ARMFastISel.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the ARM-specific support for the FastISel class. Some
11// of the target-specific code is generated by tablegen in the file
12// ARMGenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "ARM.h"
17#include "ARMBaseRegisterInfo.h"
18#include "ARMCallingConv.h"
19#include "ARMConstantPoolValue.h"
20#include "ARMISelLowering.h"
21#include "ARMMachineFunctionInfo.h"
22#include "ARMSubtarget.h"
23#include "MCTargetDesc/ARMAddressingModes.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/CodeGen/Analysis.h"
26#include "llvm/CodeGen/FastISel.h"
27#include "llvm/CodeGen/FunctionLoweringInfo.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineMemOperand.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/IR/CallSite.h"
35#include "llvm/IR/CallingConv.h"
36#include "llvm/IR/DataLayout.h"
37#include "llvm/IR/DerivedTypes.h"
38#include "llvm/IR/GetElementPtrTypeIterator.h"
39#include "llvm/IR/GlobalVariable.h"
40#include "llvm/IR/Instructions.h"
41#include "llvm/IR/IntrinsicInst.h"
42#include "llvm/IR/Module.h"
43#include "llvm/IR/Operator.h"
44#include "llvm/Support/CommandLine.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Target/TargetInstrInfo.h"
47#include "llvm/Target/TargetLowering.h"
48#include "llvm/Target/TargetMachine.h"
49#include "llvm/Target/TargetOptions.h"
50using namespace llvm;
51
52extern cl::opt<bool> EnableARMLongCalls;
53
54namespace {
55
56  // All possible address modes, plus some.
57  typedef struct Address {
58    enum {
59      RegBase,
60      FrameIndexBase
61    } BaseType;
62
63    union {
64      unsigned Reg;
65      int FI;
66    } Base;
67
68    int Offset;
69
70    // Innocuous defaults for our address.
71    Address()
72     : BaseType(RegBase), Offset(0) {
73       Base.Reg = 0;
74     }
75  } Address;
76
77class ARMFastISel final : public FastISel {
78
79  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
80  /// make the right decision when generating code for different targets.
81  const ARMSubtarget *Subtarget;
82  Module &M;
83  const TargetMachine &TM;
84  const TargetInstrInfo &TII;
85  const TargetLowering &TLI;
86  ARMFunctionInfo *AFI;
87
88  // Convenience variables to avoid some queries.
89  bool isThumb2;
90  LLVMContext *Context;
91
92  public:
93    explicit ARMFastISel(FunctionLoweringInfo &funcInfo,
94                         const TargetLibraryInfo *libInfo)
95    : FastISel(funcInfo, libInfo),
96      M(const_cast<Module&>(*funcInfo.Fn->getParent())),
97      TM(funcInfo.MF->getTarget()),
98      TII(*TM.getInstrInfo()),
99      TLI(*TM.getTargetLowering()) {
100      Subtarget = &TM.getSubtarget<ARMSubtarget>();
101      AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
102      isThumb2 = AFI->isThumbFunction();
103      Context = &funcInfo.Fn->getContext();
104    }
105
106    // Code from FastISel.cpp.
107  private:
108    unsigned FastEmitInst_r(unsigned MachineInstOpcode,
109                            const TargetRegisterClass *RC,
110                            unsigned Op0, bool Op0IsKill);
111    unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
112                             const TargetRegisterClass *RC,
113                             unsigned Op0, bool Op0IsKill,
114                             unsigned Op1, bool Op1IsKill);
115    unsigned FastEmitInst_rrr(unsigned MachineInstOpcode,
116                              const TargetRegisterClass *RC,
117                              unsigned Op0, bool Op0IsKill,
118                              unsigned Op1, bool Op1IsKill,
119                              unsigned Op2, bool Op2IsKill);
120    unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
121                             const TargetRegisterClass *RC,
122                             unsigned Op0, bool Op0IsKill,
123                             uint64_t Imm);
124    unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
125                              const TargetRegisterClass *RC,
126                              unsigned Op0, bool Op0IsKill,
127                              unsigned Op1, bool Op1IsKill,
128                              uint64_t Imm);
129    unsigned FastEmitInst_i(unsigned MachineInstOpcode,
130                            const TargetRegisterClass *RC,
131                            uint64_t Imm);
132
133    // Backend specific FastISel code.
134  private:
135    bool TargetSelectInstruction(const Instruction *I) override;
136    unsigned TargetMaterializeConstant(const Constant *C) override;
137    unsigned TargetMaterializeAlloca(const AllocaInst *AI) override;
138    bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
139                             const LoadInst *LI) override;
140    bool FastLowerArguments() override;
141  private:
142  #include "ARMGenFastISel.inc"
143
144    // Instruction selection routines.
145  private:
146    bool SelectLoad(const Instruction *I);
147    bool SelectStore(const Instruction *I);
148    bool SelectBranch(const Instruction *I);
149    bool SelectIndirectBr(const Instruction *I);
150    bool SelectCmp(const Instruction *I);
151    bool SelectFPExt(const Instruction *I);
152    bool SelectFPTrunc(const Instruction *I);
153    bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
154    bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
155    bool SelectIToFP(const Instruction *I, bool isSigned);
156    bool SelectFPToI(const Instruction *I, bool isSigned);
157    bool SelectDiv(const Instruction *I, bool isSigned);
158    bool SelectRem(const Instruction *I, bool isSigned);
159    bool SelectCall(const Instruction *I, const char *IntrMemName);
160    bool SelectIntrinsicCall(const IntrinsicInst &I);
161    bool SelectSelect(const Instruction *I);
162    bool SelectRet(const Instruction *I);
163    bool SelectTrunc(const Instruction *I);
164    bool SelectIntExt(const Instruction *I);
165    bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy);
166
167    // Utility routines.
168  private:
169    unsigned constrainOperandRegClass(const MCInstrDesc &II, unsigned OpNum,
170                                      unsigned Op);
171    bool isTypeLegal(Type *Ty, MVT &VT);
172    bool isLoadTypeLegal(Type *Ty, MVT &VT);
173    bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
174                    bool isZExt);
175    bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
176                     unsigned Alignment = 0, bool isZExt = true,
177                     bool allocReg = true);
178    bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
179                      unsigned Alignment = 0);
180    bool ARMComputeAddress(const Value *Obj, Address &Addr);
181    void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3);
182    bool ARMIsMemCpySmall(uint64_t Len);
183    bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
184                               unsigned Alignment);
185    unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
186    unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT);
187    unsigned ARMMaterializeInt(const Constant *C, MVT VT);
188    unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT);
189    unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg);
190    unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg);
191    unsigned ARMSelectCallOp(bool UseReg);
192    unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT);
193
194    // Call handling routines.
195  private:
196    CCAssignFn *CCAssignFnForCall(CallingConv::ID CC,
197                                  bool Return,
198                                  bool isVarArg);
199    bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
200                         SmallVectorImpl<unsigned> &ArgRegs,
201                         SmallVectorImpl<MVT> &ArgVTs,
202                         SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
203                         SmallVectorImpl<unsigned> &RegArgs,
204                         CallingConv::ID CC,
205                         unsigned &NumBytes,
206                         bool isVarArg);
207    unsigned getLibcallReg(const Twine &Name);
208    bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
209                    const Instruction *I, CallingConv::ID CC,
210                    unsigned &NumBytes, bool isVarArg);
211    bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
212
213    // OptionalDef handling routines.
214  private:
215    bool isARMNEONPred(const MachineInstr *MI);
216    bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
217    const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
218    void AddLoadStoreOperands(MVT VT, Address &Addr,
219                              const MachineInstrBuilder &MIB,
220                              unsigned Flags, bool useAM3);
221};
222
223} // end anonymous namespace
224
225#include "ARMGenCallingConv.inc"
226
227// DefinesOptionalPredicate - This is different from DefinesPredicate in that
228// we don't care about implicit defs here, just places we'll need to add a
229// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
230bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
231  if (!MI->hasOptionalDef())
232    return false;
233
234  // Look to see if our OptionalDef is defining CPSR or CCR.
235  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
236    const MachineOperand &MO = MI->getOperand(i);
237    if (!MO.isReg() || !MO.isDef()) continue;
238    if (MO.getReg() == ARM::CPSR)
239      *CPSR = true;
240  }
241  return true;
242}
243
244bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
245  const MCInstrDesc &MCID = MI->getDesc();
246
247  // If we're a thumb2 or not NEON function we'll be handled via isPredicable.
248  if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
249       AFI->isThumb2Function())
250    return MI->isPredicable();
251
252  for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
253    if (MCID.OpInfo[i].isPredicate())
254      return true;
255
256  return false;
257}
258
259// If the machine is predicable go ahead and add the predicate operands, if
260// it needs default CC operands add those.
261// TODO: If we want to support thumb1 then we'll need to deal with optional
262// CPSR defs that need to be added before the remaining operands. See s_cc_out
263// for descriptions why.
264const MachineInstrBuilder &
265ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
266  MachineInstr *MI = &*MIB;
267
268  // Do we use a predicate? or...
269  // Are we NEON in ARM mode and have a predicate operand? If so, I know
270  // we're not predicable but add it anyways.
271  if (isARMNEONPred(MI))
272    AddDefaultPred(MIB);
273
274  // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
275  // defines CPSR. All other OptionalDefines in ARM are the CCR register.
276  bool CPSR = false;
277  if (DefinesOptionalPredicate(MI, &CPSR)) {
278    if (CPSR)
279      AddDefaultT1CC(MIB);
280    else
281      AddDefaultCC(MIB);
282  }
283  return MIB;
284}
285
286unsigned ARMFastISel::constrainOperandRegClass(const MCInstrDesc &II,
287                                               unsigned Op, unsigned OpNum) {
288  if (TargetRegisterInfo::isVirtualRegister(Op)) {
289    const TargetRegisterClass *RegClass =
290        TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
291    if (!MRI.constrainRegClass(Op, RegClass)) {
292      // If it's not legal to COPY between the register classes, something
293      // has gone very wrong before we got here.
294      unsigned NewOp = createResultReg(RegClass);
295      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
296                              TII.get(TargetOpcode::COPY), NewOp).addReg(Op));
297      return NewOp;
298    }
299  }
300  return Op;
301}
302
303unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
304                                     const TargetRegisterClass *RC,
305                                     unsigned Op0, bool Op0IsKill) {
306  unsigned ResultReg = createResultReg(RC);
307  const MCInstrDesc &II = TII.get(MachineInstOpcode);
308
309  // Make sure the input operand is sufficiently constrained to be legal
310  // for this instruction.
311  Op0 = constrainOperandRegClass(II, Op0, 1);
312  if (II.getNumDefs() >= 1) {
313    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
314                            ResultReg).addReg(Op0, Op0IsKill * RegState::Kill));
315  } else {
316    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
317                   .addReg(Op0, Op0IsKill * RegState::Kill));
318    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
319                   TII.get(TargetOpcode::COPY), ResultReg)
320                   .addReg(II.ImplicitDefs[0]));
321  }
322  return ResultReg;
323}
324
325unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
326                                      const TargetRegisterClass *RC,
327                                      unsigned Op0, bool Op0IsKill,
328                                      unsigned Op1, bool Op1IsKill) {
329  unsigned ResultReg = createResultReg(RC);
330  const MCInstrDesc &II = TII.get(MachineInstOpcode);
331
332  // Make sure the input operands are sufficiently constrained to be legal
333  // for this instruction.
334  Op0 = constrainOperandRegClass(II, Op0, 1);
335  Op1 = constrainOperandRegClass(II, Op1, 2);
336
337  if (II.getNumDefs() >= 1) {
338    AddOptionalDefs(
339        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
340            .addReg(Op0, Op0IsKill * RegState::Kill)
341            .addReg(Op1, Op1IsKill * RegState::Kill));
342  } else {
343    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
344                   .addReg(Op0, Op0IsKill * RegState::Kill)
345                   .addReg(Op1, Op1IsKill * RegState::Kill));
346    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
347                           TII.get(TargetOpcode::COPY), ResultReg)
348                   .addReg(II.ImplicitDefs[0]));
349  }
350  return ResultReg;
351}
352
353unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
354                                       const TargetRegisterClass *RC,
355                                       unsigned Op0, bool Op0IsKill,
356                                       unsigned Op1, bool Op1IsKill,
357                                       unsigned Op2, bool Op2IsKill) {
358  unsigned ResultReg = createResultReg(RC);
359  const MCInstrDesc &II = TII.get(MachineInstOpcode);
360
361  // Make sure the input operands are sufficiently constrained to be legal
362  // for this instruction.
363  Op0 = constrainOperandRegClass(II, Op0, 1);
364  Op1 = constrainOperandRegClass(II, Op1, 2);
365  Op2 = constrainOperandRegClass(II, Op1, 3);
366
367  if (II.getNumDefs() >= 1) {
368    AddOptionalDefs(
369        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
370            .addReg(Op0, Op0IsKill * RegState::Kill)
371            .addReg(Op1, Op1IsKill * RegState::Kill)
372            .addReg(Op2, Op2IsKill * RegState::Kill));
373  } else {
374    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
375                   .addReg(Op0, Op0IsKill * RegState::Kill)
376                   .addReg(Op1, Op1IsKill * RegState::Kill)
377                   .addReg(Op2, Op2IsKill * RegState::Kill));
378    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
379                           TII.get(TargetOpcode::COPY), ResultReg)
380                   .addReg(II.ImplicitDefs[0]));
381  }
382  return ResultReg;
383}
384
385unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
386                                      const TargetRegisterClass *RC,
387                                      unsigned Op0, bool Op0IsKill,
388                                      uint64_t Imm) {
389  unsigned ResultReg = createResultReg(RC);
390  const MCInstrDesc &II = TII.get(MachineInstOpcode);
391
392  // Make sure the input operand is sufficiently constrained to be legal
393  // for this instruction.
394  Op0 = constrainOperandRegClass(II, Op0, 1);
395  if (II.getNumDefs() >= 1) {
396    AddOptionalDefs(
397        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
398            .addReg(Op0, Op0IsKill * RegState::Kill)
399            .addImm(Imm));
400  } else {
401    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
402                   .addReg(Op0, Op0IsKill * RegState::Kill)
403                   .addImm(Imm));
404    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
405                           TII.get(TargetOpcode::COPY), ResultReg)
406                   .addReg(II.ImplicitDefs[0]));
407  }
408  return ResultReg;
409}
410
411unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
412                                       const TargetRegisterClass *RC,
413                                       unsigned Op0, bool Op0IsKill,
414                                       unsigned Op1, bool Op1IsKill,
415                                       uint64_t Imm) {
416  unsigned ResultReg = createResultReg(RC);
417  const MCInstrDesc &II = TII.get(MachineInstOpcode);
418
419  // Make sure the input operands are sufficiently constrained to be legal
420  // for this instruction.
421  Op0 = constrainOperandRegClass(II, Op0, 1);
422  Op1 = constrainOperandRegClass(II, Op1, 2);
423  if (II.getNumDefs() >= 1) {
424    AddOptionalDefs(
425        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
426            .addReg(Op0, Op0IsKill * RegState::Kill)
427            .addReg(Op1, Op1IsKill * RegState::Kill)
428            .addImm(Imm));
429  } else {
430    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
431                   .addReg(Op0, Op0IsKill * RegState::Kill)
432                   .addReg(Op1, Op1IsKill * RegState::Kill)
433                   .addImm(Imm));
434    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
435                           TII.get(TargetOpcode::COPY), ResultReg)
436                   .addReg(II.ImplicitDefs[0]));
437  }
438  return ResultReg;
439}
440
441unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
442                                     const TargetRegisterClass *RC,
443                                     uint64_t Imm) {
444  unsigned ResultReg = createResultReg(RC);
445  const MCInstrDesc &II = TII.get(MachineInstOpcode);
446
447  if (II.getNumDefs() >= 1) {
448    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
449                            ResultReg).addImm(Imm));
450  } else {
451    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
452                   .addImm(Imm));
453    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
454                           TII.get(TargetOpcode::COPY), ResultReg)
455                   .addReg(II.ImplicitDefs[0]));
456  }
457  return ResultReg;
458}
459
460// TODO: Don't worry about 64-bit now, but when this is fixed remove the
461// checks from the various callers.
462unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) {
463  if (VT == MVT::f64) return 0;
464
465  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
466  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
467                          TII.get(ARM::VMOVSR), MoveReg)
468                  .addReg(SrcReg));
469  return MoveReg;
470}
471
472unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) {
473  if (VT == MVT::i64) return 0;
474
475  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
476  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
477                          TII.get(ARM::VMOVRS), MoveReg)
478                  .addReg(SrcReg));
479  return MoveReg;
480}
481
482// For double width floating point we need to materialize two constants
483// (the high and the low) into integer registers then use a move to get
484// the combined constant into an FP reg.
485unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) {
486  const APFloat Val = CFP->getValueAPF();
487  bool is64bit = VT == MVT::f64;
488
489  // This checks to see if we can use VFP3 instructions to materialize
490  // a constant, otherwise we have to go through the constant pool.
491  if (TLI.isFPImmLegal(Val, VT)) {
492    int Imm;
493    unsigned Opc;
494    if (is64bit) {
495      Imm = ARM_AM::getFP64Imm(Val);
496      Opc = ARM::FCONSTD;
497    } else {
498      Imm = ARM_AM::getFP32Imm(Val);
499      Opc = ARM::FCONSTS;
500    }
501    unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
502    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
503                            TII.get(Opc), DestReg).addImm(Imm));
504    return DestReg;
505  }
506
507  // Require VFP2 for loading fp constants.
508  if (!Subtarget->hasVFP2()) return false;
509
510  // MachineConstantPool wants an explicit alignment.
511  unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
512  if (Align == 0) {
513    // TODO: Figure out if this is correct.
514    Align = DL.getTypeAllocSize(CFP->getType());
515  }
516  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
517  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
518  unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
519
520  // The extra reg is for addrmode5.
521  AddOptionalDefs(
522      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
523          .addConstantPoolIndex(Idx)
524          .addReg(0));
525  return DestReg;
526}
527
528unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
529
530  if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
531    return false;
532
533  // If we can do this in a single instruction without a constant pool entry
534  // do so now.
535  const ConstantInt *CI = cast<ConstantInt>(C);
536  if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
537    unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
538    const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
539      &ARM::GPRRegClass;
540    unsigned ImmReg = createResultReg(RC);
541    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
542                            TII.get(Opc), ImmReg)
543                    .addImm(CI->getZExtValue()));
544    return ImmReg;
545  }
546
547  // Use MVN to emit negative constants.
548  if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
549    unsigned Imm = (unsigned)~(CI->getSExtValue());
550    bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
551      (ARM_AM::getSOImmVal(Imm) != -1);
552    if (UseImm) {
553      unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
554      unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32));
555      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
556                              TII.get(Opc), ImmReg)
557                      .addImm(Imm));
558      return ImmReg;
559    }
560  }
561
562  // Load from constant pool.  For now 32-bit only.
563  if (VT != MVT::i32)
564    return false;
565
566  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
567
568  // MachineConstantPool wants an explicit alignment.
569  unsigned Align = DL.getPrefTypeAlignment(C->getType());
570  if (Align == 0) {
571    // TODO: Figure out if this is correct.
572    Align = DL.getTypeAllocSize(C->getType());
573  }
574  unsigned Idx = MCP.getConstantPoolIndex(C, Align);
575
576  if (isThumb2)
577    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
578                            TII.get(ARM::t2LDRpci), DestReg)
579                    .addConstantPoolIndex(Idx));
580  else {
581    // The extra immediate is for addrmode2.
582    DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0);
583    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
584                            TII.get(ARM::LDRcp), DestReg)
585                    .addConstantPoolIndex(Idx)
586                    .addImm(0));
587  }
588
589  return DestReg;
590}
591
592unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) {
593  // For now 32-bit only.
594  if (VT != MVT::i32) return 0;
595
596  Reloc::Model RelocM = TM.getRelocationModel();
597  bool IsIndirect = Subtarget->GVIsIndirectSymbol(GV, RelocM);
598  const TargetRegisterClass *RC = isThumb2 ?
599    (const TargetRegisterClass*)&ARM::rGPRRegClass :
600    (const TargetRegisterClass*)&ARM::GPRRegClass;
601  unsigned DestReg = createResultReg(RC);
602
603  // FastISel TLS support on non-MachO is broken, punt to SelectionDAG.
604  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
605  bool IsThreadLocal = GVar && GVar->isThreadLocal();
606  if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0;
607
608  // Use movw+movt when possible, it avoids constant pool entries.
609  // Non-darwin targets only support static movt relocations in FastISel.
610  if (Subtarget->useMovt() &&
611      (Subtarget->isTargetMachO() || RelocM == Reloc::Static)) {
612    unsigned Opc;
613    unsigned char TF = 0;
614    if (Subtarget->isTargetMachO())
615      TF = ARMII::MO_NONLAZY;
616
617    switch (RelocM) {
618    case Reloc::PIC_:
619      Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
620      break;
621    default:
622      Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
623      break;
624    }
625    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
626                            TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF));
627  } else {
628    // MachineConstantPool wants an explicit alignment.
629    unsigned Align = DL.getPrefTypeAlignment(GV->getType());
630    if (Align == 0) {
631      // TODO: Figure out if this is correct.
632      Align = DL.getTypeAllocSize(GV->getType());
633    }
634
635    if (Subtarget->isTargetELF() && RelocM == Reloc::PIC_)
636      return ARMLowerPICELF(GV, Align, VT);
637
638    // Grab index.
639    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 :
640      (Subtarget->isThumb() ? 4 : 8);
641    unsigned Id = AFI->createPICLabelUId();
642    ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
643                                                                ARMCP::CPValue,
644                                                                PCAdj);
645    unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
646
647    // Load value.
648    MachineInstrBuilder MIB;
649    if (isThumb2) {
650      unsigned Opc = (RelocM!=Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
651      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
652                    DestReg).addConstantPoolIndex(Idx);
653      if (RelocM == Reloc::PIC_)
654        MIB.addImm(Id);
655      AddOptionalDefs(MIB);
656    } else {
657      // The extra immediate is for addrmode2.
658      DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0);
659      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
660                    TII.get(ARM::LDRcp), DestReg)
661                .addConstantPoolIndex(Idx)
662                .addImm(0);
663      AddOptionalDefs(MIB);
664
665      if (RelocM == Reloc::PIC_) {
666        unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD;
667        unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
668
669        MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
670                                          DbgLoc, TII.get(Opc), NewDestReg)
671                                  .addReg(DestReg)
672                                  .addImm(Id);
673        AddOptionalDefs(MIB);
674        return NewDestReg;
675      }
676    }
677  }
678
679  if (IsIndirect) {
680    MachineInstrBuilder MIB;
681    unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
682    if (isThumb2)
683      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
684                    TII.get(ARM::t2LDRi12), NewDestReg)
685            .addReg(DestReg)
686            .addImm(0);
687    else
688      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
689                    TII.get(ARM::LDRi12), NewDestReg)
690                .addReg(DestReg)
691                .addImm(0);
692    DestReg = NewDestReg;
693    AddOptionalDefs(MIB);
694  }
695
696  return DestReg;
697}
698
699unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
700  EVT CEVT = TLI.getValueType(C->getType(), true);
701
702  // Only handle simple types.
703  if (!CEVT.isSimple()) return 0;
704  MVT VT = CEVT.getSimpleVT();
705
706  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
707    return ARMMaterializeFP(CFP, VT);
708  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
709    return ARMMaterializeGV(GV, VT);
710  else if (isa<ConstantInt>(C))
711    return ARMMaterializeInt(C, VT);
712
713  return 0;
714}
715
716// TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
717
718unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
719  // Don't handle dynamic allocas.
720  if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
721
722  MVT VT;
723  if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
724
725  DenseMap<const AllocaInst*, int>::iterator SI =
726    FuncInfo.StaticAllocaMap.find(AI);
727
728  // This will get lowered later into the correct offsets and registers
729  // via rewriteXFrameIndex.
730  if (SI != FuncInfo.StaticAllocaMap.end()) {
731    unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
732    const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
733    unsigned ResultReg = createResultReg(RC);
734    ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0);
735
736    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
737                            TII.get(Opc), ResultReg)
738                            .addFrameIndex(SI->second)
739                            .addImm(0));
740    return ResultReg;
741  }
742
743  return 0;
744}
745
746bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
747  EVT evt = TLI.getValueType(Ty, true);
748
749  // Only handle simple types.
750  if (evt == MVT::Other || !evt.isSimple()) return false;
751  VT = evt.getSimpleVT();
752
753  // Handle all legal types, i.e. a register that will directly hold this
754  // value.
755  return TLI.isTypeLegal(VT);
756}
757
758bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
759  if (isTypeLegal(Ty, VT)) return true;
760
761  // If this is a type than can be sign or zero-extended to a basic operation
762  // go ahead and accept it now.
763  if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
764    return true;
765
766  return false;
767}
768
769// Computes the address to get to an object.
770bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
771  // Some boilerplate from the X86 FastISel.
772  const User *U = NULL;
773  unsigned Opcode = Instruction::UserOp1;
774  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
775    // Don't walk into other basic blocks unless the object is an alloca from
776    // another block, otherwise it may not have a virtual register assigned.
777    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
778        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
779      Opcode = I->getOpcode();
780      U = I;
781    }
782  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
783    Opcode = C->getOpcode();
784    U = C;
785  }
786
787  if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
788    if (Ty->getAddressSpace() > 255)
789      // Fast instruction selection doesn't support the special
790      // address spaces.
791      return false;
792
793  switch (Opcode) {
794    default:
795    break;
796    case Instruction::BitCast:
797      // Look through bitcasts.
798      return ARMComputeAddress(U->getOperand(0), Addr);
799    case Instruction::IntToPtr:
800      // Look past no-op inttoptrs.
801      if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
802        return ARMComputeAddress(U->getOperand(0), Addr);
803      break;
804    case Instruction::PtrToInt:
805      // Look past no-op ptrtoints.
806      if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
807        return ARMComputeAddress(U->getOperand(0), Addr);
808      break;
809    case Instruction::GetElementPtr: {
810      Address SavedAddr = Addr;
811      int TmpOffset = Addr.Offset;
812
813      // Iterate through the GEP folding the constants into offsets where
814      // we can.
815      gep_type_iterator GTI = gep_type_begin(U);
816      for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
817           i != e; ++i, ++GTI) {
818        const Value *Op = *i;
819        if (StructType *STy = dyn_cast<StructType>(*GTI)) {
820          const StructLayout *SL = DL.getStructLayout(STy);
821          unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
822          TmpOffset += SL->getElementOffset(Idx);
823        } else {
824          uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
825          for (;;) {
826            if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
827              // Constant-offset addressing.
828              TmpOffset += CI->getSExtValue() * S;
829              break;
830            }
831            if (canFoldAddIntoGEP(U, Op)) {
832              // A compatible add with a constant operand. Fold the constant.
833              ConstantInt *CI =
834              cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
835              TmpOffset += CI->getSExtValue() * S;
836              // Iterate on the other operand.
837              Op = cast<AddOperator>(Op)->getOperand(0);
838              continue;
839            }
840            // Unsupported
841            goto unsupported_gep;
842          }
843        }
844      }
845
846      // Try to grab the base operand now.
847      Addr.Offset = TmpOffset;
848      if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
849
850      // We failed, restore everything and try the other options.
851      Addr = SavedAddr;
852
853      unsupported_gep:
854      break;
855    }
856    case Instruction::Alloca: {
857      const AllocaInst *AI = cast<AllocaInst>(Obj);
858      DenseMap<const AllocaInst*, int>::iterator SI =
859        FuncInfo.StaticAllocaMap.find(AI);
860      if (SI != FuncInfo.StaticAllocaMap.end()) {
861        Addr.BaseType = Address::FrameIndexBase;
862        Addr.Base.FI = SI->second;
863        return true;
864      }
865      break;
866    }
867  }
868
869  // Try to get this in a register if nothing else has worked.
870  if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
871  return Addr.Base.Reg != 0;
872}
873
874void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) {
875  bool needsLowering = false;
876  switch (VT.SimpleTy) {
877    default: llvm_unreachable("Unhandled load/store type!");
878    case MVT::i1:
879    case MVT::i8:
880    case MVT::i16:
881    case MVT::i32:
882      if (!useAM3) {
883        // Integer loads/stores handle 12-bit offsets.
884        needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
885        // Handle negative offsets.
886        if (needsLowering && isThumb2)
887          needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
888                            Addr.Offset > -256);
889      } else {
890        // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
891        needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
892      }
893      break;
894    case MVT::f32:
895    case MVT::f64:
896      // Floating point operands handle 8-bit offsets.
897      needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
898      break;
899  }
900
901  // If this is a stack pointer and the offset needs to be simplified then
902  // put the alloca address into a register, set the base type back to
903  // register and continue. This should almost never happen.
904  if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
905    const TargetRegisterClass *RC = isThumb2 ?
906      (const TargetRegisterClass*)&ARM::tGPRRegClass :
907      (const TargetRegisterClass*)&ARM::GPRRegClass;
908    unsigned ResultReg = createResultReg(RC);
909    unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
910    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
911                            TII.get(Opc), ResultReg)
912                            .addFrameIndex(Addr.Base.FI)
913                            .addImm(0));
914    Addr.Base.Reg = ResultReg;
915    Addr.BaseType = Address::RegBase;
916  }
917
918  // Since the offset is too large for the load/store instruction
919  // get the reg+offset into a register.
920  if (needsLowering) {
921    Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
922                                 /*Op0IsKill*/false, Addr.Offset, MVT::i32);
923    Addr.Offset = 0;
924  }
925}
926
927void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr,
928                                       const MachineInstrBuilder &MIB,
929                                       unsigned Flags, bool useAM3) {
930  // addrmode5 output depends on the selection dag addressing dividing the
931  // offset by 4 that it then later multiplies. Do this here as well.
932  if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64)
933    Addr.Offset /= 4;
934
935  // Frame base works a bit differently. Handle it separately.
936  if (Addr.BaseType == Address::FrameIndexBase) {
937    int FI = Addr.Base.FI;
938    int Offset = Addr.Offset;
939    MachineMemOperand *MMO =
940          FuncInfo.MF->getMachineMemOperand(
941                                  MachinePointerInfo::getFixedStack(FI, Offset),
942                                  Flags,
943                                  MFI.getObjectSize(FI),
944                                  MFI.getObjectAlignment(FI));
945    // Now add the rest of the operands.
946    MIB.addFrameIndex(FI);
947
948    // ARM halfword load/stores and signed byte loads need an additional
949    // operand.
950    if (useAM3) {
951      signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
952      MIB.addReg(0);
953      MIB.addImm(Imm);
954    } else {
955      MIB.addImm(Addr.Offset);
956    }
957    MIB.addMemOperand(MMO);
958  } else {
959    // Now add the rest of the operands.
960    MIB.addReg(Addr.Base.Reg);
961
962    // ARM halfword load/stores and signed byte loads need an additional
963    // operand.
964    if (useAM3) {
965      signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
966      MIB.addReg(0);
967      MIB.addImm(Imm);
968    } else {
969      MIB.addImm(Addr.Offset);
970    }
971  }
972  AddOptionalDefs(MIB);
973}
974
975bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
976                              unsigned Alignment, bool isZExt, bool allocReg) {
977  unsigned Opc;
978  bool useAM3 = false;
979  bool needVMOV = false;
980  const TargetRegisterClass *RC;
981  switch (VT.SimpleTy) {
982    // This is mostly going to be Neon/vector support.
983    default: return false;
984    case MVT::i1:
985    case MVT::i8:
986      if (isThumb2) {
987        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
988          Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
989        else
990          Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
991      } else {
992        if (isZExt) {
993          Opc = ARM::LDRBi12;
994        } else {
995          Opc = ARM::LDRSB;
996          useAM3 = true;
997        }
998      }
999      RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
1000      break;
1001    case MVT::i16:
1002      if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
1003        return false;
1004
1005      if (isThumb2) {
1006        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1007          Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
1008        else
1009          Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
1010      } else {
1011        Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
1012        useAM3 = true;
1013      }
1014      RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
1015      break;
1016    case MVT::i32:
1017      if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
1018        return false;
1019
1020      if (isThumb2) {
1021        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1022          Opc = ARM::t2LDRi8;
1023        else
1024          Opc = ARM::t2LDRi12;
1025      } else {
1026        Opc = ARM::LDRi12;
1027      }
1028      RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
1029      break;
1030    case MVT::f32:
1031      if (!Subtarget->hasVFP2()) return false;
1032      // Unaligned loads need special handling. Floats require word-alignment.
1033      if (Alignment && Alignment < 4) {
1034        needVMOV = true;
1035        VT = MVT::i32;
1036        Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
1037        RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
1038      } else {
1039        Opc = ARM::VLDRS;
1040        RC = TLI.getRegClassFor(VT);
1041      }
1042      break;
1043    case MVT::f64:
1044      if (!Subtarget->hasVFP2()) return false;
1045      // FIXME: Unaligned loads need special handling.  Doublewords require
1046      // word-alignment.
1047      if (Alignment && Alignment < 4)
1048        return false;
1049
1050      Opc = ARM::VLDRD;
1051      RC = TLI.getRegClassFor(VT);
1052      break;
1053  }
1054  // Simplify this down to something we can handle.
1055  ARMSimplifyAddress(Addr, VT, useAM3);
1056
1057  // Create the base instruction, then add the operands.
1058  if (allocReg)
1059    ResultReg = createResultReg(RC);
1060  assert (ResultReg > 255 && "Expected an allocated virtual register.");
1061  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1062                                    TII.get(Opc), ResultReg);
1063  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
1064
1065  // If we had an unaligned load of a float we've converted it to an regular
1066  // load.  Now we must move from the GRP to the FP register.
1067  if (needVMOV) {
1068    unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1069    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1070                            TII.get(ARM::VMOVSR), MoveReg)
1071                    .addReg(ResultReg));
1072    ResultReg = MoveReg;
1073  }
1074  return true;
1075}
1076
1077bool ARMFastISel::SelectLoad(const Instruction *I) {
1078  // Atomic loads need special handling.
1079  if (cast<LoadInst>(I)->isAtomic())
1080    return false;
1081
1082  // Verify we have a legal type before going any further.
1083  MVT VT;
1084  if (!isLoadTypeLegal(I->getType(), VT))
1085    return false;
1086
1087  // See if we can handle this address.
1088  Address Addr;
1089  if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
1090
1091  unsigned ResultReg;
1092  if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
1093    return false;
1094  UpdateValueMap(I, ResultReg);
1095  return true;
1096}
1097
1098bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
1099                               unsigned Alignment) {
1100  unsigned StrOpc;
1101  bool useAM3 = false;
1102  switch (VT.SimpleTy) {
1103    // This is mostly going to be Neon/vector support.
1104    default: return false;
1105    case MVT::i1: {
1106      unsigned Res = createResultReg(isThumb2 ?
1107        (const TargetRegisterClass*)&ARM::tGPRRegClass :
1108        (const TargetRegisterClass*)&ARM::GPRRegClass);
1109      unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
1110      SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1);
1111      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1112                              TII.get(Opc), Res)
1113                      .addReg(SrcReg).addImm(1));
1114      SrcReg = Res;
1115    } // Fallthrough here.
1116    case MVT::i8:
1117      if (isThumb2) {
1118        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1119          StrOpc = ARM::t2STRBi8;
1120        else
1121          StrOpc = ARM::t2STRBi12;
1122      } else {
1123        StrOpc = ARM::STRBi12;
1124      }
1125      break;
1126    case MVT::i16:
1127      if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
1128        return false;
1129
1130      if (isThumb2) {
1131        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1132          StrOpc = ARM::t2STRHi8;
1133        else
1134          StrOpc = ARM::t2STRHi12;
1135      } else {
1136        StrOpc = ARM::STRH;
1137        useAM3 = true;
1138      }
1139      break;
1140    case MVT::i32:
1141      if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
1142        return false;
1143
1144      if (isThumb2) {
1145        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1146          StrOpc = ARM::t2STRi8;
1147        else
1148          StrOpc = ARM::t2STRi12;
1149      } else {
1150        StrOpc = ARM::STRi12;
1151      }
1152      break;
1153    case MVT::f32:
1154      if (!Subtarget->hasVFP2()) return false;
1155      // Unaligned stores need special handling. Floats require word-alignment.
1156      if (Alignment && Alignment < 4) {
1157        unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1158        AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1159                                TII.get(ARM::VMOVRS), MoveReg)
1160                        .addReg(SrcReg));
1161        SrcReg = MoveReg;
1162        VT = MVT::i32;
1163        StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
1164      } else {
1165        StrOpc = ARM::VSTRS;
1166      }
1167      break;
1168    case MVT::f64:
1169      if (!Subtarget->hasVFP2()) return false;
1170      // FIXME: Unaligned stores need special handling.  Doublewords require
1171      // word-alignment.
1172      if (Alignment && Alignment < 4)
1173          return false;
1174
1175      StrOpc = ARM::VSTRD;
1176      break;
1177  }
1178  // Simplify this down to something we can handle.
1179  ARMSimplifyAddress(Addr, VT, useAM3);
1180
1181  // Create the base instruction, then add the operands.
1182  SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0);
1183  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1184                                    TII.get(StrOpc))
1185                            .addReg(SrcReg);
1186  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
1187  return true;
1188}
1189
1190bool ARMFastISel::SelectStore(const Instruction *I) {
1191  Value *Op0 = I->getOperand(0);
1192  unsigned SrcReg = 0;
1193
1194  // Atomic stores need special handling.
1195  if (cast<StoreInst>(I)->isAtomic())
1196    return false;
1197
1198  // Verify we have a legal type before going any further.
1199  MVT VT;
1200  if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1201    return false;
1202
1203  // Get the value to be stored into a register.
1204  SrcReg = getRegForValue(Op0);
1205  if (SrcReg == 0) return false;
1206
1207  // See if we can handle this address.
1208  Address Addr;
1209  if (!ARMComputeAddress(I->getOperand(1), Addr))
1210    return false;
1211
1212  if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
1213    return false;
1214  return true;
1215}
1216
1217static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1218  switch (Pred) {
1219    // Needs two compares...
1220    case CmpInst::FCMP_ONE:
1221    case CmpInst::FCMP_UEQ:
1222    default:
1223      // AL is our "false" for now. The other two need more compares.
1224      return ARMCC::AL;
1225    case CmpInst::ICMP_EQ:
1226    case CmpInst::FCMP_OEQ:
1227      return ARMCC::EQ;
1228    case CmpInst::ICMP_SGT:
1229    case CmpInst::FCMP_OGT:
1230      return ARMCC::GT;
1231    case CmpInst::ICMP_SGE:
1232    case CmpInst::FCMP_OGE:
1233      return ARMCC::GE;
1234    case CmpInst::ICMP_UGT:
1235    case CmpInst::FCMP_UGT:
1236      return ARMCC::HI;
1237    case CmpInst::FCMP_OLT:
1238      return ARMCC::MI;
1239    case CmpInst::ICMP_ULE:
1240    case CmpInst::FCMP_OLE:
1241      return ARMCC::LS;
1242    case CmpInst::FCMP_ORD:
1243      return ARMCC::VC;
1244    case CmpInst::FCMP_UNO:
1245      return ARMCC::VS;
1246    case CmpInst::FCMP_UGE:
1247      return ARMCC::PL;
1248    case CmpInst::ICMP_SLT:
1249    case CmpInst::FCMP_ULT:
1250      return ARMCC::LT;
1251    case CmpInst::ICMP_SLE:
1252    case CmpInst::FCMP_ULE:
1253      return ARMCC::LE;
1254    case CmpInst::FCMP_UNE:
1255    case CmpInst::ICMP_NE:
1256      return ARMCC::NE;
1257    case CmpInst::ICMP_UGE:
1258      return ARMCC::HS;
1259    case CmpInst::ICMP_ULT:
1260      return ARMCC::LO;
1261  }
1262}
1263
1264bool ARMFastISel::SelectBranch(const Instruction *I) {
1265  const BranchInst *BI = cast<BranchInst>(I);
1266  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1267  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1268
1269  // Simple branch support.
1270
1271  // If we can, avoid recomputing the compare - redoing it could lead to wonky
1272  // behavior.
1273  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1274    if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1275
1276      // Get the compare predicate.
1277      // Try to take advantage of fallthrough opportunities.
1278      CmpInst::Predicate Predicate = CI->getPredicate();
1279      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1280        std::swap(TBB, FBB);
1281        Predicate = CmpInst::getInversePredicate(Predicate);
1282      }
1283
1284      ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1285
1286      // We may not handle every CC for now.
1287      if (ARMPred == ARMCC::AL) return false;
1288
1289      // Emit the compare.
1290      if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1291        return false;
1292
1293      unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1294      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1295      .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1296      FastEmitBranch(FBB, DbgLoc);
1297      FuncInfo.MBB->addSuccessor(TBB);
1298      return true;
1299    }
1300  } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1301    MVT SourceVT;
1302    if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1303        (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1304      unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1305      unsigned OpReg = getRegForValue(TI->getOperand(0));
1306      OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0);
1307      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1308                              TII.get(TstOpc))
1309                      .addReg(OpReg).addImm(1));
1310
1311      unsigned CCMode = ARMCC::NE;
1312      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1313        std::swap(TBB, FBB);
1314        CCMode = ARMCC::EQ;
1315      }
1316
1317      unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1318      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1319      .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1320
1321      FastEmitBranch(FBB, DbgLoc);
1322      FuncInfo.MBB->addSuccessor(TBB);
1323      return true;
1324    }
1325  } else if (const ConstantInt *CI =
1326             dyn_cast<ConstantInt>(BI->getCondition())) {
1327    uint64_t Imm = CI->getZExtValue();
1328    MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1329    FastEmitBranch(Target, DbgLoc);
1330    return true;
1331  }
1332
1333  unsigned CmpReg = getRegForValue(BI->getCondition());
1334  if (CmpReg == 0) return false;
1335
1336  // We've been divorced from our compare!  Our block was split, and
1337  // now our compare lives in a predecessor block.  We musn't
1338  // re-compare here, as the children of the compare aren't guaranteed
1339  // live across the block boundary (we *could* check for this).
1340  // Regardless, the compare has been done in the predecessor block,
1341  // and it left a value for us in a virtual register.  Ergo, we test
1342  // the one-bit value left in the virtual register.
1343  unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1344  CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0);
1345  AddOptionalDefs(
1346      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
1347          .addReg(CmpReg)
1348          .addImm(1));
1349
1350  unsigned CCMode = ARMCC::NE;
1351  if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1352    std::swap(TBB, FBB);
1353    CCMode = ARMCC::EQ;
1354  }
1355
1356  unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1357  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1358                  .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1359  FastEmitBranch(FBB, DbgLoc);
1360  FuncInfo.MBB->addSuccessor(TBB);
1361  return true;
1362}
1363
1364bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
1365  unsigned AddrReg = getRegForValue(I->getOperand(0));
1366  if (AddrReg == 0) return false;
1367
1368  unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
1369  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1370                          TII.get(Opc)).addReg(AddrReg));
1371
1372  const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1373  for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i)
1374    FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]);
1375
1376  return true;
1377}
1378
1379bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1380                             bool isZExt) {
1381  Type *Ty = Src1Value->getType();
1382  EVT SrcEVT = TLI.getValueType(Ty, true);
1383  if (!SrcEVT.isSimple()) return false;
1384  MVT SrcVT = SrcEVT.getSimpleVT();
1385
1386  bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
1387  if (isFloat && !Subtarget->hasVFP2())
1388    return false;
1389
1390  // Check to see if the 2nd operand is a constant that we can encode directly
1391  // in the compare.
1392  int Imm = 0;
1393  bool UseImm = false;
1394  bool isNegativeImm = false;
1395  // FIXME: At -O0 we don't have anything that canonicalizes operand order.
1396  // Thus, Src1Value may be a ConstantInt, but we're missing it.
1397  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
1398    if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
1399        SrcVT == MVT::i1) {
1400      const APInt &CIVal = ConstInt->getValue();
1401      Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
1402      // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
1403      // then a cmn, because there is no way to represent 2147483648 as a
1404      // signed 32-bit int.
1405      if (Imm < 0 && Imm != (int)0x80000000) {
1406        isNegativeImm = true;
1407        Imm = -Imm;
1408      }
1409      UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1410        (ARM_AM::getSOImmVal(Imm) != -1);
1411    }
1412  } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
1413    if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
1414      if (ConstFP->isZero() && !ConstFP->isNegative())
1415        UseImm = true;
1416  }
1417
1418  unsigned CmpOpc;
1419  bool isICmp = true;
1420  bool needsExt = false;
1421  switch (SrcVT.SimpleTy) {
1422    default: return false;
1423    // TODO: Verify compares.
1424    case MVT::f32:
1425      isICmp = false;
1426      CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES;
1427      break;
1428    case MVT::f64:
1429      isICmp = false;
1430      CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED;
1431      break;
1432    case MVT::i1:
1433    case MVT::i8:
1434    case MVT::i16:
1435      needsExt = true;
1436    // Intentional fall-through.
1437    case MVT::i32:
1438      if (isThumb2) {
1439        if (!UseImm)
1440          CmpOpc = ARM::t2CMPrr;
1441        else
1442          CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri;
1443      } else {
1444        if (!UseImm)
1445          CmpOpc = ARM::CMPrr;
1446        else
1447          CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri;
1448      }
1449      break;
1450  }
1451
1452  unsigned SrcReg1 = getRegForValue(Src1Value);
1453  if (SrcReg1 == 0) return false;
1454
1455  unsigned SrcReg2 = 0;
1456  if (!UseImm) {
1457    SrcReg2 = getRegForValue(Src2Value);
1458    if (SrcReg2 == 0) return false;
1459  }
1460
1461  // We have i1, i8, or i16, we need to either zero extend or sign extend.
1462  if (needsExt) {
1463    SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
1464    if (SrcReg1 == 0) return false;
1465    if (!UseImm) {
1466      SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
1467      if (SrcReg2 == 0) return false;
1468    }
1469  }
1470
1471  const MCInstrDesc &II = TII.get(CmpOpc);
1472  SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0);
1473  if (!UseImm) {
1474    SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1);
1475    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1476                    .addReg(SrcReg1).addReg(SrcReg2));
1477  } else {
1478    MachineInstrBuilder MIB;
1479    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1480      .addReg(SrcReg1);
1481
1482    // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
1483    if (isICmp)
1484      MIB.addImm(Imm);
1485    AddOptionalDefs(MIB);
1486  }
1487
1488  // For floating point we need to move the result to a comparison register
1489  // that we can then use for branches.
1490  if (Ty->isFloatTy() || Ty->isDoubleTy())
1491    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1492                            TII.get(ARM::FMSTAT)));
1493  return true;
1494}
1495
1496bool ARMFastISel::SelectCmp(const Instruction *I) {
1497  const CmpInst *CI = cast<CmpInst>(I);
1498
1499  // Get the compare predicate.
1500  ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1501
1502  // We may not handle every CC for now.
1503  if (ARMPred == ARMCC::AL) return false;
1504
1505  // Emit the compare.
1506  if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1507    return false;
1508
1509  // Now set a register based on the comparison. Explicitly set the predicates
1510  // here.
1511  unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1512  const TargetRegisterClass *RC = isThumb2 ?
1513    (const TargetRegisterClass*)&ARM::rGPRRegClass :
1514    (const TargetRegisterClass*)&ARM::GPRRegClass;
1515  unsigned DestReg = createResultReg(RC);
1516  Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1517  unsigned ZeroReg = TargetMaterializeConstant(Zero);
1518  // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
1519  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg)
1520          .addReg(ZeroReg).addImm(1)
1521          .addImm(ARMPred).addReg(ARM::CPSR);
1522
1523  UpdateValueMap(I, DestReg);
1524  return true;
1525}
1526
1527bool ARMFastISel::SelectFPExt(const Instruction *I) {
1528  // Make sure we have VFP and that we're extending float to double.
1529  if (!Subtarget->hasVFP2()) return false;
1530
1531  Value *V = I->getOperand(0);
1532  if (!I->getType()->isDoubleTy() ||
1533      !V->getType()->isFloatTy()) return false;
1534
1535  unsigned Op = getRegForValue(V);
1536  if (Op == 0) return false;
1537
1538  unsigned Result = createResultReg(&ARM::DPRRegClass);
1539  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1540                          TII.get(ARM::VCVTDS), Result)
1541                  .addReg(Op));
1542  UpdateValueMap(I, Result);
1543  return true;
1544}
1545
1546bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1547  // Make sure we have VFP and that we're truncating double to float.
1548  if (!Subtarget->hasVFP2()) return false;
1549
1550  Value *V = I->getOperand(0);
1551  if (!(I->getType()->isFloatTy() &&
1552        V->getType()->isDoubleTy())) return false;
1553
1554  unsigned Op = getRegForValue(V);
1555  if (Op == 0) return false;
1556
1557  unsigned Result = createResultReg(&ARM::SPRRegClass);
1558  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1559                          TII.get(ARM::VCVTSD), Result)
1560                  .addReg(Op));
1561  UpdateValueMap(I, Result);
1562  return true;
1563}
1564
1565bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
1566  // Make sure we have VFP.
1567  if (!Subtarget->hasVFP2()) return false;
1568
1569  MVT DstVT;
1570  Type *Ty = I->getType();
1571  if (!isTypeLegal(Ty, DstVT))
1572    return false;
1573
1574  Value *Src = I->getOperand(0);
1575  EVT SrcEVT = TLI.getValueType(Src->getType(), true);
1576  if (!SrcEVT.isSimple())
1577    return false;
1578  MVT SrcVT = SrcEVT.getSimpleVT();
1579  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1580    return false;
1581
1582  unsigned SrcReg = getRegForValue(Src);
1583  if (SrcReg == 0) return false;
1584
1585  // Handle sign-extension.
1586  if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
1587    SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32,
1588                                       /*isZExt*/!isSigned);
1589    if (SrcReg == 0) return false;
1590  }
1591
1592  // The conversion routine works on fp-reg to fp-reg and the operand above
1593  // was an integer, move it to the fp registers if possible.
1594  unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1595  if (FP == 0) return false;
1596
1597  unsigned Opc;
1598  if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
1599  else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
1600  else return false;
1601
1602  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1603  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1604                          TII.get(Opc), ResultReg).addReg(FP));
1605  UpdateValueMap(I, ResultReg);
1606  return true;
1607}
1608
1609bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
1610  // Make sure we have VFP.
1611  if (!Subtarget->hasVFP2()) return false;
1612
1613  MVT DstVT;
1614  Type *RetTy = I->getType();
1615  if (!isTypeLegal(RetTy, DstVT))
1616    return false;
1617
1618  unsigned Op = getRegForValue(I->getOperand(0));
1619  if (Op == 0) return false;
1620
1621  unsigned Opc;
1622  Type *OpTy = I->getOperand(0)->getType();
1623  if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
1624  else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
1625  else return false;
1626
1627  // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
1628  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1629  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1630                          TII.get(Opc), ResultReg).addReg(Op));
1631
1632  // This result needs to be in an integer register, but the conversion only
1633  // takes place in fp-regs.
1634  unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1635  if (IntReg == 0) return false;
1636
1637  UpdateValueMap(I, IntReg);
1638  return true;
1639}
1640
1641bool ARMFastISel::SelectSelect(const Instruction *I) {
1642  MVT VT;
1643  if (!isTypeLegal(I->getType(), VT))
1644    return false;
1645
1646  // Things need to be register sized for register moves.
1647  if (VT != MVT::i32) return false;
1648
1649  unsigned CondReg = getRegForValue(I->getOperand(0));
1650  if (CondReg == 0) return false;
1651  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1652  if (Op1Reg == 0) return false;
1653
1654  // Check to see if we can use an immediate in the conditional move.
1655  int Imm = 0;
1656  bool UseImm = false;
1657  bool isNegativeImm = false;
1658  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
1659    assert (VT == MVT::i32 && "Expecting an i32.");
1660    Imm = (int)ConstInt->getValue().getZExtValue();
1661    if (Imm < 0) {
1662      isNegativeImm = true;
1663      Imm = ~Imm;
1664    }
1665    UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1666      (ARM_AM::getSOImmVal(Imm) != -1);
1667  }
1668
1669  unsigned Op2Reg = 0;
1670  if (!UseImm) {
1671    Op2Reg = getRegForValue(I->getOperand(2));
1672    if (Op2Reg == 0) return false;
1673  }
1674
1675  unsigned CmpOpc = isThumb2 ? ARM::t2CMPri : ARM::CMPri;
1676  CondReg = constrainOperandRegClass(TII.get(CmpOpc), CondReg, 0);
1677  AddOptionalDefs(
1678      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
1679          .addReg(CondReg)
1680          .addImm(0));
1681
1682  unsigned MovCCOpc;
1683  const TargetRegisterClass *RC;
1684  if (!UseImm) {
1685    RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
1686    MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
1687  } else {
1688    RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass;
1689    if (!isNegativeImm)
1690      MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1691    else
1692      MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
1693  }
1694  unsigned ResultReg = createResultReg(RC);
1695  if (!UseImm) {
1696    Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1);
1697    Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2);
1698    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
1699            ResultReg)
1700        .addReg(Op2Reg)
1701        .addReg(Op1Reg)
1702        .addImm(ARMCC::NE)
1703        .addReg(ARM::CPSR);
1704  } else {
1705    Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1);
1706    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
1707            ResultReg)
1708        .addReg(Op1Reg)
1709        .addImm(Imm)
1710        .addImm(ARMCC::EQ)
1711        .addReg(ARM::CPSR);
1712  }
1713  UpdateValueMap(I, ResultReg);
1714  return true;
1715}
1716
1717bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
1718  MVT VT;
1719  Type *Ty = I->getType();
1720  if (!isTypeLegal(Ty, VT))
1721    return false;
1722
1723  // If we have integer div support we should have selected this automagically.
1724  // In case we have a real miss go ahead and return false and we'll pick
1725  // it up later.
1726  if (Subtarget->hasDivide()) return false;
1727
1728  // Otherwise emit a libcall.
1729  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1730  if (VT == MVT::i8)
1731    LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
1732  else if (VT == MVT::i16)
1733    LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
1734  else if (VT == MVT::i32)
1735    LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
1736  else if (VT == MVT::i64)
1737    LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
1738  else if (VT == MVT::i128)
1739    LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
1740  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1741
1742  return ARMEmitLibcall(I, LC);
1743}
1744
1745bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
1746  MVT VT;
1747  Type *Ty = I->getType();
1748  if (!isTypeLegal(Ty, VT))
1749    return false;
1750
1751  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1752  if (VT == MVT::i8)
1753    LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
1754  else if (VT == MVT::i16)
1755    LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
1756  else if (VT == MVT::i32)
1757    LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
1758  else if (VT == MVT::i64)
1759    LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
1760  else if (VT == MVT::i128)
1761    LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
1762  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1763
1764  return ARMEmitLibcall(I, LC);
1765}
1766
1767bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1768  EVT DestVT  = TLI.getValueType(I->getType(), true);
1769
1770  // We can get here in the case when we have a binary operation on a non-legal
1771  // type and the target independent selector doesn't know how to handle it.
1772  if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1773    return false;
1774
1775  unsigned Opc;
1776  switch (ISDOpcode) {
1777    default: return false;
1778    case ISD::ADD:
1779      Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
1780      break;
1781    case ISD::OR:
1782      Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
1783      break;
1784    case ISD::SUB:
1785      Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
1786      break;
1787  }
1788
1789  unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1790  if (SrcReg1 == 0) return false;
1791
1792  // TODO: Often the 2nd operand is an immediate, which can be encoded directly
1793  // in the instruction, rather then materializing the value in a register.
1794  unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1795  if (SrcReg2 == 0) return false;
1796
1797  unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
1798  SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1);
1799  SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2);
1800  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1801                          TII.get(Opc), ResultReg)
1802                  .addReg(SrcReg1).addReg(SrcReg2));
1803  UpdateValueMap(I, ResultReg);
1804  return true;
1805}
1806
1807bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
1808  EVT FPVT = TLI.getValueType(I->getType(), true);
1809  if (!FPVT.isSimple()) return false;
1810  MVT VT = FPVT.getSimpleVT();
1811
1812  // We can get here in the case when we want to use NEON for our fp
1813  // operations, but can't figure out how to. Just use the vfp instructions
1814  // if we have them.
1815  // FIXME: It'd be nice to use NEON instructions.
1816  Type *Ty = I->getType();
1817  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1818  if (isFloat && !Subtarget->hasVFP2())
1819    return false;
1820
1821  unsigned Opc;
1822  bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1823  switch (ISDOpcode) {
1824    default: return false;
1825    case ISD::FADD:
1826      Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1827      break;
1828    case ISD::FSUB:
1829      Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1830      break;
1831    case ISD::FMUL:
1832      Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1833      break;
1834  }
1835  unsigned Op1 = getRegForValue(I->getOperand(0));
1836  if (Op1 == 0) return false;
1837
1838  unsigned Op2 = getRegForValue(I->getOperand(1));
1839  if (Op2 == 0) return false;
1840
1841  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
1842  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1843                          TII.get(Opc), ResultReg)
1844                  .addReg(Op1).addReg(Op2));
1845  UpdateValueMap(I, ResultReg);
1846  return true;
1847}
1848
1849// Call Handling Code
1850
1851// This is largely taken directly from CCAssignFnForNode
1852// TODO: We may not support all of this.
1853CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC,
1854                                           bool Return,
1855                                           bool isVarArg) {
1856  switch (CC) {
1857  default:
1858    llvm_unreachable("Unsupported calling convention");
1859  case CallingConv::Fast:
1860    if (Subtarget->hasVFP2() && !isVarArg) {
1861      if (!Subtarget->isAAPCS_ABI())
1862        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1863      // For AAPCS ABI targets, just use VFP variant of the calling convention.
1864      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1865    }
1866    // Fallthrough
1867  case CallingConv::C:
1868    // Use target triple & subtarget features to do actual dispatch.
1869    if (Subtarget->isAAPCS_ABI()) {
1870      if (Subtarget->hasVFP2() &&
1871          TM.Options.FloatABIType == FloatABI::Hard && !isVarArg)
1872        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1873      else
1874        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1875    } else
1876        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1877  case CallingConv::ARM_AAPCS_VFP:
1878    if (!isVarArg)
1879      return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1880    // Fall through to soft float variant, variadic functions don't
1881    // use hard floating point ABI.
1882  case CallingConv::ARM_AAPCS:
1883    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1884  case CallingConv::ARM_APCS:
1885    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1886  case CallingConv::GHC:
1887    if (Return)
1888      llvm_unreachable("Can't return in GHC call convention");
1889    else
1890      return CC_ARM_APCS_GHC;
1891  }
1892}
1893
1894bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1895                                  SmallVectorImpl<unsigned> &ArgRegs,
1896                                  SmallVectorImpl<MVT> &ArgVTs,
1897                                  SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1898                                  SmallVectorImpl<unsigned> &RegArgs,
1899                                  CallingConv::ID CC,
1900                                  unsigned &NumBytes,
1901                                  bool isVarArg) {
1902  SmallVector<CCValAssign, 16> ArgLocs;
1903  CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs, *Context);
1904  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
1905                             CCAssignFnForCall(CC, false, isVarArg));
1906
1907  // Check that we can handle all of the arguments. If we can't, then bail out
1908  // now before we add code to the MBB.
1909  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1910    CCValAssign &VA = ArgLocs[i];
1911    MVT ArgVT = ArgVTs[VA.getValNo()];
1912
1913    // We don't handle NEON/vector parameters yet.
1914    if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1915      return false;
1916
1917    // Now copy/store arg to correct locations.
1918    if (VA.isRegLoc() && !VA.needsCustom()) {
1919      continue;
1920    } else if (VA.needsCustom()) {
1921      // TODO: We need custom lowering for vector (v2f64) args.
1922      if (VA.getLocVT() != MVT::f64 ||
1923          // TODO: Only handle register args for now.
1924          !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
1925        return false;
1926    } else {
1927      switch (ArgVT.SimpleTy) {
1928      default:
1929        return false;
1930      case MVT::i1:
1931      case MVT::i8:
1932      case MVT::i16:
1933      case MVT::i32:
1934        break;
1935      case MVT::f32:
1936        if (!Subtarget->hasVFP2())
1937          return false;
1938        break;
1939      case MVT::f64:
1940        if (!Subtarget->hasVFP2())
1941          return false;
1942        break;
1943      }
1944    }
1945  }
1946
1947  // At the point, we are able to handle the call's arguments in fast isel.
1948
1949  // Get a count of how many bytes are to be pushed on the stack.
1950  NumBytes = CCInfo.getNextStackOffset();
1951
1952  // Issue CALLSEQ_START
1953  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1954  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1955                          TII.get(AdjStackDown))
1956                  .addImm(NumBytes));
1957
1958  // Process the args.
1959  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1960    CCValAssign &VA = ArgLocs[i];
1961    unsigned Arg = ArgRegs[VA.getValNo()];
1962    MVT ArgVT = ArgVTs[VA.getValNo()];
1963
1964    assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
1965           "We don't handle NEON/vector parameters yet.");
1966
1967    // Handle arg promotion, etc.
1968    switch (VA.getLocInfo()) {
1969      case CCValAssign::Full: break;
1970      case CCValAssign::SExt: {
1971        MVT DestVT = VA.getLocVT();
1972        Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
1973        assert (Arg != 0 && "Failed to emit a sext");
1974        ArgVT = DestVT;
1975        break;
1976      }
1977      case CCValAssign::AExt:
1978        // Intentional fall-through.  Handle AExt and ZExt.
1979      case CCValAssign::ZExt: {
1980        MVT DestVT = VA.getLocVT();
1981        Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
1982        assert (Arg != 0 && "Failed to emit a zext");
1983        ArgVT = DestVT;
1984        break;
1985      }
1986      case CCValAssign::BCvt: {
1987        unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
1988                                 /*TODO: Kill=*/false);
1989        assert(BC != 0 && "Failed to emit a bitcast!");
1990        Arg = BC;
1991        ArgVT = VA.getLocVT();
1992        break;
1993      }
1994      default: llvm_unreachable("Unknown arg promotion!");
1995    }
1996
1997    // Now copy/store arg to correct locations.
1998    if (VA.isRegLoc() && !VA.needsCustom()) {
1999      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2000              TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
2001      RegArgs.push_back(VA.getLocReg());
2002    } else if (VA.needsCustom()) {
2003      // TODO: We need custom lowering for vector (v2f64) args.
2004      assert(VA.getLocVT() == MVT::f64 &&
2005             "Custom lowering for v2f64 args not available");
2006
2007      CCValAssign &NextVA = ArgLocs[++i];
2008
2009      assert(VA.isRegLoc() && NextVA.isRegLoc() &&
2010             "We only handle register args!");
2011
2012      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2013                              TII.get(ARM::VMOVRRD), VA.getLocReg())
2014                      .addReg(NextVA.getLocReg(), RegState::Define)
2015                      .addReg(Arg));
2016      RegArgs.push_back(VA.getLocReg());
2017      RegArgs.push_back(NextVA.getLocReg());
2018    } else {
2019      assert(VA.isMemLoc());
2020      // Need to store on the stack.
2021      Address Addr;
2022      Addr.BaseType = Address::RegBase;
2023      Addr.Base.Reg = ARM::SP;
2024      Addr.Offset = VA.getLocMemOffset();
2025
2026      bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
2027      assert(EmitRet && "Could not emit a store for argument!");
2028    }
2029  }
2030
2031  return true;
2032}
2033
2034bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
2035                             const Instruction *I, CallingConv::ID CC,
2036                             unsigned &NumBytes, bool isVarArg) {
2037  // Issue CALLSEQ_END
2038  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
2039  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2040                          TII.get(AdjStackUp))
2041                  .addImm(NumBytes).addImm(0));
2042
2043  // Now the return value.
2044  if (RetVT != MVT::isVoid) {
2045    SmallVector<CCValAssign, 16> RVLocs;
2046    CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
2047    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2048
2049    // Copy all of the result registers out of their specified physreg.
2050    if (RVLocs.size() == 2 && RetVT == MVT::f64) {
2051      // For this move we copy into two registers and then move into the
2052      // double fp reg we want.
2053      MVT DestVT = RVLocs[0].getValVT();
2054      const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
2055      unsigned ResultReg = createResultReg(DstRC);
2056      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2057                              TII.get(ARM::VMOVDRR), ResultReg)
2058                      .addReg(RVLocs[0].getLocReg())
2059                      .addReg(RVLocs[1].getLocReg()));
2060
2061      UsedRegs.push_back(RVLocs[0].getLocReg());
2062      UsedRegs.push_back(RVLocs[1].getLocReg());
2063
2064      // Finally update the result.
2065      UpdateValueMap(I, ResultReg);
2066    } else {
2067      assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
2068      MVT CopyVT = RVLocs[0].getValVT();
2069
2070      // Special handling for extended integers.
2071      if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
2072        CopyVT = MVT::i32;
2073
2074      const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
2075
2076      unsigned ResultReg = createResultReg(DstRC);
2077      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2078              TII.get(TargetOpcode::COPY),
2079              ResultReg).addReg(RVLocs[0].getLocReg());
2080      UsedRegs.push_back(RVLocs[0].getLocReg());
2081
2082      // Finally update the result.
2083      UpdateValueMap(I, ResultReg);
2084    }
2085  }
2086
2087  return true;
2088}
2089
2090bool ARMFastISel::SelectRet(const Instruction *I) {
2091  const ReturnInst *Ret = cast<ReturnInst>(I);
2092  const Function &F = *I->getParent()->getParent();
2093
2094  if (!FuncInfo.CanLowerReturn)
2095    return false;
2096
2097  // Build a list of return value registers.
2098  SmallVector<unsigned, 4> RetRegs;
2099
2100  CallingConv::ID CC = F.getCallingConv();
2101  if (Ret->getNumOperands() > 0) {
2102    SmallVector<ISD::OutputArg, 4> Outs;
2103    GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
2104
2105    // Analyze operands of the call, assigning locations to each operand.
2106    SmallVector<CCValAssign, 16> ValLocs;
2107    CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,I->getContext());
2108    CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
2109                                                 F.isVarArg()));
2110
2111    const Value *RV = Ret->getOperand(0);
2112    unsigned Reg = getRegForValue(RV);
2113    if (Reg == 0)
2114      return false;
2115
2116    // Only handle a single return value for now.
2117    if (ValLocs.size() != 1)
2118      return false;
2119
2120    CCValAssign &VA = ValLocs[0];
2121
2122    // Don't bother handling odd stuff for now.
2123    if (VA.getLocInfo() != CCValAssign::Full)
2124      return false;
2125    // Only handle register returns for now.
2126    if (!VA.isRegLoc())
2127      return false;
2128
2129    unsigned SrcReg = Reg + VA.getValNo();
2130    EVT RVEVT = TLI.getValueType(RV->getType());
2131    if (!RVEVT.isSimple()) return false;
2132    MVT RVVT = RVEVT.getSimpleVT();
2133    MVT DestVT = VA.getValVT();
2134    // Special handling for extended integers.
2135    if (RVVT != DestVT) {
2136      if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
2137        return false;
2138
2139      assert(DestVT == MVT::i32 && "ARM should always ext to i32");
2140
2141      // Perform extension if flagged as either zext or sext.  Otherwise, do
2142      // nothing.
2143      if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
2144        SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
2145        if (SrcReg == 0) return false;
2146      }
2147    }
2148
2149    // Make the copy.
2150    unsigned DstReg = VA.getLocReg();
2151    const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
2152    // Avoid a cross-class copy. This is very unlikely.
2153    if (!SrcRC->contains(DstReg))
2154      return false;
2155    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2156            TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
2157
2158    // Add register to return instruction.
2159    RetRegs.push_back(VA.getLocReg());
2160  }
2161
2162  unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET;
2163  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2164                                    TII.get(RetOpc));
2165  AddOptionalDefs(MIB);
2166  for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
2167    MIB.addReg(RetRegs[i], RegState::Implicit);
2168  return true;
2169}
2170
2171unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) {
2172  if (UseReg)
2173    return isThumb2 ? ARM::tBLXr : ARM::BLX;
2174  else
2175    return isThumb2 ? ARM::tBL : ARM::BL;
2176}
2177
2178unsigned ARMFastISel::getLibcallReg(const Twine &Name) {
2179  // Manually compute the global's type to avoid building it when unnecessary.
2180  Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0);
2181  EVT LCREVT = TLI.getValueType(GVTy);
2182  if (!LCREVT.isSimple()) return 0;
2183
2184  GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false,
2185                                       GlobalValue::ExternalLinkage, 0, Name);
2186  assert(GV->getType() == GVTy && "We miscomputed the type for the global!");
2187  return ARMMaterializeGV(GV, LCREVT.getSimpleVT());
2188}
2189
2190// A quick function that will emit a call for a named libcall in F with the
2191// vector of passed arguments for the Instruction in I. We can assume that we
2192// can emit a call for any libcall we can produce. This is an abridged version
2193// of the full call infrastructure since we won't need to worry about things
2194// like computed function pointers or strange arguments at call sites.
2195// TODO: Try to unify this and the normal call bits for ARM, then try to unify
2196// with X86.
2197bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
2198  CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
2199
2200  // Handle *simple* calls for now.
2201  Type *RetTy = I->getType();
2202  MVT RetVT;
2203  if (RetTy->isVoidTy())
2204    RetVT = MVT::isVoid;
2205  else if (!isTypeLegal(RetTy, RetVT))
2206    return false;
2207
2208  // Can't handle non-double multi-reg retvals.
2209  if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
2210    SmallVector<CCValAssign, 16> RVLocs;
2211    CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
2212    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
2213    if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2214      return false;
2215  }
2216
2217  // Set up the argument vectors.
2218  SmallVector<Value*, 8> Args;
2219  SmallVector<unsigned, 8> ArgRegs;
2220  SmallVector<MVT, 8> ArgVTs;
2221  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2222  Args.reserve(I->getNumOperands());
2223  ArgRegs.reserve(I->getNumOperands());
2224  ArgVTs.reserve(I->getNumOperands());
2225  ArgFlags.reserve(I->getNumOperands());
2226  for (unsigned i = 0; i < I->getNumOperands(); ++i) {
2227    Value *Op = I->getOperand(i);
2228    unsigned Arg = getRegForValue(Op);
2229    if (Arg == 0) return false;
2230
2231    Type *ArgTy = Op->getType();
2232    MVT ArgVT;
2233    if (!isTypeLegal(ArgTy, ArgVT)) return false;
2234
2235    ISD::ArgFlagsTy Flags;
2236    unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
2237    Flags.setOrigAlign(OriginalAlignment);
2238
2239    Args.push_back(Op);
2240    ArgRegs.push_back(Arg);
2241    ArgVTs.push_back(ArgVT);
2242    ArgFlags.push_back(Flags);
2243  }
2244
2245  // Handle the arguments now that we've gotten them.
2246  SmallVector<unsigned, 4> RegArgs;
2247  unsigned NumBytes;
2248  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2249                       RegArgs, CC, NumBytes, false))
2250    return false;
2251
2252  unsigned CalleeReg = 0;
2253  if (EnableARMLongCalls) {
2254    CalleeReg = getLibcallReg(TLI.getLibcallName(Call));
2255    if (CalleeReg == 0) return false;
2256  }
2257
2258  // Issue the call.
2259  unsigned CallOpc = ARMSelectCallOp(EnableARMLongCalls);
2260  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2261                                    DbgLoc, TII.get(CallOpc));
2262  // BL / BLX don't take a predicate, but tBL / tBLX do.
2263  if (isThumb2)
2264    AddDefaultPred(MIB);
2265  if (EnableARMLongCalls)
2266    MIB.addReg(CalleeReg);
2267  else
2268    MIB.addExternalSymbol(TLI.getLibcallName(Call));
2269
2270  // Add implicit physical register uses to the call.
2271  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2272    MIB.addReg(RegArgs[i], RegState::Implicit);
2273
2274  // Add a register mask with the call-preserved registers.
2275  // Proper defs for return values will be added by setPhysRegsDeadExcept().
2276  MIB.addRegMask(TRI.getCallPreservedMask(CC));
2277
2278  // Finish off the call including any return values.
2279  SmallVector<unsigned, 4> UsedRegs;
2280  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false;
2281
2282  // Set all unused physreg defs as dead.
2283  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2284
2285  return true;
2286}
2287
2288bool ARMFastISel::SelectCall(const Instruction *I,
2289                             const char *IntrMemName = 0) {
2290  const CallInst *CI = cast<CallInst>(I);
2291  const Value *Callee = CI->getCalledValue();
2292
2293  // Can't handle inline asm.
2294  if (isa<InlineAsm>(Callee)) return false;
2295
2296  // Allow SelectionDAG isel to handle tail calls.
2297  if (CI->isTailCall()) return false;
2298
2299  // Check the calling convention.
2300  ImmutableCallSite CS(CI);
2301  CallingConv::ID CC = CS.getCallingConv();
2302
2303  // TODO: Avoid some calling conventions?
2304
2305  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
2306  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2307  bool isVarArg = FTy->isVarArg();
2308
2309  // Handle *simple* calls for now.
2310  Type *RetTy = I->getType();
2311  MVT RetVT;
2312  if (RetTy->isVoidTy())
2313    RetVT = MVT::isVoid;
2314  else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
2315           RetVT != MVT::i8  && RetVT != MVT::i1)
2316    return false;
2317
2318  // Can't handle non-double multi-reg retvals.
2319  if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
2320      RetVT != MVT::i16 && RetVT != MVT::i32) {
2321    SmallVector<CCValAssign, 16> RVLocs;
2322    CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, RVLocs, *Context);
2323    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2324    if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2325      return false;
2326  }
2327
2328  // Set up the argument vectors.
2329  SmallVector<Value*, 8> Args;
2330  SmallVector<unsigned, 8> ArgRegs;
2331  SmallVector<MVT, 8> ArgVTs;
2332  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2333  unsigned arg_size = CS.arg_size();
2334  Args.reserve(arg_size);
2335  ArgRegs.reserve(arg_size);
2336  ArgVTs.reserve(arg_size);
2337  ArgFlags.reserve(arg_size);
2338  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
2339       i != e; ++i) {
2340    // If we're lowering a memory intrinsic instead of a regular call, skip the
2341    // last two arguments, which shouldn't be passed to the underlying function.
2342    if (IntrMemName && e-i <= 2)
2343      break;
2344
2345    ISD::ArgFlagsTy Flags;
2346    unsigned AttrInd = i - CS.arg_begin() + 1;
2347    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
2348      Flags.setSExt();
2349    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
2350      Flags.setZExt();
2351
2352    // FIXME: Only handle *easy* calls for now.
2353    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
2354        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
2355        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
2356        CS.paramHasAttr(AttrInd, Attribute::ByVal))
2357      return false;
2358
2359    Type *ArgTy = (*i)->getType();
2360    MVT ArgVT;
2361    if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
2362        ArgVT != MVT::i1)
2363      return false;
2364
2365    unsigned Arg = getRegForValue(*i);
2366    if (Arg == 0)
2367      return false;
2368
2369    unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
2370    Flags.setOrigAlign(OriginalAlignment);
2371
2372    Args.push_back(*i);
2373    ArgRegs.push_back(Arg);
2374    ArgVTs.push_back(ArgVT);
2375    ArgFlags.push_back(Flags);
2376  }
2377
2378  // Handle the arguments now that we've gotten them.
2379  SmallVector<unsigned, 4> RegArgs;
2380  unsigned NumBytes;
2381  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2382                       RegArgs, CC, NumBytes, isVarArg))
2383    return false;
2384
2385  bool UseReg = false;
2386  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
2387  if (!GV || EnableARMLongCalls) UseReg = true;
2388
2389  unsigned CalleeReg = 0;
2390  if (UseReg) {
2391    if (IntrMemName)
2392      CalleeReg = getLibcallReg(IntrMemName);
2393    else
2394      CalleeReg = getRegForValue(Callee);
2395
2396    if (CalleeReg == 0) return false;
2397  }
2398
2399  // Issue the call.
2400  unsigned CallOpc = ARMSelectCallOp(UseReg);
2401  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2402                                    DbgLoc, TII.get(CallOpc));
2403
2404  unsigned char OpFlags = 0;
2405
2406  // Add MO_PLT for global address or external symbol in the PIC relocation
2407  // model.
2408  if (Subtarget->isTargetELF() && TM.getRelocationModel() == Reloc::PIC_)
2409    OpFlags = ARMII::MO_PLT;
2410
2411  // ARM calls don't take a predicate, but tBL / tBLX do.
2412  if(isThumb2)
2413    AddDefaultPred(MIB);
2414  if (UseReg)
2415    MIB.addReg(CalleeReg);
2416  else if (!IntrMemName)
2417    MIB.addGlobalAddress(GV, 0, OpFlags);
2418  else
2419    MIB.addExternalSymbol(IntrMemName, OpFlags);
2420
2421  // Add implicit physical register uses to the call.
2422  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2423    MIB.addReg(RegArgs[i], RegState::Implicit);
2424
2425  // Add a register mask with the call-preserved registers.
2426  // Proper defs for return values will be added by setPhysRegsDeadExcept().
2427  MIB.addRegMask(TRI.getCallPreservedMask(CC));
2428
2429  // Finish off the call including any return values.
2430  SmallVector<unsigned, 4> UsedRegs;
2431  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg))
2432    return false;
2433
2434  // Set all unused physreg defs as dead.
2435  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2436
2437  return true;
2438}
2439
2440bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
2441  return Len <= 16;
2442}
2443
2444bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src,
2445                                        uint64_t Len, unsigned Alignment) {
2446  // Make sure we don't bloat code by inlining very large memcpy's.
2447  if (!ARMIsMemCpySmall(Len))
2448    return false;
2449
2450  while (Len) {
2451    MVT VT;
2452    if (!Alignment || Alignment >= 4) {
2453      if (Len >= 4)
2454        VT = MVT::i32;
2455      else if (Len >= 2)
2456        VT = MVT::i16;
2457      else {
2458        assert (Len == 1 && "Expected a length of 1!");
2459        VT = MVT::i8;
2460      }
2461    } else {
2462      // Bound based on alignment.
2463      if (Len >= 2 && Alignment == 2)
2464        VT = MVT::i16;
2465      else {
2466        VT = MVT::i8;
2467      }
2468    }
2469
2470    bool RV;
2471    unsigned ResultReg;
2472    RV = ARMEmitLoad(VT, ResultReg, Src);
2473    assert (RV == true && "Should be able to handle this load.");
2474    RV = ARMEmitStore(VT, ResultReg, Dest);
2475    assert (RV == true && "Should be able to handle this store.");
2476    (void)RV;
2477
2478    unsigned Size = VT.getSizeInBits()/8;
2479    Len -= Size;
2480    Dest.Offset += Size;
2481    Src.Offset += Size;
2482  }
2483
2484  return true;
2485}
2486
2487bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
2488  // FIXME: Handle more intrinsics.
2489  switch (I.getIntrinsicID()) {
2490  default: return false;
2491  case Intrinsic::frameaddress: {
2492    MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo();
2493    MFI->setFrameAddressIsTaken(true);
2494
2495    unsigned LdrOpc;
2496    const TargetRegisterClass *RC;
2497    if (isThumb2) {
2498      LdrOpc =  ARM::t2LDRi12;
2499      RC = (const TargetRegisterClass*)&ARM::tGPRRegClass;
2500    } else {
2501      LdrOpc =  ARM::LDRi12;
2502      RC = (const TargetRegisterClass*)&ARM::GPRRegClass;
2503    }
2504
2505    const ARMBaseRegisterInfo *RegInfo =
2506          static_cast<const ARMBaseRegisterInfo*>(TM.getRegisterInfo());
2507    unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
2508    unsigned SrcReg = FramePtr;
2509
2510    // Recursively load frame address
2511    // ldr r0 [fp]
2512    // ldr r0 [r0]
2513    // ldr r0 [r0]
2514    // ...
2515    unsigned DestReg;
2516    unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
2517    while (Depth--) {
2518      DestReg = createResultReg(RC);
2519      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2520                              TII.get(LdrOpc), DestReg)
2521                      .addReg(SrcReg).addImm(0));
2522      SrcReg = DestReg;
2523    }
2524    UpdateValueMap(&I, SrcReg);
2525    return true;
2526  }
2527  case Intrinsic::memcpy:
2528  case Intrinsic::memmove: {
2529    const MemTransferInst &MTI = cast<MemTransferInst>(I);
2530    // Don't handle volatile.
2531    if (MTI.isVolatile())
2532      return false;
2533
2534    // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
2535    // we would emit dead code because we don't currently handle memmoves.
2536    bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
2537    if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
2538      // Small memcpy's are common enough that we want to do them without a call
2539      // if possible.
2540      uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
2541      if (ARMIsMemCpySmall(Len)) {
2542        Address Dest, Src;
2543        if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
2544            !ARMComputeAddress(MTI.getRawSource(), Src))
2545          return false;
2546        unsigned Alignment = MTI.getAlignment();
2547        if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment))
2548          return true;
2549      }
2550    }
2551
2552    if (!MTI.getLength()->getType()->isIntegerTy(32))
2553      return false;
2554
2555    if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
2556      return false;
2557
2558    const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
2559    return SelectCall(&I, IntrMemName);
2560  }
2561  case Intrinsic::memset: {
2562    const MemSetInst &MSI = cast<MemSetInst>(I);
2563    // Don't handle volatile.
2564    if (MSI.isVolatile())
2565      return false;
2566
2567    if (!MSI.getLength()->getType()->isIntegerTy(32))
2568      return false;
2569
2570    if (MSI.getDestAddressSpace() > 255)
2571      return false;
2572
2573    return SelectCall(&I, "memset");
2574  }
2575  case Intrinsic::trap: {
2576    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(
2577      Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP));
2578    return true;
2579  }
2580  }
2581}
2582
2583bool ARMFastISel::SelectTrunc(const Instruction *I) {
2584  // The high bits for a type smaller than the register size are assumed to be
2585  // undefined.
2586  Value *Op = I->getOperand(0);
2587
2588  EVT SrcVT, DestVT;
2589  SrcVT = TLI.getValueType(Op->getType(), true);
2590  DestVT = TLI.getValueType(I->getType(), true);
2591
2592  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2593    return false;
2594  if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2595    return false;
2596
2597  unsigned SrcReg = getRegForValue(Op);
2598  if (!SrcReg) return false;
2599
2600  // Because the high bits are undefined, a truncate doesn't generate
2601  // any code.
2602  UpdateValueMap(I, SrcReg);
2603  return true;
2604}
2605
2606unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
2607                                    bool isZExt) {
2608  if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2609    return 0;
2610  if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1)
2611    return 0;
2612
2613  // Table of which combinations can be emitted as a single instruction,
2614  // and which will require two.
2615  static const uint8_t isSingleInstrTbl[3][2][2][2] = {
2616    //            ARM                     Thumb
2617    //           !hasV6Ops  hasV6Ops     !hasV6Ops  hasV6Ops
2618    //    ext:     s  z      s  z          s  z      s  z
2619    /*  1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } },
2620    /*  8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } },
2621    /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }
2622  };
2623
2624  // Target registers for:
2625  //  - For ARM can never be PC.
2626  //  - For 16-bit Thumb are restricted to lower 8 registers.
2627  //  - For 32-bit Thumb are restricted to non-SP and non-PC.
2628  static const TargetRegisterClass *RCTbl[2][2] = {
2629    // Instructions: Two                     Single
2630    /* ARM      */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass },
2631    /* Thumb    */ { &ARM::tGPRRegClass,    &ARM::rGPRRegClass    }
2632  };
2633
2634  // Table governing the instruction(s) to be emitted.
2635  static const struct InstructionTable {
2636    uint32_t Opc   : 16;
2637    uint32_t hasS  :  1; // Some instructions have an S bit, always set it to 0.
2638    uint32_t Shift :  7; // For shift operand addressing mode, used by MOVsi.
2639    uint32_t Imm   :  8; // All instructions have either a shift or a mask.
2640  } IT[2][2][3][2] = {
2641    { // Two instructions (first is left shift, second is in this table).
2642      { // ARM                Opc           S  Shift             Imm
2643        /*  1 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  31 },
2644        /*  1 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  31 } },
2645        /*  8 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  24 },
2646        /*  8 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  24 } },
2647        /* 16 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  16 },
2648        /* 16 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  16 } }
2649      },
2650      { // Thumb              Opc           S  Shift             Imm
2651        /*  1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  31 },
2652        /*  1 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  31 } },
2653        /*  8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  24 },
2654        /*  8 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  24 } },
2655        /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  16 },
2656        /* 16 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  16 } }
2657      }
2658    },
2659    { // Single instruction.
2660      { // ARM                Opc           S  Shift             Imm
2661        /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
2662        /*  1 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift,   1 } },
2663        /*  8 bit sext */ { { ARM::SXTB   , 0, ARM_AM::no_shift,   0 },
2664        /*  8 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift, 255 } },
2665        /* 16 bit sext */ { { ARM::SXTH   , 0, ARM_AM::no_shift,   0 },
2666        /* 16 bit zext */   { ARM::UXTH   , 0, ARM_AM::no_shift,   0 } }
2667      },
2668      { // Thumb              Opc           S  Shift             Imm
2669        /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
2670        /*  1 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift,   1 } },
2671        /*  8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift,   0 },
2672        /*  8 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } },
2673        /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift,   0 },
2674        /* 16 bit zext */   { ARM::t2UXTH , 0, ARM_AM::no_shift,   0 } }
2675      }
2676    }
2677  };
2678
2679  unsigned SrcBits = SrcVT.getSizeInBits();
2680  unsigned DestBits = DestVT.getSizeInBits();
2681  (void) DestBits;
2682  assert((SrcBits < DestBits) && "can only extend to larger types");
2683  assert((DestBits == 32 || DestBits == 16 || DestBits == 8) &&
2684         "other sizes unimplemented");
2685  assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) &&
2686         "other sizes unimplemented");
2687
2688  bool hasV6Ops = Subtarget->hasV6Ops();
2689  unsigned Bitness = SrcBits / 8;  // {1,8,16}=>{0,1,2}
2690  assert((Bitness < 3) && "sanity-check table bounds");
2691
2692  bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt];
2693  const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr];
2694  const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt];
2695  unsigned Opc = ITP->Opc;
2696  assert(ARM::KILL != Opc && "Invalid table entry");
2697  unsigned hasS = ITP->hasS;
2698  ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift;
2699  assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) &&
2700         "only MOVsi has shift operand addressing mode");
2701  unsigned Imm = ITP->Imm;
2702
2703  // 16-bit Thumb instructions always set CPSR (unless they're in an IT block).
2704  bool setsCPSR = &ARM::tGPRRegClass == RC;
2705  unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi;
2706  unsigned ResultReg;
2707  // MOVsi encodes shift and immediate in shift operand addressing mode.
2708  // The following condition has the same value when emitting two
2709  // instruction sequences: both are shifts.
2710  bool ImmIsSO = (Shift != ARM_AM::no_shift);
2711
2712  // Either one or two instructions are emitted.
2713  // They're always of the form:
2714  //   dst = in OP imm
2715  // CPSR is set only by 16-bit Thumb instructions.
2716  // Predicate, if any, is AL.
2717  // S bit, if available, is always 0.
2718  // When two are emitted the first's result will feed as the second's input,
2719  // that value is then dead.
2720  unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2;
2721  for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) {
2722    ResultReg = createResultReg(RC);
2723    bool isLsl = (0 == Instr) && !isSingleInstr;
2724    unsigned Opcode = isLsl ? LSLOpc : Opc;
2725    ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift;
2726    unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm;
2727    bool isKill = 1 == Instr;
2728    MachineInstrBuilder MIB = BuildMI(
2729        *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg);
2730    if (setsCPSR)
2731      MIB.addReg(ARM::CPSR, RegState::Define);
2732    SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR);
2733    AddDefaultPred(MIB.addReg(SrcReg, isKill * RegState::Kill).addImm(ImmEnc));
2734    if (hasS)
2735      AddDefaultCC(MIB);
2736    // Second instruction consumes the first's result.
2737    SrcReg = ResultReg;
2738  }
2739
2740  return ResultReg;
2741}
2742
2743bool ARMFastISel::SelectIntExt(const Instruction *I) {
2744  // On ARM, in general, integer casts don't involve legal types; this code
2745  // handles promotable integers.
2746  Type *DestTy = I->getType();
2747  Value *Src = I->getOperand(0);
2748  Type *SrcTy = Src->getType();
2749
2750  bool isZExt = isa<ZExtInst>(I);
2751  unsigned SrcReg = getRegForValue(Src);
2752  if (!SrcReg) return false;
2753
2754  EVT SrcEVT, DestEVT;
2755  SrcEVT = TLI.getValueType(SrcTy, true);
2756  DestEVT = TLI.getValueType(DestTy, true);
2757  if (!SrcEVT.isSimple()) return false;
2758  if (!DestEVT.isSimple()) return false;
2759
2760  MVT SrcVT = SrcEVT.getSimpleVT();
2761  MVT DestVT = DestEVT.getSimpleVT();
2762  unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2763  if (ResultReg == 0) return false;
2764  UpdateValueMap(I, ResultReg);
2765  return true;
2766}
2767
2768bool ARMFastISel::SelectShift(const Instruction *I,
2769                              ARM_AM::ShiftOpc ShiftTy) {
2770  // We handle thumb2 mode by target independent selector
2771  // or SelectionDAG ISel.
2772  if (isThumb2)
2773    return false;
2774
2775  // Only handle i32 now.
2776  EVT DestVT = TLI.getValueType(I->getType(), true);
2777  if (DestVT != MVT::i32)
2778    return false;
2779
2780  unsigned Opc = ARM::MOVsr;
2781  unsigned ShiftImm;
2782  Value *Src2Value = I->getOperand(1);
2783  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) {
2784    ShiftImm = CI->getZExtValue();
2785
2786    // Fall back to selection DAG isel if the shift amount
2787    // is zero or greater than the width of the value type.
2788    if (ShiftImm == 0 || ShiftImm >=32)
2789      return false;
2790
2791    Opc = ARM::MOVsi;
2792  }
2793
2794  Value *Src1Value = I->getOperand(0);
2795  unsigned Reg1 = getRegForValue(Src1Value);
2796  if (Reg1 == 0) return false;
2797
2798  unsigned Reg2 = 0;
2799  if (Opc == ARM::MOVsr) {
2800    Reg2 = getRegForValue(Src2Value);
2801    if (Reg2 == 0) return false;
2802  }
2803
2804  unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
2805  if(ResultReg == 0) return false;
2806
2807  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2808                                    TII.get(Opc), ResultReg)
2809                            .addReg(Reg1);
2810
2811  if (Opc == ARM::MOVsi)
2812    MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm));
2813  else if (Opc == ARM::MOVsr) {
2814    MIB.addReg(Reg2);
2815    MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0));
2816  }
2817
2818  AddOptionalDefs(MIB);
2819  UpdateValueMap(I, ResultReg);
2820  return true;
2821}
2822
2823// TODO: SoftFP support.
2824bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
2825
2826  switch (I->getOpcode()) {
2827    case Instruction::Load:
2828      return SelectLoad(I);
2829    case Instruction::Store:
2830      return SelectStore(I);
2831    case Instruction::Br:
2832      return SelectBranch(I);
2833    case Instruction::IndirectBr:
2834      return SelectIndirectBr(I);
2835    case Instruction::ICmp:
2836    case Instruction::FCmp:
2837      return SelectCmp(I);
2838    case Instruction::FPExt:
2839      return SelectFPExt(I);
2840    case Instruction::FPTrunc:
2841      return SelectFPTrunc(I);
2842    case Instruction::SIToFP:
2843      return SelectIToFP(I, /*isSigned*/ true);
2844    case Instruction::UIToFP:
2845      return SelectIToFP(I, /*isSigned*/ false);
2846    case Instruction::FPToSI:
2847      return SelectFPToI(I, /*isSigned*/ true);
2848    case Instruction::FPToUI:
2849      return SelectFPToI(I, /*isSigned*/ false);
2850    case Instruction::Add:
2851      return SelectBinaryIntOp(I, ISD::ADD);
2852    case Instruction::Or:
2853      return SelectBinaryIntOp(I, ISD::OR);
2854    case Instruction::Sub:
2855      return SelectBinaryIntOp(I, ISD::SUB);
2856    case Instruction::FAdd:
2857      return SelectBinaryFPOp(I, ISD::FADD);
2858    case Instruction::FSub:
2859      return SelectBinaryFPOp(I, ISD::FSUB);
2860    case Instruction::FMul:
2861      return SelectBinaryFPOp(I, ISD::FMUL);
2862    case Instruction::SDiv:
2863      return SelectDiv(I, /*isSigned*/ true);
2864    case Instruction::UDiv:
2865      return SelectDiv(I, /*isSigned*/ false);
2866    case Instruction::SRem:
2867      return SelectRem(I, /*isSigned*/ true);
2868    case Instruction::URem:
2869      return SelectRem(I, /*isSigned*/ false);
2870    case Instruction::Call:
2871      if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2872        return SelectIntrinsicCall(*II);
2873      return SelectCall(I);
2874    case Instruction::Select:
2875      return SelectSelect(I);
2876    case Instruction::Ret:
2877      return SelectRet(I);
2878    case Instruction::Trunc:
2879      return SelectTrunc(I);
2880    case Instruction::ZExt:
2881    case Instruction::SExt:
2882      return SelectIntExt(I);
2883    case Instruction::Shl:
2884      return SelectShift(I, ARM_AM::lsl);
2885    case Instruction::LShr:
2886      return SelectShift(I, ARM_AM::lsr);
2887    case Instruction::AShr:
2888      return SelectShift(I, ARM_AM::asr);
2889    default: break;
2890  }
2891  return false;
2892}
2893
2894namespace {
2895// This table describes sign- and zero-extend instructions which can be
2896// folded into a preceding load. All of these extends have an immediate
2897// (sometimes a mask and sometimes a shift) that's applied after
2898// extension.
2899const struct FoldableLoadExtendsStruct {
2900  uint16_t Opc[2];  // ARM, Thumb.
2901  uint8_t ExpectedImm;
2902  uint8_t isZExt     : 1;
2903  uint8_t ExpectedVT : 7;
2904} FoldableLoadExtends[] = {
2905  { { ARM::SXTH,  ARM::t2SXTH  },   0, 0, MVT::i16 },
2906  { { ARM::UXTH,  ARM::t2UXTH  },   0, 1, MVT::i16 },
2907  { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8  },
2908  { { ARM::SXTB,  ARM::t2SXTB  },   0, 0, MVT::i8  },
2909  { { ARM::UXTB,  ARM::t2UXTB  },   0, 1, MVT::i8  }
2910};
2911}
2912
2913/// \brief The specified machine instr operand is a vreg, and that
2914/// vreg is being provided by the specified load instruction.  If possible,
2915/// try to fold the load as an operand to the instruction, returning true if
2916/// successful.
2917bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2918                                      const LoadInst *LI) {
2919  // Verify we have a legal type before going any further.
2920  MVT VT;
2921  if (!isLoadTypeLegal(LI->getType(), VT))
2922    return false;
2923
2924  // Combine load followed by zero- or sign-extend.
2925  // ldrb r1, [r0]       ldrb r1, [r0]
2926  // uxtb r2, r1     =>
2927  // mov  r3, r2         mov  r3, r1
2928  if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm())
2929    return false;
2930  const uint64_t Imm = MI->getOperand(2).getImm();
2931
2932  bool Found = false;
2933  bool isZExt;
2934  for (unsigned i = 0, e = array_lengthof(FoldableLoadExtends);
2935       i != e; ++i) {
2936    if (FoldableLoadExtends[i].Opc[isThumb2] == MI->getOpcode() &&
2937        (uint64_t)FoldableLoadExtends[i].ExpectedImm == Imm &&
2938        MVT((MVT::SimpleValueType)FoldableLoadExtends[i].ExpectedVT) == VT) {
2939      Found = true;
2940      isZExt = FoldableLoadExtends[i].isZExt;
2941    }
2942  }
2943  if (!Found) return false;
2944
2945  // See if we can handle this address.
2946  Address Addr;
2947  if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
2948
2949  unsigned ResultReg = MI->getOperand(0).getReg();
2950  if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
2951    return false;
2952  MI->eraseFromParent();
2953  return true;
2954}
2955
2956unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV,
2957                                     unsigned Align, MVT VT) {
2958  bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2959  ARMConstantPoolConstant *CPV =
2960    ARMConstantPoolConstant::Create(GV, UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2961  unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
2962
2963  unsigned Opc;
2964  unsigned DestReg1 = createResultReg(TLI.getRegClassFor(VT));
2965  // Load value.
2966  if (isThumb2) {
2967    DestReg1 = constrainOperandRegClass(TII.get(ARM::t2LDRpci), DestReg1, 0);
2968    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2969                            TII.get(ARM::t2LDRpci), DestReg1)
2970                    .addConstantPoolIndex(Idx));
2971    Opc = UseGOTOFF ? ARM::t2ADDrr : ARM::t2LDRs;
2972  } else {
2973    // The extra immediate is for addrmode2.
2974    DestReg1 = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg1, 0);
2975    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2976                            DbgLoc, TII.get(ARM::LDRcp), DestReg1)
2977                    .addConstantPoolIndex(Idx).addImm(0));
2978    Opc = UseGOTOFF ? ARM::ADDrr : ARM::LDRrs;
2979  }
2980
2981  unsigned GlobalBaseReg = AFI->getGlobalBaseReg();
2982  if (GlobalBaseReg == 0) {
2983    GlobalBaseReg = MRI.createVirtualRegister(TLI.getRegClassFor(VT));
2984    AFI->setGlobalBaseReg(GlobalBaseReg);
2985  }
2986
2987  unsigned DestReg2 = createResultReg(TLI.getRegClassFor(VT));
2988  DestReg2 = constrainOperandRegClass(TII.get(Opc), DestReg2, 0);
2989  DestReg1 = constrainOperandRegClass(TII.get(Opc), DestReg1, 1);
2990  GlobalBaseReg = constrainOperandRegClass(TII.get(Opc), GlobalBaseReg, 2);
2991  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2992                                    DbgLoc, TII.get(Opc), DestReg2)
2993                            .addReg(DestReg1)
2994                            .addReg(GlobalBaseReg);
2995  if (!UseGOTOFF)
2996    MIB.addImm(0);
2997  AddOptionalDefs(MIB);
2998
2999  return DestReg2;
3000}
3001
3002bool ARMFastISel::FastLowerArguments() {
3003  if (!FuncInfo.CanLowerReturn)
3004    return false;
3005
3006  const Function *F = FuncInfo.Fn;
3007  if (F->isVarArg())
3008    return false;
3009
3010  CallingConv::ID CC = F->getCallingConv();
3011  switch (CC) {
3012  default:
3013    return false;
3014  case CallingConv::Fast:
3015  case CallingConv::C:
3016  case CallingConv::ARM_AAPCS_VFP:
3017  case CallingConv::ARM_AAPCS:
3018  case CallingConv::ARM_APCS:
3019    break;
3020  }
3021
3022  // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments
3023  // which are passed in r0 - r3.
3024  unsigned Idx = 1;
3025  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
3026       I != E; ++I, ++Idx) {
3027    if (Idx > 4)
3028      return false;
3029
3030    if (F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
3031        F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
3032        F->getAttributes().hasAttribute(Idx, Attribute::ByVal))
3033      return false;
3034
3035    Type *ArgTy = I->getType();
3036    if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3037      return false;
3038
3039    EVT ArgVT = TLI.getValueType(ArgTy);
3040    if (!ArgVT.isSimple()) return false;
3041    switch (ArgVT.getSimpleVT().SimpleTy) {
3042    case MVT::i8:
3043    case MVT::i16:
3044    case MVT::i32:
3045      break;
3046    default:
3047      return false;
3048    }
3049  }
3050
3051
3052  static const uint16_t GPRArgRegs[] = {
3053    ARM::R0, ARM::R1, ARM::R2, ARM::R3
3054  };
3055
3056  const TargetRegisterClass *RC = &ARM::rGPRRegClass;
3057  Idx = 0;
3058  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
3059       I != E; ++I, ++Idx) {
3060    unsigned SrcReg = GPRArgRegs[Idx];
3061    unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3062    // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3063    // Without this, EmitLiveInCopies may eliminate the livein if its only
3064    // use is a bitcast (which isn't turned into an instruction).
3065    unsigned ResultReg = createResultReg(RC);
3066    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3067            TII.get(TargetOpcode::COPY),
3068            ResultReg).addReg(DstReg, getKillRegState(true));
3069    UpdateValueMap(I, ResultReg);
3070  }
3071
3072  return true;
3073}
3074
3075namespace llvm {
3076  FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo,
3077                                const TargetLibraryInfo *libInfo) {
3078    const TargetMachine &TM = funcInfo.MF->getTarget();
3079
3080    const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
3081    // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl.
3082    bool UseFastISel = false;
3083    UseFastISel |= Subtarget->isTargetMachO() && !Subtarget->isThumb1Only();
3084    UseFastISel |= Subtarget->isTargetLinux() && !Subtarget->isThumb();
3085    UseFastISel |= Subtarget->isTargetNaCl() && !Subtarget->isThumb();
3086
3087    if (UseFastISel) {
3088      // iOS always has a FP for backtracking, force other targets
3089      // to keep their FP when doing FastISel. The emitted code is
3090      // currently superior, and in cases like test-suite's lencod
3091      // FastISel isn't quite correct when FP is eliminated.
3092      TM.Options.NoFramePointerElim = true;
3093      return new ARMFastISel(funcInfo, libInfo);
3094    }
3095    return 0;
3096  }
3097}
3098