ARMISelLowering.cpp revision 14152b480d09c7ca912af7c06d00b0ff3912e4f5
153f17a9db278d33517d9888dd77848f554522a38JP Abgrall//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
253f17a9db278d33517d9888dd77848f554522a38JP Abgrall//
32949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project//                     The LLVM Compiler Infrastructure
42949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project//
52949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project// This file is distributed under the University of Illinois Open Source
62949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project// License. See LICENSE.TXT for details.
72949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project//
853f17a9db278d33517d9888dd77848f554522a38JP Abgrall//===----------------------------------------------------------------------===//
92949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project//
102949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project// This file defines the interfaces that ARM uses to lower LLVM code into a
112949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project// selection DAG.
122949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project//
132949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project//===----------------------------------------------------------------------===//
142949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project
152949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project#define DEBUG_TYPE "arm-isel"
162949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project#include "ARM.h"
172949f58a438f6fd85f66a8b7ed4708042cde4b37The Android Open Source Project#include "ARMAddressingModes.h"
1853f17a9db278d33517d9888dd77848f554522a38JP Abgrall#include "ARMConstantPoolValue.h"
1953f17a9db278d33517d9888dd77848f554522a38JP Abgrall#include "ARMISelLowering.h"
20#include "ARMMachineFunctionInfo.h"
21#include "ARMPerfectShuffle.h"
22#include "ARMRegisterInfo.h"
23#include "ARMSubtarget.h"
24#include "ARMTargetMachine.h"
25#include "ARMTargetObjectFile.h"
26#include "llvm/CallingConv.h"
27#include "llvm/Constants.h"
28#include "llvm/Function.h"
29#include "llvm/GlobalValue.h"
30#include "llvm/Instruction.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Type.h"
33#include "llvm/CodeGen/CallingConvLower.h"
34#include "llvm/CodeGen/MachineBasicBlock.h"
35#include "llvm/CodeGen/MachineFrameInfo.h"
36#include "llvm/CodeGen/MachineFunction.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineRegisterInfo.h"
39#include "llvm/CodeGen/PseudoSourceValue.h"
40#include "llvm/CodeGen/SelectionDAG.h"
41#include "llvm/MC/MCSectionMachO.h"
42#include "llvm/Target/TargetOptions.h"
43#include "llvm/ADT/VectorExtras.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/Support/CommandLine.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/MathExtras.h"
48#include "llvm/Support/raw_ostream.h"
49#include <sstream>
50using namespace llvm;
51
52STATISTIC(NumTailCalls, "Number of tail calls");
53
54// This option should go away when tail calls fully work.
55static cl::opt<bool>
56EnableARMTailCalls("arm-tail-calls", cl::Hidden,
57  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
58  cl::init(true));
59
60static cl::opt<bool>
61EnableARMLongCalls("arm-long-calls", cl::Hidden,
62  cl::desc("Generate calls via indirect call instructions."),
63  cl::init(false));
64
65static cl::opt<bool>
66ARMInterworking("arm-interworking", cl::Hidden,
67  cl::desc("Enable / disable ARM interworking (for debugging only)"),
68  cl::init(true));
69
70static cl::opt<bool>
71EnableARMCodePlacement("arm-code-placement", cl::Hidden,
72  cl::desc("Enable code placement pass for ARM."),
73  cl::init(false));
74
75static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
76                                   CCValAssign::LocInfo &LocInfo,
77                                   ISD::ArgFlagsTy &ArgFlags,
78                                   CCState &State);
79static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
80                                    CCValAssign::LocInfo &LocInfo,
81                                    ISD::ArgFlagsTy &ArgFlags,
82                                    CCState &State);
83static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
84                                      CCValAssign::LocInfo &LocInfo,
85                                      ISD::ArgFlagsTy &ArgFlags,
86                                      CCState &State);
87static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
88                                       CCValAssign::LocInfo &LocInfo,
89                                       ISD::ArgFlagsTy &ArgFlags,
90                                       CCState &State);
91
92void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
93                                       EVT PromotedBitwiseVT) {
94  if (VT != PromotedLdStVT) {
95    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
96    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
97                       PromotedLdStVT.getSimpleVT());
98
99    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
100    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
101                       PromotedLdStVT.getSimpleVT());
102  }
103
104  EVT ElemTy = VT.getVectorElementType();
105  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
106    setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom);
107  if (ElemTy == MVT::i8 || ElemTy == MVT::i16)
108    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
109  if (ElemTy != MVT::i32) {
110    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
111    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
112    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
113    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
114  }
115  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
116  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
117  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
118  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Expand);
119  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
120  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
121  if (VT.isInteger()) {
122    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
123    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
124    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
125  }
126
127  // Promote all bit-wise operations.
128  if (VT.isInteger() && VT != PromotedBitwiseVT) {
129    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
130    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
131                       PromotedBitwiseVT.getSimpleVT());
132    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
133    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
134                       PromotedBitwiseVT.getSimpleVT());
135    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
136    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
137                       PromotedBitwiseVT.getSimpleVT());
138  }
139
140  // Neon does not support vector divide/remainder operations.
141  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
142  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
143  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
144  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
145  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
146  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
147}
148
149void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
150  addRegisterClass(VT, ARM::DPRRegisterClass);
151  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
152}
153
154void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
155  addRegisterClass(VT, ARM::QPRRegisterClass);
156  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
157}
158
159static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
160  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
161    return new TargetLoweringObjectFileMachO();
162
163  return new ARMElfTargetObjectFile();
164}
165
166ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
167    : TargetLowering(TM, createTLOF(TM)) {
168  Subtarget = &TM.getSubtarget<ARMSubtarget>();
169
170  if (Subtarget->isTargetDarwin()) {
171    // Uses VFP for Thumb libfuncs if available.
172    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
173      // Single-precision floating-point arithmetic.
174      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
175      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
176      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
177      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
178
179      // Double-precision floating-point arithmetic.
180      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
181      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
182      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
183      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
184
185      // Single-precision comparisons.
186      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
187      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
188      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
189      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
190      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
191      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
192      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
193      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
194
195      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
196      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
197      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
198      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
199      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
200      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
201      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
202      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
203
204      // Double-precision comparisons.
205      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
206      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
207      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
208      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
209      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
210      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
211      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
212      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
213
214      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
215      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
216      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
217      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
218      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
219      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
220      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
221      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
222
223      // Floating-point to integer conversions.
224      // i64 conversions are done via library routines even when generating VFP
225      // instructions, so use the same ones.
226      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
227      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
228      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
229      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
230
231      // Conversions between floating types.
232      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
233      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
234
235      // Integer to floating-point conversions.
236      // i64 conversions are done via library routines even when generating VFP
237      // instructions, so use the same ones.
238      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
239      // e.g., __floatunsidf vs. __floatunssidfvfp.
240      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
241      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
242      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
243      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
244    }
245  }
246
247  // These libcalls are not available in 32-bit.
248  setLibcallName(RTLIB::SHL_I128, 0);
249  setLibcallName(RTLIB::SRL_I128, 0);
250  setLibcallName(RTLIB::SRA_I128, 0);
251
252  // Libcalls should use the AAPCS base standard ABI, even if hard float
253  // is in effect, as per the ARM RTABI specification, section 4.1.2.
254  if (Subtarget->isAAPCS_ABI()) {
255    for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
256      setLibcallCallingConv(static_cast<RTLIB::Libcall>(i),
257                            CallingConv::ARM_AAPCS);
258    }
259  }
260
261  if (Subtarget->isThumb1Only())
262    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
263  else
264    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
265  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
266    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
267    addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
268
269    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
270  }
271
272  if (Subtarget->hasNEON()) {
273    addDRTypeForNEON(MVT::v2f32);
274    addDRTypeForNEON(MVT::v8i8);
275    addDRTypeForNEON(MVT::v4i16);
276    addDRTypeForNEON(MVT::v2i32);
277    addDRTypeForNEON(MVT::v1i64);
278
279    addQRTypeForNEON(MVT::v4f32);
280    addQRTypeForNEON(MVT::v2f64);
281    addQRTypeForNEON(MVT::v16i8);
282    addQRTypeForNEON(MVT::v8i16);
283    addQRTypeForNEON(MVT::v4i32);
284    addQRTypeForNEON(MVT::v2i64);
285
286    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
287    // neither Neon nor VFP support any arithmetic operations on it.
288    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
289    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
290    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
291    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
292    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
293    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
294    setOperationAction(ISD::VSETCC, MVT::v2f64, Expand);
295    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
296    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
297    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
298    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
299    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
300    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
301    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
302    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
303    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
304    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
305    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
306    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
307    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
308    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
309    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
310    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
311    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
312
313    // Neon does not support some operations on v1i64 and v2i64 types.
314    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
315    setOperationAction(ISD::MUL, MVT::v2i64, Expand);
316    setOperationAction(ISD::VSETCC, MVT::v1i64, Expand);
317    setOperationAction(ISD::VSETCC, MVT::v2i64, Expand);
318
319    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
320    setTargetDAGCombine(ISD::SHL);
321    setTargetDAGCombine(ISD::SRL);
322    setTargetDAGCombine(ISD::SRA);
323    setTargetDAGCombine(ISD::SIGN_EXTEND);
324    setTargetDAGCombine(ISD::ZERO_EXTEND);
325    setTargetDAGCombine(ISD::ANY_EXTEND);
326    setTargetDAGCombine(ISD::SELECT_CC);
327  }
328
329  computeRegisterProperties();
330
331  // ARM does not have f32 extending load.
332  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
333
334  // ARM does not have i1 sign extending load.
335  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
336
337  // ARM supports all 4 flavors of integer indexed load / store.
338  if (!Subtarget->isThumb1Only()) {
339    for (unsigned im = (unsigned)ISD::PRE_INC;
340         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
341      setIndexedLoadAction(im,  MVT::i1,  Legal);
342      setIndexedLoadAction(im,  MVT::i8,  Legal);
343      setIndexedLoadAction(im,  MVT::i16, Legal);
344      setIndexedLoadAction(im,  MVT::i32, Legal);
345      setIndexedStoreAction(im, MVT::i1,  Legal);
346      setIndexedStoreAction(im, MVT::i8,  Legal);
347      setIndexedStoreAction(im, MVT::i16, Legal);
348      setIndexedStoreAction(im, MVT::i32, Legal);
349    }
350  }
351
352  // i64 operation support.
353  if (Subtarget->isThumb1Only()) {
354    setOperationAction(ISD::MUL,     MVT::i64, Expand);
355    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
356    setOperationAction(ISD::MULHS,   MVT::i32, Expand);
357    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
358    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
359  } else {
360    setOperationAction(ISD::MUL,     MVT::i64, Expand);
361    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
362    if (!Subtarget->hasV6Ops())
363      setOperationAction(ISD::MULHS, MVT::i32, Expand);
364  }
365  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
366  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
367  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
368  setOperationAction(ISD::SRL,       MVT::i64, Custom);
369  setOperationAction(ISD::SRA,       MVT::i64, Custom);
370
371  // ARM does not have ROTL.
372  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
373  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
374  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
375  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
376    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
377
378  // Only ARMv6 has BSWAP.
379  if (!Subtarget->hasV6Ops())
380    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
381
382  // These are expanded into libcalls.
383  if (!Subtarget->hasDivide()) {
384    // v7M has a hardware divider
385    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
386    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
387  }
388  setOperationAction(ISD::SREM,  MVT::i32, Expand);
389  setOperationAction(ISD::UREM,  MVT::i32, Expand);
390  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
391  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
392
393  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
394  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
395  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
396  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
397  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
398
399  setOperationAction(ISD::TRAP, MVT::Other, Legal);
400
401  // Use the default implementation.
402  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
403  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
404  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
405  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
406  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
407  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
408  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
409  // FIXME: Shouldn't need this, since no register is used, but the legalizer
410  // doesn't yet know how to not do that for SjLj.
411  setExceptionSelectorRegister(ARM::R0);
412  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
413  // Handle atomics directly for ARMv[67] (except for Thumb1), otherwise
414  // use the default expansion.
415  bool canHandleAtomics =
416    (Subtarget->hasV7Ops() ||
417      (Subtarget->hasV6Ops() && !Subtarget->isThumb1Only()));
418  if (canHandleAtomics) {
419    // membarrier needs custom lowering; the rest are legal and handled
420    // normally.
421    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
422  } else {
423    // Set them all for expansion, which will force libcalls.
424    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
425    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i8,  Expand);
426    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i16, Expand);
427    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
428    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i8,  Expand);
429    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i16, Expand);
430    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
431    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i8,  Expand);
432    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i16, Expand);
433    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
434    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i8,  Expand);
435    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i16, Expand);
436    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
437    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i8,  Expand);
438    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i16, Expand);
439    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
440    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i8,  Expand);
441    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i16, Expand);
442    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
443    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i8,  Expand);
444    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i16, Expand);
445    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
446    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i8,  Expand);
447    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i16, Expand);
448    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
449    // Since the libcalls include locking, fold in the fences
450    setShouldFoldAtomicFences(true);
451  }
452  // 64-bit versions are always libcalls (for now)
453  setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Expand);
454  setOperationAction(ISD::ATOMIC_SWAP,      MVT::i64, Expand);
455  setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Expand);
456  setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Expand);
457  setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Expand);
458  setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Expand);
459  setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Expand);
460  setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Expand);
461
462  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
463  if (!Subtarget->hasV6Ops()) {
464    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
465    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
466  }
467  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
468
469  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only())
470    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
471    // iff target supports vfp2.
472    setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom);
473
474  // We want to custom lower some of our intrinsics.
475  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
476
477  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
478  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
479  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
480  setOperationAction(ISD::SELECT,    MVT::i32, Expand);
481  setOperationAction(ISD::SELECT,    MVT::f32, Expand);
482  setOperationAction(ISD::SELECT,    MVT::f64, Expand);
483  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
484  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
485  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
486
487  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
488  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
489  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
490  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
491  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
492
493  // We don't support sin/cos/fmod/copysign/pow
494  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
495  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
496  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
497  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
498  setOperationAction(ISD::FREM,      MVT::f64, Expand);
499  setOperationAction(ISD::FREM,      MVT::f32, Expand);
500  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
501    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
502    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
503  }
504  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
505  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
506
507  // Various VFP goodness
508  if (!UseSoftFloat && !Subtarget->isThumb1Only()) {
509    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
510    if (Subtarget->hasVFP2()) {
511      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
512      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
513      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
514      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
515    }
516    // Special handling for half-precision FP.
517    if (!Subtarget->hasFP16()) {
518      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
519      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
520    }
521  }
522
523  // We have target-specific dag combine patterns for the following nodes:
524  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
525  setTargetDAGCombine(ISD::ADD);
526  setTargetDAGCombine(ISD::SUB);
527  setTargetDAGCombine(ISD::MUL);
528
529  setStackPointerRegisterToSaveRestore(ARM::SP);
530
531  if (UseSoftFloat || Subtarget->isThumb1Only() || !Subtarget->hasVFP2())
532    setSchedulingPreference(Sched::RegPressure);
533  else
534    setSchedulingPreference(Sched::Hybrid);
535
536  maxStoresPerMemcpy = 1;   //// temporary - rewrite interface to use type
537
538  if (EnableARMCodePlacement)
539    benefitFromCodePlacementOpt = true;
540}
541
542const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
543  switch (Opcode) {
544  default: return 0;
545  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
546  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
547  case ARMISD::CALL:          return "ARMISD::CALL";
548  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
549  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
550  case ARMISD::tCALL:         return "ARMISD::tCALL";
551  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
552  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
553  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
554  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
555  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
556  case ARMISD::CMP:           return "ARMISD::CMP";
557  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
558  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
559  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
560  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
561  case ARMISD::CMOV:          return "ARMISD::CMOV";
562  case ARMISD::CNEG:          return "ARMISD::CNEG";
563
564  case ARMISD::RBIT:          return "ARMISD::RBIT";
565
566  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
567  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
568  case ARMISD::SITOF:         return "ARMISD::SITOF";
569  case ARMISD::UITOF:         return "ARMISD::UITOF";
570
571  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
572  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
573  case ARMISD::RRX:           return "ARMISD::RRX";
574
575  case ARMISD::VMOVRRD:         return "ARMISD::VMOVRRD";
576  case ARMISD::VMOVDRR:         return "ARMISD::VMOVDRR";
577
578  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
579  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
580
581  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
582
583  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
584
585  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
586
587  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
588  case ARMISD::SYNCBARRIER:   return "ARMISD::SYNCBARRIER";
589
590  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
591  case ARMISD::VCGE:          return "ARMISD::VCGE";
592  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
593  case ARMISD::VCGT:          return "ARMISD::VCGT";
594  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
595  case ARMISD::VTST:          return "ARMISD::VTST";
596
597  case ARMISD::VSHL:          return "ARMISD::VSHL";
598  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
599  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
600  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
601  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
602  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
603  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
604  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
605  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
606  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
607  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
608  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
609  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
610  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
611  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
612  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
613  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
614  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
615  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
616  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
617  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
618  case ARMISD::VDUP:          return "ARMISD::VDUP";
619  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
620  case ARMISD::VEXT:          return "ARMISD::VEXT";
621  case ARMISD::VREV64:        return "ARMISD::VREV64";
622  case ARMISD::VREV32:        return "ARMISD::VREV32";
623  case ARMISD::VREV16:        return "ARMISD::VREV16";
624  case ARMISD::VZIP:          return "ARMISD::VZIP";
625  case ARMISD::VUZP:          return "ARMISD::VUZP";
626  case ARMISD::VTRN:          return "ARMISD::VTRN";
627  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
628  case ARMISD::FMAX:          return "ARMISD::FMAX";
629  case ARMISD::FMIN:          return "ARMISD::FMIN";
630  }
631}
632
633/// getRegClassFor - Return the register class that should be used for the
634/// specified value type.
635TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
636  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
637  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
638  // load / store 4 to 8 consecutive D registers.
639  if (Subtarget->hasNEON()) {
640    if (VT == MVT::v4i64)
641      return ARM::QQPRRegisterClass;
642    else if (VT == MVT::v8i64)
643      return ARM::QQQQPRRegisterClass;
644  }
645  return TargetLowering::getRegClassFor(VT);
646}
647
648/// getFunctionAlignment - Return the Log2 alignment of this function.
649unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const {
650  return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 1 : 2;
651}
652
653Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
654  unsigned NumVals = N->getNumValues();
655  if (!NumVals)
656    return Sched::RegPressure;
657
658  for (unsigned i = 0; i != NumVals; ++i) {
659    EVT VT = N->getValueType(i);
660    if (VT.isFloatingPoint() || VT.isVector())
661      return Sched::Latency;
662  }
663
664  if (!N->isMachineOpcode())
665    return Sched::RegPressure;
666
667  // Load are scheduled for latency even if there instruction itinerary
668  // is not available.
669  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
670  const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
671  if (TID.mayLoad())
672    return Sched::Latency;
673
674  const InstrItineraryData &Itins = getTargetMachine().getInstrItineraryData();
675  if (!Itins.isEmpty() && Itins.getStageLatency(TID.getSchedClass()) > 2)
676    return Sched::Latency;
677  return Sched::RegPressure;
678}
679
680//===----------------------------------------------------------------------===//
681// Lowering Code
682//===----------------------------------------------------------------------===//
683
684/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
685static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
686  switch (CC) {
687  default: llvm_unreachable("Unknown condition code!");
688  case ISD::SETNE:  return ARMCC::NE;
689  case ISD::SETEQ:  return ARMCC::EQ;
690  case ISD::SETGT:  return ARMCC::GT;
691  case ISD::SETGE:  return ARMCC::GE;
692  case ISD::SETLT:  return ARMCC::LT;
693  case ISD::SETLE:  return ARMCC::LE;
694  case ISD::SETUGT: return ARMCC::HI;
695  case ISD::SETUGE: return ARMCC::HS;
696  case ISD::SETULT: return ARMCC::LO;
697  case ISD::SETULE: return ARMCC::LS;
698  }
699}
700
701/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
702static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
703                        ARMCC::CondCodes &CondCode2) {
704  CondCode2 = ARMCC::AL;
705  switch (CC) {
706  default: llvm_unreachable("Unknown FP condition!");
707  case ISD::SETEQ:
708  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
709  case ISD::SETGT:
710  case ISD::SETOGT: CondCode = ARMCC::GT; break;
711  case ISD::SETGE:
712  case ISD::SETOGE: CondCode = ARMCC::GE; break;
713  case ISD::SETOLT: CondCode = ARMCC::MI; break;
714  case ISD::SETOLE: CondCode = ARMCC::LS; break;
715  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
716  case ISD::SETO:   CondCode = ARMCC::VC; break;
717  case ISD::SETUO:  CondCode = ARMCC::VS; break;
718  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
719  case ISD::SETUGT: CondCode = ARMCC::HI; break;
720  case ISD::SETUGE: CondCode = ARMCC::PL; break;
721  case ISD::SETLT:
722  case ISD::SETULT: CondCode = ARMCC::LT; break;
723  case ISD::SETLE:
724  case ISD::SETULE: CondCode = ARMCC::LE; break;
725  case ISD::SETNE:
726  case ISD::SETUNE: CondCode = ARMCC::NE; break;
727  }
728}
729
730//===----------------------------------------------------------------------===//
731//                      Calling Convention Implementation
732//===----------------------------------------------------------------------===//
733
734#include "ARMGenCallingConv.inc"
735
736// APCS f64 is in register pairs, possibly split to stack
737static bool f64AssignAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
738                          CCValAssign::LocInfo &LocInfo,
739                          CCState &State, bool CanFail) {
740  static const unsigned RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
741
742  // Try to get the first register.
743  if (unsigned Reg = State.AllocateReg(RegList, 4))
744    State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
745  else {
746    // For the 2nd half of a v2f64, do not fail.
747    if (CanFail)
748      return false;
749
750    // Put the whole thing on the stack.
751    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
752                                           State.AllocateStack(8, 4),
753                                           LocVT, LocInfo));
754    return true;
755  }
756
757  // Try to get the second register.
758  if (unsigned Reg = State.AllocateReg(RegList, 4))
759    State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
760  else
761    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
762                                           State.AllocateStack(4, 4),
763                                           LocVT, LocInfo));
764  return true;
765}
766
767static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
768                                   CCValAssign::LocInfo &LocInfo,
769                                   ISD::ArgFlagsTy &ArgFlags,
770                                   CCState &State) {
771  if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
772    return false;
773  if (LocVT == MVT::v2f64 &&
774      !f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
775    return false;
776  return true;  // we handled it
777}
778
779// AAPCS f64 is in aligned register pairs
780static bool f64AssignAAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
781                           CCValAssign::LocInfo &LocInfo,
782                           CCState &State, bool CanFail) {
783  static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
784  static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
785
786  unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
787  if (Reg == 0) {
788    // For the 2nd half of a v2f64, do not just fail.
789    if (CanFail)
790      return false;
791
792    // Put the whole thing on the stack.
793    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
794                                           State.AllocateStack(8, 8),
795                                           LocVT, LocInfo));
796    return true;
797  }
798
799  unsigned i;
800  for (i = 0; i < 2; ++i)
801    if (HiRegList[i] == Reg)
802      break;
803
804  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
805  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
806                                         LocVT, LocInfo));
807  return true;
808}
809
810static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
811                                    CCValAssign::LocInfo &LocInfo,
812                                    ISD::ArgFlagsTy &ArgFlags,
813                                    CCState &State) {
814  if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
815    return false;
816  if (LocVT == MVT::v2f64 &&
817      !f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
818    return false;
819  return true;  // we handled it
820}
821
822static bool f64RetAssign(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
823                         CCValAssign::LocInfo &LocInfo, CCState &State) {
824  static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
825  static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
826
827  unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
828  if (Reg == 0)
829    return false; // we didn't handle it
830
831  unsigned i;
832  for (i = 0; i < 2; ++i)
833    if (HiRegList[i] == Reg)
834      break;
835
836  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
837  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
838                                         LocVT, LocInfo));
839  return true;
840}
841
842static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
843                                      CCValAssign::LocInfo &LocInfo,
844                                      ISD::ArgFlagsTy &ArgFlags,
845                                      CCState &State) {
846  if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
847    return false;
848  if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
849    return false;
850  return true;  // we handled it
851}
852
853static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
854                                       CCValAssign::LocInfo &LocInfo,
855                                       ISD::ArgFlagsTy &ArgFlags,
856                                       CCState &State) {
857  return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags,
858                                   State);
859}
860
861/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
862/// given CallingConvention value.
863CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
864                                                 bool Return,
865                                                 bool isVarArg) const {
866  switch (CC) {
867  default:
868    llvm_unreachable("Unsupported calling convention");
869  case CallingConv::C:
870  case CallingConv::Fast:
871    // Use target triple & subtarget features to do actual dispatch.
872    if (Subtarget->isAAPCS_ABI()) {
873      if (Subtarget->hasVFP2() &&
874          FloatABIType == FloatABI::Hard && !isVarArg)
875        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
876      else
877        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
878    } else
879        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
880  case CallingConv::ARM_AAPCS_VFP:
881    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
882  case CallingConv::ARM_AAPCS:
883    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
884  case CallingConv::ARM_APCS:
885    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
886  }
887}
888
889/// LowerCallResult - Lower the result values of a call into the
890/// appropriate copies out of appropriate physical registers.
891SDValue
892ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
893                                   CallingConv::ID CallConv, bool isVarArg,
894                                   const SmallVectorImpl<ISD::InputArg> &Ins,
895                                   DebugLoc dl, SelectionDAG &DAG,
896                                   SmallVectorImpl<SDValue> &InVals) const {
897
898  // Assign locations to each value returned by this call.
899  SmallVector<CCValAssign, 16> RVLocs;
900  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
901                 RVLocs, *DAG.getContext());
902  CCInfo.AnalyzeCallResult(Ins,
903                           CCAssignFnForNode(CallConv, /* Return*/ true,
904                                             isVarArg));
905
906  // Copy all of the result registers out of their specified physreg.
907  for (unsigned i = 0; i != RVLocs.size(); ++i) {
908    CCValAssign VA = RVLocs[i];
909
910    SDValue Val;
911    if (VA.needsCustom()) {
912      // Handle f64 or half of a v2f64.
913      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
914                                      InFlag);
915      Chain = Lo.getValue(1);
916      InFlag = Lo.getValue(2);
917      VA = RVLocs[++i]; // skip ahead to next loc
918      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
919                                      InFlag);
920      Chain = Hi.getValue(1);
921      InFlag = Hi.getValue(2);
922      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
923
924      if (VA.getLocVT() == MVT::v2f64) {
925        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
926        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
927                          DAG.getConstant(0, MVT::i32));
928
929        VA = RVLocs[++i]; // skip ahead to next loc
930        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
931        Chain = Lo.getValue(1);
932        InFlag = Lo.getValue(2);
933        VA = RVLocs[++i]; // skip ahead to next loc
934        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
935        Chain = Hi.getValue(1);
936        InFlag = Hi.getValue(2);
937        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
938        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
939                          DAG.getConstant(1, MVT::i32));
940      }
941    } else {
942      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
943                               InFlag);
944      Chain = Val.getValue(1);
945      InFlag = Val.getValue(2);
946    }
947
948    switch (VA.getLocInfo()) {
949    default: llvm_unreachable("Unknown loc info!");
950    case CCValAssign::Full: break;
951    case CCValAssign::BCvt:
952      Val = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), Val);
953      break;
954    }
955
956    InVals.push_back(Val);
957  }
958
959  return Chain;
960}
961
962/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
963/// by "Src" to address "Dst" of size "Size".  Alignment information is
964/// specified by the specific parameter attribute.  The copy will be passed as
965/// a byval function parameter.
966/// Sometimes what we are copying is the end of a larger object, the part that
967/// does not fit in registers.
968static SDValue
969CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
970                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
971                          DebugLoc dl) {
972  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
973  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
974                       /*isVolatile=*/false, /*AlwaysInline=*/false,
975                       NULL, 0, NULL, 0);
976}
977
978/// LowerMemOpCallTo - Store the argument to the stack.
979SDValue
980ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
981                                    SDValue StackPtr, SDValue Arg,
982                                    DebugLoc dl, SelectionDAG &DAG,
983                                    const CCValAssign &VA,
984                                    ISD::ArgFlagsTy Flags) const {
985  unsigned LocMemOffset = VA.getLocMemOffset();
986  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
987  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
988  if (Flags.isByVal()) {
989    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
990  }
991  return DAG.getStore(Chain, dl, Arg, PtrOff,
992                      PseudoSourceValue::getStack(), LocMemOffset,
993                      false, false, 0);
994}
995
996void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
997                                         SDValue Chain, SDValue &Arg,
998                                         RegsToPassVector &RegsToPass,
999                                         CCValAssign &VA, CCValAssign &NextVA,
1000                                         SDValue &StackPtr,
1001                                         SmallVector<SDValue, 8> &MemOpChains,
1002                                         ISD::ArgFlagsTy Flags) const {
1003
1004  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1005                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1006  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1007
1008  if (NextVA.isRegLoc())
1009    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1010  else {
1011    assert(NextVA.isMemLoc());
1012    if (StackPtr.getNode() == 0)
1013      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1014
1015    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1016                                           dl, DAG, NextVA,
1017                                           Flags));
1018  }
1019}
1020
1021/// LowerCall - Lowering a call into a callseq_start <-
1022/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1023/// nodes.
1024SDValue
1025ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1026                             CallingConv::ID CallConv, bool isVarArg,
1027                             bool &isTailCall,
1028                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1029                             const SmallVectorImpl<ISD::InputArg> &Ins,
1030                             DebugLoc dl, SelectionDAG &DAG,
1031                             SmallVectorImpl<SDValue> &InVals) const {
1032  MachineFunction &MF = DAG.getMachineFunction();
1033  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1034  bool IsSibCall = false;
1035  // Temporarily disable tail calls so things don't break.
1036  if (!EnableARMTailCalls)
1037    isTailCall = false;
1038  if (isTailCall) {
1039    // Check if it's really possible to do a tail call.
1040    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1041                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1042                                                   Outs, Ins, DAG);
1043    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1044    // detected sibcalls.
1045    if (isTailCall) {
1046      ++NumTailCalls;
1047      IsSibCall = true;
1048    }
1049  }
1050
1051  // Analyze operands of the call, assigning locations to each operand.
1052  SmallVector<CCValAssign, 16> ArgLocs;
1053  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1054                 *DAG.getContext());
1055  CCInfo.AnalyzeCallOperands(Outs,
1056                             CCAssignFnForNode(CallConv, /* Return*/ false,
1057                                               isVarArg));
1058
1059  // Get a count of how many bytes are to be pushed on the stack.
1060  unsigned NumBytes = CCInfo.getNextStackOffset();
1061
1062  // For tail calls, memory operands are available in our caller's stack.
1063  if (IsSibCall)
1064    NumBytes = 0;
1065
1066  // Adjust the stack pointer for the new arguments...
1067  // These operations are automatically eliminated by the prolog/epilog pass
1068  if (!IsSibCall)
1069    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1070
1071  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1072
1073  RegsToPassVector RegsToPass;
1074  SmallVector<SDValue, 8> MemOpChains;
1075
1076  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1077  // of tail call optimization, arguments are handled later.
1078  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1079       i != e;
1080       ++i, ++realArgIdx) {
1081    CCValAssign &VA = ArgLocs[i];
1082    SDValue Arg = Outs[realArgIdx].Val;
1083    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1084
1085    // Promote the value if needed.
1086    switch (VA.getLocInfo()) {
1087    default: llvm_unreachable("Unknown loc info!");
1088    case CCValAssign::Full: break;
1089    case CCValAssign::SExt:
1090      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1091      break;
1092    case CCValAssign::ZExt:
1093      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1094      break;
1095    case CCValAssign::AExt:
1096      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1097      break;
1098    case CCValAssign::BCvt:
1099      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
1100      break;
1101    }
1102
1103    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1104    if (VA.needsCustom()) {
1105      if (VA.getLocVT() == MVT::v2f64) {
1106        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1107                                  DAG.getConstant(0, MVT::i32));
1108        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1109                                  DAG.getConstant(1, MVT::i32));
1110
1111        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1112                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1113
1114        VA = ArgLocs[++i]; // skip ahead to next loc
1115        if (VA.isRegLoc()) {
1116          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1117                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1118        } else {
1119          assert(VA.isMemLoc());
1120
1121          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1122                                                 dl, DAG, VA, Flags));
1123        }
1124      } else {
1125        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1126                         StackPtr, MemOpChains, Flags);
1127      }
1128    } else if (VA.isRegLoc()) {
1129      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1130    } else if (!IsSibCall) {
1131      assert(VA.isMemLoc());
1132
1133      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1134                                             dl, DAG, VA, Flags));
1135    }
1136  }
1137
1138  if (!MemOpChains.empty())
1139    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1140                        &MemOpChains[0], MemOpChains.size());
1141
1142  // Build a sequence of copy-to-reg nodes chained together with token chain
1143  // and flag operands which copy the outgoing args into the appropriate regs.
1144  SDValue InFlag;
1145  // Tail call byval lowering might overwrite argument registers so in case of
1146  // tail call optimization the copies to registers are lowered later.
1147  if (!isTailCall)
1148    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1149      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1150                               RegsToPass[i].second, InFlag);
1151      InFlag = Chain.getValue(1);
1152    }
1153
1154  // For tail calls lower the arguments to the 'real' stack slot.
1155  if (isTailCall) {
1156    // Force all the incoming stack arguments to be loaded from the stack
1157    // before any new outgoing arguments are stored to the stack, because the
1158    // outgoing stack slots may alias the incoming argument stack slots, and
1159    // the alias isn't otherwise explicit. This is slightly more conservative
1160    // than necessary, because it means that each store effectively depends
1161    // on every argument instead of just those arguments it would clobber.
1162
1163    // Do not flag preceeding copytoreg stuff together with the following stuff.
1164    InFlag = SDValue();
1165    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1166      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1167                               RegsToPass[i].second, InFlag);
1168      InFlag = Chain.getValue(1);
1169    }
1170    InFlag =SDValue();
1171  }
1172
1173  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1174  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1175  // node so that legalize doesn't hack it.
1176  bool isDirect = false;
1177  bool isARMFunc = false;
1178  bool isLocalARMFunc = false;
1179  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1180
1181  if (EnableARMLongCalls) {
1182    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1183            && "long-calls with non-static relocation model!");
1184    // Handle a global address or an external symbol. If it's not one of
1185    // those, the target's already in a register, so we don't need to do
1186    // anything extra.
1187    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1188      const GlobalValue *GV = G->getGlobal();
1189      // Create a constant pool entry for the callee address
1190      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1191      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1192                                                           ARMPCLabelIndex,
1193                                                           ARMCP::CPValue, 0);
1194      // Get the address of the callee into a register
1195      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1196      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1197      Callee = DAG.getLoad(getPointerTy(), dl,
1198                           DAG.getEntryNode(), CPAddr,
1199                           PseudoSourceValue::getConstantPool(), 0,
1200                           false, false, 0);
1201    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1202      const char *Sym = S->getSymbol();
1203
1204      // Create a constant pool entry for the callee address
1205      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1206      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1207                                                       Sym, ARMPCLabelIndex, 0);
1208      // Get the address of the callee into a register
1209      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1210      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1211      Callee = DAG.getLoad(getPointerTy(), dl,
1212                           DAG.getEntryNode(), CPAddr,
1213                           PseudoSourceValue::getConstantPool(), 0,
1214                           false, false, 0);
1215    }
1216  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1217    const GlobalValue *GV = G->getGlobal();
1218    isDirect = true;
1219    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1220    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1221                   getTargetMachine().getRelocationModel() != Reloc::Static;
1222    isARMFunc = !Subtarget->isThumb() || isStub;
1223    // ARM call to a local ARM function is predicable.
1224    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1225    // tBX takes a register source operand.
1226    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1227      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1228      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1229                                                           ARMPCLabelIndex,
1230                                                           ARMCP::CPValue, 4);
1231      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1232      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1233      Callee = DAG.getLoad(getPointerTy(), dl,
1234                           DAG.getEntryNode(), CPAddr,
1235                           PseudoSourceValue::getConstantPool(), 0,
1236                           false, false, 0);
1237      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1238      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1239                           getPointerTy(), Callee, PICLabel);
1240    } else
1241      Callee = DAG.getTargetGlobalAddress(GV, getPointerTy());
1242  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1243    isDirect = true;
1244    bool isStub = Subtarget->isTargetDarwin() &&
1245                  getTargetMachine().getRelocationModel() != Reloc::Static;
1246    isARMFunc = !Subtarget->isThumb() || isStub;
1247    // tBX takes a register source operand.
1248    const char *Sym = S->getSymbol();
1249    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1250      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1251      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1252                                                       Sym, ARMPCLabelIndex, 4);
1253      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1254      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1255      Callee = DAG.getLoad(getPointerTy(), dl,
1256                           DAG.getEntryNode(), CPAddr,
1257                           PseudoSourceValue::getConstantPool(), 0,
1258                           false, false, 0);
1259      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1260      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1261                           getPointerTy(), Callee, PICLabel);
1262    } else
1263      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
1264  }
1265
1266  // FIXME: handle tail calls differently.
1267  unsigned CallOpc;
1268  if (Subtarget->isThumb()) {
1269    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1270      CallOpc = ARMISD::CALL_NOLINK;
1271    else
1272      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1273  } else {
1274    CallOpc = (isDirect || Subtarget->hasV5TOps())
1275      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1276      : ARMISD::CALL_NOLINK;
1277  }
1278  if (CallOpc == ARMISD::CALL_NOLINK && !Subtarget->isThumb1Only()) {
1279    // implicit def LR - LR mustn't be allocated as GRP:$dst of CALL_NOLINK
1280    Chain = DAG.getCopyToReg(Chain, dl, ARM::LR, DAG.getUNDEF(MVT::i32),InFlag);
1281    InFlag = Chain.getValue(1);
1282  }
1283
1284  std::vector<SDValue> Ops;
1285  Ops.push_back(Chain);
1286  Ops.push_back(Callee);
1287
1288  // Add argument registers to the end of the list so that they are known live
1289  // into the call.
1290  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1291    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1292                                  RegsToPass[i].second.getValueType()));
1293
1294  if (InFlag.getNode())
1295    Ops.push_back(InFlag);
1296
1297  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1298  if (isTailCall)
1299    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1300
1301  // Returns a chain and a flag for retval copy to use.
1302  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1303  InFlag = Chain.getValue(1);
1304
1305  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1306                             DAG.getIntPtrConstant(0, true), InFlag);
1307  if (!Ins.empty())
1308    InFlag = Chain.getValue(1);
1309
1310  // Handle result values, copying them out of physregs into vregs that we
1311  // return.
1312  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1313                         dl, DAG, InVals);
1314}
1315
1316/// MatchingStackOffset - Return true if the given stack call argument is
1317/// already available in the same position (relatively) of the caller's
1318/// incoming argument stack.
1319static
1320bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1321                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1322                         const ARMInstrInfo *TII) {
1323  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1324  int FI = INT_MAX;
1325  if (Arg.getOpcode() == ISD::CopyFromReg) {
1326    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1327    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
1328      return false;
1329    MachineInstr *Def = MRI->getVRegDef(VR);
1330    if (!Def)
1331      return false;
1332    if (!Flags.isByVal()) {
1333      if (!TII->isLoadFromStackSlot(Def, FI))
1334        return false;
1335    } else {
1336//      unsigned Opcode = Def->getOpcode();
1337//      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
1338//          Def->getOperand(1).isFI()) {
1339//        FI = Def->getOperand(1).getIndex();
1340//        Bytes = Flags.getByValSize();
1341//      } else
1342        return false;
1343    }
1344  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1345    if (Flags.isByVal())
1346      // ByVal argument is passed in as a pointer but it's now being
1347      // dereferenced. e.g.
1348      // define @foo(%struct.X* %A) {
1349      //   tail call @bar(%struct.X* byval %A)
1350      // }
1351      return false;
1352    SDValue Ptr = Ld->getBasePtr();
1353    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1354    if (!FINode)
1355      return false;
1356    FI = FINode->getIndex();
1357  } else
1358    return false;
1359
1360  assert(FI != INT_MAX);
1361  if (!MFI->isFixedObjectIndex(FI))
1362    return false;
1363  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1364}
1365
1366/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1367/// for tail call optimization. Targets which want to do tail call
1368/// optimization should implement this function.
1369bool
1370ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1371                                                     CallingConv::ID CalleeCC,
1372                                                     bool isVarArg,
1373                                                     bool isCalleeStructRet,
1374                                                     bool isCallerStructRet,
1375                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1376                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1377                                                     SelectionDAG& DAG) const {
1378  const Function *CallerF = DAG.getMachineFunction().getFunction();
1379  CallingConv::ID CallerCC = CallerF->getCallingConv();
1380  bool CCMatch = CallerCC == CalleeCC;
1381
1382  // Look for obvious safe cases to perform tail call optimization that do not
1383  // require ABI changes. This is what gcc calls sibcall.
1384
1385  // Do not sibcall optimize vararg calls unless the call site is not passing
1386  // any arguments.
1387  if (isVarArg && !Outs.empty())
1388    return false;
1389
1390  // Also avoid sibcall optimization if either caller or callee uses struct
1391  // return semantics.
1392  if (isCalleeStructRet || isCallerStructRet)
1393    return false;
1394
1395  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1396  // emitEpilogue is not ready for them.
1397  if (Subtarget->isThumb1Only())
1398    return false;
1399
1400  // For the moment, we can only do this to functions defined in this
1401  // compilation, or to indirect calls.  A Thumb B to an ARM function,
1402  // or vice versa, is not easily fixed up in the linker unlike BL.
1403  // (We could do this by loading the address of the callee into a register;
1404  // that is an extra instruction over the direct call and burns a register
1405  // as well, so is not likely to be a win.)
1406  if (isa<ExternalSymbolSDNode>(Callee))
1407      return false;
1408
1409  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1410    const GlobalValue *GV = G->getGlobal();
1411    if (GV->isDeclaration() || GV->isWeakForLinker())
1412      return false;
1413  }
1414
1415  // If the calling conventions do not match, then we'd better make sure the
1416  // results are returned in the same way as what the caller expects.
1417  if (!CCMatch) {
1418    SmallVector<CCValAssign, 16> RVLocs1;
1419    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
1420                    RVLocs1, *DAG.getContext());
1421    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1422
1423    SmallVector<CCValAssign, 16> RVLocs2;
1424    CCState CCInfo2(CallerCC, false, getTargetMachine(),
1425                    RVLocs2, *DAG.getContext());
1426    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1427
1428    if (RVLocs1.size() != RVLocs2.size())
1429      return false;
1430    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1431      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1432        return false;
1433      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1434        return false;
1435      if (RVLocs1[i].isRegLoc()) {
1436        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1437          return false;
1438      } else {
1439        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1440          return false;
1441      }
1442    }
1443  }
1444
1445  // If the callee takes no arguments then go on to check the results of the
1446  // call.
1447  if (!Outs.empty()) {
1448    // Check if stack adjustment is needed. For now, do not do this if any
1449    // argument is passed on the stack.
1450    SmallVector<CCValAssign, 16> ArgLocs;
1451    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
1452                   ArgLocs, *DAG.getContext());
1453    CCInfo.AnalyzeCallOperands(Outs,
1454                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1455    if (CCInfo.getNextStackOffset()) {
1456      MachineFunction &MF = DAG.getMachineFunction();
1457
1458      // Check if the arguments are already laid out in the right way as
1459      // the caller's fixed stack objects.
1460      MachineFrameInfo *MFI = MF.getFrameInfo();
1461      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1462      const ARMInstrInfo *TII =
1463        ((ARMTargetMachine&)getTargetMachine()).getInstrInfo();
1464      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1465           i != e;
1466           ++i, ++realArgIdx) {
1467        CCValAssign &VA = ArgLocs[i];
1468        EVT RegVT = VA.getLocVT();
1469        SDValue Arg = Outs[realArgIdx].Val;
1470        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1471        if (VA.getLocInfo() == CCValAssign::Indirect)
1472          return false;
1473        if (VA.needsCustom()) {
1474          // f64 and vector types are split into multiple registers or
1475          // register/stack-slot combinations.  The types will not match
1476          // the registers; give up on memory f64 refs until we figure
1477          // out what to do about this.
1478          if (!VA.isRegLoc())
1479            return false;
1480          if (!ArgLocs[++i].isRegLoc())
1481            return false;
1482          if (RegVT == MVT::v2f64) {
1483            if (!ArgLocs[++i].isRegLoc())
1484              return false;
1485            if (!ArgLocs[++i].isRegLoc())
1486              return false;
1487          }
1488        } else if (!VA.isRegLoc()) {
1489          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1490                                   MFI, MRI, TII))
1491            return false;
1492        }
1493      }
1494    }
1495  }
1496
1497  return true;
1498}
1499
1500SDValue
1501ARMTargetLowering::LowerReturn(SDValue Chain,
1502                               CallingConv::ID CallConv, bool isVarArg,
1503                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1504                               DebugLoc dl, SelectionDAG &DAG) const {
1505
1506  // CCValAssign - represent the assignment of the return value to a location.
1507  SmallVector<CCValAssign, 16> RVLocs;
1508
1509  // CCState - Info about the registers and stack slots.
1510  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
1511                 *DAG.getContext());
1512
1513  // Analyze outgoing return values.
1514  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1515                                               isVarArg));
1516
1517  // If this is the first return lowered for this function, add
1518  // the regs to the liveout set for the function.
1519  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1520    for (unsigned i = 0; i != RVLocs.size(); ++i)
1521      if (RVLocs[i].isRegLoc())
1522        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1523  }
1524
1525  SDValue Flag;
1526
1527  // Copy the result values into the output registers.
1528  for (unsigned i = 0, realRVLocIdx = 0;
1529       i != RVLocs.size();
1530       ++i, ++realRVLocIdx) {
1531    CCValAssign &VA = RVLocs[i];
1532    assert(VA.isRegLoc() && "Can only return in registers!");
1533
1534    SDValue Arg = Outs[realRVLocIdx].Val;
1535
1536    switch (VA.getLocInfo()) {
1537    default: llvm_unreachable("Unknown loc info!");
1538    case CCValAssign::Full: break;
1539    case CCValAssign::BCvt:
1540      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
1541      break;
1542    }
1543
1544    if (VA.needsCustom()) {
1545      if (VA.getLocVT() == MVT::v2f64) {
1546        // Extract the first half and return it in two registers.
1547        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1548                                   DAG.getConstant(0, MVT::i32));
1549        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1550                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1551
1552        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1553        Flag = Chain.getValue(1);
1554        VA = RVLocs[++i]; // skip ahead to next loc
1555        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1556                                 HalfGPRs.getValue(1), Flag);
1557        Flag = Chain.getValue(1);
1558        VA = RVLocs[++i]; // skip ahead to next loc
1559
1560        // Extract the 2nd half and fall through to handle it as an f64 value.
1561        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1562                          DAG.getConstant(1, MVT::i32));
1563      }
1564      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1565      // available.
1566      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1567                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1568      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1569      Flag = Chain.getValue(1);
1570      VA = RVLocs[++i]; // skip ahead to next loc
1571      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1572                               Flag);
1573    } else
1574      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1575
1576    // Guarantee that all emitted copies are
1577    // stuck together, avoiding something bad.
1578    Flag = Chain.getValue(1);
1579  }
1580
1581  SDValue result;
1582  if (Flag.getNode())
1583    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1584  else // Return Void
1585    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1586
1587  return result;
1588}
1589
1590// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1591// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1592// one of the above mentioned nodes. It has to be wrapped because otherwise
1593// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1594// be used to form addressing mode. These wrapped nodes will be selected
1595// into MOVi.
1596static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1597  EVT PtrVT = Op.getValueType();
1598  // FIXME there is no actual debug info here
1599  DebugLoc dl = Op.getDebugLoc();
1600  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1601  SDValue Res;
1602  if (CP->isMachineConstantPoolEntry())
1603    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1604                                    CP->getAlignment());
1605  else
1606    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1607                                    CP->getAlignment());
1608  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1609}
1610
1611SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
1612                                             SelectionDAG &DAG) const {
1613  MachineFunction &MF = DAG.getMachineFunction();
1614  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1615  unsigned ARMPCLabelIndex = 0;
1616  DebugLoc DL = Op.getDebugLoc();
1617  EVT PtrVT = getPointerTy();
1618  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1619  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1620  SDValue CPAddr;
1621  if (RelocM == Reloc::Static) {
1622    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
1623  } else {
1624    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1625    ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1626    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex,
1627                                                         ARMCP::CPBlockAddress,
1628                                                         PCAdj);
1629    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1630  }
1631  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
1632  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
1633                               PseudoSourceValue::getConstantPool(), 0,
1634                               false, false, 0);
1635  if (RelocM == Reloc::Static)
1636    return Result;
1637  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1638  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
1639}
1640
1641// Lower ISD::GlobalTLSAddress using the "general dynamic" model
1642SDValue
1643ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1644                                                 SelectionDAG &DAG) const {
1645  DebugLoc dl = GA->getDebugLoc();
1646  EVT PtrVT = getPointerTy();
1647  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1648  MachineFunction &MF = DAG.getMachineFunction();
1649  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1650  unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1651  ARMConstantPoolValue *CPV =
1652    new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1653                             ARMCP::CPValue, PCAdj, "tlsgd", true);
1654  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1655  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1656  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
1657                         PseudoSourceValue::getConstantPool(), 0,
1658                         false, false, 0);
1659  SDValue Chain = Argument.getValue(1);
1660
1661  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1662  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1663
1664  // call __tls_get_addr.
1665  ArgListTy Args;
1666  ArgListEntry Entry;
1667  Entry.Node = Argument;
1668  Entry.Ty = (const Type *) Type::getInt32Ty(*DAG.getContext());
1669  Args.push_back(Entry);
1670  // FIXME: is there useful debug info available here?
1671  std::pair<SDValue, SDValue> CallResult =
1672    LowerCallTo(Chain, (const Type *) Type::getInt32Ty(*DAG.getContext()),
1673                false, false, false, false,
1674                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
1675                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
1676  return CallResult.first;
1677}
1678
1679// Lower ISD::GlobalTLSAddress using the "initial exec" or
1680// "local exec" model.
1681SDValue
1682ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
1683                                        SelectionDAG &DAG) const {
1684  const GlobalValue *GV = GA->getGlobal();
1685  DebugLoc dl = GA->getDebugLoc();
1686  SDValue Offset;
1687  SDValue Chain = DAG.getEntryNode();
1688  EVT PtrVT = getPointerTy();
1689  // Get the Thread Pointer
1690  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1691
1692  if (GV->isDeclaration()) {
1693    MachineFunction &MF = DAG.getMachineFunction();
1694    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1695    unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1696    // Initial exec model.
1697    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1698    ARMConstantPoolValue *CPV =
1699      new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1700                               ARMCP::CPValue, PCAdj, "gottpoff", true);
1701    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1702    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1703    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1704                         PseudoSourceValue::getConstantPool(), 0,
1705                         false, false, 0);
1706    Chain = Offset.getValue(1);
1707
1708    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1709    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
1710
1711    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1712                         PseudoSourceValue::getConstantPool(), 0,
1713                         false, false, 0);
1714  } else {
1715    // local exec model
1716    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, "tpoff");
1717    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1718    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1719    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1720                         PseudoSourceValue::getConstantPool(), 0,
1721                         false, false, 0);
1722  }
1723
1724  // The address of the thread local variable is the add of the thread
1725  // pointer with the offset of the variable.
1726  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1727}
1728
1729SDValue
1730ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
1731  // TODO: implement the "local dynamic" model
1732  assert(Subtarget->isTargetELF() &&
1733         "TLS not implemented for non-ELF targets");
1734  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1735  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
1736  // otherwise use the "Local Exec" TLS Model
1737  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
1738    return LowerToTLSGeneralDynamicModel(GA, DAG);
1739  else
1740    return LowerToTLSExecModels(GA, DAG);
1741}
1742
1743SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
1744                                                 SelectionDAG &DAG) const {
1745  EVT PtrVT = getPointerTy();
1746  DebugLoc dl = Op.getDebugLoc();
1747  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1748  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1749  if (RelocM == Reloc::PIC_) {
1750    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
1751    ARMConstantPoolValue *CPV =
1752      new ARMConstantPoolValue(GV, UseGOTOFF ? "GOTOFF" : "GOT");
1753    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1754    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1755    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
1756                                 CPAddr,
1757                                 PseudoSourceValue::getConstantPool(), 0,
1758                                 false, false, 0);
1759    SDValue Chain = Result.getValue(1);
1760    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1761    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
1762    if (!UseGOTOFF)
1763      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
1764                           PseudoSourceValue::getGOT(), 0,
1765                           false, false, 0);
1766    return Result;
1767  } else {
1768    // If we have T2 ops, we can materialize the address directly via movt/movw
1769    // pair. This is always cheaper.
1770    if (Subtarget->useMovt()) {
1771      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
1772                         DAG.getTargetGlobalAddress(GV, PtrVT));
1773    } else {
1774      SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1775      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1776      return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1777                         PseudoSourceValue::getConstantPool(), 0,
1778                         false, false, 0);
1779    }
1780  }
1781}
1782
1783SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
1784                                                    SelectionDAG &DAG) const {
1785  MachineFunction &MF = DAG.getMachineFunction();
1786  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1787  unsigned ARMPCLabelIndex = 0;
1788  EVT PtrVT = getPointerTy();
1789  DebugLoc dl = Op.getDebugLoc();
1790  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1791  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1792  SDValue CPAddr;
1793  if (RelocM == Reloc::Static)
1794    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1795  else {
1796    ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1797    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
1798    ARMConstantPoolValue *CPV =
1799      new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj);
1800    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1801  }
1802  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1803
1804  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1805                               PseudoSourceValue::getConstantPool(), 0,
1806                               false, false, 0);
1807  SDValue Chain = Result.getValue(1);
1808
1809  if (RelocM == Reloc::PIC_) {
1810    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1811    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1812  }
1813
1814  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
1815    Result = DAG.getLoad(PtrVT, dl, Chain, Result,
1816                         PseudoSourceValue::getGOT(), 0,
1817                         false, false, 0);
1818
1819  return Result;
1820}
1821
1822SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
1823                                                    SelectionDAG &DAG) const {
1824  assert(Subtarget->isTargetELF() &&
1825         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
1826  MachineFunction &MF = DAG.getMachineFunction();
1827  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1828  unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1829  EVT PtrVT = getPointerTy();
1830  DebugLoc dl = Op.getDebugLoc();
1831  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1832  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1833                                                       "_GLOBAL_OFFSET_TABLE_",
1834                                                       ARMPCLabelIndex, PCAdj);
1835  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1836  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1837  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1838                               PseudoSourceValue::getConstantPool(), 0,
1839                               false, false, 0);
1840  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1841  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1842}
1843
1844SDValue
1845ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
1846  DebugLoc dl = Op.getDebugLoc();
1847  SDValue Val = DAG.getConstant(0, MVT::i32);
1848  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(0),
1849                     Op.getOperand(1), Val);
1850}
1851
1852SDValue
1853ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
1854  DebugLoc dl = Op.getDebugLoc();
1855  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
1856                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
1857}
1858
1859SDValue
1860ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
1861                                          const ARMSubtarget *Subtarget) const {
1862  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1863  DebugLoc dl = Op.getDebugLoc();
1864  switch (IntNo) {
1865  default: return SDValue();    // Don't custom lower most intrinsics.
1866  case Intrinsic::arm_thread_pointer: {
1867    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1868    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1869  }
1870  case Intrinsic::eh_sjlj_lsda: {
1871    MachineFunction &MF = DAG.getMachineFunction();
1872    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1873    unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1874    EVT PtrVT = getPointerTy();
1875    DebugLoc dl = Op.getDebugLoc();
1876    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1877    SDValue CPAddr;
1878    unsigned PCAdj = (RelocM != Reloc::PIC_)
1879      ? 0 : (Subtarget->isThumb() ? 4 : 8);
1880    ARMConstantPoolValue *CPV =
1881      new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex,
1882                               ARMCP::CPLSDA, PCAdj);
1883    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1884    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1885    SDValue Result =
1886      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1887                  PseudoSourceValue::getConstantPool(), 0,
1888                  false, false, 0);
1889
1890    if (RelocM == Reloc::PIC_) {
1891      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1892      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1893    }
1894    return Result;
1895  }
1896  }
1897}
1898
1899static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
1900                               const ARMSubtarget *Subtarget) {
1901  DebugLoc dl = Op.getDebugLoc();
1902  SDValue Op5 = Op.getOperand(5);
1903  unsigned isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue();
1904  // v6 and v7 can both handle barriers directly, but need handled a bit
1905  // differently. Thumb1 and pre-v6 ARM mode use a libcall instead and should
1906  // never get here.
1907  unsigned Opc = isDeviceBarrier ? ARMISD::SYNCBARRIER : ARMISD::MEMBARRIER;
1908  if (Subtarget->hasV7Ops())
1909    return DAG.getNode(Opc, dl, MVT::Other, Op.getOperand(0));
1910  else if (Subtarget->hasV6Ops() && !Subtarget->isThumb1Only())
1911    return DAG.getNode(Opc, dl, MVT::Other, Op.getOperand(0),
1912                       DAG.getConstant(0, MVT::i32));
1913  assert(0 && "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
1914  return SDValue();
1915}
1916
1917static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
1918  MachineFunction &MF = DAG.getMachineFunction();
1919  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
1920
1921  // vastart just stores the address of the VarArgsFrameIndex slot into the
1922  // memory location argument.
1923  DebugLoc dl = Op.getDebugLoc();
1924  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1925  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1926  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1927  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
1928                      false, false, 0);
1929}
1930
1931SDValue
1932ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1933                                           SelectionDAG &DAG) const {
1934  SDNode *Node = Op.getNode();
1935  DebugLoc dl = Node->getDebugLoc();
1936  EVT VT = Node->getValueType(0);
1937  SDValue Chain = Op.getOperand(0);
1938  SDValue Size  = Op.getOperand(1);
1939  SDValue Align = Op.getOperand(2);
1940
1941  // Chain the dynamic stack allocation so that it doesn't modify the stack
1942  // pointer when other instructions are using the stack.
1943  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1944
1945  unsigned AlignVal = cast<ConstantSDNode>(Align)->getZExtValue();
1946  unsigned StackAlign = getTargetMachine().getFrameInfo()->getStackAlignment();
1947  if (AlignVal > StackAlign)
1948    // Do this now since selection pass cannot introduce new target
1949    // independent node.
1950    Align = DAG.getConstant(-(uint64_t)AlignVal, VT);
1951
1952  // In Thumb1 mode, there isn't a "sub r, sp, r" instruction, we will end up
1953  // using a "add r, sp, r" instead. Negate the size now so we don't have to
1954  // do even more horrible hack later.
1955  MachineFunction &MF = DAG.getMachineFunction();
1956  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1957  if (AFI->isThumb1OnlyFunction()) {
1958    bool Negate = true;
1959    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Size);
1960    if (C) {
1961      uint32_t Val = C->getZExtValue();
1962      if (Val <= 508 && ((Val & 3) == 0))
1963        Negate = false;
1964    }
1965    if (Negate)
1966      Size = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, VT), Size);
1967  }
1968
1969  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
1970  SDValue Ops1[] = { Chain, Size, Align };
1971  SDValue Res = DAG.getNode(ARMISD::DYN_ALLOC, dl, VTList, Ops1, 3);
1972  Chain = Res.getValue(1);
1973  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
1974                             DAG.getIntPtrConstant(0, true), SDValue());
1975  SDValue Ops2[] = { Res, Chain };
1976  return DAG.getMergeValues(Ops2, 2, dl);
1977}
1978
1979SDValue
1980ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
1981                                        SDValue &Root, SelectionDAG &DAG,
1982                                        DebugLoc dl) const {
1983  MachineFunction &MF = DAG.getMachineFunction();
1984  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1985
1986  TargetRegisterClass *RC;
1987  if (AFI->isThumb1OnlyFunction())
1988    RC = ARM::tGPRRegisterClass;
1989  else
1990    RC = ARM::GPRRegisterClass;
1991
1992  // Transform the arguments stored in physical registers into virtual ones.
1993  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1994  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
1995
1996  SDValue ArgValue2;
1997  if (NextVA.isMemLoc()) {
1998    MachineFrameInfo *MFI = MF.getFrameInfo();
1999    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2000
2001    // Create load node to retrieve arguments from the stack.
2002    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2003    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2004                            PseudoSourceValue::getFixedStack(FI), 0,
2005                            false, false, 0);
2006  } else {
2007    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2008    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2009  }
2010
2011  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2012}
2013
2014SDValue
2015ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2016                                        CallingConv::ID CallConv, bool isVarArg,
2017                                        const SmallVectorImpl<ISD::InputArg>
2018                                          &Ins,
2019                                        DebugLoc dl, SelectionDAG &DAG,
2020                                        SmallVectorImpl<SDValue> &InVals)
2021                                          const {
2022
2023  MachineFunction &MF = DAG.getMachineFunction();
2024  MachineFrameInfo *MFI = MF.getFrameInfo();
2025
2026  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2027
2028  // Assign locations to all of the incoming arguments.
2029  SmallVector<CCValAssign, 16> ArgLocs;
2030  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
2031                 *DAG.getContext());
2032  CCInfo.AnalyzeFormalArguments(Ins,
2033                                CCAssignFnForNode(CallConv, /* Return*/ false,
2034                                                  isVarArg));
2035
2036  SmallVector<SDValue, 16> ArgValues;
2037
2038  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2039    CCValAssign &VA = ArgLocs[i];
2040
2041    // Arguments stored in registers.
2042    if (VA.isRegLoc()) {
2043      EVT RegVT = VA.getLocVT();
2044
2045      SDValue ArgValue;
2046      if (VA.needsCustom()) {
2047        // f64 and vector types are split up into multiple registers or
2048        // combinations of registers and stack slots.
2049        if (VA.getLocVT() == MVT::v2f64) {
2050          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2051                                                   Chain, DAG, dl);
2052          VA = ArgLocs[++i]; // skip ahead to next loc
2053          SDValue ArgValue2;
2054          if (VA.isMemLoc()) {
2055            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2056            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2057            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2058                                    PseudoSourceValue::getFixedStack(FI), 0,
2059                                    false, false, 0);
2060          } else {
2061            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2062                                             Chain, DAG, dl);
2063          }
2064          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2065          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2066                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2067          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2068                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2069        } else
2070          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2071
2072      } else {
2073        TargetRegisterClass *RC;
2074
2075        if (RegVT == MVT::f32)
2076          RC = ARM::SPRRegisterClass;
2077        else if (RegVT == MVT::f64)
2078          RC = ARM::DPRRegisterClass;
2079        else if (RegVT == MVT::v2f64)
2080          RC = ARM::QPRRegisterClass;
2081        else if (RegVT == MVT::i32)
2082          RC = (AFI->isThumb1OnlyFunction() ?
2083                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
2084        else
2085          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2086
2087        // Transform the arguments in physical registers into virtual ones.
2088        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2089        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2090      }
2091
2092      // If this is an 8 or 16-bit value, it is really passed promoted
2093      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2094      // truncate to the right size.
2095      switch (VA.getLocInfo()) {
2096      default: llvm_unreachable("Unknown loc info!");
2097      case CCValAssign::Full: break;
2098      case CCValAssign::BCvt:
2099        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
2100        break;
2101      case CCValAssign::SExt:
2102        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2103                               DAG.getValueType(VA.getValVT()));
2104        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2105        break;
2106      case CCValAssign::ZExt:
2107        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2108                               DAG.getValueType(VA.getValVT()));
2109        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2110        break;
2111      }
2112
2113      InVals.push_back(ArgValue);
2114
2115    } else { // VA.isRegLoc()
2116
2117      // sanity check
2118      assert(VA.isMemLoc());
2119      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2120
2121      unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
2122      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), true);
2123
2124      // Create load nodes to retrieve arguments from the stack.
2125      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2126      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2127                                   PseudoSourceValue::getFixedStack(FI), 0,
2128                                   false, false, 0));
2129    }
2130  }
2131
2132  // varargs
2133  if (isVarArg) {
2134    static const unsigned GPRArgRegs[] = {
2135      ARM::R0, ARM::R1, ARM::R2, ARM::R3
2136    };
2137
2138    unsigned NumGPRs = CCInfo.getFirstUnallocated
2139      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2140
2141    unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
2142    unsigned VARegSize = (4 - NumGPRs) * 4;
2143    unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2144    unsigned ArgOffset = CCInfo.getNextStackOffset();
2145    if (VARegSaveSize) {
2146      // If this function is vararg, store any remaining integer argument regs
2147      // to their spots on the stack so that they may be loaded by deferencing
2148      // the result of va_next.
2149      AFI->setVarArgsRegSaveSize(VARegSaveSize);
2150      AFI->setVarArgsFrameIndex(
2151        MFI->CreateFixedObject(VARegSaveSize,
2152                               ArgOffset + VARegSaveSize - VARegSize,
2153                               true));
2154      SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2155                                      getPointerTy());
2156
2157      SmallVector<SDValue, 4> MemOps;
2158      for (; NumGPRs < 4; ++NumGPRs) {
2159        TargetRegisterClass *RC;
2160        if (AFI->isThumb1OnlyFunction())
2161          RC = ARM::tGPRRegisterClass;
2162        else
2163          RC = ARM::GPRRegisterClass;
2164
2165        unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
2166        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2167        SDValue Store =
2168          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2169               PseudoSourceValue::getFixedStack(AFI->getVarArgsFrameIndex()),
2170               0, false, false, 0);
2171        MemOps.push_back(Store);
2172        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2173                          DAG.getConstant(4, getPointerTy()));
2174      }
2175      if (!MemOps.empty())
2176        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2177                            &MemOps[0], MemOps.size());
2178    } else
2179      // This will point to the next argument passed via stack.
2180      AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
2181  }
2182
2183  return Chain;
2184}
2185
2186/// isFloatingPointZero - Return true if this is +0.0.
2187static bool isFloatingPointZero(SDValue Op) {
2188  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2189    return CFP->getValueAPF().isPosZero();
2190  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2191    // Maybe this has already been legalized into the constant pool?
2192    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2193      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2194      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2195        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2196          return CFP->getValueAPF().isPosZero();
2197    }
2198  }
2199  return false;
2200}
2201
2202/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2203/// the given operands.
2204SDValue
2205ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2206                             SDValue &ARMCC, SelectionDAG &DAG,
2207                             DebugLoc dl) const {
2208  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2209    unsigned C = RHSC->getZExtValue();
2210    if (!isLegalICmpImmediate(C)) {
2211      // Constant does not fit, try adjusting it by one?
2212      switch (CC) {
2213      default: break;
2214      case ISD::SETLT:
2215      case ISD::SETGE:
2216        if (isLegalICmpImmediate(C-1)) {
2217          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2218          RHS = DAG.getConstant(C-1, MVT::i32);
2219        }
2220        break;
2221      case ISD::SETULT:
2222      case ISD::SETUGE:
2223        if (C > 0 && isLegalICmpImmediate(C-1)) {
2224          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2225          RHS = DAG.getConstant(C-1, MVT::i32);
2226        }
2227        break;
2228      case ISD::SETLE:
2229      case ISD::SETGT:
2230        if (isLegalICmpImmediate(C+1)) {
2231          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2232          RHS = DAG.getConstant(C+1, MVT::i32);
2233        }
2234        break;
2235      case ISD::SETULE:
2236      case ISD::SETUGT:
2237        if (C < 0xffffffff && isLegalICmpImmediate(C+1)) {
2238          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2239          RHS = DAG.getConstant(C+1, MVT::i32);
2240        }
2241        break;
2242      }
2243    }
2244  }
2245
2246  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2247  ARMISD::NodeType CompareType;
2248  switch (CondCode) {
2249  default:
2250    CompareType = ARMISD::CMP;
2251    break;
2252  case ARMCC::EQ:
2253  case ARMCC::NE:
2254    // Uses only Z Flag
2255    CompareType = ARMISD::CMPZ;
2256    break;
2257  }
2258  ARMCC = DAG.getConstant(CondCode, MVT::i32);
2259  return DAG.getNode(CompareType, dl, MVT::Flag, LHS, RHS);
2260}
2261
2262/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2263static SDValue getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2264                         DebugLoc dl) {
2265  SDValue Cmp;
2266  if (!isFloatingPointZero(RHS))
2267    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Flag, LHS, RHS);
2268  else
2269    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Flag, LHS);
2270  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Flag, Cmp);
2271}
2272
2273SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2274  EVT VT = Op.getValueType();
2275  SDValue LHS = Op.getOperand(0);
2276  SDValue RHS = Op.getOperand(1);
2277  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2278  SDValue TrueVal = Op.getOperand(2);
2279  SDValue FalseVal = Op.getOperand(3);
2280  DebugLoc dl = Op.getDebugLoc();
2281
2282  if (LHS.getValueType() == MVT::i32) {
2283    SDValue ARMCC;
2284    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2285    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, dl);
2286    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMCC, CCR,Cmp);
2287  }
2288
2289  ARMCC::CondCodes CondCode, CondCode2;
2290  FPCCToARMCC(CC, CondCode, CondCode2);
2291
2292  SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
2293  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2294  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2295  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2296                                 ARMCC, CCR, Cmp);
2297  if (CondCode2 != ARMCC::AL) {
2298    SDValue ARMCC2 = DAG.getConstant(CondCode2, MVT::i32);
2299    // FIXME: Needs another CMP because flag can have but one use.
2300    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2301    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2302                         Result, TrueVal, ARMCC2, CCR, Cmp2);
2303  }
2304  return Result;
2305}
2306
2307SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2308  SDValue  Chain = Op.getOperand(0);
2309  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2310  SDValue    LHS = Op.getOperand(2);
2311  SDValue    RHS = Op.getOperand(3);
2312  SDValue   Dest = Op.getOperand(4);
2313  DebugLoc dl = Op.getDebugLoc();
2314
2315  if (LHS.getValueType() == MVT::i32) {
2316    SDValue ARMCC;
2317    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2318    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, dl);
2319    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2320                       Chain, Dest, ARMCC, CCR,Cmp);
2321  }
2322
2323  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
2324  ARMCC::CondCodes CondCode, CondCode2;
2325  FPCCToARMCC(CC, CondCode, CondCode2);
2326
2327  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2328  SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
2329  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2330  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
2331  SDValue Ops[] = { Chain, Dest, ARMCC, CCR, Cmp };
2332  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2333  if (CondCode2 != ARMCC::AL) {
2334    ARMCC = DAG.getConstant(CondCode2, MVT::i32);
2335    SDValue Ops[] = { Res, Dest, ARMCC, CCR, Res.getValue(1) };
2336    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2337  }
2338  return Res;
2339}
2340
2341SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
2342  SDValue Chain = Op.getOperand(0);
2343  SDValue Table = Op.getOperand(1);
2344  SDValue Index = Op.getOperand(2);
2345  DebugLoc dl = Op.getDebugLoc();
2346
2347  EVT PTy = getPointerTy();
2348  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
2349  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2350  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
2351  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
2352  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
2353  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
2354  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2355  if (Subtarget->isThumb2()) {
2356    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
2357    // which does another jump to the destination. This also makes it easier
2358    // to translate it to TBB / TBH later.
2359    // FIXME: This might not work if the function is extremely large.
2360    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
2361                       Addr, Op.getOperand(2), JTI, UId);
2362  }
2363  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2364    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
2365                       PseudoSourceValue::getJumpTable(), 0,
2366                       false, false, 0);
2367    Chain = Addr.getValue(1);
2368    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
2369    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2370  } else {
2371    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
2372                       PseudoSourceValue::getJumpTable(), 0, false, false, 0);
2373    Chain = Addr.getValue(1);
2374    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2375  }
2376}
2377
2378static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
2379  DebugLoc dl = Op.getDebugLoc();
2380  unsigned Opc;
2381
2382  switch (Op.getOpcode()) {
2383  default:
2384    assert(0 && "Invalid opcode!");
2385  case ISD::FP_TO_SINT:
2386    Opc = ARMISD::FTOSI;
2387    break;
2388  case ISD::FP_TO_UINT:
2389    Opc = ARMISD::FTOUI;
2390    break;
2391  }
2392  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
2393  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
2394}
2395
2396static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2397  EVT VT = Op.getValueType();
2398  DebugLoc dl = Op.getDebugLoc();
2399  unsigned Opc;
2400
2401  switch (Op.getOpcode()) {
2402  default:
2403    assert(0 && "Invalid opcode!");
2404  case ISD::SINT_TO_FP:
2405    Opc = ARMISD::SITOF;
2406    break;
2407  case ISD::UINT_TO_FP:
2408    Opc = ARMISD::UITOF;
2409    break;
2410  }
2411
2412  Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Op.getOperand(0));
2413  return DAG.getNode(Opc, dl, VT, Op);
2414}
2415
2416static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
2417  // Implement fcopysign with a fabs and a conditional fneg.
2418  SDValue Tmp0 = Op.getOperand(0);
2419  SDValue Tmp1 = Op.getOperand(1);
2420  DebugLoc dl = Op.getDebugLoc();
2421  EVT VT = Op.getValueType();
2422  EVT SrcVT = Tmp1.getValueType();
2423  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0);
2424  SDValue Cmp = getVFPCmp(Tmp1, DAG.getConstantFP(0.0, SrcVT), DAG, dl);
2425  SDValue ARMCC = DAG.getConstant(ARMCC::LT, MVT::i32);
2426  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2427  return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMCC, CCR, Cmp);
2428}
2429
2430SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
2431  MachineFunction &MF = DAG.getMachineFunction();
2432  MachineFrameInfo *MFI = MF.getFrameInfo();
2433  MFI->setReturnAddressIsTaken(true);
2434
2435  EVT VT = Op.getValueType();
2436  DebugLoc dl = Op.getDebugLoc();
2437  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2438  if (Depth) {
2439    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
2440    SDValue Offset = DAG.getConstant(4, MVT::i32);
2441    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
2442                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
2443                       NULL, 0, false, false, 0);
2444  }
2445
2446  // Return LR, which contains the return address. Mark it an implicit live-in.
2447  unsigned Reg = MF.addLiveIn(ARM::LR, ARM::GPRRegisterClass);
2448  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
2449}
2450
2451SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2452  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2453  MFI->setFrameAddressIsTaken(true);
2454
2455  EVT VT = Op.getValueType();
2456  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
2457  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2458  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
2459    ? ARM::R7 : ARM::R11;
2460  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
2461  while (Depth--)
2462    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
2463                            false, false, 0);
2464  return FrameAddr;
2465}
2466
2467/// ExpandBIT_CONVERT - If the target supports VFP, this function is called to
2468/// expand a bit convert where either the source or destination type is i64 to
2469/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
2470/// operand type is illegal (e.g., v2f32 for a target that doesn't support
2471/// vectors), since the legalizer won't know what to do with that.
2472static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) {
2473  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2474  DebugLoc dl = N->getDebugLoc();
2475  SDValue Op = N->getOperand(0);
2476
2477  // This function is only supposed to be called for i64 types, either as the
2478  // source or destination of the bit convert.
2479  EVT SrcVT = Op.getValueType();
2480  EVT DstVT = N->getValueType(0);
2481  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
2482         "ExpandBIT_CONVERT called for non-i64 type");
2483
2484  // Turn i64->f64 into VMOVDRR.
2485  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
2486    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2487                             DAG.getConstant(0, MVT::i32));
2488    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2489                             DAG.getConstant(1, MVT::i32));
2490    return DAG.getNode(ISD::BIT_CONVERT, dl, DstVT,
2491                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
2492  }
2493
2494  // Turn f64->i64 into VMOVRRD.
2495  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
2496    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
2497                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
2498    // Merge the pieces into a single i64 value.
2499    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
2500  }
2501
2502  return SDValue();
2503}
2504
2505/// getZeroVector - Returns a vector of specified type with all zero elements.
2506///
2507static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2508  assert(VT.isVector() && "Expected a vector type");
2509
2510  // Zero vectors are used to represent vector negation and in those cases
2511  // will be implemented with the NEON VNEG instruction.  However, VNEG does
2512  // not support i64 elements, so sometimes the zero vectors will need to be
2513  // explicitly constructed.  For those cases, and potentially other uses in
2514  // the future, always build zero vectors as <16 x i8> or <8 x i8> bitcasted
2515  // to their dest type.  This ensures they get CSE'd.
2516  SDValue Vec;
2517  SDValue Cst = DAG.getTargetConstant(0, MVT::i8);
2518  SmallVector<SDValue, 8> Ops;
2519  MVT TVT;
2520
2521  if (VT.getSizeInBits() == 64) {
2522    Ops.assign(8, Cst); TVT = MVT::v8i8;
2523  } else {
2524    Ops.assign(16, Cst); TVT = MVT::v16i8;
2525  }
2526  Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, TVT, &Ops[0], Ops.size());
2527
2528  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2529}
2530
2531/// getOnesVector - Returns a vector of specified type with all bits set.
2532///
2533static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2534  assert(VT.isVector() && "Expected a vector type");
2535
2536  // Always build ones vectors as <16 x i8> or <8 x i8> bitcasted to their
2537  // dest type. This ensures they get CSE'd.
2538  SDValue Vec;
2539  SDValue Cst = DAG.getTargetConstant(0xFF, MVT::i8);
2540  SmallVector<SDValue, 8> Ops;
2541  MVT TVT;
2542
2543  if (VT.getSizeInBits() == 64) {
2544    Ops.assign(8, Cst); TVT = MVT::v8i8;
2545  } else {
2546    Ops.assign(16, Cst); TVT = MVT::v16i8;
2547  }
2548  Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, TVT, &Ops[0], Ops.size());
2549
2550  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2551}
2552
2553/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
2554/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2555SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
2556                                                SelectionDAG &DAG) const {
2557  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2558  EVT VT = Op.getValueType();
2559  unsigned VTBits = VT.getSizeInBits();
2560  DebugLoc dl = Op.getDebugLoc();
2561  SDValue ShOpLo = Op.getOperand(0);
2562  SDValue ShOpHi = Op.getOperand(1);
2563  SDValue ShAmt  = Op.getOperand(2);
2564  SDValue ARMCC;
2565  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
2566
2567  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
2568
2569  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2570                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2571  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
2572  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2573                                   DAG.getConstant(VTBits, MVT::i32));
2574  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
2575  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2576  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
2577
2578  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2579  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2580                          ARMCC, DAG, dl);
2581  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2582  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMCC,
2583                           CCR, Cmp);
2584
2585  SDValue Ops[2] = { Lo, Hi };
2586  return DAG.getMergeValues(Ops, 2, dl);
2587}
2588
2589/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
2590/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2591SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
2592                                               SelectionDAG &DAG) const {
2593  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2594  EVT VT = Op.getValueType();
2595  unsigned VTBits = VT.getSizeInBits();
2596  DebugLoc dl = Op.getDebugLoc();
2597  SDValue ShOpLo = Op.getOperand(0);
2598  SDValue ShOpHi = Op.getOperand(1);
2599  SDValue ShAmt  = Op.getOperand(2);
2600  SDValue ARMCC;
2601
2602  assert(Op.getOpcode() == ISD::SHL_PARTS);
2603  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2604                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2605  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
2606  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2607                                   DAG.getConstant(VTBits, MVT::i32));
2608  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
2609  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
2610
2611  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2612  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2613  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2614                          ARMCC, DAG, dl);
2615  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2616  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMCC,
2617                           CCR, Cmp);
2618
2619  SDValue Ops[2] = { Lo, Hi };
2620  return DAG.getMergeValues(Ops, 2, dl);
2621}
2622
2623static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
2624                         const ARMSubtarget *ST) {
2625  EVT VT = N->getValueType(0);
2626  DebugLoc dl = N->getDebugLoc();
2627
2628  if (!ST->hasV6T2Ops())
2629    return SDValue();
2630
2631  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
2632  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
2633}
2634
2635static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
2636                          const ARMSubtarget *ST) {
2637  EVT VT = N->getValueType(0);
2638  DebugLoc dl = N->getDebugLoc();
2639
2640  // Lower vector shifts on NEON to use VSHL.
2641  if (VT.isVector()) {
2642    assert(ST->hasNEON() && "unexpected vector shift");
2643
2644    // Left shifts translate directly to the vshiftu intrinsic.
2645    if (N->getOpcode() == ISD::SHL)
2646      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2647                         DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
2648                         N->getOperand(0), N->getOperand(1));
2649
2650    assert((N->getOpcode() == ISD::SRA ||
2651            N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
2652
2653    // NEON uses the same intrinsics for both left and right shifts.  For
2654    // right shifts, the shift amounts are negative, so negate the vector of
2655    // shift amounts.
2656    EVT ShiftVT = N->getOperand(1).getValueType();
2657    SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
2658                                       getZeroVector(ShiftVT, DAG, dl),
2659                                       N->getOperand(1));
2660    Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
2661                               Intrinsic::arm_neon_vshifts :
2662                               Intrinsic::arm_neon_vshiftu);
2663    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2664                       DAG.getConstant(vshiftInt, MVT::i32),
2665                       N->getOperand(0), NegatedCount);
2666  }
2667
2668  // We can get here for a node like i32 = ISD::SHL i32, i64
2669  if (VT != MVT::i64)
2670    return SDValue();
2671
2672  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
2673         "Unknown shift to lower!");
2674
2675  // We only lower SRA, SRL of 1 here, all others use generic lowering.
2676  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
2677      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
2678    return SDValue();
2679
2680  // If we are in thumb mode, we don't have RRX.
2681  if (ST->isThumb1Only()) return SDValue();
2682
2683  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
2684  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2685                           DAG.getConstant(0, MVT::i32));
2686  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2687                           DAG.getConstant(1, MVT::i32));
2688
2689  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
2690  // captures the result into a carry flag.
2691  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
2692  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1);
2693
2694  // The low part is an ARMISD::RRX operand, which shifts the carry in.
2695  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
2696
2697  // Merge the pieces into a single i64 value.
2698 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
2699}
2700
2701static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
2702  SDValue TmpOp0, TmpOp1;
2703  bool Invert = false;
2704  bool Swap = false;
2705  unsigned Opc = 0;
2706
2707  SDValue Op0 = Op.getOperand(0);
2708  SDValue Op1 = Op.getOperand(1);
2709  SDValue CC = Op.getOperand(2);
2710  EVT VT = Op.getValueType();
2711  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
2712  DebugLoc dl = Op.getDebugLoc();
2713
2714  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
2715    switch (SetCCOpcode) {
2716    default: llvm_unreachable("Illegal FP comparison"); break;
2717    case ISD::SETUNE:
2718    case ISD::SETNE:  Invert = true; // Fallthrough
2719    case ISD::SETOEQ:
2720    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2721    case ISD::SETOLT:
2722    case ISD::SETLT: Swap = true; // Fallthrough
2723    case ISD::SETOGT:
2724    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2725    case ISD::SETOLE:
2726    case ISD::SETLE:  Swap = true; // Fallthrough
2727    case ISD::SETOGE:
2728    case ISD::SETGE: Opc = ARMISD::VCGE; break;
2729    case ISD::SETUGE: Swap = true; // Fallthrough
2730    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
2731    case ISD::SETUGT: Swap = true; // Fallthrough
2732    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
2733    case ISD::SETUEQ: Invert = true; // Fallthrough
2734    case ISD::SETONE:
2735      // Expand this to (OLT | OGT).
2736      TmpOp0 = Op0;
2737      TmpOp1 = Op1;
2738      Opc = ISD::OR;
2739      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2740      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
2741      break;
2742    case ISD::SETUO: Invert = true; // Fallthrough
2743    case ISD::SETO:
2744      // Expand this to (OLT | OGE).
2745      TmpOp0 = Op0;
2746      TmpOp1 = Op1;
2747      Opc = ISD::OR;
2748      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2749      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
2750      break;
2751    }
2752  } else {
2753    // Integer comparisons.
2754    switch (SetCCOpcode) {
2755    default: llvm_unreachable("Illegal integer comparison"); break;
2756    case ISD::SETNE:  Invert = true;
2757    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2758    case ISD::SETLT:  Swap = true;
2759    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2760    case ISD::SETLE:  Swap = true;
2761    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
2762    case ISD::SETULT: Swap = true;
2763    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
2764    case ISD::SETULE: Swap = true;
2765    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
2766    }
2767
2768    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
2769    if (Opc == ARMISD::VCEQ) {
2770
2771      SDValue AndOp;
2772      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
2773        AndOp = Op0;
2774      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
2775        AndOp = Op1;
2776
2777      // Ignore bitconvert.
2778      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BIT_CONVERT)
2779        AndOp = AndOp.getOperand(0);
2780
2781      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
2782        Opc = ARMISD::VTST;
2783        Op0 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(0));
2784        Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(1));
2785        Invert = !Invert;
2786      }
2787    }
2788  }
2789
2790  if (Swap)
2791    std::swap(Op0, Op1);
2792
2793  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
2794
2795  if (Invert)
2796    Result = DAG.getNOT(dl, Result, VT);
2797
2798  return Result;
2799}
2800
2801/// isNEONModifiedImm - Check if the specified splat value corresponds to a
2802/// valid vector constant for a NEON instruction with a "modified immediate"
2803/// operand (e.g., VMOV).  If so, return either the constant being
2804/// splatted or the encoded value, depending on the DoEncode parameter.  The
2805/// format of the encoded value is: bit12=Op, bits11-8=Cmode,
2806/// bits7-0=Immediate.
2807static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
2808                                 unsigned SplatBitSize, SelectionDAG &DAG,
2809                                 bool isVMOV, bool DoEncode) {
2810  unsigned Op, Cmode, Imm;
2811  EVT VT;
2812
2813  // SplatBitSize is set to the smallest size that splats the vector, so a
2814  // zero vector will always have SplatBitSize == 8.  However, NEON modified
2815  // immediate instructions others than VMOV do not support the 8-bit encoding
2816  // of a zero vector, and the default encoding of zero is supposed to be the
2817  // 32-bit version.
2818  if (SplatBits == 0)
2819    SplatBitSize = 32;
2820
2821  Op = 0;
2822  switch (SplatBitSize) {
2823  case 8:
2824    // Any 1-byte value is OK.  Op=0, Cmode=1110.
2825    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
2826    Cmode = 0xe;
2827    Imm = SplatBits;
2828    VT = MVT::i8;
2829    break;
2830
2831  case 16:
2832    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
2833    VT = MVT::i16;
2834    if ((SplatBits & ~0xff) == 0) {
2835      // Value = 0x00nn: Op=x, Cmode=100x.
2836      Cmode = 0x8;
2837      Imm = SplatBits;
2838      break;
2839    }
2840    if ((SplatBits & ~0xff00) == 0) {
2841      // Value = 0xnn00: Op=x, Cmode=101x.
2842      Cmode = 0xa;
2843      Imm = SplatBits >> 8;
2844      break;
2845    }
2846    return SDValue();
2847
2848  case 32:
2849    // NEON's 32-bit VMOV supports splat values where:
2850    // * only one byte is nonzero, or
2851    // * the least significant byte is 0xff and the second byte is nonzero, or
2852    // * the least significant 2 bytes are 0xff and the third is nonzero.
2853    VT = MVT::i32;
2854    if ((SplatBits & ~0xff) == 0) {
2855      // Value = 0x000000nn: Op=x, Cmode=000x.
2856      Cmode = 0;
2857      Imm = SplatBits;
2858      break;
2859    }
2860    if ((SplatBits & ~0xff00) == 0) {
2861      // Value = 0x0000nn00: Op=x, Cmode=001x.
2862      Cmode = 0x2;
2863      Imm = SplatBits >> 8;
2864      break;
2865    }
2866    if ((SplatBits & ~0xff0000) == 0) {
2867      // Value = 0x00nn0000: Op=x, Cmode=010x.
2868      Cmode = 0x4;
2869      Imm = SplatBits >> 16;
2870      break;
2871    }
2872    if ((SplatBits & ~0xff000000) == 0) {
2873      // Value = 0xnn000000: Op=x, Cmode=011x.
2874      Cmode = 0x6;
2875      Imm = SplatBits >> 24;
2876      break;
2877    }
2878
2879    if ((SplatBits & ~0xffff) == 0 &&
2880        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
2881      // Value = 0x0000nnff: Op=x, Cmode=1100.
2882      Cmode = 0xc;
2883      Imm = SplatBits >> 8;
2884      SplatBits |= 0xff;
2885      break;
2886    }
2887
2888    if ((SplatBits & ~0xffffff) == 0 &&
2889        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
2890      // Value = 0x00nnffff: Op=x, Cmode=1101.
2891      Cmode = 0xd;
2892      Imm = SplatBits >> 16;
2893      SplatBits |= 0xffff;
2894      break;
2895    }
2896
2897    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
2898    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
2899    // VMOV.I32.  A (very) minor optimization would be to replicate the value
2900    // and fall through here to test for a valid 64-bit splat.  But, then the
2901    // caller would also need to check and handle the change in size.
2902    return SDValue();
2903
2904  case 64: {
2905    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
2906    if (!isVMOV)
2907      return SDValue();
2908    uint64_t BitMask = 0xff;
2909    uint64_t Val = 0;
2910    unsigned ImmMask = 1;
2911    Imm = 0;
2912    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
2913      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
2914        Val |= BitMask;
2915        Imm |= ImmMask;
2916      } else if ((SplatBits & BitMask) != 0) {
2917        return SDValue();
2918      }
2919      BitMask <<= 8;
2920      ImmMask <<= 1;
2921    }
2922    // Op=1, Cmode=1110.
2923    Op = 1;
2924    Cmode = 0xe;
2925    SplatBits = Val;
2926    VT = MVT::i64;
2927    break;
2928  }
2929
2930  default:
2931    llvm_unreachable("unexpected size for isNEONModifiedImm");
2932    return SDValue();
2933  }
2934
2935  if (DoEncode)
2936    return DAG.getTargetConstant((Op << 12) | (Cmode << 8) | Imm, MVT::i32);
2937  return DAG.getTargetConstant(SplatBits, VT);
2938}
2939
2940
2941/// getNEONModImm - If this is a valid vector constant for a NEON instruction
2942/// with a "modified immediate" operand (e.g., VMOV) of the specified element
2943/// size, return the encoded value for that immediate.  The ByteSize field
2944/// indicates the number of bytes of each element [1248].
2945SDValue ARM::getNEONModImm(SDNode *N, unsigned ByteSize, bool isVMOV,
2946                           SelectionDAG &DAG) {
2947  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
2948  APInt SplatBits, SplatUndef;
2949  unsigned SplatBitSize;
2950  bool HasAnyUndefs;
2951  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
2952                                      HasAnyUndefs, ByteSize * 8))
2953    return SDValue();
2954
2955  if (SplatBitSize > ByteSize * 8)
2956    return SDValue();
2957
2958  return isNEONModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
2959                           SplatBitSize, DAG, isVMOV, true);
2960}
2961
2962static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
2963                       bool &ReverseVEXT, unsigned &Imm) {
2964  unsigned NumElts = VT.getVectorNumElements();
2965  ReverseVEXT = false;
2966  Imm = M[0];
2967
2968  // If this is a VEXT shuffle, the immediate value is the index of the first
2969  // element.  The other shuffle indices must be the successive elements after
2970  // the first one.
2971  unsigned ExpectedElt = Imm;
2972  for (unsigned i = 1; i < NumElts; ++i) {
2973    // Increment the expected index.  If it wraps around, it may still be
2974    // a VEXT but the source vectors must be swapped.
2975    ExpectedElt += 1;
2976    if (ExpectedElt == NumElts * 2) {
2977      ExpectedElt = 0;
2978      ReverseVEXT = true;
2979    }
2980
2981    if (ExpectedElt != static_cast<unsigned>(M[i]))
2982      return false;
2983  }
2984
2985  // Adjust the index value if the source operands will be swapped.
2986  if (ReverseVEXT)
2987    Imm -= NumElts;
2988
2989  return true;
2990}
2991
2992/// isVREVMask - Check if a vector shuffle corresponds to a VREV
2993/// instruction with the specified blocksize.  (The order of the elements
2994/// within each block of the vector is reversed.)
2995static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
2996                       unsigned BlockSize) {
2997  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
2998         "Only possible block sizes for VREV are: 16, 32, 64");
2999
3000  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3001  if (EltSz == 64)
3002    return false;
3003
3004  unsigned NumElts = VT.getVectorNumElements();
3005  unsigned BlockElts = M[0] + 1;
3006
3007  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3008    return false;
3009
3010  for (unsigned i = 0; i < NumElts; ++i) {
3011    if ((unsigned) M[i] !=
3012        (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3013      return false;
3014  }
3015
3016  return true;
3017}
3018
3019static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
3020                       unsigned &WhichResult) {
3021  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3022  if (EltSz == 64)
3023    return false;
3024
3025  unsigned NumElts = VT.getVectorNumElements();
3026  WhichResult = (M[0] == 0 ? 0 : 1);
3027  for (unsigned i = 0; i < NumElts; i += 2) {
3028    if ((unsigned) M[i] != i + WhichResult ||
3029        (unsigned) M[i+1] != i + NumElts + WhichResult)
3030      return false;
3031  }
3032  return true;
3033}
3034
3035/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
3036/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3037/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
3038static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3039                                unsigned &WhichResult) {
3040  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3041  if (EltSz == 64)
3042    return false;
3043
3044  unsigned NumElts = VT.getVectorNumElements();
3045  WhichResult = (M[0] == 0 ? 0 : 1);
3046  for (unsigned i = 0; i < NumElts; i += 2) {
3047    if ((unsigned) M[i] != i + WhichResult ||
3048        (unsigned) M[i+1] != i + WhichResult)
3049      return false;
3050  }
3051  return true;
3052}
3053
3054static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
3055                       unsigned &WhichResult) {
3056  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3057  if (EltSz == 64)
3058    return false;
3059
3060  unsigned NumElts = VT.getVectorNumElements();
3061  WhichResult = (M[0] == 0 ? 0 : 1);
3062  for (unsigned i = 0; i != NumElts; ++i) {
3063    if ((unsigned) M[i] != 2 * i + WhichResult)
3064      return false;
3065  }
3066
3067  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3068  if (VT.is64BitVector() && EltSz == 32)
3069    return false;
3070
3071  return true;
3072}
3073
3074/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
3075/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3076/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
3077static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3078                                unsigned &WhichResult) {
3079  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3080  if (EltSz == 64)
3081    return false;
3082
3083  unsigned Half = VT.getVectorNumElements() / 2;
3084  WhichResult = (M[0] == 0 ? 0 : 1);
3085  for (unsigned j = 0; j != 2; ++j) {
3086    unsigned Idx = WhichResult;
3087    for (unsigned i = 0; i != Half; ++i) {
3088      if ((unsigned) M[i + j * Half] != Idx)
3089        return false;
3090      Idx += 2;
3091    }
3092  }
3093
3094  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3095  if (VT.is64BitVector() && EltSz == 32)
3096    return false;
3097
3098  return true;
3099}
3100
3101static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
3102                       unsigned &WhichResult) {
3103  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3104  if (EltSz == 64)
3105    return false;
3106
3107  unsigned NumElts = VT.getVectorNumElements();
3108  WhichResult = (M[0] == 0 ? 0 : 1);
3109  unsigned Idx = WhichResult * NumElts / 2;
3110  for (unsigned i = 0; i != NumElts; i += 2) {
3111    if ((unsigned) M[i] != Idx ||
3112        (unsigned) M[i+1] != Idx + NumElts)
3113      return false;
3114    Idx += 1;
3115  }
3116
3117  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3118  if (VT.is64BitVector() && EltSz == 32)
3119    return false;
3120
3121  return true;
3122}
3123
3124/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
3125/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3126/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
3127static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3128                                unsigned &WhichResult) {
3129  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3130  if (EltSz == 64)
3131    return false;
3132
3133  unsigned NumElts = VT.getVectorNumElements();
3134  WhichResult = (M[0] == 0 ? 0 : 1);
3135  unsigned Idx = WhichResult * NumElts / 2;
3136  for (unsigned i = 0; i != NumElts; i += 2) {
3137    if ((unsigned) M[i] != Idx ||
3138        (unsigned) M[i+1] != Idx)
3139      return false;
3140    Idx += 1;
3141  }
3142
3143  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3144  if (VT.is64BitVector() && EltSz == 32)
3145    return false;
3146
3147  return true;
3148}
3149
3150
3151static SDValue BuildSplat(SDValue Val, EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3152  // Canonicalize all-zeros and all-ones vectors.
3153  ConstantSDNode *ConstVal = cast<ConstantSDNode>(Val.getNode());
3154  if (ConstVal->isNullValue())
3155    return getZeroVector(VT, DAG, dl);
3156  if (ConstVal->isAllOnesValue())
3157    return getOnesVector(VT, DAG, dl);
3158
3159  EVT CanonicalVT;
3160  if (VT.is64BitVector()) {
3161    switch (Val.getValueType().getSizeInBits()) {
3162    case 8:  CanonicalVT = MVT::v8i8; break;
3163    case 16: CanonicalVT = MVT::v4i16; break;
3164    case 32: CanonicalVT = MVT::v2i32; break;
3165    case 64: CanonicalVT = MVT::v1i64; break;
3166    default: llvm_unreachable("unexpected splat element type"); break;
3167    }
3168  } else {
3169    assert(VT.is128BitVector() && "unknown splat vector size");
3170    switch (Val.getValueType().getSizeInBits()) {
3171    case 8:  CanonicalVT = MVT::v16i8; break;
3172    case 16: CanonicalVT = MVT::v8i16; break;
3173    case 32: CanonicalVT = MVT::v4i32; break;
3174    case 64: CanonicalVT = MVT::v2i64; break;
3175    default: llvm_unreachable("unexpected splat element type"); break;
3176    }
3177  }
3178
3179  // Build a canonical splat for this value.
3180  SmallVector<SDValue, 8> Ops;
3181  Ops.assign(CanonicalVT.getVectorNumElements(), Val);
3182  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, &Ops[0],
3183                            Ops.size());
3184  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Res);
3185}
3186
3187// If this is a case we can't handle, return null and let the default
3188// expansion code take care of it.
3189static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3190  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
3191  DebugLoc dl = Op.getDebugLoc();
3192  EVT VT = Op.getValueType();
3193
3194  APInt SplatBits, SplatUndef;
3195  unsigned SplatBitSize;
3196  bool HasAnyUndefs;
3197  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
3198    if (SplatBitSize <= 64) {
3199      // Check if an immediate VMOV works.
3200      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
3201                                      SplatUndef.getZExtValue(),
3202                                      SplatBitSize, DAG, true, false);
3203      if (Val.getNode())
3204        return BuildSplat(Val, VT, DAG, dl);
3205    }
3206  }
3207
3208  // Scan through the operands to see if only one value is used.
3209  unsigned NumElts = VT.getVectorNumElements();
3210  bool isOnlyLowElement = true;
3211  bool usesOnlyOneValue = true;
3212  bool isConstant = true;
3213  SDValue Value;
3214  for (unsigned i = 0; i < NumElts; ++i) {
3215    SDValue V = Op.getOperand(i);
3216    if (V.getOpcode() == ISD::UNDEF)
3217      continue;
3218    if (i > 0)
3219      isOnlyLowElement = false;
3220    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
3221      isConstant = false;
3222
3223    if (!Value.getNode())
3224      Value = V;
3225    else if (V != Value)
3226      usesOnlyOneValue = false;
3227  }
3228
3229  if (!Value.getNode())
3230    return DAG.getUNDEF(VT);
3231
3232  if (isOnlyLowElement)
3233    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
3234
3235  // If all elements are constants, fall back to the default expansion, which
3236  // will generate a load from the constant pool.
3237  if (isConstant)
3238    return SDValue();
3239
3240  // Use VDUP for non-constant splats.
3241  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3242  if (usesOnlyOneValue && EltSize <= 32)
3243    return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
3244
3245  // Vectors with 32- or 64-bit elements can be built by directly assigning
3246  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
3247  // will be legalized.
3248  if (EltSize >= 32) {
3249    // Do the expansion with floating-point types, since that is what the VFP
3250    // registers are defined to use, and since i64 is not legal.
3251    EVT EltVT = EVT::getFloatingPointVT(EltSize);
3252    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
3253    SmallVector<SDValue, 8> Ops;
3254    for (unsigned i = 0; i < NumElts; ++i)
3255      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, dl, EltVT, Op.getOperand(i)));
3256    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
3257    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val);
3258  }
3259
3260  return SDValue();
3261}
3262
3263/// isShuffleMaskLegal - Targets can use this to indicate that they only
3264/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
3265/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
3266/// are assumed to be legal.
3267bool
3268ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
3269                                      EVT VT) const {
3270  if (VT.getVectorNumElements() == 4 &&
3271      (VT.is128BitVector() || VT.is64BitVector())) {
3272    unsigned PFIndexes[4];
3273    for (unsigned i = 0; i != 4; ++i) {
3274      if (M[i] < 0)
3275        PFIndexes[i] = 8;
3276      else
3277        PFIndexes[i] = M[i];
3278    }
3279
3280    // Compute the index in the perfect shuffle table.
3281    unsigned PFTableIndex =
3282      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3283    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3284    unsigned Cost = (PFEntry >> 30);
3285
3286    if (Cost <= 4)
3287      return true;
3288  }
3289
3290  bool ReverseVEXT;
3291  unsigned Imm, WhichResult;
3292
3293  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3294  return (EltSize >= 32 ||
3295          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
3296          isVREVMask(M, VT, 64) ||
3297          isVREVMask(M, VT, 32) ||
3298          isVREVMask(M, VT, 16) ||
3299          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
3300          isVTRNMask(M, VT, WhichResult) ||
3301          isVUZPMask(M, VT, WhichResult) ||
3302          isVZIPMask(M, VT, WhichResult) ||
3303          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
3304          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
3305          isVZIP_v_undef_Mask(M, VT, WhichResult));
3306}
3307
3308/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3309/// the specified operations to build the shuffle.
3310static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3311                                      SDValue RHS, SelectionDAG &DAG,
3312                                      DebugLoc dl) {
3313  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3314  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3315  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3316
3317  enum {
3318    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3319    OP_VREV,
3320    OP_VDUP0,
3321    OP_VDUP1,
3322    OP_VDUP2,
3323    OP_VDUP3,
3324    OP_VEXT1,
3325    OP_VEXT2,
3326    OP_VEXT3,
3327    OP_VUZPL, // VUZP, left result
3328    OP_VUZPR, // VUZP, right result
3329    OP_VZIPL, // VZIP, left result
3330    OP_VZIPR, // VZIP, right result
3331    OP_VTRNL, // VTRN, left result
3332    OP_VTRNR  // VTRN, right result
3333  };
3334
3335  if (OpNum == OP_COPY) {
3336    if (LHSID == (1*9+2)*9+3) return LHS;
3337    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3338    return RHS;
3339  }
3340
3341  SDValue OpLHS, OpRHS;
3342  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
3343  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
3344  EVT VT = OpLHS.getValueType();
3345
3346  switch (OpNum) {
3347  default: llvm_unreachable("Unknown shuffle opcode!");
3348  case OP_VREV:
3349    return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
3350  case OP_VDUP0:
3351  case OP_VDUP1:
3352  case OP_VDUP2:
3353  case OP_VDUP3:
3354    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
3355                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
3356  case OP_VEXT1:
3357  case OP_VEXT2:
3358  case OP_VEXT3:
3359    return DAG.getNode(ARMISD::VEXT, dl, VT,
3360                       OpLHS, OpRHS,
3361                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
3362  case OP_VUZPL:
3363  case OP_VUZPR:
3364    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3365                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
3366  case OP_VZIPL:
3367  case OP_VZIPR:
3368    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3369                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
3370  case OP_VTRNL:
3371  case OP_VTRNR:
3372    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3373                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
3374  }
3375}
3376
3377static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
3378  SDValue V1 = Op.getOperand(0);
3379  SDValue V2 = Op.getOperand(1);
3380  DebugLoc dl = Op.getDebugLoc();
3381  EVT VT = Op.getValueType();
3382  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
3383  SmallVector<int, 8> ShuffleMask;
3384
3385  // Convert shuffles that are directly supported on NEON to target-specific
3386  // DAG nodes, instead of keeping them as shuffles and matching them again
3387  // during code selection.  This is more efficient and avoids the possibility
3388  // of inconsistencies between legalization and selection.
3389  // FIXME: floating-point vectors should be canonicalized to integer vectors
3390  // of the same time so that they get CSEd properly.
3391  SVN->getMask(ShuffleMask);
3392
3393  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3394  if (EltSize <= 32) {
3395    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
3396      int Lane = SVN->getSplatIndex();
3397      // If this is undef splat, generate it via "just" vdup, if possible.
3398      if (Lane == -1) Lane = 0;
3399
3400      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
3401        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
3402      }
3403      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
3404                         DAG.getConstant(Lane, MVT::i32));
3405    }
3406
3407    bool ReverseVEXT;
3408    unsigned Imm;
3409    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
3410      if (ReverseVEXT)
3411        std::swap(V1, V2);
3412      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
3413                         DAG.getConstant(Imm, MVT::i32));
3414    }
3415
3416    if (isVREVMask(ShuffleMask, VT, 64))
3417      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
3418    if (isVREVMask(ShuffleMask, VT, 32))
3419      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
3420    if (isVREVMask(ShuffleMask, VT, 16))
3421      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
3422
3423    // Check for Neon shuffles that modify both input vectors in place.
3424    // If both results are used, i.e., if there are two shuffles with the same
3425    // source operands and with masks corresponding to both results of one of
3426    // these operations, DAG memoization will ensure that a single node is
3427    // used for both shuffles.
3428    unsigned WhichResult;
3429    if (isVTRNMask(ShuffleMask, VT, WhichResult))
3430      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3431                         V1, V2).getValue(WhichResult);
3432    if (isVUZPMask(ShuffleMask, VT, WhichResult))
3433      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3434                         V1, V2).getValue(WhichResult);
3435    if (isVZIPMask(ShuffleMask, VT, WhichResult))
3436      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3437                         V1, V2).getValue(WhichResult);
3438
3439    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
3440      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3441                         V1, V1).getValue(WhichResult);
3442    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
3443      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3444                         V1, V1).getValue(WhichResult);
3445    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
3446      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3447                         V1, V1).getValue(WhichResult);
3448  }
3449
3450  // If the shuffle is not directly supported and it has 4 elements, use
3451  // the PerfectShuffle-generated table to synthesize it from other shuffles.
3452  unsigned NumElts = VT.getVectorNumElements();
3453  if (NumElts == 4) {
3454    unsigned PFIndexes[4];
3455    for (unsigned i = 0; i != 4; ++i) {
3456      if (ShuffleMask[i] < 0)
3457        PFIndexes[i] = 8;
3458      else
3459        PFIndexes[i] = ShuffleMask[i];
3460    }
3461
3462    // Compute the index in the perfect shuffle table.
3463    unsigned PFTableIndex =
3464      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3465    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3466    unsigned Cost = (PFEntry >> 30);
3467
3468    if (Cost <= 4)
3469      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
3470  }
3471
3472  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
3473  if (EltSize >= 32) {
3474    // Do the expansion with floating-point types, since that is what the VFP
3475    // registers are defined to use, and since i64 is not legal.
3476    EVT EltVT = EVT::getFloatingPointVT(EltSize);
3477    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
3478    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, V1);
3479    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, V2);
3480    SmallVector<SDValue, 8> Ops;
3481    for (unsigned i = 0; i < NumElts; ++i) {
3482      if (ShuffleMask[i] < 0)
3483        Ops.push_back(DAG.getUNDEF(EltVT));
3484      else
3485        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3486                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
3487                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
3488                                                  MVT::i32)));
3489    }
3490    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
3491    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val);
3492  }
3493
3494  return SDValue();
3495}
3496
3497static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
3498  EVT VT = Op.getValueType();
3499  DebugLoc dl = Op.getDebugLoc();
3500  SDValue Vec = Op.getOperand(0);
3501  SDValue Lane = Op.getOperand(1);
3502  assert(VT == MVT::i32 &&
3503         Vec.getValueType().getVectorElementType().getSizeInBits() < 32 &&
3504         "unexpected type for custom-lowering vector extract");
3505  return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
3506}
3507
3508static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
3509  // The only time a CONCAT_VECTORS operation can have legal types is when
3510  // two 64-bit vectors are concatenated to a 128-bit vector.
3511  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
3512         "unexpected CONCAT_VECTORS");
3513  DebugLoc dl = Op.getDebugLoc();
3514  SDValue Val = DAG.getUNDEF(MVT::v2f64);
3515  SDValue Op0 = Op.getOperand(0);
3516  SDValue Op1 = Op.getOperand(1);
3517  if (Op0.getOpcode() != ISD::UNDEF)
3518    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
3519                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op0),
3520                      DAG.getIntPtrConstant(0));
3521  if (Op1.getOpcode() != ISD::UNDEF)
3522    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
3523                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op1),
3524                      DAG.getIntPtrConstant(1));
3525  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Val);
3526}
3527
3528SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
3529  switch (Op.getOpcode()) {
3530  default: llvm_unreachable("Don't know how to custom lower this!");
3531  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
3532  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
3533  case ISD::GlobalAddress:
3534    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
3535      LowerGlobalAddressELF(Op, DAG);
3536  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3537  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
3538  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
3539  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
3540  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
3541  case ISD::VASTART:       return LowerVASTART(Op, DAG);
3542  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
3543  case ISD::SINT_TO_FP:
3544  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
3545  case ISD::FP_TO_SINT:
3546  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
3547  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
3548  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
3549  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
3550  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
3551  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
3552  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
3553  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
3554                                                               Subtarget);
3555  case ISD::BIT_CONVERT:   return ExpandBIT_CONVERT(Op.getNode(), DAG);
3556  case ISD::SHL:
3557  case ISD::SRL:
3558  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
3559  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
3560  case ISD::SRL_PARTS:
3561  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
3562  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
3563  case ISD::VSETCC:        return LowerVSETCC(Op, DAG);
3564  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG);
3565  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
3566  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
3567  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
3568  }
3569  return SDValue();
3570}
3571
3572/// ReplaceNodeResults - Replace the results of node with an illegal result
3573/// type with new values built out of custom code.
3574void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
3575                                           SmallVectorImpl<SDValue>&Results,
3576                                           SelectionDAG &DAG) const {
3577  SDValue Res;
3578  switch (N->getOpcode()) {
3579  default:
3580    llvm_unreachable("Don't know how to custom expand this!");
3581    break;
3582  case ISD::BIT_CONVERT:
3583    Res = ExpandBIT_CONVERT(N, DAG);
3584    break;
3585  case ISD::SRL:
3586  case ISD::SRA:
3587    Res = LowerShift(N, DAG, Subtarget);
3588    break;
3589  }
3590  if (Res.getNode())
3591    Results.push_back(Res);
3592}
3593
3594//===----------------------------------------------------------------------===//
3595//                           ARM Scheduler Hooks
3596//===----------------------------------------------------------------------===//
3597
3598MachineBasicBlock *
3599ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
3600                                     MachineBasicBlock *BB,
3601                                     unsigned Size) const {
3602  unsigned dest    = MI->getOperand(0).getReg();
3603  unsigned ptr     = MI->getOperand(1).getReg();
3604  unsigned oldval  = MI->getOperand(2).getReg();
3605  unsigned newval  = MI->getOperand(3).getReg();
3606  unsigned scratch = BB->getParent()->getRegInfo()
3607    .createVirtualRegister(ARM::GPRRegisterClass);
3608  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3609  DebugLoc dl = MI->getDebugLoc();
3610  bool isThumb2 = Subtarget->isThumb2();
3611
3612  unsigned ldrOpc, strOpc;
3613  switch (Size) {
3614  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
3615  case 1:
3616    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
3617    strOpc = isThumb2 ? ARM::t2LDREXB : ARM::STREXB;
3618    break;
3619  case 2:
3620    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
3621    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
3622    break;
3623  case 4:
3624    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
3625    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
3626    break;
3627  }
3628
3629  MachineFunction *MF = BB->getParent();
3630  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3631  MachineFunction::iterator It = BB;
3632  ++It; // insert the new blocks after the current block
3633
3634  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
3635  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
3636  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
3637  MF->insert(It, loop1MBB);
3638  MF->insert(It, loop2MBB);
3639  MF->insert(It, exitMBB);
3640
3641  // Transfer the remainder of BB and its successor edges to exitMBB.
3642  exitMBB->splice(exitMBB->begin(), BB,
3643                  llvm::next(MachineBasicBlock::iterator(MI)),
3644                  BB->end());
3645  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
3646
3647  //  thisMBB:
3648  //   ...
3649  //   fallthrough --> loop1MBB
3650  BB->addSuccessor(loop1MBB);
3651
3652  // loop1MBB:
3653  //   ldrex dest, [ptr]
3654  //   cmp dest, oldval
3655  //   bne exitMBB
3656  BB = loop1MBB;
3657  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
3658  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
3659                 .addReg(dest).addReg(oldval));
3660  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
3661    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
3662  BB->addSuccessor(loop2MBB);
3663  BB->addSuccessor(exitMBB);
3664
3665  // loop2MBB:
3666  //   strex scratch, newval, [ptr]
3667  //   cmp scratch, #0
3668  //   bne loop1MBB
3669  BB = loop2MBB;
3670  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval)
3671                 .addReg(ptr));
3672  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
3673                 .addReg(scratch).addImm(0));
3674  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
3675    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
3676  BB->addSuccessor(loop1MBB);
3677  BB->addSuccessor(exitMBB);
3678
3679  //  exitMBB:
3680  //   ...
3681  BB = exitMBB;
3682
3683  MI->eraseFromParent();   // The instruction is gone now.
3684
3685  return BB;
3686}
3687
3688MachineBasicBlock *
3689ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
3690                                    unsigned Size, unsigned BinOpcode) const {
3691  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
3692  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3693
3694  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3695  MachineFunction *MF = BB->getParent();
3696  MachineFunction::iterator It = BB;
3697  ++It;
3698
3699  unsigned dest = MI->getOperand(0).getReg();
3700  unsigned ptr = MI->getOperand(1).getReg();
3701  unsigned incr = MI->getOperand(2).getReg();
3702  DebugLoc dl = MI->getDebugLoc();
3703
3704  bool isThumb2 = Subtarget->isThumb2();
3705  unsigned ldrOpc, strOpc;
3706  switch (Size) {
3707  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
3708  case 1:
3709    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
3710    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
3711    break;
3712  case 2:
3713    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
3714    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
3715    break;
3716  case 4:
3717    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
3718    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
3719    break;
3720  }
3721
3722  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
3723  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
3724  MF->insert(It, loopMBB);
3725  MF->insert(It, exitMBB);
3726
3727  // Transfer the remainder of BB and its successor edges to exitMBB.
3728  exitMBB->splice(exitMBB->begin(), BB,
3729                  llvm::next(MachineBasicBlock::iterator(MI)),
3730                  BB->end());
3731  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
3732
3733  MachineRegisterInfo &RegInfo = MF->getRegInfo();
3734  unsigned scratch = RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
3735  unsigned scratch2 = (!BinOpcode) ? incr :
3736    RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
3737
3738  //  thisMBB:
3739  //   ...
3740  //   fallthrough --> loopMBB
3741  BB->addSuccessor(loopMBB);
3742
3743  //  loopMBB:
3744  //   ldrex dest, ptr
3745  //   <binop> scratch2, dest, incr
3746  //   strex scratch, scratch2, ptr
3747  //   cmp scratch, #0
3748  //   bne- loopMBB
3749  //   fallthrough --> exitMBB
3750  BB = loopMBB;
3751  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
3752  if (BinOpcode) {
3753    // operand order needs to go the other way for NAND
3754    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
3755      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
3756                     addReg(incr).addReg(dest)).addReg(0);
3757    else
3758      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
3759                     addReg(dest).addReg(incr)).addReg(0);
3760  }
3761
3762  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2)
3763                 .addReg(ptr));
3764  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
3765                 .addReg(scratch).addImm(0));
3766  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
3767    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
3768
3769  BB->addSuccessor(loopMBB);
3770  BB->addSuccessor(exitMBB);
3771
3772  //  exitMBB:
3773  //   ...
3774  BB = exitMBB;
3775
3776  MI->eraseFromParent();   // The instruction is gone now.
3777
3778  return BB;
3779}
3780
3781MachineBasicBlock *
3782ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
3783                                               MachineBasicBlock *BB) const {
3784  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3785  DebugLoc dl = MI->getDebugLoc();
3786  bool isThumb2 = Subtarget->isThumb2();
3787  switch (MI->getOpcode()) {
3788  default:
3789    MI->dump();
3790    llvm_unreachable("Unexpected instr type to insert");
3791
3792  case ARM::ATOMIC_LOAD_ADD_I8:
3793     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
3794  case ARM::ATOMIC_LOAD_ADD_I16:
3795     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
3796  case ARM::ATOMIC_LOAD_ADD_I32:
3797     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
3798
3799  case ARM::ATOMIC_LOAD_AND_I8:
3800     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
3801  case ARM::ATOMIC_LOAD_AND_I16:
3802     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
3803  case ARM::ATOMIC_LOAD_AND_I32:
3804     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
3805
3806  case ARM::ATOMIC_LOAD_OR_I8:
3807     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
3808  case ARM::ATOMIC_LOAD_OR_I16:
3809     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
3810  case ARM::ATOMIC_LOAD_OR_I32:
3811     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
3812
3813  case ARM::ATOMIC_LOAD_XOR_I8:
3814     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
3815  case ARM::ATOMIC_LOAD_XOR_I16:
3816     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
3817  case ARM::ATOMIC_LOAD_XOR_I32:
3818     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
3819
3820  case ARM::ATOMIC_LOAD_NAND_I8:
3821     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
3822  case ARM::ATOMIC_LOAD_NAND_I16:
3823     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
3824  case ARM::ATOMIC_LOAD_NAND_I32:
3825     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
3826
3827  case ARM::ATOMIC_LOAD_SUB_I8:
3828     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
3829  case ARM::ATOMIC_LOAD_SUB_I16:
3830     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
3831  case ARM::ATOMIC_LOAD_SUB_I32:
3832     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
3833
3834  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
3835  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
3836  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
3837
3838  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
3839  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
3840  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
3841
3842  case ARM::tMOVCCr_pseudo: {
3843    // To "insert" a SELECT_CC instruction, we actually have to insert the
3844    // diamond control-flow pattern.  The incoming instruction knows the
3845    // destination vreg to set, the condition code register to branch on, the
3846    // true/false values to select between, and a branch opcode to use.
3847    const BasicBlock *LLVM_BB = BB->getBasicBlock();
3848    MachineFunction::iterator It = BB;
3849    ++It;
3850
3851    //  thisMBB:
3852    //  ...
3853    //   TrueVal = ...
3854    //   cmpTY ccX, r1, r2
3855    //   bCC copy1MBB
3856    //   fallthrough --> copy0MBB
3857    MachineBasicBlock *thisMBB  = BB;
3858    MachineFunction *F = BB->getParent();
3859    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
3860    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
3861    F->insert(It, copy0MBB);
3862    F->insert(It, sinkMBB);
3863
3864    // Transfer the remainder of BB and its successor edges to sinkMBB.
3865    sinkMBB->splice(sinkMBB->begin(), BB,
3866                    llvm::next(MachineBasicBlock::iterator(MI)),
3867                    BB->end());
3868    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
3869
3870    BB->addSuccessor(copy0MBB);
3871    BB->addSuccessor(sinkMBB);
3872
3873    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
3874      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
3875
3876    //  copy0MBB:
3877    //   %FalseValue = ...
3878    //   # fallthrough to sinkMBB
3879    BB = copy0MBB;
3880
3881    // Update machine-CFG edges
3882    BB->addSuccessor(sinkMBB);
3883
3884    //  sinkMBB:
3885    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
3886    //  ...
3887    BB = sinkMBB;
3888    BuildMI(*BB, BB->begin(), dl,
3889            TII->get(ARM::PHI), MI->getOperand(0).getReg())
3890      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
3891      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
3892
3893    MI->eraseFromParent();   // The pseudo instruction is gone now.
3894    return BB;
3895  }
3896
3897  case ARM::tANDsp:
3898  case ARM::tADDspr_:
3899  case ARM::tSUBspi_:
3900  case ARM::t2SUBrSPi_:
3901  case ARM::t2SUBrSPi12_:
3902  case ARM::t2SUBrSPs_: {
3903    MachineFunction *MF = BB->getParent();
3904    unsigned DstReg = MI->getOperand(0).getReg();
3905    unsigned SrcReg = MI->getOperand(1).getReg();
3906    bool DstIsDead = MI->getOperand(0).isDead();
3907    bool SrcIsKill = MI->getOperand(1).isKill();
3908
3909    if (SrcReg != ARM::SP) {
3910      // Copy the source to SP from virtual register.
3911      const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(SrcReg);
3912      unsigned CopyOpc = (RC == ARM::tGPRRegisterClass)
3913        ? ARM::tMOVtgpr2gpr : ARM::tMOVgpr2gpr;
3914      BuildMI(*BB, MI, dl, TII->get(CopyOpc), ARM::SP)
3915        .addReg(SrcReg, getKillRegState(SrcIsKill));
3916    }
3917
3918    unsigned OpOpc = 0;
3919    bool NeedPred = false, NeedCC = false, NeedOp3 = false;
3920    switch (MI->getOpcode()) {
3921    default:
3922      llvm_unreachable("Unexpected pseudo instruction!");
3923    case ARM::tANDsp:
3924      OpOpc = ARM::tAND;
3925      NeedPred = true;
3926      break;
3927    case ARM::tADDspr_:
3928      OpOpc = ARM::tADDspr;
3929      break;
3930    case ARM::tSUBspi_:
3931      OpOpc = ARM::tSUBspi;
3932      break;
3933    case ARM::t2SUBrSPi_:
3934      OpOpc = ARM::t2SUBrSPi;
3935      NeedPred = true; NeedCC = true;
3936      break;
3937    case ARM::t2SUBrSPi12_:
3938      OpOpc = ARM::t2SUBrSPi12;
3939      NeedPred = true;
3940      break;
3941    case ARM::t2SUBrSPs_:
3942      OpOpc = ARM::t2SUBrSPs;
3943      NeedPred = true; NeedCC = true; NeedOp3 = true;
3944      break;
3945    }
3946    MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(OpOpc), ARM::SP);
3947    if (OpOpc == ARM::tAND)
3948      AddDefaultT1CC(MIB);
3949    MIB.addReg(ARM::SP);
3950    MIB.addOperand(MI->getOperand(2));
3951    if (NeedOp3)
3952      MIB.addOperand(MI->getOperand(3));
3953    if (NeedPred)
3954      AddDefaultPred(MIB);
3955    if (NeedCC)
3956      AddDefaultCC(MIB);
3957
3958    // Copy the result from SP to virtual register.
3959    const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(DstReg);
3960    unsigned CopyOpc = (RC == ARM::tGPRRegisterClass)
3961      ? ARM::tMOVgpr2tgpr : ARM::tMOVgpr2gpr;
3962    BuildMI(*BB, MI, dl, TII->get(CopyOpc))
3963      .addReg(DstReg, getDefRegState(true) | getDeadRegState(DstIsDead))
3964      .addReg(ARM::SP);
3965    MI->eraseFromParent();   // The pseudo instruction is gone now.
3966    return BB;
3967  }
3968  }
3969}
3970
3971//===----------------------------------------------------------------------===//
3972//                           ARM Optimization Hooks
3973//===----------------------------------------------------------------------===//
3974
3975static
3976SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
3977                            TargetLowering::DAGCombinerInfo &DCI) {
3978  SelectionDAG &DAG = DCI.DAG;
3979  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3980  EVT VT = N->getValueType(0);
3981  unsigned Opc = N->getOpcode();
3982  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
3983  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
3984  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
3985  ISD::CondCode CC = ISD::SETCC_INVALID;
3986
3987  if (isSlctCC) {
3988    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
3989  } else {
3990    SDValue CCOp = Slct.getOperand(0);
3991    if (CCOp.getOpcode() == ISD::SETCC)
3992      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
3993  }
3994
3995  bool DoXform = false;
3996  bool InvCC = false;
3997  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
3998          "Bad input!");
3999
4000  if (LHS.getOpcode() == ISD::Constant &&
4001      cast<ConstantSDNode>(LHS)->isNullValue()) {
4002    DoXform = true;
4003  } else if (CC != ISD::SETCC_INVALID &&
4004             RHS.getOpcode() == ISD::Constant &&
4005             cast<ConstantSDNode>(RHS)->isNullValue()) {
4006    std::swap(LHS, RHS);
4007    SDValue Op0 = Slct.getOperand(0);
4008    EVT OpVT = isSlctCC ? Op0.getValueType() :
4009                          Op0.getOperand(0).getValueType();
4010    bool isInt = OpVT.isInteger();
4011    CC = ISD::getSetCCInverse(CC, isInt);
4012
4013    if (!TLI.isCondCodeLegal(CC, OpVT))
4014      return SDValue();         // Inverse operator isn't legal.
4015
4016    DoXform = true;
4017    InvCC = true;
4018  }
4019
4020  if (DoXform) {
4021    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
4022    if (isSlctCC)
4023      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
4024                             Slct.getOperand(0), Slct.getOperand(1), CC);
4025    SDValue CCOp = Slct.getOperand(0);
4026    if (InvCC)
4027      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
4028                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
4029    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
4030                       CCOp, OtherOp, Result);
4031  }
4032  return SDValue();
4033}
4034
4035/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
4036static SDValue PerformADDCombine(SDNode *N,
4037                                 TargetLowering::DAGCombinerInfo &DCI) {
4038  // added by evan in r37685 with no testcase.
4039  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
4040
4041  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
4042  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
4043    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
4044    if (Result.getNode()) return Result;
4045  }
4046  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
4047    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
4048    if (Result.getNode()) return Result;
4049  }
4050
4051  return SDValue();
4052}
4053
4054/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
4055static SDValue PerformSUBCombine(SDNode *N,
4056                                 TargetLowering::DAGCombinerInfo &DCI) {
4057  // added by evan in r37685 with no testcase.
4058  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
4059
4060  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
4061  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
4062    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
4063    if (Result.getNode()) return Result;
4064  }
4065
4066  return SDValue();
4067}
4068
4069static SDValue PerformMULCombine(SDNode *N,
4070                                 TargetLowering::DAGCombinerInfo &DCI,
4071                                 const ARMSubtarget *Subtarget) {
4072  SelectionDAG &DAG = DCI.DAG;
4073
4074  if (Subtarget->isThumb1Only())
4075    return SDValue();
4076
4077  if (DAG.getMachineFunction().
4078      getFunction()->hasFnAttr(Attribute::OptimizeForSize))
4079    return SDValue();
4080
4081  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
4082    return SDValue();
4083
4084  EVT VT = N->getValueType(0);
4085  if (VT != MVT::i32)
4086    return SDValue();
4087
4088  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
4089  if (!C)
4090    return SDValue();
4091
4092  uint64_t MulAmt = C->getZExtValue();
4093  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
4094  ShiftAmt = ShiftAmt & (32 - 1);
4095  SDValue V = N->getOperand(0);
4096  DebugLoc DL = N->getDebugLoc();
4097
4098  SDValue Res;
4099  MulAmt >>= ShiftAmt;
4100  if (isPowerOf2_32(MulAmt - 1)) {
4101    // (mul x, 2^N + 1) => (add (shl x, N), x)
4102    Res = DAG.getNode(ISD::ADD, DL, VT,
4103                      V, DAG.getNode(ISD::SHL, DL, VT,
4104                                     V, DAG.getConstant(Log2_32(MulAmt-1),
4105                                                        MVT::i32)));
4106  } else if (isPowerOf2_32(MulAmt + 1)) {
4107    // (mul x, 2^N - 1) => (sub (shl x, N), x)
4108    Res = DAG.getNode(ISD::SUB, DL, VT,
4109                      DAG.getNode(ISD::SHL, DL, VT,
4110                                  V, DAG.getConstant(Log2_32(MulAmt+1),
4111                                                     MVT::i32)),
4112                                                     V);
4113  } else
4114    return SDValue();
4115
4116  if (ShiftAmt != 0)
4117    Res = DAG.getNode(ISD::SHL, DL, VT, Res,
4118                      DAG.getConstant(ShiftAmt, MVT::i32));
4119
4120  // Do not add new nodes to DAG combiner worklist.
4121  DCI.CombineTo(N, Res, false);
4122  return SDValue();
4123}
4124
4125/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
4126/// ARMISD::VMOVRRD.
4127static SDValue PerformVMOVRRDCombine(SDNode *N,
4128                                   TargetLowering::DAGCombinerInfo &DCI) {
4129  // fmrrd(fmdrr x, y) -> x,y
4130  SDValue InDouble = N->getOperand(0);
4131  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
4132    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
4133  return SDValue();
4134}
4135
4136/// getVShiftImm - Check if this is a valid build_vector for the immediate
4137/// operand of a vector shift operation, where all the elements of the
4138/// build_vector must have the same constant integer value.
4139static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
4140  // Ignore bit_converts.
4141  while (Op.getOpcode() == ISD::BIT_CONVERT)
4142    Op = Op.getOperand(0);
4143  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
4144  APInt SplatBits, SplatUndef;
4145  unsigned SplatBitSize;
4146  bool HasAnyUndefs;
4147  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
4148                                      HasAnyUndefs, ElementBits) ||
4149      SplatBitSize > ElementBits)
4150    return false;
4151  Cnt = SplatBits.getSExtValue();
4152  return true;
4153}
4154
4155/// isVShiftLImm - Check if this is a valid build_vector for the immediate
4156/// operand of a vector shift left operation.  That value must be in the range:
4157///   0 <= Value < ElementBits for a left shift; or
4158///   0 <= Value <= ElementBits for a long left shift.
4159static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
4160  assert(VT.isVector() && "vector shift count is not a vector type");
4161  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
4162  if (! getVShiftImm(Op, ElementBits, Cnt))
4163    return false;
4164  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
4165}
4166
4167/// isVShiftRImm - Check if this is a valid build_vector for the immediate
4168/// operand of a vector shift right operation.  For a shift opcode, the value
4169/// is positive, but for an intrinsic the value count must be negative. The
4170/// absolute value must be in the range:
4171///   1 <= |Value| <= ElementBits for a right shift; or
4172///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
4173static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
4174                         int64_t &Cnt) {
4175  assert(VT.isVector() && "vector shift count is not a vector type");
4176  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
4177  if (! getVShiftImm(Op, ElementBits, Cnt))
4178    return false;
4179  if (isIntrinsic)
4180    Cnt = -Cnt;
4181  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
4182}
4183
4184/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
4185static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
4186  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4187  switch (IntNo) {
4188  default:
4189    // Don't do anything for most intrinsics.
4190    break;
4191
4192  // Vector shifts: check for immediate versions and lower them.
4193  // Note: This is done during DAG combining instead of DAG legalizing because
4194  // the build_vectors for 64-bit vector element shift counts are generally
4195  // not legal, and it is hard to see their values after they get legalized to
4196  // loads from a constant pool.
4197  case Intrinsic::arm_neon_vshifts:
4198  case Intrinsic::arm_neon_vshiftu:
4199  case Intrinsic::arm_neon_vshiftls:
4200  case Intrinsic::arm_neon_vshiftlu:
4201  case Intrinsic::arm_neon_vshiftn:
4202  case Intrinsic::arm_neon_vrshifts:
4203  case Intrinsic::arm_neon_vrshiftu:
4204  case Intrinsic::arm_neon_vrshiftn:
4205  case Intrinsic::arm_neon_vqshifts:
4206  case Intrinsic::arm_neon_vqshiftu:
4207  case Intrinsic::arm_neon_vqshiftsu:
4208  case Intrinsic::arm_neon_vqshiftns:
4209  case Intrinsic::arm_neon_vqshiftnu:
4210  case Intrinsic::arm_neon_vqshiftnsu:
4211  case Intrinsic::arm_neon_vqrshiftns:
4212  case Intrinsic::arm_neon_vqrshiftnu:
4213  case Intrinsic::arm_neon_vqrshiftnsu: {
4214    EVT VT = N->getOperand(1).getValueType();
4215    int64_t Cnt;
4216    unsigned VShiftOpc = 0;
4217
4218    switch (IntNo) {
4219    case Intrinsic::arm_neon_vshifts:
4220    case Intrinsic::arm_neon_vshiftu:
4221      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
4222        VShiftOpc = ARMISD::VSHL;
4223        break;
4224      }
4225      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
4226        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
4227                     ARMISD::VSHRs : ARMISD::VSHRu);
4228        break;
4229      }
4230      return SDValue();
4231
4232    case Intrinsic::arm_neon_vshiftls:
4233    case Intrinsic::arm_neon_vshiftlu:
4234      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
4235        break;
4236      llvm_unreachable("invalid shift count for vshll intrinsic");
4237
4238    case Intrinsic::arm_neon_vrshifts:
4239    case Intrinsic::arm_neon_vrshiftu:
4240      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
4241        break;
4242      return SDValue();
4243
4244    case Intrinsic::arm_neon_vqshifts:
4245    case Intrinsic::arm_neon_vqshiftu:
4246      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
4247        break;
4248      return SDValue();
4249
4250    case Intrinsic::arm_neon_vqshiftsu:
4251      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
4252        break;
4253      llvm_unreachable("invalid shift count for vqshlu intrinsic");
4254
4255    case Intrinsic::arm_neon_vshiftn:
4256    case Intrinsic::arm_neon_vrshiftn:
4257    case Intrinsic::arm_neon_vqshiftns:
4258    case Intrinsic::arm_neon_vqshiftnu:
4259    case Intrinsic::arm_neon_vqshiftnsu:
4260    case Intrinsic::arm_neon_vqrshiftns:
4261    case Intrinsic::arm_neon_vqrshiftnu:
4262    case Intrinsic::arm_neon_vqrshiftnsu:
4263      // Narrowing shifts require an immediate right shift.
4264      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
4265        break;
4266      llvm_unreachable("invalid shift count for narrowing vector shift "
4267                       "intrinsic");
4268
4269    default:
4270      llvm_unreachable("unhandled vector shift");
4271    }
4272
4273    switch (IntNo) {
4274    case Intrinsic::arm_neon_vshifts:
4275    case Intrinsic::arm_neon_vshiftu:
4276      // Opcode already set above.
4277      break;
4278    case Intrinsic::arm_neon_vshiftls:
4279    case Intrinsic::arm_neon_vshiftlu:
4280      if (Cnt == VT.getVectorElementType().getSizeInBits())
4281        VShiftOpc = ARMISD::VSHLLi;
4282      else
4283        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
4284                     ARMISD::VSHLLs : ARMISD::VSHLLu);
4285      break;
4286    case Intrinsic::arm_neon_vshiftn:
4287      VShiftOpc = ARMISD::VSHRN; break;
4288    case Intrinsic::arm_neon_vrshifts:
4289      VShiftOpc = ARMISD::VRSHRs; break;
4290    case Intrinsic::arm_neon_vrshiftu:
4291      VShiftOpc = ARMISD::VRSHRu; break;
4292    case Intrinsic::arm_neon_vrshiftn:
4293      VShiftOpc = ARMISD::VRSHRN; break;
4294    case Intrinsic::arm_neon_vqshifts:
4295      VShiftOpc = ARMISD::VQSHLs; break;
4296    case Intrinsic::arm_neon_vqshiftu:
4297      VShiftOpc = ARMISD::VQSHLu; break;
4298    case Intrinsic::arm_neon_vqshiftsu:
4299      VShiftOpc = ARMISD::VQSHLsu; break;
4300    case Intrinsic::arm_neon_vqshiftns:
4301      VShiftOpc = ARMISD::VQSHRNs; break;
4302    case Intrinsic::arm_neon_vqshiftnu:
4303      VShiftOpc = ARMISD::VQSHRNu; break;
4304    case Intrinsic::arm_neon_vqshiftnsu:
4305      VShiftOpc = ARMISD::VQSHRNsu; break;
4306    case Intrinsic::arm_neon_vqrshiftns:
4307      VShiftOpc = ARMISD::VQRSHRNs; break;
4308    case Intrinsic::arm_neon_vqrshiftnu:
4309      VShiftOpc = ARMISD::VQRSHRNu; break;
4310    case Intrinsic::arm_neon_vqrshiftnsu:
4311      VShiftOpc = ARMISD::VQRSHRNsu; break;
4312    }
4313
4314    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
4315                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
4316  }
4317
4318  case Intrinsic::arm_neon_vshiftins: {
4319    EVT VT = N->getOperand(1).getValueType();
4320    int64_t Cnt;
4321    unsigned VShiftOpc = 0;
4322
4323    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
4324      VShiftOpc = ARMISD::VSLI;
4325    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
4326      VShiftOpc = ARMISD::VSRI;
4327    else {
4328      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
4329    }
4330
4331    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
4332                       N->getOperand(1), N->getOperand(2),
4333                       DAG.getConstant(Cnt, MVT::i32));
4334  }
4335
4336  case Intrinsic::arm_neon_vqrshifts:
4337  case Intrinsic::arm_neon_vqrshiftu:
4338    // No immediate versions of these to check for.
4339    break;
4340  }
4341
4342  return SDValue();
4343}
4344
4345/// PerformShiftCombine - Checks for immediate versions of vector shifts and
4346/// lowers them.  As with the vector shift intrinsics, this is done during DAG
4347/// combining instead of DAG legalizing because the build_vectors for 64-bit
4348/// vector element shift counts are generally not legal, and it is hard to see
4349/// their values after they get legalized to loads from a constant pool.
4350static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
4351                                   const ARMSubtarget *ST) {
4352  EVT VT = N->getValueType(0);
4353
4354  // Nothing to be done for scalar shifts.
4355  if (! VT.isVector())
4356    return SDValue();
4357
4358  assert(ST->hasNEON() && "unexpected vector shift");
4359  int64_t Cnt;
4360
4361  switch (N->getOpcode()) {
4362  default: llvm_unreachable("unexpected shift opcode");
4363
4364  case ISD::SHL:
4365    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
4366      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
4367                         DAG.getConstant(Cnt, MVT::i32));
4368    break;
4369
4370  case ISD::SRA:
4371  case ISD::SRL:
4372    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
4373      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
4374                            ARMISD::VSHRs : ARMISD::VSHRu);
4375      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
4376                         DAG.getConstant(Cnt, MVT::i32));
4377    }
4378  }
4379  return SDValue();
4380}
4381
4382/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
4383/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
4384static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
4385                                    const ARMSubtarget *ST) {
4386  SDValue N0 = N->getOperand(0);
4387
4388  // Check for sign- and zero-extensions of vector extract operations of 8-
4389  // and 16-bit vector elements.  NEON supports these directly.  They are
4390  // handled during DAG combining because type legalization will promote them
4391  // to 32-bit types and it is messy to recognize the operations after that.
4392  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
4393    SDValue Vec = N0.getOperand(0);
4394    SDValue Lane = N0.getOperand(1);
4395    EVT VT = N->getValueType(0);
4396    EVT EltVT = N0.getValueType();
4397    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4398
4399    if (VT == MVT::i32 &&
4400        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
4401        TLI.isTypeLegal(Vec.getValueType())) {
4402
4403      unsigned Opc = 0;
4404      switch (N->getOpcode()) {
4405      default: llvm_unreachable("unexpected opcode");
4406      case ISD::SIGN_EXTEND:
4407        Opc = ARMISD::VGETLANEs;
4408        break;
4409      case ISD::ZERO_EXTEND:
4410      case ISD::ANY_EXTEND:
4411        Opc = ARMISD::VGETLANEu;
4412        break;
4413      }
4414      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
4415    }
4416  }
4417
4418  return SDValue();
4419}
4420
4421/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
4422/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
4423static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
4424                                       const ARMSubtarget *ST) {
4425  // If the target supports NEON, try to use vmax/vmin instructions for f32
4426  // selects like "x < y ? x : y".  Unless the FiniteOnlyFPMath option is set,
4427  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
4428  // a NaN; only do the transformation when it matches that behavior.
4429
4430  // For now only do this when using NEON for FP operations; if using VFP, it
4431  // is not obvious that the benefit outweighs the cost of switching to the
4432  // NEON pipeline.
4433  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
4434      N->getValueType(0) != MVT::f32)
4435    return SDValue();
4436
4437  SDValue CondLHS = N->getOperand(0);
4438  SDValue CondRHS = N->getOperand(1);
4439  SDValue LHS = N->getOperand(2);
4440  SDValue RHS = N->getOperand(3);
4441  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
4442
4443  unsigned Opcode = 0;
4444  bool IsReversed;
4445  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
4446    IsReversed = false; // x CC y ? x : y
4447  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
4448    IsReversed = true ; // x CC y ? y : x
4449  } else {
4450    return SDValue();
4451  }
4452
4453  bool IsUnordered;
4454  switch (CC) {
4455  default: break;
4456  case ISD::SETOLT:
4457  case ISD::SETOLE:
4458  case ISD::SETLT:
4459  case ISD::SETLE:
4460  case ISD::SETULT:
4461  case ISD::SETULE:
4462    // If LHS is NaN, an ordered comparison will be false and the result will
4463    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
4464    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
4465    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
4466    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
4467      break;
4468    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
4469    // will return -0, so vmin can only be used for unsafe math or if one of
4470    // the operands is known to be nonzero.
4471    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
4472        !UnsafeFPMath &&
4473        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
4474      break;
4475    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
4476    break;
4477
4478  case ISD::SETOGT:
4479  case ISD::SETOGE:
4480  case ISD::SETGT:
4481  case ISD::SETGE:
4482  case ISD::SETUGT:
4483  case ISD::SETUGE:
4484    // If LHS is NaN, an ordered comparison will be false and the result will
4485    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
4486    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
4487    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
4488    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
4489      break;
4490    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
4491    // will return +0, so vmax can only be used for unsafe math or if one of
4492    // the operands is known to be nonzero.
4493    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
4494        !UnsafeFPMath &&
4495        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
4496      break;
4497    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
4498    break;
4499  }
4500
4501  if (!Opcode)
4502    return SDValue();
4503  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
4504}
4505
4506SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
4507                                             DAGCombinerInfo &DCI) const {
4508  switch (N->getOpcode()) {
4509  default: break;
4510  case ISD::ADD:        return PerformADDCombine(N, DCI);
4511  case ISD::SUB:        return PerformSUBCombine(N, DCI);
4512  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
4513  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
4514  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
4515  case ISD::SHL:
4516  case ISD::SRA:
4517  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
4518  case ISD::SIGN_EXTEND:
4519  case ISD::ZERO_EXTEND:
4520  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
4521  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
4522  }
4523  return SDValue();
4524}
4525
4526bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
4527  if (!Subtarget->hasV6Ops())
4528    // Pre-v6 does not support unaligned mem access.
4529    return false;
4530
4531  // v6+ may or may not support unaligned mem access depending on the system
4532  // configuration.
4533  // FIXME: This is pretty conservative. Should we provide cmdline option to
4534  // control the behaviour?
4535  if (!Subtarget->isTargetDarwin())
4536    return false;
4537
4538  switch (VT.getSimpleVT().SimpleTy) {
4539  default:
4540    return false;
4541  case MVT::i8:
4542  case MVT::i16:
4543  case MVT::i32:
4544    return true;
4545  // FIXME: VLD1 etc with standard alignment is legal.
4546  }
4547}
4548
4549static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
4550  if (V < 0)
4551    return false;
4552
4553  unsigned Scale = 1;
4554  switch (VT.getSimpleVT().SimpleTy) {
4555  default: return false;
4556  case MVT::i1:
4557  case MVT::i8:
4558    // Scale == 1;
4559    break;
4560  case MVT::i16:
4561    // Scale == 2;
4562    Scale = 2;
4563    break;
4564  case MVT::i32:
4565    // Scale == 4;
4566    Scale = 4;
4567    break;
4568  }
4569
4570  if ((V & (Scale - 1)) != 0)
4571    return false;
4572  V /= Scale;
4573  return V == (V & ((1LL << 5) - 1));
4574}
4575
4576static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
4577                                      const ARMSubtarget *Subtarget) {
4578  bool isNeg = false;
4579  if (V < 0) {
4580    isNeg = true;
4581    V = - V;
4582  }
4583
4584  switch (VT.getSimpleVT().SimpleTy) {
4585  default: return false;
4586  case MVT::i1:
4587  case MVT::i8:
4588  case MVT::i16:
4589  case MVT::i32:
4590    // + imm12 or - imm8
4591    if (isNeg)
4592      return V == (V & ((1LL << 8) - 1));
4593    return V == (V & ((1LL << 12) - 1));
4594  case MVT::f32:
4595  case MVT::f64:
4596    // Same as ARM mode. FIXME: NEON?
4597    if (!Subtarget->hasVFP2())
4598      return false;
4599    if ((V & 3) != 0)
4600      return false;
4601    V >>= 2;
4602    return V == (V & ((1LL << 8) - 1));
4603  }
4604}
4605
4606/// isLegalAddressImmediate - Return true if the integer value can be used
4607/// as the offset of the target addressing mode for load / store of the
4608/// given type.
4609static bool isLegalAddressImmediate(int64_t V, EVT VT,
4610                                    const ARMSubtarget *Subtarget) {
4611  if (V == 0)
4612    return true;
4613
4614  if (!VT.isSimple())
4615    return false;
4616
4617  if (Subtarget->isThumb1Only())
4618    return isLegalT1AddressImmediate(V, VT);
4619  else if (Subtarget->isThumb2())
4620    return isLegalT2AddressImmediate(V, VT, Subtarget);
4621
4622  // ARM mode.
4623  if (V < 0)
4624    V = - V;
4625  switch (VT.getSimpleVT().SimpleTy) {
4626  default: return false;
4627  case MVT::i1:
4628  case MVT::i8:
4629  case MVT::i32:
4630    // +- imm12
4631    return V == (V & ((1LL << 12) - 1));
4632  case MVT::i16:
4633    // +- imm8
4634    return V == (V & ((1LL << 8) - 1));
4635  case MVT::f32:
4636  case MVT::f64:
4637    if (!Subtarget->hasVFP2()) // FIXME: NEON?
4638      return false;
4639    if ((V & 3) != 0)
4640      return false;
4641    V >>= 2;
4642    return V == (V & ((1LL << 8) - 1));
4643  }
4644}
4645
4646bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
4647                                                      EVT VT) const {
4648  int Scale = AM.Scale;
4649  if (Scale < 0)
4650    return false;
4651
4652  switch (VT.getSimpleVT().SimpleTy) {
4653  default: return false;
4654  case MVT::i1:
4655  case MVT::i8:
4656  case MVT::i16:
4657  case MVT::i32:
4658    if (Scale == 1)
4659      return true;
4660    // r + r << imm
4661    Scale = Scale & ~1;
4662    return Scale == 2 || Scale == 4 || Scale == 8;
4663  case MVT::i64:
4664    // r + r
4665    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
4666      return true;
4667    return false;
4668  case MVT::isVoid:
4669    // Note, we allow "void" uses (basically, uses that aren't loads or
4670    // stores), because arm allows folding a scale into many arithmetic
4671    // operations.  This should be made more precise and revisited later.
4672
4673    // Allow r << imm, but the imm has to be a multiple of two.
4674    if (Scale & 1) return false;
4675    return isPowerOf2_32(Scale);
4676  }
4677}
4678
4679/// isLegalAddressingMode - Return true if the addressing mode represented
4680/// by AM is legal for this target, for a load/store of the specified type.
4681bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
4682                                              const Type *Ty) const {
4683  EVT VT = getValueType(Ty, true);
4684  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
4685    return false;
4686
4687  // Can never fold addr of global into load/store.
4688  if (AM.BaseGV)
4689    return false;
4690
4691  switch (AM.Scale) {
4692  case 0:  // no scale reg, must be "r+i" or "r", or "i".
4693    break;
4694  case 1:
4695    if (Subtarget->isThumb1Only())
4696      return false;
4697    // FALL THROUGH.
4698  default:
4699    // ARM doesn't support any R+R*scale+imm addr modes.
4700    if (AM.BaseOffs)
4701      return false;
4702
4703    if (!VT.isSimple())
4704      return false;
4705
4706    if (Subtarget->isThumb2())
4707      return isLegalT2ScaledAddressingMode(AM, VT);
4708
4709    int Scale = AM.Scale;
4710    switch (VT.getSimpleVT().SimpleTy) {
4711    default: return false;
4712    case MVT::i1:
4713    case MVT::i8:
4714    case MVT::i32:
4715      if (Scale < 0) Scale = -Scale;
4716      if (Scale == 1)
4717        return true;
4718      // r + r << imm
4719      return isPowerOf2_32(Scale & ~1);
4720    case MVT::i16:
4721    case MVT::i64:
4722      // r + r
4723      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
4724        return true;
4725      return false;
4726
4727    case MVT::isVoid:
4728      // Note, we allow "void" uses (basically, uses that aren't loads or
4729      // stores), because arm allows folding a scale into many arithmetic
4730      // operations.  This should be made more precise and revisited later.
4731
4732      // Allow r << imm, but the imm has to be a multiple of two.
4733      if (Scale & 1) return false;
4734      return isPowerOf2_32(Scale);
4735    }
4736    break;
4737  }
4738  return true;
4739}
4740
4741/// isLegalICmpImmediate - Return true if the specified immediate is legal
4742/// icmp immediate, that is the target has icmp instructions which can compare
4743/// a register against the immediate without having to materialize the
4744/// immediate into a register.
4745bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
4746  if (!Subtarget->isThumb())
4747    return ARM_AM::getSOImmVal(Imm) != -1;
4748  if (Subtarget->isThumb2())
4749    return ARM_AM::getT2SOImmVal(Imm) != -1;
4750  return Imm >= 0 && Imm <= 255;
4751}
4752
4753static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
4754                                      bool isSEXTLoad, SDValue &Base,
4755                                      SDValue &Offset, bool &isInc,
4756                                      SelectionDAG &DAG) {
4757  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
4758    return false;
4759
4760  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
4761    // AddressingMode 3
4762    Base = Ptr->getOperand(0);
4763    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
4764      int RHSC = (int)RHS->getZExtValue();
4765      if (RHSC < 0 && RHSC > -256) {
4766        assert(Ptr->getOpcode() == ISD::ADD);
4767        isInc = false;
4768        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
4769        return true;
4770      }
4771    }
4772    isInc = (Ptr->getOpcode() == ISD::ADD);
4773    Offset = Ptr->getOperand(1);
4774    return true;
4775  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
4776    // AddressingMode 2
4777    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
4778      int RHSC = (int)RHS->getZExtValue();
4779      if (RHSC < 0 && RHSC > -0x1000) {
4780        assert(Ptr->getOpcode() == ISD::ADD);
4781        isInc = false;
4782        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
4783        Base = Ptr->getOperand(0);
4784        return true;
4785      }
4786    }
4787
4788    if (Ptr->getOpcode() == ISD::ADD) {
4789      isInc = true;
4790      ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
4791      if (ShOpcVal != ARM_AM::no_shift) {
4792        Base = Ptr->getOperand(1);
4793        Offset = Ptr->getOperand(0);
4794      } else {
4795        Base = Ptr->getOperand(0);
4796        Offset = Ptr->getOperand(1);
4797      }
4798      return true;
4799    }
4800
4801    isInc = (Ptr->getOpcode() == ISD::ADD);
4802    Base = Ptr->getOperand(0);
4803    Offset = Ptr->getOperand(1);
4804    return true;
4805  }
4806
4807  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
4808  return false;
4809}
4810
4811static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
4812                                     bool isSEXTLoad, SDValue &Base,
4813                                     SDValue &Offset, bool &isInc,
4814                                     SelectionDAG &DAG) {
4815  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
4816    return false;
4817
4818  Base = Ptr->getOperand(0);
4819  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
4820    int RHSC = (int)RHS->getZExtValue();
4821    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
4822      assert(Ptr->getOpcode() == ISD::ADD);
4823      isInc = false;
4824      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
4825      return true;
4826    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
4827      isInc = Ptr->getOpcode() == ISD::ADD;
4828      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
4829      return true;
4830    }
4831  }
4832
4833  return false;
4834}
4835
4836/// getPreIndexedAddressParts - returns true by value, base pointer and
4837/// offset pointer and addressing mode by reference if the node's address
4838/// can be legally represented as pre-indexed load / store address.
4839bool
4840ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
4841                                             SDValue &Offset,
4842                                             ISD::MemIndexedMode &AM,
4843                                             SelectionDAG &DAG) const {
4844  if (Subtarget->isThumb1Only())
4845    return false;
4846
4847  EVT VT;
4848  SDValue Ptr;
4849  bool isSEXTLoad = false;
4850  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
4851    Ptr = LD->getBasePtr();
4852    VT  = LD->getMemoryVT();
4853    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
4854  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
4855    Ptr = ST->getBasePtr();
4856    VT  = ST->getMemoryVT();
4857  } else
4858    return false;
4859
4860  bool isInc;
4861  bool isLegal = false;
4862  if (Subtarget->isThumb2())
4863    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
4864                                       Offset, isInc, DAG);
4865  else
4866    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
4867                                        Offset, isInc, DAG);
4868  if (!isLegal)
4869    return false;
4870
4871  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
4872  return true;
4873}
4874
4875/// getPostIndexedAddressParts - returns true by value, base pointer and
4876/// offset pointer and addressing mode by reference if this node can be
4877/// combined with a load / store to form a post-indexed load / store.
4878bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
4879                                                   SDValue &Base,
4880                                                   SDValue &Offset,
4881                                                   ISD::MemIndexedMode &AM,
4882                                                   SelectionDAG &DAG) const {
4883  if (Subtarget->isThumb1Only())
4884    return false;
4885
4886  EVT VT;
4887  SDValue Ptr;
4888  bool isSEXTLoad = false;
4889  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
4890    VT  = LD->getMemoryVT();
4891    Ptr = LD->getBasePtr();
4892    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
4893  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
4894    VT  = ST->getMemoryVT();
4895    Ptr = ST->getBasePtr();
4896  } else
4897    return false;
4898
4899  bool isInc;
4900  bool isLegal = false;
4901  if (Subtarget->isThumb2())
4902    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
4903                                       isInc, DAG);
4904  else
4905    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
4906                                        isInc, DAG);
4907  if (!isLegal)
4908    return false;
4909
4910  if (Ptr != Base) {
4911    // Swap base ptr and offset to catch more post-index load / store when
4912    // it's legal. In Thumb2 mode, offset must be an immediate.
4913    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
4914        !Subtarget->isThumb2())
4915      std::swap(Base, Offset);
4916
4917    // Post-indexed load / store update the base pointer.
4918    if (Ptr != Base)
4919      return false;
4920  }
4921
4922  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
4923  return true;
4924}
4925
4926void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
4927                                                       const APInt &Mask,
4928                                                       APInt &KnownZero,
4929                                                       APInt &KnownOne,
4930                                                       const SelectionDAG &DAG,
4931                                                       unsigned Depth) const {
4932  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
4933  switch (Op.getOpcode()) {
4934  default: break;
4935  case ARMISD::CMOV: {
4936    // Bits are known zero/one if known on the LHS and RHS.
4937    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
4938    if (KnownZero == 0 && KnownOne == 0) return;
4939
4940    APInt KnownZeroRHS, KnownOneRHS;
4941    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
4942                          KnownZeroRHS, KnownOneRHS, Depth+1);
4943    KnownZero &= KnownZeroRHS;
4944    KnownOne  &= KnownOneRHS;
4945    return;
4946  }
4947  }
4948}
4949
4950//===----------------------------------------------------------------------===//
4951//                           ARM Inline Assembly Support
4952//===----------------------------------------------------------------------===//
4953
4954/// getConstraintType - Given a constraint letter, return the type of
4955/// constraint it is for this target.
4956ARMTargetLowering::ConstraintType
4957ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
4958  if (Constraint.size() == 1) {
4959    switch (Constraint[0]) {
4960    default:  break;
4961    case 'l': return C_RegisterClass;
4962    case 'w': return C_RegisterClass;
4963    }
4964  }
4965  return TargetLowering::getConstraintType(Constraint);
4966}
4967
4968std::pair<unsigned, const TargetRegisterClass*>
4969ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
4970                                                EVT VT) const {
4971  if (Constraint.size() == 1) {
4972    // GCC ARM Constraint Letters
4973    switch (Constraint[0]) {
4974    case 'l':
4975      if (Subtarget->isThumb())
4976        return std::make_pair(0U, ARM::tGPRRegisterClass);
4977      else
4978        return std::make_pair(0U, ARM::GPRRegisterClass);
4979    case 'r':
4980      return std::make_pair(0U, ARM::GPRRegisterClass);
4981    case 'w':
4982      if (VT == MVT::f32)
4983        return std::make_pair(0U, ARM::SPRRegisterClass);
4984      if (VT.getSizeInBits() == 64)
4985        return std::make_pair(0U, ARM::DPRRegisterClass);
4986      if (VT.getSizeInBits() == 128)
4987        return std::make_pair(0U, ARM::QPRRegisterClass);
4988      break;
4989    }
4990  }
4991  if (StringRef("{cc}").equals_lower(Constraint))
4992    return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
4993
4994  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4995}
4996
4997std::vector<unsigned> ARMTargetLowering::
4998getRegClassForInlineAsmConstraint(const std::string &Constraint,
4999                                  EVT VT) const {
5000  if (Constraint.size() != 1)
5001    return std::vector<unsigned>();
5002
5003  switch (Constraint[0]) {      // GCC ARM Constraint Letters
5004  default: break;
5005  case 'l':
5006    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
5007                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
5008                                 0);
5009  case 'r':
5010    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
5011                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
5012                                 ARM::R8, ARM::R9, ARM::R10, ARM::R11,
5013                                 ARM::R12, ARM::LR, 0);
5014  case 'w':
5015    if (VT == MVT::f32)
5016      return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
5017                                   ARM::S4, ARM::S5, ARM::S6, ARM::S7,
5018                                   ARM::S8, ARM::S9, ARM::S10, ARM::S11,
5019                                   ARM::S12,ARM::S13,ARM::S14,ARM::S15,
5020                                   ARM::S16,ARM::S17,ARM::S18,ARM::S19,
5021                                   ARM::S20,ARM::S21,ARM::S22,ARM::S23,
5022                                   ARM::S24,ARM::S25,ARM::S26,ARM::S27,
5023                                   ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
5024    if (VT.getSizeInBits() == 64)
5025      return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
5026                                   ARM::D4, ARM::D5, ARM::D6, ARM::D7,
5027                                   ARM::D8, ARM::D9, ARM::D10,ARM::D11,
5028                                   ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
5029    if (VT.getSizeInBits() == 128)
5030      return make_vector<unsigned>(ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3,
5031                                   ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7, 0);
5032      break;
5033  }
5034
5035  return std::vector<unsigned>();
5036}
5037
5038/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5039/// vector.  If it is invalid, don't add anything to Ops.
5040void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5041                                                     char Constraint,
5042                                                     std::vector<SDValue>&Ops,
5043                                                     SelectionDAG &DAG) const {
5044  SDValue Result(0, 0);
5045
5046  switch (Constraint) {
5047  default: break;
5048  case 'I': case 'J': case 'K': case 'L':
5049  case 'M': case 'N': case 'O':
5050    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
5051    if (!C)
5052      return;
5053
5054    int64_t CVal64 = C->getSExtValue();
5055    int CVal = (int) CVal64;
5056    // None of these constraints allow values larger than 32 bits.  Check
5057    // that the value fits in an int.
5058    if (CVal != CVal64)
5059      return;
5060
5061    switch (Constraint) {
5062      case 'I':
5063        if (Subtarget->isThumb1Only()) {
5064          // This must be a constant between 0 and 255, for ADD
5065          // immediates.
5066          if (CVal >= 0 && CVal <= 255)
5067            break;
5068        } else if (Subtarget->isThumb2()) {
5069          // A constant that can be used as an immediate value in a
5070          // data-processing instruction.
5071          if (ARM_AM::getT2SOImmVal(CVal) != -1)
5072            break;
5073        } else {
5074          // A constant that can be used as an immediate value in a
5075          // data-processing instruction.
5076          if (ARM_AM::getSOImmVal(CVal) != -1)
5077            break;
5078        }
5079        return;
5080
5081      case 'J':
5082        if (Subtarget->isThumb()) {  // FIXME thumb2
5083          // This must be a constant between -255 and -1, for negated ADD
5084          // immediates. This can be used in GCC with an "n" modifier that
5085          // prints the negated value, for use with SUB instructions. It is
5086          // not useful otherwise but is implemented for compatibility.
5087          if (CVal >= -255 && CVal <= -1)
5088            break;
5089        } else {
5090          // This must be a constant between -4095 and 4095. It is not clear
5091          // what this constraint is intended for. Implemented for
5092          // compatibility with GCC.
5093          if (CVal >= -4095 && CVal <= 4095)
5094            break;
5095        }
5096        return;
5097
5098      case 'K':
5099        if (Subtarget->isThumb1Only()) {
5100          // A 32-bit value where only one byte has a nonzero value. Exclude
5101          // zero to match GCC. This constraint is used by GCC internally for
5102          // constants that can be loaded with a move/shift combination.
5103          // It is not useful otherwise but is implemented for compatibility.
5104          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
5105            break;
5106        } else if (Subtarget->isThumb2()) {
5107          // A constant whose bitwise inverse can be used as an immediate
5108          // value in a data-processing instruction. This can be used in GCC
5109          // with a "B" modifier that prints the inverted value, for use with
5110          // BIC and MVN instructions. It is not useful otherwise but is
5111          // implemented for compatibility.
5112          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
5113            break;
5114        } else {
5115          // A constant whose bitwise inverse can be used as an immediate
5116          // value in a data-processing instruction. This can be used in GCC
5117          // with a "B" modifier that prints the inverted value, for use with
5118          // BIC and MVN instructions. It is not useful otherwise but is
5119          // implemented for compatibility.
5120          if (ARM_AM::getSOImmVal(~CVal) != -1)
5121            break;
5122        }
5123        return;
5124
5125      case 'L':
5126        if (Subtarget->isThumb1Only()) {
5127          // This must be a constant between -7 and 7,
5128          // for 3-operand ADD/SUB immediate instructions.
5129          if (CVal >= -7 && CVal < 7)
5130            break;
5131        } else if (Subtarget->isThumb2()) {
5132          // A constant whose negation can be used as an immediate value in a
5133          // data-processing instruction. This can be used in GCC with an "n"
5134          // modifier that prints the negated value, for use with SUB
5135          // instructions. It is not useful otherwise but is implemented for
5136          // compatibility.
5137          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
5138            break;
5139        } else {
5140          // A constant whose negation can be used as an immediate value in a
5141          // data-processing instruction. This can be used in GCC with an "n"
5142          // modifier that prints the negated value, for use with SUB
5143          // instructions. It is not useful otherwise but is implemented for
5144          // compatibility.
5145          if (ARM_AM::getSOImmVal(-CVal) != -1)
5146            break;
5147        }
5148        return;
5149
5150      case 'M':
5151        if (Subtarget->isThumb()) { // FIXME thumb2
5152          // This must be a multiple of 4 between 0 and 1020, for
5153          // ADD sp + immediate.
5154          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
5155            break;
5156        } else {
5157          // A power of two or a constant between 0 and 32.  This is used in
5158          // GCC for the shift amount on shifted register operands, but it is
5159          // useful in general for any shift amounts.
5160          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
5161            break;
5162        }
5163        return;
5164
5165      case 'N':
5166        if (Subtarget->isThumb()) {  // FIXME thumb2
5167          // This must be a constant between 0 and 31, for shift amounts.
5168          if (CVal >= 0 && CVal <= 31)
5169            break;
5170        }
5171        return;
5172
5173      case 'O':
5174        if (Subtarget->isThumb()) {  // FIXME thumb2
5175          // This must be a multiple of 4 between -508 and 508, for
5176          // ADD/SUB sp = sp + immediate.
5177          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
5178            break;
5179        }
5180        return;
5181    }
5182    Result = DAG.getTargetConstant(CVal, Op.getValueType());
5183    break;
5184  }
5185
5186  if (Result.getNode()) {
5187    Ops.push_back(Result);
5188    return;
5189  }
5190  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5191}
5192
5193bool
5194ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5195  // The ARM target isn't yet aware of offsets.
5196  return false;
5197}
5198
5199int ARM::getVFPf32Imm(const APFloat &FPImm) {
5200  APInt Imm = FPImm.bitcastToAPInt();
5201  uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
5202  int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
5203  int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
5204
5205  // We can handle 4 bits of mantissa.
5206  // mantissa = (16+UInt(e:f:g:h))/16.
5207  if (Mantissa & 0x7ffff)
5208    return -1;
5209  Mantissa >>= 19;
5210  if ((Mantissa & 0xf) != Mantissa)
5211    return -1;
5212
5213  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
5214  if (Exp < -3 || Exp > 4)
5215    return -1;
5216  Exp = ((Exp+3) & 0x7) ^ 4;
5217
5218  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
5219}
5220
5221int ARM::getVFPf64Imm(const APFloat &FPImm) {
5222  APInt Imm = FPImm.bitcastToAPInt();
5223  uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
5224  int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
5225  uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffLL;
5226
5227  // We can handle 4 bits of mantissa.
5228  // mantissa = (16+UInt(e:f:g:h))/16.
5229  if (Mantissa & 0xffffffffffffLL)
5230    return -1;
5231  Mantissa >>= 48;
5232  if ((Mantissa & 0xf) != Mantissa)
5233    return -1;
5234
5235  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
5236  if (Exp < -3 || Exp > 4)
5237    return -1;
5238  Exp = ((Exp+3) & 0x7) ^ 4;
5239
5240  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
5241}
5242
5243/// isFPImmLegal - Returns true if the target can instruction select the
5244/// specified FP immediate natively. If false, the legalizer will
5245/// materialize the FP immediate as a load from a constant pool.
5246bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
5247  if (!Subtarget->hasVFP3())
5248    return false;
5249  if (VT == MVT::f32)
5250    return ARM::getVFPf32Imm(Imm) != -1;
5251  if (VT == MVT::f64)
5252    return ARM::getVFPf64Imm(Imm) != -1;
5253  return false;
5254}
5255