ARMFastISel.cpp revision 646abbfa30f881b5183b62e77a185fc48d9d82bd
1//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the ARM-specific support for the FastISel class. Some
11// of the target-specific code is generated by tablegen in the file
12// ARMGenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "ARM.h"
17#include "ARMBaseInstrInfo.h"
18#include "ARMCallingConv.h"
19#include "ARMRegisterInfo.h"
20#include "ARMTargetMachine.h"
21#include "ARMSubtarget.h"
22#include "ARMConstantPoolValue.h"
23#include "MCTargetDesc/ARMAddressingModes.h"
24#include "llvm/CallingConv.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Instructions.h"
28#include "llvm/IntrinsicInst.h"
29#include "llvm/Module.h"
30#include "llvm/Operator.h"
31#include "llvm/CodeGen/Analysis.h"
32#include "llvm/CodeGen/FastISel.h"
33#include "llvm/CodeGen/FunctionLoweringInfo.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineConstantPool.h"
37#include "llvm/CodeGen/MachineFrameInfo.h"
38#include "llvm/CodeGen/MachineMemOperand.h"
39#include "llvm/CodeGen/MachineRegisterInfo.h"
40#include "llvm/CodeGen/PseudoSourceValue.h"
41#include "llvm/Support/CallSite.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/GetElementPtrTypeIterator.h"
45#include "llvm/Target/TargetData.h"
46#include "llvm/Target/TargetInstrInfo.h"
47#include "llvm/Target/TargetLowering.h"
48#include "llvm/Target/TargetMachine.h"
49#include "llvm/Target/TargetOptions.h"
50using namespace llvm;
51
52static cl::opt<bool>
53DisableARMFastISel("disable-arm-fast-isel",
54                    cl::desc("Turn off experimental ARM fast-isel support"),
55                    cl::init(false), cl::Hidden);
56
57extern cl::opt<bool> EnableARMLongCalls;
58
59namespace {
60
61  // All possible address modes, plus some.
62  typedef struct Address {
63    enum {
64      RegBase,
65      FrameIndexBase
66    } BaseType;
67
68    union {
69      unsigned Reg;
70      int FI;
71    } Base;
72
73    int Offset;
74
75    // Innocuous defaults for our address.
76    Address()
77     : BaseType(RegBase), Offset(0) {
78       Base.Reg = 0;
79     }
80  } Address;
81
82class ARMFastISel : public FastISel {
83
84  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
85  /// make the right decision when generating code for different targets.
86  const ARMSubtarget *Subtarget;
87  const TargetMachine &TM;
88  const TargetInstrInfo &TII;
89  const TargetLowering &TLI;
90  ARMFunctionInfo *AFI;
91
92  // Convenience variables to avoid some queries.
93  bool isThumb2;
94  LLVMContext *Context;
95
96  public:
97    explicit ARMFastISel(FunctionLoweringInfo &funcInfo)
98    : FastISel(funcInfo),
99      TM(funcInfo.MF->getTarget()),
100      TII(*TM.getInstrInfo()),
101      TLI(*TM.getTargetLowering()) {
102      Subtarget = &TM.getSubtarget<ARMSubtarget>();
103      AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
104      isThumb2 = AFI->isThumbFunction();
105      Context = &funcInfo.Fn->getContext();
106    }
107
108    // Code from FastISel.cpp.
109    virtual unsigned FastEmitInst_(unsigned MachineInstOpcode,
110                                   const TargetRegisterClass *RC);
111    virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
112                                    const TargetRegisterClass *RC,
113                                    unsigned Op0, bool Op0IsKill);
114    virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
115                                     const TargetRegisterClass *RC,
116                                     unsigned Op0, bool Op0IsKill,
117                                     unsigned Op1, bool Op1IsKill);
118    virtual unsigned FastEmitInst_rrr(unsigned MachineInstOpcode,
119                                      const TargetRegisterClass *RC,
120                                      unsigned Op0, bool Op0IsKill,
121                                      unsigned Op1, bool Op1IsKill,
122                                      unsigned Op2, bool Op2IsKill);
123    virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
124                                     const TargetRegisterClass *RC,
125                                     unsigned Op0, bool Op0IsKill,
126                                     uint64_t Imm);
127    virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
128                                     const TargetRegisterClass *RC,
129                                     unsigned Op0, bool Op0IsKill,
130                                     const ConstantFP *FPImm);
131    virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
132                                      const TargetRegisterClass *RC,
133                                      unsigned Op0, bool Op0IsKill,
134                                      unsigned Op1, bool Op1IsKill,
135                                      uint64_t Imm);
136    virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode,
137                                    const TargetRegisterClass *RC,
138                                    uint64_t Imm);
139    virtual unsigned FastEmitInst_ii(unsigned MachineInstOpcode,
140                                     const TargetRegisterClass *RC,
141                                     uint64_t Imm1, uint64_t Imm2);
142
143    virtual unsigned FastEmitInst_extractsubreg(MVT RetVT,
144                                                unsigned Op0, bool Op0IsKill,
145                                                uint32_t Idx);
146
147    // Backend specific FastISel code.
148    virtual bool TargetSelectInstruction(const Instruction *I);
149    virtual unsigned TargetMaterializeConstant(const Constant *C);
150    virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
151
152  #include "ARMGenFastISel.inc"
153
154    // Instruction selection routines.
155  private:
156    bool SelectLoad(const Instruction *I);
157    bool SelectStore(const Instruction *I);
158    bool SelectBranch(const Instruction *I);
159    bool SelectCmp(const Instruction *I);
160    bool SelectFPExt(const Instruction *I);
161    bool SelectFPTrunc(const Instruction *I);
162    bool SelectBinaryOp(const Instruction *I, unsigned ISDOpcode);
163    bool SelectSIToFP(const Instruction *I);
164    bool SelectFPToSI(const Instruction *I);
165    bool SelectSDiv(const Instruction *I);
166    bool SelectSRem(const Instruction *I);
167    bool SelectCall(const Instruction *I);
168    bool SelectSelect(const Instruction *I);
169    bool SelectRet(const Instruction *I);
170    bool SelectTrunc(const Instruction *I);
171    bool SelectIntExt(const Instruction *I);
172
173    // Utility routines.
174  private:
175    bool isTypeLegal(Type *Ty, MVT &VT);
176    bool isLoadTypeLegal(Type *Ty, MVT &VT);
177    bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
178                    bool isZExt);
179    bool ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr);
180    bool ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr);
181    bool ARMComputeAddress(const Value *Obj, Address &Addr);
182    void ARMSimplifyAddress(Address &Addr, EVT VT);
183    unsigned ARMEmitIntExt(EVT SrcVT, unsigned SrcReg, EVT DestVT, bool isZExt);
184    unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
185    unsigned ARMMaterializeInt(const Constant *C, EVT VT);
186    unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT);
187    unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
188    unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);
189    unsigned ARMSelectCallOp(const GlobalValue *GV);
190
191    // Call handling routines.
192  private:
193    bool FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
194                        unsigned &ResultReg);
195    CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return);
196    bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
197                         SmallVectorImpl<unsigned> &ArgRegs,
198                         SmallVectorImpl<MVT> &ArgVTs,
199                         SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
200                         SmallVectorImpl<unsigned> &RegArgs,
201                         CallingConv::ID CC,
202                         unsigned &NumBytes);
203    bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
204                    const Instruction *I, CallingConv::ID CC,
205                    unsigned &NumBytes);
206    bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
207
208    // OptionalDef handling routines.
209  private:
210    bool isARMNEONPred(const MachineInstr *MI);
211    bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
212    const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
213    void AddLoadStoreOperands(EVT VT, Address &Addr,
214                              const MachineInstrBuilder &MIB,
215                              unsigned Flags);
216};
217
218} // end anonymous namespace
219
220#include "ARMGenCallingConv.inc"
221
222// DefinesOptionalPredicate - This is different from DefinesPredicate in that
223// we don't care about implicit defs here, just places we'll need to add a
224// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
225bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
226  const MCInstrDesc &MCID = MI->getDesc();
227  if (!MCID.hasOptionalDef())
228    return false;
229
230  // Look to see if our OptionalDef is defining CPSR or CCR.
231  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
232    const MachineOperand &MO = MI->getOperand(i);
233    if (!MO.isReg() || !MO.isDef()) continue;
234    if (MO.getReg() == ARM::CPSR)
235      *CPSR = true;
236  }
237  return true;
238}
239
240bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
241  const MCInstrDesc &MCID = MI->getDesc();
242
243  // If we're a thumb2 or not NEON function we were handled via isPredicable.
244  if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
245       AFI->isThumb2Function())
246    return false;
247
248  for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
249    if (MCID.OpInfo[i].isPredicate())
250      return true;
251
252  return false;
253}
254
255// If the machine is predicable go ahead and add the predicate operands, if
256// it needs default CC operands add those.
257// TODO: If we want to support thumb1 then we'll need to deal with optional
258// CPSR defs that need to be added before the remaining operands. See s_cc_out
259// for descriptions why.
260const MachineInstrBuilder &
261ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
262  MachineInstr *MI = &*MIB;
263
264  // Do we use a predicate? or...
265  // Are we NEON in ARM mode and have a predicate operand? If so, I know
266  // we're not predicable but add it anyways.
267  if (TII.isPredicable(MI) || isARMNEONPred(MI))
268    AddDefaultPred(MIB);
269
270  // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
271  // defines CPSR. All other OptionalDefines in ARM are the CCR register.
272  bool CPSR = false;
273  if (DefinesOptionalPredicate(MI, &CPSR)) {
274    if (CPSR)
275      AddDefaultT1CC(MIB);
276    else
277      AddDefaultCC(MIB);
278  }
279  return MIB;
280}
281
282unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
283                                    const TargetRegisterClass* RC) {
284  unsigned ResultReg = createResultReg(RC);
285  const MCInstrDesc &II = TII.get(MachineInstOpcode);
286
287  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
288  return ResultReg;
289}
290
291unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
292                                     const TargetRegisterClass *RC,
293                                     unsigned Op0, bool Op0IsKill) {
294  unsigned ResultReg = createResultReg(RC);
295  const MCInstrDesc &II = TII.get(MachineInstOpcode);
296
297  if (II.getNumDefs() >= 1)
298    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
299                   .addReg(Op0, Op0IsKill * RegState::Kill));
300  else {
301    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
302                   .addReg(Op0, Op0IsKill * RegState::Kill));
303    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
304                   TII.get(TargetOpcode::COPY), ResultReg)
305                   .addReg(II.ImplicitDefs[0]));
306  }
307  return ResultReg;
308}
309
310unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
311                                      const TargetRegisterClass *RC,
312                                      unsigned Op0, bool Op0IsKill,
313                                      unsigned Op1, bool Op1IsKill) {
314  unsigned ResultReg = createResultReg(RC);
315  const MCInstrDesc &II = TII.get(MachineInstOpcode);
316
317  if (II.getNumDefs() >= 1)
318    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
319                   .addReg(Op0, Op0IsKill * RegState::Kill)
320                   .addReg(Op1, Op1IsKill * RegState::Kill));
321  else {
322    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
323                   .addReg(Op0, Op0IsKill * RegState::Kill)
324                   .addReg(Op1, Op1IsKill * RegState::Kill));
325    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
326                           TII.get(TargetOpcode::COPY), ResultReg)
327                   .addReg(II.ImplicitDefs[0]));
328  }
329  return ResultReg;
330}
331
332unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
333                                       const TargetRegisterClass *RC,
334                                       unsigned Op0, bool Op0IsKill,
335                                       unsigned Op1, bool Op1IsKill,
336                                       unsigned Op2, bool Op2IsKill) {
337  unsigned ResultReg = createResultReg(RC);
338  const MCInstrDesc &II = TII.get(MachineInstOpcode);
339
340  if (II.getNumDefs() >= 1)
341    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
342                   .addReg(Op0, Op0IsKill * RegState::Kill)
343                   .addReg(Op1, Op1IsKill * RegState::Kill)
344                   .addReg(Op2, Op2IsKill * RegState::Kill));
345  else {
346    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
347                   .addReg(Op0, Op0IsKill * RegState::Kill)
348                   .addReg(Op1, Op1IsKill * RegState::Kill)
349                   .addReg(Op2, Op2IsKill * RegState::Kill));
350    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
351                           TII.get(TargetOpcode::COPY), ResultReg)
352                   .addReg(II.ImplicitDefs[0]));
353  }
354  return ResultReg;
355}
356
357unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
358                                      const TargetRegisterClass *RC,
359                                      unsigned Op0, bool Op0IsKill,
360                                      uint64_t Imm) {
361  unsigned ResultReg = createResultReg(RC);
362  const MCInstrDesc &II = TII.get(MachineInstOpcode);
363
364  if (II.getNumDefs() >= 1)
365    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
366                   .addReg(Op0, Op0IsKill * RegState::Kill)
367                   .addImm(Imm));
368  else {
369    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
370                   .addReg(Op0, Op0IsKill * RegState::Kill)
371                   .addImm(Imm));
372    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
373                           TII.get(TargetOpcode::COPY), ResultReg)
374                   .addReg(II.ImplicitDefs[0]));
375  }
376  return ResultReg;
377}
378
379unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
380                                      const TargetRegisterClass *RC,
381                                      unsigned Op0, bool Op0IsKill,
382                                      const ConstantFP *FPImm) {
383  unsigned ResultReg = createResultReg(RC);
384  const MCInstrDesc &II = TII.get(MachineInstOpcode);
385
386  if (II.getNumDefs() >= 1)
387    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
388                   .addReg(Op0, Op0IsKill * RegState::Kill)
389                   .addFPImm(FPImm));
390  else {
391    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
392                   .addReg(Op0, Op0IsKill * RegState::Kill)
393                   .addFPImm(FPImm));
394    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
395                           TII.get(TargetOpcode::COPY), ResultReg)
396                   .addReg(II.ImplicitDefs[0]));
397  }
398  return ResultReg;
399}
400
401unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
402                                       const TargetRegisterClass *RC,
403                                       unsigned Op0, bool Op0IsKill,
404                                       unsigned Op1, bool Op1IsKill,
405                                       uint64_t Imm) {
406  unsigned ResultReg = createResultReg(RC);
407  const MCInstrDesc &II = TII.get(MachineInstOpcode);
408
409  if (II.getNumDefs() >= 1)
410    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
411                   .addReg(Op0, Op0IsKill * RegState::Kill)
412                   .addReg(Op1, Op1IsKill * RegState::Kill)
413                   .addImm(Imm));
414  else {
415    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
416                   .addReg(Op0, Op0IsKill * RegState::Kill)
417                   .addReg(Op1, Op1IsKill * RegState::Kill)
418                   .addImm(Imm));
419    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
420                           TII.get(TargetOpcode::COPY), ResultReg)
421                   .addReg(II.ImplicitDefs[0]));
422  }
423  return ResultReg;
424}
425
426unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
427                                     const TargetRegisterClass *RC,
428                                     uint64_t Imm) {
429  unsigned ResultReg = createResultReg(RC);
430  const MCInstrDesc &II = TII.get(MachineInstOpcode);
431
432  if (II.getNumDefs() >= 1)
433    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
434                   .addImm(Imm));
435  else {
436    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
437                   .addImm(Imm));
438    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
439                           TII.get(TargetOpcode::COPY), ResultReg)
440                   .addReg(II.ImplicitDefs[0]));
441  }
442  return ResultReg;
443}
444
445unsigned ARMFastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
446                                      const TargetRegisterClass *RC,
447                                      uint64_t Imm1, uint64_t Imm2) {
448  unsigned ResultReg = createResultReg(RC);
449  const MCInstrDesc &II = TII.get(MachineInstOpcode);
450
451  if (II.getNumDefs() >= 1)
452    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
453                    .addImm(Imm1).addImm(Imm2));
454  else {
455    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
456                    .addImm(Imm1).addImm(Imm2));
457    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
458                            TII.get(TargetOpcode::COPY),
459                            ResultReg)
460                    .addReg(II.ImplicitDefs[0]));
461  }
462  return ResultReg;
463}
464
465unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
466                                                 unsigned Op0, bool Op0IsKill,
467                                                 uint32_t Idx) {
468  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
469  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
470         "Cannot yet extract from physregs");
471  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
472                         DL, TII.get(TargetOpcode::COPY), ResultReg)
473                 .addReg(Op0, getKillRegState(Op0IsKill), Idx));
474  return ResultReg;
475}
476
477// TODO: Don't worry about 64-bit now, but when this is fixed remove the
478// checks from the various callers.
479unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
480  if (VT == MVT::f64) return 0;
481
482  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
483  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
484                          TII.get(ARM::VMOVRS), MoveReg)
485                  .addReg(SrcReg));
486  return MoveReg;
487}
488
489unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
490  if (VT == MVT::i64) return 0;
491
492  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
493  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
494                          TII.get(ARM::VMOVSR), MoveReg)
495                  .addReg(SrcReg));
496  return MoveReg;
497}
498
499// For double width floating point we need to materialize two constants
500// (the high and the low) into integer registers then use a move to get
501// the combined constant into an FP reg.
502unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
503  const APFloat Val = CFP->getValueAPF();
504  bool is64bit = VT == MVT::f64;
505
506  // This checks to see if we can use VFP3 instructions to materialize
507  // a constant, otherwise we have to go through the constant pool.
508  if (TLI.isFPImmLegal(Val, VT)) {
509    int Imm;
510    unsigned Opc;
511    if (is64bit) {
512      Imm = ARM_AM::getFP64Imm(Val);
513      Opc = ARM::FCONSTD;
514    } else {
515      Imm = ARM_AM::getFP32Imm(Val);
516      Opc = ARM::FCONSTS;
517    }
518    unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
519    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
520                            DestReg)
521                    .addImm(Imm));
522    return DestReg;
523  }
524
525  // Require VFP2 for loading fp constants.
526  if (!Subtarget->hasVFP2()) return false;
527
528  // MachineConstantPool wants an explicit alignment.
529  unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
530  if (Align == 0) {
531    // TODO: Figure out if this is correct.
532    Align = TD.getTypeAllocSize(CFP->getType());
533  }
534  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
535  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
536  unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
537
538  // The extra reg is for addrmode5.
539  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
540                          DestReg)
541                  .addConstantPoolIndex(Idx)
542                  .addReg(0));
543  return DestReg;
544}
545
546unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) {
547
548  if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
549    return false;
550
551  // If we can do this in a single instruction without a constant pool entry
552  // do so now.
553  const ConstantInt *CI = cast<ConstantInt>(C);
554  if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
555    unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
556    unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32));
557    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
558                            TII.get(Opc), ImmReg)
559                    .addImm(CI->getZExtValue()));
560    return ImmReg;
561  }
562
563  // Use MVN to emit negative constants.
564  if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
565    unsigned Imm = (unsigned)~(CI->getSExtValue());
566    bool EncodeImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
567      (ARM_AM::getSOImmVal(Imm) != -1);
568    if (EncodeImm) {
569      unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
570      unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32));
571      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
572                              TII.get(Opc), ImmReg)
573                      .addImm(Imm));
574      return ImmReg;
575    }
576  }
577
578  // Load from constant pool.  For now 32-bit only.
579  if (VT != MVT::i32)
580    return false;
581
582  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
583
584  // MachineConstantPool wants an explicit alignment.
585  unsigned Align = TD.getPrefTypeAlignment(C->getType());
586  if (Align == 0) {
587    // TODO: Figure out if this is correct.
588    Align = TD.getTypeAllocSize(C->getType());
589  }
590  unsigned Idx = MCP.getConstantPoolIndex(C, Align);
591
592  if (isThumb2)
593    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
594                            TII.get(ARM::t2LDRpci), DestReg)
595                    .addConstantPoolIndex(Idx));
596  else
597    // The extra immediate is for addrmode2.
598    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
599                            TII.get(ARM::LDRcp), DestReg)
600                    .addConstantPoolIndex(Idx)
601                    .addImm(0));
602
603  return DestReg;
604}
605
606unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) {
607  // For now 32-bit only.
608  if (VT != MVT::i32) return 0;
609
610  Reloc::Model RelocM = TM.getRelocationModel();
611
612  // TODO: Need more magic for ARM PIC.
613  if (!isThumb2 && (RelocM == Reloc::PIC_)) return 0;
614
615  // MachineConstantPool wants an explicit alignment.
616  unsigned Align = TD.getPrefTypeAlignment(GV->getType());
617  if (Align == 0) {
618    // TODO: Figure out if this is correct.
619    Align = TD.getTypeAllocSize(GV->getType());
620  }
621
622  // Grab index.
623  unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb() ? 4 : 8);
624  unsigned Id = AFI->createPICLabelUId();
625  ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
626                                                              ARMCP::CPValue,
627                                                              PCAdj);
628  unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
629
630  // Load value.
631  MachineInstrBuilder MIB;
632  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
633  if (isThumb2) {
634    unsigned Opc = (RelocM != Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
635    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
636          .addConstantPoolIndex(Idx);
637    if (RelocM == Reloc::PIC_)
638      MIB.addImm(Id);
639  } else {
640    // The extra immediate is for addrmode2.
641    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
642                  DestReg)
643          .addConstantPoolIndex(Idx)
644          .addImm(0);
645  }
646  AddOptionalDefs(MIB);
647
648  if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) {
649    unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
650    if (isThumb2)
651      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
652                    TII.get(ARM::t2LDRi12), NewDestReg)
653            .addReg(DestReg)
654            .addImm(0);
655    else
656      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRi12),
657                    NewDestReg)
658            .addReg(DestReg)
659            .addImm(0);
660    DestReg = NewDestReg;
661    AddOptionalDefs(MIB);
662  }
663
664  return DestReg;
665}
666
667unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
668  EVT VT = TLI.getValueType(C->getType(), true);
669
670  // Only handle simple types.
671  if (!VT.isSimple()) return 0;
672
673  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
674    return ARMMaterializeFP(CFP, VT);
675  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
676    return ARMMaterializeGV(GV, VT);
677  else if (isa<ConstantInt>(C))
678    return ARMMaterializeInt(C, VT);
679
680  return 0;
681}
682
683unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
684  // Don't handle dynamic allocas.
685  if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
686
687  MVT VT;
688  if (!isLoadTypeLegal(AI->getType(), VT)) return false;
689
690  DenseMap<const AllocaInst*, int>::iterator SI =
691    FuncInfo.StaticAllocaMap.find(AI);
692
693  // This will get lowered later into the correct offsets and registers
694  // via rewriteXFrameIndex.
695  if (SI != FuncInfo.StaticAllocaMap.end()) {
696    TargetRegisterClass* RC = TLI.getRegClassFor(VT);
697    unsigned ResultReg = createResultReg(RC);
698    unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
699    AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
700                            TII.get(Opc), ResultReg)
701                            .addFrameIndex(SI->second)
702                            .addImm(0));
703    return ResultReg;
704  }
705
706  return 0;
707}
708
709bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
710  EVT evt = TLI.getValueType(Ty, true);
711
712  // Only handle simple types.
713  if (evt == MVT::Other || !evt.isSimple()) return false;
714  VT = evt.getSimpleVT();
715
716  // Handle all legal types, i.e. a register that will directly hold this
717  // value.
718  return TLI.isTypeLegal(VT);
719}
720
721bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
722  if (isTypeLegal(Ty, VT)) return true;
723
724  // If this is a type than can be sign or zero-extended to a basic operation
725  // go ahead and accept it now.
726  if (VT == MVT::i8 || VT == MVT::i16)
727    return true;
728
729  return false;
730}
731
732// Computes the address to get to an object.
733bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
734  // Some boilerplate from the X86 FastISel.
735  const User *U = NULL;
736  unsigned Opcode = Instruction::UserOp1;
737  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
738    // Don't walk into other basic blocks unless the object is an alloca from
739    // another block, otherwise it may not have a virtual register assigned.
740    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
741        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
742      Opcode = I->getOpcode();
743      U = I;
744    }
745  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
746    Opcode = C->getOpcode();
747    U = C;
748  }
749
750  if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
751    if (Ty->getAddressSpace() > 255)
752      // Fast instruction selection doesn't support the special
753      // address spaces.
754      return false;
755
756  switch (Opcode) {
757    default:
758    break;
759    case Instruction::BitCast: {
760      // Look through bitcasts.
761      return ARMComputeAddress(U->getOperand(0), Addr);
762    }
763    case Instruction::IntToPtr: {
764      // Look past no-op inttoptrs.
765      if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
766        return ARMComputeAddress(U->getOperand(0), Addr);
767      break;
768    }
769    case Instruction::PtrToInt: {
770      // Look past no-op ptrtoints.
771      if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
772        return ARMComputeAddress(U->getOperand(0), Addr);
773      break;
774    }
775    case Instruction::GetElementPtr: {
776      Address SavedAddr = Addr;
777      int TmpOffset = Addr.Offset;
778
779      // Iterate through the GEP folding the constants into offsets where
780      // we can.
781      gep_type_iterator GTI = gep_type_begin(U);
782      for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
783           i != e; ++i, ++GTI) {
784        const Value *Op = *i;
785        if (StructType *STy = dyn_cast<StructType>(*GTI)) {
786          const StructLayout *SL = TD.getStructLayout(STy);
787          unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
788          TmpOffset += SL->getElementOffset(Idx);
789        } else {
790          uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
791          for (;;) {
792            if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
793              // Constant-offset addressing.
794              TmpOffset += CI->getSExtValue() * S;
795              break;
796            }
797            if (isa<AddOperator>(Op) &&
798                (!isa<Instruction>(Op) ||
799                 FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()]
800                 == FuncInfo.MBB) &&
801                isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
802              // An add (in the same block) with a constant operand. Fold the
803              // constant.
804              ConstantInt *CI =
805              cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
806              TmpOffset += CI->getSExtValue() * S;
807              // Iterate on the other operand.
808              Op = cast<AddOperator>(Op)->getOperand(0);
809              continue;
810            }
811            // Unsupported
812            goto unsupported_gep;
813          }
814        }
815      }
816
817      // Try to grab the base operand now.
818      Addr.Offset = TmpOffset;
819      if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
820
821      // We failed, restore everything and try the other options.
822      Addr = SavedAddr;
823
824      unsupported_gep:
825      break;
826    }
827    case Instruction::Alloca: {
828      const AllocaInst *AI = cast<AllocaInst>(Obj);
829      DenseMap<const AllocaInst*, int>::iterator SI =
830        FuncInfo.StaticAllocaMap.find(AI);
831      if (SI != FuncInfo.StaticAllocaMap.end()) {
832        Addr.BaseType = Address::FrameIndexBase;
833        Addr.Base.FI = SI->second;
834        return true;
835      }
836      break;
837    }
838  }
839
840  // Materialize the global variable's address into a reg which can
841  // then be used later to load the variable.
842  if (const GlobalValue *GV = dyn_cast<GlobalValue>(Obj)) {
843    unsigned Tmp = ARMMaterializeGV(GV, TLI.getValueType(Obj->getType()));
844    if (Tmp == 0) return false;
845
846    Addr.Base.Reg = Tmp;
847    return true;
848  }
849
850  // Try to get this in a register if nothing else has worked.
851  if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
852  return Addr.Base.Reg != 0;
853}
854
855void ARMFastISel::ARMSimplifyAddress(Address &Addr, EVT VT) {
856
857  assert(VT.isSimple() && "Non-simple types are invalid here!");
858
859  bool needsLowering = false;
860  switch (VT.getSimpleVT().SimpleTy) {
861    default:
862      assert(false && "Unhandled load/store type!");
863    case MVT::i16:
864      if (isThumb2)
865        // Integer loads/stores handle 12-bit offsets.
866        needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
867      else
868        // ARM i16 integer loads/stores handle +/-imm8 offsets.
869        // FIXME: Negative offsets require special handling.
870        if (Addr.Offset > 255 || Addr.Offset < 0)
871          needsLowering = true;
872      break;
873    case MVT::i1:
874    case MVT::i8:
875    case MVT::i32:
876      // Integer loads/stores handle 12-bit offsets.
877      needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
878      break;
879    case MVT::f32:
880    case MVT::f64:
881      // Floating point operands handle 8-bit offsets.
882      needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
883      break;
884  }
885
886  // If this is a stack pointer and the offset needs to be simplified then
887  // put the alloca address into a register, set the base type back to
888  // register and continue. This should almost never happen.
889  if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
890    TargetRegisterClass *RC = isThumb2 ? ARM::tGPRRegisterClass :
891                              ARM::GPRRegisterClass;
892    unsigned ResultReg = createResultReg(RC);
893    unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
894    AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
895                            TII.get(Opc), ResultReg)
896                            .addFrameIndex(Addr.Base.FI)
897                            .addImm(0));
898    Addr.Base.Reg = ResultReg;
899    Addr.BaseType = Address::RegBase;
900  }
901
902  // Since the offset is too large for the load/store instruction
903  // get the reg+offset into a register.
904  if (needsLowering) {
905    Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
906                                 /*Op0IsKill*/false, Addr.Offset, MVT::i32);
907    Addr.Offset = 0;
908  }
909}
910
911void ARMFastISel::AddLoadStoreOperands(EVT VT, Address &Addr,
912                                       const MachineInstrBuilder &MIB,
913                                       unsigned Flags) {
914  // addrmode5 output depends on the selection dag addressing dividing the
915  // offset by 4 that it then later multiplies. Do this here as well.
916  if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
917      VT.getSimpleVT().SimpleTy == MVT::f64)
918    Addr.Offset /= 4;
919
920  // Frame base works a bit differently. Handle it separately.
921  if (Addr.BaseType == Address::FrameIndexBase) {
922    int FI = Addr.Base.FI;
923    int Offset = Addr.Offset;
924    MachineMemOperand *MMO =
925          FuncInfo.MF->getMachineMemOperand(
926                                  MachinePointerInfo::getFixedStack(FI, Offset),
927                                  Flags,
928                                  MFI.getObjectSize(FI),
929                                  MFI.getObjectAlignment(FI));
930    // Now add the rest of the operands.
931    MIB.addFrameIndex(FI);
932
933    // ARM halfword load/stores need an additional operand.
934    if (!isThumb2 && VT.getSimpleVT().SimpleTy == MVT::i16) MIB.addReg(0);
935
936    MIB.addImm(Addr.Offset);
937    MIB.addMemOperand(MMO);
938  } else {
939    // Now add the rest of the operands.
940    MIB.addReg(Addr.Base.Reg);
941
942    // ARM halfword load/stores need an additional operand.
943    if (!isThumb2 && VT.getSimpleVT().SimpleTy == MVT::i16) MIB.addReg(0);
944
945    MIB.addImm(Addr.Offset);
946  }
947  AddOptionalDefs(MIB);
948}
949
950bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr) {
951
952  assert(VT.isSimple() && "Non-simple types are invalid here!");
953  unsigned Opc;
954  TargetRegisterClass *RC;
955  switch (VT.getSimpleVT().SimpleTy) {
956    // This is mostly going to be Neon/vector support.
957    default: return false;
958    case MVT::i1:
959    case MVT::i8:
960      Opc = isThumb2 ? ARM::t2LDRBi12 : ARM::LDRBi12;
961      RC = ARM::GPRRegisterClass;
962      break;
963    case MVT::i16:
964      Opc = isThumb2 ? ARM::t2LDRHi12 : ARM::LDRH;
965      RC = ARM::GPRRegisterClass;
966      break;
967    case MVT::i32:
968      Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
969      RC = ARM::GPRRegisterClass;
970      break;
971    case MVT::f32:
972      Opc = ARM::VLDRS;
973      RC = TLI.getRegClassFor(VT);
974      break;
975    case MVT::f64:
976      Opc = ARM::VLDRD;
977      RC = TLI.getRegClassFor(VT);
978      break;
979  }
980  // Simplify this down to something we can handle.
981  ARMSimplifyAddress(Addr, VT);
982
983  // Create the base instruction, then add the operands.
984  ResultReg = createResultReg(RC);
985  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
986                                    TII.get(Opc), ResultReg);
987  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad);
988  return true;
989}
990
991bool ARMFastISel::SelectLoad(const Instruction *I) {
992  // Atomic loads need special handling.
993  if (cast<LoadInst>(I)->isAtomic())
994    return false;
995
996  // Verify we have a legal type before going any further.
997  MVT VT;
998  if (!isLoadTypeLegal(I->getType(), VT))
999    return false;
1000
1001  // See if we can handle this address.
1002  Address Addr;
1003  if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
1004
1005  unsigned ResultReg;
1006  if (!ARMEmitLoad(VT, ResultReg, Addr)) return false;
1007  UpdateValueMap(I, ResultReg);
1008  return true;
1009}
1010
1011bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr) {
1012  unsigned StrOpc;
1013  switch (VT.getSimpleVT().SimpleTy) {
1014    // This is mostly going to be Neon/vector support.
1015    default: return false;
1016    case MVT::i1: {
1017      unsigned Res = createResultReg(isThumb2 ? ARM::tGPRRegisterClass :
1018                                               ARM::GPRRegisterClass);
1019      unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
1020      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1021                              TII.get(Opc), Res)
1022                      .addReg(SrcReg).addImm(1));
1023      SrcReg = Res;
1024    } // Fallthrough here.
1025    case MVT::i8:
1026      StrOpc = isThumb2 ? ARM::t2STRBi12 : ARM::STRBi12;
1027      break;
1028    case MVT::i16:
1029      StrOpc = isThumb2 ? ARM::t2STRHi12 : ARM::STRH;
1030      break;
1031    case MVT::i32:
1032      StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
1033      break;
1034    case MVT::f32:
1035      if (!Subtarget->hasVFP2()) return false;
1036      StrOpc = ARM::VSTRS;
1037      break;
1038    case MVT::f64:
1039      if (!Subtarget->hasVFP2()) return false;
1040      StrOpc = ARM::VSTRD;
1041      break;
1042  }
1043  // Simplify this down to something we can handle.
1044  ARMSimplifyAddress(Addr, VT);
1045
1046  // Create the base instruction, then add the operands.
1047  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1048                                    TII.get(StrOpc))
1049                            .addReg(SrcReg, getKillRegState(true));
1050  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore);
1051  return true;
1052}
1053
1054bool ARMFastISel::SelectStore(const Instruction *I) {
1055  Value *Op0 = I->getOperand(0);
1056  unsigned SrcReg = 0;
1057
1058  // Atomic stores need special handling.
1059  if (cast<StoreInst>(I)->isAtomic())
1060    return false;
1061
1062  // Verify we have a legal type before going any further.
1063  MVT VT;
1064  if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1065    return false;
1066
1067  // Get the value to be stored into a register.
1068  SrcReg = getRegForValue(Op0);
1069  if (SrcReg == 0) return false;
1070
1071  // See if we can handle this address.
1072  Address Addr;
1073  if (!ARMComputeAddress(I->getOperand(1), Addr))
1074    return false;
1075
1076  if (!ARMEmitStore(VT, SrcReg, Addr)) return false;
1077  return true;
1078}
1079
1080static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1081  switch (Pred) {
1082    // Needs two compares...
1083    case CmpInst::FCMP_ONE:
1084    case CmpInst::FCMP_UEQ:
1085    default:
1086      // AL is our "false" for now. The other two need more compares.
1087      return ARMCC::AL;
1088    case CmpInst::ICMP_EQ:
1089    case CmpInst::FCMP_OEQ:
1090      return ARMCC::EQ;
1091    case CmpInst::ICMP_SGT:
1092    case CmpInst::FCMP_OGT:
1093      return ARMCC::GT;
1094    case CmpInst::ICMP_SGE:
1095    case CmpInst::FCMP_OGE:
1096      return ARMCC::GE;
1097    case CmpInst::ICMP_UGT:
1098    case CmpInst::FCMP_UGT:
1099      return ARMCC::HI;
1100    case CmpInst::FCMP_OLT:
1101      return ARMCC::MI;
1102    case CmpInst::ICMP_ULE:
1103    case CmpInst::FCMP_OLE:
1104      return ARMCC::LS;
1105    case CmpInst::FCMP_ORD:
1106      return ARMCC::VC;
1107    case CmpInst::FCMP_UNO:
1108      return ARMCC::VS;
1109    case CmpInst::FCMP_UGE:
1110      return ARMCC::PL;
1111    case CmpInst::ICMP_SLT:
1112    case CmpInst::FCMP_ULT:
1113      return ARMCC::LT;
1114    case CmpInst::ICMP_SLE:
1115    case CmpInst::FCMP_ULE:
1116      return ARMCC::LE;
1117    case CmpInst::FCMP_UNE:
1118    case CmpInst::ICMP_NE:
1119      return ARMCC::NE;
1120    case CmpInst::ICMP_UGE:
1121      return ARMCC::HS;
1122    case CmpInst::ICMP_ULT:
1123      return ARMCC::LO;
1124  }
1125}
1126
1127bool ARMFastISel::SelectBranch(const Instruction *I) {
1128  const BranchInst *BI = cast<BranchInst>(I);
1129  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1130  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1131
1132  // Simple branch support.
1133
1134  // If we can, avoid recomputing the compare - redoing it could lead to wonky
1135  // behavior.
1136  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1137    if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1138
1139      // Get the compare predicate.
1140      // Try to take advantage of fallthrough opportunities.
1141      CmpInst::Predicate Predicate = CI->getPredicate();
1142      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1143        std::swap(TBB, FBB);
1144        Predicate = CmpInst::getInversePredicate(Predicate);
1145      }
1146
1147      ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1148
1149      // We may not handle every CC for now.
1150      if (ARMPred == ARMCC::AL) return false;
1151
1152      // Emit the compare.
1153      if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1154        return false;
1155
1156      unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1157      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1158      .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1159      FastEmitBranch(FBB, DL);
1160      FuncInfo.MBB->addSuccessor(TBB);
1161      return true;
1162    }
1163  } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1164    MVT SourceVT;
1165    if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1166        (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1167      unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1168      unsigned OpReg = getRegForValue(TI->getOperand(0));
1169      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1170                              TII.get(TstOpc))
1171                      .addReg(OpReg).addImm(1));
1172
1173      unsigned CCMode = ARMCC::NE;
1174      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1175        std::swap(TBB, FBB);
1176        CCMode = ARMCC::EQ;
1177      }
1178
1179      unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1180      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1181      .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1182
1183      FastEmitBranch(FBB, DL);
1184      FuncInfo.MBB->addSuccessor(TBB);
1185      return true;
1186    }
1187  } else if (const ConstantInt *CI =
1188             dyn_cast<ConstantInt>(BI->getCondition())) {
1189    uint64_t Imm = CI->getZExtValue();
1190    MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1191    FastEmitBranch(Target, DL);
1192    return true;
1193  }
1194
1195  unsigned CmpReg = getRegForValue(BI->getCondition());
1196  if (CmpReg == 0) return false;
1197
1198  // We've been divorced from our compare!  Our block was split, and
1199  // now our compare lives in a predecessor block.  We musn't
1200  // re-compare here, as the children of the compare aren't guaranteed
1201  // live across the block boundary (we *could* check for this).
1202  // Regardless, the compare has been done in the predecessor block,
1203  // and it left a value for us in a virtual register.  Ergo, we test
1204  // the one-bit value left in the virtual register.
1205  unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1206  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TstOpc))
1207                  .addReg(CmpReg).addImm(1));
1208
1209  unsigned CCMode = ARMCC::NE;
1210  if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1211    std::swap(TBB, FBB);
1212    CCMode = ARMCC::EQ;
1213  }
1214
1215  unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1216  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1217                  .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1218  FastEmitBranch(FBB, DL);
1219  FuncInfo.MBB->addSuccessor(TBB);
1220  return true;
1221}
1222
1223bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1224                             bool isZExt) {
1225  Type *Ty = Src1Value->getType();
1226  EVT SrcVT = TLI.getValueType(Ty, true);
1227  if (!SrcVT.isSimple()) return false;
1228
1229  bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
1230  if (isFloat && !Subtarget->hasVFP2())
1231    return false;
1232
1233  // Check to see if the 2nd operand is a constant that we can encode directly
1234  // in the compare.
1235  int EncodedImm = 0;
1236  bool EncodeImm = false;
1237  bool isNegativeImm = false;
1238  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
1239    if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
1240        SrcVT == MVT::i1) {
1241      const APInt &CIVal = ConstInt->getValue();
1242      EncodedImm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
1243      if (EncodedImm < 0) {
1244        isNegativeImm = true;
1245        EncodedImm = -EncodedImm;
1246      }
1247      EncodeImm = isThumb2 ? (ARM_AM::getT2SOImmVal(EncodedImm) != -1) :
1248        (ARM_AM::getSOImmVal(EncodedImm) != -1);
1249    }
1250  } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
1251    if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
1252      if (ConstFP->isZero() && !ConstFP->isNegative())
1253        EncodeImm = true;
1254  }
1255
1256  unsigned CmpOpc;
1257  bool isICmp = true;
1258  bool needsExt = false;
1259  switch (SrcVT.getSimpleVT().SimpleTy) {
1260    default: return false;
1261    // TODO: Verify compares.
1262    case MVT::f32:
1263      isICmp = false;
1264      CmpOpc = EncodeImm ? ARM::VCMPEZS : ARM::VCMPES;
1265      break;
1266    case MVT::f64:
1267      isICmp = false;
1268      CmpOpc = EncodeImm ? ARM::VCMPEZD : ARM::VCMPED;
1269      break;
1270    case MVT::i1:
1271    case MVT::i8:
1272    case MVT::i16:
1273      needsExt = true;
1274    // Intentional fall-through.
1275    case MVT::i32:
1276      if (isThumb2) {
1277        if (!EncodeImm)
1278          CmpOpc = ARM::t2CMPrr;
1279        else
1280          CmpOpc = isNegativeImm ? ARM::t2CMNzri : ARM::t2CMPri;
1281      } else {
1282        if (!EncodeImm)
1283          CmpOpc = ARM::CMPrr;
1284        else
1285          CmpOpc = isNegativeImm ? ARM::CMNzri : ARM::CMPri;
1286      }
1287      break;
1288  }
1289
1290  unsigned SrcReg1 = getRegForValue(Src1Value);
1291  if (SrcReg1 == 0) return false;
1292
1293  unsigned SrcReg2;
1294  if (!EncodeImm) {
1295    SrcReg2 = getRegForValue(Src2Value);
1296    if (SrcReg2 == 0) return false;
1297  }
1298
1299  // We have i1, i8, or i16, we need to either zero extend or sign extend.
1300  if (needsExt) {
1301    unsigned ResultReg;
1302    ResultReg = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
1303    if (ResultReg == 0) return false;
1304    SrcReg1 = ResultReg;
1305    if (!EncodeImm) {
1306      ResultReg = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
1307      if (ResultReg == 0) return false;
1308      SrcReg2 = ResultReg;
1309    }
1310  }
1311
1312  if (!EncodeImm) {
1313    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1314                            TII.get(CmpOpc))
1315                    .addReg(SrcReg1).addReg(SrcReg2));
1316  } else {
1317    MachineInstrBuilder MIB;
1318    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1319      .addReg(SrcReg1);
1320
1321    // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
1322    if (isICmp)
1323      MIB.addImm(EncodedImm);
1324    AddOptionalDefs(MIB);
1325  }
1326
1327  // For floating point we need to move the result to a comparison register
1328  // that we can then use for branches.
1329  if (Ty->isFloatTy() || Ty->isDoubleTy())
1330    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1331                            TII.get(ARM::FMSTAT)));
1332  return true;
1333}
1334
1335bool ARMFastISel::SelectCmp(const Instruction *I) {
1336  const CmpInst *CI = cast<CmpInst>(I);
1337  Type *Ty = CI->getOperand(0)->getType();
1338
1339  // Get the compare predicate.
1340  ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1341
1342  // We may not handle every CC for now.
1343  if (ARMPred == ARMCC::AL) return false;
1344
1345  // Emit the compare.
1346  if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1347    return false;
1348
1349  // Now set a register based on the comparison. Explicitly set the predicates
1350  // here.
1351  unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1352  TargetRegisterClass *RC = isThumb2 ? ARM::rGPRRegisterClass
1353                                    : ARM::GPRRegisterClass;
1354  unsigned DestReg = createResultReg(RC);
1355  Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1356  unsigned ZeroReg = TargetMaterializeConstant(Zero);
1357  bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
1358  unsigned CondReg = isFloat ? ARM::FPSCR : ARM::CPSR;
1359  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
1360          .addReg(ZeroReg).addImm(1)
1361          .addImm(ARMPred).addReg(CondReg);
1362
1363  UpdateValueMap(I, DestReg);
1364  return true;
1365}
1366
1367bool ARMFastISel::SelectFPExt(const Instruction *I) {
1368  // Make sure we have VFP and that we're extending float to double.
1369  if (!Subtarget->hasVFP2()) return false;
1370
1371  Value *V = I->getOperand(0);
1372  if (!I->getType()->isDoubleTy() ||
1373      !V->getType()->isFloatTy()) return false;
1374
1375  unsigned Op = getRegForValue(V);
1376  if (Op == 0) return false;
1377
1378  unsigned Result = createResultReg(ARM::DPRRegisterClass);
1379  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1380                          TII.get(ARM::VCVTDS), Result)
1381                  .addReg(Op));
1382  UpdateValueMap(I, Result);
1383  return true;
1384}
1385
1386bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1387  // Make sure we have VFP and that we're truncating double to float.
1388  if (!Subtarget->hasVFP2()) return false;
1389
1390  Value *V = I->getOperand(0);
1391  if (!(I->getType()->isFloatTy() &&
1392        V->getType()->isDoubleTy())) return false;
1393
1394  unsigned Op = getRegForValue(V);
1395  if (Op == 0) return false;
1396
1397  unsigned Result = createResultReg(ARM::SPRRegisterClass);
1398  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1399                          TII.get(ARM::VCVTSD), Result)
1400                  .addReg(Op));
1401  UpdateValueMap(I, Result);
1402  return true;
1403}
1404
1405bool ARMFastISel::SelectSIToFP(const Instruction *I) {
1406  // Make sure we have VFP.
1407  if (!Subtarget->hasVFP2()) return false;
1408
1409  MVT DstVT;
1410  Type *Ty = I->getType();
1411  if (!isTypeLegal(Ty, DstVT))
1412    return false;
1413
1414  Value *Src = I->getOperand(0);
1415  EVT SrcVT = TLI.getValueType(Src->getType(), true);
1416  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1417    return false;
1418
1419  unsigned SrcReg = getRegForValue(Src);
1420  if (SrcReg == 0) return false;
1421
1422  // Handle sign-extension.
1423  if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
1424    EVT DestVT = MVT::i32;
1425    unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, /*isZExt*/ false);
1426    if (ResultReg == 0) return false;
1427    SrcReg = ResultReg;
1428  }
1429
1430  // The conversion routine works on fp-reg to fp-reg and the operand above
1431  // was an integer, move it to the fp registers if possible.
1432  unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1433  if (FP == 0) return false;
1434
1435  unsigned Opc;
1436  if (Ty->isFloatTy()) Opc = ARM::VSITOS;
1437  else if (Ty->isDoubleTy()) Opc = ARM::VSITOD;
1438  else return false;
1439
1440  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1441  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1442                          ResultReg)
1443                  .addReg(FP));
1444  UpdateValueMap(I, ResultReg);
1445  return true;
1446}
1447
1448bool ARMFastISel::SelectFPToSI(const Instruction *I) {
1449  // Make sure we have VFP.
1450  if (!Subtarget->hasVFP2()) return false;
1451
1452  MVT DstVT;
1453  Type *RetTy = I->getType();
1454  if (!isTypeLegal(RetTy, DstVT))
1455    return false;
1456
1457  unsigned Op = getRegForValue(I->getOperand(0));
1458  if (Op == 0) return false;
1459
1460  unsigned Opc;
1461  Type *OpTy = I->getOperand(0)->getType();
1462  if (OpTy->isFloatTy()) Opc = ARM::VTOSIZS;
1463  else if (OpTy->isDoubleTy()) Opc = ARM::VTOSIZD;
1464  else return false;
1465
1466  // f64->s32 or f32->s32 both need an intermediate f32 reg.
1467  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1468  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1469                          ResultReg)
1470                  .addReg(Op));
1471
1472  // This result needs to be in an integer register, but the conversion only
1473  // takes place in fp-regs.
1474  unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1475  if (IntReg == 0) return false;
1476
1477  UpdateValueMap(I, IntReg);
1478  return true;
1479}
1480
1481bool ARMFastISel::SelectSelect(const Instruction *I) {
1482  MVT VT;
1483  if (!isTypeLegal(I->getType(), VT))
1484    return false;
1485
1486  // Things need to be register sized for register moves.
1487  if (VT != MVT::i32) return false;
1488  const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
1489
1490  unsigned CondReg = getRegForValue(I->getOperand(0));
1491  if (CondReg == 0) return false;
1492  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1493  if (Op1Reg == 0) return false;
1494  unsigned Op2Reg = getRegForValue(I->getOperand(2));
1495  if (Op2Reg == 0) return false;
1496
1497  unsigned CmpOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1498  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1499                  .addReg(CondReg).addImm(1));
1500  unsigned ResultReg = createResultReg(RC);
1501  unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
1502  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1503    .addReg(Op1Reg).addReg(Op2Reg)
1504    .addImm(ARMCC::EQ).addReg(ARM::CPSR);
1505  UpdateValueMap(I, ResultReg);
1506  return true;
1507}
1508
1509bool ARMFastISel::SelectSDiv(const Instruction *I) {
1510  MVT VT;
1511  Type *Ty = I->getType();
1512  if (!isTypeLegal(Ty, VT))
1513    return false;
1514
1515  // If we have integer div support we should have selected this automagically.
1516  // In case we have a real miss go ahead and return false and we'll pick
1517  // it up later.
1518  if (Subtarget->hasDivide()) return false;
1519
1520  // Otherwise emit a libcall.
1521  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1522  if (VT == MVT::i8)
1523    LC = RTLIB::SDIV_I8;
1524  else if (VT == MVT::i16)
1525    LC = RTLIB::SDIV_I16;
1526  else if (VT == MVT::i32)
1527    LC = RTLIB::SDIV_I32;
1528  else if (VT == MVT::i64)
1529    LC = RTLIB::SDIV_I64;
1530  else if (VT == MVT::i128)
1531    LC = RTLIB::SDIV_I128;
1532  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1533
1534  return ARMEmitLibcall(I, LC);
1535}
1536
1537bool ARMFastISel::SelectSRem(const Instruction *I) {
1538  MVT VT;
1539  Type *Ty = I->getType();
1540  if (!isTypeLegal(Ty, VT))
1541    return false;
1542
1543  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1544  if (VT == MVT::i8)
1545    LC = RTLIB::SREM_I8;
1546  else if (VT == MVT::i16)
1547    LC = RTLIB::SREM_I16;
1548  else if (VT == MVT::i32)
1549    LC = RTLIB::SREM_I32;
1550  else if (VT == MVT::i64)
1551    LC = RTLIB::SREM_I64;
1552  else if (VT == MVT::i128)
1553    LC = RTLIB::SREM_I128;
1554  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1555
1556  return ARMEmitLibcall(I, LC);
1557}
1558
1559bool ARMFastISel::SelectBinaryOp(const Instruction *I, unsigned ISDOpcode) {
1560  EVT VT  = TLI.getValueType(I->getType(), true);
1561
1562  // We can get here in the case when we want to use NEON for our fp
1563  // operations, but can't figure out how to. Just use the vfp instructions
1564  // if we have them.
1565  // FIXME: It'd be nice to use NEON instructions.
1566  Type *Ty = I->getType();
1567  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1568  if (isFloat && !Subtarget->hasVFP2())
1569    return false;
1570
1571  unsigned Op1 = getRegForValue(I->getOperand(0));
1572  if (Op1 == 0) return false;
1573
1574  unsigned Op2 = getRegForValue(I->getOperand(1));
1575  if (Op2 == 0) return false;
1576
1577  unsigned Opc;
1578  bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1579  switch (ISDOpcode) {
1580    default: return false;
1581    case ISD::FADD:
1582      Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1583      break;
1584    case ISD::FSUB:
1585      Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1586      break;
1587    case ISD::FMUL:
1588      Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1589      break;
1590  }
1591  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1592  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1593                          TII.get(Opc), ResultReg)
1594                  .addReg(Op1).addReg(Op2));
1595  UpdateValueMap(I, ResultReg);
1596  return true;
1597}
1598
1599// Call Handling Code
1600
1601bool ARMFastISel::FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src,
1602                                 EVT SrcVT, unsigned &ResultReg) {
1603  unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
1604                           Src, /*TODO: Kill=*/false);
1605
1606  if (RR != 0) {
1607    ResultReg = RR;
1608    return true;
1609  } else
1610    return false;
1611}
1612
1613// This is largely taken directly from CCAssignFnForNode - we don't support
1614// varargs in FastISel so that part has been removed.
1615// TODO: We may not support all of this.
1616CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) {
1617  switch (CC) {
1618  default:
1619    llvm_unreachable("Unsupported calling convention");
1620  case CallingConv::Fast:
1621    // Ignore fastcc. Silence compiler warnings.
1622    (void)RetFastCC_ARM_APCS;
1623    (void)FastCC_ARM_APCS;
1624    // Fallthrough
1625  case CallingConv::C:
1626    // Use target triple & subtarget features to do actual dispatch.
1627    if (Subtarget->isAAPCS_ABI()) {
1628      if (Subtarget->hasVFP2() &&
1629          FloatABIType == FloatABI::Hard)
1630        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1631      else
1632        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1633    } else
1634        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1635  case CallingConv::ARM_AAPCS_VFP:
1636    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1637  case CallingConv::ARM_AAPCS:
1638    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1639  case CallingConv::ARM_APCS:
1640    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1641  }
1642}
1643
1644bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1645                                  SmallVectorImpl<unsigned> &ArgRegs,
1646                                  SmallVectorImpl<MVT> &ArgVTs,
1647                                  SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1648                                  SmallVectorImpl<unsigned> &RegArgs,
1649                                  CallingConv::ID CC,
1650                                  unsigned &NumBytes) {
1651  SmallVector<CCValAssign, 16> ArgLocs;
1652  CCState CCInfo(CC, false, *FuncInfo.MF, TM, ArgLocs, *Context);
1653  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false));
1654
1655  // Get a count of how many bytes are to be pushed on the stack.
1656  NumBytes = CCInfo.getNextStackOffset();
1657
1658  // Issue CALLSEQ_START
1659  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1660  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1661                          TII.get(AdjStackDown))
1662                  .addImm(NumBytes));
1663
1664  // Process the args.
1665  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1666    CCValAssign &VA = ArgLocs[i];
1667    unsigned Arg = ArgRegs[VA.getValNo()];
1668    MVT ArgVT = ArgVTs[VA.getValNo()];
1669
1670    // We don't handle NEON/vector parameters yet.
1671    if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1672      return false;
1673
1674    // Handle arg promotion, etc.
1675    switch (VA.getLocInfo()) {
1676      case CCValAssign::Full: break;
1677      case CCValAssign::SExt: {
1678        EVT DestVT = VA.getLocVT();
1679        unsigned ResultReg = ARMEmitIntExt(ArgVT, Arg, DestVT,
1680                                           /*isZExt*/false);
1681        assert (ResultReg != 0 && "Failed to emit a sext");
1682        Arg = ResultReg;
1683        break;
1684      }
1685      case CCValAssign::AExt:
1686        // Intentional fall-through.  Handle AExt and ZExt.
1687      case CCValAssign::ZExt: {
1688        EVT DestVT = VA.getLocVT();
1689        unsigned ResultReg = ARMEmitIntExt(ArgVT, Arg, DestVT,
1690                                           /*isZExt*/true);
1691        assert (ResultReg != 0 && "Failed to emit a sext");
1692        Arg = ResultReg;
1693        break;
1694      }
1695      case CCValAssign::BCvt: {
1696        unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
1697                                 /*TODO: Kill=*/false);
1698        assert(BC != 0 && "Failed to emit a bitcast!");
1699        Arg = BC;
1700        ArgVT = VA.getLocVT();
1701        break;
1702      }
1703      default: llvm_unreachable("Unknown arg promotion!");
1704    }
1705
1706    // Now copy/store arg to correct locations.
1707    if (VA.isRegLoc() && !VA.needsCustom()) {
1708      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1709              VA.getLocReg())
1710        .addReg(Arg);
1711      RegArgs.push_back(VA.getLocReg());
1712    } else if (VA.needsCustom()) {
1713      // TODO: We need custom lowering for vector (v2f64) args.
1714      if (VA.getLocVT() != MVT::f64) return false;
1715
1716      CCValAssign &NextVA = ArgLocs[++i];
1717
1718      // TODO: Only handle register args for now.
1719      if(!(VA.isRegLoc() && NextVA.isRegLoc())) return false;
1720
1721      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1722                              TII.get(ARM::VMOVRRD), VA.getLocReg())
1723                      .addReg(NextVA.getLocReg(), RegState::Define)
1724                      .addReg(Arg));
1725      RegArgs.push_back(VA.getLocReg());
1726      RegArgs.push_back(NextVA.getLocReg());
1727    } else {
1728      assert(VA.isMemLoc());
1729      // Need to store on the stack.
1730      Address Addr;
1731      Addr.BaseType = Address::RegBase;
1732      Addr.Base.Reg = ARM::SP;
1733      Addr.Offset = VA.getLocMemOffset();
1734
1735      if (!ARMEmitStore(ArgVT, Arg, Addr)) return false;
1736    }
1737  }
1738  return true;
1739}
1740
1741bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
1742                             const Instruction *I, CallingConv::ID CC,
1743                             unsigned &NumBytes) {
1744  // Issue CALLSEQ_END
1745  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
1746  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1747                          TII.get(AdjStackUp))
1748                  .addImm(NumBytes).addImm(0));
1749
1750  // Now the return value.
1751  if (RetVT != MVT::isVoid) {
1752    SmallVector<CCValAssign, 16> RVLocs;
1753    CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
1754    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true));
1755
1756    // Copy all of the result registers out of their specified physreg.
1757    if (RVLocs.size() == 2 && RetVT == MVT::f64) {
1758      // For this move we copy into two registers and then move into the
1759      // double fp reg we want.
1760      EVT DestVT = RVLocs[0].getValVT();
1761      TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
1762      unsigned ResultReg = createResultReg(DstRC);
1763      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1764                              TII.get(ARM::VMOVDRR), ResultReg)
1765                      .addReg(RVLocs[0].getLocReg())
1766                      .addReg(RVLocs[1].getLocReg()));
1767
1768      UsedRegs.push_back(RVLocs[0].getLocReg());
1769      UsedRegs.push_back(RVLocs[1].getLocReg());
1770
1771      // Finally update the result.
1772      UpdateValueMap(I, ResultReg);
1773    } else {
1774      assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
1775      EVT CopyVT = RVLocs[0].getValVT();
1776
1777      // Special handling for extended integers.
1778      if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
1779        CopyVT = MVT::i32;
1780
1781      TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1782
1783      unsigned ResultReg = createResultReg(DstRC);
1784      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1785              ResultReg).addReg(RVLocs[0].getLocReg());
1786      UsedRegs.push_back(RVLocs[0].getLocReg());
1787
1788      // Finally update the result.
1789      UpdateValueMap(I, ResultReg);
1790    }
1791  }
1792
1793  return true;
1794}
1795
1796bool ARMFastISel::SelectRet(const Instruction *I) {
1797  const ReturnInst *Ret = cast<ReturnInst>(I);
1798  const Function &F = *I->getParent()->getParent();
1799
1800  if (!FuncInfo.CanLowerReturn)
1801    return false;
1802
1803  if (F.isVarArg())
1804    return false;
1805
1806  CallingConv::ID CC = F.getCallingConv();
1807  if (Ret->getNumOperands() > 0) {
1808    SmallVector<ISD::OutputArg, 4> Outs;
1809    GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
1810                  Outs, TLI);
1811
1812    // Analyze operands of the call, assigning locations to each operand.
1813    SmallVector<CCValAssign, 16> ValLocs;
1814    CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,I->getContext());
1815    CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */));
1816
1817    const Value *RV = Ret->getOperand(0);
1818    unsigned Reg = getRegForValue(RV);
1819    if (Reg == 0)
1820      return false;
1821
1822    // Only handle a single return value for now.
1823    if (ValLocs.size() != 1)
1824      return false;
1825
1826    CCValAssign &VA = ValLocs[0];
1827
1828    // Don't bother handling odd stuff for now.
1829    if (VA.getLocInfo() != CCValAssign::Full)
1830      return false;
1831    // Only handle register returns for now.
1832    if (!VA.isRegLoc())
1833      return false;
1834
1835    unsigned SrcReg = Reg + VA.getValNo();
1836    EVT RVVT = TLI.getValueType(RV->getType());
1837    EVT DestVT = VA.getValVT();
1838    // Special handling for extended integers.
1839    if (RVVT != DestVT) {
1840      if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
1841        return false;
1842
1843      if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1844        return false;
1845
1846      assert(DestVT == MVT::i32 && "ARM should always ext to i32");
1847
1848      bool isZExt = Outs[0].Flags.isZExt();
1849      unsigned ResultReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, isZExt);
1850      if (ResultReg == 0) return false;
1851      SrcReg = ResultReg;
1852    }
1853
1854    // Make the copy.
1855    unsigned DstReg = VA.getLocReg();
1856    const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
1857    // Avoid a cross-class copy. This is very unlikely.
1858    if (!SrcRC->contains(DstReg))
1859      return false;
1860    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1861            DstReg).addReg(SrcReg);
1862
1863    // Mark the register as live out of the function.
1864    MRI.addLiveOut(VA.getLocReg());
1865  }
1866
1867  unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET;
1868  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1869                          TII.get(RetOpc)));
1870  return true;
1871}
1872
1873unsigned ARMFastISel::ARMSelectCallOp(const GlobalValue *GV) {
1874
1875  // Darwin needs the r9 versions of the opcodes.
1876  bool isDarwin = Subtarget->isTargetDarwin();
1877  if (isThumb2) {
1878    return isDarwin ? ARM::tBLr9 : ARM::tBL;
1879  } else  {
1880    return isDarwin ? ARM::BLr9 : ARM::BL;
1881  }
1882}
1883
1884// A quick function that will emit a call for a named libcall in F with the
1885// vector of passed arguments for the Instruction in I. We can assume that we
1886// can emit a call for any libcall we can produce. This is an abridged version
1887// of the full call infrastructure since we won't need to worry about things
1888// like computed function pointers or strange arguments at call sites.
1889// TODO: Try to unify this and the normal call bits for ARM, then try to unify
1890// with X86.
1891bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
1892  CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
1893
1894  // Handle *simple* calls for now.
1895  Type *RetTy = I->getType();
1896  MVT RetVT;
1897  if (RetTy->isVoidTy())
1898    RetVT = MVT::isVoid;
1899  else if (!isTypeLegal(RetTy, RetVT))
1900    return false;
1901
1902  // TODO: For now if we have long calls specified we don't handle the call.
1903  if (EnableARMLongCalls) return false;
1904
1905  // Set up the argument vectors.
1906  SmallVector<Value*, 8> Args;
1907  SmallVector<unsigned, 8> ArgRegs;
1908  SmallVector<MVT, 8> ArgVTs;
1909  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1910  Args.reserve(I->getNumOperands());
1911  ArgRegs.reserve(I->getNumOperands());
1912  ArgVTs.reserve(I->getNumOperands());
1913  ArgFlags.reserve(I->getNumOperands());
1914  for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1915    Value *Op = I->getOperand(i);
1916    unsigned Arg = getRegForValue(Op);
1917    if (Arg == 0) return false;
1918
1919    Type *ArgTy = Op->getType();
1920    MVT ArgVT;
1921    if (!isTypeLegal(ArgTy, ArgVT)) return false;
1922
1923    ISD::ArgFlagsTy Flags;
1924    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1925    Flags.setOrigAlign(OriginalAlignment);
1926
1927    Args.push_back(Op);
1928    ArgRegs.push_back(Arg);
1929    ArgVTs.push_back(ArgVT);
1930    ArgFlags.push_back(Flags);
1931  }
1932
1933  // Handle the arguments now that we've gotten them.
1934  SmallVector<unsigned, 4> RegArgs;
1935  unsigned NumBytes;
1936  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1937    return false;
1938
1939  // Issue the call, BLr9 for darwin, BL otherwise.
1940  // TODO: Turn this into the table of arm call ops.
1941  MachineInstrBuilder MIB;
1942  unsigned CallOpc = ARMSelectCallOp(NULL);
1943  if(isThumb2)
1944    // Explicitly adding the predicate here.
1945    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1946                         TII.get(CallOpc)))
1947                         .addExternalSymbol(TLI.getLibcallName(Call));
1948  else
1949    // Explicitly adding the predicate here.
1950    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1951                         TII.get(CallOpc))
1952          .addExternalSymbol(TLI.getLibcallName(Call)));
1953
1954  // Add implicit physical register uses to the call.
1955  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1956    MIB.addReg(RegArgs[i]);
1957
1958  // Finish off the call including any return values.
1959  SmallVector<unsigned, 4> UsedRegs;
1960  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1961
1962  // Set all unused physreg defs as dead.
1963  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1964
1965  return true;
1966}
1967
1968bool ARMFastISel::SelectCall(const Instruction *I) {
1969  const CallInst *CI = cast<CallInst>(I);
1970  const Value *Callee = CI->getCalledValue();
1971
1972  // Can't handle inline asm or worry about intrinsics yet.
1973  if (isa<InlineAsm>(Callee) || isa<IntrinsicInst>(CI)) return false;
1974
1975  // Only handle global variable Callees.
1976  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1977  if (!GV)
1978    return false;
1979
1980  // Check the calling convention.
1981  ImmutableCallSite CS(CI);
1982  CallingConv::ID CC = CS.getCallingConv();
1983
1984  // TODO: Avoid some calling conventions?
1985
1986  // Let SDISel handle vararg functions.
1987  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1988  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1989  if (FTy->isVarArg())
1990    return false;
1991
1992  // Handle *simple* calls for now.
1993  Type *RetTy = I->getType();
1994  MVT RetVT;
1995  if (RetTy->isVoidTy())
1996    RetVT = MVT::isVoid;
1997  else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
1998           RetVT != MVT::i8  && RetVT != MVT::i1)
1999    return false;
2000
2001  // TODO: For now if we have long calls specified we don't handle the call.
2002  if (EnableARMLongCalls) return false;
2003
2004  // Set up the argument vectors.
2005  SmallVector<Value*, 8> Args;
2006  SmallVector<unsigned, 8> ArgRegs;
2007  SmallVector<MVT, 8> ArgVTs;
2008  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2009  Args.reserve(CS.arg_size());
2010  ArgRegs.reserve(CS.arg_size());
2011  ArgVTs.reserve(CS.arg_size());
2012  ArgFlags.reserve(CS.arg_size());
2013  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
2014       i != e; ++i) {
2015    unsigned Arg = getRegForValue(*i);
2016
2017    if (Arg == 0)
2018      return false;
2019    ISD::ArgFlagsTy Flags;
2020    unsigned AttrInd = i - CS.arg_begin() + 1;
2021    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
2022      Flags.setSExt();
2023    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
2024      Flags.setZExt();
2025
2026    // FIXME: Only handle *easy* calls for now.
2027    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
2028        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
2029        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
2030        CS.paramHasAttr(AttrInd, Attribute::ByVal))
2031      return false;
2032
2033    Type *ArgTy = (*i)->getType();
2034    MVT ArgVT;
2035    if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
2036        ArgVT != MVT::i1)
2037      return false;
2038    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
2039    Flags.setOrigAlign(OriginalAlignment);
2040
2041    Args.push_back(*i);
2042    ArgRegs.push_back(Arg);
2043    ArgVTs.push_back(ArgVT);
2044    ArgFlags.push_back(Flags);
2045  }
2046
2047  // Handle the arguments now that we've gotten them.
2048  SmallVector<unsigned, 4> RegArgs;
2049  unsigned NumBytes;
2050  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
2051    return false;
2052
2053  // Issue the call, BLr9 for darwin, BL otherwise.
2054  // TODO: Turn this into the table of arm call ops.
2055  MachineInstrBuilder MIB;
2056  unsigned CallOpc = ARMSelectCallOp(GV);
2057  // Explicitly adding the predicate here.
2058  if(isThumb2)
2059    // Explicitly adding the predicate here.
2060    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2061                         TII.get(CallOpc)))
2062          .addGlobalAddress(GV, 0, 0);
2063  else
2064    // Explicitly adding the predicate here.
2065    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2066                         TII.get(CallOpc))
2067          .addGlobalAddress(GV, 0, 0));
2068
2069  // Add implicit physical register uses to the call.
2070  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2071    MIB.addReg(RegArgs[i]);
2072
2073  // Finish off the call including any return values.
2074  SmallVector<unsigned, 4> UsedRegs;
2075  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
2076
2077  // Set all unused physreg defs as dead.
2078  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2079
2080  return true;
2081}
2082
2083bool ARMFastISel::SelectTrunc(const Instruction *I) {
2084  // The high bits for a type smaller than the register size are assumed to be
2085  // undefined.
2086  Value *Op = I->getOperand(0);
2087
2088  EVT SrcVT, DestVT;
2089  SrcVT = TLI.getValueType(Op->getType(), true);
2090  DestVT = TLI.getValueType(I->getType(), true);
2091
2092  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2093    return false;
2094  if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2095    return false;
2096
2097  unsigned SrcReg = getRegForValue(Op);
2098  if (!SrcReg) return false;
2099
2100  // Because the high bits are undefined, a truncate doesn't generate
2101  // any code.
2102  UpdateValueMap(I, SrcReg);
2103  return true;
2104}
2105
2106unsigned ARMFastISel::ARMEmitIntExt(EVT SrcVT, unsigned SrcReg, EVT DestVT,
2107                                    bool isZExt) {
2108  if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2109    return 0;
2110
2111  unsigned Opc;
2112  bool isBoolZext = false;
2113  if (!SrcVT.isSimple()) return 0;
2114  switch (SrcVT.getSimpleVT().SimpleTy) {
2115  default: return 0;
2116  case MVT::i16:
2117    if (!Subtarget->hasV6Ops()) return 0;
2118    if (isZExt)
2119      Opc = isThumb2 ? ARM::t2UXTH : ARM::UXTH;
2120    else
2121      Opc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
2122    break;
2123  case MVT::i8:
2124    if (!Subtarget->hasV6Ops()) return 0;
2125    if (isZExt)
2126      Opc = isThumb2 ? ARM::t2UXTB : ARM::UXTB;
2127    else
2128      Opc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
2129    break;
2130  case MVT::i1:
2131    if (isZExt) {
2132      Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
2133      isBoolZext = true;
2134      break;
2135    }
2136    return 0;
2137  }
2138
2139  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::i32));
2140  MachineInstrBuilder MIB;
2141  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
2142        .addReg(SrcReg);
2143  if (isBoolZext)
2144    MIB.addImm(1);
2145  else
2146    MIB.addImm(0);
2147  AddOptionalDefs(MIB);
2148  return ResultReg;
2149}
2150
2151bool ARMFastISel::SelectIntExt(const Instruction *I) {
2152  // On ARM, in general, integer casts don't involve legal types; this code
2153  // handles promotable integers.
2154  // FIXME: We could save an instruction in many cases by special-casing
2155  // load instructions.
2156  Type *DestTy = I->getType();
2157  Value *Src = I->getOperand(0);
2158  Type *SrcTy = Src->getType();
2159
2160  EVT SrcVT, DestVT;
2161  SrcVT = TLI.getValueType(SrcTy, true);
2162  DestVT = TLI.getValueType(DestTy, true);
2163
2164  bool isZExt = isa<ZExtInst>(I);
2165  unsigned SrcReg = getRegForValue(Src);
2166  if (!SrcReg) return false;
2167
2168  unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2169  if (ResultReg == 0) return false;
2170  UpdateValueMap(I, ResultReg);
2171  return true;
2172}
2173
2174// TODO: SoftFP support.
2175bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
2176
2177  switch (I->getOpcode()) {
2178    case Instruction::Load:
2179      return SelectLoad(I);
2180    case Instruction::Store:
2181      return SelectStore(I);
2182    case Instruction::Br:
2183      return SelectBranch(I);
2184    case Instruction::ICmp:
2185    case Instruction::FCmp:
2186      return SelectCmp(I);
2187    case Instruction::FPExt:
2188      return SelectFPExt(I);
2189    case Instruction::FPTrunc:
2190      return SelectFPTrunc(I);
2191    case Instruction::SIToFP:
2192      return SelectSIToFP(I);
2193    case Instruction::FPToSI:
2194      return SelectFPToSI(I);
2195    case Instruction::FAdd:
2196      return SelectBinaryOp(I, ISD::FADD);
2197    case Instruction::FSub:
2198      return SelectBinaryOp(I, ISD::FSUB);
2199    case Instruction::FMul:
2200      return SelectBinaryOp(I, ISD::FMUL);
2201    case Instruction::SDiv:
2202      return SelectSDiv(I);
2203    case Instruction::SRem:
2204      return SelectSRem(I);
2205    case Instruction::Call:
2206      return SelectCall(I);
2207    case Instruction::Select:
2208      return SelectSelect(I);
2209    case Instruction::Ret:
2210      return SelectRet(I);
2211    case Instruction::Trunc:
2212      return SelectTrunc(I);
2213    case Instruction::ZExt:
2214    case Instruction::SExt:
2215      return SelectIntExt(I);
2216    default: break;
2217  }
2218  return false;
2219}
2220
2221namespace llvm {
2222  llvm::FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) {
2223    // Completely untested on non-darwin.
2224    const TargetMachine &TM = funcInfo.MF->getTarget();
2225
2226    // Darwin and thumb1 only for now.
2227    const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
2228    if (Subtarget->isTargetDarwin() && !Subtarget->isThumb1Only() &&
2229        !DisableARMFastISel)
2230      return new ARMFastISel(funcInfo);
2231    return 0;
2232  }
2233}
2234