ARMFastISel.cpp revision 9c8c0966e0123dfaa8f91570bb670eb51c2924aa
1//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the ARM-specific support for the FastISel class. Some
11// of the target-specific code is generated by tablegen in the file
12// ARMGenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "ARM.h"
17#include "ARMBaseInstrInfo.h"
18#include "ARMCallingConv.h"
19#include "ARMRegisterInfo.h"
20#include "ARMTargetMachine.h"
21#include "ARMSubtarget.h"
22#include "ARMConstantPoolValue.h"
23#include "MCTargetDesc/ARMAddressingModes.h"
24#include "llvm/CallingConv.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Instructions.h"
28#include "llvm/IntrinsicInst.h"
29#include "llvm/Module.h"
30#include "llvm/Operator.h"
31#include "llvm/CodeGen/Analysis.h"
32#include "llvm/CodeGen/FastISel.h"
33#include "llvm/CodeGen/FunctionLoweringInfo.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineConstantPool.h"
37#include "llvm/CodeGen/MachineFrameInfo.h"
38#include "llvm/CodeGen/MachineMemOperand.h"
39#include "llvm/CodeGen/MachineRegisterInfo.h"
40#include "llvm/CodeGen/PseudoSourceValue.h"
41#include "llvm/Support/CallSite.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/GetElementPtrTypeIterator.h"
45#include "llvm/Target/TargetData.h"
46#include "llvm/Target/TargetInstrInfo.h"
47#include "llvm/Target/TargetLowering.h"
48#include "llvm/Target/TargetMachine.h"
49#include "llvm/Target/TargetOptions.h"
50using namespace llvm;
51
52static cl::opt<bool>
53DisableARMFastISel("disable-arm-fast-isel",
54                    cl::desc("Turn off experimental ARM fast-isel support"),
55                    cl::init(false), cl::Hidden);
56
57extern cl::opt<bool> EnableARMLongCalls;
58
59namespace {
60
61  // All possible address modes, plus some.
62  typedef struct Address {
63    enum {
64      RegBase,
65      FrameIndexBase
66    } BaseType;
67
68    union {
69      unsigned Reg;
70      int FI;
71    } Base;
72
73    int Offset;
74
75    // Innocuous defaults for our address.
76    Address()
77     : BaseType(RegBase), Offset(0) {
78       Base.Reg = 0;
79     }
80  } Address;
81
82class ARMFastISel : public FastISel {
83
84  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
85  /// make the right decision when generating code for different targets.
86  const ARMSubtarget *Subtarget;
87  const TargetMachine &TM;
88  const TargetInstrInfo &TII;
89  const TargetLowering &TLI;
90  ARMFunctionInfo *AFI;
91
92  // Convenience variables to avoid some queries.
93  bool isThumb;
94  LLVMContext *Context;
95
96  public:
97    explicit ARMFastISel(FunctionLoweringInfo &funcInfo)
98    : FastISel(funcInfo),
99      TM(funcInfo.MF->getTarget()),
100      TII(*TM.getInstrInfo()),
101      TLI(*TM.getTargetLowering()) {
102      Subtarget = &TM.getSubtarget<ARMSubtarget>();
103      AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
104      isThumb = AFI->isThumbFunction();
105      Context = &funcInfo.Fn->getContext();
106    }
107
108    // Code from FastISel.cpp.
109    virtual unsigned FastEmitInst_(unsigned MachineInstOpcode,
110                                   const TargetRegisterClass *RC);
111    virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
112                                    const TargetRegisterClass *RC,
113                                    unsigned Op0, bool Op0IsKill);
114    virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
115                                     const TargetRegisterClass *RC,
116                                     unsigned Op0, bool Op0IsKill,
117                                     unsigned Op1, bool Op1IsKill);
118    virtual unsigned FastEmitInst_rrr(unsigned MachineInstOpcode,
119                                      const TargetRegisterClass *RC,
120                                      unsigned Op0, bool Op0IsKill,
121                                      unsigned Op1, bool Op1IsKill,
122                                      unsigned Op2, bool Op2IsKill);
123    virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
124                                     const TargetRegisterClass *RC,
125                                     unsigned Op0, bool Op0IsKill,
126                                     uint64_t Imm);
127    virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
128                                     const TargetRegisterClass *RC,
129                                     unsigned Op0, bool Op0IsKill,
130                                     const ConstantFP *FPImm);
131    virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
132                                      const TargetRegisterClass *RC,
133                                      unsigned Op0, bool Op0IsKill,
134                                      unsigned Op1, bool Op1IsKill,
135                                      uint64_t Imm);
136    virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode,
137                                    const TargetRegisterClass *RC,
138                                    uint64_t Imm);
139    virtual unsigned FastEmitInst_ii(unsigned MachineInstOpcode,
140                                     const TargetRegisterClass *RC,
141                                     uint64_t Imm1, uint64_t Imm2);
142
143    virtual unsigned FastEmitInst_extractsubreg(MVT RetVT,
144                                                unsigned Op0, bool Op0IsKill,
145                                                uint32_t Idx);
146
147    // Backend specific FastISel code.
148    virtual bool TargetSelectInstruction(const Instruction *I);
149    virtual unsigned TargetMaterializeConstant(const Constant *C);
150    virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
151
152  #include "ARMGenFastISel.inc"
153
154    // Instruction selection routines.
155  private:
156    bool SelectLoad(const Instruction *I);
157    bool SelectStore(const Instruction *I);
158    bool SelectBranch(const Instruction *I);
159    bool SelectCmp(const Instruction *I);
160    bool SelectFPExt(const Instruction *I);
161    bool SelectFPTrunc(const Instruction *I);
162    bool SelectBinaryOp(const Instruction *I, unsigned ISDOpcode);
163    bool SelectSIToFP(const Instruction *I);
164    bool SelectFPToSI(const Instruction *I);
165    bool SelectSDiv(const Instruction *I);
166    bool SelectSRem(const Instruction *I);
167    bool SelectCall(const Instruction *I);
168    bool SelectSelect(const Instruction *I);
169    bool SelectRet(const Instruction *I);
170    bool SelectTrunc(const Instruction *I);
171    bool SelectIntExt(const Instruction *I);
172
173    // Utility routines.
174  private:
175    bool isTypeLegal(Type *Ty, MVT &VT);
176    bool isLoadTypeLegal(Type *Ty, MVT &VT);
177    bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
178                    bool isZExt);
179    bool ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr);
180    bool ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr);
181    bool ARMComputeAddress(const Value *Obj, Address &Addr);
182    void ARMSimplifyAddress(Address &Addr, EVT VT);
183    unsigned ARMEmitIntExt(EVT SrcVT, unsigned SrcReg, EVT DestVT, bool isZExt);
184    unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
185    unsigned ARMMaterializeInt(const Constant *C, EVT VT);
186    unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT);
187    unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
188    unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);
189    unsigned ARMSelectCallOp(const GlobalValue *GV);
190
191    // Call handling routines.
192  private:
193    bool FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
194                        unsigned &ResultReg);
195    CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return);
196    bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
197                         SmallVectorImpl<unsigned> &ArgRegs,
198                         SmallVectorImpl<MVT> &ArgVTs,
199                         SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
200                         SmallVectorImpl<unsigned> &RegArgs,
201                         CallingConv::ID CC,
202                         unsigned &NumBytes);
203    bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
204                    const Instruction *I, CallingConv::ID CC,
205                    unsigned &NumBytes);
206    bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
207
208    // OptionalDef handling routines.
209  private:
210    bool isARMNEONPred(const MachineInstr *MI);
211    bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
212    const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
213    void AddLoadStoreOperands(EVT VT, Address &Addr,
214                              const MachineInstrBuilder &MIB,
215                              unsigned Flags);
216};
217
218} // end anonymous namespace
219
220#include "ARMGenCallingConv.inc"
221
222// DefinesOptionalPredicate - This is different from DefinesPredicate in that
223// we don't care about implicit defs here, just places we'll need to add a
224// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
225bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
226  const MCInstrDesc &MCID = MI->getDesc();
227  if (!MCID.hasOptionalDef())
228    return false;
229
230  // Look to see if our OptionalDef is defining CPSR or CCR.
231  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
232    const MachineOperand &MO = MI->getOperand(i);
233    if (!MO.isReg() || !MO.isDef()) continue;
234    if (MO.getReg() == ARM::CPSR)
235      *CPSR = true;
236  }
237  return true;
238}
239
240bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
241  const MCInstrDesc &MCID = MI->getDesc();
242
243  // If we're a thumb2 or not NEON function we were handled via isPredicable.
244  if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
245       AFI->isThumb2Function())
246    return false;
247
248  for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
249    if (MCID.OpInfo[i].isPredicate())
250      return true;
251
252  return false;
253}
254
255// If the machine is predicable go ahead and add the predicate operands, if
256// it needs default CC operands add those.
257// TODO: If we want to support thumb1 then we'll need to deal with optional
258// CPSR defs that need to be added before the remaining operands. See s_cc_out
259// for descriptions why.
260const MachineInstrBuilder &
261ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
262  MachineInstr *MI = &*MIB;
263
264  // Do we use a predicate? or...
265  // Are we NEON in ARM mode and have a predicate operand? If so, I know
266  // we're not predicable but add it anyways.
267  if (TII.isPredicable(MI) || isARMNEONPred(MI))
268    AddDefaultPred(MIB);
269
270  // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
271  // defines CPSR. All other OptionalDefines in ARM are the CCR register.
272  bool CPSR = false;
273  if (DefinesOptionalPredicate(MI, &CPSR)) {
274    if (CPSR)
275      AddDefaultT1CC(MIB);
276    else
277      AddDefaultCC(MIB);
278  }
279  return MIB;
280}
281
282unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
283                                    const TargetRegisterClass* RC) {
284  unsigned ResultReg = createResultReg(RC);
285  const MCInstrDesc &II = TII.get(MachineInstOpcode);
286
287  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
288  return ResultReg;
289}
290
291unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
292                                     const TargetRegisterClass *RC,
293                                     unsigned Op0, bool Op0IsKill) {
294  unsigned ResultReg = createResultReg(RC);
295  const MCInstrDesc &II = TII.get(MachineInstOpcode);
296
297  if (II.getNumDefs() >= 1)
298    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
299                   .addReg(Op0, Op0IsKill * RegState::Kill));
300  else {
301    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
302                   .addReg(Op0, Op0IsKill * RegState::Kill));
303    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
304                   TII.get(TargetOpcode::COPY), ResultReg)
305                   .addReg(II.ImplicitDefs[0]));
306  }
307  return ResultReg;
308}
309
310unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
311                                      const TargetRegisterClass *RC,
312                                      unsigned Op0, bool Op0IsKill,
313                                      unsigned Op1, bool Op1IsKill) {
314  unsigned ResultReg = createResultReg(RC);
315  const MCInstrDesc &II = TII.get(MachineInstOpcode);
316
317  if (II.getNumDefs() >= 1)
318    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
319                   .addReg(Op0, Op0IsKill * RegState::Kill)
320                   .addReg(Op1, Op1IsKill * RegState::Kill));
321  else {
322    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
323                   .addReg(Op0, Op0IsKill * RegState::Kill)
324                   .addReg(Op1, Op1IsKill * RegState::Kill));
325    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
326                           TII.get(TargetOpcode::COPY), ResultReg)
327                   .addReg(II.ImplicitDefs[0]));
328  }
329  return ResultReg;
330}
331
332unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
333                                       const TargetRegisterClass *RC,
334                                       unsigned Op0, bool Op0IsKill,
335                                       unsigned Op1, bool Op1IsKill,
336                                       unsigned Op2, bool Op2IsKill) {
337  unsigned ResultReg = createResultReg(RC);
338  const MCInstrDesc &II = TII.get(MachineInstOpcode);
339
340  if (II.getNumDefs() >= 1)
341    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
342                   .addReg(Op0, Op0IsKill * RegState::Kill)
343                   .addReg(Op1, Op1IsKill * RegState::Kill)
344                   .addReg(Op2, Op2IsKill * RegState::Kill));
345  else {
346    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
347                   .addReg(Op0, Op0IsKill * RegState::Kill)
348                   .addReg(Op1, Op1IsKill * RegState::Kill)
349                   .addReg(Op2, Op2IsKill * RegState::Kill));
350    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
351                           TII.get(TargetOpcode::COPY), ResultReg)
352                   .addReg(II.ImplicitDefs[0]));
353  }
354  return ResultReg;
355}
356
357unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
358                                      const TargetRegisterClass *RC,
359                                      unsigned Op0, bool Op0IsKill,
360                                      uint64_t Imm) {
361  unsigned ResultReg = createResultReg(RC);
362  const MCInstrDesc &II = TII.get(MachineInstOpcode);
363
364  if (II.getNumDefs() >= 1)
365    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
366                   .addReg(Op0, Op0IsKill * RegState::Kill)
367                   .addImm(Imm));
368  else {
369    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
370                   .addReg(Op0, Op0IsKill * RegState::Kill)
371                   .addImm(Imm));
372    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
373                           TII.get(TargetOpcode::COPY), ResultReg)
374                   .addReg(II.ImplicitDefs[0]));
375  }
376  return ResultReg;
377}
378
379unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
380                                      const TargetRegisterClass *RC,
381                                      unsigned Op0, bool Op0IsKill,
382                                      const ConstantFP *FPImm) {
383  unsigned ResultReg = createResultReg(RC);
384  const MCInstrDesc &II = TII.get(MachineInstOpcode);
385
386  if (II.getNumDefs() >= 1)
387    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
388                   .addReg(Op0, Op0IsKill * RegState::Kill)
389                   .addFPImm(FPImm));
390  else {
391    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
392                   .addReg(Op0, Op0IsKill * RegState::Kill)
393                   .addFPImm(FPImm));
394    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
395                           TII.get(TargetOpcode::COPY), ResultReg)
396                   .addReg(II.ImplicitDefs[0]));
397  }
398  return ResultReg;
399}
400
401unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
402                                       const TargetRegisterClass *RC,
403                                       unsigned Op0, bool Op0IsKill,
404                                       unsigned Op1, bool Op1IsKill,
405                                       uint64_t Imm) {
406  unsigned ResultReg = createResultReg(RC);
407  const MCInstrDesc &II = TII.get(MachineInstOpcode);
408
409  if (II.getNumDefs() >= 1)
410    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
411                   .addReg(Op0, Op0IsKill * RegState::Kill)
412                   .addReg(Op1, Op1IsKill * RegState::Kill)
413                   .addImm(Imm));
414  else {
415    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
416                   .addReg(Op0, Op0IsKill * RegState::Kill)
417                   .addReg(Op1, Op1IsKill * RegState::Kill)
418                   .addImm(Imm));
419    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
420                           TII.get(TargetOpcode::COPY), ResultReg)
421                   .addReg(II.ImplicitDefs[0]));
422  }
423  return ResultReg;
424}
425
426unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
427                                     const TargetRegisterClass *RC,
428                                     uint64_t Imm) {
429  unsigned ResultReg = createResultReg(RC);
430  const MCInstrDesc &II = TII.get(MachineInstOpcode);
431
432  if (II.getNumDefs() >= 1)
433    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
434                   .addImm(Imm));
435  else {
436    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
437                   .addImm(Imm));
438    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
439                           TII.get(TargetOpcode::COPY), ResultReg)
440                   .addReg(II.ImplicitDefs[0]));
441  }
442  return ResultReg;
443}
444
445unsigned ARMFastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
446                                      const TargetRegisterClass *RC,
447                                      uint64_t Imm1, uint64_t Imm2) {
448  unsigned ResultReg = createResultReg(RC);
449  const MCInstrDesc &II = TII.get(MachineInstOpcode);
450
451  if (II.getNumDefs() >= 1)
452    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
453                    .addImm(Imm1).addImm(Imm2));
454  else {
455    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
456                    .addImm(Imm1).addImm(Imm2));
457    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
458                            TII.get(TargetOpcode::COPY),
459                            ResultReg)
460                    .addReg(II.ImplicitDefs[0]));
461  }
462  return ResultReg;
463}
464
465unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
466                                                 unsigned Op0, bool Op0IsKill,
467                                                 uint32_t Idx) {
468  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
469  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
470         "Cannot yet extract from physregs");
471  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
472                         DL, TII.get(TargetOpcode::COPY), ResultReg)
473                 .addReg(Op0, getKillRegState(Op0IsKill), Idx));
474  return ResultReg;
475}
476
477// TODO: Don't worry about 64-bit now, but when this is fixed remove the
478// checks from the various callers.
479unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
480  if (VT == MVT::f64) return 0;
481
482  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
483  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
484                          TII.get(ARM::VMOVRS), MoveReg)
485                  .addReg(SrcReg));
486  return MoveReg;
487}
488
489unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
490  if (VT == MVT::i64) return 0;
491
492  unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
493  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
494                          TII.get(ARM::VMOVSR), MoveReg)
495                  .addReg(SrcReg));
496  return MoveReg;
497}
498
499// For double width floating point we need to materialize two constants
500// (the high and the low) into integer registers then use a move to get
501// the combined constant into an FP reg.
502unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
503  const APFloat Val = CFP->getValueAPF();
504  bool is64bit = VT == MVT::f64;
505
506  // This checks to see if we can use VFP3 instructions to materialize
507  // a constant, otherwise we have to go through the constant pool.
508  if (TLI.isFPImmLegal(Val, VT)) {
509    int Imm;
510    unsigned Opc;
511    if (is64bit) {
512      Imm = ARM_AM::getFP64Imm(Val);
513      Opc = ARM::FCONSTD;
514    } else {
515      Imm = ARM_AM::getFP32Imm(Val);
516      Opc = ARM::FCONSTS;
517    }
518    unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
519    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
520                            DestReg)
521                    .addImm(Imm));
522    return DestReg;
523  }
524
525  // Require VFP2 for loading fp constants.
526  if (!Subtarget->hasVFP2()) return false;
527
528  // MachineConstantPool wants an explicit alignment.
529  unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
530  if (Align == 0) {
531    // TODO: Figure out if this is correct.
532    Align = TD.getTypeAllocSize(CFP->getType());
533  }
534  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
535  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
536  unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
537
538  // The extra reg is for addrmode5.
539  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
540                          DestReg)
541                  .addConstantPoolIndex(Idx)
542                  .addReg(0));
543  return DestReg;
544}
545
546unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) {
547
548  if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
549    return false;
550
551  // If we can do this in a single instruction without a constant pool entry
552  // do so now.
553  const ConstantInt *CI = cast<ConstantInt>(C);
554  if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
555    EVT SrcVT = MVT::i32;
556    unsigned Opc = isThumb ? ARM::t2MOVi16 : ARM::MOVi16;
557    unsigned ImmReg = createResultReg(TLI.getRegClassFor(SrcVT));
558    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
559                            TII.get(Opc), ImmReg)
560                    .addImm(CI->getSExtValue()));
561    return ImmReg;
562  }
563
564  // For now 32-bit only.
565  if (VT != MVT::i32)
566    return false;
567
568  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
569
570  // MachineConstantPool wants an explicit alignment.
571  unsigned Align = TD.getPrefTypeAlignment(C->getType());
572  if (Align == 0) {
573    // TODO: Figure out if this is correct.
574    Align = TD.getTypeAllocSize(C->getType());
575  }
576  unsigned Idx = MCP.getConstantPoolIndex(C, Align);
577
578  if (isThumb)
579    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
580                            TII.get(ARM::t2LDRpci), DestReg)
581                    .addConstantPoolIndex(Idx));
582  else
583    // The extra immediate is for addrmode2.
584    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
585                            TII.get(ARM::LDRcp), DestReg)
586                    .addConstantPoolIndex(Idx)
587                    .addImm(0));
588
589  return DestReg;
590}
591
592unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) {
593  // For now 32-bit only.
594  if (VT != MVT::i32) return 0;
595
596  Reloc::Model RelocM = TM.getRelocationModel();
597
598  // TODO: Need more magic for ARM PIC.
599  if (!isThumb && (RelocM == Reloc::PIC_)) return 0;
600
601  // MachineConstantPool wants an explicit alignment.
602  unsigned Align = TD.getPrefTypeAlignment(GV->getType());
603  if (Align == 0) {
604    // TODO: Figure out if this is correct.
605    Align = TD.getTypeAllocSize(GV->getType());
606  }
607
608  // Grab index.
609  unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb() ? 4 : 8);
610  unsigned Id = AFI->createPICLabelUId();
611  ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
612                                                              ARMCP::CPValue,
613                                                              PCAdj);
614  unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
615
616  // Load value.
617  MachineInstrBuilder MIB;
618  unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
619  if (isThumb) {
620    unsigned Opc = (RelocM != Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
621    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
622          .addConstantPoolIndex(Idx);
623    if (RelocM == Reloc::PIC_)
624      MIB.addImm(Id);
625  } else {
626    // The extra immediate is for addrmode2.
627    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
628                  DestReg)
629          .addConstantPoolIndex(Idx)
630          .addImm(0);
631  }
632  AddOptionalDefs(MIB);
633
634  if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) {
635    unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
636    if (isThumb)
637      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
638                    TII.get(ARM::t2LDRi12), NewDestReg)
639            .addReg(DestReg)
640            .addImm(0);
641    else
642      MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRi12),
643                    NewDestReg)
644            .addReg(DestReg)
645            .addImm(0);
646    DestReg = NewDestReg;
647    AddOptionalDefs(MIB);
648  }
649
650  return DestReg;
651}
652
653unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
654  EVT VT = TLI.getValueType(C->getType(), true);
655
656  // Only handle simple types.
657  if (!VT.isSimple()) return 0;
658
659  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
660    return ARMMaterializeFP(CFP, VT);
661  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
662    return ARMMaterializeGV(GV, VT);
663  else if (isa<ConstantInt>(C))
664    return ARMMaterializeInt(C, VT);
665
666  return 0;
667}
668
669unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
670  // Don't handle dynamic allocas.
671  if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
672
673  MVT VT;
674  if (!isLoadTypeLegal(AI->getType(), VT)) return false;
675
676  DenseMap<const AllocaInst*, int>::iterator SI =
677    FuncInfo.StaticAllocaMap.find(AI);
678
679  // This will get lowered later into the correct offsets and registers
680  // via rewriteXFrameIndex.
681  if (SI != FuncInfo.StaticAllocaMap.end()) {
682    TargetRegisterClass* RC = TLI.getRegClassFor(VT);
683    unsigned ResultReg = createResultReg(RC);
684    unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
685    AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
686                            TII.get(Opc), ResultReg)
687                            .addFrameIndex(SI->second)
688                            .addImm(0));
689    return ResultReg;
690  }
691
692  return 0;
693}
694
695bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
696  EVT evt = TLI.getValueType(Ty, true);
697
698  // Only handle simple types.
699  if (evt == MVT::Other || !evt.isSimple()) return false;
700  VT = evt.getSimpleVT();
701
702  // Handle all legal types, i.e. a register that will directly hold this
703  // value.
704  return TLI.isTypeLegal(VT);
705}
706
707bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
708  if (isTypeLegal(Ty, VT)) return true;
709
710  // If this is a type than can be sign or zero-extended to a basic operation
711  // go ahead and accept it now.
712  if (VT == MVT::i8 || VT == MVT::i16)
713    return true;
714
715  return false;
716}
717
718// Computes the address to get to an object.
719bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
720  // Some boilerplate from the X86 FastISel.
721  const User *U = NULL;
722  unsigned Opcode = Instruction::UserOp1;
723  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
724    // Don't walk into other basic blocks unless the object is an alloca from
725    // another block, otherwise it may not have a virtual register assigned.
726    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
727        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
728      Opcode = I->getOpcode();
729      U = I;
730    }
731  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
732    Opcode = C->getOpcode();
733    U = C;
734  }
735
736  if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
737    if (Ty->getAddressSpace() > 255)
738      // Fast instruction selection doesn't support the special
739      // address spaces.
740      return false;
741
742  switch (Opcode) {
743    default:
744    break;
745    case Instruction::BitCast: {
746      // Look through bitcasts.
747      return ARMComputeAddress(U->getOperand(0), Addr);
748    }
749    case Instruction::IntToPtr: {
750      // Look past no-op inttoptrs.
751      if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
752        return ARMComputeAddress(U->getOperand(0), Addr);
753      break;
754    }
755    case Instruction::PtrToInt: {
756      // Look past no-op ptrtoints.
757      if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
758        return ARMComputeAddress(U->getOperand(0), Addr);
759      break;
760    }
761    case Instruction::GetElementPtr: {
762      Address SavedAddr = Addr;
763      int TmpOffset = Addr.Offset;
764
765      // Iterate through the GEP folding the constants into offsets where
766      // we can.
767      gep_type_iterator GTI = gep_type_begin(U);
768      for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
769           i != e; ++i, ++GTI) {
770        const Value *Op = *i;
771        if (StructType *STy = dyn_cast<StructType>(*GTI)) {
772          const StructLayout *SL = TD.getStructLayout(STy);
773          unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
774          TmpOffset += SL->getElementOffset(Idx);
775        } else {
776          uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
777          for (;;) {
778            if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
779              // Constant-offset addressing.
780              TmpOffset += CI->getSExtValue() * S;
781              break;
782            }
783            if (isa<AddOperator>(Op) &&
784                (!isa<Instruction>(Op) ||
785                 FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()]
786                 == FuncInfo.MBB) &&
787                isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
788              // An add (in the same block) with a constant operand. Fold the
789              // constant.
790              ConstantInt *CI =
791              cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
792              TmpOffset += CI->getSExtValue() * S;
793              // Iterate on the other operand.
794              Op = cast<AddOperator>(Op)->getOperand(0);
795              continue;
796            }
797            // Unsupported
798            goto unsupported_gep;
799          }
800        }
801      }
802
803      // Try to grab the base operand now.
804      Addr.Offset = TmpOffset;
805      if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
806
807      // We failed, restore everything and try the other options.
808      Addr = SavedAddr;
809
810      unsupported_gep:
811      break;
812    }
813    case Instruction::Alloca: {
814      const AllocaInst *AI = cast<AllocaInst>(Obj);
815      DenseMap<const AllocaInst*, int>::iterator SI =
816        FuncInfo.StaticAllocaMap.find(AI);
817      if (SI != FuncInfo.StaticAllocaMap.end()) {
818        Addr.BaseType = Address::FrameIndexBase;
819        Addr.Base.FI = SI->second;
820        return true;
821      }
822      break;
823    }
824  }
825
826  // Materialize the global variable's address into a reg which can
827  // then be used later to load the variable.
828  if (const GlobalValue *GV = dyn_cast<GlobalValue>(Obj)) {
829    unsigned Tmp = ARMMaterializeGV(GV, TLI.getValueType(Obj->getType()));
830    if (Tmp == 0) return false;
831
832    Addr.Base.Reg = Tmp;
833    return true;
834  }
835
836  // Try to get this in a register if nothing else has worked.
837  if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
838  return Addr.Base.Reg != 0;
839}
840
841void ARMFastISel::ARMSimplifyAddress(Address &Addr, EVT VT) {
842
843  assert(VT.isSimple() && "Non-simple types are invalid here!");
844
845  bool needsLowering = false;
846  switch (VT.getSimpleVT().SimpleTy) {
847    default:
848      assert(false && "Unhandled load/store type!");
849    case MVT::i1:
850    case MVT::i8:
851    case MVT::i16:
852    case MVT::i32:
853      // Integer loads/stores handle 12-bit offsets.
854      needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
855      break;
856    case MVT::f32:
857    case MVT::f64:
858      // Floating point operands handle 8-bit offsets.
859      needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
860      break;
861  }
862
863  // If this is a stack pointer and the offset needs to be simplified then
864  // put the alloca address into a register, set the base type back to
865  // register and continue. This should almost never happen.
866  if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
867    TargetRegisterClass *RC = isThumb ? ARM::tGPRRegisterClass :
868                              ARM::GPRRegisterClass;
869    unsigned ResultReg = createResultReg(RC);
870    unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
871    AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
872                            TII.get(Opc), ResultReg)
873                            .addFrameIndex(Addr.Base.FI)
874                            .addImm(0));
875    Addr.Base.Reg = ResultReg;
876    Addr.BaseType = Address::RegBase;
877  }
878
879  // Since the offset is too large for the load/store instruction
880  // get the reg+offset into a register.
881  if (needsLowering) {
882    Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
883                                 /*Op0IsKill*/false, Addr.Offset, MVT::i32);
884    Addr.Offset = 0;
885  }
886}
887
888void ARMFastISel::AddLoadStoreOperands(EVT VT, Address &Addr,
889                                       const MachineInstrBuilder &MIB,
890                                       unsigned Flags) {
891  // addrmode5 output depends on the selection dag addressing dividing the
892  // offset by 4 that it then later multiplies. Do this here as well.
893  if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
894      VT.getSimpleVT().SimpleTy == MVT::f64)
895    Addr.Offset /= 4;
896
897  // Frame base works a bit differently. Handle it separately.
898  if (Addr.BaseType == Address::FrameIndexBase) {
899    int FI = Addr.Base.FI;
900    int Offset = Addr.Offset;
901    MachineMemOperand *MMO =
902          FuncInfo.MF->getMachineMemOperand(
903                                  MachinePointerInfo::getFixedStack(FI, Offset),
904                                  Flags,
905                                  MFI.getObjectSize(FI),
906                                  MFI.getObjectAlignment(FI));
907    // Now add the rest of the operands.
908    MIB.addFrameIndex(FI);
909
910    // ARM halfword load/stores need an additional operand.
911    if (!isThumb && VT.getSimpleVT().SimpleTy == MVT::i16) MIB.addReg(0);
912
913    MIB.addImm(Addr.Offset);
914    MIB.addMemOperand(MMO);
915  } else {
916    // Now add the rest of the operands.
917    MIB.addReg(Addr.Base.Reg);
918
919    // ARM halfword load/stores need an additional operand.
920    if (!isThumb && VT.getSimpleVT().SimpleTy == MVT::i16) MIB.addReg(0);
921
922    MIB.addImm(Addr.Offset);
923  }
924  AddOptionalDefs(MIB);
925}
926
927bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr) {
928
929  assert(VT.isSimple() && "Non-simple types are invalid here!");
930  unsigned Opc;
931  TargetRegisterClass *RC;
932  switch (VT.getSimpleVT().SimpleTy) {
933    // This is mostly going to be Neon/vector support.
934    default: return false;
935    case MVT::i16:
936      Opc = isThumb ? ARM::t2LDRHi12 : ARM::LDRH;
937      RC = ARM::GPRRegisterClass;
938      break;
939    case MVT::i8:
940      Opc = isThumb ? ARM::t2LDRBi12 : ARM::LDRBi12;
941      RC = ARM::GPRRegisterClass;
942      break;
943    case MVT::i32:
944      Opc = isThumb ? ARM::t2LDRi12 : ARM::LDRi12;
945      RC = ARM::GPRRegisterClass;
946      break;
947    case MVT::f32:
948      Opc = ARM::VLDRS;
949      RC = TLI.getRegClassFor(VT);
950      break;
951    case MVT::f64:
952      Opc = ARM::VLDRD;
953      RC = TLI.getRegClassFor(VT);
954      break;
955  }
956  // Simplify this down to something we can handle.
957  ARMSimplifyAddress(Addr, VT);
958
959  // Create the base instruction, then add the operands.
960  ResultReg = createResultReg(RC);
961  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
962                                    TII.get(Opc), ResultReg);
963  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad);
964  return true;
965}
966
967bool ARMFastISel::SelectLoad(const Instruction *I) {
968  // Atomic loads need special handling.
969  if (cast<LoadInst>(I)->isAtomic())
970    return false;
971
972  // Verify we have a legal type before going any further.
973  MVT VT;
974  if (!isLoadTypeLegal(I->getType(), VT))
975    return false;
976
977  // See if we can handle this address.
978  Address Addr;
979  if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
980
981  unsigned ResultReg;
982  if (!ARMEmitLoad(VT, ResultReg, Addr)) return false;
983  UpdateValueMap(I, ResultReg);
984  return true;
985}
986
987bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr) {
988  unsigned StrOpc;
989  switch (VT.getSimpleVT().SimpleTy) {
990    // This is mostly going to be Neon/vector support.
991    default: return false;
992    case MVT::i1: {
993      unsigned Res = createResultReg(isThumb ? ARM::tGPRRegisterClass :
994                                               ARM::GPRRegisterClass);
995      unsigned Opc = isThumb ? ARM::t2ANDri : ARM::ANDri;
996      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
997                              TII.get(Opc), Res)
998                      .addReg(SrcReg).addImm(1));
999      SrcReg = Res;
1000    } // Fallthrough here.
1001    case MVT::i8:
1002      StrOpc = isThumb ? ARM::t2STRBi12 : ARM::STRBi12;
1003      break;
1004    case MVT::i16:
1005      StrOpc = isThumb ? ARM::t2STRHi12 : ARM::STRH;
1006      break;
1007    case MVT::i32:
1008      StrOpc = isThumb ? ARM::t2STRi12 : ARM::STRi12;
1009      break;
1010    case MVT::f32:
1011      if (!Subtarget->hasVFP2()) return false;
1012      StrOpc = ARM::VSTRS;
1013      break;
1014    case MVT::f64:
1015      if (!Subtarget->hasVFP2()) return false;
1016      StrOpc = ARM::VSTRD;
1017      break;
1018  }
1019  // Simplify this down to something we can handle.
1020  ARMSimplifyAddress(Addr, VT);
1021
1022  // Create the base instruction, then add the operands.
1023  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1024                                    TII.get(StrOpc))
1025                            .addReg(SrcReg, getKillRegState(true));
1026  AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore);
1027  return true;
1028}
1029
1030bool ARMFastISel::SelectStore(const Instruction *I) {
1031  Value *Op0 = I->getOperand(0);
1032  unsigned SrcReg = 0;
1033
1034  // Atomic stores need special handling.
1035  if (cast<StoreInst>(I)->isAtomic())
1036    return false;
1037
1038  // Verify we have a legal type before going any further.
1039  MVT VT;
1040  if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1041    return false;
1042
1043  // Get the value to be stored into a register.
1044  SrcReg = getRegForValue(Op0);
1045  if (SrcReg == 0) return false;
1046
1047  // See if we can handle this address.
1048  Address Addr;
1049  if (!ARMComputeAddress(I->getOperand(1), Addr))
1050    return false;
1051
1052  if (!ARMEmitStore(VT, SrcReg, Addr)) return false;
1053  return true;
1054}
1055
1056static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1057  switch (Pred) {
1058    // Needs two compares...
1059    case CmpInst::FCMP_ONE:
1060    case CmpInst::FCMP_UEQ:
1061    default:
1062      // AL is our "false" for now. The other two need more compares.
1063      return ARMCC::AL;
1064    case CmpInst::ICMP_EQ:
1065    case CmpInst::FCMP_OEQ:
1066      return ARMCC::EQ;
1067    case CmpInst::ICMP_SGT:
1068    case CmpInst::FCMP_OGT:
1069      return ARMCC::GT;
1070    case CmpInst::ICMP_SGE:
1071    case CmpInst::FCMP_OGE:
1072      return ARMCC::GE;
1073    case CmpInst::ICMP_UGT:
1074    case CmpInst::FCMP_UGT:
1075      return ARMCC::HI;
1076    case CmpInst::FCMP_OLT:
1077      return ARMCC::MI;
1078    case CmpInst::ICMP_ULE:
1079    case CmpInst::FCMP_OLE:
1080      return ARMCC::LS;
1081    case CmpInst::FCMP_ORD:
1082      return ARMCC::VC;
1083    case CmpInst::FCMP_UNO:
1084      return ARMCC::VS;
1085    case CmpInst::FCMP_UGE:
1086      return ARMCC::PL;
1087    case CmpInst::ICMP_SLT:
1088    case CmpInst::FCMP_ULT:
1089      return ARMCC::LT;
1090    case CmpInst::ICMP_SLE:
1091    case CmpInst::FCMP_ULE:
1092      return ARMCC::LE;
1093    case CmpInst::FCMP_UNE:
1094    case CmpInst::ICMP_NE:
1095      return ARMCC::NE;
1096    case CmpInst::ICMP_UGE:
1097      return ARMCC::HS;
1098    case CmpInst::ICMP_ULT:
1099      return ARMCC::LO;
1100  }
1101}
1102
1103bool ARMFastISel::SelectBranch(const Instruction *I) {
1104  const BranchInst *BI = cast<BranchInst>(I);
1105  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1106  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1107
1108  // Simple branch support.
1109
1110  // If we can, avoid recomputing the compare - redoing it could lead to wonky
1111  // behavior.
1112  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1113    if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1114
1115      // Get the compare predicate.
1116      // Try to take advantage of fallthrough opportunities.
1117      CmpInst::Predicate Predicate = CI->getPredicate();
1118      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1119        std::swap(TBB, FBB);
1120        Predicate = CmpInst::getInversePredicate(Predicate);
1121      }
1122
1123      ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1124
1125      // We may not handle every CC for now.
1126      if (ARMPred == ARMCC::AL) return false;
1127
1128      // Emit the compare.
1129      if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1130        return false;
1131
1132      unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1133      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1134      .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1135      FastEmitBranch(FBB, DL);
1136      FuncInfo.MBB->addSuccessor(TBB);
1137      return true;
1138    }
1139  } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1140    MVT SourceVT;
1141    if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1142        (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1143      unsigned TstOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
1144      unsigned OpReg = getRegForValue(TI->getOperand(0));
1145      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1146                              TII.get(TstOpc))
1147                      .addReg(OpReg).addImm(1));
1148
1149      unsigned CCMode = ARMCC::NE;
1150      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1151        std::swap(TBB, FBB);
1152        CCMode = ARMCC::EQ;
1153      }
1154
1155      unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1156      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1157      .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1158
1159      FastEmitBranch(FBB, DL);
1160      FuncInfo.MBB->addSuccessor(TBB);
1161      return true;
1162    }
1163  } else if (const ConstantInt *CI =
1164             dyn_cast<ConstantInt>(BI->getCondition())) {
1165    uint64_t Imm = CI->getZExtValue();
1166    MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1167    FastEmitBranch(Target, DL);
1168    return true;
1169  }
1170
1171  unsigned CmpReg = getRegForValue(BI->getCondition());
1172  if (CmpReg == 0) return false;
1173
1174  // We've been divorced from our compare!  Our block was split, and
1175  // now our compare lives in a predecessor block.  We musn't
1176  // re-compare here, as the children of the compare aren't guaranteed
1177  // live across the block boundary (we *could* check for this).
1178  // Regardless, the compare has been done in the predecessor block,
1179  // and it left a value for us in a virtual register.  Ergo, we test
1180  // the one-bit value left in the virtual register.
1181  unsigned TstOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
1182  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TstOpc))
1183                  .addReg(CmpReg).addImm(1));
1184
1185  unsigned CCMode = ARMCC::NE;
1186  if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1187    std::swap(TBB, FBB);
1188    CCMode = ARMCC::EQ;
1189  }
1190
1191  unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1192  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1193                  .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1194  FastEmitBranch(FBB, DL);
1195  FuncInfo.MBB->addSuccessor(TBB);
1196  return true;
1197}
1198
1199bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1200                             bool isZExt) {
1201  Type *Ty = Src1Value->getType();
1202  EVT SrcVT = TLI.getValueType(Ty, true);
1203  if (!SrcVT.isSimple()) return false;
1204
1205  bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
1206  if (isFloat && !Subtarget->hasVFP2())
1207    return false;
1208
1209  unsigned CmpOpc;
1210  bool needsExt = false;
1211  switch (SrcVT.getSimpleVT().SimpleTy) {
1212    default: return false;
1213    // TODO: Verify compares.
1214    case MVT::f32:
1215      CmpOpc = ARM::VCMPES;
1216      break;
1217    case MVT::f64:
1218      CmpOpc = ARM::VCMPED;
1219      break;
1220    case MVT::i1:
1221    case MVT::i8:
1222    case MVT::i16:
1223      needsExt = true;
1224    // Intentional fall-through.
1225    case MVT::i32:
1226      CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
1227      break;
1228  }
1229
1230  unsigned SrcReg1 = getRegForValue(Src1Value);
1231  if (SrcReg1 == 0) return false;
1232
1233  unsigned SrcReg2 = getRegForValue(Src2Value);
1234  if (SrcReg2 == 0) return false;
1235
1236  // We have i1, i8, or i16, we need to either zero extend or sign extend.
1237  if (needsExt) {
1238    unsigned ResultReg;
1239    EVT DestVT = MVT::i32;
1240    ResultReg = ARMEmitIntExt(SrcVT, SrcReg1, DestVT, isZExt);
1241    if (ResultReg == 0) return false;
1242    SrcReg1 = ResultReg;
1243    ResultReg = ARMEmitIntExt(SrcVT, SrcReg2, DestVT, isZExt);
1244    if (ResultReg == 0) return false;
1245    SrcReg2 = ResultReg;
1246  }
1247
1248  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1249                  .addReg(SrcReg1).addReg(SrcReg2));
1250
1251  // For floating point we need to move the result to a comparison register
1252  // that we can then use for branches.
1253  if (Ty->isFloatTy() || Ty->isDoubleTy())
1254    AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1255                            TII.get(ARM::FMSTAT)));
1256  return true;
1257}
1258
1259bool ARMFastISel::SelectCmp(const Instruction *I) {
1260  const CmpInst *CI = cast<CmpInst>(I);
1261  Type *Ty = CI->getOperand(0)->getType();
1262
1263  // Get the compare predicate.
1264  ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1265
1266  // We may not handle every CC for now.
1267  if (ARMPred == ARMCC::AL) return false;
1268
1269  // Emit the compare.
1270  if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1271    return false;
1272
1273  // Now set a register based on the comparison. Explicitly set the predicates
1274  // here.
1275  unsigned MovCCOpc = isThumb ? ARM::t2MOVCCi : ARM::MOVCCi;
1276  TargetRegisterClass *RC = isThumb ? ARM::rGPRRegisterClass
1277                                    : ARM::GPRRegisterClass;
1278  unsigned DestReg = createResultReg(RC);
1279  Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1280  unsigned ZeroReg = TargetMaterializeConstant(Zero);
1281  bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
1282  unsigned CondReg = isFloat ? ARM::FPSCR : ARM::CPSR;
1283  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
1284          .addReg(ZeroReg).addImm(1)
1285          .addImm(ARMPred).addReg(CondReg);
1286
1287  UpdateValueMap(I, DestReg);
1288  return true;
1289}
1290
1291bool ARMFastISel::SelectFPExt(const Instruction *I) {
1292  // Make sure we have VFP and that we're extending float to double.
1293  if (!Subtarget->hasVFP2()) return false;
1294
1295  Value *V = I->getOperand(0);
1296  if (!I->getType()->isDoubleTy() ||
1297      !V->getType()->isFloatTy()) return false;
1298
1299  unsigned Op = getRegForValue(V);
1300  if (Op == 0) return false;
1301
1302  unsigned Result = createResultReg(ARM::DPRRegisterClass);
1303  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1304                          TII.get(ARM::VCVTDS), Result)
1305                  .addReg(Op));
1306  UpdateValueMap(I, Result);
1307  return true;
1308}
1309
1310bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1311  // Make sure we have VFP and that we're truncating double to float.
1312  if (!Subtarget->hasVFP2()) return false;
1313
1314  Value *V = I->getOperand(0);
1315  if (!(I->getType()->isFloatTy() &&
1316        V->getType()->isDoubleTy())) return false;
1317
1318  unsigned Op = getRegForValue(V);
1319  if (Op == 0) return false;
1320
1321  unsigned Result = createResultReg(ARM::SPRRegisterClass);
1322  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1323                          TII.get(ARM::VCVTSD), Result)
1324                  .addReg(Op));
1325  UpdateValueMap(I, Result);
1326  return true;
1327}
1328
1329bool ARMFastISel::SelectSIToFP(const Instruction *I) {
1330  // Make sure we have VFP.
1331  if (!Subtarget->hasVFP2()) return false;
1332
1333  MVT DstVT;
1334  Type *Ty = I->getType();
1335  if (!isTypeLegal(Ty, DstVT))
1336    return false;
1337
1338  Value *Src = I->getOperand(0);
1339  EVT SrcVT = TLI.getValueType(Src->getType(), true);
1340  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1341    return false;
1342
1343  unsigned SrcReg = getRegForValue(Src);
1344  if (SrcReg == 0) return false;
1345
1346  // Handle sign-extension.
1347  if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
1348    EVT DestVT = MVT::i32;
1349    unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, /*isZExt*/ false);
1350    if (ResultReg == 0) return false;
1351    SrcReg = ResultReg;
1352  }
1353
1354  // The conversion routine works on fp-reg to fp-reg and the operand above
1355  // was an integer, move it to the fp registers if possible.
1356  unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1357  if (FP == 0) return false;
1358
1359  unsigned Opc;
1360  if (Ty->isFloatTy()) Opc = ARM::VSITOS;
1361  else if (Ty->isDoubleTy()) Opc = ARM::VSITOD;
1362  else return false;
1363
1364  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1365  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1366                          ResultReg)
1367                  .addReg(FP));
1368  UpdateValueMap(I, ResultReg);
1369  return true;
1370}
1371
1372bool ARMFastISel::SelectFPToSI(const Instruction *I) {
1373  // Make sure we have VFP.
1374  if (!Subtarget->hasVFP2()) return false;
1375
1376  MVT DstVT;
1377  Type *RetTy = I->getType();
1378  if (!isTypeLegal(RetTy, DstVT))
1379    return false;
1380
1381  unsigned Op = getRegForValue(I->getOperand(0));
1382  if (Op == 0) return false;
1383
1384  unsigned Opc;
1385  Type *OpTy = I->getOperand(0)->getType();
1386  if (OpTy->isFloatTy()) Opc = ARM::VTOSIZS;
1387  else if (OpTy->isDoubleTy()) Opc = ARM::VTOSIZD;
1388  else return false;
1389
1390  // f64->s32 or f32->s32 both need an intermediate f32 reg.
1391  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1392  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1393                          ResultReg)
1394                  .addReg(Op));
1395
1396  // This result needs to be in an integer register, but the conversion only
1397  // takes place in fp-regs.
1398  unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1399  if (IntReg == 0) return false;
1400
1401  UpdateValueMap(I, IntReg);
1402  return true;
1403}
1404
1405bool ARMFastISel::SelectSelect(const Instruction *I) {
1406  MVT VT;
1407  if (!isTypeLegal(I->getType(), VT))
1408    return false;
1409
1410  // Things need to be register sized for register moves.
1411  if (VT != MVT::i32) return false;
1412  const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
1413
1414  unsigned CondReg = getRegForValue(I->getOperand(0));
1415  if (CondReg == 0) return false;
1416  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1417  if (Op1Reg == 0) return false;
1418  unsigned Op2Reg = getRegForValue(I->getOperand(2));
1419  if (Op2Reg == 0) return false;
1420
1421  unsigned CmpOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
1422  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1423                  .addReg(CondReg).addImm(1));
1424  unsigned ResultReg = createResultReg(RC);
1425  unsigned MovCCOpc = isThumb ? ARM::t2MOVCCr : ARM::MOVCCr;
1426  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1427    .addReg(Op1Reg).addReg(Op2Reg)
1428    .addImm(ARMCC::EQ).addReg(ARM::CPSR);
1429  UpdateValueMap(I, ResultReg);
1430  return true;
1431}
1432
1433bool ARMFastISel::SelectSDiv(const Instruction *I) {
1434  MVT VT;
1435  Type *Ty = I->getType();
1436  if (!isTypeLegal(Ty, VT))
1437    return false;
1438
1439  // If we have integer div support we should have selected this automagically.
1440  // In case we have a real miss go ahead and return false and we'll pick
1441  // it up later.
1442  if (Subtarget->hasDivide()) return false;
1443
1444  // Otherwise emit a libcall.
1445  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1446  if (VT == MVT::i8)
1447    LC = RTLIB::SDIV_I8;
1448  else if (VT == MVT::i16)
1449    LC = RTLIB::SDIV_I16;
1450  else if (VT == MVT::i32)
1451    LC = RTLIB::SDIV_I32;
1452  else if (VT == MVT::i64)
1453    LC = RTLIB::SDIV_I64;
1454  else if (VT == MVT::i128)
1455    LC = RTLIB::SDIV_I128;
1456  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1457
1458  return ARMEmitLibcall(I, LC);
1459}
1460
1461bool ARMFastISel::SelectSRem(const Instruction *I) {
1462  MVT VT;
1463  Type *Ty = I->getType();
1464  if (!isTypeLegal(Ty, VT))
1465    return false;
1466
1467  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1468  if (VT == MVT::i8)
1469    LC = RTLIB::SREM_I8;
1470  else if (VT == MVT::i16)
1471    LC = RTLIB::SREM_I16;
1472  else if (VT == MVT::i32)
1473    LC = RTLIB::SREM_I32;
1474  else if (VT == MVT::i64)
1475    LC = RTLIB::SREM_I64;
1476  else if (VT == MVT::i128)
1477    LC = RTLIB::SREM_I128;
1478  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1479
1480  return ARMEmitLibcall(I, LC);
1481}
1482
1483bool ARMFastISel::SelectBinaryOp(const Instruction *I, unsigned ISDOpcode) {
1484  EVT VT  = TLI.getValueType(I->getType(), true);
1485
1486  // We can get here in the case when we want to use NEON for our fp
1487  // operations, but can't figure out how to. Just use the vfp instructions
1488  // if we have them.
1489  // FIXME: It'd be nice to use NEON instructions.
1490  Type *Ty = I->getType();
1491  bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1492  if (isFloat && !Subtarget->hasVFP2())
1493    return false;
1494
1495  unsigned Op1 = getRegForValue(I->getOperand(0));
1496  if (Op1 == 0) return false;
1497
1498  unsigned Op2 = getRegForValue(I->getOperand(1));
1499  if (Op2 == 0) return false;
1500
1501  unsigned Opc;
1502  bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1503  switch (ISDOpcode) {
1504    default: return false;
1505    case ISD::FADD:
1506      Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1507      break;
1508    case ISD::FSUB:
1509      Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1510      break;
1511    case ISD::FMUL:
1512      Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1513      break;
1514  }
1515  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1516  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1517                          TII.get(Opc), ResultReg)
1518                  .addReg(Op1).addReg(Op2));
1519  UpdateValueMap(I, ResultReg);
1520  return true;
1521}
1522
1523// Call Handling Code
1524
1525bool ARMFastISel::FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src,
1526                                 EVT SrcVT, unsigned &ResultReg) {
1527  unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
1528                           Src, /*TODO: Kill=*/false);
1529
1530  if (RR != 0) {
1531    ResultReg = RR;
1532    return true;
1533  } else
1534    return false;
1535}
1536
1537// This is largely taken directly from CCAssignFnForNode - we don't support
1538// varargs in FastISel so that part has been removed.
1539// TODO: We may not support all of this.
1540CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) {
1541  switch (CC) {
1542  default:
1543    llvm_unreachable("Unsupported calling convention");
1544  case CallingConv::Fast:
1545    // Ignore fastcc. Silence compiler warnings.
1546    (void)RetFastCC_ARM_APCS;
1547    (void)FastCC_ARM_APCS;
1548    // Fallthrough
1549  case CallingConv::C:
1550    // Use target triple & subtarget features to do actual dispatch.
1551    if (Subtarget->isAAPCS_ABI()) {
1552      if (Subtarget->hasVFP2() &&
1553          FloatABIType == FloatABI::Hard)
1554        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1555      else
1556        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1557    } else
1558        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1559  case CallingConv::ARM_AAPCS_VFP:
1560    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1561  case CallingConv::ARM_AAPCS:
1562    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1563  case CallingConv::ARM_APCS:
1564    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1565  }
1566}
1567
1568bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1569                                  SmallVectorImpl<unsigned> &ArgRegs,
1570                                  SmallVectorImpl<MVT> &ArgVTs,
1571                                  SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1572                                  SmallVectorImpl<unsigned> &RegArgs,
1573                                  CallingConv::ID CC,
1574                                  unsigned &NumBytes) {
1575  SmallVector<CCValAssign, 16> ArgLocs;
1576  CCState CCInfo(CC, false, *FuncInfo.MF, TM, ArgLocs, *Context);
1577  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false));
1578
1579  // Get a count of how many bytes are to be pushed on the stack.
1580  NumBytes = CCInfo.getNextStackOffset();
1581
1582  // Issue CALLSEQ_START
1583  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1584  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1585                          TII.get(AdjStackDown))
1586                  .addImm(NumBytes));
1587
1588  // Process the args.
1589  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1590    CCValAssign &VA = ArgLocs[i];
1591    unsigned Arg = ArgRegs[VA.getValNo()];
1592    MVT ArgVT = ArgVTs[VA.getValNo()];
1593
1594    // We don't handle NEON/vector parameters yet.
1595    if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1596      return false;
1597
1598    // Handle arg promotion, etc.
1599    switch (VA.getLocInfo()) {
1600      case CCValAssign::Full: break;
1601      case CCValAssign::SExt: {
1602        bool Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1603                                         Arg, ArgVT, Arg);
1604        assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
1605        Emitted = true;
1606        ArgVT = VA.getLocVT();
1607        break;
1608      }
1609      case CCValAssign::ZExt: {
1610        bool Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1611                                         Arg, ArgVT, Arg);
1612        assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
1613        Emitted = true;
1614        ArgVT = VA.getLocVT();
1615        break;
1616      }
1617      case CCValAssign::AExt: {
1618        bool Emitted = FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
1619                                         Arg, ArgVT, Arg);
1620        if (!Emitted)
1621          Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1622                                      Arg, ArgVT, Arg);
1623        if (!Emitted)
1624          Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1625                                      Arg, ArgVT, Arg);
1626
1627        assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
1628        ArgVT = VA.getLocVT();
1629        break;
1630      }
1631      case CCValAssign::BCvt: {
1632        unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
1633                                 /*TODO: Kill=*/false);
1634        assert(BC != 0 && "Failed to emit a bitcast!");
1635        Arg = BC;
1636        ArgVT = VA.getLocVT();
1637        break;
1638      }
1639      default: llvm_unreachable("Unknown arg promotion!");
1640    }
1641
1642    // Now copy/store arg to correct locations.
1643    if (VA.isRegLoc() && !VA.needsCustom()) {
1644      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1645              VA.getLocReg())
1646      .addReg(Arg);
1647      RegArgs.push_back(VA.getLocReg());
1648    } else if (VA.needsCustom()) {
1649      // TODO: We need custom lowering for vector (v2f64) args.
1650      if (VA.getLocVT() != MVT::f64) return false;
1651
1652      CCValAssign &NextVA = ArgLocs[++i];
1653
1654      // TODO: Only handle register args for now.
1655      if(!(VA.isRegLoc() && NextVA.isRegLoc())) return false;
1656
1657      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1658                              TII.get(ARM::VMOVRRD), VA.getLocReg())
1659                      .addReg(NextVA.getLocReg(), RegState::Define)
1660                      .addReg(Arg));
1661      RegArgs.push_back(VA.getLocReg());
1662      RegArgs.push_back(NextVA.getLocReg());
1663    } else {
1664      assert(VA.isMemLoc());
1665      // Need to store on the stack.
1666      Address Addr;
1667      Addr.BaseType = Address::RegBase;
1668      Addr.Base.Reg = ARM::SP;
1669      Addr.Offset = VA.getLocMemOffset();
1670
1671      if (!ARMEmitStore(ArgVT, Arg, Addr)) return false;
1672    }
1673  }
1674  return true;
1675}
1676
1677bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
1678                             const Instruction *I, CallingConv::ID CC,
1679                             unsigned &NumBytes) {
1680  // Issue CALLSEQ_END
1681  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
1682  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1683                          TII.get(AdjStackUp))
1684                  .addImm(NumBytes).addImm(0));
1685
1686  // Now the return value.
1687  if (RetVT != MVT::isVoid) {
1688    SmallVector<CCValAssign, 16> RVLocs;
1689    CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
1690    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true));
1691
1692    // Copy all of the result registers out of their specified physreg.
1693    if (RVLocs.size() == 2 && RetVT == MVT::f64) {
1694      // For this move we copy into two registers and then move into the
1695      // double fp reg we want.
1696      EVT DestVT = RVLocs[0].getValVT();
1697      TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
1698      unsigned ResultReg = createResultReg(DstRC);
1699      AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1700                              TII.get(ARM::VMOVDRR), ResultReg)
1701                      .addReg(RVLocs[0].getLocReg())
1702                      .addReg(RVLocs[1].getLocReg()));
1703
1704      UsedRegs.push_back(RVLocs[0].getLocReg());
1705      UsedRegs.push_back(RVLocs[1].getLocReg());
1706
1707      // Finally update the result.
1708      UpdateValueMap(I, ResultReg);
1709    } else {
1710      assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
1711      EVT CopyVT = RVLocs[0].getValVT();
1712      TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1713
1714      unsigned ResultReg = createResultReg(DstRC);
1715      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1716              ResultReg).addReg(RVLocs[0].getLocReg());
1717      UsedRegs.push_back(RVLocs[0].getLocReg());
1718
1719      // Finally update the result.
1720      UpdateValueMap(I, ResultReg);
1721    }
1722  }
1723
1724  return true;
1725}
1726
1727bool ARMFastISel::SelectRet(const Instruction *I) {
1728  const ReturnInst *Ret = cast<ReturnInst>(I);
1729  const Function &F = *I->getParent()->getParent();
1730
1731  if (!FuncInfo.CanLowerReturn)
1732    return false;
1733
1734  if (F.isVarArg())
1735    return false;
1736
1737  CallingConv::ID CC = F.getCallingConv();
1738  if (Ret->getNumOperands() > 0) {
1739    SmallVector<ISD::OutputArg, 4> Outs;
1740    GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
1741                  Outs, TLI);
1742
1743    // Analyze operands of the call, assigning locations to each operand.
1744    SmallVector<CCValAssign, 16> ValLocs;
1745    CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,I->getContext());
1746    CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */));
1747
1748    const Value *RV = Ret->getOperand(0);
1749    unsigned Reg = getRegForValue(RV);
1750    if (Reg == 0)
1751      return false;
1752
1753    // Only handle a single return value for now.
1754    if (ValLocs.size() != 1)
1755      return false;
1756
1757    CCValAssign &VA = ValLocs[0];
1758
1759    // Don't bother handling odd stuff for now.
1760    if (VA.getLocInfo() != CCValAssign::Full)
1761      return false;
1762    // Only handle register returns for now.
1763    if (!VA.isRegLoc())
1764      return false;
1765
1766    unsigned SrcReg = Reg + VA.getValNo();
1767    EVT RVVT = TLI.getValueType(RV->getType());
1768    EVT DestVT = VA.getValVT();
1769    // Special handling for extended integers.
1770    if (RVVT != DestVT) {
1771      if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
1772        return false;
1773
1774      if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1775        return false;
1776
1777      assert(DestVT == MVT::i32 && "ARM should always ext to i32");
1778
1779      bool isZExt = Outs[0].Flags.isZExt();
1780      unsigned ResultReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, isZExt);
1781      if (ResultReg == 0) return false;
1782      SrcReg = ResultReg;
1783    }
1784
1785    // Make the copy.
1786    unsigned DstReg = VA.getLocReg();
1787    const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
1788    // Avoid a cross-class copy. This is very unlikely.
1789    if (!SrcRC->contains(DstReg))
1790      return false;
1791    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1792            DstReg).addReg(SrcReg);
1793
1794    // Mark the register as live out of the function.
1795    MRI.addLiveOut(VA.getLocReg());
1796  }
1797
1798  unsigned RetOpc = isThumb ? ARM::tBX_RET : ARM::BX_RET;
1799  AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1800                          TII.get(RetOpc)));
1801  return true;
1802}
1803
1804unsigned ARMFastISel::ARMSelectCallOp(const GlobalValue *GV) {
1805
1806  // Darwin needs the r9 versions of the opcodes.
1807  bool isDarwin = Subtarget->isTargetDarwin();
1808  if (isThumb) {
1809    return isDarwin ? ARM::tBLr9 : ARM::tBL;
1810  } else  {
1811    return isDarwin ? ARM::BLr9 : ARM::BL;
1812  }
1813}
1814
1815// A quick function that will emit a call for a named libcall in F with the
1816// vector of passed arguments for the Instruction in I. We can assume that we
1817// can emit a call for any libcall we can produce. This is an abridged version
1818// of the full call infrastructure since we won't need to worry about things
1819// like computed function pointers or strange arguments at call sites.
1820// TODO: Try to unify this and the normal call bits for ARM, then try to unify
1821// with X86.
1822bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
1823  CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
1824
1825  // Handle *simple* calls for now.
1826  Type *RetTy = I->getType();
1827  MVT RetVT;
1828  if (RetTy->isVoidTy())
1829    RetVT = MVT::isVoid;
1830  else if (!isTypeLegal(RetTy, RetVT))
1831    return false;
1832
1833  // TODO: For now if we have long calls specified we don't handle the call.
1834  if (EnableARMLongCalls) return false;
1835
1836  // Set up the argument vectors.
1837  SmallVector<Value*, 8> Args;
1838  SmallVector<unsigned, 8> ArgRegs;
1839  SmallVector<MVT, 8> ArgVTs;
1840  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1841  Args.reserve(I->getNumOperands());
1842  ArgRegs.reserve(I->getNumOperands());
1843  ArgVTs.reserve(I->getNumOperands());
1844  ArgFlags.reserve(I->getNumOperands());
1845  for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1846    Value *Op = I->getOperand(i);
1847    unsigned Arg = getRegForValue(Op);
1848    if (Arg == 0) return false;
1849
1850    Type *ArgTy = Op->getType();
1851    MVT ArgVT;
1852    if (!isTypeLegal(ArgTy, ArgVT)) return false;
1853
1854    ISD::ArgFlagsTy Flags;
1855    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1856    Flags.setOrigAlign(OriginalAlignment);
1857
1858    Args.push_back(Op);
1859    ArgRegs.push_back(Arg);
1860    ArgVTs.push_back(ArgVT);
1861    ArgFlags.push_back(Flags);
1862  }
1863
1864  // Handle the arguments now that we've gotten them.
1865  SmallVector<unsigned, 4> RegArgs;
1866  unsigned NumBytes;
1867  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1868    return false;
1869
1870  // Issue the call, BLr9 for darwin, BL otherwise.
1871  // TODO: Turn this into the table of arm call ops.
1872  MachineInstrBuilder MIB;
1873  unsigned CallOpc = ARMSelectCallOp(NULL);
1874  if(isThumb)
1875    // Explicitly adding the predicate here.
1876    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1877                         TII.get(CallOpc)))
1878                         .addExternalSymbol(TLI.getLibcallName(Call));
1879  else
1880    // Explicitly adding the predicate here.
1881    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1882                         TII.get(CallOpc))
1883          .addExternalSymbol(TLI.getLibcallName(Call)));
1884
1885  // Add implicit physical register uses to the call.
1886  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1887    MIB.addReg(RegArgs[i]);
1888
1889  // Finish off the call including any return values.
1890  SmallVector<unsigned, 4> UsedRegs;
1891  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1892
1893  // Set all unused physreg defs as dead.
1894  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1895
1896  return true;
1897}
1898
1899bool ARMFastISel::SelectCall(const Instruction *I) {
1900  const CallInst *CI = cast<CallInst>(I);
1901  const Value *Callee = CI->getCalledValue();
1902
1903  // Can't handle inline asm or worry about intrinsics yet.
1904  if (isa<InlineAsm>(Callee) || isa<IntrinsicInst>(CI)) return false;
1905
1906  // Only handle global variable Callees.
1907  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1908  if (!GV)
1909    return false;
1910
1911  // Check the calling convention.
1912  ImmutableCallSite CS(CI);
1913  CallingConv::ID CC = CS.getCallingConv();
1914
1915  // TODO: Avoid some calling conventions?
1916
1917  // Let SDISel handle vararg functions.
1918  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1919  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1920  if (FTy->isVarArg())
1921    return false;
1922
1923  // Handle *simple* calls for now.
1924  Type *RetTy = I->getType();
1925  MVT RetVT;
1926  if (RetTy->isVoidTy())
1927    RetVT = MVT::isVoid;
1928  else if (!isTypeLegal(RetTy, RetVT))
1929    return false;
1930
1931  // TODO: For now if we have long calls specified we don't handle the call.
1932  if (EnableARMLongCalls) return false;
1933
1934  // Set up the argument vectors.
1935  SmallVector<Value*, 8> Args;
1936  SmallVector<unsigned, 8> ArgRegs;
1937  SmallVector<MVT, 8> ArgVTs;
1938  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1939  Args.reserve(CS.arg_size());
1940  ArgRegs.reserve(CS.arg_size());
1941  ArgVTs.reserve(CS.arg_size());
1942  ArgFlags.reserve(CS.arg_size());
1943  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1944       i != e; ++i) {
1945    unsigned Arg = getRegForValue(*i);
1946
1947    if (Arg == 0)
1948      return false;
1949    ISD::ArgFlagsTy Flags;
1950    unsigned AttrInd = i - CS.arg_begin() + 1;
1951    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1952      Flags.setSExt();
1953    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1954      Flags.setZExt();
1955
1956    // FIXME: Only handle *easy* calls for now.
1957    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1958        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1959        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1960        CS.paramHasAttr(AttrInd, Attribute::ByVal))
1961      return false;
1962
1963    Type *ArgTy = (*i)->getType();
1964    MVT ArgVT;
1965    // FIXME: Should be able to handle i1, i8, and/or i16 parameters.
1966    if (!isTypeLegal(ArgTy, ArgVT))
1967      return false;
1968    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1969    Flags.setOrigAlign(OriginalAlignment);
1970
1971    Args.push_back(*i);
1972    ArgRegs.push_back(Arg);
1973    ArgVTs.push_back(ArgVT);
1974    ArgFlags.push_back(Flags);
1975  }
1976
1977  // Handle the arguments now that we've gotten them.
1978  SmallVector<unsigned, 4> RegArgs;
1979  unsigned NumBytes;
1980  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1981    return false;
1982
1983  // Issue the call, BLr9 for darwin, BL otherwise.
1984  // TODO: Turn this into the table of arm call ops.
1985  MachineInstrBuilder MIB;
1986  unsigned CallOpc = ARMSelectCallOp(GV);
1987  // Explicitly adding the predicate here.
1988  if(isThumb)
1989    // Explicitly adding the predicate here.
1990    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1991                         TII.get(CallOpc)))
1992          .addGlobalAddress(GV, 0, 0);
1993  else
1994    // Explicitly adding the predicate here.
1995    MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1996                         TII.get(CallOpc))
1997          .addGlobalAddress(GV, 0, 0));
1998
1999  // Add implicit physical register uses to the call.
2000  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2001    MIB.addReg(RegArgs[i]);
2002
2003  // Finish off the call including any return values.
2004  SmallVector<unsigned, 4> UsedRegs;
2005  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
2006
2007  // Set all unused physreg defs as dead.
2008  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2009
2010  return true;
2011}
2012
2013bool ARMFastISel::SelectTrunc(const Instruction *I) {
2014  // The high bits for a type smaller than the register size are assumed to be
2015  // undefined.
2016  Value *Op = I->getOperand(0);
2017
2018  EVT SrcVT, DestVT;
2019  SrcVT = TLI.getValueType(Op->getType(), true);
2020  DestVT = TLI.getValueType(I->getType(), true);
2021
2022  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2023    return false;
2024  if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2025    return false;
2026
2027  unsigned SrcReg = getRegForValue(Op);
2028  if (!SrcReg) return false;
2029
2030  // Because the high bits are undefined, a truncate doesn't generate
2031  // any code.
2032  UpdateValueMap(I, SrcReg);
2033  return true;
2034}
2035
2036unsigned ARMFastISel::ARMEmitIntExt(EVT SrcVT, unsigned SrcReg, EVT DestVT,
2037                                    bool isZExt) {
2038  if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2039    return 0;
2040
2041  unsigned Opc;
2042  bool isBoolZext = false;
2043  if (!SrcVT.isSimple()) return 0;
2044  switch (SrcVT.getSimpleVT().SimpleTy) {
2045  default: return 0;
2046  case MVT::i16:
2047    if (!Subtarget->hasV6Ops()) return 0;
2048    if (isZExt)
2049      Opc = isThumb ? ARM::t2UXTH : ARM::UXTH;
2050    else
2051      Opc = isThumb ? ARM::t2SXTH : ARM::SXTH;
2052    break;
2053  case MVT::i8:
2054    if (!Subtarget->hasV6Ops()) return 0;
2055    if (isZExt)
2056      Opc = isThumb ? ARM::t2UXTB : ARM::UXTB;
2057    else
2058      Opc = isThumb ? ARM::t2SXTB : ARM::SXTB;
2059    break;
2060  case MVT::i1:
2061    if (isZExt) {
2062      Opc = isThumb ? ARM::t2ANDri : ARM::ANDri;
2063      isBoolZext = true;
2064      break;
2065    }
2066    return 0;
2067  }
2068
2069  unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::i32));
2070  MachineInstrBuilder MIB;
2071  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
2072        .addReg(SrcReg);
2073  if (isBoolZext)
2074    MIB.addImm(1);
2075  else
2076    MIB.addImm(0);
2077  AddOptionalDefs(MIB);
2078  return ResultReg;
2079}
2080
2081bool ARMFastISel::SelectIntExt(const Instruction *I) {
2082  // On ARM, in general, integer casts don't involve legal types; this code
2083  // handles promotable integers.
2084  // FIXME: We could save an instruction in many cases by special-casing
2085  // load instructions.
2086  Type *DestTy = I->getType();
2087  Value *Src = I->getOperand(0);
2088  Type *SrcTy = Src->getType();
2089
2090  EVT SrcVT, DestVT;
2091  SrcVT = TLI.getValueType(SrcTy, true);
2092  DestVT = TLI.getValueType(DestTy, true);
2093
2094  bool isZExt = isa<ZExtInst>(I);
2095  unsigned SrcReg = getRegForValue(Src);
2096  if (!SrcReg) return false;
2097
2098  unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2099  if (ResultReg == 0) return false;
2100  UpdateValueMap(I, ResultReg);
2101  return true;
2102}
2103
2104// TODO: SoftFP support.
2105bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
2106
2107  switch (I->getOpcode()) {
2108    case Instruction::Load:
2109      return SelectLoad(I);
2110    case Instruction::Store:
2111      return SelectStore(I);
2112    case Instruction::Br:
2113      return SelectBranch(I);
2114    case Instruction::ICmp:
2115    case Instruction::FCmp:
2116      return SelectCmp(I);
2117    case Instruction::FPExt:
2118      return SelectFPExt(I);
2119    case Instruction::FPTrunc:
2120      return SelectFPTrunc(I);
2121    case Instruction::SIToFP:
2122      return SelectSIToFP(I);
2123    case Instruction::FPToSI:
2124      return SelectFPToSI(I);
2125    case Instruction::FAdd:
2126      return SelectBinaryOp(I, ISD::FADD);
2127    case Instruction::FSub:
2128      return SelectBinaryOp(I, ISD::FSUB);
2129    case Instruction::FMul:
2130      return SelectBinaryOp(I, ISD::FMUL);
2131    case Instruction::SDiv:
2132      return SelectSDiv(I);
2133    case Instruction::SRem:
2134      return SelectSRem(I);
2135    case Instruction::Call:
2136      return SelectCall(I);
2137    case Instruction::Select:
2138      return SelectSelect(I);
2139    case Instruction::Ret:
2140      return SelectRet(I);
2141    case Instruction::Trunc:
2142      return SelectTrunc(I);
2143    case Instruction::ZExt:
2144    case Instruction::SExt:
2145      return SelectIntExt(I);
2146    default: break;
2147  }
2148  return false;
2149}
2150
2151namespace llvm {
2152  llvm::FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) {
2153    // Completely untested on non-darwin.
2154    const TargetMachine &TM = funcInfo.MF->getTarget();
2155
2156    // Darwin and thumb1 only for now.
2157    const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
2158    if (Subtarget->isTargetDarwin() && !Subtarget->isThumb1Only() &&
2159        !DisableARMFastISel)
2160      return new ARMFastISel(funcInfo);
2161    return 0;
2162  }
2163}
2164