ARMISelLowering.cpp revision 171422980d99d7689b2cac01504b981e87b61905
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "ARM.h"
16#include "ARMAddressingModes.h"
17#include "ARMConstantPoolValue.h"
18#include "ARMISelLowering.h"
19#include "ARMMachineFunctionInfo.h"
20#include "ARMPerfectShuffle.h"
21#include "ARMRegisterInfo.h"
22#include "ARMSubtarget.h"
23#include "ARMTargetMachine.h"
24#include "ARMTargetObjectFile.h"
25#include "llvm/CallingConv.h"
26#include "llvm/Constants.h"
27#include "llvm/Function.h"
28#include "llvm/GlobalValue.h"
29#include "llvm/Instruction.h"
30#include "llvm/Intrinsics.h"
31#include "llvm/Type.h"
32#include "llvm/CodeGen/CallingConvLower.h"
33#include "llvm/CodeGen/MachineBasicBlock.h"
34#include "llvm/CodeGen/MachineFrameInfo.h"
35#include "llvm/CodeGen/MachineFunction.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/CodeGen/SelectionDAG.h"
40#include "llvm/Target/TargetOptions.h"
41#include "llvm/ADT/VectorExtras.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/MathExtras.h"
45#include <sstream>
46using namespace llvm;
47
48static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
49                                   CCValAssign::LocInfo &LocInfo,
50                                   ISD::ArgFlagsTy &ArgFlags,
51                                   CCState &State);
52static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
53                                    CCValAssign::LocInfo &LocInfo,
54                                    ISD::ArgFlagsTy &ArgFlags,
55                                    CCState &State);
56static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
57                                      CCValAssign::LocInfo &LocInfo,
58                                      ISD::ArgFlagsTy &ArgFlags,
59                                      CCState &State);
60static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
61                                       CCValAssign::LocInfo &LocInfo,
62                                       ISD::ArgFlagsTy &ArgFlags,
63                                       CCState &State);
64
65void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
66                                       EVT PromotedBitwiseVT) {
67  if (VT != PromotedLdStVT) {
68    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
69    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
70                       PromotedLdStVT.getSimpleVT());
71
72    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
73    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
74                       PromotedLdStVT.getSimpleVT());
75  }
76
77  EVT ElemTy = VT.getVectorElementType();
78  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
79    setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom);
80  if (ElemTy == MVT::i8 || ElemTy == MVT::i16)
81    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
82  if (ElemTy != MVT::i32) {
83    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
84    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
85    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
86    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
87  }
88  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
89  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
90  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Custom);
91  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Expand);
92  if (VT.isInteger()) {
93    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
94    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
95    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
96  }
97
98  // Promote all bit-wise operations.
99  if (VT.isInteger() && VT != PromotedBitwiseVT) {
100    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
101    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
102                       PromotedBitwiseVT.getSimpleVT());
103    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
104    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
105                       PromotedBitwiseVT.getSimpleVT());
106    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
107    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
108                       PromotedBitwiseVT.getSimpleVT());
109  }
110
111  // Neon does not support vector divide/remainder operations.
112  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
113  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
114  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
115  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
116  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
117  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
118}
119
120void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
121  addRegisterClass(VT, ARM::DPRRegisterClass);
122  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
123}
124
125void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
126  addRegisterClass(VT, ARM::QPRRegisterClass);
127  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
128}
129
130static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
131  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
132    return new TargetLoweringObjectFileMachO();
133  return new ARMElfTargetObjectFile();
134}
135
136ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
137    : TargetLowering(TM, createTLOF(TM)) {
138  Subtarget = &TM.getSubtarget<ARMSubtarget>();
139
140  if (Subtarget->isTargetDarwin()) {
141    // Uses VFP for Thumb libfuncs if available.
142    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
143      // Single-precision floating-point arithmetic.
144      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
145      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
146      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
147      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
148
149      // Double-precision floating-point arithmetic.
150      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
151      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
152      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
153      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
154
155      // Single-precision comparisons.
156      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
157      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
158      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
159      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
160      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
161      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
162      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
163      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
164
165      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
166      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
167      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
168      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
169      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
170      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
171      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
172      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
173
174      // Double-precision comparisons.
175      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
176      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
177      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
178      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
179      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
180      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
181      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
182      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
183
184      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
185      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
186      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
187      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
188      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
189      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
190      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
191      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
192
193      // Floating-point to integer conversions.
194      // i64 conversions are done via library routines even when generating VFP
195      // instructions, so use the same ones.
196      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
197      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
198      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
199      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
200
201      // Conversions between floating types.
202      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
203      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
204
205      // Integer to floating-point conversions.
206      // i64 conversions are done via library routines even when generating VFP
207      // instructions, so use the same ones.
208      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
209      // e.g., __floatunsidf vs. __floatunssidfvfp.
210      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
211      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
212      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
213      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
214    }
215  }
216
217  // These libcalls are not available in 32-bit.
218  setLibcallName(RTLIB::SHL_I128, 0);
219  setLibcallName(RTLIB::SRL_I128, 0);
220  setLibcallName(RTLIB::SRA_I128, 0);
221
222  // Libcalls should use the AAPCS base standard ABI, even if hard float
223  // is in effect, as per the ARM RTABI specification, section 4.1.2.
224  if (Subtarget->isAAPCS_ABI()) {
225    for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
226      setLibcallCallingConv(static_cast<RTLIB::Libcall>(i),
227                            CallingConv::ARM_AAPCS);
228    }
229  }
230
231  if (Subtarget->isThumb1Only())
232    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
233  else
234    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
235  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
236    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
237    addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
238
239    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
240  }
241
242  if (Subtarget->hasNEON()) {
243    addDRTypeForNEON(MVT::v2f32);
244    addDRTypeForNEON(MVT::v8i8);
245    addDRTypeForNEON(MVT::v4i16);
246    addDRTypeForNEON(MVT::v2i32);
247    addDRTypeForNEON(MVT::v1i64);
248
249    addQRTypeForNEON(MVT::v4f32);
250    addQRTypeForNEON(MVT::v2f64);
251    addQRTypeForNEON(MVT::v16i8);
252    addQRTypeForNEON(MVT::v8i16);
253    addQRTypeForNEON(MVT::v4i32);
254    addQRTypeForNEON(MVT::v2i64);
255
256    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
257    // neither Neon nor VFP support any arithmetic operations on it.
258    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
259    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
260    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
261    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
262    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
263    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
264    setOperationAction(ISD::VSETCC, MVT::v2f64, Expand);
265    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
266    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
267    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
268    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
269    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
270    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
271    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
272    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
273    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
274    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
275    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
276    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
277    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
278    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
279    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
280    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
281    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
282
283    // Neon does not support some operations on v1i64 and v2i64 types.
284    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
285    setOperationAction(ISD::MUL, MVT::v2i64, Expand);
286    setOperationAction(ISD::VSETCC, MVT::v1i64, Expand);
287    setOperationAction(ISD::VSETCC, MVT::v2i64, Expand);
288
289    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
290    setTargetDAGCombine(ISD::SHL);
291    setTargetDAGCombine(ISD::SRL);
292    setTargetDAGCombine(ISD::SRA);
293    setTargetDAGCombine(ISD::SIGN_EXTEND);
294    setTargetDAGCombine(ISD::ZERO_EXTEND);
295    setTargetDAGCombine(ISD::ANY_EXTEND);
296  }
297
298  computeRegisterProperties();
299
300  // ARM does not have f32 extending load.
301  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
302
303  // ARM does not have i1 sign extending load.
304  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
305
306  // ARM supports all 4 flavors of integer indexed load / store.
307  if (!Subtarget->isThumb1Only()) {
308    for (unsigned im = (unsigned)ISD::PRE_INC;
309         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
310      setIndexedLoadAction(im,  MVT::i1,  Legal);
311      setIndexedLoadAction(im,  MVT::i8,  Legal);
312      setIndexedLoadAction(im,  MVT::i16, Legal);
313      setIndexedLoadAction(im,  MVT::i32, Legal);
314      setIndexedStoreAction(im, MVT::i1,  Legal);
315      setIndexedStoreAction(im, MVT::i8,  Legal);
316      setIndexedStoreAction(im, MVT::i16, Legal);
317      setIndexedStoreAction(im, MVT::i32, Legal);
318    }
319  }
320
321  // i64 operation support.
322  if (Subtarget->isThumb1Only()) {
323    setOperationAction(ISD::MUL,     MVT::i64, Expand);
324    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
325    setOperationAction(ISD::MULHS,   MVT::i32, Expand);
326    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
327    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
328  } else {
329    setOperationAction(ISD::MUL,     MVT::i64, Expand);
330    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
331    if (!Subtarget->hasV6Ops())
332      setOperationAction(ISD::MULHS, MVT::i32, Expand);
333  }
334  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
335  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
336  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
337  setOperationAction(ISD::SRL,       MVT::i64, Custom);
338  setOperationAction(ISD::SRA,       MVT::i64, Custom);
339
340  // ARM does not have ROTL.
341  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
342  setOperationAction(ISD::CTTZ,  MVT::i32, Expand);
343  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
344  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
345    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
346
347  // Only ARMv6 has BSWAP.
348  if (!Subtarget->hasV6Ops())
349    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
350
351  // These are expanded into libcalls.
352  setOperationAction(ISD::SDIV,  MVT::i32, Expand);
353  setOperationAction(ISD::UDIV,  MVT::i32, Expand);
354  setOperationAction(ISD::SREM,  MVT::i32, Expand);
355  setOperationAction(ISD::UREM,  MVT::i32, Expand);
356  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
357  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
358
359  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
360  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
361  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
362  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
363  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
364
365  // Use the default implementation.
366  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
367  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
368  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
369  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
370  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
371  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
372  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
373  // FIXME: Shouldn't need this, since no register is used, but the legalizer
374  // doesn't yet know how to not do that for SjLj.
375  setExceptionSelectorRegister(ARM::R0);
376  if (Subtarget->isThumb())
377    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
378  else
379    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
380  setOperationAction(ISD::MEMBARRIER,         MVT::Other, Expand);
381
382  if (!Subtarget->hasV6Ops() && !Subtarget->isThumb2()) {
383    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
384    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
385  }
386  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
387
388  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only())
389    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR iff target supports vfp2.
390    setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom);
391
392  // We want to custom lower some of our intrinsics.
393  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
394
395  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
396  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
397  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
398  setOperationAction(ISD::SELECT,    MVT::i32, Expand);
399  setOperationAction(ISD::SELECT,    MVT::f32, Expand);
400  setOperationAction(ISD::SELECT,    MVT::f64, Expand);
401  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
402  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
403  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
404
405  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
406  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
407  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
408  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
409  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
410
411  // We don't support sin/cos/fmod/copysign/pow
412  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
413  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
414  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
415  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
416  setOperationAction(ISD::FREM,      MVT::f64, Expand);
417  setOperationAction(ISD::FREM,      MVT::f32, Expand);
418  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
419    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
420    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
421  }
422  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
423  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
424
425  // int <-> fp are custom expanded into bit_convert + ARMISD ops.
426  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
427    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
428    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
429    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
430    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
431  }
432
433  // We have target-specific dag combine patterns for the following nodes:
434  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
435  setTargetDAGCombine(ISD::ADD);
436  setTargetDAGCombine(ISD::SUB);
437
438  setStackPointerRegisterToSaveRestore(ARM::SP);
439  setSchedulingPreference(SchedulingForRegPressure);
440
441  // FIXME: If-converter should use instruction latency to determine
442  // profitability rather than relying on fixed limits.
443  if (Subtarget->getCPUString() == "generic") {
444    // Generic (and overly aggressive) if-conversion limits.
445    setIfCvtBlockSizeLimit(10);
446    setIfCvtDupBlockSizeLimit(2);
447  } else if (Subtarget->hasV6Ops()) {
448    setIfCvtBlockSizeLimit(2);
449    setIfCvtDupBlockSizeLimit(1);
450  } else {
451    setIfCvtBlockSizeLimit(3);
452    setIfCvtDupBlockSizeLimit(2);
453  }
454
455  maxStoresPerMemcpy = 1;   //// temporary - rewrite interface to use type
456  // Do not enable CodePlacementOpt for now: it currently runs after the
457  // ARMConstantIslandPass and messes up branch relaxation and placement
458  // of constant islands.
459  // benefitFromCodePlacementOpt = true;
460}
461
462const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
463  switch (Opcode) {
464  default: return 0;
465  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
466  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
467  case ARMISD::CALL:          return "ARMISD::CALL";
468  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
469  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
470  case ARMISD::tCALL:         return "ARMISD::tCALL";
471  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
472  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
473  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
474  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
475  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
476  case ARMISD::CMP:           return "ARMISD::CMP";
477  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
478  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
479  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
480  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
481  case ARMISD::CMOV:          return "ARMISD::CMOV";
482  case ARMISD::CNEG:          return "ARMISD::CNEG";
483
484  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
485  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
486  case ARMISD::SITOF:         return "ARMISD::SITOF";
487  case ARMISD::UITOF:         return "ARMISD::UITOF";
488
489  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
490  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
491  case ARMISD::RRX:           return "ARMISD::RRX";
492
493  case ARMISD::VMOVRRD:         return "ARMISD::VMOVRRD";
494  case ARMISD::VMOVDRR:         return "ARMISD::VMOVDRR";
495
496  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
497  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
498
499  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
500
501  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
502
503  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
504  case ARMISD::VCGE:          return "ARMISD::VCGE";
505  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
506  case ARMISD::VCGT:          return "ARMISD::VCGT";
507  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
508  case ARMISD::VTST:          return "ARMISD::VTST";
509
510  case ARMISD::VSHL:          return "ARMISD::VSHL";
511  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
512  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
513  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
514  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
515  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
516  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
517  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
518  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
519  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
520  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
521  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
522  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
523  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
524  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
525  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
526  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
527  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
528  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
529  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
530  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
531  case ARMISD::VDUP:          return "ARMISD::VDUP";
532  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
533  case ARMISD::VEXT:          return "ARMISD::VEXT";
534  case ARMISD::VREV64:        return "ARMISD::VREV64";
535  case ARMISD::VREV32:        return "ARMISD::VREV32";
536  case ARMISD::VREV16:        return "ARMISD::VREV16";
537  case ARMISD::VZIP:          return "ARMISD::VZIP";
538  case ARMISD::VUZP:          return "ARMISD::VUZP";
539  case ARMISD::VTRN:          return "ARMISD::VTRN";
540  }
541}
542
543/// getFunctionAlignment - Return the Log2 alignment of this function.
544unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const {
545  return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 0 : 1;
546}
547
548//===----------------------------------------------------------------------===//
549// Lowering Code
550//===----------------------------------------------------------------------===//
551
552/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
553static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
554  switch (CC) {
555  default: llvm_unreachable("Unknown condition code!");
556  case ISD::SETNE:  return ARMCC::NE;
557  case ISD::SETEQ:  return ARMCC::EQ;
558  case ISD::SETGT:  return ARMCC::GT;
559  case ISD::SETGE:  return ARMCC::GE;
560  case ISD::SETLT:  return ARMCC::LT;
561  case ISD::SETLE:  return ARMCC::LE;
562  case ISD::SETUGT: return ARMCC::HI;
563  case ISD::SETUGE: return ARMCC::HS;
564  case ISD::SETULT: return ARMCC::LO;
565  case ISD::SETULE: return ARMCC::LS;
566  }
567}
568
569/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
570static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
571                        ARMCC::CondCodes &CondCode2) {
572  CondCode2 = ARMCC::AL;
573  switch (CC) {
574  default: llvm_unreachable("Unknown FP condition!");
575  case ISD::SETEQ:
576  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
577  case ISD::SETGT:
578  case ISD::SETOGT: CondCode = ARMCC::GT; break;
579  case ISD::SETGE:
580  case ISD::SETOGE: CondCode = ARMCC::GE; break;
581  case ISD::SETOLT: CondCode = ARMCC::MI; break;
582  case ISD::SETOLE: CondCode = ARMCC::LS; break;
583  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
584  case ISD::SETO:   CondCode = ARMCC::VC; break;
585  case ISD::SETUO:  CondCode = ARMCC::VS; break;
586  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
587  case ISD::SETUGT: CondCode = ARMCC::HI; break;
588  case ISD::SETUGE: CondCode = ARMCC::PL; break;
589  case ISD::SETLT:
590  case ISD::SETULT: CondCode = ARMCC::LT; break;
591  case ISD::SETLE:
592  case ISD::SETULE: CondCode = ARMCC::LE; break;
593  case ISD::SETNE:
594  case ISD::SETUNE: CondCode = ARMCC::NE; break;
595  }
596}
597
598//===----------------------------------------------------------------------===//
599//                      Calling Convention Implementation
600//===----------------------------------------------------------------------===//
601
602#include "ARMGenCallingConv.inc"
603
604// APCS f64 is in register pairs, possibly split to stack
605static bool f64AssignAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
606                          CCValAssign::LocInfo &LocInfo,
607                          CCState &State, bool CanFail) {
608  static const unsigned RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
609
610  // Try to get the first register.
611  if (unsigned Reg = State.AllocateReg(RegList, 4))
612    State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
613  else {
614    // For the 2nd half of a v2f64, do not fail.
615    if (CanFail)
616      return false;
617
618    // Put the whole thing on the stack.
619    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
620                                           State.AllocateStack(8, 4),
621                                           LocVT, LocInfo));
622    return true;
623  }
624
625  // Try to get the second register.
626  if (unsigned Reg = State.AllocateReg(RegList, 4))
627    State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
628  else
629    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
630                                           State.AllocateStack(4, 4),
631                                           LocVT, LocInfo));
632  return true;
633}
634
635static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
636                                   CCValAssign::LocInfo &LocInfo,
637                                   ISD::ArgFlagsTy &ArgFlags,
638                                   CCState &State) {
639  if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
640    return false;
641  if (LocVT == MVT::v2f64 &&
642      !f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
643    return false;
644  return true;  // we handled it
645}
646
647// AAPCS f64 is in aligned register pairs
648static bool f64AssignAAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
649                           CCValAssign::LocInfo &LocInfo,
650                           CCState &State, bool CanFail) {
651  static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
652  static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
653
654  unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
655  if (Reg == 0) {
656    // For the 2nd half of a v2f64, do not just fail.
657    if (CanFail)
658      return false;
659
660    // Put the whole thing on the stack.
661    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
662                                           State.AllocateStack(8, 8),
663                                           LocVT, LocInfo));
664    return true;
665  }
666
667  unsigned i;
668  for (i = 0; i < 2; ++i)
669    if (HiRegList[i] == Reg)
670      break;
671
672  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
673  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
674                                         LocVT, LocInfo));
675  return true;
676}
677
678static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
679                                    CCValAssign::LocInfo &LocInfo,
680                                    ISD::ArgFlagsTy &ArgFlags,
681                                    CCState &State) {
682  if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
683    return false;
684  if (LocVT == MVT::v2f64 &&
685      !f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
686    return false;
687  return true;  // we handled it
688}
689
690static bool f64RetAssign(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
691                         CCValAssign::LocInfo &LocInfo, CCState &State) {
692  static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
693  static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
694
695  unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
696  if (Reg == 0)
697    return false; // we didn't handle it
698
699  unsigned i;
700  for (i = 0; i < 2; ++i)
701    if (HiRegList[i] == Reg)
702      break;
703
704  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
705  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
706                                         LocVT, LocInfo));
707  return true;
708}
709
710static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
711                                      CCValAssign::LocInfo &LocInfo,
712                                      ISD::ArgFlagsTy &ArgFlags,
713                                      CCState &State) {
714  if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
715    return false;
716  if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
717    return false;
718  return true;  // we handled it
719}
720
721static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
722                                       CCValAssign::LocInfo &LocInfo,
723                                       ISD::ArgFlagsTy &ArgFlags,
724                                       CCState &State) {
725  return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags,
726                                   State);
727}
728
729/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
730/// given CallingConvention value.
731CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
732                                                 bool Return,
733                                                 bool isVarArg) const {
734  switch (CC) {
735  default:
736    llvm_unreachable("Unsupported calling convention");
737  case CallingConv::C:
738  case CallingConv::Fast:
739    // Use target triple & subtarget features to do actual dispatch.
740    if (Subtarget->isAAPCS_ABI()) {
741      if (Subtarget->hasVFP2() &&
742          FloatABIType == FloatABI::Hard && !isVarArg)
743        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
744      else
745        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
746    } else
747        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
748  case CallingConv::ARM_AAPCS_VFP:
749    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
750  case CallingConv::ARM_AAPCS:
751    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
752  case CallingConv::ARM_APCS:
753    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
754  }
755}
756
757/// LowerCallResult - Lower the result values of a call into the
758/// appropriate copies out of appropriate physical registers.
759SDValue
760ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
761                                   CallingConv::ID CallConv, bool isVarArg,
762                                   const SmallVectorImpl<ISD::InputArg> &Ins,
763                                   DebugLoc dl, SelectionDAG &DAG,
764                                   SmallVectorImpl<SDValue> &InVals) {
765
766  // Assign locations to each value returned by this call.
767  SmallVector<CCValAssign, 16> RVLocs;
768  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
769                 RVLocs, *DAG.getContext());
770  CCInfo.AnalyzeCallResult(Ins,
771                           CCAssignFnForNode(CallConv, /* Return*/ true,
772                                             isVarArg));
773
774  // Copy all of the result registers out of their specified physreg.
775  for (unsigned i = 0; i != RVLocs.size(); ++i) {
776    CCValAssign VA = RVLocs[i];
777
778    SDValue Val;
779    if (VA.needsCustom()) {
780      // Handle f64 or half of a v2f64.
781      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
782                                      InFlag);
783      Chain = Lo.getValue(1);
784      InFlag = Lo.getValue(2);
785      VA = RVLocs[++i]; // skip ahead to next loc
786      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
787                                      InFlag);
788      Chain = Hi.getValue(1);
789      InFlag = Hi.getValue(2);
790      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
791
792      if (VA.getLocVT() == MVT::v2f64) {
793        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
794        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
795                          DAG.getConstant(0, MVT::i32));
796
797        VA = RVLocs[++i]; // skip ahead to next loc
798        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
799        Chain = Lo.getValue(1);
800        InFlag = Lo.getValue(2);
801        VA = RVLocs[++i]; // skip ahead to next loc
802        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
803        Chain = Hi.getValue(1);
804        InFlag = Hi.getValue(2);
805        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
806        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
807                          DAG.getConstant(1, MVT::i32));
808      }
809    } else {
810      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
811                               InFlag);
812      Chain = Val.getValue(1);
813      InFlag = Val.getValue(2);
814    }
815
816    switch (VA.getLocInfo()) {
817    default: llvm_unreachable("Unknown loc info!");
818    case CCValAssign::Full: break;
819    case CCValAssign::BCvt:
820      Val = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), Val);
821      break;
822    }
823
824    InVals.push_back(Val);
825  }
826
827  return Chain;
828}
829
830/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
831/// by "Src" to address "Dst" of size "Size".  Alignment information is
832/// specified by the specific parameter attribute.  The copy will be passed as
833/// a byval function parameter.
834/// Sometimes what we are copying is the end of a larger object, the part that
835/// does not fit in registers.
836static SDValue
837CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
838                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
839                          DebugLoc dl) {
840  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
841  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
842                       /*AlwaysInline=*/false, NULL, 0, NULL, 0);
843}
844
845/// LowerMemOpCallTo - Store the argument to the stack.
846SDValue
847ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
848                                    SDValue StackPtr, SDValue Arg,
849                                    DebugLoc dl, SelectionDAG &DAG,
850                                    const CCValAssign &VA,
851                                    ISD::ArgFlagsTy Flags) {
852  unsigned LocMemOffset = VA.getLocMemOffset();
853  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
854  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
855  if (Flags.isByVal()) {
856    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
857  }
858  return DAG.getStore(Chain, dl, Arg, PtrOff,
859                      PseudoSourceValue::getStack(), LocMemOffset);
860}
861
862void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
863                                         SDValue Chain, SDValue &Arg,
864                                         RegsToPassVector &RegsToPass,
865                                         CCValAssign &VA, CCValAssign &NextVA,
866                                         SDValue &StackPtr,
867                                         SmallVector<SDValue, 8> &MemOpChains,
868                                         ISD::ArgFlagsTy Flags) {
869
870  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
871                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
872  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
873
874  if (NextVA.isRegLoc())
875    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
876  else {
877    assert(NextVA.isMemLoc());
878    if (StackPtr.getNode() == 0)
879      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
880
881    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
882                                           dl, DAG, NextVA,
883                                           Flags));
884  }
885}
886
887/// LowerCall - Lowering a call into a callseq_start <-
888/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
889/// nodes.
890SDValue
891ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
892                             CallingConv::ID CallConv, bool isVarArg,
893                             bool isTailCall,
894                             const SmallVectorImpl<ISD::OutputArg> &Outs,
895                             const SmallVectorImpl<ISD::InputArg> &Ins,
896                             DebugLoc dl, SelectionDAG &DAG,
897                             SmallVectorImpl<SDValue> &InVals) {
898
899  // Analyze operands of the call, assigning locations to each operand.
900  SmallVector<CCValAssign, 16> ArgLocs;
901  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
902                 *DAG.getContext());
903  CCInfo.AnalyzeCallOperands(Outs,
904                             CCAssignFnForNode(CallConv, /* Return*/ false,
905                                               isVarArg));
906
907  // Get a count of how many bytes are to be pushed on the stack.
908  unsigned NumBytes = CCInfo.getNextStackOffset();
909
910  // Adjust the stack pointer for the new arguments...
911  // These operations are automatically eliminated by the prolog/epilog pass
912  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
913
914  SDValue StackPtr = DAG.getRegister(ARM::SP, MVT::i32);
915
916  RegsToPassVector RegsToPass;
917  SmallVector<SDValue, 8> MemOpChains;
918
919  // Walk the register/memloc assignments, inserting copies/loads.  In the case
920  // of tail call optimization, arguments are handled later.
921  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
922       i != e;
923       ++i, ++realArgIdx) {
924    CCValAssign &VA = ArgLocs[i];
925    SDValue Arg = Outs[realArgIdx].Val;
926    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
927
928    // Promote the value if needed.
929    switch (VA.getLocInfo()) {
930    default: llvm_unreachable("Unknown loc info!");
931    case CCValAssign::Full: break;
932    case CCValAssign::SExt:
933      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
934      break;
935    case CCValAssign::ZExt:
936      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
937      break;
938    case CCValAssign::AExt:
939      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
940      break;
941    case CCValAssign::BCvt:
942      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
943      break;
944    }
945
946    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
947    if (VA.needsCustom()) {
948      if (VA.getLocVT() == MVT::v2f64) {
949        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
950                                  DAG.getConstant(0, MVT::i32));
951        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
952                                  DAG.getConstant(1, MVT::i32));
953
954        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
955                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
956
957        VA = ArgLocs[++i]; // skip ahead to next loc
958        if (VA.isRegLoc()) {
959          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
960                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
961        } else {
962          assert(VA.isMemLoc());
963          if (StackPtr.getNode() == 0)
964            StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
965
966          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
967                                                 dl, DAG, VA, Flags));
968        }
969      } else {
970        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
971                         StackPtr, MemOpChains, Flags);
972      }
973    } else if (VA.isRegLoc()) {
974      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
975    } else {
976      assert(VA.isMemLoc());
977      if (StackPtr.getNode() == 0)
978        StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
979
980      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
981                                             dl, DAG, VA, Flags));
982    }
983  }
984
985  if (!MemOpChains.empty())
986    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
987                        &MemOpChains[0], MemOpChains.size());
988
989  // Build a sequence of copy-to-reg nodes chained together with token chain
990  // and flag operands which copy the outgoing args into the appropriate regs.
991  SDValue InFlag;
992  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
993    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
994                             RegsToPass[i].second, InFlag);
995    InFlag = Chain.getValue(1);
996  }
997
998  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
999  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1000  // node so that legalize doesn't hack it.
1001  bool isDirect = false;
1002  bool isARMFunc = false;
1003  bool isLocalARMFunc = false;
1004  MachineFunction &MF = DAG.getMachineFunction();
1005  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1006  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1007    GlobalValue *GV = G->getGlobal();
1008    isDirect = true;
1009    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1010    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1011                   getTargetMachine().getRelocationModel() != Reloc::Static;
1012    isARMFunc = !Subtarget->isThumb() || isStub;
1013    // ARM call to a local ARM function is predicable.
1014    isLocalARMFunc = !Subtarget->isThumb() && !isExt;
1015    // tBX takes a register source operand.
1016    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1017      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1018      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1019                                                           ARMPCLabelIndex,
1020                                                           ARMCP::CPValue, 4);
1021      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1022      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1023      Callee = DAG.getLoad(getPointerTy(), dl,
1024                           DAG.getEntryNode(), CPAddr,
1025                           PseudoSourceValue::getConstantPool(), 0);
1026      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1027      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1028                           getPointerTy(), Callee, PICLabel);
1029   } else
1030      Callee = DAG.getTargetGlobalAddress(GV, getPointerTy());
1031  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1032    isDirect = true;
1033    bool isStub = Subtarget->isTargetDarwin() &&
1034                  getTargetMachine().getRelocationModel() != Reloc::Static;
1035    isARMFunc = !Subtarget->isThumb() || isStub;
1036    // tBX takes a register source operand.
1037    const char *Sym = S->getSymbol();
1038    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1039      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1040      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1041                                                       Sym, ARMPCLabelIndex, 4);
1042      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1043      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1044      Callee = DAG.getLoad(getPointerTy(), dl,
1045                           DAG.getEntryNode(), CPAddr,
1046                           PseudoSourceValue::getConstantPool(), 0);
1047      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1048      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1049                           getPointerTy(), Callee, PICLabel);
1050    } else
1051      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
1052  }
1053
1054  // FIXME: handle tail calls differently.
1055  unsigned CallOpc;
1056  if (Subtarget->isThumb()) {
1057    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1058      CallOpc = ARMISD::CALL_NOLINK;
1059    else
1060      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1061  } else {
1062    CallOpc = (isDirect || Subtarget->hasV5TOps())
1063      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1064      : ARMISD::CALL_NOLINK;
1065  }
1066  if (CallOpc == ARMISD::CALL_NOLINK && !Subtarget->isThumb1Only()) {
1067    // implicit def LR - LR mustn't be allocated as GRP:$dst of CALL_NOLINK
1068    Chain = DAG.getCopyToReg(Chain, dl, ARM::LR, DAG.getUNDEF(MVT::i32),InFlag);
1069    InFlag = Chain.getValue(1);
1070  }
1071
1072  std::vector<SDValue> Ops;
1073  Ops.push_back(Chain);
1074  Ops.push_back(Callee);
1075
1076  // Add argument registers to the end of the list so that they are known live
1077  // into the call.
1078  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1079    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1080                                  RegsToPass[i].second.getValueType()));
1081
1082  if (InFlag.getNode())
1083    Ops.push_back(InFlag);
1084  // Returns a chain and a flag for retval copy to use.
1085  Chain = DAG.getNode(CallOpc, dl, DAG.getVTList(MVT::Other, MVT::Flag),
1086                      &Ops[0], Ops.size());
1087  InFlag = Chain.getValue(1);
1088
1089  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1090                             DAG.getIntPtrConstant(0, true), InFlag);
1091  if (!Ins.empty())
1092    InFlag = Chain.getValue(1);
1093
1094  // Handle result values, copying them out of physregs into vregs that we
1095  // return.
1096  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1097                         dl, DAG, InVals);
1098}
1099
1100SDValue
1101ARMTargetLowering::LowerReturn(SDValue Chain,
1102                               CallingConv::ID CallConv, bool isVarArg,
1103                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1104                               DebugLoc dl, SelectionDAG &DAG) {
1105
1106  // CCValAssign - represent the assignment of the return value to a location.
1107  SmallVector<CCValAssign, 16> RVLocs;
1108
1109  // CCState - Info about the registers and stack slots.
1110  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
1111                 *DAG.getContext());
1112
1113  // Analyze outgoing return values.
1114  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1115                                               isVarArg));
1116
1117  // If this is the first return lowered for this function, add
1118  // the regs to the liveout set for the function.
1119  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1120    for (unsigned i = 0; i != RVLocs.size(); ++i)
1121      if (RVLocs[i].isRegLoc())
1122        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1123  }
1124
1125  SDValue Flag;
1126
1127  // Copy the result values into the output registers.
1128  for (unsigned i = 0, realRVLocIdx = 0;
1129       i != RVLocs.size();
1130       ++i, ++realRVLocIdx) {
1131    CCValAssign &VA = RVLocs[i];
1132    assert(VA.isRegLoc() && "Can only return in registers!");
1133
1134    SDValue Arg = Outs[realRVLocIdx].Val;
1135
1136    switch (VA.getLocInfo()) {
1137    default: llvm_unreachable("Unknown loc info!");
1138    case CCValAssign::Full: break;
1139    case CCValAssign::BCvt:
1140      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
1141      break;
1142    }
1143
1144    if (VA.needsCustom()) {
1145      if (VA.getLocVT() == MVT::v2f64) {
1146        // Extract the first half and return it in two registers.
1147        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1148                                   DAG.getConstant(0, MVT::i32));
1149        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1150                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1151
1152        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1153        Flag = Chain.getValue(1);
1154        VA = RVLocs[++i]; // skip ahead to next loc
1155        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1156                                 HalfGPRs.getValue(1), Flag);
1157        Flag = Chain.getValue(1);
1158        VA = RVLocs[++i]; // skip ahead to next loc
1159
1160        // Extract the 2nd half and fall through to handle it as an f64 value.
1161        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1162                          DAG.getConstant(1, MVT::i32));
1163      }
1164      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1165      // available.
1166      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1167                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1168      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1169      Flag = Chain.getValue(1);
1170      VA = RVLocs[++i]; // skip ahead to next loc
1171      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1172                               Flag);
1173    } else
1174      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1175
1176    // Guarantee that all emitted copies are
1177    // stuck together, avoiding something bad.
1178    Flag = Chain.getValue(1);
1179  }
1180
1181  SDValue result;
1182  if (Flag.getNode())
1183    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1184  else // Return Void
1185    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1186
1187  return result;
1188}
1189
1190// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1191// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1192// one of the above mentioned nodes. It has to be wrapped because otherwise
1193// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1194// be used to form addressing mode. These wrapped nodes will be selected
1195// into MOVi.
1196static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1197  EVT PtrVT = Op.getValueType();
1198  // FIXME there is no actual debug info here
1199  DebugLoc dl = Op.getDebugLoc();
1200  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1201  SDValue Res;
1202  if (CP->isMachineConstantPoolEntry())
1203    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1204                                    CP->getAlignment());
1205  else
1206    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1207                                    CP->getAlignment());
1208  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1209}
1210
1211SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) {
1212  MachineFunction &MF = DAG.getMachineFunction();
1213  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1214  unsigned ARMPCLabelIndex = 0;
1215  DebugLoc DL = Op.getDebugLoc();
1216  EVT PtrVT = getPointerTy();
1217  BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1218  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1219  SDValue CPAddr;
1220  if (RelocM == Reloc::Static) {
1221    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
1222  } else {
1223    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1224    ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1225    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex,
1226                                                         ARMCP::CPBlockAddress,
1227                                                         PCAdj);
1228    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1229  }
1230  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
1231  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
1232                               PseudoSourceValue::getConstantPool(), 0);
1233  if (RelocM == Reloc::Static)
1234    return Result;
1235  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1236  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
1237}
1238
1239// Lower ISD::GlobalTLSAddress using the "general dynamic" model
1240SDValue
1241ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1242                                                 SelectionDAG &DAG) {
1243  DebugLoc dl = GA->getDebugLoc();
1244  EVT PtrVT = getPointerTy();
1245  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1246  MachineFunction &MF = DAG.getMachineFunction();
1247  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1248  unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1249  ARMConstantPoolValue *CPV =
1250    new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1251                             ARMCP::CPValue, PCAdj, "tlsgd", true);
1252  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1253  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1254  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
1255                         PseudoSourceValue::getConstantPool(), 0);
1256  SDValue Chain = Argument.getValue(1);
1257
1258  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1259  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1260
1261  // call __tls_get_addr.
1262  ArgListTy Args;
1263  ArgListEntry Entry;
1264  Entry.Node = Argument;
1265  Entry.Ty = (const Type *) Type::getInt32Ty(*DAG.getContext());
1266  Args.push_back(Entry);
1267  // FIXME: is there useful debug info available here?
1268  std::pair<SDValue, SDValue> CallResult =
1269    LowerCallTo(Chain, (const Type *) Type::getInt32Ty(*DAG.getContext()),
1270                false, false, false, false,
1271                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
1272                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
1273  return CallResult.first;
1274}
1275
1276// Lower ISD::GlobalTLSAddress using the "initial exec" or
1277// "local exec" model.
1278SDValue
1279ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
1280                                        SelectionDAG &DAG) {
1281  GlobalValue *GV = GA->getGlobal();
1282  DebugLoc dl = GA->getDebugLoc();
1283  SDValue Offset;
1284  SDValue Chain = DAG.getEntryNode();
1285  EVT PtrVT = getPointerTy();
1286  // Get the Thread Pointer
1287  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1288
1289  if (GV->isDeclaration()) {
1290    MachineFunction &MF = DAG.getMachineFunction();
1291    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1292    unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1293    // Initial exec model.
1294    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1295    ARMConstantPoolValue *CPV =
1296      new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1297                               ARMCP::CPValue, PCAdj, "gottpoff", true);
1298    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1299    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1300    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1301                         PseudoSourceValue::getConstantPool(), 0);
1302    Chain = Offset.getValue(1);
1303
1304    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1305    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
1306
1307    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1308                         PseudoSourceValue::getConstantPool(), 0);
1309  } else {
1310    // local exec model
1311    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, "tpoff");
1312    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1313    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1314    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1315                         PseudoSourceValue::getConstantPool(), 0);
1316  }
1317
1318  // The address of the thread local variable is the add of the thread
1319  // pointer with the offset of the variable.
1320  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1321}
1322
1323SDValue
1324ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
1325  // TODO: implement the "local dynamic" model
1326  assert(Subtarget->isTargetELF() &&
1327         "TLS not implemented for non-ELF targets");
1328  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1329  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
1330  // otherwise use the "Local Exec" TLS Model
1331  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
1332    return LowerToTLSGeneralDynamicModel(GA, DAG);
1333  else
1334    return LowerToTLSExecModels(GA, DAG);
1335}
1336
1337SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
1338                                                 SelectionDAG &DAG) {
1339  EVT PtrVT = getPointerTy();
1340  DebugLoc dl = Op.getDebugLoc();
1341  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1342  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1343  if (RelocM == Reloc::PIC_) {
1344    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
1345    ARMConstantPoolValue *CPV =
1346      new ARMConstantPoolValue(GV, UseGOTOFF ? "GOTOFF" : "GOT");
1347    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1348    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1349    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
1350                                 CPAddr,
1351                                 PseudoSourceValue::getConstantPool(), 0);
1352    SDValue Chain = Result.getValue(1);
1353    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1354    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
1355    if (!UseGOTOFF)
1356      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
1357                           PseudoSourceValue::getGOT(), 0);
1358    return Result;
1359  } else {
1360    // If we have T2 ops, we can materialize the address directly via movt/movw
1361    // pair. This is always cheaper.
1362    if (Subtarget->useMovt()) {
1363      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
1364                         DAG.getTargetGlobalAddress(GV, PtrVT));
1365    } else {
1366      SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1367      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1368      return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1369                         PseudoSourceValue::getConstantPool(), 0);
1370    }
1371  }
1372}
1373
1374SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
1375                                                    SelectionDAG &DAG) {
1376  MachineFunction &MF = DAG.getMachineFunction();
1377  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1378  unsigned ARMPCLabelIndex = 0;
1379  EVT PtrVT = getPointerTy();
1380  DebugLoc dl = Op.getDebugLoc();
1381  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1382  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1383  SDValue CPAddr;
1384  if (RelocM == Reloc::Static)
1385    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1386  else {
1387    ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1388    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
1389    ARMConstantPoolValue *CPV =
1390      new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj);
1391    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1392  }
1393  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1394
1395  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1396                               PseudoSourceValue::getConstantPool(), 0);
1397  SDValue Chain = Result.getValue(1);
1398
1399  if (RelocM == Reloc::PIC_) {
1400    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1401    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1402  }
1403
1404  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
1405    Result = DAG.getLoad(PtrVT, dl, Chain, Result,
1406                         PseudoSourceValue::getGOT(), 0);
1407
1408  return Result;
1409}
1410
1411SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
1412                                                    SelectionDAG &DAG){
1413  assert(Subtarget->isTargetELF() &&
1414         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
1415  MachineFunction &MF = DAG.getMachineFunction();
1416  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1417  unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1418  EVT PtrVT = getPointerTy();
1419  DebugLoc dl = Op.getDebugLoc();
1420  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1421  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1422                                                       "_GLOBAL_OFFSET_TABLE_",
1423                                                       ARMPCLabelIndex, PCAdj);
1424  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1425  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1426  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1427                               PseudoSourceValue::getConstantPool(), 0);
1428  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1429  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1430}
1431
1432SDValue
1433ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
1434  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1435  DebugLoc dl = Op.getDebugLoc();
1436  switch (IntNo) {
1437  default: return SDValue();    // Don't custom lower most intrinsics.
1438  case Intrinsic::arm_thread_pointer: {
1439    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1440    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1441  }
1442  case Intrinsic::eh_sjlj_lsda: {
1443    MachineFunction &MF = DAG.getMachineFunction();
1444    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1445    unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1446    EVT PtrVT = getPointerTy();
1447    DebugLoc dl = Op.getDebugLoc();
1448    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1449    SDValue CPAddr;
1450    unsigned PCAdj = (RelocM != Reloc::PIC_)
1451      ? 0 : (Subtarget->isThumb() ? 4 : 8);
1452    ARMConstantPoolValue *CPV =
1453      new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex,
1454                               ARMCP::CPLSDA, PCAdj);
1455    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1456    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1457    SDValue Result =
1458      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1459                  PseudoSourceValue::getConstantPool(), 0);
1460    SDValue Chain = Result.getValue(1);
1461
1462    if (RelocM == Reloc::PIC_) {
1463      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1464      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1465    }
1466    return Result;
1467  }
1468  case Intrinsic::eh_sjlj_setjmp:
1469    return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(1));
1470  }
1471}
1472
1473static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
1474                            unsigned VarArgsFrameIndex) {
1475  // vastart just stores the address of the VarArgsFrameIndex slot into the
1476  // memory location argument.
1477  DebugLoc dl = Op.getDebugLoc();
1478  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1479  SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1480  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1481  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
1482}
1483
1484SDValue
1485ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) {
1486  SDNode *Node = Op.getNode();
1487  DebugLoc dl = Node->getDebugLoc();
1488  EVT VT = Node->getValueType(0);
1489  SDValue Chain = Op.getOperand(0);
1490  SDValue Size  = Op.getOperand(1);
1491  SDValue Align = Op.getOperand(2);
1492
1493  // Chain the dynamic stack allocation so that it doesn't modify the stack
1494  // pointer when other instructions are using the stack.
1495  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1496
1497  unsigned AlignVal = cast<ConstantSDNode>(Align)->getZExtValue();
1498  unsigned StackAlign = getTargetMachine().getFrameInfo()->getStackAlignment();
1499  if (AlignVal > StackAlign)
1500    // Do this now since selection pass cannot introduce new target
1501    // independent node.
1502    Align = DAG.getConstant(-(uint64_t)AlignVal, VT);
1503
1504  // In Thumb1 mode, there isn't a "sub r, sp, r" instruction, we will end up
1505  // using a "add r, sp, r" instead. Negate the size now so we don't have to
1506  // do even more horrible hack later.
1507  MachineFunction &MF = DAG.getMachineFunction();
1508  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1509  if (AFI->isThumb1OnlyFunction()) {
1510    bool Negate = true;
1511    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Size);
1512    if (C) {
1513      uint32_t Val = C->getZExtValue();
1514      if (Val <= 508 && ((Val & 3) == 0))
1515        Negate = false;
1516    }
1517    if (Negate)
1518      Size = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, VT), Size);
1519  }
1520
1521  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
1522  SDValue Ops1[] = { Chain, Size, Align };
1523  SDValue Res = DAG.getNode(ARMISD::DYN_ALLOC, dl, VTList, Ops1, 3);
1524  Chain = Res.getValue(1);
1525  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
1526                             DAG.getIntPtrConstant(0, true), SDValue());
1527  SDValue Ops2[] = { Res, Chain };
1528  return DAG.getMergeValues(Ops2, 2, dl);
1529}
1530
1531SDValue
1532ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
1533                                        SDValue &Root, SelectionDAG &DAG,
1534                                        DebugLoc dl) {
1535  MachineFunction &MF = DAG.getMachineFunction();
1536  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1537
1538  TargetRegisterClass *RC;
1539  if (AFI->isThumb1OnlyFunction())
1540    RC = ARM::tGPRRegisterClass;
1541  else
1542    RC = ARM::GPRRegisterClass;
1543
1544  // Transform the arguments stored in physical registers into virtual ones.
1545  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1546  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
1547
1548  SDValue ArgValue2;
1549  if (NextVA.isMemLoc()) {
1550    unsigned ArgSize = NextVA.getLocVT().getSizeInBits()/8;
1551    MachineFrameInfo *MFI = MF.getFrameInfo();
1552    int FI = MFI->CreateFixedObject(ArgSize, NextVA.getLocMemOffset(),
1553                                    true, false);
1554
1555    // Create load node to retrieve arguments from the stack.
1556    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1557    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
1558                            PseudoSourceValue::getFixedStack(FI), 0);
1559  } else {
1560    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
1561    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
1562  }
1563
1564  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
1565}
1566
1567SDValue
1568ARMTargetLowering::LowerFormalArguments(SDValue Chain,
1569                                        CallingConv::ID CallConv, bool isVarArg,
1570                                        const SmallVectorImpl<ISD::InputArg>
1571                                          &Ins,
1572                                        DebugLoc dl, SelectionDAG &DAG,
1573                                        SmallVectorImpl<SDValue> &InVals) {
1574
1575  MachineFunction &MF = DAG.getMachineFunction();
1576  MachineFrameInfo *MFI = MF.getFrameInfo();
1577
1578  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1579
1580  // Assign locations to all of the incoming arguments.
1581  SmallVector<CCValAssign, 16> ArgLocs;
1582  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1583                 *DAG.getContext());
1584  CCInfo.AnalyzeFormalArguments(Ins,
1585                                CCAssignFnForNode(CallConv, /* Return*/ false,
1586                                                  isVarArg));
1587
1588  SmallVector<SDValue, 16> ArgValues;
1589
1590  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1591    CCValAssign &VA = ArgLocs[i];
1592
1593    // Arguments stored in registers.
1594    if (VA.isRegLoc()) {
1595      EVT RegVT = VA.getLocVT();
1596
1597      SDValue ArgValue;
1598      if (VA.needsCustom()) {
1599        // f64 and vector types are split up into multiple registers or
1600        // combinations of registers and stack slots.
1601        RegVT = MVT::i32;
1602
1603        if (VA.getLocVT() == MVT::v2f64) {
1604          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
1605                                                   Chain, DAG, dl);
1606          VA = ArgLocs[++i]; // skip ahead to next loc
1607          SDValue ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
1608                                                   Chain, DAG, dl);
1609          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1610          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
1611                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
1612          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
1613                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
1614        } else
1615          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
1616
1617      } else {
1618        TargetRegisterClass *RC;
1619
1620        if (RegVT == MVT::f32)
1621          RC = ARM::SPRRegisterClass;
1622        else if (RegVT == MVT::f64)
1623          RC = ARM::DPRRegisterClass;
1624        else if (RegVT == MVT::v2f64)
1625          RC = ARM::QPRRegisterClass;
1626        else if (RegVT == MVT::i32)
1627          RC = (AFI->isThumb1OnlyFunction() ?
1628                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
1629        else
1630          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
1631
1632        // Transform the arguments in physical registers into virtual ones.
1633        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1634        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1635      }
1636
1637      // If this is an 8 or 16-bit value, it is really passed promoted
1638      // to 32 bits.  Insert an assert[sz]ext to capture this, then
1639      // truncate to the right size.
1640      switch (VA.getLocInfo()) {
1641      default: llvm_unreachable("Unknown loc info!");
1642      case CCValAssign::Full: break;
1643      case CCValAssign::BCvt:
1644        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1645        break;
1646      case CCValAssign::SExt:
1647        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1648                               DAG.getValueType(VA.getValVT()));
1649        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1650        break;
1651      case CCValAssign::ZExt:
1652        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1653                               DAG.getValueType(VA.getValVT()));
1654        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1655        break;
1656      }
1657
1658      InVals.push_back(ArgValue);
1659
1660    } else { // VA.isRegLoc()
1661
1662      // sanity check
1663      assert(VA.isMemLoc());
1664      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
1665
1666      unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
1667      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1668                                      true, false);
1669
1670      // Create load nodes to retrieve arguments from the stack.
1671      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1672      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
1673                                   PseudoSourceValue::getFixedStack(FI), 0));
1674    }
1675  }
1676
1677  // varargs
1678  if (isVarArg) {
1679    static const unsigned GPRArgRegs[] = {
1680      ARM::R0, ARM::R1, ARM::R2, ARM::R3
1681    };
1682
1683    unsigned NumGPRs = CCInfo.getFirstUnallocated
1684      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
1685
1686    unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
1687    unsigned VARegSize = (4 - NumGPRs) * 4;
1688    unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
1689    unsigned ArgOffset = CCInfo.getNextStackOffset();
1690    if (VARegSaveSize) {
1691      // If this function is vararg, store any remaining integer argument regs
1692      // to their spots on the stack so that they may be loaded by deferencing
1693      // the result of va_next.
1694      AFI->setVarArgsRegSaveSize(VARegSaveSize);
1695      VarArgsFrameIndex = MFI->CreateFixedObject(VARegSaveSize, ArgOffset +
1696                                                 VARegSaveSize - VARegSize,
1697                                                 true, false);
1698      SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
1699
1700      SmallVector<SDValue, 4> MemOps;
1701      for (; NumGPRs < 4; ++NumGPRs) {
1702        TargetRegisterClass *RC;
1703        if (AFI->isThumb1OnlyFunction())
1704          RC = ARM::tGPRRegisterClass;
1705        else
1706          RC = ARM::GPRRegisterClass;
1707
1708        unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
1709        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1710        SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1711                        PseudoSourceValue::getFixedStack(VarArgsFrameIndex), 0);
1712        MemOps.push_back(Store);
1713        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
1714                          DAG.getConstant(4, getPointerTy()));
1715      }
1716      if (!MemOps.empty())
1717        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1718                            &MemOps[0], MemOps.size());
1719    } else
1720      // This will point to the next argument passed via stack.
1721      VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset, true, false);
1722  }
1723
1724  return Chain;
1725}
1726
1727/// isFloatingPointZero - Return true if this is +0.0.
1728static bool isFloatingPointZero(SDValue Op) {
1729  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1730    return CFP->getValueAPF().isPosZero();
1731  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1732    // Maybe this has already been legalized into the constant pool?
1733    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
1734      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
1735      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
1736        if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1737          return CFP->getValueAPF().isPosZero();
1738    }
1739  }
1740  return false;
1741}
1742
1743/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
1744/// the given operands.
1745SDValue
1746ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1747                             SDValue &ARMCC, SelectionDAG &DAG, DebugLoc dl) {
1748  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1749    unsigned C = RHSC->getZExtValue();
1750    if (!isLegalICmpImmediate(C)) {
1751      // Constant does not fit, try adjusting it by one?
1752      switch (CC) {
1753      default: break;
1754      case ISD::SETLT:
1755      case ISD::SETGE:
1756        if (isLegalICmpImmediate(C-1)) {
1757          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1758          RHS = DAG.getConstant(C-1, MVT::i32);
1759        }
1760        break;
1761      case ISD::SETULT:
1762      case ISD::SETUGE:
1763        if (C > 0 && isLegalICmpImmediate(C-1)) {
1764          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1765          RHS = DAG.getConstant(C-1, MVT::i32);
1766        }
1767        break;
1768      case ISD::SETLE:
1769      case ISD::SETGT:
1770        if (isLegalICmpImmediate(C+1)) {
1771          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1772          RHS = DAG.getConstant(C+1, MVT::i32);
1773        }
1774        break;
1775      case ISD::SETULE:
1776      case ISD::SETUGT:
1777        if (C < 0xffffffff && isLegalICmpImmediate(C+1)) {
1778          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1779          RHS = DAG.getConstant(C+1, MVT::i32);
1780        }
1781        break;
1782      }
1783    }
1784  }
1785
1786  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
1787  ARMISD::NodeType CompareType;
1788  switch (CondCode) {
1789  default:
1790    CompareType = ARMISD::CMP;
1791    break;
1792  case ARMCC::EQ:
1793  case ARMCC::NE:
1794    // Uses only Z Flag
1795    CompareType = ARMISD::CMPZ;
1796    break;
1797  }
1798  ARMCC = DAG.getConstant(CondCode, MVT::i32);
1799  return DAG.getNode(CompareType, dl, MVT::Flag, LHS, RHS);
1800}
1801
1802/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
1803static SDValue getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
1804                         DebugLoc dl) {
1805  SDValue Cmp;
1806  if (!isFloatingPointZero(RHS))
1807    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Flag, LHS, RHS);
1808  else
1809    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Flag, LHS);
1810  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Flag, Cmp);
1811}
1812
1813SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
1814  EVT VT = Op.getValueType();
1815  SDValue LHS = Op.getOperand(0);
1816  SDValue RHS = Op.getOperand(1);
1817  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1818  SDValue TrueVal = Op.getOperand(2);
1819  SDValue FalseVal = Op.getOperand(3);
1820  DebugLoc dl = Op.getDebugLoc();
1821
1822  if (LHS.getValueType() == MVT::i32) {
1823    SDValue ARMCC;
1824    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1825    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, dl);
1826    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMCC, CCR,Cmp);
1827  }
1828
1829  ARMCC::CondCodes CondCode, CondCode2;
1830  FPCCToARMCC(CC, CondCode, CondCode2);
1831
1832  SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
1833  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1834  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
1835  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
1836                                 ARMCC, CCR, Cmp);
1837  if (CondCode2 != ARMCC::AL) {
1838    SDValue ARMCC2 = DAG.getConstant(CondCode2, MVT::i32);
1839    // FIXME: Needs another CMP because flag can have but one use.
1840    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
1841    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
1842                         Result, TrueVal, ARMCC2, CCR, Cmp2);
1843  }
1844  return Result;
1845}
1846
1847SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) {
1848  SDValue  Chain = Op.getOperand(0);
1849  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1850  SDValue    LHS = Op.getOperand(2);
1851  SDValue    RHS = Op.getOperand(3);
1852  SDValue   Dest = Op.getOperand(4);
1853  DebugLoc dl = Op.getDebugLoc();
1854
1855  if (LHS.getValueType() == MVT::i32) {
1856    SDValue ARMCC;
1857    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1858    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, dl);
1859    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
1860                       Chain, Dest, ARMCC, CCR,Cmp);
1861  }
1862
1863  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
1864  ARMCC::CondCodes CondCode, CondCode2;
1865  FPCCToARMCC(CC, CondCode, CondCode2);
1866
1867  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
1868  SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
1869  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1870  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
1871  SDValue Ops[] = { Chain, Dest, ARMCC, CCR, Cmp };
1872  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
1873  if (CondCode2 != ARMCC::AL) {
1874    ARMCC = DAG.getConstant(CondCode2, MVT::i32);
1875    SDValue Ops[] = { Res, Dest, ARMCC, CCR, Res.getValue(1) };
1876    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
1877  }
1878  return Res;
1879}
1880
1881SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) {
1882  SDValue Chain = Op.getOperand(0);
1883  SDValue Table = Op.getOperand(1);
1884  SDValue Index = Op.getOperand(2);
1885  DebugLoc dl = Op.getDebugLoc();
1886
1887  EVT PTy = getPointerTy();
1888  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
1889  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
1890  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
1891  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
1892  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
1893  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
1894  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
1895  if (Subtarget->isThumb2()) {
1896    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
1897    // which does another jump to the destination. This also makes it easier
1898    // to translate it to TBB / TBH later.
1899    // FIXME: This might not work if the function is extremely large.
1900    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
1901                       Addr, Op.getOperand(2), JTI, UId);
1902  }
1903  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
1904    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
1905                       PseudoSourceValue::getJumpTable(), 0);
1906    Chain = Addr.getValue(1);
1907    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
1908    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
1909  } else {
1910    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
1911                       PseudoSourceValue::getJumpTable(), 0);
1912    Chain = Addr.getValue(1);
1913    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
1914  }
1915}
1916
1917static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1918  DebugLoc dl = Op.getDebugLoc();
1919  unsigned Opc =
1920    Op.getOpcode() == ISD::FP_TO_SINT ? ARMISD::FTOSI : ARMISD::FTOUI;
1921  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
1922  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
1923}
1924
1925static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1926  EVT VT = Op.getValueType();
1927  DebugLoc dl = Op.getDebugLoc();
1928  unsigned Opc =
1929    Op.getOpcode() == ISD::SINT_TO_FP ? ARMISD::SITOF : ARMISD::UITOF;
1930
1931  Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Op.getOperand(0));
1932  return DAG.getNode(Opc, dl, VT, Op);
1933}
1934
1935static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
1936  // Implement fcopysign with a fabs and a conditional fneg.
1937  SDValue Tmp0 = Op.getOperand(0);
1938  SDValue Tmp1 = Op.getOperand(1);
1939  DebugLoc dl = Op.getDebugLoc();
1940  EVT VT = Op.getValueType();
1941  EVT SrcVT = Tmp1.getValueType();
1942  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0);
1943  SDValue Cmp = getVFPCmp(Tmp1, DAG.getConstantFP(0.0, SrcVT), DAG, dl);
1944  SDValue ARMCC = DAG.getConstant(ARMCC::LT, MVT::i32);
1945  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1946  return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMCC, CCR, Cmp);
1947}
1948
1949SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
1950  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1951  MFI->setFrameAddressIsTaken(true);
1952  EVT VT = Op.getValueType();
1953  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
1954  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1955  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
1956    ? ARM::R7 : ARM::R11;
1957  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
1958  while (Depth--)
1959    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0);
1960  return FrameAddr;
1961}
1962
1963SDValue
1964ARMTargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
1965                                           SDValue Chain,
1966                                           SDValue Dst, SDValue Src,
1967                                           SDValue Size, unsigned Align,
1968                                           bool AlwaysInline,
1969                                         const Value *DstSV, uint64_t DstSVOff,
1970                                         const Value *SrcSV, uint64_t SrcSVOff){
1971  // Do repeated 4-byte loads and stores. To be improved.
1972  // This requires 4-byte alignment.
1973  if ((Align & 3) != 0)
1974    return SDValue();
1975  // This requires the copy size to be a constant, preferrably
1976  // within a subtarget-specific limit.
1977  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
1978  if (!ConstantSize)
1979    return SDValue();
1980  uint64_t SizeVal = ConstantSize->getZExtValue();
1981  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
1982    return SDValue();
1983
1984  unsigned BytesLeft = SizeVal & 3;
1985  unsigned NumMemOps = SizeVal >> 2;
1986  unsigned EmittedNumMemOps = 0;
1987  EVT VT = MVT::i32;
1988  unsigned VTSize = 4;
1989  unsigned i = 0;
1990  const unsigned MAX_LOADS_IN_LDM = 6;
1991  SDValue TFOps[MAX_LOADS_IN_LDM];
1992  SDValue Loads[MAX_LOADS_IN_LDM];
1993  uint64_t SrcOff = 0, DstOff = 0;
1994
1995  // Emit up to MAX_LOADS_IN_LDM loads, then a TokenFactor barrier, then the
1996  // same number of stores.  The loads and stores will get combined into
1997  // ldm/stm later on.
1998  while (EmittedNumMemOps < NumMemOps) {
1999    for (i = 0;
2000         i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
2001      Loads[i] = DAG.getLoad(VT, dl, Chain,
2002                             DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
2003                                         DAG.getConstant(SrcOff, MVT::i32)),
2004                             SrcSV, SrcSVOff + SrcOff);
2005      TFOps[i] = Loads[i].getValue(1);
2006      SrcOff += VTSize;
2007    }
2008    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
2009
2010    for (i = 0;
2011         i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
2012      TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
2013                           DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
2014                                       DAG.getConstant(DstOff, MVT::i32)),
2015                           DstSV, DstSVOff + DstOff);
2016      DstOff += VTSize;
2017    }
2018    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
2019
2020    EmittedNumMemOps += i;
2021  }
2022
2023  if (BytesLeft == 0)
2024    return Chain;
2025
2026  // Issue loads / stores for the trailing (1 - 3) bytes.
2027  unsigned BytesLeftSave = BytesLeft;
2028  i = 0;
2029  while (BytesLeft) {
2030    if (BytesLeft >= 2) {
2031      VT = MVT::i16;
2032      VTSize = 2;
2033    } else {
2034      VT = MVT::i8;
2035      VTSize = 1;
2036    }
2037
2038    Loads[i] = DAG.getLoad(VT, dl, Chain,
2039                           DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
2040                                       DAG.getConstant(SrcOff, MVT::i32)),
2041                           SrcSV, SrcSVOff + SrcOff);
2042    TFOps[i] = Loads[i].getValue(1);
2043    ++i;
2044    SrcOff += VTSize;
2045    BytesLeft -= VTSize;
2046  }
2047  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
2048
2049  i = 0;
2050  BytesLeft = BytesLeftSave;
2051  while (BytesLeft) {
2052    if (BytesLeft >= 2) {
2053      VT = MVT::i16;
2054      VTSize = 2;
2055    } else {
2056      VT = MVT::i8;
2057      VTSize = 1;
2058    }
2059
2060    TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
2061                            DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
2062                                        DAG.getConstant(DstOff, MVT::i32)),
2063                            DstSV, DstSVOff + DstOff);
2064    ++i;
2065    DstOff += VTSize;
2066    BytesLeft -= VTSize;
2067  }
2068  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
2069}
2070
2071static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) {
2072  SDValue Op = N->getOperand(0);
2073  DebugLoc dl = N->getDebugLoc();
2074  if (N->getValueType(0) == MVT::f64) {
2075    // Turn i64->f64 into VMOVDRR.
2076    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2077                             DAG.getConstant(0, MVT::i32));
2078    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2079                             DAG.getConstant(1, MVT::i32));
2080    return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
2081  }
2082
2083  // Turn f64->i64 into VMOVRRD.
2084  SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
2085                            DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
2086
2087  // Merge the pieces into a single i64 value.
2088  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
2089}
2090
2091/// getZeroVector - Returns a vector of specified type with all zero elements.
2092///
2093static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2094  assert(VT.isVector() && "Expected a vector type");
2095
2096  // Zero vectors are used to represent vector negation and in those cases
2097  // will be implemented with the NEON VNEG instruction.  However, VNEG does
2098  // not support i64 elements, so sometimes the zero vectors will need to be
2099  // explicitly constructed.  For those cases, and potentially other uses in
2100  // the future, always build zero vectors as <16 x i8> or <8 x i8> bitcasted
2101  // to their dest type.  This ensures they get CSE'd.
2102  SDValue Vec;
2103  SDValue Cst = DAG.getTargetConstant(0, MVT::i8);
2104  SmallVector<SDValue, 8> Ops;
2105  MVT TVT;
2106
2107  if (VT.getSizeInBits() == 64) {
2108    Ops.assign(8, Cst); TVT = MVT::v8i8;
2109  } else {
2110    Ops.assign(16, Cst); TVT = MVT::v16i8;
2111  }
2112  Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, TVT, &Ops[0], Ops.size());
2113
2114  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2115}
2116
2117/// getOnesVector - Returns a vector of specified type with all bits set.
2118///
2119static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2120  assert(VT.isVector() && "Expected a vector type");
2121
2122  // Always build ones vectors as <16 x i8> or <8 x i8> bitcasted to their
2123  // dest type. This ensures they get CSE'd.
2124  SDValue Vec;
2125  SDValue Cst = DAG.getTargetConstant(0xFF, MVT::i8);
2126  SmallVector<SDValue, 8> Ops;
2127  MVT TVT;
2128
2129  if (VT.getSizeInBits() == 64) {
2130    Ops.assign(8, Cst); TVT = MVT::v8i8;
2131  } else {
2132    Ops.assign(16, Cst); TVT = MVT::v16i8;
2133  }
2134  Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, TVT, &Ops[0], Ops.size());
2135
2136  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2137}
2138
2139/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
2140/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2141SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op, SelectionDAG &DAG) {
2142  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2143  EVT VT = Op.getValueType();
2144  unsigned VTBits = VT.getSizeInBits();
2145  DebugLoc dl = Op.getDebugLoc();
2146  SDValue ShOpLo = Op.getOperand(0);
2147  SDValue ShOpHi = Op.getOperand(1);
2148  SDValue ShAmt  = Op.getOperand(2);
2149  SDValue ARMCC;
2150  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
2151
2152  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
2153
2154  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2155                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2156  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
2157  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2158                                   DAG.getConstant(VTBits, MVT::i32));
2159  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
2160  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2161  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
2162
2163  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2164  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2165                          ARMCC, DAG, dl);
2166  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2167  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMCC,
2168                           CCR, Cmp);
2169
2170  SDValue Ops[2] = { Lo, Hi };
2171  return DAG.getMergeValues(Ops, 2, dl);
2172}
2173
2174/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
2175/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2176SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op, SelectionDAG &DAG) {
2177  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2178  EVT VT = Op.getValueType();
2179  unsigned VTBits = VT.getSizeInBits();
2180  DebugLoc dl = Op.getDebugLoc();
2181  SDValue ShOpLo = Op.getOperand(0);
2182  SDValue ShOpHi = Op.getOperand(1);
2183  SDValue ShAmt  = Op.getOperand(2);
2184  SDValue ARMCC;
2185
2186  assert(Op.getOpcode() == ISD::SHL_PARTS);
2187  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2188                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2189  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
2190  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2191                                   DAG.getConstant(VTBits, MVT::i32));
2192  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
2193  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
2194
2195  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2196  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2197  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2198                          ARMCC, DAG, dl);
2199  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2200  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMCC,
2201                           CCR, Cmp);
2202
2203  SDValue Ops[2] = { Lo, Hi };
2204  return DAG.getMergeValues(Ops, 2, dl);
2205}
2206
2207static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
2208                          const ARMSubtarget *ST) {
2209  EVT VT = N->getValueType(0);
2210  DebugLoc dl = N->getDebugLoc();
2211
2212  // Lower vector shifts on NEON to use VSHL.
2213  if (VT.isVector()) {
2214    assert(ST->hasNEON() && "unexpected vector shift");
2215
2216    // Left shifts translate directly to the vshiftu intrinsic.
2217    if (N->getOpcode() == ISD::SHL)
2218      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2219                         DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
2220                         N->getOperand(0), N->getOperand(1));
2221
2222    assert((N->getOpcode() == ISD::SRA ||
2223            N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
2224
2225    // NEON uses the same intrinsics for both left and right shifts.  For
2226    // right shifts, the shift amounts are negative, so negate the vector of
2227    // shift amounts.
2228    EVT ShiftVT = N->getOperand(1).getValueType();
2229    SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
2230                                       getZeroVector(ShiftVT, DAG, dl),
2231                                       N->getOperand(1));
2232    Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
2233                               Intrinsic::arm_neon_vshifts :
2234                               Intrinsic::arm_neon_vshiftu);
2235    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2236                       DAG.getConstant(vshiftInt, MVT::i32),
2237                       N->getOperand(0), NegatedCount);
2238  }
2239
2240  // We can get here for a node like i32 = ISD::SHL i32, i64
2241  if (VT != MVT::i64)
2242    return SDValue();
2243
2244  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
2245         "Unknown shift to lower!");
2246
2247  // We only lower SRA, SRL of 1 here, all others use generic lowering.
2248  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
2249      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
2250    return SDValue();
2251
2252  // If we are in thumb mode, we don't have RRX.
2253  if (ST->isThumb1Only()) return SDValue();
2254
2255  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
2256  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2257                             DAG.getConstant(0, MVT::i32));
2258  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2259                             DAG.getConstant(1, MVT::i32));
2260
2261  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
2262  // captures the result into a carry flag.
2263  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
2264  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1);
2265
2266  // The low part is an ARMISD::RRX operand, which shifts the carry in.
2267  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
2268
2269  // Merge the pieces into a single i64 value.
2270 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
2271}
2272
2273static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
2274  SDValue TmpOp0, TmpOp1;
2275  bool Invert = false;
2276  bool Swap = false;
2277  unsigned Opc = 0;
2278
2279  SDValue Op0 = Op.getOperand(0);
2280  SDValue Op1 = Op.getOperand(1);
2281  SDValue CC = Op.getOperand(2);
2282  EVT VT = Op.getValueType();
2283  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
2284  DebugLoc dl = Op.getDebugLoc();
2285
2286  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
2287    switch (SetCCOpcode) {
2288    default: llvm_unreachable("Illegal FP comparison"); break;
2289    case ISD::SETUNE:
2290    case ISD::SETNE:  Invert = true; // Fallthrough
2291    case ISD::SETOEQ:
2292    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2293    case ISD::SETOLT:
2294    case ISD::SETLT: Swap = true; // Fallthrough
2295    case ISD::SETOGT:
2296    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2297    case ISD::SETOLE:
2298    case ISD::SETLE:  Swap = true; // Fallthrough
2299    case ISD::SETOGE:
2300    case ISD::SETGE: Opc = ARMISD::VCGE; break;
2301    case ISD::SETUGE: Swap = true; // Fallthrough
2302    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
2303    case ISD::SETUGT: Swap = true; // Fallthrough
2304    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
2305    case ISD::SETUEQ: Invert = true; // Fallthrough
2306    case ISD::SETONE:
2307      // Expand this to (OLT | OGT).
2308      TmpOp0 = Op0;
2309      TmpOp1 = Op1;
2310      Opc = ISD::OR;
2311      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2312      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
2313      break;
2314    case ISD::SETUO: Invert = true; // Fallthrough
2315    case ISD::SETO:
2316      // Expand this to (OLT | OGE).
2317      TmpOp0 = Op0;
2318      TmpOp1 = Op1;
2319      Opc = ISD::OR;
2320      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2321      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
2322      break;
2323    }
2324  } else {
2325    // Integer comparisons.
2326    switch (SetCCOpcode) {
2327    default: llvm_unreachable("Illegal integer comparison"); break;
2328    case ISD::SETNE:  Invert = true;
2329    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2330    case ISD::SETLT:  Swap = true;
2331    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2332    case ISD::SETLE:  Swap = true;
2333    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
2334    case ISD::SETULT: Swap = true;
2335    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
2336    case ISD::SETULE: Swap = true;
2337    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
2338    }
2339
2340    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
2341    if (Opc == ARMISD::VCEQ) {
2342
2343      SDValue AndOp;
2344      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
2345        AndOp = Op0;
2346      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
2347        AndOp = Op1;
2348
2349      // Ignore bitconvert.
2350      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BIT_CONVERT)
2351        AndOp = AndOp.getOperand(0);
2352
2353      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
2354        Opc = ARMISD::VTST;
2355        Op0 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(0));
2356        Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(1));
2357        Invert = !Invert;
2358      }
2359    }
2360  }
2361
2362  if (Swap)
2363    std::swap(Op0, Op1);
2364
2365  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
2366
2367  if (Invert)
2368    Result = DAG.getNOT(dl, Result, VT);
2369
2370  return Result;
2371}
2372
2373/// isVMOVSplat - Check if the specified splat value corresponds to an immediate
2374/// VMOV instruction, and if so, return the constant being splatted.
2375static SDValue isVMOVSplat(uint64_t SplatBits, uint64_t SplatUndef,
2376                           unsigned SplatBitSize, SelectionDAG &DAG) {
2377  switch (SplatBitSize) {
2378  case 8:
2379    // Any 1-byte value is OK.
2380    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
2381    return DAG.getTargetConstant(SplatBits, MVT::i8);
2382
2383  case 16:
2384    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
2385    if ((SplatBits & ~0xff) == 0 ||
2386        (SplatBits & ~0xff00) == 0)
2387      return DAG.getTargetConstant(SplatBits, MVT::i16);
2388    break;
2389
2390  case 32:
2391    // NEON's 32-bit VMOV supports splat values where:
2392    // * only one byte is nonzero, or
2393    // * the least significant byte is 0xff and the second byte is nonzero, or
2394    // * the least significant 2 bytes are 0xff and the third is nonzero.
2395    if ((SplatBits & ~0xff) == 0 ||
2396        (SplatBits & ~0xff00) == 0 ||
2397        (SplatBits & ~0xff0000) == 0 ||
2398        (SplatBits & ~0xff000000) == 0)
2399      return DAG.getTargetConstant(SplatBits, MVT::i32);
2400
2401    if ((SplatBits & ~0xffff) == 0 &&
2402        ((SplatBits | SplatUndef) & 0xff) == 0xff)
2403      return DAG.getTargetConstant(SplatBits | 0xff, MVT::i32);
2404
2405    if ((SplatBits & ~0xffffff) == 0 &&
2406        ((SplatBits | SplatUndef) & 0xffff) == 0xffff)
2407      return DAG.getTargetConstant(SplatBits | 0xffff, MVT::i32);
2408
2409    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
2410    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
2411    // VMOV.I32.  A (very) minor optimization would be to replicate the value
2412    // and fall through here to test for a valid 64-bit splat.  But, then the
2413    // caller would also need to check and handle the change in size.
2414    break;
2415
2416  case 64: {
2417    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
2418    uint64_t BitMask = 0xff;
2419    uint64_t Val = 0;
2420    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
2421      if (((SplatBits | SplatUndef) & BitMask) == BitMask)
2422        Val |= BitMask;
2423      else if ((SplatBits & BitMask) != 0)
2424        return SDValue();
2425      BitMask <<= 8;
2426    }
2427    return DAG.getTargetConstant(Val, MVT::i64);
2428  }
2429
2430  default:
2431    llvm_unreachable("unexpected size for isVMOVSplat");
2432    break;
2433  }
2434
2435  return SDValue();
2436}
2437
2438/// getVMOVImm - If this is a build_vector of constants which can be
2439/// formed by using a VMOV instruction of the specified element size,
2440/// return the constant being splatted.  The ByteSize field indicates the
2441/// number of bytes of each element [1248].
2442SDValue ARM::getVMOVImm(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2443  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
2444  APInt SplatBits, SplatUndef;
2445  unsigned SplatBitSize;
2446  bool HasAnyUndefs;
2447  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
2448                                      HasAnyUndefs, ByteSize * 8))
2449    return SDValue();
2450
2451  if (SplatBitSize > ByteSize * 8)
2452    return SDValue();
2453
2454  return isVMOVSplat(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
2455                     SplatBitSize, DAG);
2456}
2457
2458static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
2459                       bool &ReverseVEXT, unsigned &Imm) {
2460  unsigned NumElts = VT.getVectorNumElements();
2461  ReverseVEXT = false;
2462  Imm = M[0];
2463
2464  // If this is a VEXT shuffle, the immediate value is the index of the first
2465  // element.  The other shuffle indices must be the successive elements after
2466  // the first one.
2467  unsigned ExpectedElt = Imm;
2468  for (unsigned i = 1; i < NumElts; ++i) {
2469    // Increment the expected index.  If it wraps around, it may still be
2470    // a VEXT but the source vectors must be swapped.
2471    ExpectedElt += 1;
2472    if (ExpectedElt == NumElts * 2) {
2473      ExpectedElt = 0;
2474      ReverseVEXT = true;
2475    }
2476
2477    if (ExpectedElt != static_cast<unsigned>(M[i]))
2478      return false;
2479  }
2480
2481  // Adjust the index value if the source operands will be swapped.
2482  if (ReverseVEXT)
2483    Imm -= NumElts;
2484
2485  return true;
2486}
2487
2488/// isVREVMask - Check if a vector shuffle corresponds to a VREV
2489/// instruction with the specified blocksize.  (The order of the elements
2490/// within each block of the vector is reversed.)
2491static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
2492                       unsigned BlockSize) {
2493  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
2494         "Only possible block sizes for VREV are: 16, 32, 64");
2495
2496  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2497  if (EltSz == 64)
2498    return false;
2499
2500  unsigned NumElts = VT.getVectorNumElements();
2501  unsigned BlockElts = M[0] + 1;
2502
2503  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
2504    return false;
2505
2506  for (unsigned i = 0; i < NumElts; ++i) {
2507    if ((unsigned) M[i] !=
2508        (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
2509      return false;
2510  }
2511
2512  return true;
2513}
2514
2515static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
2516                       unsigned &WhichResult) {
2517  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2518  if (EltSz == 64)
2519    return false;
2520
2521  unsigned NumElts = VT.getVectorNumElements();
2522  WhichResult = (M[0] == 0 ? 0 : 1);
2523  for (unsigned i = 0; i < NumElts; i += 2) {
2524    if ((unsigned) M[i] != i + WhichResult ||
2525        (unsigned) M[i+1] != i + NumElts + WhichResult)
2526      return false;
2527  }
2528  return true;
2529}
2530
2531/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
2532/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
2533/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
2534static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
2535                                unsigned &WhichResult) {
2536  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2537  if (EltSz == 64)
2538    return false;
2539
2540  unsigned NumElts = VT.getVectorNumElements();
2541  WhichResult = (M[0] == 0 ? 0 : 1);
2542  for (unsigned i = 0; i < NumElts; i += 2) {
2543    if ((unsigned) M[i] != i + WhichResult ||
2544        (unsigned) M[i+1] != i + WhichResult)
2545      return false;
2546  }
2547  return true;
2548}
2549
2550static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
2551                       unsigned &WhichResult) {
2552  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2553  if (EltSz == 64)
2554    return false;
2555
2556  unsigned NumElts = VT.getVectorNumElements();
2557  WhichResult = (M[0] == 0 ? 0 : 1);
2558  for (unsigned i = 0; i != NumElts; ++i) {
2559    if ((unsigned) M[i] != 2 * i + WhichResult)
2560      return false;
2561  }
2562
2563  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
2564  if (VT.is64BitVector() && EltSz == 32)
2565    return false;
2566
2567  return true;
2568}
2569
2570/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
2571/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
2572/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
2573static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
2574                                unsigned &WhichResult) {
2575  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2576  if (EltSz == 64)
2577    return false;
2578
2579  unsigned Half = VT.getVectorNumElements() / 2;
2580  WhichResult = (M[0] == 0 ? 0 : 1);
2581  for (unsigned j = 0; j != 2; ++j) {
2582    unsigned Idx = WhichResult;
2583    for (unsigned i = 0; i != Half; ++i) {
2584      if ((unsigned) M[i + j * Half] != Idx)
2585        return false;
2586      Idx += 2;
2587    }
2588  }
2589
2590  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
2591  if (VT.is64BitVector() && EltSz == 32)
2592    return false;
2593
2594  return true;
2595}
2596
2597static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
2598                       unsigned &WhichResult) {
2599  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2600  if (EltSz == 64)
2601    return false;
2602
2603  unsigned NumElts = VT.getVectorNumElements();
2604  WhichResult = (M[0] == 0 ? 0 : 1);
2605  unsigned Idx = WhichResult * NumElts / 2;
2606  for (unsigned i = 0; i != NumElts; i += 2) {
2607    if ((unsigned) M[i] != Idx ||
2608        (unsigned) M[i+1] != Idx + NumElts)
2609      return false;
2610    Idx += 1;
2611  }
2612
2613  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
2614  if (VT.is64BitVector() && EltSz == 32)
2615    return false;
2616
2617  return true;
2618}
2619
2620/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
2621/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
2622/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
2623static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
2624                                unsigned &WhichResult) {
2625  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2626  if (EltSz == 64)
2627    return false;
2628
2629  unsigned NumElts = VT.getVectorNumElements();
2630  WhichResult = (M[0] == 0 ? 0 : 1);
2631  unsigned Idx = WhichResult * NumElts / 2;
2632  for (unsigned i = 0; i != NumElts; i += 2) {
2633    if ((unsigned) M[i] != Idx ||
2634        (unsigned) M[i+1] != Idx)
2635      return false;
2636    Idx += 1;
2637  }
2638
2639  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
2640  if (VT.is64BitVector() && EltSz == 32)
2641    return false;
2642
2643  return true;
2644}
2645
2646
2647static SDValue BuildSplat(SDValue Val, EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2648  // Canonicalize all-zeros and all-ones vectors.
2649  ConstantSDNode *ConstVal = cast<ConstantSDNode>(Val.getNode());
2650  if (ConstVal->isNullValue())
2651    return getZeroVector(VT, DAG, dl);
2652  if (ConstVal->isAllOnesValue())
2653    return getOnesVector(VT, DAG, dl);
2654
2655  EVT CanonicalVT;
2656  if (VT.is64BitVector()) {
2657    switch (Val.getValueType().getSizeInBits()) {
2658    case 8:  CanonicalVT = MVT::v8i8; break;
2659    case 16: CanonicalVT = MVT::v4i16; break;
2660    case 32: CanonicalVT = MVT::v2i32; break;
2661    case 64: CanonicalVT = MVT::v1i64; break;
2662    default: llvm_unreachable("unexpected splat element type"); break;
2663    }
2664  } else {
2665    assert(VT.is128BitVector() && "unknown splat vector size");
2666    switch (Val.getValueType().getSizeInBits()) {
2667    case 8:  CanonicalVT = MVT::v16i8; break;
2668    case 16: CanonicalVT = MVT::v8i16; break;
2669    case 32: CanonicalVT = MVT::v4i32; break;
2670    case 64: CanonicalVT = MVT::v2i64; break;
2671    default: llvm_unreachable("unexpected splat element type"); break;
2672    }
2673  }
2674
2675  // Build a canonical splat for this value.
2676  SmallVector<SDValue, 8> Ops;
2677  Ops.assign(CanonicalVT.getVectorNumElements(), Val);
2678  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, &Ops[0],
2679                            Ops.size());
2680  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Res);
2681}
2682
2683// If this is a case we can't handle, return null and let the default
2684// expansion code take care of it.
2685static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
2686  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
2687  DebugLoc dl = Op.getDebugLoc();
2688  EVT VT = Op.getValueType();
2689
2690  APInt SplatBits, SplatUndef;
2691  unsigned SplatBitSize;
2692  bool HasAnyUndefs;
2693  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
2694    if (SplatBitSize <= 64) {
2695      SDValue Val = isVMOVSplat(SplatBits.getZExtValue(),
2696                                SplatUndef.getZExtValue(), SplatBitSize, DAG);
2697      if (Val.getNode())
2698        return BuildSplat(Val, VT, DAG, dl);
2699    }
2700  }
2701
2702  // If there are only 2 elements in a 128-bit vector, insert them into an
2703  // undef vector.  This handles the common case for 128-bit vector argument
2704  // passing, where the insertions should be translated to subreg accesses
2705  // with no real instructions.
2706  if (VT.is128BitVector() && Op.getNumOperands() == 2) {
2707    SDValue Val = DAG.getUNDEF(VT);
2708    SDValue Op0 = Op.getOperand(0);
2709    SDValue Op1 = Op.getOperand(1);
2710    if (Op0.getOpcode() != ISD::UNDEF)
2711      Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, Op0,
2712                        DAG.getIntPtrConstant(0));
2713    if (Op1.getOpcode() != ISD::UNDEF)
2714      Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, Op1,
2715                        DAG.getIntPtrConstant(1));
2716    return Val;
2717  }
2718
2719  return SDValue();
2720}
2721
2722/// isShuffleMaskLegal - Targets can use this to indicate that they only
2723/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
2724/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
2725/// are assumed to be legal.
2726bool
2727ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
2728                                      EVT VT) const {
2729  if (VT.getVectorNumElements() == 4 &&
2730      (VT.is128BitVector() || VT.is64BitVector())) {
2731    unsigned PFIndexes[4];
2732    for (unsigned i = 0; i != 4; ++i) {
2733      if (M[i] < 0)
2734        PFIndexes[i] = 8;
2735      else
2736        PFIndexes[i] = M[i];
2737    }
2738
2739    // Compute the index in the perfect shuffle table.
2740    unsigned PFTableIndex =
2741      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
2742    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
2743    unsigned Cost = (PFEntry >> 30);
2744
2745    if (Cost <= 4)
2746      return true;
2747  }
2748
2749  bool ReverseVEXT;
2750  unsigned Imm, WhichResult;
2751
2752  return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
2753          isVREVMask(M, VT, 64) ||
2754          isVREVMask(M, VT, 32) ||
2755          isVREVMask(M, VT, 16) ||
2756          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
2757          isVTRNMask(M, VT, WhichResult) ||
2758          isVUZPMask(M, VT, WhichResult) ||
2759          isVZIPMask(M, VT, WhichResult) ||
2760          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
2761          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
2762          isVZIP_v_undef_Mask(M, VT, WhichResult));
2763}
2764
2765/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2766/// the specified operations to build the shuffle.
2767static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
2768                                      SDValue RHS, SelectionDAG &DAG,
2769                                      DebugLoc dl) {
2770  unsigned OpNum = (PFEntry >> 26) & 0x0F;
2771  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
2772  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
2773
2774  enum {
2775    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
2776    OP_VREV,
2777    OP_VDUP0,
2778    OP_VDUP1,
2779    OP_VDUP2,
2780    OP_VDUP3,
2781    OP_VEXT1,
2782    OP_VEXT2,
2783    OP_VEXT3,
2784    OP_VUZPL, // VUZP, left result
2785    OP_VUZPR, // VUZP, right result
2786    OP_VZIPL, // VZIP, left result
2787    OP_VZIPR, // VZIP, right result
2788    OP_VTRNL, // VTRN, left result
2789    OP_VTRNR  // VTRN, right result
2790  };
2791
2792  if (OpNum == OP_COPY) {
2793    if (LHSID == (1*9+2)*9+3) return LHS;
2794    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
2795    return RHS;
2796  }
2797
2798  SDValue OpLHS, OpRHS;
2799  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
2800  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
2801  EVT VT = OpLHS.getValueType();
2802
2803  switch (OpNum) {
2804  default: llvm_unreachable("Unknown shuffle opcode!");
2805  case OP_VREV:
2806    return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
2807  case OP_VDUP0:
2808  case OP_VDUP1:
2809  case OP_VDUP2:
2810  case OP_VDUP3:
2811    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
2812                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
2813  case OP_VEXT1:
2814  case OP_VEXT2:
2815  case OP_VEXT3:
2816    return DAG.getNode(ARMISD::VEXT, dl, VT,
2817                       OpLHS, OpRHS,
2818                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
2819  case OP_VUZPL:
2820  case OP_VUZPR:
2821    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
2822                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
2823  case OP_VZIPL:
2824  case OP_VZIPR:
2825    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
2826                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
2827  case OP_VTRNL:
2828  case OP_VTRNR:
2829    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
2830                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
2831  }
2832}
2833
2834static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
2835  SDValue V1 = Op.getOperand(0);
2836  SDValue V2 = Op.getOperand(1);
2837  DebugLoc dl = Op.getDebugLoc();
2838  EVT VT = Op.getValueType();
2839  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2840  SmallVector<int, 8> ShuffleMask;
2841
2842  // Convert shuffles that are directly supported on NEON to target-specific
2843  // DAG nodes, instead of keeping them as shuffles and matching them again
2844  // during code selection.  This is more efficient and avoids the possibility
2845  // of inconsistencies between legalization and selection.
2846  // FIXME: floating-point vectors should be canonicalized to integer vectors
2847  // of the same time so that they get CSEd properly.
2848  SVN->getMask(ShuffleMask);
2849
2850  if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
2851    int Lane = SVN->getSplatIndex();
2852    // If this is undef splat, generate it via "just" vdup, if possible.
2853    if (Lane == -1) Lane = 0;
2854
2855    if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
2856      return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
2857    }
2858    return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
2859                       DAG.getConstant(Lane, MVT::i32));
2860  }
2861
2862  bool ReverseVEXT;
2863  unsigned Imm;
2864  if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
2865    if (ReverseVEXT)
2866      std::swap(V1, V2);
2867    return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
2868                       DAG.getConstant(Imm, MVT::i32));
2869  }
2870
2871  if (isVREVMask(ShuffleMask, VT, 64))
2872    return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
2873  if (isVREVMask(ShuffleMask, VT, 32))
2874    return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
2875  if (isVREVMask(ShuffleMask, VT, 16))
2876    return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
2877
2878  // Check for Neon shuffles that modify both input vectors in place.
2879  // If both results are used, i.e., if there are two shuffles with the same
2880  // source operands and with masks corresponding to both results of one of
2881  // these operations, DAG memoization will ensure that a single node is
2882  // used for both shuffles.
2883  unsigned WhichResult;
2884  if (isVTRNMask(ShuffleMask, VT, WhichResult))
2885    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
2886                       V1, V2).getValue(WhichResult);
2887  if (isVUZPMask(ShuffleMask, VT, WhichResult))
2888    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
2889                       V1, V2).getValue(WhichResult);
2890  if (isVZIPMask(ShuffleMask, VT, WhichResult))
2891    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
2892                       V1, V2).getValue(WhichResult);
2893
2894  if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
2895    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
2896                       V1, V1).getValue(WhichResult);
2897  if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
2898    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
2899                       V1, V1).getValue(WhichResult);
2900  if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
2901    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
2902                       V1, V1).getValue(WhichResult);
2903
2904  // If the shuffle is not directly supported and it has 4 elements, use
2905  // the PerfectShuffle-generated table to synthesize it from other shuffles.
2906  if (VT.getVectorNumElements() == 4 &&
2907      (VT.is128BitVector() || VT.is64BitVector())) {
2908    unsigned PFIndexes[4];
2909    for (unsigned i = 0; i != 4; ++i) {
2910      if (ShuffleMask[i] < 0)
2911        PFIndexes[i] = 8;
2912      else
2913        PFIndexes[i] = ShuffleMask[i];
2914    }
2915
2916    // Compute the index in the perfect shuffle table.
2917    unsigned PFTableIndex =
2918      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
2919
2920    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
2921    unsigned Cost = (PFEntry >> 30);
2922
2923    if (Cost <= 4)
2924      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
2925  }
2926
2927  return SDValue();
2928}
2929
2930static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
2931  EVT VT = Op.getValueType();
2932  DebugLoc dl = Op.getDebugLoc();
2933  SDValue Vec = Op.getOperand(0);
2934  SDValue Lane = Op.getOperand(1);
2935  assert(VT == MVT::i32 &&
2936         Vec.getValueType().getVectorElementType().getSizeInBits() < 32 &&
2937         "unexpected type for custom-lowering vector extract");
2938  return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
2939}
2940
2941static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
2942  // The only time a CONCAT_VECTORS operation can have legal types is when
2943  // two 64-bit vectors are concatenated to a 128-bit vector.
2944  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
2945         "unexpected CONCAT_VECTORS");
2946  DebugLoc dl = Op.getDebugLoc();
2947  SDValue Val = DAG.getUNDEF(MVT::v2f64);
2948  SDValue Op0 = Op.getOperand(0);
2949  SDValue Op1 = Op.getOperand(1);
2950  if (Op0.getOpcode() != ISD::UNDEF)
2951    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
2952                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op0),
2953                      DAG.getIntPtrConstant(0));
2954  if (Op1.getOpcode() != ISD::UNDEF)
2955    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
2956                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op1),
2957                      DAG.getIntPtrConstant(1));
2958  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Val);
2959}
2960
2961SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
2962  switch (Op.getOpcode()) {
2963  default: llvm_unreachable("Don't know how to custom lower this!");
2964  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
2965  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
2966  case ISD::GlobalAddress:
2967    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
2968      LowerGlobalAddressELF(Op, DAG);
2969  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
2970  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
2971  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
2972  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
2973  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
2974  case ISD::VASTART:       return LowerVASTART(Op, DAG, VarArgsFrameIndex);
2975  case ISD::SINT_TO_FP:
2976  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
2977  case ISD::FP_TO_SINT:
2978  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
2979  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
2980  case ISD::RETURNADDR:    break;
2981  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
2982  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
2983  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2984  case ISD::BIT_CONVERT:   return ExpandBIT_CONVERT(Op.getNode(), DAG);
2985  case ISD::SHL:
2986  case ISD::SRL:
2987  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
2988  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
2989  case ISD::SRL_PARTS:
2990  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
2991  case ISD::VSETCC:        return LowerVSETCC(Op, DAG);
2992  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG);
2993  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
2994  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2995  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
2996  }
2997  return SDValue();
2998}
2999
3000/// ReplaceNodeResults - Replace the results of node with an illegal result
3001/// type with new values built out of custom code.
3002void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
3003                                           SmallVectorImpl<SDValue>&Results,
3004                                           SelectionDAG &DAG) {
3005  switch (N->getOpcode()) {
3006  default:
3007    llvm_unreachable("Don't know how to custom expand this!");
3008    return;
3009  case ISD::BIT_CONVERT:
3010    Results.push_back(ExpandBIT_CONVERT(N, DAG));
3011    return;
3012  case ISD::SRL:
3013  case ISD::SRA: {
3014    SDValue Res = LowerShift(N, DAG, Subtarget);
3015    if (Res.getNode())
3016      Results.push_back(Res);
3017    return;
3018  }
3019  }
3020}
3021
3022//===----------------------------------------------------------------------===//
3023//                           ARM Scheduler Hooks
3024//===----------------------------------------------------------------------===//
3025
3026MachineBasicBlock *
3027ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
3028                                               MachineBasicBlock *BB,
3029                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
3030  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3031  DebugLoc dl = MI->getDebugLoc();
3032  switch (MI->getOpcode()) {
3033  default:
3034    llvm_unreachable("Unexpected instr type to insert");
3035  case ARM::tMOVCCr_pseudo: {
3036    // To "insert" a SELECT_CC instruction, we actually have to insert the
3037    // diamond control-flow pattern.  The incoming instruction knows the
3038    // destination vreg to set, the condition code register to branch on, the
3039    // true/false values to select between, and a branch opcode to use.
3040    const BasicBlock *LLVM_BB = BB->getBasicBlock();
3041    MachineFunction::iterator It = BB;
3042    ++It;
3043
3044    //  thisMBB:
3045    //  ...
3046    //   TrueVal = ...
3047    //   cmpTY ccX, r1, r2
3048    //   bCC copy1MBB
3049    //   fallthrough --> copy0MBB
3050    MachineBasicBlock *thisMBB  = BB;
3051    MachineFunction *F = BB->getParent();
3052    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
3053    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
3054    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
3055      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
3056    F->insert(It, copy0MBB);
3057    F->insert(It, sinkMBB);
3058    // Update machine-CFG edges by first adding all successors of the current
3059    // block to the new block which will contain the Phi node for the select.
3060    // Also inform sdisel of the edge changes.
3061    for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
3062           E = BB->succ_end(); I != E; ++I) {
3063      EM->insert(std::make_pair(*I, sinkMBB));
3064      sinkMBB->addSuccessor(*I);
3065    }
3066    // Next, remove all successors of the current block, and add the true
3067    // and fallthrough blocks as its successors.
3068    while (!BB->succ_empty())
3069      BB->removeSuccessor(BB->succ_begin());
3070    BB->addSuccessor(copy0MBB);
3071    BB->addSuccessor(sinkMBB);
3072
3073    //  copy0MBB:
3074    //   %FalseValue = ...
3075    //   # fallthrough to sinkMBB
3076    BB = copy0MBB;
3077
3078    // Update machine-CFG edges
3079    BB->addSuccessor(sinkMBB);
3080
3081    //  sinkMBB:
3082    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
3083    //  ...
3084    BB = sinkMBB;
3085    BuildMI(BB, dl, TII->get(ARM::PHI), MI->getOperand(0).getReg())
3086      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
3087      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
3088
3089    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
3090    return BB;
3091  }
3092
3093  case ARM::tANDsp:
3094  case ARM::tADDspr_:
3095  case ARM::tSUBspi_:
3096  case ARM::t2SUBrSPi_:
3097  case ARM::t2SUBrSPi12_:
3098  case ARM::t2SUBrSPs_: {
3099    MachineFunction *MF = BB->getParent();
3100    unsigned DstReg = MI->getOperand(0).getReg();
3101    unsigned SrcReg = MI->getOperand(1).getReg();
3102    bool DstIsDead = MI->getOperand(0).isDead();
3103    bool SrcIsKill = MI->getOperand(1).isKill();
3104
3105    if (SrcReg != ARM::SP) {
3106      // Copy the source to SP from virtual register.
3107      const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(SrcReg);
3108      unsigned CopyOpc = (RC == ARM::tGPRRegisterClass)
3109        ? ARM::tMOVtgpr2gpr : ARM::tMOVgpr2gpr;
3110      BuildMI(BB, dl, TII->get(CopyOpc), ARM::SP)
3111        .addReg(SrcReg, getKillRegState(SrcIsKill));
3112    }
3113
3114    unsigned OpOpc = 0;
3115    bool NeedPred = false, NeedCC = false, NeedOp3 = false;
3116    switch (MI->getOpcode()) {
3117    default:
3118      llvm_unreachable("Unexpected pseudo instruction!");
3119    case ARM::tANDsp:
3120      OpOpc = ARM::tAND;
3121      NeedPred = true;
3122      break;
3123    case ARM::tADDspr_:
3124      OpOpc = ARM::tADDspr;
3125      break;
3126    case ARM::tSUBspi_:
3127      OpOpc = ARM::tSUBspi;
3128      break;
3129    case ARM::t2SUBrSPi_:
3130      OpOpc = ARM::t2SUBrSPi;
3131      NeedPred = true; NeedCC = true;
3132      break;
3133    case ARM::t2SUBrSPi12_:
3134      OpOpc = ARM::t2SUBrSPi12;
3135      NeedPred = true;
3136      break;
3137    case ARM::t2SUBrSPs_:
3138      OpOpc = ARM::t2SUBrSPs;
3139      NeedPred = true; NeedCC = true; NeedOp3 = true;
3140      break;
3141    }
3142    MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(OpOpc), ARM::SP);
3143    if (OpOpc == ARM::tAND)
3144      AddDefaultT1CC(MIB);
3145    MIB.addReg(ARM::SP);
3146    MIB.addOperand(MI->getOperand(2));
3147    if (NeedOp3)
3148      MIB.addOperand(MI->getOperand(3));
3149    if (NeedPred)
3150      AddDefaultPred(MIB);
3151    if (NeedCC)
3152      AddDefaultCC(MIB);
3153
3154    // Copy the result from SP to virtual register.
3155    const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(DstReg);
3156    unsigned CopyOpc = (RC == ARM::tGPRRegisterClass)
3157      ? ARM::tMOVgpr2tgpr : ARM::tMOVgpr2gpr;
3158    BuildMI(BB, dl, TII->get(CopyOpc))
3159      .addReg(DstReg, getDefRegState(true) | getDeadRegState(DstIsDead))
3160      .addReg(ARM::SP);
3161    MF->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
3162    return BB;
3163  }
3164  }
3165}
3166
3167//===----------------------------------------------------------------------===//
3168//                           ARM Optimization Hooks
3169//===----------------------------------------------------------------------===//
3170
3171static
3172SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
3173                            TargetLowering::DAGCombinerInfo &DCI) {
3174  SelectionDAG &DAG = DCI.DAG;
3175  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3176  EVT VT = N->getValueType(0);
3177  unsigned Opc = N->getOpcode();
3178  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
3179  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
3180  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
3181  ISD::CondCode CC = ISD::SETCC_INVALID;
3182
3183  if (isSlctCC) {
3184    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
3185  } else {
3186    SDValue CCOp = Slct.getOperand(0);
3187    if (CCOp.getOpcode() == ISD::SETCC)
3188      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
3189  }
3190
3191  bool DoXform = false;
3192  bool InvCC = false;
3193  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
3194          "Bad input!");
3195
3196  if (LHS.getOpcode() == ISD::Constant &&
3197      cast<ConstantSDNode>(LHS)->isNullValue()) {
3198    DoXform = true;
3199  } else if (CC != ISD::SETCC_INVALID &&
3200             RHS.getOpcode() == ISD::Constant &&
3201             cast<ConstantSDNode>(RHS)->isNullValue()) {
3202    std::swap(LHS, RHS);
3203    SDValue Op0 = Slct.getOperand(0);
3204    EVT OpVT = isSlctCC ? Op0.getValueType() :
3205                          Op0.getOperand(0).getValueType();
3206    bool isInt = OpVT.isInteger();
3207    CC = ISD::getSetCCInverse(CC, isInt);
3208
3209    if (!TLI.isCondCodeLegal(CC, OpVT))
3210      return SDValue();         // Inverse operator isn't legal.
3211
3212    DoXform = true;
3213    InvCC = true;
3214  }
3215
3216  if (DoXform) {
3217    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
3218    if (isSlctCC)
3219      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
3220                             Slct.getOperand(0), Slct.getOperand(1), CC);
3221    SDValue CCOp = Slct.getOperand(0);
3222    if (InvCC)
3223      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
3224                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
3225    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
3226                       CCOp, OtherOp, Result);
3227  }
3228  return SDValue();
3229}
3230
3231/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
3232static SDValue PerformADDCombine(SDNode *N,
3233                                 TargetLowering::DAGCombinerInfo &DCI) {
3234  // added by evan in r37685 with no testcase.
3235  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
3236
3237  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
3238  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
3239    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
3240    if (Result.getNode()) return Result;
3241  }
3242  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
3243    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
3244    if (Result.getNode()) return Result;
3245  }
3246
3247  return SDValue();
3248}
3249
3250/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
3251static SDValue PerformSUBCombine(SDNode *N,
3252                                 TargetLowering::DAGCombinerInfo &DCI) {
3253  // added by evan in r37685 with no testcase.
3254  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
3255
3256  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
3257  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
3258    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
3259    if (Result.getNode()) return Result;
3260  }
3261
3262  return SDValue();
3263}
3264
3265/// PerformVMOVRRDCombine - Target-specific dag combine xforms for ARMISD::VMOVRRD.
3266static SDValue PerformVMOVRRDCombine(SDNode *N,
3267                                   TargetLowering::DAGCombinerInfo &DCI) {
3268  // fmrrd(fmdrr x, y) -> x,y
3269  SDValue InDouble = N->getOperand(0);
3270  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
3271    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
3272  return SDValue();
3273}
3274
3275/// getVShiftImm - Check if this is a valid build_vector for the immediate
3276/// operand of a vector shift operation, where all the elements of the
3277/// build_vector must have the same constant integer value.
3278static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
3279  // Ignore bit_converts.
3280  while (Op.getOpcode() == ISD::BIT_CONVERT)
3281    Op = Op.getOperand(0);
3282  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3283  APInt SplatBits, SplatUndef;
3284  unsigned SplatBitSize;
3285  bool HasAnyUndefs;
3286  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
3287                                      HasAnyUndefs, ElementBits) ||
3288      SplatBitSize > ElementBits)
3289    return false;
3290  Cnt = SplatBits.getSExtValue();
3291  return true;
3292}
3293
3294/// isVShiftLImm - Check if this is a valid build_vector for the immediate
3295/// operand of a vector shift left operation.  That value must be in the range:
3296///   0 <= Value < ElementBits for a left shift; or
3297///   0 <= Value <= ElementBits for a long left shift.
3298static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
3299  assert(VT.isVector() && "vector shift count is not a vector type");
3300  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
3301  if (! getVShiftImm(Op, ElementBits, Cnt))
3302    return false;
3303  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
3304}
3305
3306/// isVShiftRImm - Check if this is a valid build_vector for the immediate
3307/// operand of a vector shift right operation.  For a shift opcode, the value
3308/// is positive, but for an intrinsic the value count must be negative. The
3309/// absolute value must be in the range:
3310///   1 <= |Value| <= ElementBits for a right shift; or
3311///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
3312static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
3313                         int64_t &Cnt) {
3314  assert(VT.isVector() && "vector shift count is not a vector type");
3315  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
3316  if (! getVShiftImm(Op, ElementBits, Cnt))
3317    return false;
3318  if (isIntrinsic)
3319    Cnt = -Cnt;
3320  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
3321}
3322
3323/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
3324static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
3325  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3326  switch (IntNo) {
3327  default:
3328    // Don't do anything for most intrinsics.
3329    break;
3330
3331  // Vector shifts: check for immediate versions and lower them.
3332  // Note: This is done during DAG combining instead of DAG legalizing because
3333  // the build_vectors for 64-bit vector element shift counts are generally
3334  // not legal, and it is hard to see their values after they get legalized to
3335  // loads from a constant pool.
3336  case Intrinsic::arm_neon_vshifts:
3337  case Intrinsic::arm_neon_vshiftu:
3338  case Intrinsic::arm_neon_vshiftls:
3339  case Intrinsic::arm_neon_vshiftlu:
3340  case Intrinsic::arm_neon_vshiftn:
3341  case Intrinsic::arm_neon_vrshifts:
3342  case Intrinsic::arm_neon_vrshiftu:
3343  case Intrinsic::arm_neon_vrshiftn:
3344  case Intrinsic::arm_neon_vqshifts:
3345  case Intrinsic::arm_neon_vqshiftu:
3346  case Intrinsic::arm_neon_vqshiftsu:
3347  case Intrinsic::arm_neon_vqshiftns:
3348  case Intrinsic::arm_neon_vqshiftnu:
3349  case Intrinsic::arm_neon_vqshiftnsu:
3350  case Intrinsic::arm_neon_vqrshiftns:
3351  case Intrinsic::arm_neon_vqrshiftnu:
3352  case Intrinsic::arm_neon_vqrshiftnsu: {
3353    EVT VT = N->getOperand(1).getValueType();
3354    int64_t Cnt;
3355    unsigned VShiftOpc = 0;
3356
3357    switch (IntNo) {
3358    case Intrinsic::arm_neon_vshifts:
3359    case Intrinsic::arm_neon_vshiftu:
3360      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
3361        VShiftOpc = ARMISD::VSHL;
3362        break;
3363      }
3364      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
3365        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
3366                     ARMISD::VSHRs : ARMISD::VSHRu);
3367        break;
3368      }
3369      return SDValue();
3370
3371    case Intrinsic::arm_neon_vshiftls:
3372    case Intrinsic::arm_neon_vshiftlu:
3373      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
3374        break;
3375      llvm_unreachable("invalid shift count for vshll intrinsic");
3376
3377    case Intrinsic::arm_neon_vrshifts:
3378    case Intrinsic::arm_neon_vrshiftu:
3379      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
3380        break;
3381      return SDValue();
3382
3383    case Intrinsic::arm_neon_vqshifts:
3384    case Intrinsic::arm_neon_vqshiftu:
3385      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
3386        break;
3387      return SDValue();
3388
3389    case Intrinsic::arm_neon_vqshiftsu:
3390      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
3391        break;
3392      llvm_unreachable("invalid shift count for vqshlu intrinsic");
3393
3394    case Intrinsic::arm_neon_vshiftn:
3395    case Intrinsic::arm_neon_vrshiftn:
3396    case Intrinsic::arm_neon_vqshiftns:
3397    case Intrinsic::arm_neon_vqshiftnu:
3398    case Intrinsic::arm_neon_vqshiftnsu:
3399    case Intrinsic::arm_neon_vqrshiftns:
3400    case Intrinsic::arm_neon_vqrshiftnu:
3401    case Intrinsic::arm_neon_vqrshiftnsu:
3402      // Narrowing shifts require an immediate right shift.
3403      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
3404        break;
3405      llvm_unreachable("invalid shift count for narrowing vector shift intrinsic");
3406
3407    default:
3408      llvm_unreachable("unhandled vector shift");
3409    }
3410
3411    switch (IntNo) {
3412    case Intrinsic::arm_neon_vshifts:
3413    case Intrinsic::arm_neon_vshiftu:
3414      // Opcode already set above.
3415      break;
3416    case Intrinsic::arm_neon_vshiftls:
3417    case Intrinsic::arm_neon_vshiftlu:
3418      if (Cnt == VT.getVectorElementType().getSizeInBits())
3419        VShiftOpc = ARMISD::VSHLLi;
3420      else
3421        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
3422                     ARMISD::VSHLLs : ARMISD::VSHLLu);
3423      break;
3424    case Intrinsic::arm_neon_vshiftn:
3425      VShiftOpc = ARMISD::VSHRN; break;
3426    case Intrinsic::arm_neon_vrshifts:
3427      VShiftOpc = ARMISD::VRSHRs; break;
3428    case Intrinsic::arm_neon_vrshiftu:
3429      VShiftOpc = ARMISD::VRSHRu; break;
3430    case Intrinsic::arm_neon_vrshiftn:
3431      VShiftOpc = ARMISD::VRSHRN; break;
3432    case Intrinsic::arm_neon_vqshifts:
3433      VShiftOpc = ARMISD::VQSHLs; break;
3434    case Intrinsic::arm_neon_vqshiftu:
3435      VShiftOpc = ARMISD::VQSHLu; break;
3436    case Intrinsic::arm_neon_vqshiftsu:
3437      VShiftOpc = ARMISD::VQSHLsu; break;
3438    case Intrinsic::arm_neon_vqshiftns:
3439      VShiftOpc = ARMISD::VQSHRNs; break;
3440    case Intrinsic::arm_neon_vqshiftnu:
3441      VShiftOpc = ARMISD::VQSHRNu; break;
3442    case Intrinsic::arm_neon_vqshiftnsu:
3443      VShiftOpc = ARMISD::VQSHRNsu; break;
3444    case Intrinsic::arm_neon_vqrshiftns:
3445      VShiftOpc = ARMISD::VQRSHRNs; break;
3446    case Intrinsic::arm_neon_vqrshiftnu:
3447      VShiftOpc = ARMISD::VQRSHRNu; break;
3448    case Intrinsic::arm_neon_vqrshiftnsu:
3449      VShiftOpc = ARMISD::VQRSHRNsu; break;
3450    }
3451
3452    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
3453                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
3454  }
3455
3456  case Intrinsic::arm_neon_vshiftins: {
3457    EVT VT = N->getOperand(1).getValueType();
3458    int64_t Cnt;
3459    unsigned VShiftOpc = 0;
3460
3461    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
3462      VShiftOpc = ARMISD::VSLI;
3463    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
3464      VShiftOpc = ARMISD::VSRI;
3465    else {
3466      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
3467    }
3468
3469    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
3470                       N->getOperand(1), N->getOperand(2),
3471                       DAG.getConstant(Cnt, MVT::i32));
3472  }
3473
3474  case Intrinsic::arm_neon_vqrshifts:
3475  case Intrinsic::arm_neon_vqrshiftu:
3476    // No immediate versions of these to check for.
3477    break;
3478  }
3479
3480  return SDValue();
3481}
3482
3483/// PerformShiftCombine - Checks for immediate versions of vector shifts and
3484/// lowers them.  As with the vector shift intrinsics, this is done during DAG
3485/// combining instead of DAG legalizing because the build_vectors for 64-bit
3486/// vector element shift counts are generally not legal, and it is hard to see
3487/// their values after they get legalized to loads from a constant pool.
3488static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
3489                                   const ARMSubtarget *ST) {
3490  EVT VT = N->getValueType(0);
3491
3492  // Nothing to be done for scalar shifts.
3493  if (! VT.isVector())
3494    return SDValue();
3495
3496  assert(ST->hasNEON() && "unexpected vector shift");
3497  int64_t Cnt;
3498
3499  switch (N->getOpcode()) {
3500  default: llvm_unreachable("unexpected shift opcode");
3501
3502  case ISD::SHL:
3503    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
3504      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
3505                         DAG.getConstant(Cnt, MVT::i32));
3506    break;
3507
3508  case ISD::SRA:
3509  case ISD::SRL:
3510    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
3511      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
3512                            ARMISD::VSHRs : ARMISD::VSHRu);
3513      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
3514                         DAG.getConstant(Cnt, MVT::i32));
3515    }
3516  }
3517  return SDValue();
3518}
3519
3520/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
3521/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
3522static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
3523                                    const ARMSubtarget *ST) {
3524  SDValue N0 = N->getOperand(0);
3525
3526  // Check for sign- and zero-extensions of vector extract operations of 8-
3527  // and 16-bit vector elements.  NEON supports these directly.  They are
3528  // handled during DAG combining because type legalization will promote them
3529  // to 32-bit types and it is messy to recognize the operations after that.
3530  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
3531    SDValue Vec = N0.getOperand(0);
3532    SDValue Lane = N0.getOperand(1);
3533    EVT VT = N->getValueType(0);
3534    EVT EltVT = N0.getValueType();
3535    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3536
3537    if (VT == MVT::i32 &&
3538        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
3539        TLI.isTypeLegal(Vec.getValueType())) {
3540
3541      unsigned Opc = 0;
3542      switch (N->getOpcode()) {
3543      default: llvm_unreachable("unexpected opcode");
3544      case ISD::SIGN_EXTEND:
3545        Opc = ARMISD::VGETLANEs;
3546        break;
3547      case ISD::ZERO_EXTEND:
3548      case ISD::ANY_EXTEND:
3549        Opc = ARMISD::VGETLANEu;
3550        break;
3551      }
3552      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
3553    }
3554  }
3555
3556  return SDValue();
3557}
3558
3559SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
3560                                             DAGCombinerInfo &DCI) const {
3561  switch (N->getOpcode()) {
3562  default: break;
3563  case ISD::ADD:      return PerformADDCombine(N, DCI);
3564  case ISD::SUB:      return PerformSUBCombine(N, DCI);
3565  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
3566  case ISD::INTRINSIC_WO_CHAIN:
3567    return PerformIntrinsicCombine(N, DCI.DAG);
3568  case ISD::SHL:
3569  case ISD::SRA:
3570  case ISD::SRL:
3571    return PerformShiftCombine(N, DCI.DAG, Subtarget);
3572  case ISD::SIGN_EXTEND:
3573  case ISD::ZERO_EXTEND:
3574  case ISD::ANY_EXTEND:
3575    return PerformExtendCombine(N, DCI.DAG, Subtarget);
3576  }
3577  return SDValue();
3578}
3579
3580bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
3581  if (!Subtarget->hasV6Ops())
3582    // Pre-v6 does not support unaligned mem access.
3583    return false;
3584  else if (!Subtarget->hasV6Ops()) {
3585    // v6 may or may not support unaligned mem access.
3586    if (!Subtarget->isTargetDarwin())
3587      return false;
3588  }
3589
3590  switch (VT.getSimpleVT().SimpleTy) {
3591  default:
3592    return false;
3593  case MVT::i8:
3594  case MVT::i16:
3595  case MVT::i32:
3596    return true;
3597  // FIXME: VLD1 etc with standard alignment is legal.
3598  }
3599}
3600
3601static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
3602  if (V < 0)
3603    return false;
3604
3605  unsigned Scale = 1;
3606  switch (VT.getSimpleVT().SimpleTy) {
3607  default: return false;
3608  case MVT::i1:
3609  case MVT::i8:
3610    // Scale == 1;
3611    break;
3612  case MVT::i16:
3613    // Scale == 2;
3614    Scale = 2;
3615    break;
3616  case MVT::i32:
3617    // Scale == 4;
3618    Scale = 4;
3619    break;
3620  }
3621
3622  if ((V & (Scale - 1)) != 0)
3623    return false;
3624  V /= Scale;
3625  return V == (V & ((1LL << 5) - 1));
3626}
3627
3628static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
3629                                      const ARMSubtarget *Subtarget) {
3630  bool isNeg = false;
3631  if (V < 0) {
3632    isNeg = true;
3633    V = - V;
3634  }
3635
3636  switch (VT.getSimpleVT().SimpleTy) {
3637  default: return false;
3638  case MVT::i1:
3639  case MVT::i8:
3640  case MVT::i16:
3641  case MVT::i32:
3642    // + imm12 or - imm8
3643    if (isNeg)
3644      return V == (V & ((1LL << 8) - 1));
3645    return V == (V & ((1LL << 12) - 1));
3646  case MVT::f32:
3647  case MVT::f64:
3648    // Same as ARM mode. FIXME: NEON?
3649    if (!Subtarget->hasVFP2())
3650      return false;
3651    if ((V & 3) != 0)
3652      return false;
3653    V >>= 2;
3654    return V == (V & ((1LL << 8) - 1));
3655  }
3656}
3657
3658/// isLegalAddressImmediate - Return true if the integer value can be used
3659/// as the offset of the target addressing mode for load / store of the
3660/// given type.
3661static bool isLegalAddressImmediate(int64_t V, EVT VT,
3662                                    const ARMSubtarget *Subtarget) {
3663  if (V == 0)
3664    return true;
3665
3666  if (!VT.isSimple())
3667    return false;
3668
3669  if (Subtarget->isThumb1Only())
3670    return isLegalT1AddressImmediate(V, VT);
3671  else if (Subtarget->isThumb2())
3672    return isLegalT2AddressImmediate(V, VT, Subtarget);
3673
3674  // ARM mode.
3675  if (V < 0)
3676    V = - V;
3677  switch (VT.getSimpleVT().SimpleTy) {
3678  default: return false;
3679  case MVT::i1:
3680  case MVT::i8:
3681  case MVT::i32:
3682    // +- imm12
3683    return V == (V & ((1LL << 12) - 1));
3684  case MVT::i16:
3685    // +- imm8
3686    return V == (V & ((1LL << 8) - 1));
3687  case MVT::f32:
3688  case MVT::f64:
3689    if (!Subtarget->hasVFP2()) // FIXME: NEON?
3690      return false;
3691    if ((V & 3) != 0)
3692      return false;
3693    V >>= 2;
3694    return V == (V & ((1LL << 8) - 1));
3695  }
3696}
3697
3698bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
3699                                                      EVT VT) const {
3700  int Scale = AM.Scale;
3701  if (Scale < 0)
3702    return false;
3703
3704  switch (VT.getSimpleVT().SimpleTy) {
3705  default: return false;
3706  case MVT::i1:
3707  case MVT::i8:
3708  case MVT::i16:
3709  case MVT::i32:
3710    if (Scale == 1)
3711      return true;
3712    // r + r << imm
3713    Scale = Scale & ~1;
3714    return Scale == 2 || Scale == 4 || Scale == 8;
3715  case MVT::i64:
3716    // r + r
3717    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
3718      return true;
3719    return false;
3720  case MVT::isVoid:
3721    // Note, we allow "void" uses (basically, uses that aren't loads or
3722    // stores), because arm allows folding a scale into many arithmetic
3723    // operations.  This should be made more precise and revisited later.
3724
3725    // Allow r << imm, but the imm has to be a multiple of two.
3726    if (Scale & 1) return false;
3727    return isPowerOf2_32(Scale);
3728  }
3729}
3730
3731/// isLegalAddressingMode - Return true if the addressing mode represented
3732/// by AM is legal for this target, for a load/store of the specified type.
3733bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3734                                              const Type *Ty) const {
3735  EVT VT = getValueType(Ty, true);
3736  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
3737    return false;
3738
3739  // Can never fold addr of global into load/store.
3740  if (AM.BaseGV)
3741    return false;
3742
3743  switch (AM.Scale) {
3744  case 0:  // no scale reg, must be "r+i" or "r", or "i".
3745    break;
3746  case 1:
3747    if (Subtarget->isThumb1Only())
3748      return false;
3749    // FALL THROUGH.
3750  default:
3751    // ARM doesn't support any R+R*scale+imm addr modes.
3752    if (AM.BaseOffs)
3753      return false;
3754
3755    if (!VT.isSimple())
3756      return false;
3757
3758    if (Subtarget->isThumb2())
3759      return isLegalT2ScaledAddressingMode(AM, VT);
3760
3761    int Scale = AM.Scale;
3762    switch (VT.getSimpleVT().SimpleTy) {
3763    default: return false;
3764    case MVT::i1:
3765    case MVT::i8:
3766    case MVT::i32:
3767      if (Scale < 0) Scale = -Scale;
3768      if (Scale == 1)
3769        return true;
3770      // r + r << imm
3771      return isPowerOf2_32(Scale & ~1);
3772    case MVT::i16:
3773    case MVT::i64:
3774      // r + r
3775      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
3776        return true;
3777      return false;
3778
3779    case MVT::isVoid:
3780      // Note, we allow "void" uses (basically, uses that aren't loads or
3781      // stores), because arm allows folding a scale into many arithmetic
3782      // operations.  This should be made more precise and revisited later.
3783
3784      // Allow r << imm, but the imm has to be a multiple of two.
3785      if (Scale & 1) return false;
3786      return isPowerOf2_32(Scale);
3787    }
3788    break;
3789  }
3790  return true;
3791}
3792
3793/// isLegalICmpImmediate - Return true if the specified immediate is legal
3794/// icmp immediate, that is the target has icmp instructions which can compare
3795/// a register against the immediate without having to materialize the
3796/// immediate into a register.
3797bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
3798  if (!Subtarget->isThumb())
3799    return ARM_AM::getSOImmVal(Imm) != -1;
3800  if (Subtarget->isThumb2())
3801    return ARM_AM::getT2SOImmVal(Imm) != -1;
3802  return Imm >= 0 && Imm <= 255;
3803}
3804
3805static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
3806                                      bool isSEXTLoad, SDValue &Base,
3807                                      SDValue &Offset, bool &isInc,
3808                                      SelectionDAG &DAG) {
3809  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
3810    return false;
3811
3812  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
3813    // AddressingMode 3
3814    Base = Ptr->getOperand(0);
3815    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
3816      int RHSC = (int)RHS->getZExtValue();
3817      if (RHSC < 0 && RHSC > -256) {
3818        assert(Ptr->getOpcode() == ISD::ADD);
3819        isInc = false;
3820        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
3821        return true;
3822      }
3823    }
3824    isInc = (Ptr->getOpcode() == ISD::ADD);
3825    Offset = Ptr->getOperand(1);
3826    return true;
3827  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
3828    // AddressingMode 2
3829    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
3830      int RHSC = (int)RHS->getZExtValue();
3831      if (RHSC < 0 && RHSC > -0x1000) {
3832        assert(Ptr->getOpcode() == ISD::ADD);
3833        isInc = false;
3834        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
3835        Base = Ptr->getOperand(0);
3836        return true;
3837      }
3838    }
3839
3840    if (Ptr->getOpcode() == ISD::ADD) {
3841      isInc = true;
3842      ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
3843      if (ShOpcVal != ARM_AM::no_shift) {
3844        Base = Ptr->getOperand(1);
3845        Offset = Ptr->getOperand(0);
3846      } else {
3847        Base = Ptr->getOperand(0);
3848        Offset = Ptr->getOperand(1);
3849      }
3850      return true;
3851    }
3852
3853    isInc = (Ptr->getOpcode() == ISD::ADD);
3854    Base = Ptr->getOperand(0);
3855    Offset = Ptr->getOperand(1);
3856    return true;
3857  }
3858
3859  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
3860  return false;
3861}
3862
3863static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
3864                                     bool isSEXTLoad, SDValue &Base,
3865                                     SDValue &Offset, bool &isInc,
3866                                     SelectionDAG &DAG) {
3867  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
3868    return false;
3869
3870  Base = Ptr->getOperand(0);
3871  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
3872    int RHSC = (int)RHS->getZExtValue();
3873    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
3874      assert(Ptr->getOpcode() == ISD::ADD);
3875      isInc = false;
3876      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
3877      return true;
3878    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
3879      isInc = Ptr->getOpcode() == ISD::ADD;
3880      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
3881      return true;
3882    }
3883  }
3884
3885  return false;
3886}
3887
3888/// getPreIndexedAddressParts - returns true by value, base pointer and
3889/// offset pointer and addressing mode by reference if the node's address
3890/// can be legally represented as pre-indexed load / store address.
3891bool
3892ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
3893                                             SDValue &Offset,
3894                                             ISD::MemIndexedMode &AM,
3895                                             SelectionDAG &DAG) const {
3896  if (Subtarget->isThumb1Only())
3897    return false;
3898
3899  EVT VT;
3900  SDValue Ptr;
3901  bool isSEXTLoad = false;
3902  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
3903    Ptr = LD->getBasePtr();
3904    VT  = LD->getMemoryVT();
3905    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
3906  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
3907    Ptr = ST->getBasePtr();
3908    VT  = ST->getMemoryVT();
3909  } else
3910    return false;
3911
3912  bool isInc;
3913  bool isLegal = false;
3914  if (Subtarget->isThumb2())
3915    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
3916                                       Offset, isInc, DAG);
3917  else
3918    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
3919                                        Offset, isInc, DAG);
3920  if (!isLegal)
3921    return false;
3922
3923  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
3924  return true;
3925}
3926
3927/// getPostIndexedAddressParts - returns true by value, base pointer and
3928/// offset pointer and addressing mode by reference if this node can be
3929/// combined with a load / store to form a post-indexed load / store.
3930bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
3931                                                   SDValue &Base,
3932                                                   SDValue &Offset,
3933                                                   ISD::MemIndexedMode &AM,
3934                                                   SelectionDAG &DAG) const {
3935  if (Subtarget->isThumb1Only())
3936    return false;
3937
3938  EVT VT;
3939  SDValue Ptr;
3940  bool isSEXTLoad = false;
3941  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
3942    VT  = LD->getMemoryVT();
3943    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
3944  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
3945    VT  = ST->getMemoryVT();
3946  } else
3947    return false;
3948
3949  bool isInc;
3950  bool isLegal = false;
3951  if (Subtarget->isThumb2())
3952    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
3953                                        isInc, DAG);
3954  else
3955    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
3956                                        isInc, DAG);
3957  if (!isLegal)
3958    return false;
3959
3960  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
3961  return true;
3962}
3963
3964void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
3965                                                       const APInt &Mask,
3966                                                       APInt &KnownZero,
3967                                                       APInt &KnownOne,
3968                                                       const SelectionDAG &DAG,
3969                                                       unsigned Depth) const {
3970  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
3971  switch (Op.getOpcode()) {
3972  default: break;
3973  case ARMISD::CMOV: {
3974    // Bits are known zero/one if known on the LHS and RHS.
3975    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
3976    if (KnownZero == 0 && KnownOne == 0) return;
3977
3978    APInt KnownZeroRHS, KnownOneRHS;
3979    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
3980                          KnownZeroRHS, KnownOneRHS, Depth+1);
3981    KnownZero &= KnownZeroRHS;
3982    KnownOne  &= KnownOneRHS;
3983    return;
3984  }
3985  }
3986}
3987
3988//===----------------------------------------------------------------------===//
3989//                           ARM Inline Assembly Support
3990//===----------------------------------------------------------------------===//
3991
3992/// getConstraintType - Given a constraint letter, return the type of
3993/// constraint it is for this target.
3994ARMTargetLowering::ConstraintType
3995ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
3996  if (Constraint.size() == 1) {
3997    switch (Constraint[0]) {
3998    default:  break;
3999    case 'l': return C_RegisterClass;
4000    case 'w': return C_RegisterClass;
4001    }
4002  }
4003  return TargetLowering::getConstraintType(Constraint);
4004}
4005
4006std::pair<unsigned, const TargetRegisterClass*>
4007ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
4008                                                EVT VT) const {
4009  if (Constraint.size() == 1) {
4010    // GCC RS6000 Constraint Letters
4011    switch (Constraint[0]) {
4012    case 'l':
4013      if (Subtarget->isThumb1Only())
4014        return std::make_pair(0U, ARM::tGPRRegisterClass);
4015      else
4016        return std::make_pair(0U, ARM::GPRRegisterClass);
4017    case 'r':
4018      return std::make_pair(0U, ARM::GPRRegisterClass);
4019    case 'w':
4020      if (VT == MVT::f32)
4021        return std::make_pair(0U, ARM::SPRRegisterClass);
4022      if (VT == MVT::f64)
4023        return std::make_pair(0U, ARM::DPRRegisterClass);
4024      break;
4025    }
4026  }
4027  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4028}
4029
4030std::vector<unsigned> ARMTargetLowering::
4031getRegClassForInlineAsmConstraint(const std::string &Constraint,
4032                                  EVT VT) const {
4033  if (Constraint.size() != 1)
4034    return std::vector<unsigned>();
4035
4036  switch (Constraint[0]) {      // GCC ARM Constraint Letters
4037  default: break;
4038  case 'l':
4039    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
4040                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
4041                                 0);
4042  case 'r':
4043    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
4044                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
4045                                 ARM::R8, ARM::R9, ARM::R10, ARM::R11,
4046                                 ARM::R12, ARM::LR, 0);
4047  case 'w':
4048    if (VT == MVT::f32)
4049      return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
4050                                   ARM::S4, ARM::S5, ARM::S6, ARM::S7,
4051                                   ARM::S8, ARM::S9, ARM::S10, ARM::S11,
4052                                   ARM::S12,ARM::S13,ARM::S14,ARM::S15,
4053                                   ARM::S16,ARM::S17,ARM::S18,ARM::S19,
4054                                   ARM::S20,ARM::S21,ARM::S22,ARM::S23,
4055                                   ARM::S24,ARM::S25,ARM::S26,ARM::S27,
4056                                   ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
4057    if (VT == MVT::f64)
4058      return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
4059                                   ARM::D4, ARM::D5, ARM::D6, ARM::D7,
4060                                   ARM::D8, ARM::D9, ARM::D10,ARM::D11,
4061                                   ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
4062      break;
4063  }
4064
4065  return std::vector<unsigned>();
4066}
4067
4068/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4069/// vector.  If it is invalid, don't add anything to Ops.
4070void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4071                                                     char Constraint,
4072                                                     bool hasMemory,
4073                                                     std::vector<SDValue>&Ops,
4074                                                     SelectionDAG &DAG) const {
4075  SDValue Result(0, 0);
4076
4077  switch (Constraint) {
4078  default: break;
4079  case 'I': case 'J': case 'K': case 'L':
4080  case 'M': case 'N': case 'O':
4081    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4082    if (!C)
4083      return;
4084
4085    int64_t CVal64 = C->getSExtValue();
4086    int CVal = (int) CVal64;
4087    // None of these constraints allow values larger than 32 bits.  Check
4088    // that the value fits in an int.
4089    if (CVal != CVal64)
4090      return;
4091
4092    switch (Constraint) {
4093      case 'I':
4094        if (Subtarget->isThumb1Only()) {
4095          // This must be a constant between 0 and 255, for ADD
4096          // immediates.
4097          if (CVal >= 0 && CVal <= 255)
4098            break;
4099        } else if (Subtarget->isThumb2()) {
4100          // A constant that can be used as an immediate value in a
4101          // data-processing instruction.
4102          if (ARM_AM::getT2SOImmVal(CVal) != -1)
4103            break;
4104        } else {
4105          // A constant that can be used as an immediate value in a
4106          // data-processing instruction.
4107          if (ARM_AM::getSOImmVal(CVal) != -1)
4108            break;
4109        }
4110        return;
4111
4112      case 'J':
4113        if (Subtarget->isThumb()) {  // FIXME thumb2
4114          // This must be a constant between -255 and -1, for negated ADD
4115          // immediates. This can be used in GCC with an "n" modifier that
4116          // prints the negated value, for use with SUB instructions. It is
4117          // not useful otherwise but is implemented for compatibility.
4118          if (CVal >= -255 && CVal <= -1)
4119            break;
4120        } else {
4121          // This must be a constant between -4095 and 4095. It is not clear
4122          // what this constraint is intended for. Implemented for
4123          // compatibility with GCC.
4124          if (CVal >= -4095 && CVal <= 4095)
4125            break;
4126        }
4127        return;
4128
4129      case 'K':
4130        if (Subtarget->isThumb1Only()) {
4131          // A 32-bit value where only one byte has a nonzero value. Exclude
4132          // zero to match GCC. This constraint is used by GCC internally for
4133          // constants that can be loaded with a move/shift combination.
4134          // It is not useful otherwise but is implemented for compatibility.
4135          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
4136            break;
4137        } else if (Subtarget->isThumb2()) {
4138          // A constant whose bitwise inverse can be used as an immediate
4139          // value in a data-processing instruction. This can be used in GCC
4140          // with a "B" modifier that prints the inverted value, for use with
4141          // BIC and MVN instructions. It is not useful otherwise but is
4142          // implemented for compatibility.
4143          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
4144            break;
4145        } else {
4146          // A constant whose bitwise inverse can be used as an immediate
4147          // value in a data-processing instruction. This can be used in GCC
4148          // with a "B" modifier that prints the inverted value, for use with
4149          // BIC and MVN instructions. It is not useful otherwise but is
4150          // implemented for compatibility.
4151          if (ARM_AM::getSOImmVal(~CVal) != -1)
4152            break;
4153        }
4154        return;
4155
4156      case 'L':
4157        if (Subtarget->isThumb1Only()) {
4158          // This must be a constant between -7 and 7,
4159          // for 3-operand ADD/SUB immediate instructions.
4160          if (CVal >= -7 && CVal < 7)
4161            break;
4162        } else if (Subtarget->isThumb2()) {
4163          // A constant whose negation can be used as an immediate value in a
4164          // data-processing instruction. This can be used in GCC with an "n"
4165          // modifier that prints the negated value, for use with SUB
4166          // instructions. It is not useful otherwise but is implemented for
4167          // compatibility.
4168          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
4169            break;
4170        } else {
4171          // A constant whose negation can be used as an immediate value in a
4172          // data-processing instruction. This can be used in GCC with an "n"
4173          // modifier that prints the negated value, for use with SUB
4174          // instructions. It is not useful otherwise but is implemented for
4175          // compatibility.
4176          if (ARM_AM::getSOImmVal(-CVal) != -1)
4177            break;
4178        }
4179        return;
4180
4181      case 'M':
4182        if (Subtarget->isThumb()) { // FIXME thumb2
4183          // This must be a multiple of 4 between 0 and 1020, for
4184          // ADD sp + immediate.
4185          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
4186            break;
4187        } else {
4188          // A power of two or a constant between 0 and 32.  This is used in
4189          // GCC for the shift amount on shifted register operands, but it is
4190          // useful in general for any shift amounts.
4191          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
4192            break;
4193        }
4194        return;
4195
4196      case 'N':
4197        if (Subtarget->isThumb()) {  // FIXME thumb2
4198          // This must be a constant between 0 and 31, for shift amounts.
4199          if (CVal >= 0 && CVal <= 31)
4200            break;
4201        }
4202        return;
4203
4204      case 'O':
4205        if (Subtarget->isThumb()) {  // FIXME thumb2
4206          // This must be a multiple of 4 between -508 and 508, for
4207          // ADD/SUB sp = sp + immediate.
4208          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
4209            break;
4210        }
4211        return;
4212    }
4213    Result = DAG.getTargetConstant(CVal, Op.getValueType());
4214    break;
4215  }
4216
4217  if (Result.getNode()) {
4218    Ops.push_back(Result);
4219    return;
4220  }
4221  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
4222                                                      Ops, DAG);
4223}
4224
4225bool
4226ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
4227  // The ARM target isn't yet aware of offsets.
4228  return false;
4229}
4230
4231int ARM::getVFPf32Imm(const APFloat &FPImm) {
4232  APInt Imm = FPImm.bitcastToAPInt();
4233  uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
4234  int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
4235  int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
4236
4237  // We can handle 4 bits of mantissa.
4238  // mantissa = (16+UInt(e:f:g:h))/16.
4239  if (Mantissa & 0x7ffff)
4240    return -1;
4241  Mantissa >>= 19;
4242  if ((Mantissa & 0xf) != Mantissa)
4243    return -1;
4244
4245  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
4246  if (Exp < -3 || Exp > 4)
4247    return -1;
4248  Exp = ((Exp+3) & 0x7) ^ 4;
4249
4250  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
4251}
4252
4253int ARM::getVFPf64Imm(const APFloat &FPImm) {
4254  APInt Imm = FPImm.bitcastToAPInt();
4255  uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
4256  int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
4257  uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffLL;
4258
4259  // We can handle 4 bits of mantissa.
4260  // mantissa = (16+UInt(e:f:g:h))/16.
4261  if (Mantissa & 0xffffffffffffLL)
4262    return -1;
4263  Mantissa >>= 48;
4264  if ((Mantissa & 0xf) != Mantissa)
4265    return -1;
4266
4267  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
4268  if (Exp < -3 || Exp > 4)
4269    return -1;
4270  Exp = ((Exp+3) & 0x7) ^ 4;
4271
4272  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
4273}
4274
4275/// isFPImmLegal - Returns true if the target can instruction select the
4276/// specified FP immediate natively. If false, the legalizer will
4277/// materialize the FP immediate as a load from a constant pool.
4278bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
4279  if (!Subtarget->hasVFP3())
4280    return false;
4281  if (VT == MVT::f32)
4282    return ARM::getVFPf32Imm(Imm) != -1;
4283  if (VT == MVT::f64)
4284    return ARM::getVFPf64Imm(Imm) != -1;
4285  return false;
4286}
4287