ARMFastISel.cpp revision 4964ba01f96d5b3a8fb27a7847c01666ee9b4ebd
1//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the ARM-specific support for the FastISel class. Some
11// of the target-specific code is generated by tablegen in the file
12// ARMGenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "ARM.h"
17#include "ARMBaseInstrInfo.h"
18#include "ARMCallingConv.h"
19#include "ARMRegisterInfo.h"
20#include "ARMTargetMachine.h"
21#include "ARMSubtarget.h"
22#include "ARMConstantPoolValue.h"
23#include "MCTargetDesc/ARMAddressingModes.h"
24#include "llvm/CallingConv.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Instructions.h"
28#include "llvm/IntrinsicInst.h"
29#include "llvm/Module.h"
30#include "llvm/Operator.h"
31#include "llvm/CodeGen/Analysis.h"
32#include "llvm/CodeGen/FastISel.h"
33#include "llvm/CodeGen/FunctionLoweringInfo.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineConstantPool.h"
37#include "llvm/CodeGen/MachineFrameInfo.h"
38#include "llvm/CodeGen/MachineMemOperand.h"
39#include "llvm/CodeGen/MachineRegisterInfo.h"
40#include "llvm/Support/CallSite.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/GetElementPtrTypeIterator.h"
44#include "llvm/Target/TargetData.h"
45#include "llvm/Target/TargetInstrInfo.h"
46#include "llvm/Target/TargetLowering.h"
47#include "llvm/Target/TargetMachine.h"
48#include "llvm/Target/TargetOptions.h"
49using namespace llvm;
50
51static cl::opt<bool>
52DisableARMFastISel("disable-arm-fast-isel",
53                    cl::desc("Turn off experimental ARM fast-isel support"),
54                    cl::init(false), cl::Hidden);
55
56extern cl::opt<bool> EnableARMLongCalls;
57
58namespace {
59
60  // All possible address modes, plus some.
61  typedef struct Address {
62    enum {
63      RegBase,
64      FrameIndexBase
65    } BaseType;
66
67    union {
68      unsigned Reg;
69      int FI;
70    } Base;
71
72    int Offset;
73
74    // Innocuous defaults for our address.
75    Address()
76     : BaseType(RegBase), Offset(0) {
77       Base.Reg = 0;
78     }
79  } Address;
80
81class ARMFastISel : public FastISel {
82
83  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
84  /// make the right decision when generating code for different targets.
85  const ARMSubtarget *Subtarget;
86  const TargetMachine &TM;
87  const TargetInstrInfo &TII;
88  const TargetLowering &TLI;
89  ARMFunctionInfo *AFI;
90
91  // Convenience variables to avoid some queries.
92  bool isThumb2;
93  LLVMContext *Context;
94
95  public:
96    explicit ARMFastISel(FunctionLoweringInfo &funcInfo)
97    : FastISel(funcInfo),
98      TM(funcInfo.MF->getTarget()),
99      TII(*TM.getInstrInfo()),
100      TLI(*TM.getTargetLowering()) {
101      Subtarget = &TM.getSubtarget<ARMSubtarget>();
102      AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
103      isThumb2 = AFI->isThumbFunction();
104      Context = &funcInfo.Fn->getContext();
105    }
106
107    // Code from FastISel.cpp.
108    virtual unsigned FastEmitInst_(unsigned MachineInstOpcode,
109                                   const TargetRegisterClass *RC);
110    virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
111                                    const TargetRegisterClass *RC,
112                                    unsigned Op0, bool Op0IsKill);
113    virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
114                                     const TargetRegisterClass *RC,
115                                     unsigned Op0, bool Op0IsKill,
116                                     unsigned Op1, bool Op1IsKill);
117    virtual unsigned FastEmitInst_rrr(unsigned MachineInstOpcode,
118                                      const TargetRegisterClass *RC,
119                                      unsigned Op0, bool Op0IsKill,
120                                      unsigned Op1, bool Op1IsKill,
121                                      unsigned Op2, bool Op2IsKill);
122    virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
123                                     const TargetRegisterClass *RC,
124                                     unsigned Op0, bool Op0IsKill,
125                                     uint64_t Imm);
126    virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
127                                     const TargetRegisterClass *RC,
128                                     unsigned Op0, bool Op0IsKill,
129                                     const ConstantFP *FPImm);
130    virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
131                                      const TargetRegisterClass *RC,
132                                      unsigned Op0, bool Op0IsKill,
133                                      unsigned Op1, bool Op1IsKill,
134                                      uint64_t Imm);
135    virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode,
136                                    const TargetRegisterClass *RC,
137                                    uint64_t Imm);
138    virtual unsigned FastEmitInst_ii(unsigned MachineInstOpcode,
139                                     const TargetRegisterClass *RC,
140                                     uint64_t Imm1, uint64_t Imm2);
141
142    virtual unsigned FastEmitInst_extractsubreg(MVT RetVT,
143                                                unsigned Op0, bool Op0IsKill,
144                                                uint32_t Idx);
145
146    // Backend specific FastISel code.
147    virtual bool TargetSelectInstruction(const Instruction *I);
148    virtual unsigned TargetMaterializeConstant(const Constant *C);
149    virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
150    virtual bool TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
151                               const LoadInst *LI);
152
153  #include "ARMGenFastISel.inc"
154
155    // Instruction selection routines.
156  private:
157    bool SelectLoad(const Instruction *I);
158    bool SelectStore(const Instruction *I);
159    bool SelectBranch(const Instruction *I);
160    bool SelectCmp(const Instruction *I);
161    bool SelectFPExt(const Instruction *I);
162    bool SelectFPTrunc(const Instruction *I);
163    bool SelectBinaryOp(const Instruction *I, unsigned ISDOpcode);
164    bool SelectSIToFP(const Instruction *I);
165    bool SelectFPToSI(const Instruction *I);
166    bool SelectSDiv(const Instruction *I);
167    bool SelectSRem(const Instruction *I);
168    bool SelectCall(const Instruction *I, const char *IntrMemName);
169    bool SelectIntrinsicCall(const IntrinsicInst &I);
170    bool SelectSelect(const Instruction *I);
171    bool SelectRet(const Instruction *I);
172    bool SelectTrunc(const Instruction *I);
173    bool SelectIntExt(const Instruction *I);
174
175    // Utility routines.
176  private:
177    bool isTypeLegal(Type *Ty, MVT &VT);
178    bool isLoadTypeLegal(Type *Ty, MVT &VT);
179    bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
180                    bool isZExt);
181    bool ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr,
182                     unsigned Alignment = 0, bool isZExt = true,
183                     bool allocReg = true);
184
185    bool ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr,
186                      unsigned Alignment = 0);
187    bool ARMComputeAddress(const Value *Obj, Address &Addr);
188    void ARMSimplifyAddress(Address &Addr, EVT VT, bool useAM3);
189    bool ARMIsMemCpySmall(uint64_t Len);
190    bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len);
191    unsigned ARMEmitIntExt(EVT SrcVT, unsigned SrcReg, EVT DestVT, bool isZExt);
192    unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
193    unsigned ARMMaterializeInt(const Constant *C, EVT VT);
194    unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT);
195    unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
196    unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);
197    unsigned ARMSelectCallOp(const GlobalValue *GV);
198
199    // Call handling routines.
200  private:
201    CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return);
202    bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
203                         SmallVectorImpl<unsigned> &ArgRegs,
204                         SmallVectorImpl<MVT> &ArgVTs,
205                         SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
206                         SmallVectorImpl<unsigned> &RegArgs,
207                         CallingConv::ID CC,
208                         unsigned &NumBytes);
209    bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
210                    const Instruction *I, CallingConv::ID CC,
211                    unsigned &NumBytes);
212    bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
213
214    // OptionalDef handling routines.
215  private:
216    bool isARMNEONPred(const MachineInstr *MI);
217    bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
218    const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
219    void AddLoadStoreOperands(EVT VT, Address &Addr,
220                              const MachineInstrBuilder &MIB,
221                              unsigned Flags, bool useAM3);
222};
223
224} // end anonymous namespace
225
226#include "ARMGenCallingConv.inc"
227
228// DefinesOptionalPredicate - This is different from DefinesPredicate in that
229// we don't care about implicit defs here, just places we'll need to add a
230// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
231bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
232  if (!MI->hasOptionalDef())
233    return false;
234
235  // Look to see if our OptionalDef is defining CPSR or CCR.
236  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
237    const MachineOperand &MO = MI->getOperand(i);
238    if (!MO.isReg() || !MO.isDef()) continue;
239    if (MO.getReg() == ARM::CPSR)
240      *CPSR = true;
241  }
242  return true;
243}
244
245bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
246  const MCInstrDesc &MCID = MI->getDesc();
247
248  // If we're a thumb2 or not NEON function we were handled via isPredicable.
249  if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
250       AFI->isThumb2Function())
251    return false;
252
253  for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
254    if (MCID.OpInfo[i].isPredicate())
255      return true;
256
257  return false;
258}
259
260// If the machine is predicable go ahead and add the predicate operands, if
261// it needs default CC operands add those.
262// TODO: If we want to support thumb1 then we'll need to deal with optional
263// CPSR defs that need to be added before the remaining operands. See s_cc_out
264// for descriptions why.
265const MachineInstrBuilder &
266ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
267  MachineInstr *MI = &*MIB;
268
269  // Do we use a predicate? or...
270  // Are we NEON in ARM mode and have a predicate operand? If so, I know
271  // we're not predicable but add it anyways.
272  if (TII.isPredicable(MI) || isARMNEONPred(MI))
273    AddDefaultPred(MIB);
274
275  // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
276  // defines CPSR. All other OptionalDefines in ARM are the CCR register.
277  bool CPSR = false;
278  if (DefinesOptionalPredicate(MI, &CPSR)) {
279    if (CPSR)
280      AddDefaultT1CC(MIB);
281    else
282      AddDefaultCC(MIB);
283  }
284  return MIB;
285}
286
287unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
288                                    const TargetRegisterClass* RC) {
289  unsigned ResultReg = createResultReg(RC);
290  const MCInstrDesc &II = TII.get(MachineInstOpcode);
291
292  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
293  return ResultReg;
294}
295
296unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
297                                     const TargetRegisterClass *RC,
298                                     unsigned Op0, bool Op0IsKill) {
299  unsigned ResultReg = createResultReg(RC);
300  const MCInstrDesc &II = TII.get(MachineInstOpcode);
301
302  if (II.getNumDefs() >= 1)
303    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
304                   .addReg(Op0, Op0IsKill * RegState::Kill));
305  else {
306    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
307                   .addReg(Op0, Op0IsKill * RegState::Kill));
308    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
309                   TII.get(TargetOpcode::COPY), ResultReg)
310                   .addReg(II.ImplicitDefs[0]));
311  }
312  return ResultReg;
313}
314
315unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
316                                      const TargetRegisterClass *RC,
317                                      unsigned Op0, bool Op0IsKill,
318                                      unsigned Op1, bool Op1IsKill) {
319  unsigned ResultReg = createResultReg(RC);
320  const MCInstrDesc &II = TII.get(MachineInstOpcode);
321
322  if (II.getNumDefs() >= 1)
323    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
324                   .addReg(Op0, Op0IsKill * RegState::Kill)
325                   .addReg(Op1, Op1IsKill * RegState::Kill));
326  else {
327    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
328                   .addReg(Op0, Op0IsKill * RegState::Kill)
329                   .addReg(Op1, Op1IsKill * RegState::Kill));
330    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
331                           TII.get(TargetOpcode::COPY), ResultReg)
332                   .addReg(II.ImplicitDefs[0]));
333  }
334  return ResultReg;
335}
336
337unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
338                                       const TargetRegisterClass *RC,
339                                       unsigned Op0, bool Op0IsKill,
340                                       unsigned Op1, bool Op1IsKill,
341                                       unsigned Op2, bool Op2IsKill) {
342  unsigned ResultReg = createResultReg(RC);
343  const MCInstrDesc &II = TII.get(MachineInstOpcode);
344
345  if (II.getNumDefs() >= 1)
346    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
347                   .addReg(Op0, Op0IsKill * RegState::Kill)
348                   .addReg(Op1, Op1IsKill * RegState::Kill)
349                   .addReg(Op2, Op2IsKill * RegState::Kill));
350  else {
351    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
352                   .addReg(Op0, Op0IsKill * RegState::Kill)
353                   .addReg(Op1, Op1IsKill * RegState::Kill)
354                   .addReg(Op2, Op2IsKill * RegState::Kill));
355    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
356                           TII.get(TargetOpcode::COPY), ResultReg)
357                   .addReg(II.ImplicitDefs[0]));
358  }
359  return ResultReg;
360}
361
362unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
363                                      const TargetRegisterClass *RC,
364                                      unsigned Op0, bool Op0IsKill,
365                                      uint64_t Imm) {
366  unsigned ResultReg = createResultReg(RC);
367  const MCInstrDesc &II = TII.get(MachineInstOpcode);
368
369  if (II.getNumDefs() >= 1)
370    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
371                   .addReg(Op0, Op0IsKill * RegState::Kill)
372                   .addImm(Imm));
373  else {
374    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
375                   .addReg(Op0, Op0IsKill * RegState::Kill)
376                   .addImm(Imm));
377    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
378                           TII.get(TargetOpcode::COPY), ResultReg)
379                   .addReg(II.ImplicitDefs[0]));
380  }
381  return ResultReg;
382}
383
384unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
385                                      const TargetRegisterClass *RC,
386                                      unsigned Op0, bool Op0IsKill,
387                                      const ConstantFP *FPImm) {
388  unsigned ResultReg = createResultReg(RC);
389  const MCInstrDesc &II = TII.get(MachineInstOpcode);
390
391  if (II.getNumDefs() >= 1)
392    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
393                   .addReg(Op0, Op0IsKill * RegState::Kill)
394                   .addFPImm(FPImm));
395  else {
396    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
397                   .addReg(Op0, Op0IsKill * RegState::Kill)
398                   .addFPImm(FPImm));
399    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
400                           TII.get(TargetOpcode::COPY), ResultReg)
401                   .addReg(II.ImplicitDefs[0]));
402  }
403  return ResultReg;
404}
405
406unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
407                                       const TargetRegisterClass *RC,
408                                       unsigned Op0, bool Op0IsKill,
409                                       unsigned Op1, bool Op1IsKill,
410                                       uint64_t Imm) {
411  unsigned ResultReg = createResultReg(RC);
412  const MCInstrDesc &II = TII.get(MachineInstOpcode);
413
414  if (II.getNumDefs() >= 1)
415    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
416                   .addReg(Op0, Op0IsKill * RegState::Kill)
417                   .addReg(Op1, Op1IsKill * RegState::Kill)
418                   .addImm(Imm));
419  else {
420    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
421                   .addReg(Op0, Op0IsKill * RegState::Kill)
422                   .addReg(Op1, Op1IsKill * RegState::Kill)
423                   .addImm(Imm));
424    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
425                           TII.get(TargetOpcode::COPY), ResultReg)
426                   .addReg(II.ImplicitDefs[0]));
427  }
428  return ResultReg;
429}
430
431unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
432                                     const TargetRegisterClass *RC,
433                                     uint64_t Imm) {
434  unsigned ResultReg = createResultReg(RC);
435  const MCInstrDesc &II = TII.get(MachineInstOpcode);
436
437  if (II.getNumDefs() >= 1)
438    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
439                   .addImm(Imm));
440  else {
441    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
442                   .addImm(Imm));
443    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
444                           TII.get(TargetOpcode::COPY), ResultReg)
445                   .addReg(II.ImplicitDefs[0]));
446  }
447  return ResultReg;
448}
449
450unsigned ARMFastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
451                                      const TargetRegisterClass *RC,
452                                      uint64_t Imm1, uint64_t Imm2) {
453  unsigned ResultReg = createResultReg(RC);
454  const MCInstrDesc &II = TII.get(MachineInstOpcode);
455
456  if (II.getNumDefs() >= 1)
457    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
458                    .addImm(Imm1).addImm(Imm2));
459  else {
460    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
461                    .addImm(Imm1).addImm(Imm2));
462    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
463                            TII.get(TargetOpcode::COPY),
464                            ResultReg)
465                    .addReg(II.ImplicitDefs[0]));
466  }
467  return ResultReg;
468}
469
470unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
471                                                 unsigned Op0, bool Op0IsKill,
472                                                 uint32_t Idx) {
473  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
474  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
475         "Cannot yet extract from physregs");
476  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
477                         DL, TII.get(TargetOpcode::COPY), ResultReg)
478                 .addReg(Op0, getKillRegState(Op0IsKill), Idx));
479  return ResultReg;
480}
481
482// TODO: Don't worry about 64-bit now, but when this is fixed remove the
483// checks from the various callers.
484unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
485  if (VT == MVT::f64) return 0;
486
487  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
488  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
489                          TII.get(ARM::VMOVRS), MoveReg)
490                  .addReg(SrcReg));
491  return MoveReg;
492}
493
494unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
495  if (VT == MVT::i64) return 0;
496
497  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
498  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
499                          TII.get(ARM::VMOVSR), MoveReg)
500                  .addReg(SrcReg));
501  return MoveReg;
502}
503
504// For double width floating point we need to materialize two constants
505// (the high and the low) into integer registers then use a move to get
506// the combined constant into an FP reg.
507unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
508  const APFloat Val = CFP->getValueAPF();
509  bool is64bit = VT == MVT::f64;
510
511  // This checks to see if we can use VFP3 instructions to materialize
512  // a constant, otherwise we have to go through the constant pool.
513  if (TLI.isFPImmLegal(Val, VT)) {
514    int Imm;
515    unsigned Opc;
516    if (is64bit) {
517      Imm = ARM_AM::getFP64Imm(Val);
518      Opc = ARM::FCONSTD;
519    } else {
520      Imm = ARM_AM::getFP32Imm(Val);
521      Opc = ARM::FCONSTS;
522    }
523    unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
524    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
525                            DestReg)
526                    .addImm(Imm));
527    return DestReg;
528  }
529
530  // Require VFP2 for loading fp constants.
531  if (!Subtarget->hasVFP2()) return false;
532
533  // MachineConstantPool wants an explicit alignment.
534  unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
535  if (Align == 0) {
536    // TODO: Figure out if this is correct.
537    Align = TD.getTypeAllocSize(CFP->getType());
538  }
539  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
540  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
541  unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
542
543  // The extra reg is for addrmode5.
544  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
545                          DestReg)
546                  .addConstantPoolIndex(Idx)
547                  .addReg(0));
548  return DestReg;
549}
550
551unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) {
552
553  if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
554    return false;
555
556  // If we can do this in a single instruction without a constant pool entry
557  // do so now.
558  const ConstantInt *CI = cast<ConstantInt>(C);
559  if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
560    unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
561    unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32));
562    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
563                            TII.get(Opc), ImmReg)
564                    .addImm(CI->getZExtValue()));
565    return ImmReg;
566  }
567
568  // Use MVN to emit negative constants.
569  if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
570    unsigned Imm = (unsigned)~(CI->getSExtValue());
571    bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
572      (ARM_AM::getSOImmVal(Imm) != -1);
573    if (UseImm) {
574      unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
575      unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32));
576      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
577                              TII.get(Opc), ImmReg)
578                      .addImm(Imm));
579      return ImmReg;
580    }
581  }
582
583  // Load from constant pool.  For now 32-bit only.
584  if (VT != MVT::i32)
585    return false;
586
587  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
588
589  // MachineConstantPool wants an explicit alignment.
590  unsigned Align = TD.getPrefTypeAlignment(C->getType());
591  if (Align == 0) {
592    // TODO: Figure out if this is correct.
593    Align = TD.getTypeAllocSize(C->getType());
594  }
595  unsigned Idx = MCP.getConstantPoolIndex(C, Align);
596
597  if (isThumb2)
598    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
599                            TII.get(ARM::t2LDRpci), DestReg)
600                    .addConstantPoolIndex(Idx));
601  else
602    // The extra immediate is for addrmode2.
603    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
604                            TII.get(ARM::LDRcp), DestReg)
605                    .addConstantPoolIndex(Idx)
606                    .addImm(0));
607
608  return DestReg;
609}
610
611unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) {
612  // For now 32-bit only.
613  if (VT != MVT::i32) return 0;
614
615  Reloc::Model RelocM = TM.getRelocationModel();
616
617  // TODO: Need more magic for ARM PIC.
618  if (!isThumb2 && (RelocM == Reloc::PIC_)) return 0;
619
620  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
621
622  // Use movw+movt when possible, it avoids constant pool entries.
623  if (Subtarget->isTargetDarwin() && Subtarget->useMovt()) {
624    unsigned Opc;
625    switch (RelocM) {
626    case Reloc::PIC_:
627      Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
628      break;
629    case Reloc::DynamicNoPIC:
630      Opc = isThumb2 ? ARM::t2MOV_ga_dyn : ARM::MOV_ga_dyn;
631      break;
632    default:
633      Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
634      break;
635    }
636    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
637                            DestReg).addGlobalAddress(GV));
638  } else {
639    // MachineConstantPool wants an explicit alignment.
640    unsigned Align = TD.getPrefTypeAlignment(GV->getType());
641    if (Align == 0) {
642      // TODO: Figure out if this is correct.
643      Align = TD.getTypeAllocSize(GV->getType());
644    }
645
646    // Grab index.
647    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 :
648      (Subtarget->isThumb() ? 4 : 8);
649    unsigned Id = AFI->createPICLabelUId();
650    ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
651                                                                ARMCP::CPValue,
652                                                                PCAdj);
653    unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
654
655    // Load value.
656    MachineInstrBuilder MIB;
657    if (isThumb2) {
658      unsigned Opc = (RelocM!=Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
659      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
660        .addConstantPoolIndex(Idx);
661      if (RelocM == Reloc::PIC_)
662        MIB.addImm(Id);
663    } else {
664      // The extra immediate is for addrmode2.
665      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
666                    DestReg)
667        .addConstantPoolIndex(Idx)
668        .addImm(0);
669    }
670    AddOptionalDefs(MIB);
671  }
672
673  if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) {
674    MachineInstrBuilder MIB;
675    unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
676    if (isThumb2)
677      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
678                    TII.get(ARM::t2LDRi12), NewDestReg)
679            .addReg(DestReg)
680            .addImm(0);
681    else
682      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRi12),
683                    NewDestReg)
684            .addReg(DestReg)
685            .addImm(0);
686    DestReg = NewDestReg;
687    AddOptionalDefs(MIB);
688  }
689
690  return DestReg;
691}
692
693unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
694  EVT VT = TLI.getValueType(C->getType(), true);
695
696  // Only handle simple types.
697  if (!VT.isSimple()) return 0;
698
699  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
700    return ARMMaterializeFP(CFP, VT);
701  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
702    return ARMMaterializeGV(GV, VT);
703  else if (isa<ConstantInt>(C))
704    return ARMMaterializeInt(C, VT);
705
706  return 0;
707}
708
709// TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
710
711unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
712  // Don't handle dynamic allocas.
713  if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
714
715  MVT VT;
716  if (!isLoadTypeLegal(AI->getType(), VT)) return false;
717
718  DenseMap<const AllocaInst*, int>::iterator SI =
719    FuncInfo.StaticAllocaMap.find(AI);
720
721  // This will get lowered later into the correct offsets and registers
722  // via rewriteXFrameIndex.
723  if (SI != FuncInfo.StaticAllocaMap.end()) {
724    TargetRegisterClass* RC = TLI.getRegClassFor(VT);
725    unsigned ResultReg = createResultReg(RC);
726    unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
727    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
728                            TII.get(Opc), ResultReg)
729                            .addFrameIndex(SI->second)
730                            .addImm(0));
731    return ResultReg;
732  }
733
734  return 0;
735}
736
737bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
738  EVT evt = TLI.getValueType(Ty, true);
739
740  // Only handle simple types.
741  if (evt == MVT::Other || !evt.isSimple()) return false;
742  VT = evt.getSimpleVT();
743
744  // Handle all legal types, i.e. a register that will directly hold this
745  // value.
746  return TLI.isTypeLegal(VT);
747}
748
749bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
750  if (isTypeLegal(Ty, VT)) return true;
751
752  // If this is a type than can be sign or zero-extended to a basic operation
753  // go ahead and accept it now.
754  if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
755    return true;
756
757  return false;
758}
759
760// Computes the address to get to an object.
761bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
762  // Some boilerplate from the X86 FastISel.
763  const User *U = NULL;
764  unsigned Opcode = Instruction::UserOp1;
765  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
766    // Don't walk into other basic blocks unless the object is an alloca from
767    // another block, otherwise it may not have a virtual register assigned.
768    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
769        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
770      Opcode = I->getOpcode();
771      U = I;
772    }
773  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
774    Opcode = C->getOpcode();
775    U = C;
776  }
777
778  if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
779    if (Ty->getAddressSpace() > 255)
780      // Fast instruction selection doesn't support the special
781      // address spaces.
782      return false;
783
784  switch (Opcode) {
785    default:
786    break;
787    case Instruction::BitCast: {
788      // Look through bitcasts.
789      return ARMComputeAddress(U->getOperand(0), Addr);
790    }
791    case Instruction::IntToPtr: {
792      // Look past no-op inttoptrs.
793      if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
794        return ARMComputeAddress(U->getOperand(0), Addr);
795      break;
796    }
797    case Instruction::PtrToInt: {
798      // Look past no-op ptrtoints.
799      if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
800        return ARMComputeAddress(U->getOperand(0), Addr);
801      break;
802    }
803    case Instruction::GetElementPtr: {
804      Address SavedAddr = Addr;
805      int TmpOffset = Addr.Offset;
806
807      // Iterate through the GEP folding the constants into offsets where
808      // we can.
809      gep_type_iterator GTI = gep_type_begin(U);
810      for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
811           i != e; ++i, ++GTI) {
812        const Value *Op = *i;
813        if (StructType *STy = dyn_cast<StructType>(*GTI)) {
814          const StructLayout *SL = TD.getStructLayout(STy);
815          unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
816          TmpOffset += SL->getElementOffset(Idx);
817        } else {
818          uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
819          for (;;) {
820            if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
821              // Constant-offset addressing.
822              TmpOffset += CI->getSExtValue() * S;
823              break;
824            }
825            if (isa<AddOperator>(Op) &&
826                (!isa<Instruction>(Op) ||
827                 FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()]
828                 == FuncInfo.MBB) &&
829                isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
830              // An add (in the same block) with a constant operand. Fold the
831              // constant.
832              ConstantInt *CI =
833              cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
834              TmpOffset += CI->getSExtValue() * S;
835              // Iterate on the other operand.
836              Op = cast<AddOperator>(Op)->getOperand(0);
837              continue;
838            }
839            // Unsupported
840            goto unsupported_gep;
841          }
842        }
843      }
844
845      // Try to grab the base operand now.
846      Addr.Offset = TmpOffset;
847      if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
848
849      // We failed, restore everything and try the other options.
850      Addr = SavedAddr;
851
852      unsupported_gep:
853      break;
854    }
855    case Instruction::Alloca: {
856      const AllocaInst *AI = cast<AllocaInst>(Obj);
857      DenseMap<const AllocaInst*, int>::iterator SI =
858        FuncInfo.StaticAllocaMap.find(AI);
859      if (SI != FuncInfo.StaticAllocaMap.end()) {
860        Addr.BaseType = Address::FrameIndexBase;
861        Addr.Base.FI = SI->second;
862        return true;
863      }
864      break;
865    }
866  }
867
868  // Try to get this in a register if nothing else has worked.
869  if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
870  return Addr.Base.Reg != 0;
871}
872
873void ARMFastISel::ARMSimplifyAddress(Address &Addr, EVT VT, bool useAM3) {
874
875  assert(VT.isSimple() && "Non-simple types are invalid here!");
876
877  bool needsLowering = false;
878  switch (VT.getSimpleVT().SimpleTy) {
879    default:
880      assert(false && "Unhandled load/store type!");
881      break;
882    case MVT::i1:
883    case MVT::i8:
884    case MVT::i16:
885    case MVT::i32:
886      if (!useAM3) {
887        // Integer loads/stores handle 12-bit offsets.
888        needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
889        // Handle negative offsets.
890        if (needsLowering && isThumb2)
891          needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
892                            Addr.Offset > -256);
893      } else {
894        // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
895        needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
896      }
897      break;
898    case MVT::f32:
899    case MVT::f64:
900      // Floating point operands handle 8-bit offsets.
901      needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
902      break;
903  }
904
905  // If this is a stack pointer and the offset needs to be simplified then
906  // put the alloca address into a register, set the base type back to
907  // register and continue. This should almost never happen.
908  if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
909    TargetRegisterClass *RC = isThumb2 ? ARM::tGPRRegisterClass :
910                              ARM::GPRRegisterClass;
911    unsigned ResultReg = createResultReg(RC);
912    unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
913    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
914                            TII.get(Opc), ResultReg)
915                            .addFrameIndex(Addr.Base.FI)
916                            .addImm(0));
917    Addr.Base.Reg = ResultReg;
918    Addr.BaseType = Address::RegBase;
919  }
920
921  // Since the offset is too large for the load/store instruction
922  // get the reg+offset into a register.
923  if (needsLowering) {
924    Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
925                                 /*Op0IsKill*/false, Addr.Offset, MVT::i32);
926    Addr.Offset = 0;
927  }
928}
929
930void ARMFastISel::AddLoadStoreOperands(EVT VT, Address &Addr,
931                                       const MachineInstrBuilder &MIB,
932                                       unsigned Flags, bool useAM3) {
933  // addrmode5 output depends on the selection dag addressing dividing the
934  // offset by 4 that it then later multiplies. Do this here as well.
935  if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
936      VT.getSimpleVT().SimpleTy == MVT::f64)
937    Addr.Offset /= 4;
938
939  // Frame base works a bit differently. Handle it separately.
940  if (Addr.BaseType == Address::FrameIndexBase) {
941    int FI = Addr.Base.FI;
942    int Offset = Addr.Offset;
943    MachineMemOperand *MMO =
944          FuncInfo.MF->getMachineMemOperand(
945                                  MachinePointerInfo::getFixedStack(FI, Offset),
946                                  Flags,
947                                  MFI.getObjectSize(FI),
948                                  MFI.getObjectAlignment(FI));
949    // Now add the rest of the operands.
950    MIB.addFrameIndex(FI);
951
952    // ARM halfword load/stores and signed byte loads need an additional
953    // operand.
954    if (useAM3) {
955      signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
956      MIB.addReg(0);
957      MIB.addImm(Imm);
958    } else {
959      MIB.addImm(Addr.Offset);
960    }
961    MIB.addMemOperand(MMO);
962  } else {
963    // Now add the rest of the operands.
964    MIB.addReg(Addr.Base.Reg);
965
966    // ARM halfword load/stores and signed byte loads need an additional
967    // operand.
968    if (useAM3) {
969      signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
970      MIB.addReg(0);
971      MIB.addImm(Imm);
972    } else {
973      MIB.addImm(Addr.Offset);
974    }
975  }
976  AddOptionalDefs(MIB);
977}
978
979bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr,
980                              unsigned Alignment, bool isZExt, bool allocReg) {
981  assert(VT.isSimple() && "Non-simple types are invalid here!");
982  unsigned Opc;
983  bool useAM3 = false;
984  bool needVMOV = false;
985  TargetRegisterClass *RC;
986  switch (VT.getSimpleVT().SimpleTy) {
987    // This is mostly going to be Neon/vector support.
988    default: return false;
989    case MVT::i1:
990    case MVT::i8:
991      if (isThumb2) {
992        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
993          Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
994        else
995          Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
996      } else {
997        if (isZExt) {
998          Opc = ARM::LDRBi12;
999        } else {
1000          Opc = ARM::LDRSB;
1001          useAM3 = true;
1002        }
1003      }
1004      RC = ARM::GPRRegisterClass;
1005      break;
1006    case MVT::i16:
1007      if (isThumb2) {
1008        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1009          Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
1010        else
1011          Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
1012      } else {
1013        Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
1014        useAM3 = true;
1015      }
1016      RC = ARM::GPRRegisterClass;
1017      break;
1018    case MVT::i32:
1019      if (isThumb2) {
1020        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1021          Opc = ARM::t2LDRi8;
1022        else
1023          Opc = ARM::t2LDRi12;
1024      } else {
1025        Opc = ARM::LDRi12;
1026      }
1027      RC = ARM::GPRRegisterClass;
1028      break;
1029    case MVT::f32:
1030      if (!Subtarget->hasVFP2()) return false;
1031      // Unaligned loads need special handling. Floats require word-alignment.
1032      if (Alignment && Alignment < 4) {
1033        needVMOV = true;
1034        VT = MVT::i32;
1035        Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
1036        RC = ARM::GPRRegisterClass;
1037      } else {
1038        Opc = ARM::VLDRS;
1039        RC = TLI.getRegClassFor(VT);
1040      }
1041      break;
1042    case MVT::f64:
1043      if (!Subtarget->hasVFP2()) return false;
1044      // FIXME: Unaligned loads need special handling.  Doublewords require
1045      // word-alignment.
1046      if (Alignment && Alignment < 4)
1047        return false;
1048
1049      Opc = ARM::VLDRD;
1050      RC = TLI.getRegClassFor(VT);
1051      break;
1052  }
1053  // Simplify this down to something we can handle.
1054  ARMSimplifyAddress(Addr, VT, useAM3);
1055
1056  // Create the base instruction, then add the operands.
1057  if (allocReg)
1058    ResultReg = createResultReg(RC);
1059  assert (ResultReg > 255 && "Expected an allocated virtual register.");
1060  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1061                                    TII.get(Opc), ResultReg);
1062  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
1063
1064  // If we had an unaligned load of a float we've converted it to an regular
1065  // load.  Now we must move from the GRP to the FP register.
1066  if (needVMOV) {
1067    unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1068    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1069                            TII.get(ARM::VMOVSR), MoveReg)
1070                    .addReg(ResultReg));
1071    ResultReg = MoveReg;
1072  }
1073  return true;
1074}
1075
1076bool ARMFastISel::SelectLoad(const Instruction *I) {
1077  // Atomic loads need special handling.
1078  if (cast<LoadInst>(I)->isAtomic())
1079    return false;
1080
1081  // Verify we have a legal type before going any further.
1082  MVT VT;
1083  if (!isLoadTypeLegal(I->getType(), VT))
1084    return false;
1085
1086  // See if we can handle this address.
1087  Address Addr;
1088  if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
1089
1090  unsigned ResultReg;
1091  if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
1092    return false;
1093  UpdateValueMap(I, ResultReg);
1094  return true;
1095}
1096
1097bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr,
1098                               unsigned Alignment) {
1099  unsigned StrOpc;
1100  bool useAM3 = false;
1101  switch (VT.getSimpleVT().SimpleTy) {
1102    // This is mostly going to be Neon/vector support.
1103    default: return false;
1104    case MVT::i1: {
1105      unsigned Res = createResultReg(isThumb2 ? ARM::tGPRRegisterClass :
1106                                               ARM::GPRRegisterClass);
1107      unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
1108      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1109                              TII.get(Opc), Res)
1110                      .addReg(SrcReg).addImm(1));
1111      SrcReg = Res;
1112    } // Fallthrough here.
1113    case MVT::i8:
1114      if (isThumb2) {
1115        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1116          StrOpc = ARM::t2STRBi8;
1117        else
1118          StrOpc = ARM::t2STRBi12;
1119      } else {
1120        StrOpc = ARM::STRBi12;
1121      }
1122      break;
1123    case MVT::i16:
1124      if (isThumb2) {
1125        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1126          StrOpc = ARM::t2STRHi8;
1127        else
1128          StrOpc = ARM::t2STRHi12;
1129      } else {
1130        StrOpc = ARM::STRH;
1131        useAM3 = true;
1132      }
1133      break;
1134    case MVT::i32:
1135      if (isThumb2) {
1136        if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1137          StrOpc = ARM::t2STRi8;
1138        else
1139          StrOpc = ARM::t2STRi12;
1140      } else {
1141        StrOpc = ARM::STRi12;
1142      }
1143      break;
1144    case MVT::f32:
1145      if (!Subtarget->hasVFP2()) return false;
1146      // Unaligned stores need special handling. Floats require word-alignment.
1147      if (Alignment && Alignment < 4) {
1148        unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1149        AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1150                                TII.get(ARM::VMOVRS), MoveReg)
1151                        .addReg(SrcReg));
1152        SrcReg = MoveReg;
1153        VT = MVT::i32;
1154        StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
1155      } else {
1156        StrOpc = ARM::VSTRS;
1157      }
1158      break;
1159    case MVT::f64:
1160      if (!Subtarget->hasVFP2()) return false;
1161      // FIXME: Unaligned stores need special handling.  Doublewords require
1162      // word-alignment.
1163      if (Alignment && Alignment < 4)
1164          return false;
1165
1166      StrOpc = ARM::VSTRD;
1167      break;
1168  }
1169  // Simplify this down to something we can handle.
1170  ARMSimplifyAddress(Addr, VT, useAM3);
1171
1172  // Create the base instruction, then add the operands.
1173  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1174                                    TII.get(StrOpc))
1175                            .addReg(SrcReg);
1176  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
1177  return true;
1178}
1179
1180bool ARMFastISel::SelectStore(const Instruction *I) {
1181  Value *Op0 = I->getOperand(0);
1182  unsigned SrcReg = 0;
1183
1184  // Atomic stores need special handling.
1185  if (cast<StoreInst>(I)->isAtomic())
1186    return false;
1187
1188  // Verify we have a legal type before going any further.
1189  MVT VT;
1190  if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1191    return false;
1192
1193  // Get the value to be stored into a register.
1194  SrcReg = getRegForValue(Op0);
1195  if (SrcReg == 0) return false;
1196
1197  // See if we can handle this address.
1198  Address Addr;
1199  if (!ARMComputeAddress(I->getOperand(1), Addr))
1200    return false;
1201
1202  if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
1203    return false;
1204  return true;
1205}
1206
1207static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1208  switch (Pred) {
1209    // Needs two compares...
1210    case CmpInst::FCMP_ONE:
1211    case CmpInst::FCMP_UEQ:
1212    default:
1213      // AL is our "false" for now. The other two need more compares.
1214      return ARMCC::AL;
1215    case CmpInst::ICMP_EQ:
1216    case CmpInst::FCMP_OEQ:
1217      return ARMCC::EQ;
1218    case CmpInst::ICMP_SGT:
1219    case CmpInst::FCMP_OGT:
1220      return ARMCC::GT;
1221    case CmpInst::ICMP_SGE:
1222    case CmpInst::FCMP_OGE:
1223      return ARMCC::GE;
1224    case CmpInst::ICMP_UGT:
1225    case CmpInst::FCMP_UGT:
1226      return ARMCC::HI;
1227    case CmpInst::FCMP_OLT:
1228      return ARMCC::MI;
1229    case CmpInst::ICMP_ULE:
1230    case CmpInst::FCMP_OLE:
1231      return ARMCC::LS;
1232    case CmpInst::FCMP_ORD:
1233      return ARMCC::VC;
1234    case CmpInst::FCMP_UNO:
1235      return ARMCC::VS;
1236    case CmpInst::FCMP_UGE:
1237      return ARMCC::PL;
1238    case CmpInst::ICMP_SLT:
1239    case CmpInst::FCMP_ULT:
1240      return ARMCC::LT;
1241    case CmpInst::ICMP_SLE:
1242    case CmpInst::FCMP_ULE:
1243      return ARMCC::LE;
1244    case CmpInst::FCMP_UNE:
1245    case CmpInst::ICMP_NE:
1246      return ARMCC::NE;
1247    case CmpInst::ICMP_UGE:
1248      return ARMCC::HS;
1249    case CmpInst::ICMP_ULT:
1250      return ARMCC::LO;
1251  }
1252}
1253
1254bool ARMFastISel::SelectBranch(const Instruction *I) {
1255  const BranchInst *BI = cast<BranchInst>(I);
1256  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1257  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1258
1259  // Simple branch support.
1260
1261  // If we can, avoid recomputing the compare - redoing it could lead to wonky
1262  // behavior.
1263  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1264    if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1265
1266      // Get the compare predicate.
1267      // Try to take advantage of fallthrough opportunities.
1268      CmpInst::Predicate Predicate = CI->getPredicate();
1269      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1270        std::swap(TBB, FBB);
1271        Predicate = CmpInst::getInversePredicate(Predicate);
1272      }
1273
1274      ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1275
1276      // We may not handle every CC for now.
1277      if (ARMPred == ARMCC::AL) return false;
1278
1279      // Emit the compare.
1280      if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1281        return false;
1282
1283      unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1284      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1285      .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1286      FastEmitBranch(FBB, DL);
1287      FuncInfo.MBB->addSuccessor(TBB);
1288      return true;
1289    }
1290  } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1291    MVT SourceVT;
1292    if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1293        (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1294      unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1295      unsigned OpReg = getRegForValue(TI->getOperand(0));
1296      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1297                              TII.get(TstOpc))
1298                      .addReg(OpReg).addImm(1));
1299
1300      unsigned CCMode = ARMCC::NE;
1301      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1302        std::swap(TBB, FBB);
1303        CCMode = ARMCC::EQ;
1304      }
1305
1306      unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1307      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1308      .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1309
1310      FastEmitBranch(FBB, DL);
1311      FuncInfo.MBB->addSuccessor(TBB);
1312      return true;
1313    }
1314  } else if (const ConstantInt *CI =
1315             dyn_cast<ConstantInt>(BI->getCondition())) {
1316    uint64_t Imm = CI->getZExtValue();
1317    MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1318    FastEmitBranch(Target, DL);
1319    return true;
1320  }
1321
1322  unsigned CmpReg = getRegForValue(BI->getCondition());
1323  if (CmpReg == 0) return false;
1324
1325  // We've been divorced from our compare!  Our block was split, and
1326  // now our compare lives in a predecessor block.  We musn't
1327  // re-compare here, as the children of the compare aren't guaranteed
1328  // live across the block boundary (we *could* check for this).
1329  // Regardless, the compare has been done in the predecessor block,
1330  // and it left a value for us in a virtual register.  Ergo, we test
1331  // the one-bit value left in the virtual register.
1332  unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1333  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TstOpc))
1334                  .addReg(CmpReg).addImm(1));
1335
1336  unsigned CCMode = ARMCC::NE;
1337  if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1338    std::swap(TBB, FBB);
1339    CCMode = ARMCC::EQ;
1340  }
1341
1342  unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1343  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1344                  .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1345  FastEmitBranch(FBB, DL);
1346  FuncInfo.MBB->addSuccessor(TBB);
1347  return true;
1348}
1349
1350bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1351                             bool isZExt) {
1352  Type *Ty = Src1Value->getType();
1353  EVT SrcVT = TLI.getValueType(Ty, true);
1354  if (!SrcVT.isSimple()) return false;
1355
1356  bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
1357  if (isFloat && !Subtarget->hasVFP2())
1358    return false;
1359
1360  // Check to see if the 2nd operand is a constant that we can encode directly
1361  // in the compare.
1362  int Imm = 0;
1363  bool UseImm = false;
1364  bool isNegativeImm = false;
1365  // FIXME: At -O0 we don't have anything that canonicalizes operand order.
1366  // Thus, Src1Value may be a ConstantInt, but we're missing it.
1367  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
1368    if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
1369        SrcVT == MVT::i1) {
1370      const APInt &CIVal = ConstInt->getValue();
1371      Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
1372      if (Imm < 0) {
1373        isNegativeImm = true;
1374        Imm = -Imm;
1375      }
1376      UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1377        (ARM_AM::getSOImmVal(Imm) != -1);
1378    }
1379  } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
1380    if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
1381      if (ConstFP->isZero() && !ConstFP->isNegative())
1382        UseImm = true;
1383  }
1384
1385  unsigned CmpOpc;
1386  bool isICmp = true;
1387  bool needsExt = false;
1388  switch (SrcVT.getSimpleVT().SimpleTy) {
1389    default: return false;
1390    // TODO: Verify compares.
1391    case MVT::f32:
1392      isICmp = false;
1393      CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES;
1394      break;
1395    case MVT::f64:
1396      isICmp = false;
1397      CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED;
1398      break;
1399    case MVT::i1:
1400    case MVT::i8:
1401    case MVT::i16:
1402      needsExt = true;
1403    // Intentional fall-through.
1404    case MVT::i32:
1405      if (isThumb2) {
1406        if (!UseImm)
1407          CmpOpc = ARM::t2CMPrr;
1408        else
1409          CmpOpc = isNegativeImm ? ARM::t2CMNzri : ARM::t2CMPri;
1410      } else {
1411        if (!UseImm)
1412          CmpOpc = ARM::CMPrr;
1413        else
1414          CmpOpc = isNegativeImm ? ARM::CMNzri : ARM::CMPri;
1415      }
1416      break;
1417  }
1418
1419  unsigned SrcReg1 = getRegForValue(Src1Value);
1420  if (SrcReg1 == 0) return false;
1421
1422  unsigned SrcReg2 = 0;
1423  if (!UseImm) {
1424    SrcReg2 = getRegForValue(Src2Value);
1425    if (SrcReg2 == 0) return false;
1426  }
1427
1428  // We have i1, i8, or i16, we need to either zero extend or sign extend.
1429  if (needsExt) {
1430    unsigned ResultReg;
1431    ResultReg = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
1432    if (ResultReg == 0) return false;
1433    SrcReg1 = ResultReg;
1434    if (!UseImm) {
1435      ResultReg = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
1436      if (ResultReg == 0) return false;
1437      SrcReg2 = ResultReg;
1438    }
1439  }
1440
1441  if (!UseImm) {
1442    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1443                            TII.get(CmpOpc))
1444                    .addReg(SrcReg1).addReg(SrcReg2));
1445  } else {
1446    MachineInstrBuilder MIB;
1447    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1448      .addReg(SrcReg1);
1449
1450    // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
1451    if (isICmp)
1452      MIB.addImm(Imm);
1453    AddOptionalDefs(MIB);
1454  }
1455
1456  // For floating point we need to move the result to a comparison register
1457  // that we can then use for branches.
1458  if (Ty->isFloatTy() || Ty->isDoubleTy())
1459    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1460                            TII.get(ARM::FMSTAT)));
1461  return true;
1462}
1463
1464bool ARMFastISel::SelectCmp(const Instruction *I) {
1465  const CmpInst *CI = cast<CmpInst>(I);
1466  Type *Ty = CI->getOperand(0)->getType();
1467
1468  // Get the compare predicate.
1469  ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1470
1471  // We may not handle every CC for now.
1472  if (ARMPred == ARMCC::AL) return false;
1473
1474  // Emit the compare.
1475  if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1476    return false;
1477
1478  // Now set a register based on the comparison. Explicitly set the predicates
1479  // here.
1480  unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1481  TargetRegisterClass *RC = isThumb2 ? ARM::rGPRRegisterClass
1482                                    : ARM::GPRRegisterClass;
1483  unsigned DestReg = createResultReg(RC);
1484  Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1485  unsigned ZeroReg = TargetMaterializeConstant(Zero);
1486  bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
1487  unsigned CondReg = isFloat ? ARM::FPSCR : ARM::CPSR;
1488  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
1489          .addReg(ZeroReg).addImm(1)
1490          .addImm(ARMPred).addReg(CondReg);
1491
1492  UpdateValueMap(I, DestReg);
1493  return true;
1494}
1495
1496bool ARMFastISel::SelectFPExt(const Instruction *I) {
1497  // Make sure we have VFP and that we're extending float to double.
1498  if (!Subtarget->hasVFP2()) return false;
1499
1500  Value *V = I->getOperand(0);
1501  if (!I->getType()->isDoubleTy() ||
1502      !V->getType()->isFloatTy()) return false;
1503
1504  unsigned Op = getRegForValue(V);
1505  if (Op == 0) return false;
1506
1507  unsigned Result = createResultReg(ARM::DPRRegisterClass);
1508  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1509                          TII.get(ARM::VCVTDS), Result)
1510                  .addReg(Op));
1511  UpdateValueMap(I, Result);
1512  return true;
1513}
1514
1515bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1516  // Make sure we have VFP and that we're truncating double to float.
1517  if (!Subtarget->hasVFP2()) return false;
1518
1519  Value *V = I->getOperand(0);
1520  if (!(I->getType()->isFloatTy() &&
1521        V->getType()->isDoubleTy())) return false;
1522
1523  unsigned Op = getRegForValue(V);
1524  if (Op == 0) return false;
1525
1526  unsigned Result = createResultReg(ARM::SPRRegisterClass);
1527  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1528                          TII.get(ARM::VCVTSD), Result)
1529                  .addReg(Op));
1530  UpdateValueMap(I, Result);
1531  return true;
1532}
1533
1534bool ARMFastISel::SelectSIToFP(const Instruction *I) {
1535  // Make sure we have VFP.
1536  if (!Subtarget->hasVFP2()) return false;
1537
1538  MVT DstVT;
1539  Type *Ty = I->getType();
1540  if (!isTypeLegal(Ty, DstVT))
1541    return false;
1542
1543  Value *Src = I->getOperand(0);
1544  EVT SrcVT = TLI.getValueType(Src->getType(), true);
1545  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1546    return false;
1547
1548  unsigned SrcReg = getRegForValue(Src);
1549  if (SrcReg == 0) return false;
1550
1551  // Handle sign-extension.
1552  if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
1553    EVT DestVT = MVT::i32;
1554    unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, /*isZExt*/ false);
1555    if (ResultReg == 0) return false;
1556    SrcReg = ResultReg;
1557  }
1558
1559  // The conversion routine works on fp-reg to fp-reg and the operand above
1560  // was an integer, move it to the fp registers if possible.
1561  unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1562  if (FP == 0) return false;
1563
1564  unsigned Opc;
1565  if (Ty->isFloatTy()) Opc = ARM::VSITOS;
1566  else if (Ty->isDoubleTy()) Opc = ARM::VSITOD;
1567  else return false;
1568
1569  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1570  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1571                          ResultReg)
1572                  .addReg(FP));
1573  UpdateValueMap(I, ResultReg);
1574  return true;
1575}
1576
1577bool ARMFastISel::SelectFPToSI(const Instruction *I) {
1578  // Make sure we have VFP.
1579  if (!Subtarget->hasVFP2()) return false;
1580
1581  MVT DstVT;
1582  Type *RetTy = I->getType();
1583  if (!isTypeLegal(RetTy, DstVT))
1584    return false;
1585
1586  unsigned Op = getRegForValue(I->getOperand(0));
1587  if (Op == 0) return false;
1588
1589  unsigned Opc;
1590  Type *OpTy = I->getOperand(0)->getType();
1591  if (OpTy->isFloatTy()) Opc = ARM::VTOSIZS;
1592  else if (OpTy->isDoubleTy()) Opc = ARM::VTOSIZD;
1593  else return false;
1594
1595  // f64->s32 or f32->s32 both need an intermediate f32 reg.
1596  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1597  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1598                          ResultReg)
1599                  .addReg(Op));
1600
1601  // This result needs to be in an integer register, but the conversion only
1602  // takes place in fp-regs.
1603  unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1604  if (IntReg == 0) return false;
1605
1606  UpdateValueMap(I, IntReg);
1607  return true;
1608}
1609
1610bool ARMFastISel::SelectSelect(const Instruction *I) {
1611  MVT VT;
1612  if (!isTypeLegal(I->getType(), VT))
1613    return false;
1614
1615  // Things need to be register sized for register moves.
1616  if (VT != MVT::i32) return false;
1617  const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
1618
1619  unsigned CondReg = getRegForValue(I->getOperand(0));
1620  if (CondReg == 0) return false;
1621  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1622  if (Op1Reg == 0) return false;
1623
1624  // Check to see if we can use an immediate in the conditional move.
1625  int Imm = 0;
1626  bool UseImm = false;
1627  bool isNegativeImm = false;
1628  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
1629    assert (VT == MVT::i32 && "Expecting an i32.");
1630    Imm = (int)ConstInt->getValue().getZExtValue();
1631    if (Imm < 0) {
1632      isNegativeImm = true;
1633      Imm = ~Imm;
1634    }
1635    UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1636      (ARM_AM::getSOImmVal(Imm) != -1);
1637  }
1638
1639  unsigned Op2Reg = 0;
1640  if (!UseImm) {
1641    Op2Reg = getRegForValue(I->getOperand(2));
1642    if (Op2Reg == 0) return false;
1643  }
1644
1645  unsigned CmpOpc = isThumb2 ? ARM::t2CMPri : ARM::CMPri;
1646  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1647                  .addReg(CondReg).addImm(0));
1648
1649  unsigned MovCCOpc;
1650  if (!UseImm) {
1651    MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
1652  } else {
1653    if (!isNegativeImm) {
1654      MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1655    } else {
1656      MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
1657    }
1658  }
1659  unsigned ResultReg = createResultReg(RC);
1660  if (!UseImm)
1661    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1662    .addReg(Op2Reg).addReg(Op1Reg).addImm(ARMCC::NE).addReg(ARM::CPSR);
1663  else
1664    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1665    .addReg(Op1Reg).addImm(Imm).addImm(ARMCC::EQ).addReg(ARM::CPSR);
1666  UpdateValueMap(I, ResultReg);
1667  return true;
1668}
1669
1670bool ARMFastISel::SelectSDiv(const Instruction *I) {
1671  MVT VT;
1672  Type *Ty = I->getType();
1673  if (!isTypeLegal(Ty, VT))
1674    return false;
1675
1676  // If we have integer div support we should have selected this automagically.
1677  // In case we have a real miss go ahead and return false and we'll pick
1678  // it up later.
1679  if (Subtarget->hasDivide()) return false;
1680
1681  // Otherwise emit a libcall.
1682  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1683  if (VT == MVT::i8)
1684    LC = RTLIB::SDIV_I8;
1685  else if (VT == MVT::i16)
1686    LC = RTLIB::SDIV_I16;
1687  else if (VT == MVT::i32)
1688    LC = RTLIB::SDIV_I32;
1689  else if (VT == MVT::i64)
1690    LC = RTLIB::SDIV_I64;
1691  else if (VT == MVT::i128)
1692    LC = RTLIB::SDIV_I128;
1693  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1694
1695  return ARMEmitLibcall(I, LC);
1696}
1697
1698bool ARMFastISel::SelectSRem(const Instruction *I) {
1699  MVT VT;
1700  Type *Ty = I->getType();
1701  if (!isTypeLegal(Ty, VT))
1702    return false;
1703
1704  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1705  if (VT == MVT::i8)
1706    LC = RTLIB::SREM_I8;
1707  else if (VT == MVT::i16)
1708    LC = RTLIB::SREM_I16;
1709  else if (VT == MVT::i32)
1710    LC = RTLIB::SREM_I32;
1711  else if (VT == MVT::i64)
1712    LC = RTLIB::SREM_I64;
1713  else if (VT == MVT::i128)
1714    LC = RTLIB::SREM_I128;
1715  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1716
1717  return ARMEmitLibcall(I, LC);
1718}
1719
1720bool ARMFastISel::SelectBinaryOp(const Instruction *I, unsigned ISDOpcode) {
1721  EVT VT  = TLI.getValueType(I->getType(), true);
1722
1723  // We can get here in the case when we want to use NEON for our fp
1724  // operations, but can't figure out how to. Just use the vfp instructions
1725  // if we have them.
1726  // FIXME: It'd be nice to use NEON instructions.
1727  Type *Ty = I->getType();
1728  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1729  if (isFloat && !Subtarget->hasVFP2())
1730    return false;
1731
1732  unsigned Opc;
1733  bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1734  switch (ISDOpcode) {
1735    default: return false;
1736    case ISD::FADD:
1737      Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1738      break;
1739    case ISD::FSUB:
1740      Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1741      break;
1742    case ISD::FMUL:
1743      Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1744      break;
1745  }
1746  unsigned Op1 = getRegForValue(I->getOperand(0));
1747  if (Op1 == 0) return false;
1748
1749  unsigned Op2 = getRegForValue(I->getOperand(1));
1750  if (Op2 == 0) return false;
1751
1752  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1753  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1754                          TII.get(Opc), ResultReg)
1755                  .addReg(Op1).addReg(Op2));
1756  UpdateValueMap(I, ResultReg);
1757  return true;
1758}
1759
1760// Call Handling Code
1761
1762// This is largely taken directly from CCAssignFnForNode - we don't support
1763// varargs in FastISel so that part has been removed.
1764// TODO: We may not support all of this.
1765CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) {
1766  switch (CC) {
1767  default:
1768    llvm_unreachable("Unsupported calling convention");
1769  case CallingConv::Fast:
1770    // Ignore fastcc. Silence compiler warnings.
1771    (void)RetFastCC_ARM_APCS;
1772    (void)FastCC_ARM_APCS;
1773    // Fallthrough
1774  case CallingConv::C:
1775    // Use target triple & subtarget features to do actual dispatch.
1776    if (Subtarget->isAAPCS_ABI()) {
1777      if (Subtarget->hasVFP2() &&
1778          TM.Options.FloatABIType == FloatABI::Hard)
1779        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1780      else
1781        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1782    } else
1783        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1784  case CallingConv::ARM_AAPCS_VFP:
1785    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1786  case CallingConv::ARM_AAPCS:
1787    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1788  case CallingConv::ARM_APCS:
1789    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1790  }
1791}
1792
1793bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1794                                  SmallVectorImpl<unsigned> &ArgRegs,
1795                                  SmallVectorImpl<MVT> &ArgVTs,
1796                                  SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1797                                  SmallVectorImpl<unsigned> &RegArgs,
1798                                  CallingConv::ID CC,
1799                                  unsigned &NumBytes) {
1800  SmallVector<CCValAssign, 16> ArgLocs;
1801  CCState CCInfo(CC, false, *FuncInfo.MF, TM, ArgLocs, *Context);
1802  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false));
1803
1804  // Get a count of how many bytes are to be pushed on the stack.
1805  NumBytes = CCInfo.getNextStackOffset();
1806
1807  // Issue CALLSEQ_START
1808  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1809  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1810                          TII.get(AdjStackDown))
1811                  .addImm(NumBytes));
1812
1813  // Process the args.
1814  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1815    CCValAssign &VA = ArgLocs[i];
1816    unsigned Arg = ArgRegs[VA.getValNo()];
1817    MVT ArgVT = ArgVTs[VA.getValNo()];
1818
1819    // We don't handle NEON/vector parameters yet.
1820    if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1821      return false;
1822
1823    // Handle arg promotion, etc.
1824    switch (VA.getLocInfo()) {
1825      case CCValAssign::Full: break;
1826      case CCValAssign::SExt: {
1827        MVT DestVT = VA.getLocVT();
1828        unsigned ResultReg = ARMEmitIntExt(ArgVT, Arg, DestVT,
1829                                           /*isZExt*/false);
1830        assert (ResultReg != 0 && "Failed to emit a sext");
1831        Arg = ResultReg;
1832        ArgVT = DestVT;
1833        break;
1834      }
1835      case CCValAssign::AExt:
1836        // Intentional fall-through.  Handle AExt and ZExt.
1837      case CCValAssign::ZExt: {
1838        MVT DestVT = VA.getLocVT();
1839        unsigned ResultReg = ARMEmitIntExt(ArgVT, Arg, DestVT,
1840                                           /*isZExt*/true);
1841        assert (ResultReg != 0 && "Failed to emit a sext");
1842        Arg = ResultReg;
1843        ArgVT = DestVT;
1844        break;
1845      }
1846      case CCValAssign::BCvt: {
1847        unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
1848                                 /*TODO: Kill=*/false);
1849        assert(BC != 0 && "Failed to emit a bitcast!");
1850        Arg = BC;
1851        ArgVT = VA.getLocVT();
1852        break;
1853      }
1854      default: llvm_unreachable("Unknown arg promotion!");
1855    }
1856
1857    // Now copy/store arg to correct locations.
1858    if (VA.isRegLoc() && !VA.needsCustom()) {
1859      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1860              VA.getLocReg())
1861        .addReg(Arg);
1862      RegArgs.push_back(VA.getLocReg());
1863    } else if (VA.needsCustom()) {
1864      // TODO: We need custom lowering for vector (v2f64) args.
1865      if (VA.getLocVT() != MVT::f64) return false;
1866
1867      CCValAssign &NextVA = ArgLocs[++i];
1868
1869      // TODO: Only handle register args for now.
1870      if(!(VA.isRegLoc() && NextVA.isRegLoc())) return false;
1871
1872      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1873                              TII.get(ARM::VMOVRRD), VA.getLocReg())
1874                      .addReg(NextVA.getLocReg(), RegState::Define)
1875                      .addReg(Arg));
1876      RegArgs.push_back(VA.getLocReg());
1877      RegArgs.push_back(NextVA.getLocReg());
1878    } else {
1879      assert(VA.isMemLoc());
1880      // Need to store on the stack.
1881      Address Addr;
1882      Addr.BaseType = Address::RegBase;
1883      Addr.Base.Reg = ARM::SP;
1884      Addr.Offset = VA.getLocMemOffset();
1885
1886      if (!ARMEmitStore(ArgVT, Arg, Addr)) return false;
1887    }
1888  }
1889  return true;
1890}
1891
1892bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
1893                             const Instruction *I, CallingConv::ID CC,
1894                             unsigned &NumBytes) {
1895  // Issue CALLSEQ_END
1896  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
1897  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1898                          TII.get(AdjStackUp))
1899                  .addImm(NumBytes).addImm(0));
1900
1901  // Now the return value.
1902  if (RetVT != MVT::isVoid) {
1903    SmallVector<CCValAssign, 16> RVLocs;
1904    CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
1905    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true));
1906
1907    // Copy all of the result registers out of their specified physreg.
1908    if (RVLocs.size() == 2 && RetVT == MVT::f64) {
1909      // For this move we copy into two registers and then move into the
1910      // double fp reg we want.
1911      EVT DestVT = RVLocs[0].getValVT();
1912      TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
1913      unsigned ResultReg = createResultReg(DstRC);
1914      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1915                              TII.get(ARM::VMOVDRR), ResultReg)
1916                      .addReg(RVLocs[0].getLocReg())
1917                      .addReg(RVLocs[1].getLocReg()));
1918
1919      UsedRegs.push_back(RVLocs[0].getLocReg());
1920      UsedRegs.push_back(RVLocs[1].getLocReg());
1921
1922      // Finally update the result.
1923      UpdateValueMap(I, ResultReg);
1924    } else {
1925      assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
1926      EVT CopyVT = RVLocs[0].getValVT();
1927
1928      // Special handling for extended integers.
1929      if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
1930        CopyVT = MVT::i32;
1931
1932      TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1933
1934      unsigned ResultReg = createResultReg(DstRC);
1935      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1936              ResultReg).addReg(RVLocs[0].getLocReg());
1937      UsedRegs.push_back(RVLocs[0].getLocReg());
1938
1939      // Finally update the result.
1940      UpdateValueMap(I, ResultReg);
1941    }
1942  }
1943
1944  return true;
1945}
1946
1947bool ARMFastISel::SelectRet(const Instruction *I) {
1948  const ReturnInst *Ret = cast<ReturnInst>(I);
1949  const Function &F = *I->getParent()->getParent();
1950
1951  if (!FuncInfo.CanLowerReturn)
1952    return false;
1953
1954  if (F.isVarArg())
1955    return false;
1956
1957  CallingConv::ID CC = F.getCallingConv();
1958  if (Ret->getNumOperands() > 0) {
1959    SmallVector<ISD::OutputArg, 4> Outs;
1960    GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
1961                  Outs, TLI);
1962
1963    // Analyze operands of the call, assigning locations to each operand.
1964    SmallVector<CCValAssign, 16> ValLocs;
1965    CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,I->getContext());
1966    CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */));
1967
1968    const Value *RV = Ret->getOperand(0);
1969    unsigned Reg = getRegForValue(RV);
1970    if (Reg == 0)
1971      return false;
1972
1973    // Only handle a single return value for now.
1974    if (ValLocs.size() != 1)
1975      return false;
1976
1977    CCValAssign &VA = ValLocs[0];
1978
1979    // Don't bother handling odd stuff for now.
1980    if (VA.getLocInfo() != CCValAssign::Full)
1981      return false;
1982    // Only handle register returns for now.
1983    if (!VA.isRegLoc())
1984      return false;
1985
1986    unsigned SrcReg = Reg + VA.getValNo();
1987    EVT RVVT = TLI.getValueType(RV->getType());
1988    EVT DestVT = VA.getValVT();
1989    // Special handling for extended integers.
1990    if (RVVT != DestVT) {
1991      if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
1992        return false;
1993
1994      if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1995        return false;
1996
1997      assert(DestVT == MVT::i32 && "ARM should always ext to i32");
1998
1999      bool isZExt = Outs[0].Flags.isZExt();
2000      unsigned ResultReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, isZExt);
2001      if (ResultReg == 0) return false;
2002      SrcReg = ResultReg;
2003    }
2004
2005    // Make the copy.
2006    unsigned DstReg = VA.getLocReg();
2007    const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
2008    // Avoid a cross-class copy. This is very unlikely.
2009    if (!SrcRC->contains(DstReg))
2010      return false;
2011    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
2012            DstReg).addReg(SrcReg);
2013
2014    // Mark the register as live out of the function.
2015    MRI.addLiveOut(VA.getLocReg());
2016  }
2017
2018  unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET;
2019  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2020                          TII.get(RetOpc)));
2021  return true;
2022}
2023
2024unsigned ARMFastISel::ARMSelectCallOp(const GlobalValue *GV) {
2025
2026  // iOS needs the r9 versions of the opcodes.
2027  bool isiOS = Subtarget->isTargetIOS();
2028  if (isThumb2) {
2029    return isiOS ? ARM::tBLr9 : ARM::tBL;
2030  } else  {
2031    return isiOS ? ARM::BLr9 : ARM::BL;
2032  }
2033}
2034
2035// A quick function that will emit a call for a named libcall in F with the
2036// vector of passed arguments for the Instruction in I. We can assume that we
2037// can emit a call for any libcall we can produce. This is an abridged version
2038// of the full call infrastructure since we won't need to worry about things
2039// like computed function pointers or strange arguments at call sites.
2040// TODO: Try to unify this and the normal call bits for ARM, then try to unify
2041// with X86.
2042bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
2043  CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
2044
2045  // Handle *simple* calls for now.
2046  Type *RetTy = I->getType();
2047  MVT RetVT;
2048  if (RetTy->isVoidTy())
2049    RetVT = MVT::isVoid;
2050  else if (!isTypeLegal(RetTy, RetVT))
2051    return false;
2052
2053  // TODO: For now if we have long calls specified we don't handle the call.
2054  if (EnableARMLongCalls) return false;
2055
2056  // Set up the argument vectors.
2057  SmallVector<Value*, 8> Args;
2058  SmallVector<unsigned, 8> ArgRegs;
2059  SmallVector<MVT, 8> ArgVTs;
2060  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2061  Args.reserve(I->getNumOperands());
2062  ArgRegs.reserve(I->getNumOperands());
2063  ArgVTs.reserve(I->getNumOperands());
2064  ArgFlags.reserve(I->getNumOperands());
2065  for (unsigned i = 0; i < I->getNumOperands(); ++i) {
2066    Value *Op = I->getOperand(i);
2067    unsigned Arg = getRegForValue(Op);
2068    if (Arg == 0) return false;
2069
2070    Type *ArgTy = Op->getType();
2071    MVT ArgVT;
2072    if (!isTypeLegal(ArgTy, ArgVT)) return false;
2073
2074    ISD::ArgFlagsTy Flags;
2075    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
2076    Flags.setOrigAlign(OriginalAlignment);
2077
2078    Args.push_back(Op);
2079    ArgRegs.push_back(Arg);
2080    ArgVTs.push_back(ArgVT);
2081    ArgFlags.push_back(Flags);
2082  }
2083
2084  // Handle the arguments now that we've gotten them.
2085  SmallVector<unsigned, 4> RegArgs;
2086  unsigned NumBytes;
2087  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
2088    return false;
2089
2090  // Issue the call, BLr9 for iOS, BL otherwise.
2091  // TODO: Turn this into the table of arm call ops.
2092  MachineInstrBuilder MIB;
2093  unsigned CallOpc = ARMSelectCallOp(NULL);
2094  if(isThumb2)
2095    // Explicitly adding the predicate here.
2096    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2097                         TII.get(CallOpc)))
2098                         .addExternalSymbol(TLI.getLibcallName(Call));
2099  else
2100    // Explicitly adding the predicate here.
2101    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2102                         TII.get(CallOpc))
2103          .addExternalSymbol(TLI.getLibcallName(Call)));
2104
2105  // Add implicit physical register uses to the call.
2106  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2107    MIB.addReg(RegArgs[i]);
2108
2109  // Finish off the call including any return values.
2110  SmallVector<unsigned, 4> UsedRegs;
2111  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
2112
2113  // Set all unused physreg defs as dead.
2114  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2115
2116  return true;
2117}
2118
2119bool ARMFastISel::SelectCall(const Instruction *I,
2120                             const char *IntrMemName = 0) {
2121  const CallInst *CI = cast<CallInst>(I);
2122  const Value *Callee = CI->getCalledValue();
2123
2124  // Can't handle inline asm.
2125  if (isa<InlineAsm>(Callee)) return false;
2126
2127  // Only handle global variable Callees.
2128  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
2129  if (!GV)
2130    return false;
2131
2132  // Check the calling convention.
2133  ImmutableCallSite CS(CI);
2134  CallingConv::ID CC = CS.getCallingConv();
2135
2136  // TODO: Avoid some calling conventions?
2137
2138  // Let SDISel handle vararg functions.
2139  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
2140  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2141  if (FTy->isVarArg())
2142    return false;
2143
2144  // Handle *simple* calls for now.
2145  Type *RetTy = I->getType();
2146  MVT RetVT;
2147  if (RetTy->isVoidTy())
2148    RetVT = MVT::isVoid;
2149  else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
2150           RetVT != MVT::i8  && RetVT != MVT::i1)
2151    return false;
2152
2153  // TODO: For now if we have long calls specified we don't handle the call.
2154  if (EnableARMLongCalls) return false;
2155
2156  // Set up the argument vectors.
2157  SmallVector<Value*, 8> Args;
2158  SmallVector<unsigned, 8> ArgRegs;
2159  SmallVector<MVT, 8> ArgVTs;
2160  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2161  Args.reserve(CS.arg_size());
2162  ArgRegs.reserve(CS.arg_size());
2163  ArgVTs.reserve(CS.arg_size());
2164  ArgFlags.reserve(CS.arg_size());
2165  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
2166       i != e; ++i) {
2167    // If we're lowering a memory intrinsic instead of a regular call, skip the
2168    // last two arguments, which shouldn't be passed to the underlying function.
2169    if (IntrMemName && e-i <= 2)
2170      break;
2171
2172    ISD::ArgFlagsTy Flags;
2173    unsigned AttrInd = i - CS.arg_begin() + 1;
2174    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
2175      Flags.setSExt();
2176    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
2177      Flags.setZExt();
2178
2179    // FIXME: Only handle *easy* calls for now.
2180    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
2181        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
2182        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
2183        CS.paramHasAttr(AttrInd, Attribute::ByVal))
2184      return false;
2185
2186    Type *ArgTy = (*i)->getType();
2187    MVT ArgVT;
2188    if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
2189        ArgVT != MVT::i1)
2190      return false;
2191
2192    unsigned Arg = getRegForValue(*i);
2193    if (Arg == 0)
2194      return false;
2195
2196    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
2197    Flags.setOrigAlign(OriginalAlignment);
2198
2199    Args.push_back(*i);
2200    ArgRegs.push_back(Arg);
2201    ArgVTs.push_back(ArgVT);
2202    ArgFlags.push_back(Flags);
2203  }
2204
2205  // Handle the arguments now that we've gotten them.
2206  SmallVector<unsigned, 4> RegArgs;
2207  unsigned NumBytes;
2208  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
2209    return false;
2210
2211  // Issue the call, BLr9 for iOS, BL otherwise.
2212  // TODO: Turn this into the table of arm call ops.
2213  MachineInstrBuilder MIB;
2214  unsigned CallOpc = ARMSelectCallOp(GV);
2215  // Explicitly adding the predicate here.
2216  if(isThumb2) {
2217    // Explicitly adding the predicate here.
2218    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2219                                 TII.get(CallOpc)));
2220    if (!IntrMemName)
2221      MIB.addGlobalAddress(GV, 0, 0);
2222    else
2223      MIB.addExternalSymbol(IntrMemName, 0);
2224  } else {
2225    if (!IntrMemName)
2226      // Explicitly adding the predicate here.
2227      MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2228                                   TII.get(CallOpc))
2229            .addGlobalAddress(GV, 0, 0));
2230    else
2231      MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2232                                   TII.get(CallOpc))
2233            .addExternalSymbol(IntrMemName, 0));
2234  }
2235
2236  // Add implicit physical register uses to the call.
2237  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2238    MIB.addReg(RegArgs[i]);
2239
2240  // Finish off the call including any return values.
2241  SmallVector<unsigned, 4> UsedRegs;
2242  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
2243
2244  // Set all unused physreg defs as dead.
2245  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2246
2247  return true;
2248}
2249
2250bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
2251  return Len <= 16;
2252}
2253
2254bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len) {
2255  // Make sure we don't bloat code by inlining very large memcpy's.
2256  if (!ARMIsMemCpySmall(Len))
2257    return false;
2258
2259  // We don't care about alignment here since we just emit integer accesses.
2260  while (Len) {
2261    MVT VT;
2262    if (Len >= 4)
2263      VT = MVT::i32;
2264    else if (Len >= 2)
2265      VT = MVT::i16;
2266    else {
2267      assert(Len == 1);
2268      VT = MVT::i8;
2269    }
2270
2271    bool RV;
2272    unsigned ResultReg;
2273    RV = ARMEmitLoad(VT, ResultReg, Src);
2274    assert (RV = true && "Should be able to handle this load.");
2275    RV = ARMEmitStore(VT, ResultReg, Dest);
2276    assert (RV = true && "Should be able to handle this store.");
2277
2278    unsigned Size = VT.getSizeInBits()/8;
2279    Len -= Size;
2280    Dest.Offset += Size;
2281    Src.Offset += Size;
2282  }
2283
2284  return true;
2285}
2286
2287bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
2288  // FIXME: Handle more intrinsics.
2289  switch (I.getIntrinsicID()) {
2290  default: return false;
2291  case Intrinsic::memcpy:
2292  case Intrinsic::memmove: {
2293    const MemTransferInst &MTI = cast<MemTransferInst>(I);
2294    // Don't handle volatile.
2295    if (MTI.isVolatile())
2296      return false;
2297
2298    // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
2299    // we would emit dead code because we don't currently handle memmoves.
2300    bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
2301    if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
2302      // Small memcpy's are common enough that we want to do them without a call
2303      // if possible.
2304      uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
2305      if (ARMIsMemCpySmall(Len)) {
2306        Address Dest, Src;
2307        if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
2308            !ARMComputeAddress(MTI.getRawSource(), Src))
2309          return false;
2310        if (ARMTryEmitSmallMemCpy(Dest, Src, Len))
2311          return true;
2312      }
2313    }
2314
2315    if (!MTI.getLength()->getType()->isIntegerTy(32))
2316      return false;
2317
2318    if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
2319      return false;
2320
2321    const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
2322    return SelectCall(&I, IntrMemName);
2323  }
2324  case Intrinsic::memset: {
2325    const MemSetInst &MSI = cast<MemSetInst>(I);
2326    // Don't handle volatile.
2327    if (MSI.isVolatile())
2328      return false;
2329
2330    if (!MSI.getLength()->getType()->isIntegerTy(32))
2331      return false;
2332
2333    if (MSI.getDestAddressSpace() > 255)
2334      return false;
2335
2336    return SelectCall(&I, "memset");
2337  }
2338  }
2339  return false;
2340}
2341
2342bool ARMFastISel::SelectTrunc(const Instruction *I) {
2343  // The high bits for a type smaller than the register size are assumed to be
2344  // undefined.
2345  Value *Op = I->getOperand(0);
2346
2347  EVT SrcVT, DestVT;
2348  SrcVT = TLI.getValueType(Op->getType(), true);
2349  DestVT = TLI.getValueType(I->getType(), true);
2350
2351  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2352    return false;
2353  if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2354    return false;
2355
2356  unsigned SrcReg = getRegForValue(Op);
2357  if (!SrcReg) return false;
2358
2359  // Because the high bits are undefined, a truncate doesn't generate
2360  // any code.
2361  UpdateValueMap(I, SrcReg);
2362  return true;
2363}
2364
2365unsigned ARMFastISel::ARMEmitIntExt(EVT SrcVT, unsigned SrcReg, EVT DestVT,
2366                                    bool isZExt) {
2367  if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2368    return 0;
2369
2370  unsigned Opc;
2371  bool isBoolZext = false;
2372  if (!SrcVT.isSimple()) return 0;
2373  switch (SrcVT.getSimpleVT().SimpleTy) {
2374  default: return 0;
2375  case MVT::i16:
2376    if (!Subtarget->hasV6Ops()) return 0;
2377    if (isZExt)
2378      Opc = isThumb2 ? ARM::t2UXTH : ARM::UXTH;
2379    else
2380      Opc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
2381    break;
2382  case MVT::i8:
2383    if (!Subtarget->hasV6Ops()) return 0;
2384    if (isZExt)
2385      Opc = isThumb2 ? ARM::t2UXTB : ARM::UXTB;
2386    else
2387      Opc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
2388    break;
2389  case MVT::i1:
2390    if (isZExt) {
2391      Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
2392      isBoolZext = true;
2393      break;
2394    }
2395    return 0;
2396  }
2397
2398  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::i32));
2399  MachineInstrBuilder MIB;
2400  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
2401        .addReg(SrcReg);
2402  if (isBoolZext)
2403    MIB.addImm(1);
2404  else
2405    MIB.addImm(0);
2406  AddOptionalDefs(MIB);
2407  return ResultReg;
2408}
2409
2410bool ARMFastISel::SelectIntExt(const Instruction *I) {
2411  // On ARM, in general, integer casts don't involve legal types; this code
2412  // handles promotable integers.
2413  Type *DestTy = I->getType();
2414  Value *Src = I->getOperand(0);
2415  Type *SrcTy = Src->getType();
2416
2417  EVT SrcVT, DestVT;
2418  SrcVT = TLI.getValueType(SrcTy, true);
2419  DestVT = TLI.getValueType(DestTy, true);
2420
2421  bool isZExt = isa<ZExtInst>(I);
2422  unsigned SrcReg = getRegForValue(Src);
2423  if (!SrcReg) return false;
2424
2425  unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2426  if (ResultReg == 0) return false;
2427  UpdateValueMap(I, ResultReg);
2428  return true;
2429}
2430
2431// TODO: SoftFP support.
2432bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
2433
2434  switch (I->getOpcode()) {
2435    case Instruction::Load:
2436      return SelectLoad(I);
2437    case Instruction::Store:
2438      return SelectStore(I);
2439    case Instruction::Br:
2440      return SelectBranch(I);
2441    case Instruction::ICmp:
2442    case Instruction::FCmp:
2443      return SelectCmp(I);
2444    case Instruction::FPExt:
2445      return SelectFPExt(I);
2446    case Instruction::FPTrunc:
2447      return SelectFPTrunc(I);
2448    case Instruction::SIToFP:
2449      return SelectSIToFP(I);
2450    case Instruction::FPToSI:
2451      return SelectFPToSI(I);
2452    case Instruction::FAdd:
2453      return SelectBinaryOp(I, ISD::FADD);
2454    case Instruction::FSub:
2455      return SelectBinaryOp(I, ISD::FSUB);
2456    case Instruction::FMul:
2457      return SelectBinaryOp(I, ISD::FMUL);
2458    case Instruction::SDiv:
2459      return SelectSDiv(I);
2460    case Instruction::SRem:
2461      return SelectSRem(I);
2462    case Instruction::Call:
2463      if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2464        return SelectIntrinsicCall(*II);
2465      return SelectCall(I);
2466    case Instruction::Select:
2467      return SelectSelect(I);
2468    case Instruction::Ret:
2469      return SelectRet(I);
2470    case Instruction::Trunc:
2471      return SelectTrunc(I);
2472    case Instruction::ZExt:
2473    case Instruction::SExt:
2474      return SelectIntExt(I);
2475    default: break;
2476  }
2477  return false;
2478}
2479
2480/// TryToFoldLoad - The specified machine instr operand is a vreg, and that
2481/// vreg is being provided by the specified load instruction.  If possible,
2482/// try to fold the load as an operand to the instruction, returning true if
2483/// successful.
2484bool ARMFastISel::TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
2485                                const LoadInst *LI) {
2486  // Verify we have a legal type before going any further.
2487  MVT VT;
2488  if (!isLoadTypeLegal(LI->getType(), VT))
2489    return false;
2490
2491  // Combine load followed by zero- or sign-extend.
2492  // ldrb r1, [r0]       ldrb r1, [r0]
2493  // uxtb r2, r1     =>
2494  // mov  r3, r2         mov  r3, r1
2495  bool isZExt = true;
2496  switch(MI->getOpcode()) {
2497    default: return false;
2498    case ARM::SXTH:
2499    case ARM::t2SXTH:
2500      isZExt = false;
2501    case ARM::UXTH:
2502    case ARM::t2UXTH:
2503      if (VT != MVT::i16)
2504        return false;
2505    break;
2506    case ARM::SXTB:
2507    case ARM::t2SXTB:
2508      isZExt = false;
2509    case ARM::UXTB:
2510    case ARM::t2UXTB:
2511      if (VT != MVT::i8)
2512        return false;
2513    break;
2514  }
2515  // See if we can handle this address.
2516  Address Addr;
2517  if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
2518
2519  unsigned ResultReg = MI->getOperand(0).getReg();
2520  if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
2521    return false;
2522  MI->eraseFromParent();
2523  return true;
2524}
2525
2526namespace llvm {
2527  llvm::FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) {
2528    // Completely untested on non-iOS.
2529    const TargetMachine &TM = funcInfo.MF->getTarget();
2530
2531    // Darwin and thumb1 only for now.
2532    const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
2533    if (Subtarget->isTargetIOS() && !Subtarget->isThumb1Only() &&
2534        !DisableARMFastISel)
2535      return new ARMFastISel(funcInfo);
2536    return 0;
2537  }
2538}
2539