ARMFastISel.cpp revision 56f9c1e73b86dc5a85fc8c15475228d67f7f482c
1//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the ARM-specific support for the FastISel class. Some
11// of the target-specific code is generated by tablegen in the file
12// ARMGenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "ARM.h"
17#include "ARMBaseInstrInfo.h"
18#include "ARMCallingConv.h"
19#include "ARMRegisterInfo.h"
20#include "ARMTargetMachine.h"
21#include "ARMSubtarget.h"
22#include "ARMConstantPoolValue.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Instructions.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/Module.h"
29#include "llvm/CodeGen/Analysis.h"
30#include "llvm/CodeGen/FastISel.h"
31#include "llvm/CodeGen/FunctionLoweringInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineConstantPool.h"
35#include "llvm/CodeGen/MachineFrameInfo.h"
36#include "llvm/CodeGen/MachineMemOperand.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/Support/CallSite.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/GetElementPtrTypeIterator.h"
43#include "llvm/Target/TargetData.h"
44#include "llvm/Target/TargetInstrInfo.h"
45#include "llvm/Target/TargetLowering.h"
46#include "llvm/Target/TargetMachine.h"
47#include "llvm/Target/TargetOptions.h"
48using namespace llvm;
49
50static cl::opt<bool>
51DisableARMFastISel("disable-arm-fast-isel",
52                    cl::desc("Turn off experimental ARM fast-isel support"),
53                    cl::init(false), cl::Hidden);
54
55namespace {
56
57class ARMFastISel : public FastISel {
58
59  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
60  /// make the right decision when generating code for different targets.
61  const ARMSubtarget *Subtarget;
62  const TargetMachine &TM;
63  const TargetInstrInfo &TII;
64  const TargetLowering &TLI;
65  ARMFunctionInfo *AFI;
66
67  // Convenience variables to avoid some queries.
68  bool isThumb;
69  LLVMContext *Context;
70
71  public:
72    explicit ARMFastISel(FunctionLoweringInfo &funcInfo)
73    : FastISel(funcInfo),
74      TM(funcInfo.MF->getTarget()),
75      TII(*TM.getInstrInfo()),
76      TLI(*TM.getTargetLowering()) {
77      Subtarget = &TM.getSubtarget<ARMSubtarget>();
78      AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
79      isThumb = AFI->isThumbFunction();
80      Context = &funcInfo.Fn->getContext();
81    }
82
83    // Code from FastISel.cpp.
84    virtual unsigned FastEmitInst_(unsigned MachineInstOpcode,
85                                   const TargetRegisterClass *RC);
86    virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
87                                    const TargetRegisterClass *RC,
88                                    unsigned Op0, bool Op0IsKill);
89    virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
90                                     const TargetRegisterClass *RC,
91                                     unsigned Op0, bool Op0IsKill,
92                                     unsigned Op1, bool Op1IsKill);
93    virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
94                                     const TargetRegisterClass *RC,
95                                     unsigned Op0, bool Op0IsKill,
96                                     uint64_t Imm);
97    virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
98                                     const TargetRegisterClass *RC,
99                                     unsigned Op0, bool Op0IsKill,
100                                     const ConstantFP *FPImm);
101    virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode,
102                                    const TargetRegisterClass *RC,
103                                    uint64_t Imm);
104    virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
105                                      const TargetRegisterClass *RC,
106                                      unsigned Op0, bool Op0IsKill,
107                                      unsigned Op1, bool Op1IsKill,
108                                      uint64_t Imm);
109    virtual unsigned FastEmitInst_extractsubreg(MVT RetVT,
110                                                unsigned Op0, bool Op0IsKill,
111                                                uint32_t Idx);
112
113    // Backend specific FastISel code.
114    virtual bool TargetSelectInstruction(const Instruction *I);
115    virtual unsigned TargetMaterializeConstant(const Constant *C);
116    virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
117
118  #include "ARMGenFastISel.inc"
119
120    // Instruction selection routines.
121  private:
122    bool SelectLoad(const Instruction *I);
123    bool SelectStore(const Instruction *I);
124    bool SelectBranch(const Instruction *I);
125    bool SelectCmp(const Instruction *I);
126    bool SelectFPExt(const Instruction *I);
127    bool SelectFPTrunc(const Instruction *I);
128    bool SelectBinaryOp(const Instruction *I, unsigned ISDOpcode);
129    bool SelectSIToFP(const Instruction *I);
130    bool SelectFPToSI(const Instruction *I);
131    bool SelectSDiv(const Instruction *I);
132    bool SelectSRem(const Instruction *I);
133    bool SelectCall(const Instruction *I);
134    bool SelectSelect(const Instruction *I);
135    bool SelectRet(const Instruction *I);
136
137    // Utility routines.
138  private:
139    bool isTypeLegal(const Type *Ty, MVT &VT);
140    bool isLoadTypeLegal(const Type *Ty, MVT &VT);
141    bool ARMEmitLoad(EVT VT, unsigned &ResultReg, unsigned Base, int Offset);
142    bool ARMEmitStore(EVT VT, unsigned SrcReg, unsigned Base, int Offset);
143    bool ARMComputeRegOffset(const Value *Obj, unsigned &Base, int &Offset);
144    void ARMSimplifyRegOffset(unsigned &Base, int &Offset, EVT VT);
145    unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
146    unsigned ARMMaterializeInt(const Constant *C, EVT VT);
147    unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT);
148    unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
149    unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);
150
151    // Call handling routines.
152  private:
153    bool FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
154                        unsigned &ResultReg);
155    CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return);
156    bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
157                         SmallVectorImpl<unsigned> &ArgRegs,
158                         SmallVectorImpl<MVT> &ArgVTs,
159                         SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
160                         SmallVectorImpl<unsigned> &RegArgs,
161                         CallingConv::ID CC,
162                         unsigned &NumBytes);
163    bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
164                    const Instruction *I, CallingConv::ID CC,
165                    unsigned &NumBytes);
166    bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
167
168    // OptionalDef handling routines.
169  private:
170    bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
171    const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
172};
173
174} // end anonymous namespace
175
176#include "ARMGenCallingConv.inc"
177
178// DefinesOptionalPredicate - This is different from DefinesPredicate in that
179// we don't care about implicit defs here, just places we'll need to add a
180// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
181bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
182  const TargetInstrDesc &TID = MI->getDesc();
183  if (!TID.hasOptionalDef())
184    return false;
185
186  // Look to see if our OptionalDef is defining CPSR or CCR.
187  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
188    const MachineOperand &MO = MI->getOperand(i);
189    if (!MO.isReg() || !MO.isDef()) continue;
190    if (MO.getReg() == ARM::CPSR)
191      *CPSR = true;
192  }
193  return true;
194}
195
196// If the machine is predicable go ahead and add the predicate operands, if
197// it needs default CC operands add those.
198// TODO: If we want to support thumb1 then we'll need to deal with optional
199// CPSR defs that need to be added before the remaining operands. See s_cc_out
200// for descriptions why.
201const MachineInstrBuilder &
202ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
203  MachineInstr *MI = &*MIB;
204
205  // Do we use a predicate?
206  if (TII.isPredicable(MI))
207    AddDefaultPred(MIB);
208
209  // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
210  // defines CPSR. All other OptionalDefines in ARM are the CCR register.
211  bool CPSR = false;
212  if (DefinesOptionalPredicate(MI, &CPSR)) {
213    if (CPSR)
214      AddDefaultT1CC(MIB);
215    else
216      AddDefaultCC(MIB);
217  }
218  return MIB;
219}
220
221unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
222                                    const TargetRegisterClass* RC) {
223  unsigned ResultReg = createResultReg(RC);
224  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
225
226  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
227  return ResultReg;
228}
229
230unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
231                                     const TargetRegisterClass *RC,
232                                     unsigned Op0, bool Op0IsKill) {
233  unsigned ResultReg = createResultReg(RC);
234  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
235
236  if (II.getNumDefs() >= 1)
237    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
238                   .addReg(Op0, Op0IsKill * RegState::Kill));
239  else {
240    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
241                   .addReg(Op0, Op0IsKill * RegState::Kill));
242    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
243                   TII.get(TargetOpcode::COPY), ResultReg)
244                   .addReg(II.ImplicitDefs[0]));
245  }
246  return ResultReg;
247}
248
249unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
250                                      const TargetRegisterClass *RC,
251                                      unsigned Op0, bool Op0IsKill,
252                                      unsigned Op1, bool Op1IsKill) {
253  unsigned ResultReg = createResultReg(RC);
254  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
255
256  if (II.getNumDefs() >= 1)
257    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
258                   .addReg(Op0, Op0IsKill * RegState::Kill)
259                   .addReg(Op1, Op1IsKill * RegState::Kill));
260  else {
261    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
262                   .addReg(Op0, Op0IsKill * RegState::Kill)
263                   .addReg(Op1, Op1IsKill * RegState::Kill));
264    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
265                           TII.get(TargetOpcode::COPY), ResultReg)
266                   .addReg(II.ImplicitDefs[0]));
267  }
268  return ResultReg;
269}
270
271unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
272                                      const TargetRegisterClass *RC,
273                                      unsigned Op0, bool Op0IsKill,
274                                      uint64_t Imm) {
275  unsigned ResultReg = createResultReg(RC);
276  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
277
278  if (II.getNumDefs() >= 1)
279    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
280                   .addReg(Op0, Op0IsKill * RegState::Kill)
281                   .addImm(Imm));
282  else {
283    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
284                   .addReg(Op0, Op0IsKill * RegState::Kill)
285                   .addImm(Imm));
286    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
287                           TII.get(TargetOpcode::COPY), ResultReg)
288                   .addReg(II.ImplicitDefs[0]));
289  }
290  return ResultReg;
291}
292
293unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
294                                      const TargetRegisterClass *RC,
295                                      unsigned Op0, bool Op0IsKill,
296                                      const ConstantFP *FPImm) {
297  unsigned ResultReg = createResultReg(RC);
298  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
299
300  if (II.getNumDefs() >= 1)
301    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
302                   .addReg(Op0, Op0IsKill * RegState::Kill)
303                   .addFPImm(FPImm));
304  else {
305    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
306                   .addReg(Op0, Op0IsKill * RegState::Kill)
307                   .addFPImm(FPImm));
308    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
309                           TII.get(TargetOpcode::COPY), ResultReg)
310                   .addReg(II.ImplicitDefs[0]));
311  }
312  return ResultReg;
313}
314
315unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
316                                       const TargetRegisterClass *RC,
317                                       unsigned Op0, bool Op0IsKill,
318                                       unsigned Op1, bool Op1IsKill,
319                                       uint64_t Imm) {
320  unsigned ResultReg = createResultReg(RC);
321  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
322
323  if (II.getNumDefs() >= 1)
324    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
325                   .addReg(Op0, Op0IsKill * RegState::Kill)
326                   .addReg(Op1, Op1IsKill * RegState::Kill)
327                   .addImm(Imm));
328  else {
329    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
330                   .addReg(Op0, Op0IsKill * RegState::Kill)
331                   .addReg(Op1, Op1IsKill * RegState::Kill)
332                   .addImm(Imm));
333    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
334                           TII.get(TargetOpcode::COPY), ResultReg)
335                   .addReg(II.ImplicitDefs[0]));
336  }
337  return ResultReg;
338}
339
340unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
341                                     const TargetRegisterClass *RC,
342                                     uint64_t Imm) {
343  unsigned ResultReg = createResultReg(RC);
344  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
345
346  if (II.getNumDefs() >= 1)
347    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
348                   .addImm(Imm));
349  else {
350    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
351                   .addImm(Imm));
352    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
353                           TII.get(TargetOpcode::COPY), ResultReg)
354                   .addReg(II.ImplicitDefs[0]));
355  }
356  return ResultReg;
357}
358
359unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
360                                                 unsigned Op0, bool Op0IsKill,
361                                                 uint32_t Idx) {
362  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
363  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
364         "Cannot yet extract from physregs");
365  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
366                         DL, TII.get(TargetOpcode::COPY), ResultReg)
367                 .addReg(Op0, getKillRegState(Op0IsKill), Idx));
368  return ResultReg;
369}
370
371// TODO: Don't worry about 64-bit now, but when this is fixed remove the
372// checks from the various callers.
373unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
374  if (VT == MVT::f64) return 0;
375
376  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
377  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
378                          TII.get(ARM::VMOVRS), MoveReg)
379                  .addReg(SrcReg));
380  return MoveReg;
381}
382
383unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
384  if (VT == MVT::i64) return 0;
385
386  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
387  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
388                          TII.get(ARM::VMOVSR), MoveReg)
389                  .addReg(SrcReg));
390  return MoveReg;
391}
392
393// For double width floating point we need to materialize two constants
394// (the high and the low) into integer registers then use a move to get
395// the combined constant into an FP reg.
396unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
397  const APFloat Val = CFP->getValueAPF();
398  bool is64bit = VT == MVT::f64;
399
400  // This checks to see if we can use VFP3 instructions to materialize
401  // a constant, otherwise we have to go through the constant pool.
402  if (TLI.isFPImmLegal(Val, VT)) {
403    unsigned Opc = is64bit ? ARM::FCONSTD : ARM::FCONSTS;
404    unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
405    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
406                            DestReg)
407                    .addFPImm(CFP));
408    return DestReg;
409  }
410
411  // Require VFP2 for loading fp constants.
412  if (!Subtarget->hasVFP2()) return false;
413
414  // MachineConstantPool wants an explicit alignment.
415  unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
416  if (Align == 0) {
417    // TODO: Figure out if this is correct.
418    Align = TD.getTypeAllocSize(CFP->getType());
419  }
420  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
421  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
422  unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
423
424  // The extra reg is for addrmode5.
425  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
426                          DestReg)
427                  .addConstantPoolIndex(Idx)
428                  .addReg(0));
429  return DestReg;
430}
431
432unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) {
433
434  // For now 32-bit only.
435  if (VT != MVT::i32) return false;
436
437  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
438
439  // If we can do this in a single instruction without a constant pool entry
440  // do so now.
441  const ConstantInt *CI = cast<ConstantInt>(C);
442  if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getSExtValue())) {
443    unsigned Opc = isThumb ? ARM::t2MOVi16 : ARM::MOVi16;
444    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
445			    TII.get(Opc), DestReg)
446		    .addImm(CI->getSExtValue()));
447    return DestReg;
448  }
449
450  // MachineConstantPool wants an explicit alignment.
451  unsigned Align = TD.getPrefTypeAlignment(C->getType());
452  if (Align == 0) {
453    // TODO: Figure out if this is correct.
454    Align = TD.getTypeAllocSize(C->getType());
455  }
456  unsigned Idx = MCP.getConstantPoolIndex(C, Align);
457
458  if (isThumb)
459    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
460                            TII.get(ARM::t2LDRpci), DestReg)
461                    .addConstantPoolIndex(Idx));
462  else
463    // The extra reg and immediate are for addrmode2.
464    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
465                            TII.get(ARM::LDRcp), DestReg)
466                    .addConstantPoolIndex(Idx)
467                    .addImm(0));
468
469  return DestReg;
470}
471
472unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) {
473  // For now 32-bit only.
474  if (VT != MVT::i32) return 0;
475
476  Reloc::Model RelocM = TM.getRelocationModel();
477
478  // TODO: No external globals for now.
479  if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) return 0;
480
481  // TODO: Need more magic for ARM PIC.
482  if (!isThumb && (RelocM == Reloc::PIC_)) return 0;
483
484  // MachineConstantPool wants an explicit alignment.
485  unsigned Align = TD.getPrefTypeAlignment(GV->getType());
486  if (Align == 0) {
487    // TODO: Figure out if this is correct.
488    Align = TD.getTypeAllocSize(GV->getType());
489  }
490
491  // Grab index.
492  unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb() ? 4 : 8);
493  unsigned Id = AFI->createConstPoolEntryUId();
494  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, Id,
495                                                       ARMCP::CPValue, PCAdj);
496  unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
497
498  // Load value.
499  MachineInstrBuilder MIB;
500  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
501  if (isThumb) {
502    unsigned Opc = (RelocM != Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
503    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
504          .addConstantPoolIndex(Idx);
505    if (RelocM == Reloc::PIC_)
506      MIB.addImm(Id);
507  } else {
508    // The extra reg and immediate are for addrmode2.
509    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
510                  DestReg)
511          .addConstantPoolIndex(Idx)
512          .addReg(0).addImm(0);
513  }
514  AddOptionalDefs(MIB);
515  return DestReg;
516}
517
518unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
519  EVT VT = TLI.getValueType(C->getType(), true);
520
521  // Only handle simple types.
522  if (!VT.isSimple()) return 0;
523
524  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
525    return ARMMaterializeFP(CFP, VT);
526  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
527    return ARMMaterializeGV(GV, VT);
528  else if (isa<ConstantInt>(C))
529    return ARMMaterializeInt(C, VT);
530
531  return 0;
532}
533
534unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
535  // Don't handle dynamic allocas.
536  if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
537
538  MVT VT;
539  if (!isLoadTypeLegal(AI->getType(), VT)) return false;
540
541  DenseMap<const AllocaInst*, int>::iterator SI =
542    FuncInfo.StaticAllocaMap.find(AI);
543
544  // This will get lowered later into the correct offsets and registers
545  // via rewriteXFrameIndex.
546  if (SI != FuncInfo.StaticAllocaMap.end()) {
547    TargetRegisterClass* RC = TLI.getRegClassFor(VT);
548    unsigned ResultReg = createResultReg(RC);
549    unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
550    AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
551                            TII.get(Opc), ResultReg)
552                            .addFrameIndex(SI->second)
553                            .addImm(0));
554    return ResultReg;
555  }
556
557  return 0;
558}
559
560bool ARMFastISel::isTypeLegal(const Type *Ty, MVT &VT) {
561  EVT evt = TLI.getValueType(Ty, true);
562
563  // Only handle simple types.
564  if (evt == MVT::Other || !evt.isSimple()) return false;
565  VT = evt.getSimpleVT();
566
567  // Handle all legal types, i.e. a register that will directly hold this
568  // value.
569  return TLI.isTypeLegal(VT);
570}
571
572bool ARMFastISel::isLoadTypeLegal(const Type *Ty, MVT &VT) {
573  if (isTypeLegal(Ty, VT)) return true;
574
575  // If this is a type than can be sign or zero-extended to a basic operation
576  // go ahead and accept it now.
577  if (VT == MVT::i8 || VT == MVT::i16)
578    return true;
579
580  return false;
581}
582
583// Computes the Reg+Offset to get to an object.
584bool ARMFastISel::ARMComputeRegOffset(const Value *Obj, unsigned &Base,
585                                      int &Offset) {
586  // Some boilerplate from the X86 FastISel.
587  const User *U = NULL;
588  unsigned Opcode = Instruction::UserOp1;
589  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
590    // Don't walk into other basic blocks; it's possible we haven't
591    // visited them yet, so the instructions may not yet be assigned
592    // virtual registers.
593    if (FuncInfo.MBBMap[I->getParent()] != FuncInfo.MBB)
594      return false;
595    Opcode = I->getOpcode();
596    U = I;
597  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
598    Opcode = C->getOpcode();
599    U = C;
600  }
601
602  if (const PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
603    if (Ty->getAddressSpace() > 255)
604      // Fast instruction selection doesn't support the special
605      // address spaces.
606      return false;
607
608  switch (Opcode) {
609    default:
610    break;
611    case Instruction::BitCast: {
612      // Look through bitcasts.
613      return ARMComputeRegOffset(U->getOperand(0), Base, Offset);
614    }
615    case Instruction::IntToPtr: {
616      // Look past no-op inttoptrs.
617      if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
618        return ARMComputeRegOffset(U->getOperand(0), Base, Offset);
619      break;
620    }
621    case Instruction::PtrToInt: {
622      // Look past no-op ptrtoints.
623      if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
624        return ARMComputeRegOffset(U->getOperand(0), Base, Offset);
625      break;
626    }
627    case Instruction::GetElementPtr: {
628      int SavedOffset = Offset;
629      unsigned SavedBase = Base;
630      int TmpOffset = Offset;
631
632      // Iterate through the GEP folding the constants into offsets where
633      // we can.
634      gep_type_iterator GTI = gep_type_begin(U);
635      for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
636           i != e; ++i, ++GTI) {
637        const Value *Op = *i;
638        if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
639          const StructLayout *SL = TD.getStructLayout(STy);
640          unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
641          TmpOffset += SL->getElementOffset(Idx);
642        } else {
643          uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
644          SmallVector<const Value *, 4> Worklist;
645          Worklist.push_back(Op);
646          do {
647            Op = Worklist.pop_back_val();
648            if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
649              // Constant-offset addressing.
650              TmpOffset += CI->getSExtValue() * S;
651            } else if (isa<AddOperator>(Op) &&
652                       isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
653              // An add with a constant operand. Fold the constant.
654              ConstantInt *CI =
655                cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
656              TmpOffset += CI->getSExtValue() * S;
657              // Add the other operand back to the work list.
658              Worklist.push_back(cast<AddOperator>(Op)->getOperand(0));
659            } else
660              goto unsupported_gep;
661          } while (!Worklist.empty());
662        }
663      }
664
665      // Try to grab the base operand now.
666      Offset = TmpOffset;
667      if (ARMComputeRegOffset(U->getOperand(0), Base, Offset)) return true;
668
669      // We failed, restore everything and try the other options.
670      Offset = SavedOffset;
671      Base = SavedBase;
672
673      unsupported_gep:
674      break;
675    }
676    case Instruction::Alloca: {
677      const AllocaInst *AI = cast<AllocaInst>(Obj);
678      unsigned Reg = TargetMaterializeAlloca(AI);
679
680      if (Reg == 0) return false;
681
682      Base = Reg;
683      return true;
684    }
685  }
686
687  // Materialize the global variable's address into a reg which can
688  // then be used later to load the variable.
689  if (const GlobalValue *GV = dyn_cast<GlobalValue>(Obj)) {
690    unsigned Tmp = ARMMaterializeGV(GV, TLI.getValueType(Obj->getType()));
691    if (Tmp == 0) return false;
692
693    Base = Tmp;
694    return true;
695  }
696
697  // Try to get this in a register if nothing else has worked.
698  if (Base == 0) Base = getRegForValue(Obj);
699  return Base != 0;
700}
701
702void ARMFastISel::ARMSimplifyRegOffset(unsigned &Base, int &Offset, EVT VT) {
703
704  assert(VT.isSimple() && "Non-simple types are invalid here!");
705
706  bool needsLowering = false;
707  switch (VT.getSimpleVT().SimpleTy) {
708    default:
709      assert(false && "Unhandled load/store type!");
710    case MVT::i1:
711    case MVT::i8:
712    case MVT::i16:
713    case MVT::i32:
714      // Integer loads/stores handle 12-bit offsets.
715      needsLowering = ((Offset & 0xfff) != Offset);
716      break;
717    case MVT::f32:
718    case MVT::f64:
719      // Floating point operands handle 8-bit offsets.
720      needsLowering = ((Offset & 0xff) != Offset);
721      break;
722  }
723
724  // Since the offset is too large for the load/store instruction
725  // get the reg+offset into a register.
726  if (needsLowering) {
727    ARMCC::CondCodes Pred = ARMCC::AL;
728    unsigned PredReg = 0;
729
730    TargetRegisterClass *RC = isThumb ? ARM::tGPRRegisterClass :
731      ARM::GPRRegisterClass;
732    unsigned BaseReg = createResultReg(RC);
733
734    if (!isThumb)
735      emitARMRegPlusImmediate(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
736                              BaseReg, Base, Offset, Pred, PredReg,
737                              static_cast<const ARMBaseInstrInfo&>(TII));
738    else {
739      assert(AFI->isThumb2Function());
740      emitT2RegPlusImmediate(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
741                             BaseReg, Base, Offset, Pred, PredReg,
742                             static_cast<const ARMBaseInstrInfo&>(TII));
743    }
744    Offset = 0;
745    Base = BaseReg;
746  }
747}
748
749bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg,
750                              unsigned Base, int Offset) {
751
752  assert(VT.isSimple() && "Non-simple types are invalid here!");
753  unsigned Opc;
754  TargetRegisterClass *RC;
755  bool isFloat = false;
756  switch (VT.getSimpleVT().SimpleTy) {
757    default:
758      // This is mostly going to be Neon/vector support.
759      return false;
760    case MVT::i16:
761      Opc = isThumb ? ARM::t2LDRHi12 : ARM::LDRH;
762      RC = ARM::GPRRegisterClass;
763      break;
764    case MVT::i8:
765      Opc = isThumb ? ARM::t2LDRBi12 : ARM::LDRBi12;
766      RC = ARM::GPRRegisterClass;
767      break;
768    case MVT::i32:
769      Opc = isThumb ? ARM::t2LDRi12 : ARM::LDRi12;
770      RC = ARM::GPRRegisterClass;
771      break;
772    case MVT::f32:
773      Opc = ARM::VLDRS;
774      RC = TLI.getRegClassFor(VT);
775      isFloat = true;
776      break;
777    case MVT::f64:
778      Opc = ARM::VLDRD;
779      RC = TLI.getRegClassFor(VT);
780      isFloat = true;
781      break;
782  }
783
784  ResultReg = createResultReg(RC);
785
786  ARMSimplifyRegOffset(Base, Offset, VT);
787
788  // addrmode5 output depends on the selection dag addressing dividing the
789  // offset by 4 that it then later multiplies. Do this here as well.
790  if (isFloat)
791    Offset /= 4;
792
793  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
794                          TII.get(Opc), ResultReg)
795                  .addReg(Base).addImm(Offset));
796  return true;
797}
798
799bool ARMFastISel::SelectLoad(const Instruction *I) {
800  // Verify we have a legal type before going any further.
801  MVT VT;
802  if (!isLoadTypeLegal(I->getType(), VT))
803    return false;
804
805  // Our register and offset with innocuous defaults.
806  unsigned Base = 0;
807  int Offset = 0;
808
809  // See if we can handle this as Reg + Offset
810  if (!ARMComputeRegOffset(I->getOperand(0), Base, Offset))
811    return false;
812
813  unsigned ResultReg;
814  if (!ARMEmitLoad(VT, ResultReg, Base, Offset)) return false;
815
816  UpdateValueMap(I, ResultReg);
817  return true;
818}
819
820bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg,
821                               unsigned Base, int Offset) {
822  unsigned StrOpc;
823  bool isFloat = false;
824  bool needReg0Op = false;
825  switch (VT.getSimpleVT().SimpleTy) {
826    default: return false;
827    case MVT::i1: {
828      unsigned Res = createResultReg(isThumb ? ARM::tGPRRegisterClass :
829                                               ARM::GPRRegisterClass);
830      unsigned Opc = isThumb ? ARM::t2ANDri : ARM::ANDri;
831      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
832                              TII.get(Opc), Res)
833                      .addReg(SrcReg).addImm(1));
834      SrcReg = Res;
835    } // Fallthrough here.
836    case MVT::i8:
837      StrOpc = isThumb ? ARM::t2STRBi12 : ARM::STRBi12;
838      break;
839    case MVT::i16:
840      StrOpc = isThumb ? ARM::t2STRHi12 : ARM::STRH;
841      needReg0Op = true;
842      break;
843    case MVT::i32:
844      StrOpc = isThumb ? ARM::t2STRi12 : ARM::STRi12;
845      break;
846    case MVT::f32:
847      if (!Subtarget->hasVFP2()) return false;
848      StrOpc = ARM::VSTRS;
849      isFloat = true;
850      break;
851    case MVT::f64:
852      if (!Subtarget->hasVFP2()) return false;
853      StrOpc = ARM::VSTRD;
854      isFloat = true;
855      break;
856  }
857
858  ARMSimplifyRegOffset(Base, Offset, VT);
859
860  // addrmode5 output depends on the selection dag addressing dividing the
861  // offset by 4 that it then later multiplies. Do this here as well.
862  if (isFloat)
863    Offset /= 4;
864
865  // FIXME: The 'needReg0Op' bit goes away once STRH is converted to
866  // not use the mega-addrmode stuff.
867  if (!needReg0Op)
868    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
869                            TII.get(StrOpc))
870                    .addReg(SrcReg).addReg(Base).addImm(Offset));
871  else
872    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
873                            TII.get(StrOpc))
874                    .addReg(SrcReg).addReg(Base).addReg(0).addImm(Offset));
875
876  return true;
877}
878
879bool ARMFastISel::SelectStore(const Instruction *I) {
880  Value *Op0 = I->getOperand(0);
881  unsigned SrcReg = 0;
882
883  // Yay type legalization
884  MVT VT;
885  if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
886    return false;
887
888  // Get the value to be stored into a register.
889  SrcReg = getRegForValue(Op0);
890  if (SrcReg == 0)
891    return false;
892
893  // Our register and offset with innocuous defaults.
894  unsigned Base = 0;
895  int Offset = 0;
896
897  // See if we can handle this as Reg + Offset
898  if (!ARMComputeRegOffset(I->getOperand(1), Base, Offset))
899    return false;
900
901  if (!ARMEmitStore(VT, SrcReg, Base, Offset)) return false;
902
903  return true;
904}
905
906static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
907  switch (Pred) {
908    // Needs two compares...
909    case CmpInst::FCMP_ONE:
910    case CmpInst::FCMP_UEQ:
911    default:
912      // AL is our "false" for now. The other two need more compares.
913      return ARMCC::AL;
914    case CmpInst::ICMP_EQ:
915    case CmpInst::FCMP_OEQ:
916      return ARMCC::EQ;
917    case CmpInst::ICMP_SGT:
918    case CmpInst::FCMP_OGT:
919      return ARMCC::GT;
920    case CmpInst::ICMP_SGE:
921    case CmpInst::FCMP_OGE:
922      return ARMCC::GE;
923    case CmpInst::ICMP_UGT:
924    case CmpInst::FCMP_UGT:
925      return ARMCC::HI;
926    case CmpInst::FCMP_OLT:
927      return ARMCC::MI;
928    case CmpInst::ICMP_ULE:
929    case CmpInst::FCMP_OLE:
930      return ARMCC::LS;
931    case CmpInst::FCMP_ORD:
932      return ARMCC::VC;
933    case CmpInst::FCMP_UNO:
934      return ARMCC::VS;
935    case CmpInst::FCMP_UGE:
936      return ARMCC::PL;
937    case CmpInst::ICMP_SLT:
938    case CmpInst::FCMP_ULT:
939      return ARMCC::LT;
940    case CmpInst::ICMP_SLE:
941    case CmpInst::FCMP_ULE:
942      return ARMCC::LE;
943    case CmpInst::FCMP_UNE:
944    case CmpInst::ICMP_NE:
945      return ARMCC::NE;
946    case CmpInst::ICMP_UGE:
947      return ARMCC::HS;
948    case CmpInst::ICMP_ULT:
949      return ARMCC::LO;
950  }
951}
952
953bool ARMFastISel::SelectBranch(const Instruction *I) {
954  const BranchInst *BI = cast<BranchInst>(I);
955  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
956  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
957
958  // Simple branch support.
959
960  // If we can, avoid recomputing the compare - redoing it could lead to wonky
961  // behavior.
962  // TODO: Factor this out.
963  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
964    if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
965      MVT VT;
966      const Type *Ty = CI->getOperand(0)->getType();
967      if (!isTypeLegal(Ty, VT))
968        return false;
969
970      bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
971      if (isFloat && !Subtarget->hasVFP2())
972        return false;
973
974      unsigned CmpOpc;
975      unsigned CondReg;
976      switch (VT.SimpleTy) {
977        default: return false;
978        // TODO: Verify compares.
979        case MVT::f32:
980          CmpOpc = ARM::VCMPES;
981          CondReg = ARM::FPSCR;
982          break;
983        case MVT::f64:
984          CmpOpc = ARM::VCMPED;
985          CondReg = ARM::FPSCR;
986          break;
987        case MVT::i32:
988          CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
989          CondReg = ARM::CPSR;
990          break;
991      }
992
993      // Get the compare predicate.
994      ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
995
996      // We may not handle every CC for now.
997      if (ARMPred == ARMCC::AL) return false;
998
999      unsigned Arg1 = getRegForValue(CI->getOperand(0));
1000      if (Arg1 == 0) return false;
1001
1002      unsigned Arg2 = getRegForValue(CI->getOperand(1));
1003      if (Arg2 == 0) return false;
1004
1005      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1006                              TII.get(CmpOpc))
1007                      .addReg(Arg1).addReg(Arg2));
1008
1009      // For floating point we need to move the result to a comparison register
1010      // that we can then use for branches.
1011      if (isFloat)
1012        AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1013                                TII.get(ARM::FMSTAT)));
1014
1015      unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1016      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1017      .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1018      FastEmitBranch(FBB, DL);
1019      FuncInfo.MBB->addSuccessor(TBB);
1020      return true;
1021    }
1022  }
1023
1024  unsigned CmpReg = getRegForValue(BI->getCondition());
1025  if (CmpReg == 0) return false;
1026
1027  // Re-set the flags just in case.
1028  unsigned CmpOpc = isThumb ? ARM::t2CMPri : ARM::CMPri;
1029  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1030                  .addReg(CmpReg).addImm(0));
1031
1032  unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1033  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1034                  .addMBB(TBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
1035  FastEmitBranch(FBB, DL);
1036  FuncInfo.MBB->addSuccessor(TBB);
1037  return true;
1038}
1039
1040bool ARMFastISel::SelectCmp(const Instruction *I) {
1041  const CmpInst *CI = cast<CmpInst>(I);
1042
1043  MVT VT;
1044  const Type *Ty = CI->getOperand(0)->getType();
1045  if (!isTypeLegal(Ty, VT))
1046    return false;
1047
1048  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1049  if (isFloat && !Subtarget->hasVFP2())
1050    return false;
1051
1052  unsigned CmpOpc;
1053  unsigned CondReg;
1054  switch (VT.SimpleTy) {
1055    default: return false;
1056    // TODO: Verify compares.
1057    case MVT::f32:
1058      CmpOpc = ARM::VCMPES;
1059      CondReg = ARM::FPSCR;
1060      break;
1061    case MVT::f64:
1062      CmpOpc = ARM::VCMPED;
1063      CondReg = ARM::FPSCR;
1064      break;
1065    case MVT::i32:
1066      CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
1067      CondReg = ARM::CPSR;
1068      break;
1069  }
1070
1071  // Get the compare predicate.
1072  ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1073
1074  // We may not handle every CC for now.
1075  if (ARMPred == ARMCC::AL) return false;
1076
1077  unsigned Arg1 = getRegForValue(CI->getOperand(0));
1078  if (Arg1 == 0) return false;
1079
1080  unsigned Arg2 = getRegForValue(CI->getOperand(1));
1081  if (Arg2 == 0) return false;
1082
1083  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1084                  .addReg(Arg1).addReg(Arg2));
1085
1086  // For floating point we need to move the result to a comparison register
1087  // that we can then use for branches.
1088  if (isFloat)
1089    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1090                            TII.get(ARM::FMSTAT)));
1091
1092  // Now set a register based on the comparison. Explicitly set the predicates
1093  // here.
1094  unsigned MovCCOpc = isThumb ? ARM::t2MOVCCi : ARM::MOVCCi;
1095  TargetRegisterClass *RC = isThumb ? ARM::rGPRRegisterClass
1096                                    : ARM::GPRRegisterClass;
1097  unsigned DestReg = createResultReg(RC);
1098  Constant *Zero
1099    = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1100  unsigned ZeroReg = TargetMaterializeConstant(Zero);
1101  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
1102          .addReg(ZeroReg).addImm(1)
1103          .addImm(ARMPred).addReg(CondReg);
1104
1105  UpdateValueMap(I, DestReg);
1106  return true;
1107}
1108
1109bool ARMFastISel::SelectFPExt(const Instruction *I) {
1110  // Make sure we have VFP and that we're extending float to double.
1111  if (!Subtarget->hasVFP2()) return false;
1112
1113  Value *V = I->getOperand(0);
1114  if (!I->getType()->isDoubleTy() ||
1115      !V->getType()->isFloatTy()) return false;
1116
1117  unsigned Op = getRegForValue(V);
1118  if (Op == 0) return false;
1119
1120  unsigned Result = createResultReg(ARM::DPRRegisterClass);
1121  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1122                          TII.get(ARM::VCVTDS), Result)
1123                  .addReg(Op));
1124  UpdateValueMap(I, Result);
1125  return true;
1126}
1127
1128bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1129  // Make sure we have VFP and that we're truncating double to float.
1130  if (!Subtarget->hasVFP2()) return false;
1131
1132  Value *V = I->getOperand(0);
1133  if (!(I->getType()->isFloatTy() &&
1134        V->getType()->isDoubleTy())) return false;
1135
1136  unsigned Op = getRegForValue(V);
1137  if (Op == 0) return false;
1138
1139  unsigned Result = createResultReg(ARM::SPRRegisterClass);
1140  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1141                          TII.get(ARM::VCVTSD), Result)
1142                  .addReg(Op));
1143  UpdateValueMap(I, Result);
1144  return true;
1145}
1146
1147bool ARMFastISel::SelectSIToFP(const Instruction *I) {
1148  // Make sure we have VFP.
1149  if (!Subtarget->hasVFP2()) return false;
1150
1151  MVT DstVT;
1152  const Type *Ty = I->getType();
1153  if (!isTypeLegal(Ty, DstVT))
1154    return false;
1155
1156  unsigned Op = getRegForValue(I->getOperand(0));
1157  if (Op == 0) return false;
1158
1159  // The conversion routine works on fp-reg to fp-reg and the operand above
1160  // was an integer, move it to the fp registers if possible.
1161  unsigned FP = ARMMoveToFPReg(MVT::f32, Op);
1162  if (FP == 0) return false;
1163
1164  unsigned Opc;
1165  if (Ty->isFloatTy()) Opc = ARM::VSITOS;
1166  else if (Ty->isDoubleTy()) Opc = ARM::VSITOD;
1167  else return 0;
1168
1169  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1170  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1171                          ResultReg)
1172                  .addReg(FP));
1173  UpdateValueMap(I, ResultReg);
1174  return true;
1175}
1176
1177bool ARMFastISel::SelectFPToSI(const Instruction *I) {
1178  // Make sure we have VFP.
1179  if (!Subtarget->hasVFP2()) return false;
1180
1181  MVT DstVT;
1182  const Type *RetTy = I->getType();
1183  if (!isTypeLegal(RetTy, DstVT))
1184    return false;
1185
1186  unsigned Op = getRegForValue(I->getOperand(0));
1187  if (Op == 0) return false;
1188
1189  unsigned Opc;
1190  const Type *OpTy = I->getOperand(0)->getType();
1191  if (OpTy->isFloatTy()) Opc = ARM::VTOSIZS;
1192  else if (OpTy->isDoubleTy()) Opc = ARM::VTOSIZD;
1193  else return 0;
1194
1195  // f64->s32 or f32->s32 both need an intermediate f32 reg.
1196  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1197  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1198                          ResultReg)
1199                  .addReg(Op));
1200
1201  // This result needs to be in an integer register, but the conversion only
1202  // takes place in fp-regs.
1203  unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1204  if (IntReg == 0) return false;
1205
1206  UpdateValueMap(I, IntReg);
1207  return true;
1208}
1209
1210bool ARMFastISel::SelectSelect(const Instruction *I) {
1211  MVT VT;
1212  if (!isTypeLegal(I->getType(), VT))
1213    return false;
1214
1215  // Things need to be register sized for register moves.
1216  if (VT != MVT::i32) return false;
1217  const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
1218
1219  unsigned CondReg = getRegForValue(I->getOperand(0));
1220  if (CondReg == 0) return false;
1221  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1222  if (Op1Reg == 0) return false;
1223  unsigned Op2Reg = getRegForValue(I->getOperand(2));
1224  if (Op2Reg == 0) return false;
1225
1226  unsigned CmpOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
1227  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1228                  .addReg(CondReg).addImm(1));
1229  unsigned ResultReg = createResultReg(RC);
1230  unsigned MovCCOpc = isThumb ? ARM::t2MOVCCr : ARM::MOVCCr;
1231  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1232    .addReg(Op1Reg).addReg(Op2Reg)
1233    .addImm(ARMCC::EQ).addReg(ARM::CPSR);
1234  UpdateValueMap(I, ResultReg);
1235  return true;
1236}
1237
1238bool ARMFastISel::SelectSDiv(const Instruction *I) {
1239  MVT VT;
1240  const Type *Ty = I->getType();
1241  if (!isTypeLegal(Ty, VT))
1242    return false;
1243
1244  // If we have integer div support we should have selected this automagically.
1245  // In case we have a real miss go ahead and return false and we'll pick
1246  // it up later.
1247  if (Subtarget->hasDivide()) return false;
1248
1249  // Otherwise emit a libcall.
1250  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1251  if (VT == MVT::i8)
1252    LC = RTLIB::SDIV_I8;
1253  else if (VT == MVT::i16)
1254    LC = RTLIB::SDIV_I16;
1255  else if (VT == MVT::i32)
1256    LC = RTLIB::SDIV_I32;
1257  else if (VT == MVT::i64)
1258    LC = RTLIB::SDIV_I64;
1259  else if (VT == MVT::i128)
1260    LC = RTLIB::SDIV_I128;
1261  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1262
1263  return ARMEmitLibcall(I, LC);
1264}
1265
1266bool ARMFastISel::SelectSRem(const Instruction *I) {
1267  MVT VT;
1268  const Type *Ty = I->getType();
1269  if (!isTypeLegal(Ty, VT))
1270    return false;
1271
1272  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1273  if (VT == MVT::i8)
1274    LC = RTLIB::SREM_I8;
1275  else if (VT == MVT::i16)
1276    LC = RTLIB::SREM_I16;
1277  else if (VT == MVT::i32)
1278    LC = RTLIB::SREM_I32;
1279  else if (VT == MVT::i64)
1280    LC = RTLIB::SREM_I64;
1281  else if (VT == MVT::i128)
1282    LC = RTLIB::SREM_I128;
1283  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1284
1285  return ARMEmitLibcall(I, LC);
1286}
1287
1288bool ARMFastISel::SelectBinaryOp(const Instruction *I, unsigned ISDOpcode) {
1289  EVT VT  = TLI.getValueType(I->getType(), true);
1290
1291  // We can get here in the case when we want to use NEON for our fp
1292  // operations, but can't figure out how to. Just use the vfp instructions
1293  // if we have them.
1294  // FIXME: It'd be nice to use NEON instructions.
1295  const Type *Ty = I->getType();
1296  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1297  if (isFloat && !Subtarget->hasVFP2())
1298    return false;
1299
1300  unsigned Op1 = getRegForValue(I->getOperand(0));
1301  if (Op1 == 0) return false;
1302
1303  unsigned Op2 = getRegForValue(I->getOperand(1));
1304  if (Op2 == 0) return false;
1305
1306  unsigned Opc;
1307  bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1308  switch (ISDOpcode) {
1309    default: return false;
1310    case ISD::FADD:
1311      Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1312      break;
1313    case ISD::FSUB:
1314      Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1315      break;
1316    case ISD::FMUL:
1317      Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1318      break;
1319  }
1320  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1321  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1322                          TII.get(Opc), ResultReg)
1323                  .addReg(Op1).addReg(Op2));
1324  UpdateValueMap(I, ResultReg);
1325  return true;
1326}
1327
1328// Call Handling Code
1329
1330bool ARMFastISel::FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src,
1331                                 EVT SrcVT, unsigned &ResultReg) {
1332  unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
1333                           Src, /*TODO: Kill=*/false);
1334
1335  if (RR != 0) {
1336    ResultReg = RR;
1337    return true;
1338  } else
1339    return false;
1340}
1341
1342// This is largely taken directly from CCAssignFnForNode - we don't support
1343// varargs in FastISel so that part has been removed.
1344// TODO: We may not support all of this.
1345CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) {
1346  switch (CC) {
1347  default:
1348    llvm_unreachable("Unsupported calling convention");
1349  case CallingConv::Fast:
1350    // Ignore fastcc. Silence compiler warnings.
1351    (void)RetFastCC_ARM_APCS;
1352    (void)FastCC_ARM_APCS;
1353    // Fallthrough
1354  case CallingConv::C:
1355    // Use target triple & subtarget features to do actual dispatch.
1356    if (Subtarget->isAAPCS_ABI()) {
1357      if (Subtarget->hasVFP2() &&
1358          FloatABIType == FloatABI::Hard)
1359        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1360      else
1361        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1362    } else
1363        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1364  case CallingConv::ARM_AAPCS_VFP:
1365    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1366  case CallingConv::ARM_AAPCS:
1367    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1368  case CallingConv::ARM_APCS:
1369    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1370  }
1371}
1372
1373bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1374                                  SmallVectorImpl<unsigned> &ArgRegs,
1375                                  SmallVectorImpl<MVT> &ArgVTs,
1376                                  SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1377                                  SmallVectorImpl<unsigned> &RegArgs,
1378                                  CallingConv::ID CC,
1379                                  unsigned &NumBytes) {
1380  SmallVector<CCValAssign, 16> ArgLocs;
1381  CCState CCInfo(CC, false, TM, ArgLocs, *Context);
1382  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false));
1383
1384  // Get a count of how many bytes are to be pushed on the stack.
1385  NumBytes = CCInfo.getNextStackOffset();
1386
1387  // Issue CALLSEQ_START
1388  unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode();
1389  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1390                          TII.get(AdjStackDown))
1391                  .addImm(NumBytes));
1392
1393  // Process the args.
1394  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1395    CCValAssign &VA = ArgLocs[i];
1396    unsigned Arg = ArgRegs[VA.getValNo()];
1397    MVT ArgVT = ArgVTs[VA.getValNo()];
1398
1399    // We don't handle NEON parameters yet.
1400    if (VA.getLocVT().isVector() && VA.getLocVT().getSizeInBits() > 64)
1401      return false;
1402
1403    // Handle arg promotion, etc.
1404    switch (VA.getLocInfo()) {
1405      case CCValAssign::Full: break;
1406      case CCValAssign::SExt: {
1407        bool Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1408                                         Arg, ArgVT, Arg);
1409        assert(Emitted && "Failed to emit a sext!"); Emitted=Emitted;
1410        Emitted = true;
1411        ArgVT = VA.getLocVT();
1412        break;
1413      }
1414      case CCValAssign::ZExt: {
1415        bool Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1416                                         Arg, ArgVT, Arg);
1417        assert(Emitted && "Failed to emit a zext!"); Emitted=Emitted;
1418        Emitted = true;
1419        ArgVT = VA.getLocVT();
1420        break;
1421      }
1422      case CCValAssign::AExt: {
1423        bool Emitted = FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
1424                                         Arg, ArgVT, Arg);
1425        if (!Emitted)
1426          Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1427                                      Arg, ArgVT, Arg);
1428        if (!Emitted)
1429          Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1430                                      Arg, ArgVT, Arg);
1431
1432        assert(Emitted && "Failed to emit a aext!"); Emitted=Emitted;
1433        ArgVT = VA.getLocVT();
1434        break;
1435      }
1436      case CCValAssign::BCvt: {
1437        unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BIT_CONVERT, Arg,
1438                                 /*TODO: Kill=*/false);
1439        assert(BC != 0 && "Failed to emit a bitcast!");
1440        Arg = BC;
1441        ArgVT = VA.getLocVT();
1442        break;
1443      }
1444      default: llvm_unreachable("Unknown arg promotion!");
1445    }
1446
1447    // Now copy/store arg to correct locations.
1448    if (VA.isRegLoc() && !VA.needsCustom()) {
1449      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1450              VA.getLocReg())
1451      .addReg(Arg);
1452      RegArgs.push_back(VA.getLocReg());
1453    } else if (VA.needsCustom()) {
1454      // TODO: We need custom lowering for vector (v2f64) args.
1455      if (VA.getLocVT() != MVT::f64) return false;
1456
1457      CCValAssign &NextVA = ArgLocs[++i];
1458
1459      // TODO: Only handle register args for now.
1460      if(!(VA.isRegLoc() && NextVA.isRegLoc())) return false;
1461
1462      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1463                              TII.get(ARM::VMOVRRD), VA.getLocReg())
1464                      .addReg(NextVA.getLocReg(), RegState::Define)
1465                      .addReg(Arg));
1466      RegArgs.push_back(VA.getLocReg());
1467      RegArgs.push_back(NextVA.getLocReg());
1468    } else {
1469      assert(VA.isMemLoc());
1470      // Need to store on the stack.
1471      unsigned Base = ARM::SP;
1472      int Offset = VA.getLocMemOffset();
1473
1474      if (!ARMEmitStore(ArgVT, Arg, Base, Offset)) return false;
1475    }
1476  }
1477  return true;
1478}
1479
1480bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
1481                             const Instruction *I, CallingConv::ID CC,
1482                             unsigned &NumBytes) {
1483  // Issue CALLSEQ_END
1484  unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
1485  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1486                          TII.get(AdjStackUp))
1487                  .addImm(NumBytes).addImm(0));
1488
1489  // Now the return value.
1490  if (RetVT != MVT::isVoid) {
1491    SmallVector<CCValAssign, 16> RVLocs;
1492    CCState CCInfo(CC, false, TM, RVLocs, *Context);
1493    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true));
1494
1495    // Copy all of the result registers out of their specified physreg.
1496    if (RVLocs.size() == 2 && RetVT == MVT::f64) {
1497      // For this move we copy into two registers and then move into the
1498      // double fp reg we want.
1499      EVT DestVT = RVLocs[0].getValVT();
1500      TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
1501      unsigned ResultReg = createResultReg(DstRC);
1502      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1503                              TII.get(ARM::VMOVDRR), ResultReg)
1504                      .addReg(RVLocs[0].getLocReg())
1505                      .addReg(RVLocs[1].getLocReg()));
1506
1507      UsedRegs.push_back(RVLocs[0].getLocReg());
1508      UsedRegs.push_back(RVLocs[1].getLocReg());
1509
1510      // Finally update the result.
1511      UpdateValueMap(I, ResultReg);
1512    } else {
1513      assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
1514      EVT CopyVT = RVLocs[0].getValVT();
1515      TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1516
1517      unsigned ResultReg = createResultReg(DstRC);
1518      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1519              ResultReg).addReg(RVLocs[0].getLocReg());
1520      UsedRegs.push_back(RVLocs[0].getLocReg());
1521
1522      // Finally update the result.
1523      UpdateValueMap(I, ResultReg);
1524    }
1525  }
1526
1527  return true;
1528}
1529
1530bool ARMFastISel::SelectRet(const Instruction *I) {
1531  const ReturnInst *Ret = cast<ReturnInst>(I);
1532  const Function &F = *I->getParent()->getParent();
1533
1534  if (!FuncInfo.CanLowerReturn)
1535    return false;
1536
1537  if (F.isVarArg())
1538    return false;
1539
1540  CallingConv::ID CC = F.getCallingConv();
1541  if (Ret->getNumOperands() > 0) {
1542    SmallVector<ISD::OutputArg, 4> Outs;
1543    GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
1544                  Outs, TLI);
1545
1546    // Analyze operands of the call, assigning locations to each operand.
1547    SmallVector<CCValAssign, 16> ValLocs;
1548    CCState CCInfo(CC, F.isVarArg(), TM, ValLocs, I->getContext());
1549    CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */));
1550
1551    const Value *RV = Ret->getOperand(0);
1552    unsigned Reg = getRegForValue(RV);
1553    if (Reg == 0)
1554      return false;
1555
1556    // Only handle a single return value for now.
1557    if (ValLocs.size() != 1)
1558      return false;
1559
1560    CCValAssign &VA = ValLocs[0];
1561
1562    // Don't bother handling odd stuff for now.
1563    if (VA.getLocInfo() != CCValAssign::Full)
1564      return false;
1565    // Only handle register returns for now.
1566    if (!VA.isRegLoc())
1567      return false;
1568    // TODO: For now, don't try to handle cases where getLocInfo()
1569    // says Full but the types don't match.
1570    if (TLI.getValueType(RV->getType()) != VA.getValVT())
1571      return false;
1572
1573    // Make the copy.
1574    unsigned SrcReg = Reg + VA.getValNo();
1575    unsigned DstReg = VA.getLocReg();
1576    const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
1577    // Avoid a cross-class copy. This is very unlikely.
1578    if (!SrcRC->contains(DstReg))
1579      return false;
1580    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1581            DstReg).addReg(SrcReg);
1582
1583    // Mark the register as live out of the function.
1584    MRI.addLiveOut(VA.getLocReg());
1585  }
1586
1587  unsigned RetOpc = isThumb ? ARM::tBX_RET : ARM::BX_RET;
1588  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1589                          TII.get(RetOpc)));
1590  return true;
1591}
1592
1593// A quick function that will emit a call for a named libcall in F with the
1594// vector of passed arguments for the Instruction in I. We can assume that we
1595// can emit a call for any libcall we can produce. This is an abridged version
1596// of the full call infrastructure since we won't need to worry about things
1597// like computed function pointers or strange arguments at call sites.
1598// TODO: Try to unify this and the normal call bits for ARM, then try to unify
1599// with X86.
1600bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
1601  CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
1602
1603  // Handle *simple* calls for now.
1604  const Type *RetTy = I->getType();
1605  MVT RetVT;
1606  if (RetTy->isVoidTy())
1607    RetVT = MVT::isVoid;
1608  else if (!isTypeLegal(RetTy, RetVT))
1609    return false;
1610
1611  // For now we're using BLX etc on the assumption that we have v5t ops.
1612  if (!Subtarget->hasV5TOps()) return false;
1613
1614  // Set up the argument vectors.
1615  SmallVector<Value*, 8> Args;
1616  SmallVector<unsigned, 8> ArgRegs;
1617  SmallVector<MVT, 8> ArgVTs;
1618  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1619  Args.reserve(I->getNumOperands());
1620  ArgRegs.reserve(I->getNumOperands());
1621  ArgVTs.reserve(I->getNumOperands());
1622  ArgFlags.reserve(I->getNumOperands());
1623  for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1624    Value *Op = I->getOperand(i);
1625    unsigned Arg = getRegForValue(Op);
1626    if (Arg == 0) return false;
1627
1628    const Type *ArgTy = Op->getType();
1629    MVT ArgVT;
1630    if (!isTypeLegal(ArgTy, ArgVT)) return false;
1631
1632    ISD::ArgFlagsTy Flags;
1633    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1634    Flags.setOrigAlign(OriginalAlignment);
1635
1636    Args.push_back(Op);
1637    ArgRegs.push_back(Arg);
1638    ArgVTs.push_back(ArgVT);
1639    ArgFlags.push_back(Flags);
1640  }
1641
1642  // Handle the arguments now that we've gotten them.
1643  SmallVector<unsigned, 4> RegArgs;
1644  unsigned NumBytes;
1645  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1646    return false;
1647
1648  // Issue the call, BLXr9 for darwin, BLX otherwise. This uses V5 ops.
1649  // TODO: Turn this into the table of arm call ops.
1650  MachineInstrBuilder MIB;
1651  unsigned CallOpc;
1652  if(isThumb)
1653    CallOpc = Subtarget->isTargetDarwin() ? ARM::tBLXi_r9 : ARM::tBLXi;
1654  else
1655    CallOpc = Subtarget->isTargetDarwin() ? ARM::BLr9 : ARM::BL;
1656  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
1657        .addExternalSymbol(TLI.getLibcallName(Call));
1658
1659  // Add implicit physical register uses to the call.
1660  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1661    MIB.addReg(RegArgs[i]);
1662
1663  // Finish off the call including any return values.
1664  SmallVector<unsigned, 4> UsedRegs;
1665  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1666
1667  // Set all unused physreg defs as dead.
1668  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1669
1670  return true;
1671}
1672
1673bool ARMFastISel::SelectCall(const Instruction *I) {
1674  const CallInst *CI = cast<CallInst>(I);
1675  const Value *Callee = CI->getCalledValue();
1676
1677  // Can't handle inline asm or worry about intrinsics yet.
1678  if (isa<InlineAsm>(Callee) || isa<IntrinsicInst>(CI)) return false;
1679
1680  // Only handle global variable Callees that are direct calls.
1681  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1682  if (!GV || Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel()))
1683    return false;
1684
1685  // Check the calling convention.
1686  ImmutableCallSite CS(CI);
1687  CallingConv::ID CC = CS.getCallingConv();
1688
1689  // TODO: Avoid some calling conventions?
1690
1691  // Let SDISel handle vararg functions.
1692  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1693  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1694  if (FTy->isVarArg())
1695    return false;
1696
1697  // Handle *simple* calls for now.
1698  const Type *RetTy = I->getType();
1699  MVT RetVT;
1700  if (RetTy->isVoidTy())
1701    RetVT = MVT::isVoid;
1702  else if (!isTypeLegal(RetTy, RetVT))
1703    return false;
1704
1705  // For now we're using BLX etc on the assumption that we have v5t ops.
1706  // TODO: Maybe?
1707  if (!Subtarget->hasV5TOps()) return false;
1708
1709  // Set up the argument vectors.
1710  SmallVector<Value*, 8> Args;
1711  SmallVector<unsigned, 8> ArgRegs;
1712  SmallVector<MVT, 8> ArgVTs;
1713  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1714  Args.reserve(CS.arg_size());
1715  ArgRegs.reserve(CS.arg_size());
1716  ArgVTs.reserve(CS.arg_size());
1717  ArgFlags.reserve(CS.arg_size());
1718  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1719       i != e; ++i) {
1720    unsigned Arg = getRegForValue(*i);
1721
1722    if (Arg == 0)
1723      return false;
1724    ISD::ArgFlagsTy Flags;
1725    unsigned AttrInd = i - CS.arg_begin() + 1;
1726    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1727      Flags.setSExt();
1728    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1729      Flags.setZExt();
1730
1731         // FIXME: Only handle *easy* calls for now.
1732    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1733        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1734        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1735        CS.paramHasAttr(AttrInd, Attribute::ByVal))
1736      return false;
1737
1738    const Type *ArgTy = (*i)->getType();
1739    MVT ArgVT;
1740    if (!isTypeLegal(ArgTy, ArgVT))
1741      return false;
1742    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1743    Flags.setOrigAlign(OriginalAlignment);
1744
1745    Args.push_back(*i);
1746    ArgRegs.push_back(Arg);
1747    ArgVTs.push_back(ArgVT);
1748    ArgFlags.push_back(Flags);
1749  }
1750
1751  // Handle the arguments now that we've gotten them.
1752  SmallVector<unsigned, 4> RegArgs;
1753  unsigned NumBytes;
1754  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1755    return false;
1756
1757  // Issue the call, BLXr9 for darwin, BLX otherwise. This uses V5 ops.
1758  // TODO: Turn this into the table of arm call ops.
1759  MachineInstrBuilder MIB;
1760  unsigned CallOpc;
1761  if(isThumb)
1762    CallOpc = Subtarget->isTargetDarwin() ? ARM::tBLXi_r9 : ARM::tBLXi;
1763  else
1764    CallOpc = Subtarget->isTargetDarwin() ? ARM::BLr9 : ARM::BL;
1765  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
1766              .addGlobalAddress(GV, 0, 0);
1767
1768  // Add implicit physical register uses to the call.
1769  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1770    MIB.addReg(RegArgs[i]);
1771
1772  // Finish off the call including any return values.
1773  SmallVector<unsigned, 4> UsedRegs;
1774  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1775
1776  // Set all unused physreg defs as dead.
1777  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1778
1779  return true;
1780
1781}
1782
1783// TODO: SoftFP support.
1784bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
1785
1786  switch (I->getOpcode()) {
1787    case Instruction::Load:
1788      return SelectLoad(I);
1789    case Instruction::Store:
1790      return SelectStore(I);
1791    case Instruction::Br:
1792      return SelectBranch(I);
1793    case Instruction::ICmp:
1794    case Instruction::FCmp:
1795      return SelectCmp(I);
1796    case Instruction::FPExt:
1797      return SelectFPExt(I);
1798    case Instruction::FPTrunc:
1799      return SelectFPTrunc(I);
1800    case Instruction::SIToFP:
1801      return SelectSIToFP(I);
1802    case Instruction::FPToSI:
1803      return SelectFPToSI(I);
1804    case Instruction::FAdd:
1805      return SelectBinaryOp(I, ISD::FADD);
1806    case Instruction::FSub:
1807      return SelectBinaryOp(I, ISD::FSUB);
1808    case Instruction::FMul:
1809      return SelectBinaryOp(I, ISD::FMUL);
1810    case Instruction::SDiv:
1811      return SelectSDiv(I);
1812    case Instruction::SRem:
1813      return SelectSRem(I);
1814    case Instruction::Call:
1815      return SelectCall(I);
1816    case Instruction::Select:
1817      return SelectSelect(I);
1818    case Instruction::Ret:
1819      return SelectRet(I);
1820    default: break;
1821  }
1822  return false;
1823}
1824
1825namespace llvm {
1826  llvm::FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) {
1827    // Completely untested on non-darwin.
1828    const TargetMachine &TM = funcInfo.MF->getTarget();
1829
1830    // Darwin and thumb1 only for now.
1831    const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
1832    if (Subtarget->isTargetDarwin() && !Subtarget->isThumb1Only() &&
1833        !DisableARMFastISel)
1834      return new ARMFastISel(funcInfo);
1835    return 0;
1836  }
1837}
1838