // below is for the unconditional branch we will be adding: 4 bytes on ARM +
1094  // Thumb2, 2 on Thumb1.  Possible Thumb1 alignment padding is allowed for
1095  // inside OffsetIsInRange.
1096  if (BBHasFallthrough(UserMBB) &&
1097      OffsetIsInRange(UserOffset, OffsetOfNextBlock + (isThumb1 ? 2: 4),
1098                      U.MaxDisp, U.NegOk, U.IsSoImm)) {
1099    DEBUG(errs() << "Split at end of block\n");
1100    if (&UserMBB->back() == UserMI)
1101      assert(BBHasFallthrough(UserMBB) && "Expected a fallthrough BB!");
1102    NewMBB = llvm::next(MachineFunction::iterator(UserMBB));
1103    // Add an unconditional branch from UserMBB to fallthrough block.
1104    // Record it for branch lengthening; this new branch will not get out of
1105    // range, but if the preceding conditional branch is out of range, the
1106    // targets will be exchanged, and the altered branch may be out of
1107    // range, so the machinery has to know about it.
1108    int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
1109    BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1110    unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1111    ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1112                          MaxDisp, false, UncondBr));
1113    int delta = isThumb1 ? 2 : 4;
1114    BBSizes[UserMBB->getNumber()] += delta;
1115    AdjustBBOffsetsAfter(UserMBB, delta);
1116  } else {
1117    // What a big block.  Find a place within the block to split it.
1118    // This is a little tricky on Thumb1 since instructions are 2 bytes
1119    // and constant pool entries are 4 bytes: if instruction I references
1120    // island CPE, and instruction I+1 references CPE', it will
1121    // not work well to put CPE as far forward as possible, since then
1122    // CPE' cannot immediately follow it (that location is 2 bytes
1123    // farther away from I+1 than CPE was from I) and we'd need to create
1124    // a new island.  So, we make a first guess, then walk through the
1125    // instructions between the one currently being looked at and the
1126    // possible insertion point, and make sure any other instructions
1127    // that reference CPEs will be able to use the same island area;
1128    // if not, we back up the insertion point.
1129
1130    // The 4 in the following is for the unconditional branch we'll be
1131    // inserting (allows for long branch on Thumb1).  Alignment of the
1132    // island is handled inside OffsetIsInRange.
1133    unsigned BaseInsertOffset = UserOffset + U.MaxDisp -4;
1134    // This could point off the end of the block if we've already got
1135    // constant pool entries following this block; only the last one is
1136    // in the water list.  Back past any possible branches (allow for a
1137    // conditional and a maximally long unconditional).
1138    if (BaseInsertOffset >= BBOffsets[UserMBB->getNumber()+1])
1139      BaseInsertOffset = BBOffsets[UserMBB->getNumber()+1] -
1140                              (isThumb1 ? 6 : 8);
1141    unsigned EndInsertOffset = BaseInsertOffset +
1142           CPEMI->getOperand(2).getImm();
1143    MachineBasicBlock::iterator MI = UserMI;
1144    ++MI;
1145    unsigned CPUIndex = CPUserIndex+1;
1146    for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI);
1147         Offset < BaseInsertOffset;
1148         Offset += TII->GetInstSizeInBytes(MI),
1149            MI = llvm::next(MI)) {
1150      if (CPUIndex < CPUsers.size() && CPUsers[CPUIndex].MI == MI) {
1151        CPUser &U = CPUsers[CPUIndex];
1152        if (!OffsetIsInRange(Offset, EndInsertOffset,
1153                             U.MaxDisp, U.NegOk, U.IsSoImm)) {
1154          BaseInsertOffset -= (isThumb1 ? 2 : 4);
1155          EndInsertOffset  -= (isThumb1 ? 2 : 4);
1156        }
1157        // This is overly conservative, as we don't account for CPEMIs
1158        // being reused within the block, but it doesn't matter much.
1159        EndInsertOffset += CPUsers[CPUIndex].CPEMI->getOperand(2).getImm();
1160        CPUIndex++;
1161      }
1162    }
1163    DEBUG(errs() << "Split in middle of big block\n");
1164    NewMBB = SplitBlockBeforeInstr(prior(MI));
1165  }
1166}
1167
1168/// HandleConstantPoolUser - Analyze the specified user, checking to see if it
1169/// is out-of-range.  If so, pick up the constant pool value and move it some
1170/// place in-range.  Return true if we changed any addresses (thus must run
1171/// another pass of branch lengthening), false otherwise.
1172bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &MF,
1173                                                unsigned CPUserIndex) {
1174  CPUser &U = CPUsers[CPUserIndex];
1175  MachineInstr *UserMI = U.MI;
1176  MachineInstr *CPEMI  = U.CPEMI;
1177  unsigned CPI = CPEMI->getOperand(1).getIndex();
1178  unsigned Size = CPEMI->getOperand(2).getImm();
1179  // Compute this only once, it's expensive.  The 4 or 8 is the value the
1180  // hardware keeps in the PC.
1181  unsigned UserOffset = GetOffsetOf(UserMI) + (isThumb ? 4 : 8);
1182
1183  // See if the current entry is within range, or there is a clone of it
1184  // in range.
1185  int result = LookForExistingCPEntry(U, UserOffset);
1186  if (result==1) return false;
1187  else if (result==2) return true;
1188
1189  // No existing clone of this CPE is within range.
1190  // We will be generating a new clone.  Get a UID for it.
1191  unsigned ID = AFI->createConstPoolEntryUId();
1192
1193  // Look for water where we can place this CPE.
1194  MachineBasicBlock *NewIsland = MF.CreateMachineBasicBlock();
1195  MachineBasicBlock *NewMBB;
1196  water_iterator IP;
1197  if (LookForWater(U, UserOffset, IP)) {
1198    DEBUG(errs() << "found water in range\n");
1199    MachineBasicBlock *WaterBB = *IP;
1200
1201    // If the original WaterList entry was "new water" on this iteration,
1202    // propagate that to the new island.  This is just keeping NewWaterList
1203    // updated to match the WaterList, which will be updated below.
1204    if (NewWaterList.count(WaterBB)) {
1205      NewWaterList.erase(WaterBB);
1206      NewWaterList.insert(NewIsland);
1207    }
1208    // The new CPE goes before the following block (NewMBB).
1209    NewMBB = llvm::next(MachineFunction::iterator(WaterBB));
1210
1211  } else {
1212    // No water found.
1213    DEBUG(errs() << "No water found\n");
1214    CreateNewWater(CPUserIndex, UserOffset, NewMBB);
1215
1216    // SplitBlockBeforeInstr adds to WaterList, which is important when it is
1217    // called while handling branches so that the water will be seen on the
1218    // next iteration for constant pools, but in this context, we don't want
1219    // it.  Check for this so it will be removed from the WaterList.
1220    // Also remove any entry from NewWaterList.
1221    MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB));
1222    IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
1223    if (IP != WaterList.end())
1224      NewWaterList.erase(WaterBB);
1225
1226    // We are adding new water.  Update NewWaterList.
1227    NewWaterList.insert(NewIsland);
1228  }
1229
1230  // Remove the original WaterList entry; we want subsequent insertions in
1231  // this vicinity to go after the one we're about to insert.  This
1232  // considerably reduces the number of times we have to move the same CPE
1233  // more than once and is also important to ensure the algorithm terminates.
1234  if (IP != WaterList.end())
1235    WaterList.erase(IP);
1236
1237  // Okay, we know we can put an island before NewMBB now, do it!
1238  MF.insert(NewMBB, NewIsland);
1239
1240  // Update internal data structures to account for the newly inserted MBB.
1241  UpdateForInsertedWaterBlock(NewIsland);
1242
1243  // Decrement the old entry, and remove it if refcount becomes 0.
1244  DecrementOldEntry(CPI, CPEMI);
1245
1246  // Now that we have an island to add the CPE to, clone the original CPE and
1247  // add it to the island.
1248  U.HighWaterMark = NewIsland;
1249  U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
1250                .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
1251  CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1252  ++NumCPEs;
1253
1254  BBOffsets[NewIsland->getNumber()] = BBOffsets[NewMBB->getNumber()];
1255  // Compensate for .align 2 in thumb mode.
1256  if (isThumb && (BBOffsets[NewIsland->getNumber()]%4 != 0 || HasInlineAsm))
1257    Size += 2;
1258  // Increase the size of the island block to account for the new entry.
1259  BBSizes[NewIsland->getNumber()] += Size;
1260  AdjustBBOffsetsAfter(NewIsland, Size);
1261
1262  // Finally, change the CPI in the instruction operand to be ID.
1263  for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1264    if (UserMI->getOperand(i).isCPI()) {
1265      UserMI->getOperand(i).setIndex(ID);
1266      break;
1267    }
1268
1269  DEBUG(errs() << "  Moved CPE to #" << ID << " CPI=" << CPI
1270           << '\t' << *UserMI);
1271
1272  return true;
1273}
1274
1275/// RemoveDeadCPEMI - Remove a dead constant pool entry instruction. Update
1276/// sizes and offsets of impacted basic blocks.
1277void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr *CPEMI) {
1278  MachineBasicBlock *CPEBB = CPEMI->getParent();
1279  unsigned Size = CPEMI->getOperand(2).getImm();
1280  CPEMI->eraseFromParent();
1281  BBSizes[CPEBB->getNumber()] -= Size;
1282  // All succeeding offsets have the current size value added in, fix this.
1283  if (CPEBB->empty()) {
1284    // In thumb1 mode, the size of island may be padded by two to compensate for
1285    // the alignment requirement.  Then it will now be 2 when the block is
1286    // empty, so fix this.
1287    // All succeeding offsets have the current size value added in, fix this.
1288    if (BBSizes[CPEBB->getNumber()] != 0) {
1289      Size += BBSizes[CPEBB->getNumber()];
1290      BBSizes[CPEBB->getNumber()] = 0;
1291    }
1292  }
1293  AdjustBBOffsetsAfter(CPEBB, -Size);
1294  // An island has only one predecessor BB and one successor BB. Check if
1295  // this BB's predecessor jumps directly to this BB's successor. This
1296  // shouldn't happen currently.
1297  assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1298  // FIXME: remove the empty blocks after all the work is done?
1299}
1300
1301/// RemoveUnusedCPEntries - Remove constant pool entries whose refcounts
1302/// are zero.
1303bool ARMConstantIslands::RemoveUnusedCPEntries() {
1304  unsigned MadeChange = false;
1305  for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1306      std::vector<CPEntry> &CPEs = CPEntries[i];
1307      for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1308        if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1309          RemoveDeadCPEMI(CPEs[j].CPEMI);
1310          CPEs[j].CPEMI = NULL;
1311          MadeChange = true;
1312        }
1313      }
1314  }
1315  return MadeChange;
1316}
1317
1318/// BBIsInRange - Returns true if the distance between specific MI and
1319/// specific BB can fit in MI's displacement field.
1320bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB,
1321                                     unsigned MaxDisp) {
1322  unsigned PCAdj      = isThumb ? 4 : 8;
1323  unsigned BrOffset   = GetOffsetOf(MI) + PCAdj;
1324  unsigned DestOffset = BBOffsets[DestBB->getNumber()];
1325
1326  DEBUG(errs() << "Branch of destination BB#" << DestBB->getNumber()
1327               << " from BB#" << MI->getParent()->getNumber()
1328               << " max delta=" << MaxDisp
1329               << " from " << GetOffsetOf(MI) << " to " << DestOffset
1330               << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
1331
1332  if (BrOffset <= DestOffset) {
1333    // Branch before the Dest.
1334    if (DestOffset-BrOffset <= MaxDisp)
1335      return true;
1336  } else {
1337    if (BrOffset-DestOffset <= MaxDisp)
1338      return true;
1339  }
1340  return false;
1341}
1342
1343/// FixUpImmediateBr - Fix up an immediate branch whose destination is too far
1344/// away to fit in its displacement field.
1345bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br) {
1346  MachineInstr *MI = Br.MI;
1347  MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1348
1349  // Check to see if the DestBB is already in-range.
1350  if (BBIsInRange(MI, DestBB, Br.MaxDisp))
1351    return false;
1352
1353  if (!Br.isCond)
1354    return FixUpUnconditionalBr(MF, Br);
1355  return FixUpConditionalBr(MF, Br);
1356}
1357
1358/// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is
1359/// too far away to fit in its displacement field. If the LR register has been
1360/// spilled in the epilogue, then we can use BL to implement a far jump.
1361/// Otherwise, add an intermediate branch instruction to a branch.
1362bool
1363ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br) {
1364  MachineInstr *MI = Br.MI;
1365  MachineBasicBlock *MBB = MI->getParent();
1366  if (!isThumb1)
1367    llvm_unreachable("FixUpUnconditionalBr is Thumb1 only!");
1368
1369  // Use BL to implement far jump.
1370  Br.MaxDisp = (1 << 21) * 2;
1371  MI->setDesc(TII->get(ARM::tBfar));
1372  BBSizes[MBB->getNumber()] += 2;
1373  AdjustBBOffsetsAfter(MBB, 2);
1374  HasFarJump = true;
1375  ++NumUBrFixed;
1376
1377  DEBUG(errs() << "  Changed B to long jump " << *MI);
1378
1379  return true;
1380}
1381
1382/// FixUpConditionalBr - Fix up a conditional branch whose destination is too
1383/// far away to fit in its displacement field. It is converted to an inverse
1384/// conditional branch + an unconditional branch to the destination.
1385bool
1386ARMConstantIslands::FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br) {
1387  MachineInstr *MI = Br.MI;
1388  MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1389
1390  // Add an unconditional branch to the destination and invert the branch
1391  // condition to jump over it:
1392  // blt L1
1393  // =>
1394  // bge L2
1395  // b   L1
1396  // L2:
1397  ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
1398  CC = ARMCC::getOppositeCondition(CC);
1399  unsigned CCReg = MI->getOperand(2).getReg();
1400
1401  // If the branch is at the end of its MBB and that has a fall-through block,
1402  // direct the updated conditional branch to the fall-through block. Otherwise,
1403  // split the MBB before the next instruction.
1404  MachineBasicBlock *MBB = MI->getParent();
1405  MachineInstr *BMI = &MBB->back();
1406  bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1407
1408  ++NumCBrFixed;
1409  if (BMI != MI) {
1410    if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) &&
1411        BMI->getOpcode() == Br.UncondBr) {
1412      // Last MI in the BB is an unconditional branch. Can we simply invert the
1413      // condition and swap destinations:
1414      // beq L1
1415      // b   L2
1416      // =>
1417      // bne L2
1418      // b   L1
1419      MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
1420      if (BBIsInRange(MI, NewDest, Br.MaxDisp)) {
1421        DEBUG(errs() << "  Invert Bcc condition and swap its destination with "
1422                     << *BMI);
1423        BMI->getOperand(0).setMBB(DestBB);
1424        MI->getOperand(0).setMBB(NewDest);
1425        MI->getOperand(1).setImm(CC);
1426        return true;
1427      }
1428    }
1429  }
1430
1431  if (NeedSplit) {
1432    SplitBlockBeforeInstr(MI);
1433    // No need for the branch to the next block. We're adding an unconditional
1434    // branch to the destination.
1435    int delta = TII->GetInstSizeInBytes(&MBB->back());
1436    BBSizes[MBB->getNumber()] -= delta;
1437    MachineBasicBlock* SplitBB = llvm::next(MachineFunction::iterator(MBB));
1438    AdjustBBOffsetsAfter(SplitBB, -delta);
1439    MBB->back().eraseFromParent();
1440    // BBOffsets[SplitBB] is wrong temporarily, fixed below
1441  }
1442  MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB));
1443
1444  DEBUG(errs() << "  Insert B to BB#" << DestBB->getNumber()
1445               << " also invert condition and change dest. to BB#"
1446               << NextBB->getNumber() << "\n");
1447
1448  // Insert a new conditional branch and a new unconditional branch.
1449  // Also update the ImmBranch as well as adding a new entry for the new branch.
1450  BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
1451    .addMBB(NextBB).addImm(CC).addReg(CCReg);
1452  Br.MI = &MBB->back();
1453  BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back());
1454  BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1455  BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back());
1456  unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1457  ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1458
1459  // Remove the old conditional branch.  It may or may not still be in MBB.
1460  BBSizes[MI->getParent()->getNumber()] -= TII->GetInstSizeInBytes(MI);
1461  MI->eraseFromParent();
1462
1463  // The net size change is an addition of one unconditional branch.
1464  int delta = TII->GetInstSizeInBytes(&MBB->back());
1465  AdjustBBOffsetsAfter(MBB, delta);
1466  return true;
1467}
1468
1469/// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills
1470/// LR / restores LR to pc. FIXME: This is done here because it's only possible
1471/// to do this if tBfar is not used.
1472bool ARMConstantIslands::UndoLRSpillRestore() {
1473  bool MadeChange = false;
1474  for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
1475    MachineInstr *MI = PushPopMIs[i];
1476    // First two operands are predicates.
1477    if (MI->getOpcode() == ARM::tPOP_RET &&
1478        MI->getOperand(2).getReg() == ARM::PC &&
1479        MI->getNumExplicitOperands() == 3) {
1480      BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET));
1481      MI->eraseFromParent();
1482      MadeChange = true;
1483    }
1484  }
1485  return MadeChange;
1486}
1487
1488bool ARMConstantIslands::OptimizeThumb2Instructions(MachineFunction &MF) {
1489  bool MadeChange = false;
1490
1491  // Shrink ADR and LDR from constantpool.
1492  for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
1493    CPUser &U = CPUsers[i];
1494    unsigned Opcode = U.MI->getOpcode();
1495    unsigned NewOpc = 0;
1496    unsigned Scale = 1;
1497    unsigned Bits = 0;
1498    switch (Opcode) {
1499    default: break;
1500    case ARM::t2LEApcrel:
1501      if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1502        NewOpc = ARM::tLEApcrel;
1503        Bits = 8;
1504        Scale = 4;
1505      }
1506      break;
1507    case ARM::t2LDRpci:
1508      if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1509        NewOpc = ARM::tLDRpci;
1510        Bits = 8;
1511        Scale = 4;
1512      }
1513      break;
1514    }
1515
1516    if (!NewOpc)
1517      continue;
1518
1519    unsigned UserOffset = GetOffsetOf(U.MI) + 4;
1520    unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
1521    // FIXME: Check if offset is multiple of scale if scale is not 4.
1522    if (CPEIsInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
1523      U.MI->setDesc(TII->get(NewOpc));
1524      MachineBasicBlock *MBB = U.MI->getParent();
1525      BBSizes[MBB->getNumber()] -= 2;
1526      AdjustBBOffsetsAfter(MBB, -2);
1527      ++NumT2CPShrunk;
1528      MadeChange = true;
1529    }
1530  }
1531
1532  MadeChange |= OptimizeThumb2Branches(MF);
1533  MadeChange |= OptimizeThumb2JumpTables(MF);
1534  return MadeChange;
1535}
1536
1537bool ARMConstantIslands::OptimizeThumb2Branches(MachineFunction &MF) {
1538  bool MadeChange = false;
1539
1540  for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) {
1541    ImmBranch &Br = ImmBranches[i];
1542    unsigned Opcode = Br.MI->getOpcode();
1543    unsigned NewOpc = 0;
1544    unsigned Scale = 1;
1545    unsigned Bits = 0;
1546    switch (Opcode) {
1547    default: break;
1548    case ARM::t2B:
1549      NewOpc = ARM::tB;
1550      Bits = 11;
1551      Scale = 2;
1552      break;
1553    case ARM::t2Bcc: {
1554      NewOpc = ARM::tBcc;
1555      Bits = 8;
1556      Scale = 2;
1557      break;
1558    }
1559    }
1560    if (NewOpc) {
1561      unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
1562      MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1563      if (BBIsInRange(Br.MI, DestBB, MaxOffs)) {
1564        Br.MI->setDesc(TII->get(NewOpc));
1565        MachineBasicBlock *MBB = Br.MI->getParent();
1566        BBSizes[MBB->getNumber()] -= 2;
1567        AdjustBBOffsetsAfter(MBB, -2);
1568        ++NumT2BrShrunk;
1569        MadeChange = true;
1570      }
1571    }
1572
1573    Opcode = Br.MI->getOpcode();
1574    if (Opcode != ARM::tBcc)
1575      continue;
1576
1577    NewOpc = 0;
1578    unsigned PredReg = 0;
1579    ARMCC::CondCodes Pred = llvm::getInstrPredicate(Br.MI, PredReg);
1580    if (Pred == ARMCC::EQ)
1581      NewOpc = ARM::tCBZ;
1582    else if (Pred == ARMCC::NE)
1583      NewOpc = ARM::tCBNZ;
1584    if (!NewOpc)
1585      continue;
1586    MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1587    // Check if the distance is within 126. Subtract starting offset by 2
1588    // because the cmp will be eliminated.
1589    unsigned BrOffset = GetOffsetOf(Br.MI) + 4 - 2;
1590    unsigned DestOffset = BBOffsets[DestBB->getNumber()];
1591    if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) {
1592      MachineBasicBlock::iterator CmpMI = Br.MI; --CmpMI;
1593      if (CmpMI->getOpcode() == ARM::tCMPzi8) {
1594        unsigned Reg = CmpMI->getOperand(0).getReg();
1595        Pred = llvm::getInstrPredicate(CmpMI, PredReg);
1596        if (Pred == ARMCC::AL &&
1597            CmpMI->getOperand(1).getImm() == 0 &&
1598            isARMLowRegister(Reg)) {
1599          MachineBasicBlock *MBB = Br.MI->getParent();
1600          MachineInstr *NewBR =
1601            BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc))
1602            .addReg(Reg).addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags());
1603          CmpMI->eraseFromParent();
1604          Br.MI->eraseFromParent();
1605          Br.MI = NewBR;
1606          BBSizes[MBB->getNumber()] -= 2;
1607          AdjustBBOffsetsAfter(MBB, -2);
1608          ++NumCBZ;
1609          MadeChange = true;
1610        }
1611      }
1612    }
1613  }
1614
1615  return MadeChange;
1616}
1617
1618/// OptimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
1619/// jumptables when it's possible.
1620bool ARMConstantIslands::OptimizeThumb2JumpTables(MachineFunction &MF) {
1621  bool MadeChange = false;
1622
1623  // FIXME: After the tables are shrunk, can we get rid some of the
1624  // constantpool tables?
1625  MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
1626  if (MJTI == 0) return false;
1627
1628  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1629  for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
1630    MachineInstr *MI = T2JumpTables[i];
1631    const TargetInstrDesc &TID = MI->getDesc();
1632    unsigned NumOps = TID.getNumOperands();
1633    unsigned JTOpIdx = NumOps - (TID.isPredicable() ? 3 : 2);
1634    MachineOperand JTOP = MI->getOperand(JTOpIdx);
1635    unsigned JTI = JTOP.getIndex();
1636    assert(JTI < JT.size());
1637
1638    bool ByteOk = true;
1639    bool HalfWordOk = true;
1640    unsigned JTOffset = GetOffsetOf(MI) + 4;
1641    const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1642    for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
1643      MachineBasicBlock *MBB = JTBBs[j];
1644      unsigned DstOffset = BBOffsets[MBB->getNumber()];
1645      // Negative offset is not ok. FIXME: We should change BB layout to make
1646      // sure all the branches are forward.
1647      if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
1648        ByteOk = false;
1649      unsigned TBHLimit = ((1<<16)-1)*2;
1650      if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
1651        HalfWordOk = false;
1652      if (!ByteOk && !HalfWordOk)
1653        break;
1654    }
1655
1656    if (ByteOk || HalfWordOk) {
1657      MachineBasicBlock *MBB = MI->getParent();
1658      unsigned BaseReg = MI->getOperand(0).getReg();
1659      bool BaseRegKill = MI->getOperand(0).isKill();
1660      if (!BaseRegKill)
1661        continue;
1662      unsigned IdxReg = MI->getOperand(1).getReg();
1663      bool IdxRegKill = MI->getOperand(1).isKill();
1664
1665      // Scan backwards to find the instruction that defines the base
1666      // register. Due to post-RA scheduling, we can't count on it
1667      // immediately preceding the branch instruction.
1668      MachineBasicBlock::iterator PrevI = MI;
1669      MachineBasicBlock::iterator B = MBB->begin();
1670      while (PrevI != B && !PrevI->definesRegister(BaseReg))
1671        --PrevI;
1672
1673      // If for some reason we didn't find it, we can't do anything, so
1674      // just skip this one.
1675      if (!PrevI->definesRegister(BaseReg))
1676        continue;
1677
1678      MachineInstr *AddrMI = PrevI;
1679      bool OptOk = true;
1680      // Examine the instruction that calculates the jumptable entry address.
1681      // Make sure it only defines the base register and kills any uses
1682      // other than the index register.
1683      for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) {
1684        const MachineOperand &MO = AddrMI->getOperand(k);
1685        if (!MO.isReg() || !MO.getReg())
1686          continue;
1687        if (MO.isDef() && MO.getReg() != BaseReg) {
1688          OptOk = false;
1689          break;
1690        }
1691        if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) {
1692          OptOk = false;
1693          break;
1694        }
1695      }
1696      if (!OptOk)
1697        continue;
1698
1699      // Now scan back again to find the tLEApcrel or t2LEApcrelJT instruction
1700      // that gave us the initial base register definition.
1701      for (--PrevI; PrevI != B && !PrevI->definesRegister(BaseReg); --PrevI)
1702        ;
1703
1704      // The instruction should be a tLEApcrel or t2LEApcrelJT; we want
1705      // to delete it as well.
1706      MachineInstr *LeaMI = PrevI;
1707      if ((LeaMI->getOpcode() != ARM::tLEApcrelJT &&
1708           LeaMI->getOpcode() != ARM::t2LEApcrelJT) ||
1709          LeaMI->getOperand(0).getReg() != BaseReg)
1710        OptOk = false;
1711
1712      if (!OptOk)
1713        continue;
1714
1715      unsigned Opc = ByteOk ? ARM::t2TBB : ARM::t2TBH;
1716      MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc))
1717        .addReg(IdxReg, getKillRegState(IdxRegKill))
1718        .addJumpTableIndex(JTI, JTOP.getTargetFlags())
1719        .addImm(MI->getOperand(JTOpIdx+1).getImm());
1720      // FIXME: Insert an "ALIGN" instruction to ensure the next instruction
1721      // is 2-byte aligned. For now, asm printer will fix it up.
1722      unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI);
1723      unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI);
1724      OrigSize += TII->GetInstSizeInBytes(LeaMI);
1725      OrigSize += TII->GetInstSizeInBytes(MI);
1726
1727      AddrMI->eraseFromParent();
1728      LeaMI->eraseFromParent();
1729      MI->eraseFromParent();
1730
1731      int delta = OrigSize - NewSize;
1732      BBSizes[MBB->getNumber()] -= delta;
1733      AdjustBBOffsetsAfter(MBB, -delta);
1734
1735      ++NumTBs;
1736      MadeChange = true;
1737    }
1738  }
1739
1740  return MadeChange;
1741}
1742
1743/// ReorderThumb2JumpTables - Adjust the function's block layout to ensure that
1744/// jump tables always branch forwards, since that's what tbb and tbh need.
1745bool ARMConstantIslands::ReorderThumb2JumpTables(MachineFunction &MF) {
1746  bool MadeChange = false;
1747
1748  MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
1749  if (MJTI == 0) return false;
1750
1751  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1752  for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
1753    MachineInstr *MI = T2JumpTables[i];
1754    const TargetInstrDesc &TID = MI->getDesc();
1755    unsigned NumOps = TID.getNumOperands();
1756    unsigned JTOpIdx = NumOps - (TID.isPredicable() ? 3 : 2);
1757    MachineOperand JTOP = MI->getOperand(JTOpIdx);
1758    unsigned JTI = JTOP.getIndex();
1759    assert(JTI < JT.size());
1760
1761    // We prefer if target blocks for the jump table come after the jump
1762    // instruction so we can use TB[BH]. Loop through the target blocks
1763    // and try to adjust them such that that's true.
1764    int JTNumber = MI->getParent()->getNumber();
1765    const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1766    for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
1767      MachineBasicBlock *MBB = JTBBs[j];
1768      int DTNumber = MBB->getNumber();
1769
1770      if (DTNumber < JTNumber) {
1771        // The destination precedes the switch. Try to move the block forward
1772        // so we have a positive offset.
1773        MachineBasicBlock *NewBB =
1774          AdjustJTTargetBlockForward(MBB, MI->getParent());
1775        if (NewBB)
1776          MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB);
1777        MadeChange = true;
1778      }
1779    }
1780  }
1781
1782  return MadeChange;
1783}
1784
1785MachineBasicBlock *ARMConstantIslands::
1786AdjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB)
1787{
1788  MachineFunction &MF = *BB->getParent();
1789
1790  // If the destination block is terminated by an unconditional branch,
1791  // try to move it; otherwise, create a new block following the jump
1792  // table that branches back to the actual target. This is a very simple
1793  // heuristic. FIXME: We can definitely improve it.
1794  MachineBasicBlock *TBB = 0, *FBB = 0;
1795  SmallVector<MachineOperand, 4> Cond;
1796  SmallVector<MachineOperand, 4> CondPrior;
1797  MachineFunction::iterator BBi = BB;
1798  MachineFunction::iterator OldPrior = prior(BBi);
1799
1800  // If the block terminator isn't analyzable, don't try to move the block
1801  bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond);
1802
1803  // If the block ends in an unconditional branch, move it. The prior block
1804  // has to have an analyzable terminator for us to move this one. Be paranoid
1805  // and make sure we're not trying to move the entry block of the function.
1806  if (!B && Cond.empty() && BB != MF.begin() &&
1807      !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) {
1808    BB->moveAfter(JTBB);
1809    OldPrior->updateTerminator();
1810    BB->updateTerminator();
1811    // Update numbering to account for the block being moved.
1812    MF.RenumberBlocks();
1813    ++NumJTMoved;
1814    return NULL;
1815  }
1816
1817  // Create a new MBB for the code after the jump BB.
1818  MachineBasicBlock *NewBB =
1819    MF.CreateMachineBasicBlock(JTBB->getBasicBlock());
1820  MachineFunction::iterator MBBI = JTBB; ++MBBI;
1821  MF.insert(MBBI, NewBB);
1822
1823  // Add an unconditional branch from NewBB to BB.
1824  // There doesn't seem to be meaningful DebugInfo available; this doesn't
1825  // correspond directly to anything in the source.
1826  assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?");
1827  BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB);
1828
1829  // Update internal data structures to account for the newly inserted MBB.
1830  MF.RenumberBlocks(NewBB);
1831
1832  // Update the CFG.
1833  NewBB->addSuccessor(BB);
1834  JTBB->removeSuccessor(BB);
1835  JTBB->addSuccessor(NewBB);
1836
1837  ++NumJTInserted;
1838  return NewBB;
1839}
1840