ARMFastISel.cpp revision 0e6233bfd75a12b9e56507086a37816240ca877a
1//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the ARM-specific support for the FastISel class. Some
11// of the target-specific code is generated by tablegen in the file
12// ARMGenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "ARM.h"
17#include "ARMBaseInstrInfo.h"
18#include "ARMCallingConv.h"
19#include "ARMRegisterInfo.h"
20#include "ARMTargetMachine.h"
21#include "ARMSubtarget.h"
22#include "ARMConstantPoolValue.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Instructions.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/Module.h"
29#include "llvm/CodeGen/Analysis.h"
30#include "llvm/CodeGen/FastISel.h"
31#include "llvm/CodeGen/FunctionLoweringInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineConstantPool.h"
35#include "llvm/CodeGen/MachineFrameInfo.h"
36#include "llvm/CodeGen/MachineMemOperand.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/Support/CallSite.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/GetElementPtrTypeIterator.h"
43#include "llvm/Target/TargetData.h"
44#include "llvm/Target/TargetInstrInfo.h"
45#include "llvm/Target/TargetLowering.h"
46#include "llvm/Target/TargetMachine.h"
47#include "llvm/Target/TargetOptions.h"
48using namespace llvm;
49
50static cl::opt<bool>
51DisableARMFastISel("disable-arm-fast-isel",
52                    cl::desc("Turn off experimental ARM fast-isel support"),
53                    cl::init(false), cl::Hidden);
54
55namespace {
56
57class ARMFastISel : public FastISel {
58
59  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
60  /// make the right decision when generating code for different targets.
61  const ARMSubtarget *Subtarget;
62  const TargetMachine &TM;
63  const TargetInstrInfo &TII;
64  const TargetLowering &TLI;
65  ARMFunctionInfo *AFI;
66
67  // Convenience variables to avoid some queries.
68  bool isThumb;
69  LLVMContext *Context;
70
71  public:
72    explicit ARMFastISel(FunctionLoweringInfo &funcInfo)
73    : FastISel(funcInfo),
74      TM(funcInfo.MF->getTarget()),
75      TII(*TM.getInstrInfo()),
76      TLI(*TM.getTargetLowering()) {
77      Subtarget = &TM.getSubtarget<ARMSubtarget>();
78      AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
79      isThumb = AFI->isThumbFunction();
80      Context = &funcInfo.Fn->getContext();
81    }
82
83    // Code from FastISel.cpp.
84    virtual unsigned FastEmitInst_(unsigned MachineInstOpcode,
85                                   const TargetRegisterClass *RC);
86    virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
87                                    const TargetRegisterClass *RC,
88                                    unsigned Op0, bool Op0IsKill);
89    virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
90                                     const TargetRegisterClass *RC,
91                                     unsigned Op0, bool Op0IsKill,
92                                     unsigned Op1, bool Op1IsKill);
93    virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
94                                     const TargetRegisterClass *RC,
95                                     unsigned Op0, bool Op0IsKill,
96                                     uint64_t Imm);
97    virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
98                                     const TargetRegisterClass *RC,
99                                     unsigned Op0, bool Op0IsKill,
100                                     const ConstantFP *FPImm);
101    virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode,
102                                    const TargetRegisterClass *RC,
103                                    uint64_t Imm);
104    virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
105                                      const TargetRegisterClass *RC,
106                                      unsigned Op0, bool Op0IsKill,
107                                      unsigned Op1, bool Op1IsKill,
108                                      uint64_t Imm);
109    virtual unsigned FastEmitInst_extractsubreg(MVT RetVT,
110                                                unsigned Op0, bool Op0IsKill,
111                                                uint32_t Idx);
112
113    // Backend specific FastISel code.
114    virtual bool TargetSelectInstruction(const Instruction *I);
115    virtual unsigned TargetMaterializeConstant(const Constant *C);
116    virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
117
118  #include "ARMGenFastISel.inc"
119
120    // Instruction selection routines.
121  private:
122    bool SelectLoad(const Instruction *I);
123    bool SelectStore(const Instruction *I);
124    bool SelectBranch(const Instruction *I);
125    bool SelectCmp(const Instruction *I);
126    bool SelectFPExt(const Instruction *I);
127    bool SelectFPTrunc(const Instruction *I);
128    bool SelectBinaryOp(const Instruction *I, unsigned ISDOpcode);
129    bool SelectSIToFP(const Instruction *I);
130    bool SelectFPToSI(const Instruction *I);
131    bool SelectSDiv(const Instruction *I);
132    bool SelectSRem(const Instruction *I);
133    bool SelectCall(const Instruction *I);
134    bool SelectSelect(const Instruction *I);
135    bool SelectRet(const Instruction *I);
136
137    // Utility routines.
138  private:
139    bool isTypeLegal(const Type *Ty, EVT &VT);
140    bool isLoadTypeLegal(const Type *Ty, EVT &VT);
141    bool ARMEmitLoad(EVT VT, unsigned &ResultReg, unsigned Base, int Offset);
142    bool ARMEmitStore(EVT VT, unsigned SrcReg, unsigned Base, int Offset);
143    bool ARMComputeRegOffset(const Value *Obj, unsigned &Base, int &Offset);
144    void ARMSimplifyRegOffset(unsigned &Base, int &Offset, EVT VT);
145    unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
146    unsigned ARMMaterializeInt(const Constant *C, EVT VT);
147    unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT);
148    unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
149    unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);
150
151    // Call handling routines.
152  private:
153    bool FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
154                        unsigned &ResultReg);
155    CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return);
156    bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
157                         SmallVectorImpl<unsigned> &ArgRegs,
158                         SmallVectorImpl<EVT> &ArgVTs,
159                         SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
160                         SmallVectorImpl<unsigned> &RegArgs,
161                         CallingConv::ID CC,
162                         unsigned &NumBytes);
163    bool FinishCall(EVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
164                    const Instruction *I, CallingConv::ID CC,
165                    unsigned &NumBytes);
166    bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
167
168    // OptionalDef handling routines.
169  private:
170    bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
171    const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
172};
173
174} // end anonymous namespace
175
176#include "ARMGenCallingConv.inc"
177
178// DefinesOptionalPredicate - This is different from DefinesPredicate in that
179// we don't care about implicit defs here, just places we'll need to add a
180// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
181bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
182  const TargetInstrDesc &TID = MI->getDesc();
183  if (!TID.hasOptionalDef())
184    return false;
185
186  // Look to see if our OptionalDef is defining CPSR or CCR.
187  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
188    const MachineOperand &MO = MI->getOperand(i);
189    if (!MO.isReg() || !MO.isDef()) continue;
190    if (MO.getReg() == ARM::CPSR)
191      *CPSR = true;
192  }
193  return true;
194}
195
196// If the machine is predicable go ahead and add the predicate operands, if
197// it needs default CC operands add those.
198const MachineInstrBuilder &
199ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
200  MachineInstr *MI = &*MIB;
201
202  // Do we use a predicate?
203  if (TII.isPredicable(MI))
204    AddDefaultPred(MIB);
205
206  // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
207  // defines CPSR. All other OptionalDefines in ARM are the CCR register.
208  bool CPSR = false;
209  if (DefinesOptionalPredicate(MI, &CPSR)) {
210    if (CPSR)
211      AddDefaultT1CC(MIB);
212    else
213      AddDefaultCC(MIB);
214  }
215  return MIB;
216}
217
218unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
219                                    const TargetRegisterClass* RC) {
220  unsigned ResultReg = createResultReg(RC);
221  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
222
223  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
224  return ResultReg;
225}
226
227unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
228                                     const TargetRegisterClass *RC,
229                                     unsigned Op0, bool Op0IsKill) {
230  unsigned ResultReg = createResultReg(RC);
231  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
232
233  if (II.getNumDefs() >= 1)
234    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
235                   .addReg(Op0, Op0IsKill * RegState::Kill));
236  else {
237    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
238                   .addReg(Op0, Op0IsKill * RegState::Kill));
239    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
240                   TII.get(TargetOpcode::COPY), ResultReg)
241                   .addReg(II.ImplicitDefs[0]));
242  }
243  return ResultReg;
244}
245
246unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
247                                      const TargetRegisterClass *RC,
248                                      unsigned Op0, bool Op0IsKill,
249                                      unsigned Op1, bool Op1IsKill) {
250  unsigned ResultReg = createResultReg(RC);
251  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
252
253  if (II.getNumDefs() >= 1)
254    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
255                   .addReg(Op0, Op0IsKill * RegState::Kill)
256                   .addReg(Op1, Op1IsKill * RegState::Kill));
257  else {
258    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
259                   .addReg(Op0, Op0IsKill * RegState::Kill)
260                   .addReg(Op1, Op1IsKill * RegState::Kill));
261    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
262                           TII.get(TargetOpcode::COPY), ResultReg)
263                   .addReg(II.ImplicitDefs[0]));
264  }
265  return ResultReg;
266}
267
268unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
269                                      const TargetRegisterClass *RC,
270                                      unsigned Op0, bool Op0IsKill,
271                                      uint64_t Imm) {
272  unsigned ResultReg = createResultReg(RC);
273  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
274
275  if (II.getNumDefs() >= 1)
276    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
277                   .addReg(Op0, Op0IsKill * RegState::Kill)
278                   .addImm(Imm));
279  else {
280    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
281                   .addReg(Op0, Op0IsKill * RegState::Kill)
282                   .addImm(Imm));
283    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
284                           TII.get(TargetOpcode::COPY), ResultReg)
285                   .addReg(II.ImplicitDefs[0]));
286  }
287  return ResultReg;
288}
289
290unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
291                                      const TargetRegisterClass *RC,
292                                      unsigned Op0, bool Op0IsKill,
293                                      const ConstantFP *FPImm) {
294  unsigned ResultReg = createResultReg(RC);
295  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
296
297  if (II.getNumDefs() >= 1)
298    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
299                   .addReg(Op0, Op0IsKill * RegState::Kill)
300                   .addFPImm(FPImm));
301  else {
302    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
303                   .addReg(Op0, Op0IsKill * RegState::Kill)
304                   .addFPImm(FPImm));
305    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
306                           TII.get(TargetOpcode::COPY), ResultReg)
307                   .addReg(II.ImplicitDefs[0]));
308  }
309  return ResultReg;
310}
311
312unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
313                                       const TargetRegisterClass *RC,
314                                       unsigned Op0, bool Op0IsKill,
315                                       unsigned Op1, bool Op1IsKill,
316                                       uint64_t Imm) {
317  unsigned ResultReg = createResultReg(RC);
318  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
319
320  if (II.getNumDefs() >= 1)
321    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
322                   .addReg(Op0, Op0IsKill * RegState::Kill)
323                   .addReg(Op1, Op1IsKill * RegState::Kill)
324                   .addImm(Imm));
325  else {
326    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
327                   .addReg(Op0, Op0IsKill * RegState::Kill)
328                   .addReg(Op1, Op1IsKill * RegState::Kill)
329                   .addImm(Imm));
330    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
331                           TII.get(TargetOpcode::COPY), ResultReg)
332                   .addReg(II.ImplicitDefs[0]));
333  }
334  return ResultReg;
335}
336
337unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
338                                     const TargetRegisterClass *RC,
339                                     uint64_t Imm) {
340  unsigned ResultReg = createResultReg(RC);
341  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
342
343  if (II.getNumDefs() >= 1)
344    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
345                   .addImm(Imm));
346  else {
347    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
348                   .addImm(Imm));
349    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
350                           TII.get(TargetOpcode::COPY), ResultReg)
351                   .addReg(II.ImplicitDefs[0]));
352  }
353  return ResultReg;
354}
355
356unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
357                                                 unsigned Op0, bool Op0IsKill,
358                                                 uint32_t Idx) {
359  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
360  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
361         "Cannot yet extract from physregs");
362  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
363                         DL, TII.get(TargetOpcode::COPY), ResultReg)
364                 .addReg(Op0, getKillRegState(Op0IsKill), Idx));
365  return ResultReg;
366}
367
368// TODO: Don't worry about 64-bit now, but when this is fixed remove the
369// checks from the various callers.
370unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
371  if (VT.getSimpleVT().SimpleTy == MVT::f64) return 0;
372
373  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
374  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
375                          TII.get(ARM::VMOVRS), MoveReg)
376                  .addReg(SrcReg));
377  return MoveReg;
378}
379
380unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
381  if (VT.getSimpleVT().SimpleTy == MVT::i64) return 0;
382
383  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
384  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
385                          TII.get(ARM::VMOVSR), MoveReg)
386                  .addReg(SrcReg));
387  return MoveReg;
388}
389
390// For double width floating point we need to materialize two constants
391// (the high and the low) into integer registers then use a move to get
392// the combined constant into an FP reg.
393unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
394  const APFloat Val = CFP->getValueAPF();
395  bool is64bit = VT.getSimpleVT().SimpleTy == MVT::f64;
396
397  // This checks to see if we can use VFP3 instructions to materialize
398  // a constant, otherwise we have to go through the constant pool.
399  if (TLI.isFPImmLegal(Val, VT)) {
400    unsigned Opc = is64bit ? ARM::FCONSTD : ARM::FCONSTS;
401    unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
402    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
403                            DestReg)
404                    .addFPImm(CFP));
405    return DestReg;
406  }
407
408  // Require VFP2 for loading fp constants.
409  if (!Subtarget->hasVFP2()) return false;
410
411  // MachineConstantPool wants an explicit alignment.
412  unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
413  if (Align == 0) {
414    // TODO: Figure out if this is correct.
415    Align = TD.getTypeAllocSize(CFP->getType());
416  }
417  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
418  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
419  unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
420
421  // The extra reg is for addrmode5.
422  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
423                          DestReg)
424                  .addConstantPoolIndex(Idx)
425                  .addReg(0));
426  return DestReg;
427}
428
429unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) {
430
431  // For now 32-bit only.
432  if (VT.getSimpleVT().SimpleTy != MVT::i32) return false;
433
434  // MachineConstantPool wants an explicit alignment.
435  unsigned Align = TD.getPrefTypeAlignment(C->getType());
436  if (Align == 0) {
437    // TODO: Figure out if this is correct.
438    Align = TD.getTypeAllocSize(C->getType());
439  }
440  unsigned Idx = MCP.getConstantPoolIndex(C, Align);
441  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
442
443  if (isThumb)
444    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
445                            TII.get(ARM::t2LDRpci), DestReg)
446                    .addConstantPoolIndex(Idx));
447  else
448    // The extra reg and immediate are for addrmode2.
449    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
450                            TII.get(ARM::LDRcp), DestReg)
451                    .addConstantPoolIndex(Idx)
452                    .addImm(0));
453
454  return DestReg;
455}
456
457unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) {
458  // For now 32-bit only.
459  if (VT.getSimpleVT().SimpleTy != MVT::i32) return 0;
460
461  Reloc::Model RelocM = TM.getRelocationModel();
462
463  // TODO: No external globals for now.
464  if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) return 0;
465
466  // TODO: Need more magic for ARM PIC.
467  if (!isThumb && (RelocM == Reloc::PIC_)) return 0;
468
469  // MachineConstantPool wants an explicit alignment.
470  unsigned Align = TD.getPrefTypeAlignment(GV->getType());
471  if (Align == 0) {
472    // TODO: Figure out if this is correct.
473    Align = TD.getTypeAllocSize(GV->getType());
474  }
475
476  // Grab index.
477  unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb() ? 4 : 8);
478  unsigned Id = AFI->createConstPoolEntryUId();
479  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, Id,
480                                                       ARMCP::CPValue, PCAdj);
481  unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
482
483  // Load value.
484  MachineInstrBuilder MIB;
485  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
486  if (isThumb) {
487    unsigned Opc = (RelocM != Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
488    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
489          .addConstantPoolIndex(Idx);
490    if (RelocM == Reloc::PIC_)
491      MIB.addImm(Id);
492  } else {
493    // The extra reg and immediate are for addrmode2.
494    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
495                  DestReg)
496          .addConstantPoolIndex(Idx)
497          .addReg(0).addImm(0);
498  }
499  AddOptionalDefs(MIB);
500  return DestReg;
501}
502
503unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
504  EVT VT = TLI.getValueType(C->getType(), true);
505
506  // Only handle simple types.
507  if (!VT.isSimple()) return 0;
508
509  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
510    return ARMMaterializeFP(CFP, VT);
511  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
512    return ARMMaterializeGV(GV, VT);
513  else if (isa<ConstantInt>(C))
514    return ARMMaterializeInt(C, VT);
515
516  return 0;
517}
518
519unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
520  // Don't handle dynamic allocas.
521  if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
522
523  EVT VT;
524  if (!isLoadTypeLegal(AI->getType(), VT)) return false;
525
526  DenseMap<const AllocaInst*, int>::iterator SI =
527    FuncInfo.StaticAllocaMap.find(AI);
528
529  // This will get lowered later into the correct offsets and registers
530  // via rewriteXFrameIndex.
531  if (SI != FuncInfo.StaticAllocaMap.end()) {
532    TargetRegisterClass* RC = TLI.getRegClassFor(VT);
533    unsigned ResultReg = createResultReg(RC);
534    unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
535    AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
536                            TII.get(Opc), ResultReg)
537                            .addFrameIndex(SI->second)
538                            .addImm(0));
539    return ResultReg;
540  }
541
542  return 0;
543}
544
545bool ARMFastISel::isTypeLegal(const Type *Ty, EVT &VT) {
546  VT = TLI.getValueType(Ty, true);
547
548  // Only handle simple types.
549  if (VT == MVT::Other || !VT.isSimple()) return false;
550
551  // Handle all legal types, i.e. a register that will directly hold this
552  // value.
553  return TLI.isTypeLegal(VT);
554}
555
556bool ARMFastISel::isLoadTypeLegal(const Type *Ty, EVT &VT) {
557  if (isTypeLegal(Ty, VT)) return true;
558
559  // If this is a type than can be sign or zero-extended to a basic operation
560  // go ahead and accept it now.
561  if (VT == MVT::i8 || VT == MVT::i16)
562    return true;
563
564  return false;
565}
566
567// Computes the Reg+Offset to get to an object.
568bool ARMFastISel::ARMComputeRegOffset(const Value *Obj, unsigned &Base,
569                                      int &Offset) {
570  // Some boilerplate from the X86 FastISel.
571  const User *U = NULL;
572  unsigned Opcode = Instruction::UserOp1;
573  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
574    // Don't walk into other basic blocks; it's possible we haven't
575    // visited them yet, so the instructions may not yet be assigned
576    // virtual registers.
577    if (FuncInfo.MBBMap[I->getParent()] != FuncInfo.MBB)
578      return false;
579    Opcode = I->getOpcode();
580    U = I;
581  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
582    Opcode = C->getOpcode();
583    U = C;
584  }
585
586  if (const PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
587    if (Ty->getAddressSpace() > 255)
588      // Fast instruction selection doesn't support the special
589      // address spaces.
590      return false;
591
592  switch (Opcode) {
593    default:
594    break;
595    case Instruction::BitCast: {
596      // Look through bitcasts.
597      return ARMComputeRegOffset(U->getOperand(0), Base, Offset);
598    }
599    case Instruction::IntToPtr: {
600      // Look past no-op inttoptrs.
601      if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
602        return ARMComputeRegOffset(U->getOperand(0), Base, Offset);
603      break;
604    }
605    case Instruction::PtrToInt: {
606      // Look past no-op ptrtoints.
607      if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
608        return ARMComputeRegOffset(U->getOperand(0), Base, Offset);
609      break;
610    }
611    case Instruction::GetElementPtr: {
612      int SavedOffset = Offset;
613      unsigned SavedBase = Base;
614      int TmpOffset = Offset;
615
616      // Iterate through the GEP folding the constants into offsets where
617      // we can.
618      gep_type_iterator GTI = gep_type_begin(U);
619      for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
620           i != e; ++i, ++GTI) {
621        const Value *Op = *i;
622        if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
623          const StructLayout *SL = TD.getStructLayout(STy);
624          unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
625          TmpOffset += SL->getElementOffset(Idx);
626        } else {
627          uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
628          SmallVector<const Value *, 4> Worklist;
629          Worklist.push_back(Op);
630          do {
631            Op = Worklist.pop_back_val();
632            if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
633              // Constant-offset addressing.
634              TmpOffset += CI->getSExtValue() * S;
635            } else if (isa<AddOperator>(Op) &&
636                       isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
637              // An add with a constant operand. Fold the constant.
638              ConstantInt *CI =
639                cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
640              TmpOffset += CI->getSExtValue() * S;
641              // Add the other operand back to the work list.
642              Worklist.push_back(cast<AddOperator>(Op)->getOperand(0));
643            } else
644              goto unsupported_gep;
645          } while (!Worklist.empty());
646        }
647      }
648
649      // Try to grab the base operand now.
650      Offset = TmpOffset;
651      if (ARMComputeRegOffset(U->getOperand(0), Base, Offset)) return true;
652
653      // We failed, restore everything and try the other options.
654      Offset = SavedOffset;
655      Base = SavedBase;
656
657      unsupported_gep:
658      break;
659    }
660    case Instruction::Alloca: {
661      const AllocaInst *AI = cast<AllocaInst>(Obj);
662      unsigned Reg = TargetMaterializeAlloca(AI);
663
664      if (Reg == 0) return false;
665
666      Base = Reg;
667      return true;
668    }
669  }
670
671  // Materialize the global variable's address into a reg which can
672  // then be used later to load the variable.
673  if (const GlobalValue *GV = dyn_cast<GlobalValue>(Obj)) {
674    unsigned Tmp = ARMMaterializeGV(GV, TLI.getValueType(Obj->getType()));
675    if (Tmp == 0) return false;
676
677    Base = Tmp;
678    return true;
679  }
680
681  // Try to get this in a register if nothing else has worked.
682  if (Base == 0) Base  = getRegForValue(Obj);
683  return Base != 0;
684}
685
686void ARMFastISel::ARMSimplifyRegOffset(unsigned &Base, int &Offset, EVT VT) {
687
688  assert(VT.isSimple() && "Non-simple types are invalid here!");
689
690  bool needsLowering = false;
691  switch (VT.getSimpleVT().SimpleTy) {
692    default:
693      assert(false && "Unhandled load/store type!");
694    case MVT::i1:
695    case MVT::i8:
696    case MVT::i16:
697    case MVT::i32:
698      // Integer loads/stores handle 12-bit offsets.
699      needsLowering = ((Offset & 0xfff) != Offset);
700      break;
701    case MVT::f32:
702    case MVT::f64:
703      // Floating point operands handle 8-bit offsets.
704      needsLowering = ((Offset & 0xff) != Offset);
705      break;
706  }
707
708  // Since the offset is too large for the load/store instruction
709  // get the reg+offset into a register.
710  if (needsLowering) {
711    ARMCC::CondCodes Pred = ARMCC::AL;
712    unsigned PredReg = 0;
713
714    TargetRegisterClass *RC = isThumb ? ARM::tGPRRegisterClass :
715      ARM::GPRRegisterClass;
716    unsigned BaseReg = createResultReg(RC);
717
718    if (!isThumb)
719      emitARMRegPlusImmediate(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
720                              BaseReg, Base, Offset, Pred, PredReg,
721                              static_cast<const ARMBaseInstrInfo&>(TII));
722    else {
723      assert(AFI->isThumb2Function());
724      emitT2RegPlusImmediate(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
725                             BaseReg, Base, Offset, Pred, PredReg,
726                             static_cast<const ARMBaseInstrInfo&>(TII));
727    }
728    Offset = 0;
729    Base = BaseReg;
730  }
731}
732
733bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg,
734                              unsigned Base, int Offset) {
735
736  assert(VT.isSimple() && "Non-simple types are invalid here!");
737  unsigned Opc;
738  TargetRegisterClass *RC;
739  bool isFloat = false;
740  switch (VT.getSimpleVT().SimpleTy) {
741    default:
742      // This is mostly going to be Neon/vector support.
743      return false;
744    case MVT::i16:
745      Opc = isThumb ? ARM::t2LDRHi12 : ARM::LDRH;
746      RC = ARM::GPRRegisterClass;
747      break;
748    case MVT::i8:
749      Opc = isThumb ? ARM::t2LDRBi12 : ARM::LDRBi12;
750      RC = ARM::GPRRegisterClass;
751      break;
752    case MVT::i32:
753      Opc = isThumb ? ARM::t2LDRi12 : ARM::LDRi12;
754      RC = ARM::GPRRegisterClass;
755      break;
756    case MVT::f32:
757      Opc = ARM::VLDRS;
758      RC = TLI.getRegClassFor(VT);
759      isFloat = true;
760      break;
761    case MVT::f64:
762      Opc = ARM::VLDRD;
763      RC = TLI.getRegClassFor(VT);
764      isFloat = true;
765      break;
766  }
767
768  ResultReg = createResultReg(RC);
769
770  ARMSimplifyRegOffset(Base, Offset, VT);
771
772  // addrmode5 output depends on the selection dag addressing dividing the
773  // offset by 4 that it then later multiplies. Do this here as well.
774  if (isFloat)
775    Offset /= 4;
776
777  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
778                          TII.get(Opc), ResultReg)
779                  .addReg(Base).addImm(Offset));
780  return true;
781}
782
783bool ARMFastISel::SelectLoad(const Instruction *I) {
784  // Verify we have a legal type before going any further.
785  EVT VT;
786  if (!isLoadTypeLegal(I->getType(), VT))
787    return false;
788
789  // Our register and offset with innocuous defaults.
790  unsigned Base = 0;
791  int Offset = 0;
792
793  // See if we can handle this as Reg + Offset
794  if (!ARMComputeRegOffset(I->getOperand(0), Base, Offset))
795    return false;
796
797  unsigned ResultReg;
798  if (!ARMEmitLoad(VT, ResultReg, Base, Offset)) return false;
799
800  UpdateValueMap(I, ResultReg);
801  return true;
802}
803
804bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg,
805                               unsigned Base, int Offset) {
806  unsigned StrOpc;
807  bool isFloat = false;
808  bool needReg0Op = false;
809  switch (VT.getSimpleVT().SimpleTy) {
810    default: return false;
811    case MVT::i1:
812    case MVT::i8:
813      StrOpc = isThumb ? ARM::t2STRBi12 : ARM::STRBi12;
814      break;
815    case MVT::i16:
816      StrOpc = isThumb ? ARM::t2STRHi12 : ARM::STRH;
817      needReg0Op = true;
818      break;
819    case MVT::i32:
820      StrOpc = isThumb ? ARM::t2STRi12 : ARM::STRi12;
821      break;
822    case MVT::f32:
823      if (!Subtarget->hasVFP2()) return false;
824      StrOpc = ARM::VSTRS;
825      isFloat = true;
826      break;
827    case MVT::f64:
828      if (!Subtarget->hasVFP2()) return false;
829      StrOpc = ARM::VSTRD;
830      isFloat = true;
831      break;
832  }
833
834  ARMSimplifyRegOffset(Base, Offset, VT);
835
836  // addrmode5 output depends on the selection dag addressing dividing the
837  // offset by 4 that it then later multiplies. Do this here as well.
838  if (isFloat)
839    Offset /= 4;
840
841
842  // FIXME: The 'needReg0Op' bit goes away once STRH is converted to
843  // not use the mega-addrmode stuff.
844  if (!needReg0Op)
845    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
846                            TII.get(StrOpc))
847                    .addReg(SrcReg).addReg(Base).addImm(Offset));
848  else
849    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
850                            TII.get(StrOpc))
851                    .addReg(SrcReg).addReg(Base).addReg(0).addImm(Offset));
852
853  return true;
854}
855
856bool ARMFastISel::SelectStore(const Instruction *I) {
857  Value *Op0 = I->getOperand(0);
858  unsigned SrcReg = 0;
859
860  // Yay type legalization
861  EVT VT;
862  if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
863    return false;
864
865  // Get the value to be stored into a register.
866  SrcReg = getRegForValue(Op0);
867  if (SrcReg == 0)
868    return false;
869
870  // Our register and offset with innocuous defaults.
871  unsigned Base = 0;
872  int Offset = 0;
873
874  // See if we can handle this as Reg + Offset
875  if (!ARMComputeRegOffset(I->getOperand(1), Base, Offset))
876    return false;
877
878  if (!ARMEmitStore(VT, SrcReg, Base, Offset)) return false;
879
880  return true;
881}
882
883static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
884  switch (Pred) {
885    // Needs two compares...
886    case CmpInst::FCMP_ONE:
887    case CmpInst::FCMP_UEQ:
888    default:
889      assert(false && "Unhandled CmpInst::Predicate!");
890      return ARMCC::AL;
891    case CmpInst::ICMP_EQ:
892    case CmpInst::FCMP_OEQ:
893      return ARMCC::EQ;
894    case CmpInst::ICMP_SGT:
895    case CmpInst::FCMP_OGT:
896      return ARMCC::GT;
897    case CmpInst::ICMP_SGE:
898    case CmpInst::FCMP_OGE:
899      return ARMCC::GE;
900    case CmpInst::ICMP_UGT:
901    case CmpInst::FCMP_UGT:
902      return ARMCC::HI;
903    case CmpInst::FCMP_OLT:
904      return ARMCC::MI;
905    case CmpInst::ICMP_ULE:
906    case CmpInst::FCMP_OLE:
907      return ARMCC::LS;
908    case CmpInst::FCMP_ORD:
909      return ARMCC::VC;
910    case CmpInst::FCMP_UNO:
911      return ARMCC::VS;
912    case CmpInst::FCMP_UGE:
913      return ARMCC::PL;
914    case CmpInst::ICMP_SLT:
915    case CmpInst::FCMP_ULT:
916      return ARMCC::LT;
917    case CmpInst::ICMP_SLE:
918    case CmpInst::FCMP_ULE:
919      return ARMCC::LE;
920    case CmpInst::FCMP_UNE:
921    case CmpInst::ICMP_NE:
922      return ARMCC::NE;
923    case CmpInst::ICMP_UGE:
924      return ARMCC::HS;
925    case CmpInst::ICMP_ULT:
926      return ARMCC::LO;
927  }
928}
929
930bool ARMFastISel::SelectBranch(const Instruction *I) {
931  const BranchInst *BI = cast<BranchInst>(I);
932  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
933  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
934
935  // Simple branch support.
936
937  // If we can, avoid recomputing the compare - redoing it could lead to wonky
938  // behavior.
939  // TODO: Factor this out.
940  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
941    if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
942      const Type *Ty = CI->getOperand(0)->getType();
943      EVT VT = TLI.getValueType(Ty);
944      bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
945      if (isFloat && !Subtarget->hasVFP2())
946        return false;
947
948      unsigned CmpOpc;
949      unsigned CondReg;
950      switch (VT.getSimpleVT().SimpleTy) {
951        default: return false;
952        // TODO: Verify compares.
953        case MVT::f32:
954          CmpOpc = ARM::VCMPES;
955          CondReg = ARM::FPSCR;
956          break;
957        case MVT::f64:
958          CmpOpc = ARM::VCMPED;
959          CondReg = ARM::FPSCR;
960          break;
961        case MVT::i32:
962          CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
963          CondReg = ARM::CPSR;
964          break;
965      }
966
967      // Get the compare predicate.
968      ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
969
970      // We may not handle every CC for now.
971      if (ARMPred == ARMCC::AL) return false;
972
973      unsigned Arg1 = getRegForValue(CI->getOperand(0));
974      if (Arg1 == 0) return false;
975
976      unsigned Arg2 = getRegForValue(CI->getOperand(1));
977      if (Arg2 == 0) return false;
978
979      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
980                              TII.get(CmpOpc))
981                      .addReg(Arg1).addReg(Arg2));
982
983      // For floating point we need to move the result to a comparison register
984      // that we can then use for branches.
985      if (isFloat)
986        AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
987                                TII.get(ARM::FMSTAT)));
988
989      unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
990      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
991      .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
992      FastEmitBranch(FBB, DL);
993      FuncInfo.MBB->addSuccessor(TBB);
994      return true;
995    }
996  }
997
998  unsigned CmpReg = getRegForValue(BI->getCondition());
999  if (CmpReg == 0) return false;
1000
1001  // Re-set the flags just in case.
1002  unsigned CmpOpc = isThumb ? ARM::t2CMPri : ARM::CMPri;
1003  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1004                  .addReg(CmpReg).addImm(1));
1005
1006  unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1007  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1008                  .addMBB(TBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
1009  FastEmitBranch(FBB, DL);
1010  FuncInfo.MBB->addSuccessor(TBB);
1011  return true;
1012}
1013
1014bool ARMFastISel::SelectCmp(const Instruction *I) {
1015  const CmpInst *CI = cast<CmpInst>(I);
1016
1017  EVT VT;
1018  const Type *Ty = CI->getOperand(0)->getType();
1019  if (!isTypeLegal(Ty, VT))
1020    return false;
1021
1022  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1023  if (isFloat && !Subtarget->hasVFP2())
1024    return false;
1025
1026  unsigned CmpOpc;
1027  unsigned CondReg;
1028  switch (VT.getSimpleVT().SimpleTy) {
1029    default: return false;
1030    // TODO: Verify compares.
1031    case MVT::f32:
1032      CmpOpc = ARM::VCMPES;
1033      CondReg = ARM::FPSCR;
1034      break;
1035    case MVT::f64:
1036      CmpOpc = ARM::VCMPED;
1037      CondReg = ARM::FPSCR;
1038      break;
1039    case MVT::i32:
1040      CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
1041      CondReg = ARM::CPSR;
1042      break;
1043  }
1044
1045  // Get the compare predicate.
1046  ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1047
1048  // We may not handle every CC for now.
1049  if (ARMPred == ARMCC::AL) return false;
1050
1051  unsigned Arg1 = getRegForValue(CI->getOperand(0));
1052  if (Arg1 == 0) return false;
1053
1054  unsigned Arg2 = getRegForValue(CI->getOperand(1));
1055  if (Arg2 == 0) return false;
1056
1057  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1058                  .addReg(Arg1).addReg(Arg2));
1059
1060  // For floating point we need to move the result to a comparison register
1061  // that we can then use for branches.
1062  if (isFloat)
1063    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1064                            TII.get(ARM::FMSTAT)));
1065
1066  // Now set a register based on the comparison. Explicitly set the predicates
1067  // here.
1068  unsigned MovCCOpc = isThumb ? ARM::t2MOVCCi : ARM::MOVCCi;
1069  TargetRegisterClass *RC = isThumb ? ARM::rGPRRegisterClass
1070                                    : ARM::GPRRegisterClass;
1071  unsigned DestReg = createResultReg(RC);
1072  Constant *Zero
1073    = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1074  unsigned ZeroReg = TargetMaterializeConstant(Zero);
1075  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
1076          .addReg(ZeroReg).addImm(1)
1077          .addImm(ARMPred).addReg(CondReg);
1078
1079  UpdateValueMap(I, DestReg);
1080  return true;
1081}
1082
1083bool ARMFastISel::SelectFPExt(const Instruction *I) {
1084  // Make sure we have VFP and that we're extending float to double.
1085  if (!Subtarget->hasVFP2()) return false;
1086
1087  Value *V = I->getOperand(0);
1088  if (!I->getType()->isDoubleTy() ||
1089      !V->getType()->isFloatTy()) return false;
1090
1091  unsigned Op = getRegForValue(V);
1092  if (Op == 0) return false;
1093
1094  unsigned Result = createResultReg(ARM::DPRRegisterClass);
1095  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1096                          TII.get(ARM::VCVTDS), Result)
1097                  .addReg(Op));
1098  UpdateValueMap(I, Result);
1099  return true;
1100}
1101
1102bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1103  // Make sure we have VFP and that we're truncating double to float.
1104  if (!Subtarget->hasVFP2()) return false;
1105
1106  Value *V = I->getOperand(0);
1107  if (!(I->getType()->isFloatTy() &&
1108        V->getType()->isDoubleTy())) return false;
1109
1110  unsigned Op = getRegForValue(V);
1111  if (Op == 0) return false;
1112
1113  unsigned Result = createResultReg(ARM::SPRRegisterClass);
1114  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1115                          TII.get(ARM::VCVTSD), Result)
1116                  .addReg(Op));
1117  UpdateValueMap(I, Result);
1118  return true;
1119}
1120
1121bool ARMFastISel::SelectSIToFP(const Instruction *I) {
1122  // Make sure we have VFP.
1123  if (!Subtarget->hasVFP2()) return false;
1124
1125  EVT DstVT;
1126  const Type *Ty = I->getType();
1127  if (!isTypeLegal(Ty, DstVT))
1128    return false;
1129
1130  unsigned Op = getRegForValue(I->getOperand(0));
1131  if (Op == 0) return false;
1132
1133  // The conversion routine works on fp-reg to fp-reg and the operand above
1134  // was an integer, move it to the fp registers if possible.
1135  unsigned FP = ARMMoveToFPReg(MVT::f32, Op);
1136  if (FP == 0) return false;
1137
1138  unsigned Opc;
1139  if (Ty->isFloatTy()) Opc = ARM::VSITOS;
1140  else if (Ty->isDoubleTy()) Opc = ARM::VSITOD;
1141  else return 0;
1142
1143  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1144  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1145                          ResultReg)
1146                  .addReg(FP));
1147  UpdateValueMap(I, ResultReg);
1148  return true;
1149}
1150
1151bool ARMFastISel::SelectFPToSI(const Instruction *I) {
1152  // Make sure we have VFP.
1153  if (!Subtarget->hasVFP2()) return false;
1154
1155  EVT DstVT;
1156  const Type *RetTy = I->getType();
1157  if (!isTypeLegal(RetTy, DstVT))
1158    return false;
1159
1160  unsigned Op = getRegForValue(I->getOperand(0));
1161  if (Op == 0) return false;
1162
1163  unsigned Opc;
1164  const Type *OpTy = I->getOperand(0)->getType();
1165  if (OpTy->isFloatTy()) Opc = ARM::VTOSIZS;
1166  else if (OpTy->isDoubleTy()) Opc = ARM::VTOSIZD;
1167  else return 0;
1168
1169  // f64->s32 or f32->s32 both need an intermediate f32 reg.
1170  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1171  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1172                          ResultReg)
1173                  .addReg(Op));
1174
1175  // This result needs to be in an integer register, but the conversion only
1176  // takes place in fp-regs.
1177  unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1178  if (IntReg == 0) return false;
1179
1180  UpdateValueMap(I, IntReg);
1181  return true;
1182}
1183
1184bool ARMFastISel::SelectSelect(const Instruction *I) {
1185  EVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
1186  if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
1187    return false;
1188
1189  // Things need to be register sized for register moves.
1190  if (VT.getSimpleVT().SimpleTy != MVT::i32) return false;
1191  const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
1192
1193  unsigned CondReg = getRegForValue(I->getOperand(0));
1194  if (CondReg == 0) return false;
1195  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1196  if (Op1Reg == 0) return false;
1197  unsigned Op2Reg = getRegForValue(I->getOperand(2));
1198  if (Op2Reg == 0) return false;
1199
1200  unsigned CmpOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
1201  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1202                  .addReg(CondReg).addImm(1));
1203  unsigned ResultReg = createResultReg(RC);
1204  unsigned MovCCOpc = isThumb ? ARM::t2MOVCCr : ARM::MOVCCr;
1205  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1206    .addReg(Op1Reg).addReg(Op2Reg)
1207    .addImm(ARMCC::EQ).addReg(ARM::CPSR);
1208  UpdateValueMap(I, ResultReg);
1209  return true;
1210}
1211
1212bool ARMFastISel::SelectSDiv(const Instruction *I) {
1213  EVT VT;
1214  const Type *Ty = I->getType();
1215  if (!isTypeLegal(Ty, VT))
1216    return false;
1217
1218  // If we have integer div support we should have selected this automagically.
1219  // In case we have a real miss go ahead and return false and we'll pick
1220  // it up later.
1221  if (Subtarget->hasDivide()) return false;
1222
1223  // Otherwise emit a libcall.
1224  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1225  if (VT == MVT::i8)
1226    LC = RTLIB::SDIV_I8;
1227  else if (VT == MVT::i16)
1228    LC = RTLIB::SDIV_I16;
1229  else if (VT == MVT::i32)
1230    LC = RTLIB::SDIV_I32;
1231  else if (VT == MVT::i64)
1232    LC = RTLIB::SDIV_I64;
1233  else if (VT == MVT::i128)
1234    LC = RTLIB::SDIV_I128;
1235  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1236
1237  return ARMEmitLibcall(I, LC);
1238}
1239
1240bool ARMFastISel::SelectSRem(const Instruction *I) {
1241  EVT VT;
1242  const Type *Ty = I->getType();
1243  if (!isTypeLegal(Ty, VT))
1244    return false;
1245
1246  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1247  if (VT == MVT::i8)
1248    LC = RTLIB::SREM_I8;
1249  else if (VT == MVT::i16)
1250    LC = RTLIB::SREM_I16;
1251  else if (VT == MVT::i32)
1252    LC = RTLIB::SREM_I32;
1253  else if (VT == MVT::i64)
1254    LC = RTLIB::SREM_I64;
1255  else if (VT == MVT::i128)
1256    LC = RTLIB::SREM_I128;
1257  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1258
1259  return ARMEmitLibcall(I, LC);
1260}
1261
1262bool ARMFastISel::SelectBinaryOp(const Instruction *I, unsigned ISDOpcode) {
1263  EVT VT  = TLI.getValueType(I->getType(), true);
1264
1265  // We can get here in the case when we want to use NEON for our fp
1266  // operations, but can't figure out how to. Just use the vfp instructions
1267  // if we have them.
1268  // FIXME: It'd be nice to use NEON instructions.
1269  const Type *Ty = I->getType();
1270  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1271  if (isFloat && !Subtarget->hasVFP2())
1272    return false;
1273
1274  unsigned Op1 = getRegForValue(I->getOperand(0));
1275  if (Op1 == 0) return false;
1276
1277  unsigned Op2 = getRegForValue(I->getOperand(1));
1278  if (Op2 == 0) return false;
1279
1280  unsigned Opc;
1281  bool is64bit = VT.getSimpleVT().SimpleTy == MVT::f64 ||
1282                 VT.getSimpleVT().SimpleTy == MVT::i64;
1283  switch (ISDOpcode) {
1284    default: return false;
1285    case ISD::FADD:
1286      Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1287      break;
1288    case ISD::FSUB:
1289      Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1290      break;
1291    case ISD::FMUL:
1292      Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1293      break;
1294  }
1295  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1296  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1297                          TII.get(Opc), ResultReg)
1298                  .addReg(Op1).addReg(Op2));
1299  UpdateValueMap(I, ResultReg);
1300  return true;
1301}
1302
1303// Call Handling Code
1304
1305bool ARMFastISel::FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src,
1306                                 EVT SrcVT, unsigned &ResultReg) {
1307  unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
1308                           Src, /*TODO: Kill=*/false);
1309
1310  if (RR != 0) {
1311    ResultReg = RR;
1312    return true;
1313  } else
1314    return false;
1315}
1316
1317// This is largely taken directly from CCAssignFnForNode - we don't support
1318// varargs in FastISel so that part has been removed.
1319// TODO: We may not support all of this.
1320CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) {
1321  switch (CC) {
1322  default:
1323    llvm_unreachable("Unsupported calling convention");
1324  case CallingConv::Fast:
1325    // Ignore fastcc. Silence compiler warnings.
1326    (void)RetFastCC_ARM_APCS;
1327    (void)FastCC_ARM_APCS;
1328    // Fallthrough
1329  case CallingConv::C:
1330    // Use target triple & subtarget features to do actual dispatch.
1331    if (Subtarget->isAAPCS_ABI()) {
1332      if (Subtarget->hasVFP2() &&
1333          FloatABIType == FloatABI::Hard)
1334        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1335      else
1336        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1337    } else
1338        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1339  case CallingConv::ARM_AAPCS_VFP:
1340    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1341  case CallingConv::ARM_AAPCS:
1342    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1343  case CallingConv::ARM_APCS:
1344    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1345  }
1346}
1347
1348bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1349                                  SmallVectorImpl<unsigned> &ArgRegs,
1350                                  SmallVectorImpl<EVT> &ArgVTs,
1351                                  SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1352                                  SmallVectorImpl<unsigned> &RegArgs,
1353                                  CallingConv::ID CC,
1354                                  unsigned &NumBytes) {
1355  SmallVector<CCValAssign, 16> ArgLocs;
1356  CCState CCInfo(CC, false, TM, ArgLocs, *Context);
1357  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false));
1358
1359  // Get a count of how many bytes are to be pushed on the stack.
1360  NumBytes = CCInfo.getNextStackOffset();
1361
1362  // Issue CALLSEQ_START
1363  unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode();
1364  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1365                          TII.get(AdjStackDown))
1366                  .addImm(NumBytes));
1367
1368  // Process the args.
1369  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1370    CCValAssign &VA = ArgLocs[i];
1371    unsigned Arg = ArgRegs[VA.getValNo()];
1372    EVT ArgVT = ArgVTs[VA.getValNo()];
1373
1374    // We don't handle NEON parameters yet.
1375    if (VA.getLocVT().isVector() && VA.getLocVT().getSizeInBits() > 64)
1376      return false;
1377
1378    // Handle arg promotion, etc.
1379    switch (VA.getLocInfo()) {
1380      case CCValAssign::Full: break;
1381      case CCValAssign::SExt: {
1382        bool Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1383                                         Arg, ArgVT, Arg);
1384        assert(Emitted && "Failed to emit a sext!"); Emitted=Emitted;
1385        Emitted = true;
1386        ArgVT = VA.getLocVT();
1387        break;
1388      }
1389      case CCValAssign::ZExt: {
1390        bool Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1391                                         Arg, ArgVT, Arg);
1392        assert(Emitted && "Failed to emit a zext!"); Emitted=Emitted;
1393        Emitted = true;
1394        ArgVT = VA.getLocVT();
1395        break;
1396      }
1397      case CCValAssign::AExt: {
1398        bool Emitted = FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
1399                                         Arg, ArgVT, Arg);
1400        if (!Emitted)
1401          Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1402                                      Arg, ArgVT, Arg);
1403        if (!Emitted)
1404          Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1405                                      Arg, ArgVT, Arg);
1406
1407        assert(Emitted && "Failed to emit a aext!"); Emitted=Emitted;
1408        ArgVT = VA.getLocVT();
1409        break;
1410      }
1411      case CCValAssign::BCvt: {
1412        unsigned BC = FastEmit_r(ArgVT.getSimpleVT(),
1413                                 VA.getLocVT().getSimpleVT(),
1414                                 ISD::BIT_CONVERT, Arg, /*TODO: Kill=*/false);
1415        assert(BC != 0 && "Failed to emit a bitcast!");
1416        Arg = BC;
1417        ArgVT = VA.getLocVT();
1418        break;
1419      }
1420      default: llvm_unreachable("Unknown arg promotion!");
1421    }
1422
1423    // Now copy/store arg to correct locations.
1424    if (VA.isRegLoc() && !VA.needsCustom()) {
1425      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1426              VA.getLocReg())
1427      .addReg(Arg);
1428      RegArgs.push_back(VA.getLocReg());
1429    } else if (VA.needsCustom()) {
1430      // TODO: We need custom lowering for vector (v2f64) args.
1431      if (VA.getLocVT() != MVT::f64) return false;
1432
1433      CCValAssign &NextVA = ArgLocs[++i];
1434
1435      // TODO: Only handle register args for now.
1436      if(!(VA.isRegLoc() && NextVA.isRegLoc())) return false;
1437
1438      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1439                              TII.get(ARM::VMOVRRD), VA.getLocReg())
1440                      .addReg(NextVA.getLocReg(), RegState::Define)
1441                      .addReg(Arg));
1442      RegArgs.push_back(VA.getLocReg());
1443      RegArgs.push_back(NextVA.getLocReg());
1444    } else {
1445      assert(VA.isMemLoc());
1446      // Need to store on the stack.
1447      unsigned Base = ARM::SP;
1448      int Offset = VA.getLocMemOffset();
1449
1450      if (!ARMEmitStore(ArgVT, Arg, Base, Offset)) return false;
1451    }
1452  }
1453  return true;
1454}
1455
1456bool ARMFastISel::FinishCall(EVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
1457                             const Instruction *I, CallingConv::ID CC,
1458                             unsigned &NumBytes) {
1459  // Issue CALLSEQ_END
1460  unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
1461  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1462                          TII.get(AdjStackUp))
1463                  .addImm(NumBytes).addImm(0));
1464
1465  // Now the return value.
1466  if (RetVT.getSimpleVT().SimpleTy != MVT::isVoid) {
1467    SmallVector<CCValAssign, 16> RVLocs;
1468    CCState CCInfo(CC, false, TM, RVLocs, *Context);
1469    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true));
1470
1471    // Copy all of the result registers out of their specified physreg.
1472    if (RVLocs.size() == 2 && RetVT.getSimpleVT().SimpleTy == MVT::f64) {
1473      // For this move we copy into two registers and then move into the
1474      // double fp reg we want.
1475      EVT DestVT = RVLocs[0].getValVT();
1476      TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
1477      unsigned ResultReg = createResultReg(DstRC);
1478      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1479                              TII.get(ARM::VMOVDRR), ResultReg)
1480                      .addReg(RVLocs[0].getLocReg())
1481                      .addReg(RVLocs[1].getLocReg()));
1482
1483      UsedRegs.push_back(RVLocs[0].getLocReg());
1484      UsedRegs.push_back(RVLocs[1].getLocReg());
1485
1486      // Finally update the result.
1487      UpdateValueMap(I, ResultReg);
1488    } else {
1489      assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
1490      EVT CopyVT = RVLocs[0].getValVT();
1491      TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1492
1493      unsigned ResultReg = createResultReg(DstRC);
1494      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1495              ResultReg).addReg(RVLocs[0].getLocReg());
1496      UsedRegs.push_back(RVLocs[0].getLocReg());
1497
1498      // Finally update the result.
1499      UpdateValueMap(I, ResultReg);
1500    }
1501  }
1502
1503  return true;
1504}
1505
1506bool ARMFastISel::SelectRet(const Instruction *I) {
1507  const ReturnInst *Ret = cast<ReturnInst>(I);
1508  const Function &F = *I->getParent()->getParent();
1509
1510  if (!FuncInfo.CanLowerReturn)
1511    return false;
1512
1513  if (F.isVarArg())
1514    return false;
1515
1516  CallingConv::ID CC = F.getCallingConv();
1517  if (Ret->getNumOperands() > 0) {
1518    SmallVector<ISD::OutputArg, 4> Outs;
1519    GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
1520                  Outs, TLI);
1521
1522    // Analyze operands of the call, assigning locations to each operand.
1523    SmallVector<CCValAssign, 16> ValLocs;
1524    CCState CCInfo(CC, F.isVarArg(), TM, ValLocs, I->getContext());
1525    CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */));
1526
1527    const Value *RV = Ret->getOperand(0);
1528    unsigned Reg = getRegForValue(RV);
1529    if (Reg == 0)
1530      return false;
1531
1532    // Only handle a single return value for now.
1533    if (ValLocs.size() != 1)
1534      return false;
1535
1536    CCValAssign &VA = ValLocs[0];
1537
1538    // Don't bother handling odd stuff for now.
1539    if (VA.getLocInfo() != CCValAssign::Full)
1540      return false;
1541    // Only handle register returns for now.
1542    if (!VA.isRegLoc())
1543      return false;
1544    // TODO: For now, don't try to handle cases where getLocInfo()
1545    // says Full but the types don't match.
1546    if (VA.getValVT() != TLI.getValueType(RV->getType()))
1547      return false;
1548
1549    // Make the copy.
1550    unsigned SrcReg = Reg + VA.getValNo();
1551    unsigned DstReg = VA.getLocReg();
1552    const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
1553    // Avoid a cross-class copy. This is very unlikely.
1554    if (!SrcRC->contains(DstReg))
1555      return false;
1556    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1557            DstReg).addReg(SrcReg);
1558
1559    // Mark the register as live out of the function.
1560    MRI.addLiveOut(VA.getLocReg());
1561  }
1562
1563  unsigned RetOpc = isThumb ? ARM::tBX_RET : ARM::BX_RET;
1564  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1565                          TII.get(RetOpc)));
1566  return true;
1567}
1568
1569// A quick function that will emit a call for a named libcall in F with the
1570// vector of passed arguments for the Instruction in I. We can assume that we
1571// can emit a call for any libcall we can produce. This is an abridged version
1572// of the full call infrastructure since we won't need to worry about things
1573// like computed function pointers or strange arguments at call sites.
1574// TODO: Try to unify this and the normal call bits for ARM, then try to unify
1575// with X86.
1576bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
1577  CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
1578
1579  // Handle *simple* calls for now.
1580  const Type *RetTy = I->getType();
1581  EVT RetVT;
1582  if (RetTy->isVoidTy())
1583    RetVT = MVT::isVoid;
1584  else if (!isTypeLegal(RetTy, RetVT))
1585    return false;
1586
1587  // For now we're using BLX etc on the assumption that we have v5t ops.
1588  if (!Subtarget->hasV5TOps()) return false;
1589
1590  // Set up the argument vectors.
1591  SmallVector<Value*, 8> Args;
1592  SmallVector<unsigned, 8> ArgRegs;
1593  SmallVector<EVT, 8> ArgVTs;
1594  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1595  Args.reserve(I->getNumOperands());
1596  ArgRegs.reserve(I->getNumOperands());
1597  ArgVTs.reserve(I->getNumOperands());
1598  ArgFlags.reserve(I->getNumOperands());
1599  for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1600    Value *Op = I->getOperand(i);
1601    unsigned Arg = getRegForValue(Op);
1602    if (Arg == 0) return false;
1603
1604    const Type *ArgTy = Op->getType();
1605    EVT ArgVT;
1606    if (!isTypeLegal(ArgTy, ArgVT)) return false;
1607
1608    ISD::ArgFlagsTy Flags;
1609    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1610    Flags.setOrigAlign(OriginalAlignment);
1611
1612    Args.push_back(Op);
1613    ArgRegs.push_back(Arg);
1614    ArgVTs.push_back(ArgVT);
1615    ArgFlags.push_back(Flags);
1616  }
1617
1618  // Handle the arguments now that we've gotten them.
1619  SmallVector<unsigned, 4> RegArgs;
1620  unsigned NumBytes;
1621  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1622    return false;
1623
1624  // Issue the call, BLXr9 for darwin, BLX otherwise. This uses V5 ops.
1625  // TODO: Turn this into the table of arm call ops.
1626  MachineInstrBuilder MIB;
1627  unsigned CallOpc;
1628  if(isThumb)
1629    CallOpc = Subtarget->isTargetDarwin() ? ARM::tBLXi_r9 : ARM::tBLXi;
1630  else
1631    CallOpc = Subtarget->isTargetDarwin() ? ARM::BLr9 : ARM::BL;
1632  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
1633        .addExternalSymbol(TLI.getLibcallName(Call));
1634
1635  // Add implicit physical register uses to the call.
1636  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1637    MIB.addReg(RegArgs[i]);
1638
1639  // Finish off the call including any return values.
1640  SmallVector<unsigned, 4> UsedRegs;
1641  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1642
1643  // Set all unused physreg defs as dead.
1644  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1645
1646  return true;
1647}
1648
1649bool ARMFastISel::SelectCall(const Instruction *I) {
1650  const CallInst *CI = cast<CallInst>(I);
1651  const Value *Callee = CI->getCalledValue();
1652
1653  // Can't handle inline asm or worry about intrinsics yet.
1654  if (isa<InlineAsm>(Callee) || isa<IntrinsicInst>(CI)) return false;
1655
1656  // Only handle global variable Callees that are direct calls.
1657  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1658  if (!GV || Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel()))
1659    return false;
1660
1661  // Check the calling convention.
1662  ImmutableCallSite CS(CI);
1663  CallingConv::ID CC = CS.getCallingConv();
1664
1665  // TODO: Avoid some calling conventions?
1666
1667  // Let SDISel handle vararg functions.
1668  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1669  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1670  if (FTy->isVarArg())
1671    return false;
1672
1673  // Handle *simple* calls for now.
1674  const Type *RetTy = I->getType();
1675  EVT RetVT;
1676  if (RetTy->isVoidTy())
1677    RetVT = MVT::isVoid;
1678  else if (!isTypeLegal(RetTy, RetVT))
1679    return false;
1680
1681  // For now we're using BLX etc on the assumption that we have v5t ops.
1682  // TODO: Maybe?
1683  if (!Subtarget->hasV5TOps()) return false;
1684
1685  // Set up the argument vectors.
1686  SmallVector<Value*, 8> Args;
1687  SmallVector<unsigned, 8> ArgRegs;
1688  SmallVector<EVT, 8> ArgVTs;
1689  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1690  Args.reserve(CS.arg_size());
1691  ArgRegs.reserve(CS.arg_size());
1692  ArgVTs.reserve(CS.arg_size());
1693  ArgFlags.reserve(CS.arg_size());
1694  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1695       i != e; ++i) {
1696    unsigned Arg = getRegForValue(*i);
1697
1698    if (Arg == 0)
1699      return false;
1700    ISD::ArgFlagsTy Flags;
1701    unsigned AttrInd = i - CS.arg_begin() + 1;
1702    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1703      Flags.setSExt();
1704    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1705      Flags.setZExt();
1706
1707         // FIXME: Only handle *easy* calls for now.
1708    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1709        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1710        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1711        CS.paramHasAttr(AttrInd, Attribute::ByVal))
1712      return false;
1713
1714    const Type *ArgTy = (*i)->getType();
1715    EVT ArgVT;
1716    if (!isTypeLegal(ArgTy, ArgVT))
1717      return false;
1718    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1719    Flags.setOrigAlign(OriginalAlignment);
1720
1721    Args.push_back(*i);
1722    ArgRegs.push_back(Arg);
1723    ArgVTs.push_back(ArgVT);
1724    ArgFlags.push_back(Flags);
1725  }
1726
1727  // Handle the arguments now that we've gotten them.
1728  SmallVector<unsigned, 4> RegArgs;
1729  unsigned NumBytes;
1730  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1731    return false;
1732
1733  // Issue the call, BLXr9 for darwin, BLX otherwise. This uses V5 ops.
1734  // TODO: Turn this into the table of arm call ops.
1735  MachineInstrBuilder MIB;
1736  unsigned CallOpc;
1737  if(isThumb)
1738    CallOpc = Subtarget->isTargetDarwin() ? ARM::tBLXi_r9 : ARM::tBLXi;
1739  else
1740    CallOpc = Subtarget->isTargetDarwin() ? ARM::BLr9 : ARM::BL;
1741  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
1742              .addGlobalAddress(GV, 0, 0);
1743
1744  // Add implicit physical register uses to the call.
1745  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1746    MIB.addReg(RegArgs[i]);
1747
1748  // Finish off the call including any return values.
1749  SmallVector<unsigned, 4> UsedRegs;
1750  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1751
1752  // Set all unused physreg defs as dead.
1753  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1754
1755  return true;
1756
1757}
1758
1759// TODO: SoftFP support.
1760bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
1761  // No Thumb-1 for now.
1762  if (isThumb && !AFI->isThumb2Function()) return false;
1763
1764  switch (I->getOpcode()) {
1765    case Instruction::Load:
1766      return SelectLoad(I);
1767    case Instruction::Store:
1768      return SelectStore(I);
1769    case Instruction::Br:
1770      return SelectBranch(I);
1771    case Instruction::ICmp:
1772    case Instruction::FCmp:
1773      return SelectCmp(I);
1774    case Instruction::FPExt:
1775      return SelectFPExt(I);
1776    case Instruction::FPTrunc:
1777      return SelectFPTrunc(I);
1778    case Instruction::SIToFP:
1779      return SelectSIToFP(I);
1780    case Instruction::FPToSI:
1781      return SelectFPToSI(I);
1782    case Instruction::FAdd:
1783      return SelectBinaryOp(I, ISD::FADD);
1784    case Instruction::FSub:
1785      return SelectBinaryOp(I, ISD::FSUB);
1786    case Instruction::FMul:
1787      return SelectBinaryOp(I, ISD::FMUL);
1788    case Instruction::SDiv:
1789      return SelectSDiv(I);
1790    case Instruction::SRem:
1791      return SelectSRem(I);
1792    case Instruction::Call:
1793      return SelectCall(I);
1794    case Instruction::Select:
1795      return SelectSelect(I);
1796    case Instruction::Ret:
1797      return SelectRet(I);
1798    default: break;
1799  }
1800  return false;
1801}
1802
1803namespace llvm {
1804  llvm::FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) {
1805    // Completely untested on non-darwin.
1806    const TargetMachine &TM = funcInfo.MF->getTarget();
1807    const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
1808    if (Subtarget->isTargetDarwin() && !DisableARMFastISel)
1809      return new ARMFastISel(funcInfo);
1810    return 0;
1811  }
1812}
1813