ARMISelLowering.cpp revision 26b4f62e52845638a6e353b58ea72326a0aa7b06
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-isel"
16#include "ARM.h"
17#include "ARMCallingConv.h"
18#include "ARMConstantPoolValue.h"
19#include "ARMISelLowering.h"
20#include "ARMMachineFunctionInfo.h"
21#include "ARMPerfectShuffle.h"
22#include "ARMRegisterInfo.h"
23#include "ARMSubtarget.h"
24#include "ARMTargetMachine.h"
25#include "ARMTargetObjectFile.h"
26#include "MCTargetDesc/ARMAddressingModes.h"
27#include "llvm/CallingConv.h"
28#include "llvm/Constants.h"
29#include "llvm/Function.h"
30#include "llvm/GlobalValue.h"
31#include "llvm/Instruction.h"
32#include "llvm/Instructions.h"
33#include "llvm/Intrinsics.h"
34#include "llvm/Type.h"
35#include "llvm/CodeGen/CallingConvLower.h"
36#include "llvm/CodeGen/IntrinsicLowering.h"
37#include "llvm/CodeGen/MachineBasicBlock.h"
38#include "llvm/CodeGen/MachineFrameInfo.h"
39#include "llvm/CodeGen/MachineFunction.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineModuleInfo.h"
42#include "llvm/CodeGen/MachineRegisterInfo.h"
43#include "llvm/CodeGen/PseudoSourceValue.h"
44#include "llvm/CodeGen/SelectionDAG.h"
45#include "llvm/MC/MCSectionMachO.h"
46#include "llvm/Target/TargetOptions.h"
47#include "llvm/ADT/VectorExtras.h"
48#include "llvm/ADT/StringExtras.h"
49#include "llvm/ADT/Statistic.h"
50#include "llvm/Support/CommandLine.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include <sstream>
55using namespace llvm;
56
57STATISTIC(NumTailCalls, "Number of tail calls");
58STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
59
60// This option should go away when tail calls fully work.
61static cl::opt<bool>
62EnableARMTailCalls("arm-tail-calls", cl::Hidden,
63  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
64  cl::init(false));
65
66cl::opt<bool>
67EnableARMLongCalls("arm-long-calls", cl::Hidden,
68  cl::desc("Generate calls via indirect call instructions"),
69  cl::init(false));
70
71static cl::opt<bool>
72ARMInterworking("arm-interworking", cl::Hidden,
73  cl::desc("Enable / disable ARM interworking (for debugging only)"),
74  cl::init(true));
75
76namespace llvm {
77  class ARMCCState : public CCState {
78  public:
79    ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
80               const TargetMachine &TM, SmallVector<CCValAssign, 16> &locs,
81               LLVMContext &C, ParmContext PC)
82        : CCState(CC, isVarArg, MF, TM, locs, C) {
83      assert(((PC == Call) || (PC == Prologue)) &&
84             "ARMCCState users must specify whether their context is call"
85             "or prologue generation.");
86      CallOrPrologue = PC;
87    }
88  };
89}
90
91// The APCS parameter registers.
92static const unsigned GPRArgRegs[] = {
93  ARM::R0, ARM::R1, ARM::R2, ARM::R3
94};
95
96void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
97                                       EVT PromotedBitwiseVT) {
98  if (VT != PromotedLdStVT) {
99    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
100    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
101                       PromotedLdStVT.getSimpleVT());
102
103    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
104    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
105                       PromotedLdStVT.getSimpleVT());
106  }
107
108  EVT ElemTy = VT.getVectorElementType();
109  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
110    setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
111  setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
112  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
113  if (ElemTy != MVT::i32) {
114    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
115    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
116    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
117    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
118  }
119  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
120  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
121  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
122  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Legal);
123  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
124  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
125  if (VT.isInteger()) {
126    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
127    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
128    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
129    setLoadExtAction(ISD::SEXTLOAD, VT.getSimpleVT(), Expand);
130    setLoadExtAction(ISD::ZEXTLOAD, VT.getSimpleVT(), Expand);
131    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
132         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
133      setTruncStoreAction(VT.getSimpleVT(),
134                          (MVT::SimpleValueType)InnerVT, Expand);
135  }
136  setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
137
138  // Promote all bit-wise operations.
139  if (VT.isInteger() && VT != PromotedBitwiseVT) {
140    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
141    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
142                       PromotedBitwiseVT.getSimpleVT());
143    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
144    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
145                       PromotedBitwiseVT.getSimpleVT());
146    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
147    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
148                       PromotedBitwiseVT.getSimpleVT());
149  }
150
151  // Neon does not support vector divide/remainder operations.
152  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
153  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
154  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
155  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
156  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
157  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
158}
159
160void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
161  addRegisterClass(VT, ARM::DPRRegisterClass);
162  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
163}
164
165void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
166  addRegisterClass(VT, ARM::QPRRegisterClass);
167  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
168}
169
170static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
171  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
172    return new TargetLoweringObjectFileMachO();
173
174  return new ARMElfTargetObjectFile();
175}
176
177ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
178    : TargetLowering(TM, createTLOF(TM)) {
179  Subtarget = &TM.getSubtarget<ARMSubtarget>();
180  RegInfo = TM.getRegisterInfo();
181  Itins = TM.getInstrItineraryData();
182
183  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
184
185  if (Subtarget->isTargetDarwin()) {
186    // Uses VFP for Thumb libfuncs if available.
187    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
188      // Single-precision floating-point arithmetic.
189      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
190      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
191      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
192      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
193
194      // Double-precision floating-point arithmetic.
195      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
196      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
197      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
198      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
199
200      // Single-precision comparisons.
201      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
202      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
203      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
204      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
205      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
206      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
207      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
208      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
209
210      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
211      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
212      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
213      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
214      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
215      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
216      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
217      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
218
219      // Double-precision comparisons.
220      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
221      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
222      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
223      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
224      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
225      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
226      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
227      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
228
229      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
230      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
231      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
232      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
233      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
234      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
235      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
236      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
237
238      // Floating-point to integer conversions.
239      // i64 conversions are done via library routines even when generating VFP
240      // instructions, so use the same ones.
241      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
242      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
243      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
244      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
245
246      // Conversions between floating types.
247      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
248      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
249
250      // Integer to floating-point conversions.
251      // i64 conversions are done via library routines even when generating VFP
252      // instructions, so use the same ones.
253      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
254      // e.g., __floatunsidf vs. __floatunssidfvfp.
255      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
256      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
257      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
258      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
259    }
260  }
261
262  // These libcalls are not available in 32-bit.
263  setLibcallName(RTLIB::SHL_I128, 0);
264  setLibcallName(RTLIB::SRL_I128, 0);
265  setLibcallName(RTLIB::SRA_I128, 0);
266
267  if (Subtarget->isAAPCS_ABI()) {
268    // Double-precision floating-point arithmetic helper functions
269    // RTABI chapter 4.1.2, Table 2
270    setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
271    setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
272    setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
273    setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
274    setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
275    setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
276    setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
277    setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
278
279    // Double-precision floating-point comparison helper functions
280    // RTABI chapter 4.1.2, Table 3
281    setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
282    setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
283    setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
284    setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
285    setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
286    setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
287    setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
288    setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
289    setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
290    setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
291    setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
292    setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
293    setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
294    setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
295    setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
296    setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
297    setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
298    setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
299    setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
300    setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
301    setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
302    setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
303    setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
304    setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
305
306    // Single-precision floating-point arithmetic helper functions
307    // RTABI chapter 4.1.2, Table 4
308    setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
309    setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
310    setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
311    setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
312    setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
313    setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
314    setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
315    setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
316
317    // Single-precision floating-point comparison helper functions
318    // RTABI chapter 4.1.2, Table 5
319    setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
320    setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
321    setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
322    setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
323    setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
324    setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
325    setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
326    setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
327    setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
328    setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
329    setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
330    setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
331    setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
332    setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
333    setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
334    setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
335    setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
336    setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
337    setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
338    setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
339    setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
340    setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
341    setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
342    setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
343
344    // Floating-point to integer conversions.
345    // RTABI chapter 4.1.2, Table 6
346    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
347    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
348    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
349    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
350    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
351    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
352    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
353    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
354    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
355    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
356    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
357    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
358    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
359    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
360    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
361    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
362
363    // Conversions between floating types.
364    // RTABI chapter 4.1.2, Table 7
365    setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
366    setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
367    setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
368    setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
369
370    // Integer to floating-point conversions.
371    // RTABI chapter 4.1.2, Table 8
372    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
373    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
374    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
375    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
376    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
377    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
378    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
379    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
380    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
381    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
382    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
383    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
384    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
385    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
386    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
387    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
388
389    // Long long helper functions
390    // RTABI chapter 4.2, Table 9
391    setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
392    setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
393    setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
394    setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
395    setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
396    setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
397    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
398    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
399    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
400    setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
401    setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
402    setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
403
404    // Integer division functions
405    // RTABI chapter 4.3.1
406    setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
407    setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
408    setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
409    setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
410    setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
411    setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
412    setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
413    setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
414    setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
415    setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
416    setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
417    setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
418
419    // Memory operations
420    // RTABI chapter 4.3.4
421    setLibcallName(RTLIB::MEMCPY,  "__aeabi_memcpy");
422    setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove");
423    setLibcallName(RTLIB::MEMSET,  "__aeabi_memset");
424  }
425
426  // Use divmod compiler-rt calls for iOS 5.0 and later.
427  if (Subtarget->getTargetTriple().getOS() == Triple::IOS &&
428      !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
429    setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
430    setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
431  }
432
433  if (Subtarget->isThumb1Only())
434    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
435  else
436    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
437  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
438    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
439    if (!Subtarget->isFPOnlySP())
440      addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
441
442    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
443  }
444
445  if (Subtarget->hasNEON()) {
446    addDRTypeForNEON(MVT::v2f32);
447    addDRTypeForNEON(MVT::v8i8);
448    addDRTypeForNEON(MVT::v4i16);
449    addDRTypeForNEON(MVT::v2i32);
450    addDRTypeForNEON(MVT::v1i64);
451
452    addQRTypeForNEON(MVT::v4f32);
453    addQRTypeForNEON(MVT::v2f64);
454    addQRTypeForNEON(MVT::v16i8);
455    addQRTypeForNEON(MVT::v8i16);
456    addQRTypeForNEON(MVT::v4i32);
457    addQRTypeForNEON(MVT::v2i64);
458
459    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
460    // neither Neon nor VFP support any arithmetic operations on it.
461    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
462    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
463    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
464    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
465    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
466    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
467    setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
468    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
469    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
470    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
471    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
472    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
473    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
474    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
475    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
476    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
477    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
478    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
479    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
480    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
481    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
482    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
483    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
484    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
485
486    setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
487
488    // Neon does not support some operations on v1i64 and v2i64 types.
489    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
490    // Custom handling for some quad-vector types to detect VMULL.
491    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
492    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
493    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
494    // Custom handling for some vector types to avoid expensive expansions
495    setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
496    setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
497    setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
498    setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
499    setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
500    setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
501    // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
502    // a destination type that is wider than the source.
503    setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
504    setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
505
506    setTargetDAGCombine(ISD::INTRINSIC_VOID);
507    setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
508    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
509    setTargetDAGCombine(ISD::SHL);
510    setTargetDAGCombine(ISD::SRL);
511    setTargetDAGCombine(ISD::SRA);
512    setTargetDAGCombine(ISD::SIGN_EXTEND);
513    setTargetDAGCombine(ISD::ZERO_EXTEND);
514    setTargetDAGCombine(ISD::ANY_EXTEND);
515    setTargetDAGCombine(ISD::SELECT_CC);
516    setTargetDAGCombine(ISD::BUILD_VECTOR);
517    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
518    setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
519    setTargetDAGCombine(ISD::STORE);
520    setTargetDAGCombine(ISD::FP_TO_SINT);
521    setTargetDAGCombine(ISD::FP_TO_UINT);
522    setTargetDAGCombine(ISD::FDIV);
523
524    setLoadExtAction(ISD::EXTLOAD, MVT::v4i8, Expand);
525  }
526
527  computeRegisterProperties();
528
529  // ARM does not have f32 extending load.
530  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
531
532  // ARM does not have i1 sign extending load.
533  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
534
535  // ARM supports all 4 flavors of integer indexed load / store.
536  if (!Subtarget->isThumb1Only()) {
537    for (unsigned im = (unsigned)ISD::PRE_INC;
538         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
539      setIndexedLoadAction(im,  MVT::i1,  Legal);
540      setIndexedLoadAction(im,  MVT::i8,  Legal);
541      setIndexedLoadAction(im,  MVT::i16, Legal);
542      setIndexedLoadAction(im,  MVT::i32, Legal);
543      setIndexedStoreAction(im, MVT::i1,  Legal);
544      setIndexedStoreAction(im, MVT::i8,  Legal);
545      setIndexedStoreAction(im, MVT::i16, Legal);
546      setIndexedStoreAction(im, MVT::i32, Legal);
547    }
548  }
549
550  // i64 operation support.
551  setOperationAction(ISD::MUL,     MVT::i64, Expand);
552  setOperationAction(ISD::MULHU,   MVT::i32, Expand);
553  if (Subtarget->isThumb1Only()) {
554    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
555    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
556  }
557  if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
558      || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
559    setOperationAction(ISD::MULHS, MVT::i32, Expand);
560
561  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
562  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
563  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
564  setOperationAction(ISD::SRL,       MVT::i64, Custom);
565  setOperationAction(ISD::SRA,       MVT::i64, Custom);
566
567  if (!Subtarget->isThumb1Only()) {
568    // FIXME: We should do this for Thumb1 as well.
569    setOperationAction(ISD::ADDC,    MVT::i32, Custom);
570    setOperationAction(ISD::ADDE,    MVT::i32, Custom);
571    setOperationAction(ISD::SUBC,    MVT::i32, Custom);
572    setOperationAction(ISD::SUBE,    MVT::i32, Custom);
573  }
574
575  // ARM does not have ROTL.
576  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
577  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
578  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
579  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
580    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
581
582  // Only ARMv6 has BSWAP.
583  if (!Subtarget->hasV6Ops())
584    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
585
586  // These are expanded into libcalls.
587  if (!Subtarget->hasDivide() || !Subtarget->isThumb2()) {
588    // v7M has a hardware divider
589    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
590    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
591  }
592  setOperationAction(ISD::SREM,  MVT::i32, Expand);
593  setOperationAction(ISD::UREM,  MVT::i32, Expand);
594  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
595  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
596
597  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
598  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
599  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
600  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
601  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
602
603  setOperationAction(ISD::TRAP, MVT::Other, Legal);
604
605  // Use the default implementation.
606  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
607  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
608  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
609  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
610  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
611  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
612  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
613  setOperationAction(ISD::EXCEPTIONADDR,      MVT::i32,   Expand);
614  setExceptionPointerRegister(ARM::R0);
615  setExceptionSelectorRegister(ARM::R1);
616
617  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
618  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
619  // the default expansion.
620  // FIXME: This should be checking for v6k, not just v6.
621  if (Subtarget->hasDataBarrier() ||
622      (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
623    // membarrier needs custom lowering; the rest are legal and handled
624    // normally.
625    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
626    setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
627    // Custom lowering for 64-bit ops
628    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Custom);
629    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Custom);
630    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Custom);
631    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Custom);
632    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Custom);
633    setOperationAction(ISD::ATOMIC_SWAP,  MVT::i64, Custom);
634    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
635    // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc.
636    setInsertFencesForAtomic(true);
637  } else {
638    // Set them all for expansion, which will force libcalls.
639    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
640    setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other, Expand);
641    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
642    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
643    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
644    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
645    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
646    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
647    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
648    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
649    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
650    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
651    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
652    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
653    // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
654    // Unordered/Monotonic case.
655    setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
656    setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
657    // Since the libcalls include locking, fold in the fences
658    setShouldFoldAtomicFences(true);
659  }
660
661  setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
662
663  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
664  if (!Subtarget->hasV6Ops()) {
665    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
666    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
667  }
668  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
669
670  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
671    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
672    // iff target supports vfp2.
673    setOperationAction(ISD::BITCAST, MVT::i64, Custom);
674    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
675  }
676
677  // We want to custom lower some of our intrinsics.
678  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
679  if (Subtarget->isTargetDarwin()) {
680    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
681    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
682    setOperationAction(ISD::EH_SJLJ_DISPATCHSETUP, MVT::Other, Custom);
683    setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
684  }
685
686  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
687  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
688  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
689  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
690  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
691  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
692  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
693  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
694  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
695
696  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
697  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
698  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
699  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
700  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
701
702  // We don't support sin/cos/fmod/copysign/pow
703  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
704  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
705  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
706  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
707  setOperationAction(ISD::FREM,      MVT::f64, Expand);
708  setOperationAction(ISD::FREM,      MVT::f32, Expand);
709  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
710    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
711    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
712  }
713  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
714  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
715
716  setOperationAction(ISD::FMA, MVT::f64, Expand);
717  setOperationAction(ISD::FMA, MVT::f32, Expand);
718
719  // Various VFP goodness
720  if (!UseSoftFloat && !Subtarget->isThumb1Only()) {
721    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
722    if (Subtarget->hasVFP2()) {
723      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
724      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
725      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
726      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
727    }
728    // Special handling for half-precision FP.
729    if (!Subtarget->hasFP16()) {
730      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
731      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
732    }
733  }
734
735  // We have target-specific dag combine patterns for the following nodes:
736  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
737  setTargetDAGCombine(ISD::ADD);
738  setTargetDAGCombine(ISD::SUB);
739  setTargetDAGCombine(ISD::MUL);
740
741  if (Subtarget->hasV6T2Ops() || Subtarget->hasNEON())
742    setTargetDAGCombine(ISD::OR);
743  if (Subtarget->hasNEON())
744    setTargetDAGCombine(ISD::AND);
745
746  setStackPointerRegisterToSaveRestore(ARM::SP);
747
748  if (UseSoftFloat || Subtarget->isThumb1Only() || !Subtarget->hasVFP2())
749    setSchedulingPreference(Sched::RegPressure);
750  else
751    setSchedulingPreference(Sched::Hybrid);
752
753  //// temporary - rewrite interface to use type
754  maxStoresPerMemcpy = maxStoresPerMemcpyOptSize = 1;
755  maxStoresPerMemset = 16;
756  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
757
758  // On ARM arguments smaller than 4 bytes are extended, so all arguments
759  // are at least 4 bytes aligned.
760  setMinStackArgumentAlignment(4);
761
762  benefitFromCodePlacementOpt = true;
763
764  setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
765}
766
767// FIXME: It might make sense to define the representative register class as the
768// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
769// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
770// SPR's representative would be DPR_VFP2. This should work well if register
771// pressure tracking were modified such that a register use would increment the
772// pressure of the register class's representative and all of it's super
773// classes' representatives transitively. We have not implemented this because
774// of the difficulty prior to coalescing of modeling operand register classes
775// due to the common occurrence of cross class copies and subregister insertions
776// and extractions.
777std::pair<const TargetRegisterClass*, uint8_t>
778ARMTargetLowering::findRepresentativeClass(EVT VT) const{
779  const TargetRegisterClass *RRC = 0;
780  uint8_t Cost = 1;
781  switch (VT.getSimpleVT().SimpleTy) {
782  default:
783    return TargetLowering::findRepresentativeClass(VT);
784  // Use DPR as representative register class for all floating point
785  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
786  // the cost is 1 for both f32 and f64.
787  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
788  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
789    RRC = ARM::DPRRegisterClass;
790    // When NEON is used for SP, only half of the register file is available
791    // because operations that define both SP and DP results will be constrained
792    // to the VFP2 class (D0-D15). We currently model this constraint prior to
793    // coalescing by double-counting the SP regs. See the FIXME above.
794    if (Subtarget->useNEONForSinglePrecisionFP())
795      Cost = 2;
796    break;
797  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
798  case MVT::v4f32: case MVT::v2f64:
799    RRC = ARM::DPRRegisterClass;
800    Cost = 2;
801    break;
802  case MVT::v4i64:
803    RRC = ARM::DPRRegisterClass;
804    Cost = 4;
805    break;
806  case MVT::v8i64:
807    RRC = ARM::DPRRegisterClass;
808    Cost = 8;
809    break;
810  }
811  return std::make_pair(RRC, Cost);
812}
813
814const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
815  switch (Opcode) {
816  default: return 0;
817  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
818  case ARMISD::WrapperDYN:    return "ARMISD::WrapperDYN";
819  case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
820  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
821  case ARMISD::CALL:          return "ARMISD::CALL";
822  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
823  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
824  case ARMISD::tCALL:         return "ARMISD::tCALL";
825  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
826  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
827  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
828  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
829  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
830  case ARMISD::CMP:           return "ARMISD::CMP";
831  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
832  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
833  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
834  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
835  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
836  case ARMISD::CMOV:          return "ARMISD::CMOV";
837
838  case ARMISD::RBIT:          return "ARMISD::RBIT";
839
840  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
841  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
842  case ARMISD::SITOF:         return "ARMISD::SITOF";
843  case ARMISD::UITOF:         return "ARMISD::UITOF";
844
845  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
846  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
847  case ARMISD::RRX:           return "ARMISD::RRX";
848
849  case ARMISD::ADDC:          return "ARMISD::ADDC";
850  case ARMISD::ADDE:          return "ARMISD::ADDE";
851  case ARMISD::SUBC:          return "ARMISD::SUBC";
852  case ARMISD::SUBE:          return "ARMISD::SUBE";
853
854  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
855  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
856
857  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
858  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
859  case ARMISD::EH_SJLJ_DISPATCHSETUP:return "ARMISD::EH_SJLJ_DISPATCHSETUP";
860
861  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
862
863  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
864
865  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
866
867  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
868  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
869
870  case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
871
872  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
873  case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
874  case ARMISD::VCGE:          return "ARMISD::VCGE";
875  case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
876  case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
877  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
878  case ARMISD::VCGT:          return "ARMISD::VCGT";
879  case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
880  case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
881  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
882  case ARMISD::VTST:          return "ARMISD::VTST";
883
884  case ARMISD::VSHL:          return "ARMISD::VSHL";
885  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
886  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
887  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
888  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
889  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
890  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
891  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
892  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
893  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
894  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
895  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
896  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
897  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
898  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
899  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
900  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
901  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
902  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
903  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
904  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
905  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
906  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
907  case ARMISD::VDUP:          return "ARMISD::VDUP";
908  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
909  case ARMISD::VEXT:          return "ARMISD::VEXT";
910  case ARMISD::VREV64:        return "ARMISD::VREV64";
911  case ARMISD::VREV32:        return "ARMISD::VREV32";
912  case ARMISD::VREV16:        return "ARMISD::VREV16";
913  case ARMISD::VZIP:          return "ARMISD::VZIP";
914  case ARMISD::VUZP:          return "ARMISD::VUZP";
915  case ARMISD::VTRN:          return "ARMISD::VTRN";
916  case ARMISD::VTBL1:         return "ARMISD::VTBL1";
917  case ARMISD::VTBL2:         return "ARMISD::VTBL2";
918  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
919  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
920  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
921  case ARMISD::FMAX:          return "ARMISD::FMAX";
922  case ARMISD::FMIN:          return "ARMISD::FMIN";
923  case ARMISD::BFI:           return "ARMISD::BFI";
924  case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
925  case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
926  case ARMISD::VBSL:          return "ARMISD::VBSL";
927  case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
928  case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
929  case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
930  case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
931  case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
932  case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
933  case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
934  case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
935  case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
936  case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
937  case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
938  case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
939  case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
940  case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
941  case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
942  case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
943  case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
944  case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
945  case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
946  case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
947  }
948}
949
950EVT ARMTargetLowering::getSetCCResultType(EVT VT) const {
951  if (!VT.isVector()) return getPointerTy();
952  return VT.changeVectorElementTypeToInteger();
953}
954
955/// getRegClassFor - Return the register class that should be used for the
956/// specified value type.
957TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
958  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
959  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
960  // load / store 4 to 8 consecutive D registers.
961  if (Subtarget->hasNEON()) {
962    if (VT == MVT::v4i64)
963      return ARM::QQPRRegisterClass;
964    else if (VT == MVT::v8i64)
965      return ARM::QQQQPRRegisterClass;
966  }
967  return TargetLowering::getRegClassFor(VT);
968}
969
970// Create a fast isel object.
971FastISel *
972ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
973  return ARM::createFastISel(funcInfo);
974}
975
976/// getMaximalGlobalOffset - Returns the maximal possible offset which can
977/// be used for loads / stores from the global.
978unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
979  return (Subtarget->isThumb1Only() ? 127 : 4095);
980}
981
982Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
983  unsigned NumVals = N->getNumValues();
984  if (!NumVals)
985    return Sched::RegPressure;
986
987  for (unsigned i = 0; i != NumVals; ++i) {
988    EVT VT = N->getValueType(i);
989    if (VT == MVT::Glue || VT == MVT::Other)
990      continue;
991    if (VT.isFloatingPoint() || VT.isVector())
992      return Sched::ILP;
993  }
994
995  if (!N->isMachineOpcode())
996    return Sched::RegPressure;
997
998  // Load are scheduled for latency even if there instruction itinerary
999  // is not available.
1000  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1001  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1002
1003  if (MCID.getNumDefs() == 0)
1004    return Sched::RegPressure;
1005  if (!Itins->isEmpty() &&
1006      Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1007    return Sched::ILP;
1008
1009  return Sched::RegPressure;
1010}
1011
1012//===----------------------------------------------------------------------===//
1013// Lowering Code
1014//===----------------------------------------------------------------------===//
1015
1016/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1017static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1018  switch (CC) {
1019  default: llvm_unreachable("Unknown condition code!");
1020  case ISD::SETNE:  return ARMCC::NE;
1021  case ISD::SETEQ:  return ARMCC::EQ;
1022  case ISD::SETGT:  return ARMCC::GT;
1023  case ISD::SETGE:  return ARMCC::GE;
1024  case ISD::SETLT:  return ARMCC::LT;
1025  case ISD::SETLE:  return ARMCC::LE;
1026  case ISD::SETUGT: return ARMCC::HI;
1027  case ISD::SETUGE: return ARMCC::HS;
1028  case ISD::SETULT: return ARMCC::LO;
1029  case ISD::SETULE: return ARMCC::LS;
1030  }
1031}
1032
1033/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1034static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1035                        ARMCC::CondCodes &CondCode2) {
1036  CondCode2 = ARMCC::AL;
1037  switch (CC) {
1038  default: llvm_unreachable("Unknown FP condition!");
1039  case ISD::SETEQ:
1040  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1041  case ISD::SETGT:
1042  case ISD::SETOGT: CondCode = ARMCC::GT; break;
1043  case ISD::SETGE:
1044  case ISD::SETOGE: CondCode = ARMCC::GE; break;
1045  case ISD::SETOLT: CondCode = ARMCC::MI; break;
1046  case ISD::SETOLE: CondCode = ARMCC::LS; break;
1047  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1048  case ISD::SETO:   CondCode = ARMCC::VC; break;
1049  case ISD::SETUO:  CondCode = ARMCC::VS; break;
1050  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1051  case ISD::SETUGT: CondCode = ARMCC::HI; break;
1052  case ISD::SETUGE: CondCode = ARMCC::PL; break;
1053  case ISD::SETLT:
1054  case ISD::SETULT: CondCode = ARMCC::LT; break;
1055  case ISD::SETLE:
1056  case ISD::SETULE: CondCode = ARMCC::LE; break;
1057  case ISD::SETNE:
1058  case ISD::SETUNE: CondCode = ARMCC::NE; break;
1059  }
1060}
1061
1062//===----------------------------------------------------------------------===//
1063//                      Calling Convention Implementation
1064//===----------------------------------------------------------------------===//
1065
1066#include "ARMGenCallingConv.inc"
1067
1068/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1069/// given CallingConvention value.
1070CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1071                                                 bool Return,
1072                                                 bool isVarArg) const {
1073  switch (CC) {
1074  default:
1075    llvm_unreachable("Unsupported calling convention");
1076  case CallingConv::Fast:
1077    if (Subtarget->hasVFP2() && !isVarArg) {
1078      if (!Subtarget->isAAPCS_ABI())
1079        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1080      // For AAPCS ABI targets, just use VFP variant of the calling convention.
1081      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1082    }
1083    // Fallthrough
1084  case CallingConv::C: {
1085    // Use target triple & subtarget features to do actual dispatch.
1086    if (!Subtarget->isAAPCS_ABI())
1087      return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1088    else if (Subtarget->hasVFP2() &&
1089             FloatABIType == FloatABI::Hard && !isVarArg)
1090      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1091    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1092  }
1093  case CallingConv::ARM_AAPCS_VFP:
1094    return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1095  case CallingConv::ARM_AAPCS:
1096    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1097  case CallingConv::ARM_APCS:
1098    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1099  }
1100}
1101
1102/// LowerCallResult - Lower the result values of a call into the
1103/// appropriate copies out of appropriate physical registers.
1104SDValue
1105ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1106                                   CallingConv::ID CallConv, bool isVarArg,
1107                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1108                                   DebugLoc dl, SelectionDAG &DAG,
1109                                   SmallVectorImpl<SDValue> &InVals) const {
1110
1111  // Assign locations to each value returned by this call.
1112  SmallVector<CCValAssign, 16> RVLocs;
1113  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1114                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1115  CCInfo.AnalyzeCallResult(Ins,
1116                           CCAssignFnForNode(CallConv, /* Return*/ true,
1117                                             isVarArg));
1118
1119  // Copy all of the result registers out of their specified physreg.
1120  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1121    CCValAssign VA = RVLocs[i];
1122
1123    SDValue Val;
1124    if (VA.needsCustom()) {
1125      // Handle f64 or half of a v2f64.
1126      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1127                                      InFlag);
1128      Chain = Lo.getValue(1);
1129      InFlag = Lo.getValue(2);
1130      VA = RVLocs[++i]; // skip ahead to next loc
1131      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1132                                      InFlag);
1133      Chain = Hi.getValue(1);
1134      InFlag = Hi.getValue(2);
1135      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1136
1137      if (VA.getLocVT() == MVT::v2f64) {
1138        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1139        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1140                          DAG.getConstant(0, MVT::i32));
1141
1142        VA = RVLocs[++i]; // skip ahead to next loc
1143        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1144        Chain = Lo.getValue(1);
1145        InFlag = Lo.getValue(2);
1146        VA = RVLocs[++i]; // skip ahead to next loc
1147        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1148        Chain = Hi.getValue(1);
1149        InFlag = Hi.getValue(2);
1150        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1151        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1152                          DAG.getConstant(1, MVT::i32));
1153      }
1154    } else {
1155      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1156                               InFlag);
1157      Chain = Val.getValue(1);
1158      InFlag = Val.getValue(2);
1159    }
1160
1161    switch (VA.getLocInfo()) {
1162    default: llvm_unreachable("Unknown loc info!");
1163    case CCValAssign::Full: break;
1164    case CCValAssign::BCvt:
1165      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1166      break;
1167    }
1168
1169    InVals.push_back(Val);
1170  }
1171
1172  return Chain;
1173}
1174
1175/// LowerMemOpCallTo - Store the argument to the stack.
1176SDValue
1177ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1178                                    SDValue StackPtr, SDValue Arg,
1179                                    DebugLoc dl, SelectionDAG &DAG,
1180                                    const CCValAssign &VA,
1181                                    ISD::ArgFlagsTy Flags) const {
1182  unsigned LocMemOffset = VA.getLocMemOffset();
1183  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1184  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1185  return DAG.getStore(Chain, dl, Arg, PtrOff,
1186                      MachinePointerInfo::getStack(LocMemOffset),
1187                      false, false, 0);
1188}
1189
1190void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1191                                         SDValue Chain, SDValue &Arg,
1192                                         RegsToPassVector &RegsToPass,
1193                                         CCValAssign &VA, CCValAssign &NextVA,
1194                                         SDValue &StackPtr,
1195                                         SmallVector<SDValue, 8> &MemOpChains,
1196                                         ISD::ArgFlagsTy Flags) const {
1197
1198  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1199                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1200  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1201
1202  if (NextVA.isRegLoc())
1203    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1204  else {
1205    assert(NextVA.isMemLoc());
1206    if (StackPtr.getNode() == 0)
1207      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1208
1209    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1210                                           dl, DAG, NextVA,
1211                                           Flags));
1212  }
1213}
1214
1215/// LowerCall - Lowering a call into a callseq_start <-
1216/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1217/// nodes.
1218SDValue
1219ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1220                             CallingConv::ID CallConv, bool isVarArg,
1221                             bool &isTailCall,
1222                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1223                             const SmallVectorImpl<SDValue> &OutVals,
1224                             const SmallVectorImpl<ISD::InputArg> &Ins,
1225                             DebugLoc dl, SelectionDAG &DAG,
1226                             SmallVectorImpl<SDValue> &InVals) const {
1227  MachineFunction &MF = DAG.getMachineFunction();
1228  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1229  bool IsSibCall = false;
1230  // Disable tail calls if they're not supported.
1231  if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
1232    isTailCall = false;
1233  if (isTailCall) {
1234    // Check if it's really possible to do a tail call.
1235    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1236                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1237                                                   Outs, OutVals, Ins, DAG);
1238    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1239    // detected sibcalls.
1240    if (isTailCall) {
1241      ++NumTailCalls;
1242      IsSibCall = true;
1243    }
1244  }
1245
1246  // Analyze operands of the call, assigning locations to each operand.
1247  SmallVector<CCValAssign, 16> ArgLocs;
1248  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1249                 getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1250  CCInfo.AnalyzeCallOperands(Outs,
1251                             CCAssignFnForNode(CallConv, /* Return*/ false,
1252                                               isVarArg));
1253
1254  // Get a count of how many bytes are to be pushed on the stack.
1255  unsigned NumBytes = CCInfo.getNextStackOffset();
1256
1257  // For tail calls, memory operands are available in our caller's stack.
1258  if (IsSibCall)
1259    NumBytes = 0;
1260
1261  // Adjust the stack pointer for the new arguments...
1262  // These operations are automatically eliminated by the prolog/epilog pass
1263  if (!IsSibCall)
1264    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1265
1266  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1267
1268  RegsToPassVector RegsToPass;
1269  SmallVector<SDValue, 8> MemOpChains;
1270
1271  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1272  // of tail call optimization, arguments are handled later.
1273  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1274       i != e;
1275       ++i, ++realArgIdx) {
1276    CCValAssign &VA = ArgLocs[i];
1277    SDValue Arg = OutVals[realArgIdx];
1278    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1279    bool isByVal = Flags.isByVal();
1280
1281    // Promote the value if needed.
1282    switch (VA.getLocInfo()) {
1283    default: llvm_unreachable("Unknown loc info!");
1284    case CCValAssign::Full: break;
1285    case CCValAssign::SExt:
1286      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1287      break;
1288    case CCValAssign::ZExt:
1289      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1290      break;
1291    case CCValAssign::AExt:
1292      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1293      break;
1294    case CCValAssign::BCvt:
1295      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1296      break;
1297    }
1298
1299    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1300    if (VA.needsCustom()) {
1301      if (VA.getLocVT() == MVT::v2f64) {
1302        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1303                                  DAG.getConstant(0, MVT::i32));
1304        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1305                                  DAG.getConstant(1, MVT::i32));
1306
1307        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1308                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1309
1310        VA = ArgLocs[++i]; // skip ahead to next loc
1311        if (VA.isRegLoc()) {
1312          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1313                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1314        } else {
1315          assert(VA.isMemLoc());
1316
1317          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1318                                                 dl, DAG, VA, Flags));
1319        }
1320      } else {
1321        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1322                         StackPtr, MemOpChains, Flags);
1323      }
1324    } else if (VA.isRegLoc()) {
1325      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1326    } else if (isByVal) {
1327      assert(VA.isMemLoc());
1328      unsigned offset = 0;
1329
1330      // True if this byval aggregate will be split between registers
1331      // and memory.
1332      if (CCInfo.isFirstByValRegValid()) {
1333        EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1334        unsigned int i, j;
1335        for (i = 0, j = CCInfo.getFirstByValReg(); j < ARM::R4; i++, j++) {
1336          SDValue Const = DAG.getConstant(4*i, MVT::i32);
1337          SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1338          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1339                                     MachinePointerInfo(),
1340                                     false, false, 0);
1341          MemOpChains.push_back(Load.getValue(1));
1342          RegsToPass.push_back(std::make_pair(j, Load));
1343        }
1344        offset = ARM::R4 - CCInfo.getFirstByValReg();
1345        CCInfo.clearFirstByValReg();
1346      }
1347
1348      unsigned LocMemOffset = VA.getLocMemOffset();
1349      SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
1350      SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
1351                                StkPtrOff);
1352      SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
1353      SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
1354      SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
1355                                         MVT::i32);
1356      MemOpChains.push_back(DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
1357                                          Flags.getByValAlign(),
1358                                          /*isVolatile=*/false,
1359                                          /*AlwaysInline=*/false,
1360                                          MachinePointerInfo(0),
1361                                          MachinePointerInfo(0)));
1362
1363    } else if (!IsSibCall) {
1364      assert(VA.isMemLoc());
1365
1366      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1367                                             dl, DAG, VA, Flags));
1368    }
1369  }
1370
1371  if (!MemOpChains.empty())
1372    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1373                        &MemOpChains[0], MemOpChains.size());
1374
1375  // Build a sequence of copy-to-reg nodes chained together with token chain
1376  // and flag operands which copy the outgoing args into the appropriate regs.
1377  SDValue InFlag;
1378  // Tail call byval lowering might overwrite argument registers so in case of
1379  // tail call optimization the copies to registers are lowered later.
1380  if (!isTailCall)
1381    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1382      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1383                               RegsToPass[i].second, InFlag);
1384      InFlag = Chain.getValue(1);
1385    }
1386
1387  // For tail calls lower the arguments to the 'real' stack slot.
1388  if (isTailCall) {
1389    // Force all the incoming stack arguments to be loaded from the stack
1390    // before any new outgoing arguments are stored to the stack, because the
1391    // outgoing stack slots may alias the incoming argument stack slots, and
1392    // the alias isn't otherwise explicit. This is slightly more conservative
1393    // than necessary, because it means that each store effectively depends
1394    // on every argument instead of just those arguments it would clobber.
1395
1396    // Do not flag preceding copytoreg stuff together with the following stuff.
1397    InFlag = SDValue();
1398    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1399      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1400                               RegsToPass[i].second, InFlag);
1401      InFlag = Chain.getValue(1);
1402    }
1403    InFlag =SDValue();
1404  }
1405
1406  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1407  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1408  // node so that legalize doesn't hack it.
1409  bool isDirect = false;
1410  bool isARMFunc = false;
1411  bool isLocalARMFunc = false;
1412  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1413
1414  if (EnableARMLongCalls) {
1415    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1416            && "long-calls with non-static relocation model!");
1417    // Handle a global address or an external symbol. If it's not one of
1418    // those, the target's already in a register, so we don't need to do
1419    // anything extra.
1420    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1421      const GlobalValue *GV = G->getGlobal();
1422      // Create a constant pool entry for the callee address
1423      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1424      ARMConstantPoolValue *CPV =
1425        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
1426
1427      // Get the address of the callee into a register
1428      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1429      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1430      Callee = DAG.getLoad(getPointerTy(), dl,
1431                           DAG.getEntryNode(), CPAddr,
1432                           MachinePointerInfo::getConstantPool(),
1433                           false, false, 0);
1434    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1435      const char *Sym = S->getSymbol();
1436
1437      // Create a constant pool entry for the callee address
1438      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1439      ARMConstantPoolValue *CPV =
1440        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1441                                      ARMPCLabelIndex, 0);
1442      // Get the address of the callee into a register
1443      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1444      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1445      Callee = DAG.getLoad(getPointerTy(), dl,
1446                           DAG.getEntryNode(), CPAddr,
1447                           MachinePointerInfo::getConstantPool(),
1448                           false, false, 0);
1449    }
1450  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1451    const GlobalValue *GV = G->getGlobal();
1452    isDirect = true;
1453    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1454    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1455                   getTargetMachine().getRelocationModel() != Reloc::Static;
1456    isARMFunc = !Subtarget->isThumb() || isStub;
1457    // ARM call to a local ARM function is predicable.
1458    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1459    // tBX takes a register source operand.
1460    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1461      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1462      ARMConstantPoolValue *CPV =
1463        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 4);
1464      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1465      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1466      Callee = DAG.getLoad(getPointerTy(), dl,
1467                           DAG.getEntryNode(), CPAddr,
1468                           MachinePointerInfo::getConstantPool(),
1469                           false, false, 0);
1470      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1471      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1472                           getPointerTy(), Callee, PICLabel);
1473    } else {
1474      // On ELF targets for PIC code, direct calls should go through the PLT
1475      unsigned OpFlags = 0;
1476      if (Subtarget->isTargetELF() &&
1477                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1478        OpFlags = ARMII::MO_PLT;
1479      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1480    }
1481  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1482    isDirect = true;
1483    bool isStub = Subtarget->isTargetDarwin() &&
1484                  getTargetMachine().getRelocationModel() != Reloc::Static;
1485    isARMFunc = !Subtarget->isThumb() || isStub;
1486    // tBX takes a register source operand.
1487    const char *Sym = S->getSymbol();
1488    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1489      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1490      ARMConstantPoolValue *CPV =
1491        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1492                                      ARMPCLabelIndex, 4);
1493      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1494      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1495      Callee = DAG.getLoad(getPointerTy(), dl,
1496                           DAG.getEntryNode(), CPAddr,
1497                           MachinePointerInfo::getConstantPool(),
1498                           false, false, 0);
1499      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1500      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1501                           getPointerTy(), Callee, PICLabel);
1502    } else {
1503      unsigned OpFlags = 0;
1504      // On ELF targets for PIC code, direct calls should go through the PLT
1505      if (Subtarget->isTargetELF() &&
1506                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1507        OpFlags = ARMII::MO_PLT;
1508      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1509    }
1510  }
1511
1512  // FIXME: handle tail calls differently.
1513  unsigned CallOpc;
1514  if (Subtarget->isThumb()) {
1515    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1516      CallOpc = ARMISD::CALL_NOLINK;
1517    else
1518      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1519  } else {
1520    CallOpc = (isDirect || Subtarget->hasV5TOps())
1521      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1522      : ARMISD::CALL_NOLINK;
1523  }
1524
1525  std::vector<SDValue> Ops;
1526  Ops.push_back(Chain);
1527  Ops.push_back(Callee);
1528
1529  // Add argument registers to the end of the list so that they are known live
1530  // into the call.
1531  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1532    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1533                                  RegsToPass[i].second.getValueType()));
1534
1535  if (InFlag.getNode())
1536    Ops.push_back(InFlag);
1537
1538  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1539  if (isTailCall)
1540    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1541
1542  // Returns a chain and a flag for retval copy to use.
1543  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1544  InFlag = Chain.getValue(1);
1545
1546  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1547                             DAG.getIntPtrConstant(0, true), InFlag);
1548  if (!Ins.empty())
1549    InFlag = Chain.getValue(1);
1550
1551  // Handle result values, copying them out of physregs into vregs that we
1552  // return.
1553  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1554                         dl, DAG, InVals);
1555}
1556
1557/// HandleByVal - Every parameter *after* a byval parameter is passed
1558/// on the stack.  Remember the next parameter register to allocate,
1559/// and then confiscate the rest of the parameter registers to insure
1560/// this.
1561void
1562llvm::ARMTargetLowering::HandleByVal(CCState *State, unsigned &size) const {
1563  unsigned reg = State->AllocateReg(GPRArgRegs, 4);
1564  assert((State->getCallOrPrologue() == Prologue ||
1565          State->getCallOrPrologue() == Call) &&
1566         "unhandled ParmContext");
1567  if ((!State->isFirstByValRegValid()) &&
1568      (ARM::R0 <= reg) && (reg <= ARM::R3)) {
1569    State->setFirstByValReg(reg);
1570    // At a call site, a byval parameter that is split between
1571    // registers and memory needs its size truncated here.  In a
1572    // function prologue, such byval parameters are reassembled in
1573    // memory, and are not truncated.
1574    if (State->getCallOrPrologue() == Call) {
1575      unsigned excess = 4 * (ARM::R4 - reg);
1576      assert(size >= excess && "expected larger existing stack allocation");
1577      size -= excess;
1578    }
1579  }
1580  // Confiscate any remaining parameter registers to preclude their
1581  // assignment to subsequent parameters.
1582  while (State->AllocateReg(GPRArgRegs, 4))
1583    ;
1584}
1585
1586/// MatchingStackOffset - Return true if the given stack call argument is
1587/// already available in the same position (relatively) of the caller's
1588/// incoming argument stack.
1589static
1590bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1591                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1592                         const ARMInstrInfo *TII) {
1593  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1594  int FI = INT_MAX;
1595  if (Arg.getOpcode() == ISD::CopyFromReg) {
1596    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1597    if (!TargetRegisterInfo::isVirtualRegister(VR))
1598      return false;
1599    MachineInstr *Def = MRI->getVRegDef(VR);
1600    if (!Def)
1601      return false;
1602    if (!Flags.isByVal()) {
1603      if (!TII->isLoadFromStackSlot(Def, FI))
1604        return false;
1605    } else {
1606      return false;
1607    }
1608  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1609    if (Flags.isByVal())
1610      // ByVal argument is passed in as a pointer but it's now being
1611      // dereferenced. e.g.
1612      // define @foo(%struct.X* %A) {
1613      //   tail call @bar(%struct.X* byval %A)
1614      // }
1615      return false;
1616    SDValue Ptr = Ld->getBasePtr();
1617    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1618    if (!FINode)
1619      return false;
1620    FI = FINode->getIndex();
1621  } else
1622    return false;
1623
1624  assert(FI != INT_MAX);
1625  if (!MFI->isFixedObjectIndex(FI))
1626    return false;
1627  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1628}
1629
1630/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1631/// for tail call optimization. Targets which want to do tail call
1632/// optimization should implement this function.
1633bool
1634ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1635                                                     CallingConv::ID CalleeCC,
1636                                                     bool isVarArg,
1637                                                     bool isCalleeStructRet,
1638                                                     bool isCallerStructRet,
1639                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1640                                    const SmallVectorImpl<SDValue> &OutVals,
1641                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1642                                                     SelectionDAG& DAG) const {
1643  const Function *CallerF = DAG.getMachineFunction().getFunction();
1644  CallingConv::ID CallerCC = CallerF->getCallingConv();
1645  bool CCMatch = CallerCC == CalleeCC;
1646
1647  // Look for obvious safe cases to perform tail call optimization that do not
1648  // require ABI changes. This is what gcc calls sibcall.
1649
1650  // Do not sibcall optimize vararg calls unless the call site is not passing
1651  // any arguments.
1652  if (isVarArg && !Outs.empty())
1653    return false;
1654
1655  // Also avoid sibcall optimization if either caller or callee uses struct
1656  // return semantics.
1657  if (isCalleeStructRet || isCallerStructRet)
1658    return false;
1659
1660  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1661  // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
1662  // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
1663  // support in the assembler and linker to be used. This would need to be
1664  // fixed to fully support tail calls in Thumb1.
1665  //
1666  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1667  // LR.  This means if we need to reload LR, it takes an extra instructions,
1668  // which outweighs the value of the tail call; but here we don't know yet
1669  // whether LR is going to be used.  Probably the right approach is to
1670  // generate the tail call here and turn it back into CALL/RET in
1671  // emitEpilogue if LR is used.
1672
1673  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1674  // but we need to make sure there are enough registers; the only valid
1675  // registers are the 4 used for parameters.  We don't currently do this
1676  // case.
1677  if (Subtarget->isThumb1Only())
1678    return false;
1679
1680  // If the calling conventions do not match, then we'd better make sure the
1681  // results are returned in the same way as what the caller expects.
1682  if (!CCMatch) {
1683    SmallVector<CCValAssign, 16> RVLocs1;
1684    ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1685                       getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
1686    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1687
1688    SmallVector<CCValAssign, 16> RVLocs2;
1689    ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1690                       getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
1691    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1692
1693    if (RVLocs1.size() != RVLocs2.size())
1694      return false;
1695    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1696      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1697        return false;
1698      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1699        return false;
1700      if (RVLocs1[i].isRegLoc()) {
1701        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1702          return false;
1703      } else {
1704        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1705          return false;
1706      }
1707    }
1708  }
1709
1710  // If the callee takes no arguments then go on to check the results of the
1711  // call.
1712  if (!Outs.empty()) {
1713    // Check if stack adjustment is needed. For now, do not do this if any
1714    // argument is passed on the stack.
1715    SmallVector<CCValAssign, 16> ArgLocs;
1716    ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
1717                      getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1718    CCInfo.AnalyzeCallOperands(Outs,
1719                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1720    if (CCInfo.getNextStackOffset()) {
1721      MachineFunction &MF = DAG.getMachineFunction();
1722
1723      // Check if the arguments are already laid out in the right way as
1724      // the caller's fixed stack objects.
1725      MachineFrameInfo *MFI = MF.getFrameInfo();
1726      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1727      const ARMInstrInfo *TII =
1728        ((ARMTargetMachine&)getTargetMachine()).getInstrInfo();
1729      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1730           i != e;
1731           ++i, ++realArgIdx) {
1732        CCValAssign &VA = ArgLocs[i];
1733        EVT RegVT = VA.getLocVT();
1734        SDValue Arg = OutVals[realArgIdx];
1735        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1736        if (VA.getLocInfo() == CCValAssign::Indirect)
1737          return false;
1738        if (VA.needsCustom()) {
1739          // f64 and vector types are split into multiple registers or
1740          // register/stack-slot combinations.  The types will not match
1741          // the registers; give up on memory f64 refs until we figure
1742          // out what to do about this.
1743          if (!VA.isRegLoc())
1744            return false;
1745          if (!ArgLocs[++i].isRegLoc())
1746            return false;
1747          if (RegVT == MVT::v2f64) {
1748            if (!ArgLocs[++i].isRegLoc())
1749              return false;
1750            if (!ArgLocs[++i].isRegLoc())
1751              return false;
1752          }
1753        } else if (!VA.isRegLoc()) {
1754          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1755                                   MFI, MRI, TII))
1756            return false;
1757        }
1758      }
1759    }
1760  }
1761
1762  return true;
1763}
1764
1765SDValue
1766ARMTargetLowering::LowerReturn(SDValue Chain,
1767                               CallingConv::ID CallConv, bool isVarArg,
1768                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1769                               const SmallVectorImpl<SDValue> &OutVals,
1770                               DebugLoc dl, SelectionDAG &DAG) const {
1771
1772  // CCValAssign - represent the assignment of the return value to a location.
1773  SmallVector<CCValAssign, 16> RVLocs;
1774
1775  // CCState - Info about the registers and stack slots.
1776  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1777                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1778
1779  // Analyze outgoing return values.
1780  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1781                                               isVarArg));
1782
1783  // If this is the first return lowered for this function, add
1784  // the regs to the liveout set for the function.
1785  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1786    for (unsigned i = 0; i != RVLocs.size(); ++i)
1787      if (RVLocs[i].isRegLoc())
1788        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1789  }
1790
1791  SDValue Flag;
1792
1793  // Copy the result values into the output registers.
1794  for (unsigned i = 0, realRVLocIdx = 0;
1795       i != RVLocs.size();
1796       ++i, ++realRVLocIdx) {
1797    CCValAssign &VA = RVLocs[i];
1798    assert(VA.isRegLoc() && "Can only return in registers!");
1799
1800    SDValue Arg = OutVals[realRVLocIdx];
1801
1802    switch (VA.getLocInfo()) {
1803    default: llvm_unreachable("Unknown loc info!");
1804    case CCValAssign::Full: break;
1805    case CCValAssign::BCvt:
1806      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1807      break;
1808    }
1809
1810    if (VA.needsCustom()) {
1811      if (VA.getLocVT() == MVT::v2f64) {
1812        // Extract the first half and return it in two registers.
1813        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1814                                   DAG.getConstant(0, MVT::i32));
1815        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1816                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1817
1818        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1819        Flag = Chain.getValue(1);
1820        VA = RVLocs[++i]; // skip ahead to next loc
1821        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1822                                 HalfGPRs.getValue(1), Flag);
1823        Flag = Chain.getValue(1);
1824        VA = RVLocs[++i]; // skip ahead to next loc
1825
1826        // Extract the 2nd half and fall through to handle it as an f64 value.
1827        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1828                          DAG.getConstant(1, MVT::i32));
1829      }
1830      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1831      // available.
1832      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1833                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1834      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1835      Flag = Chain.getValue(1);
1836      VA = RVLocs[++i]; // skip ahead to next loc
1837      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1838                               Flag);
1839    } else
1840      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1841
1842    // Guarantee that all emitted copies are
1843    // stuck together, avoiding something bad.
1844    Flag = Chain.getValue(1);
1845  }
1846
1847  SDValue result;
1848  if (Flag.getNode())
1849    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1850  else // Return Void
1851    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1852
1853  return result;
1854}
1855
1856bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N) const {
1857  if (N->getNumValues() != 1)
1858    return false;
1859  if (!N->hasNUsesOfValue(1, 0))
1860    return false;
1861
1862  unsigned NumCopies = 0;
1863  SDNode* Copies[2];
1864  SDNode *Use = *N->use_begin();
1865  if (Use->getOpcode() == ISD::CopyToReg) {
1866    Copies[NumCopies++] = Use;
1867  } else if (Use->getOpcode() == ARMISD::VMOVRRD) {
1868    // f64 returned in a pair of GPRs.
1869    for (SDNode::use_iterator UI = Use->use_begin(), UE = Use->use_end();
1870         UI != UE; ++UI) {
1871      if (UI->getOpcode() != ISD::CopyToReg)
1872        return false;
1873      Copies[UI.getUse().getResNo()] = *UI;
1874      ++NumCopies;
1875    }
1876  } else if (Use->getOpcode() == ISD::BITCAST) {
1877    // f32 returned in a single GPR.
1878    if (!Use->hasNUsesOfValue(1, 0))
1879      return false;
1880    Use = *Use->use_begin();
1881    if (Use->getOpcode() != ISD::CopyToReg || !Use->hasNUsesOfValue(1, 0))
1882      return false;
1883    Copies[NumCopies++] = Use;
1884  } else {
1885    return false;
1886  }
1887
1888  if (NumCopies != 1 && NumCopies != 2)
1889    return false;
1890
1891  bool HasRet = false;
1892  for (unsigned i = 0; i < NumCopies; ++i) {
1893    SDNode *Copy = Copies[i];
1894    for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1895         UI != UE; ++UI) {
1896      if (UI->getOpcode() == ISD::CopyToReg) {
1897        SDNode *Use = *UI;
1898        if (Use == Copies[0] || Use == Copies[1])
1899          continue;
1900        return false;
1901      }
1902      if (UI->getOpcode() != ARMISD::RET_FLAG)
1903        return false;
1904      HasRet = true;
1905    }
1906  }
1907
1908  return HasRet;
1909}
1910
1911bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1912  if (!EnableARMTailCalls)
1913    return false;
1914
1915  if (!CI->isTailCall())
1916    return false;
1917
1918  return !Subtarget->isThumb1Only();
1919}
1920
1921// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1922// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1923// one of the above mentioned nodes. It has to be wrapped because otherwise
1924// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1925// be used to form addressing mode. These wrapped nodes will be selected
1926// into MOVi.
1927static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1928  EVT PtrVT = Op.getValueType();
1929  // FIXME there is no actual debug info here
1930  DebugLoc dl = Op.getDebugLoc();
1931  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1932  SDValue Res;
1933  if (CP->isMachineConstantPoolEntry())
1934    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1935                                    CP->getAlignment());
1936  else
1937    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1938                                    CP->getAlignment());
1939  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1940}
1941
1942unsigned ARMTargetLowering::getJumpTableEncoding() const {
1943  return MachineJumpTableInfo::EK_Inline;
1944}
1945
1946SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
1947                                             SelectionDAG &DAG) const {
1948  MachineFunction &MF = DAG.getMachineFunction();
1949  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1950  unsigned ARMPCLabelIndex = 0;
1951  DebugLoc DL = Op.getDebugLoc();
1952  EVT PtrVT = getPointerTy();
1953  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1954  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1955  SDValue CPAddr;
1956  if (RelocM == Reloc::Static) {
1957    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
1958  } else {
1959    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1960    ARMPCLabelIndex = AFI->createPICLabelUId();
1961    ARMConstantPoolValue *CPV =
1962      ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
1963                                      ARMCP::CPBlockAddress, PCAdj);
1964    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1965  }
1966  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
1967  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
1968                               MachinePointerInfo::getConstantPool(),
1969                               false, false, 0);
1970  if (RelocM == Reloc::Static)
1971    return Result;
1972  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1973  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
1974}
1975
1976// Lower ISD::GlobalTLSAddress using the "general dynamic" model
1977SDValue
1978ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1979                                                 SelectionDAG &DAG) const {
1980  DebugLoc dl = GA->getDebugLoc();
1981  EVT PtrVT = getPointerTy();
1982  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1983  MachineFunction &MF = DAG.getMachineFunction();
1984  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1985  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1986  ARMConstantPoolValue *CPV =
1987    ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
1988                                    ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
1989  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1990  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1991  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
1992                         MachinePointerInfo::getConstantPool(),
1993                         false, false, 0);
1994  SDValue Chain = Argument.getValue(1);
1995
1996  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1997  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1998
1999  // call __tls_get_addr.
2000  ArgListTy Args;
2001  ArgListEntry Entry;
2002  Entry.Node = Argument;
2003  Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2004  Args.push_back(Entry);
2005  // FIXME: is there useful debug info available here?
2006  std::pair<SDValue, SDValue> CallResult =
2007    LowerCallTo(Chain, (Type *) Type::getInt32Ty(*DAG.getContext()),
2008                false, false, false, false,
2009                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
2010                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
2011  return CallResult.first;
2012}
2013
2014// Lower ISD::GlobalTLSAddress using the "initial exec" or
2015// "local exec" model.
2016SDValue
2017ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2018                                        SelectionDAG &DAG) const {
2019  const GlobalValue *GV = GA->getGlobal();
2020  DebugLoc dl = GA->getDebugLoc();
2021  SDValue Offset;
2022  SDValue Chain = DAG.getEntryNode();
2023  EVT PtrVT = getPointerTy();
2024  // Get the Thread Pointer
2025  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2026
2027  if (GV->isDeclaration()) {
2028    MachineFunction &MF = DAG.getMachineFunction();
2029    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2030    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2031    // Initial exec model.
2032    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2033    ARMConstantPoolValue *CPV =
2034      ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2035                                      ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2036                                      true);
2037    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2038    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2039    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2040                         MachinePointerInfo::getConstantPool(),
2041                         false, false, 0);
2042    Chain = Offset.getValue(1);
2043
2044    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2045    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2046
2047    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2048                         MachinePointerInfo::getConstantPool(),
2049                         false, false, 0);
2050  } else {
2051    // local exec model
2052    ARMConstantPoolValue *CPV =
2053      ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
2054    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2055    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2056    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2057                         MachinePointerInfo::getConstantPool(),
2058                         false, false, 0);
2059  }
2060
2061  // The address of the thread local variable is the add of the thread
2062  // pointer with the offset of the variable.
2063  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2064}
2065
2066SDValue
2067ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2068  // TODO: implement the "local dynamic" model
2069  assert(Subtarget->isTargetELF() &&
2070         "TLS not implemented for non-ELF targets");
2071  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2072  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
2073  // otherwise use the "Local Exec" TLS Model
2074  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
2075    return LowerToTLSGeneralDynamicModel(GA, DAG);
2076  else
2077    return LowerToTLSExecModels(GA, DAG);
2078}
2079
2080SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2081                                                 SelectionDAG &DAG) const {
2082  EVT PtrVT = getPointerTy();
2083  DebugLoc dl = Op.getDebugLoc();
2084  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2085  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2086  if (RelocM == Reloc::PIC_) {
2087    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2088    ARMConstantPoolValue *CPV =
2089      ARMConstantPoolConstant::Create(GV,
2090                                      UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2091    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2092    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2093    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
2094                                 CPAddr,
2095                                 MachinePointerInfo::getConstantPool(),
2096                                 false, false, 0);
2097    SDValue Chain = Result.getValue(1);
2098    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2099    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
2100    if (!UseGOTOFF)
2101      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2102                           MachinePointerInfo::getGOT(), false, false, 0);
2103    return Result;
2104  }
2105
2106  // If we have T2 ops, we can materialize the address directly via movt/movw
2107  // pair. This is always cheaper.
2108  if (Subtarget->useMovt()) {
2109    ++NumMovwMovt;
2110    // FIXME: Once remat is capable of dealing with instructions with register
2111    // operands, expand this into two nodes.
2112    return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2113                       DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2114  } else {
2115    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2116    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2117    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2118                       MachinePointerInfo::getConstantPool(),
2119                       false, false, 0);
2120  }
2121}
2122
2123SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2124                                                    SelectionDAG &DAG) const {
2125  EVT PtrVT = getPointerTy();
2126  DebugLoc dl = Op.getDebugLoc();
2127  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2128  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2129  MachineFunction &MF = DAG.getMachineFunction();
2130  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2131
2132  // FIXME: Enable this for static codegen when tool issues are fixed.
2133  if (Subtarget->useMovt() && RelocM != Reloc::Static) {
2134    ++NumMovwMovt;
2135    // FIXME: Once remat is capable of dealing with instructions with register
2136    // operands, expand this into two nodes.
2137    if (RelocM == Reloc::Static)
2138      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2139                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2140
2141    unsigned Wrapper = (RelocM == Reloc::PIC_)
2142      ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
2143    SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
2144                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2145    if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2146      Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2147                           MachinePointerInfo::getGOT(), false, false, 0);
2148    return Result;
2149  }
2150
2151  unsigned ARMPCLabelIndex = 0;
2152  SDValue CPAddr;
2153  if (RelocM == Reloc::Static) {
2154    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2155  } else {
2156    ARMPCLabelIndex = AFI->createPICLabelUId();
2157    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
2158    ARMConstantPoolValue *CPV =
2159      ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue,
2160                                      PCAdj);
2161    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2162  }
2163  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2164
2165  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2166                               MachinePointerInfo::getConstantPool(),
2167                               false, false, 0);
2168  SDValue Chain = Result.getValue(1);
2169
2170  if (RelocM == Reloc::PIC_) {
2171    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2172    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2173  }
2174
2175  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2176    Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
2177                         false, false, 0);
2178
2179  return Result;
2180}
2181
2182SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
2183                                                    SelectionDAG &DAG) const {
2184  assert(Subtarget->isTargetELF() &&
2185         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
2186  MachineFunction &MF = DAG.getMachineFunction();
2187  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2188  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2189  EVT PtrVT = getPointerTy();
2190  DebugLoc dl = Op.getDebugLoc();
2191  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2192  ARMConstantPoolValue *CPV =
2193    ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
2194                                  ARMPCLabelIndex, PCAdj);
2195  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2196  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2197  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2198                               MachinePointerInfo::getConstantPool(),
2199                               false, false, 0);
2200  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2201  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2202}
2203
2204SDValue
2205ARMTargetLowering::LowerEH_SJLJ_DISPATCHSETUP(SDValue Op, SelectionDAG &DAG)
2206  const {
2207  DebugLoc dl = Op.getDebugLoc();
2208  return DAG.getNode(ARMISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
2209                     Op.getOperand(0), Op.getOperand(1));
2210}
2211
2212SDValue
2213ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2214  DebugLoc dl = Op.getDebugLoc();
2215  SDValue Val = DAG.getConstant(0, MVT::i32);
2216  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
2217                     DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
2218                     Op.getOperand(1), Val);
2219}
2220
2221SDValue
2222ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2223  DebugLoc dl = Op.getDebugLoc();
2224  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2225                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2226}
2227
2228SDValue
2229ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2230                                          const ARMSubtarget *Subtarget) const {
2231  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2232  DebugLoc dl = Op.getDebugLoc();
2233  switch (IntNo) {
2234  default: return SDValue();    // Don't custom lower most intrinsics.
2235  case Intrinsic::arm_thread_pointer: {
2236    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2237    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2238  }
2239  case Intrinsic::eh_sjlj_lsda: {
2240    MachineFunction &MF = DAG.getMachineFunction();
2241    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2242    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2243    EVT PtrVT = getPointerTy();
2244    DebugLoc dl = Op.getDebugLoc();
2245    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2246    SDValue CPAddr;
2247    unsigned PCAdj = (RelocM != Reloc::PIC_)
2248      ? 0 : (Subtarget->isThumb() ? 4 : 8);
2249    ARMConstantPoolValue *CPV =
2250      ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
2251                                      ARMCP::CPLSDA, PCAdj);
2252    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2253    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2254    SDValue Result =
2255      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2256                  MachinePointerInfo::getConstantPool(),
2257                  false, false, 0);
2258
2259    if (RelocM == Reloc::PIC_) {
2260      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2261      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2262    }
2263    return Result;
2264  }
2265  case Intrinsic::arm_neon_vmulls:
2266  case Intrinsic::arm_neon_vmullu: {
2267    unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2268      ? ARMISD::VMULLs : ARMISD::VMULLu;
2269    return DAG.getNode(NewOpc, Op.getDebugLoc(), Op.getValueType(),
2270                       Op.getOperand(1), Op.getOperand(2));
2271  }
2272  }
2273}
2274
2275static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
2276                               const ARMSubtarget *Subtarget) {
2277  DebugLoc dl = Op.getDebugLoc();
2278  if (!Subtarget->hasDataBarrier()) {
2279    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2280    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2281    // here.
2282    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2283           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2284    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2285                       DAG.getConstant(0, MVT::i32));
2286  }
2287
2288  SDValue Op5 = Op.getOperand(5);
2289  bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
2290  unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2291  unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2292  bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
2293
2294  ARM_MB::MemBOpt DMBOpt;
2295  if (isDeviceBarrier)
2296    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
2297  else
2298    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
2299  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2300                     DAG.getConstant(DMBOpt, MVT::i32));
2301}
2302
2303
2304static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
2305                                 const ARMSubtarget *Subtarget) {
2306  // FIXME: handle "fence singlethread" more efficiently.
2307  DebugLoc dl = Op.getDebugLoc();
2308  if (!Subtarget->hasDataBarrier()) {
2309    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2310    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2311    // here.
2312    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2313           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2314    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2315                       DAG.getConstant(0, MVT::i32));
2316  }
2317
2318  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2319                     DAG.getConstant(ARM_MB::ISH, MVT::i32));
2320}
2321
2322static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2323                             const ARMSubtarget *Subtarget) {
2324  // ARM pre v5TE and Thumb1 does not have preload instructions.
2325  if (!(Subtarget->isThumb2() ||
2326        (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2327    // Just preserve the chain.
2328    return Op.getOperand(0);
2329
2330  DebugLoc dl = Op.getDebugLoc();
2331  unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2332  if (!isRead &&
2333      (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2334    // ARMv7 with MP extension has PLDW.
2335    return Op.getOperand(0);
2336
2337  unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2338  if (Subtarget->isThumb()) {
2339    // Invert the bits.
2340    isRead = ~isRead & 1;
2341    isData = ~isData & 1;
2342  }
2343
2344  return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2345                     Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2346                     DAG.getConstant(isData, MVT::i32));
2347}
2348
2349static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2350  MachineFunction &MF = DAG.getMachineFunction();
2351  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2352
2353  // vastart just stores the address of the VarArgsFrameIndex slot into the
2354  // memory location argument.
2355  DebugLoc dl = Op.getDebugLoc();
2356  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2357  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2358  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2359  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2360                      MachinePointerInfo(SV), false, false, 0);
2361}
2362
2363SDValue
2364ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2365                                        SDValue &Root, SelectionDAG &DAG,
2366                                        DebugLoc dl) const {
2367  MachineFunction &MF = DAG.getMachineFunction();
2368  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2369
2370  TargetRegisterClass *RC;
2371  if (AFI->isThumb1OnlyFunction())
2372    RC = ARM::tGPRRegisterClass;
2373  else
2374    RC = ARM::GPRRegisterClass;
2375
2376  // Transform the arguments stored in physical registers into virtual ones.
2377  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2378  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2379
2380  SDValue ArgValue2;
2381  if (NextVA.isMemLoc()) {
2382    MachineFrameInfo *MFI = MF.getFrameInfo();
2383    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2384
2385    // Create load node to retrieve arguments from the stack.
2386    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2387    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2388                            MachinePointerInfo::getFixedStack(FI),
2389                            false, false, 0);
2390  } else {
2391    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2392    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2393  }
2394
2395  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2396}
2397
2398void
2399ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
2400                                  unsigned &VARegSize, unsigned &VARegSaveSize)
2401  const {
2402  unsigned NumGPRs;
2403  if (CCInfo.isFirstByValRegValid())
2404    NumGPRs = ARM::R4 - CCInfo.getFirstByValReg();
2405  else {
2406    unsigned int firstUnalloced;
2407    firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
2408                                                sizeof(GPRArgRegs) /
2409                                                sizeof(GPRArgRegs[0]));
2410    NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
2411  }
2412
2413  unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
2414  VARegSize = NumGPRs * 4;
2415  VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2416}
2417
2418// The remaining GPRs hold either the beginning of variable-argument
2419// data, or the beginning of an aggregate passed by value (usuall
2420// byval).  Either way, we allocate stack slots adjacent to the data
2421// provided by our caller, and store the unallocated registers there.
2422// If this is a variadic function, the va_list pointer will begin with
2423// these values; otherwise, this reassembles a (byval) structure that
2424// was split between registers and memory.
2425void
2426ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
2427                                        DebugLoc dl, SDValue &Chain,
2428                                        unsigned ArgOffset) const {
2429  MachineFunction &MF = DAG.getMachineFunction();
2430  MachineFrameInfo *MFI = MF.getFrameInfo();
2431  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2432  unsigned firstRegToSaveIndex;
2433  if (CCInfo.isFirstByValRegValid())
2434    firstRegToSaveIndex = CCInfo.getFirstByValReg() - ARM::R0;
2435  else {
2436    firstRegToSaveIndex = CCInfo.getFirstUnallocated
2437      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2438  }
2439
2440  unsigned VARegSize, VARegSaveSize;
2441  computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2442  if (VARegSaveSize) {
2443    // If this function is vararg, store any remaining integer argument regs
2444    // to their spots on the stack so that they may be loaded by deferencing
2445    // the result of va_next.
2446    AFI->setVarArgsRegSaveSize(VARegSaveSize);
2447    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(VARegSaveSize,
2448                                                     ArgOffset + VARegSaveSize
2449                                                     - VARegSize,
2450                                                     false));
2451    SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2452                                    getPointerTy());
2453
2454    SmallVector<SDValue, 4> MemOps;
2455    for (; firstRegToSaveIndex < 4; ++firstRegToSaveIndex) {
2456      TargetRegisterClass *RC;
2457      if (AFI->isThumb1OnlyFunction())
2458        RC = ARM::tGPRRegisterClass;
2459      else
2460        RC = ARM::GPRRegisterClass;
2461
2462      unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
2463      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2464      SDValue Store =
2465        DAG.getStore(Val.getValue(1), dl, Val, FIN,
2466                 MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
2467                     false, false, 0);
2468      MemOps.push_back(Store);
2469      FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2470                        DAG.getConstant(4, getPointerTy()));
2471    }
2472    if (!MemOps.empty())
2473      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2474                          &MemOps[0], MemOps.size());
2475  } else
2476    // This will point to the next argument passed via stack.
2477    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
2478}
2479
2480SDValue
2481ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2482                                        CallingConv::ID CallConv, bool isVarArg,
2483                                        const SmallVectorImpl<ISD::InputArg>
2484                                          &Ins,
2485                                        DebugLoc dl, SelectionDAG &DAG,
2486                                        SmallVectorImpl<SDValue> &InVals)
2487                                          const {
2488  MachineFunction &MF = DAG.getMachineFunction();
2489  MachineFrameInfo *MFI = MF.getFrameInfo();
2490
2491  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2492
2493  // Assign locations to all of the incoming arguments.
2494  SmallVector<CCValAssign, 16> ArgLocs;
2495  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2496                    getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
2497  CCInfo.AnalyzeFormalArguments(Ins,
2498                                CCAssignFnForNode(CallConv, /* Return*/ false,
2499                                                  isVarArg));
2500
2501  SmallVector<SDValue, 16> ArgValues;
2502  int lastInsIndex = -1;
2503
2504  SDValue ArgValue;
2505  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2506    CCValAssign &VA = ArgLocs[i];
2507
2508    // Arguments stored in registers.
2509    if (VA.isRegLoc()) {
2510      EVT RegVT = VA.getLocVT();
2511
2512      if (VA.needsCustom()) {
2513        // f64 and vector types are split up into multiple registers or
2514        // combinations of registers and stack slots.
2515        if (VA.getLocVT() == MVT::v2f64) {
2516          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2517                                                   Chain, DAG, dl);
2518          VA = ArgLocs[++i]; // skip ahead to next loc
2519          SDValue ArgValue2;
2520          if (VA.isMemLoc()) {
2521            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2522            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2523            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2524                                    MachinePointerInfo::getFixedStack(FI),
2525                                    false, false, 0);
2526          } else {
2527            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2528                                             Chain, DAG, dl);
2529          }
2530          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2531          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2532                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2533          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2534                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2535        } else
2536          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2537
2538      } else {
2539        TargetRegisterClass *RC;
2540
2541        if (RegVT == MVT::f32)
2542          RC = ARM::SPRRegisterClass;
2543        else if (RegVT == MVT::f64)
2544          RC = ARM::DPRRegisterClass;
2545        else if (RegVT == MVT::v2f64)
2546          RC = ARM::QPRRegisterClass;
2547        else if (RegVT == MVT::i32)
2548          RC = (AFI->isThumb1OnlyFunction() ?
2549                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
2550        else
2551          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2552
2553        // Transform the arguments in physical registers into virtual ones.
2554        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2555        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2556      }
2557
2558      // If this is an 8 or 16-bit value, it is really passed promoted
2559      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2560      // truncate to the right size.
2561      switch (VA.getLocInfo()) {
2562      default: llvm_unreachable("Unknown loc info!");
2563      case CCValAssign::Full: break;
2564      case CCValAssign::BCvt:
2565        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2566        break;
2567      case CCValAssign::SExt:
2568        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2569                               DAG.getValueType(VA.getValVT()));
2570        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2571        break;
2572      case CCValAssign::ZExt:
2573        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2574                               DAG.getValueType(VA.getValVT()));
2575        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2576        break;
2577      }
2578
2579      InVals.push_back(ArgValue);
2580
2581    } else { // VA.isRegLoc()
2582
2583      // sanity check
2584      assert(VA.isMemLoc());
2585      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2586
2587      int index = ArgLocs[i].getValNo();
2588
2589      // Some Ins[] entries become multiple ArgLoc[] entries.
2590      // Process them only once.
2591      if (index != lastInsIndex)
2592        {
2593          ISD::ArgFlagsTy Flags = Ins[index].Flags;
2594          // FIXME: For now, all byval parameter objects are marked mutable.
2595          // This can be changed with more analysis.
2596          // In case of tail call optimization mark all arguments mutable.
2597          // Since they could be overwritten by lowering of arguments in case of
2598          // a tail call.
2599          if (Flags.isByVal()) {
2600            unsigned VARegSize, VARegSaveSize;
2601            computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2602            VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 0);
2603            unsigned Bytes = Flags.getByValSize() - VARegSize;
2604            if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
2605            int FI = MFI->CreateFixedObject(Bytes,
2606                                            VA.getLocMemOffset(), false);
2607            InVals.push_back(DAG.getFrameIndex(FI, getPointerTy()));
2608          } else {
2609            int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
2610                                            VA.getLocMemOffset(), true);
2611
2612            // Create load nodes to retrieve arguments from the stack.
2613            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2614            InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2615                                         MachinePointerInfo::getFixedStack(FI),
2616                                         false, false, 0));
2617          }
2618          lastInsIndex = index;
2619        }
2620    }
2621  }
2622
2623  // varargs
2624  if (isVarArg)
2625    VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getNextStackOffset());
2626
2627  return Chain;
2628}
2629
2630/// isFloatingPointZero - Return true if this is +0.0.
2631static bool isFloatingPointZero(SDValue Op) {
2632  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2633    return CFP->getValueAPF().isPosZero();
2634  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2635    // Maybe this has already been legalized into the constant pool?
2636    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2637      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2638      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2639        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2640          return CFP->getValueAPF().isPosZero();
2641    }
2642  }
2643  return false;
2644}
2645
2646/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2647/// the given operands.
2648SDValue
2649ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2650                             SDValue &ARMcc, SelectionDAG &DAG,
2651                             DebugLoc dl) const {
2652  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2653    unsigned C = RHSC->getZExtValue();
2654    if (!isLegalICmpImmediate(C)) {
2655      // Constant does not fit, try adjusting it by one?
2656      switch (CC) {
2657      default: break;
2658      case ISD::SETLT:
2659      case ISD::SETGE:
2660        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
2661          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2662          RHS = DAG.getConstant(C-1, MVT::i32);
2663        }
2664        break;
2665      case ISD::SETULT:
2666      case ISD::SETUGE:
2667        if (C != 0 && isLegalICmpImmediate(C-1)) {
2668          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2669          RHS = DAG.getConstant(C-1, MVT::i32);
2670        }
2671        break;
2672      case ISD::SETLE:
2673      case ISD::SETGT:
2674        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
2675          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2676          RHS = DAG.getConstant(C+1, MVT::i32);
2677        }
2678        break;
2679      case ISD::SETULE:
2680      case ISD::SETUGT:
2681        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
2682          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2683          RHS = DAG.getConstant(C+1, MVT::i32);
2684        }
2685        break;
2686      }
2687    }
2688  }
2689
2690  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2691  ARMISD::NodeType CompareType;
2692  switch (CondCode) {
2693  default:
2694    CompareType = ARMISD::CMP;
2695    break;
2696  case ARMCC::EQ:
2697  case ARMCC::NE:
2698    // Uses only Z Flag
2699    CompareType = ARMISD::CMPZ;
2700    break;
2701  }
2702  ARMcc = DAG.getConstant(CondCode, MVT::i32);
2703  return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
2704}
2705
2706/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2707SDValue
2708ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2709                             DebugLoc dl) const {
2710  SDValue Cmp;
2711  if (!isFloatingPointZero(RHS))
2712    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
2713  else
2714    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
2715  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
2716}
2717
2718/// duplicateCmp - Glue values can have only one use, so this function
2719/// duplicates a comparison node.
2720SDValue
2721ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
2722  unsigned Opc = Cmp.getOpcode();
2723  DebugLoc DL = Cmp.getDebugLoc();
2724  if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
2725    return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2726
2727  assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
2728  Cmp = Cmp.getOperand(0);
2729  Opc = Cmp.getOpcode();
2730  if (Opc == ARMISD::CMPFP)
2731    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2732  else {
2733    assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
2734    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
2735  }
2736  return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
2737}
2738
2739SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2740  SDValue Cond = Op.getOperand(0);
2741  SDValue SelectTrue = Op.getOperand(1);
2742  SDValue SelectFalse = Op.getOperand(2);
2743  DebugLoc dl = Op.getDebugLoc();
2744
2745  // Convert:
2746  //
2747  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2748  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2749  //
2750  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2751    const ConstantSDNode *CMOVTrue =
2752      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2753    const ConstantSDNode *CMOVFalse =
2754      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2755
2756    if (CMOVTrue && CMOVFalse) {
2757      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2758      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2759
2760      SDValue True;
2761      SDValue False;
2762      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2763        True = SelectTrue;
2764        False = SelectFalse;
2765      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2766        True = SelectFalse;
2767        False = SelectTrue;
2768      }
2769
2770      if (True.getNode() && False.getNode()) {
2771        EVT VT = Op.getValueType();
2772        SDValue ARMcc = Cond.getOperand(2);
2773        SDValue CCR = Cond.getOperand(3);
2774        SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
2775        assert(True.getValueType() == VT);
2776        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2777      }
2778    }
2779  }
2780
2781  return DAG.getSelectCC(dl, Cond,
2782                         DAG.getConstant(0, Cond.getValueType()),
2783                         SelectTrue, SelectFalse, ISD::SETNE);
2784}
2785
2786SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2787  EVT VT = Op.getValueType();
2788  SDValue LHS = Op.getOperand(0);
2789  SDValue RHS = Op.getOperand(1);
2790  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2791  SDValue TrueVal = Op.getOperand(2);
2792  SDValue FalseVal = Op.getOperand(3);
2793  DebugLoc dl = Op.getDebugLoc();
2794
2795  if (LHS.getValueType() == MVT::i32) {
2796    SDValue ARMcc;
2797    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2798    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2799    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2800  }
2801
2802  ARMCC::CondCodes CondCode, CondCode2;
2803  FPCCToARMCC(CC, CondCode, CondCode2);
2804
2805  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2806  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2807  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2808  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2809                               ARMcc, CCR, Cmp);
2810  if (CondCode2 != ARMCC::AL) {
2811    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2812    // FIXME: Needs another CMP because flag can have but one use.
2813    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2814    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2815                         Result, TrueVal, ARMcc2, CCR, Cmp2);
2816  }
2817  return Result;
2818}
2819
2820/// canChangeToInt - Given the fp compare operand, return true if it is suitable
2821/// to morph to an integer compare sequence.
2822static bool canChangeToInt(SDValue Op, bool &SeenZero,
2823                           const ARMSubtarget *Subtarget) {
2824  SDNode *N = Op.getNode();
2825  if (!N->hasOneUse())
2826    // Otherwise it requires moving the value from fp to integer registers.
2827    return false;
2828  if (!N->getNumValues())
2829    return false;
2830  EVT VT = Op.getValueType();
2831  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
2832    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
2833    // vmrs are very slow, e.g. cortex-a8.
2834    return false;
2835
2836  if (isFloatingPointZero(Op)) {
2837    SeenZero = true;
2838    return true;
2839  }
2840  return ISD::isNormalLoad(N);
2841}
2842
2843static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
2844  if (isFloatingPointZero(Op))
2845    return DAG.getConstant(0, MVT::i32);
2846
2847  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
2848    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2849                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
2850                       Ld->isVolatile(), Ld->isNonTemporal(),
2851                       Ld->getAlignment());
2852
2853  llvm_unreachable("Unknown VFP cmp argument!");
2854}
2855
2856static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
2857                           SDValue &RetVal1, SDValue &RetVal2) {
2858  if (isFloatingPointZero(Op)) {
2859    RetVal1 = DAG.getConstant(0, MVT::i32);
2860    RetVal2 = DAG.getConstant(0, MVT::i32);
2861    return;
2862  }
2863
2864  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
2865    SDValue Ptr = Ld->getBasePtr();
2866    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2867                          Ld->getChain(), Ptr,
2868                          Ld->getPointerInfo(),
2869                          Ld->isVolatile(), Ld->isNonTemporal(),
2870                          Ld->getAlignment());
2871
2872    EVT PtrType = Ptr.getValueType();
2873    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
2874    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
2875                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
2876    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2877                          Ld->getChain(), NewPtr,
2878                          Ld->getPointerInfo().getWithOffset(4),
2879                          Ld->isVolatile(), Ld->isNonTemporal(),
2880                          NewAlign);
2881    return;
2882  }
2883
2884  llvm_unreachable("Unknown VFP cmp argument!");
2885}
2886
2887/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
2888/// f32 and even f64 comparisons to integer ones.
2889SDValue
2890ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
2891  SDValue Chain = Op.getOperand(0);
2892  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2893  SDValue LHS = Op.getOperand(2);
2894  SDValue RHS = Op.getOperand(3);
2895  SDValue Dest = Op.getOperand(4);
2896  DebugLoc dl = Op.getDebugLoc();
2897
2898  bool SeenZero = false;
2899  if (canChangeToInt(LHS, SeenZero, Subtarget) &&
2900      canChangeToInt(RHS, SeenZero, Subtarget) &&
2901      // If one of the operand is zero, it's safe to ignore the NaN case since
2902      // we only care about equality comparisons.
2903      (SeenZero || (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS)))) {
2904    // If unsafe fp math optimization is enabled and there are no other uses of
2905    // the CMP operands, and the condition code is EQ or NE, we can optimize it
2906    // to an integer comparison.
2907    if (CC == ISD::SETOEQ)
2908      CC = ISD::SETEQ;
2909    else if (CC == ISD::SETUNE)
2910      CC = ISD::SETNE;
2911
2912    SDValue ARMcc;
2913    if (LHS.getValueType() == MVT::f32) {
2914      LHS = bitcastf32Toi32(LHS, DAG);
2915      RHS = bitcastf32Toi32(RHS, DAG);
2916      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2917      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2918      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2919                         Chain, Dest, ARMcc, CCR, Cmp);
2920    }
2921
2922    SDValue LHS1, LHS2;
2923    SDValue RHS1, RHS2;
2924    expandf64Toi32(LHS, DAG, LHS1, LHS2);
2925    expandf64Toi32(RHS, DAG, RHS1, RHS2);
2926    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2927    ARMcc = DAG.getConstant(CondCode, MVT::i32);
2928    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
2929    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
2930    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
2931  }
2932
2933  return SDValue();
2934}
2935
2936SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2937  SDValue Chain = Op.getOperand(0);
2938  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2939  SDValue LHS = Op.getOperand(2);
2940  SDValue RHS = Op.getOperand(3);
2941  SDValue Dest = Op.getOperand(4);
2942  DebugLoc dl = Op.getDebugLoc();
2943
2944  if (LHS.getValueType() == MVT::i32) {
2945    SDValue ARMcc;
2946    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2947    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2948    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2949                       Chain, Dest, ARMcc, CCR, Cmp);
2950  }
2951
2952  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
2953
2954  if (UnsafeFPMath &&
2955      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
2956       CC == ISD::SETNE || CC == ISD::SETUNE)) {
2957    SDValue Result = OptimizeVFPBrcond(Op, DAG);
2958    if (Result.getNode())
2959      return Result;
2960  }
2961
2962  ARMCC::CondCodes CondCode, CondCode2;
2963  FPCCToARMCC(CC, CondCode, CondCode2);
2964
2965  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2966  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2967  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2968  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
2969  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
2970  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2971  if (CondCode2 != ARMCC::AL) {
2972    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
2973    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
2974    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2975  }
2976  return Res;
2977}
2978
2979SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
2980  SDValue Chain = Op.getOperand(0);
2981  SDValue Table = Op.getOperand(1);
2982  SDValue Index = Op.getOperand(2);
2983  DebugLoc dl = Op.getDebugLoc();
2984
2985  EVT PTy = getPointerTy();
2986  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
2987  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2988  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
2989  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
2990  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
2991  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
2992  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2993  if (Subtarget->isThumb2()) {
2994    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
2995    // which does another jump to the destination. This also makes it easier
2996    // to translate it to TBB / TBH later.
2997    // FIXME: This might not work if the function is extremely large.
2998    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
2999                       Addr, Op.getOperand(2), JTI, UId);
3000  }
3001  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
3002    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
3003                       MachinePointerInfo::getJumpTable(),
3004                       false, false, 0);
3005    Chain = Addr.getValue(1);
3006    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
3007    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3008  } else {
3009    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
3010                       MachinePointerInfo::getJumpTable(), false, false, 0);
3011    Chain = Addr.getValue(1);
3012    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3013  }
3014}
3015
3016static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3017  DebugLoc dl = Op.getDebugLoc();
3018  unsigned Opc;
3019
3020  switch (Op.getOpcode()) {
3021  default:
3022    assert(0 && "Invalid opcode!");
3023  case ISD::FP_TO_SINT:
3024    Opc = ARMISD::FTOSI;
3025    break;
3026  case ISD::FP_TO_UINT:
3027    Opc = ARMISD::FTOUI;
3028    break;
3029  }
3030  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
3031  return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3032}
3033
3034static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3035  EVT VT = Op.getValueType();
3036  DebugLoc dl = Op.getDebugLoc();
3037
3038  assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
3039         "Invalid type for custom lowering!");
3040  if (VT != MVT::v4f32)
3041    return DAG.UnrollVectorOp(Op.getNode());
3042
3043  unsigned CastOpc;
3044  unsigned Opc;
3045  switch (Op.getOpcode()) {
3046  default:
3047    assert(0 && "Invalid opcode!");
3048  case ISD::SINT_TO_FP:
3049    CastOpc = ISD::SIGN_EXTEND;
3050    Opc = ISD::SINT_TO_FP;
3051    break;
3052  case ISD::UINT_TO_FP:
3053    CastOpc = ISD::ZERO_EXTEND;
3054    Opc = ISD::UINT_TO_FP;
3055    break;
3056  }
3057
3058  Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
3059  return DAG.getNode(Opc, dl, VT, Op);
3060}
3061
3062static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3063  EVT VT = Op.getValueType();
3064  if (VT.isVector())
3065    return LowerVectorINT_TO_FP(Op, DAG);
3066
3067  DebugLoc dl = Op.getDebugLoc();
3068  unsigned Opc;
3069
3070  switch (Op.getOpcode()) {
3071  default:
3072    assert(0 && "Invalid opcode!");
3073  case ISD::SINT_TO_FP:
3074    Opc = ARMISD::SITOF;
3075    break;
3076  case ISD::UINT_TO_FP:
3077    Opc = ARMISD::UITOF;
3078    break;
3079  }
3080
3081  Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
3082  return DAG.getNode(Opc, dl, VT, Op);
3083}
3084
3085SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
3086  // Implement fcopysign with a fabs and a conditional fneg.
3087  SDValue Tmp0 = Op.getOperand(0);
3088  SDValue Tmp1 = Op.getOperand(1);
3089  DebugLoc dl = Op.getDebugLoc();
3090  EVT VT = Op.getValueType();
3091  EVT SrcVT = Tmp1.getValueType();
3092  bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
3093    Tmp0.getOpcode() == ARMISD::VMOVDRR;
3094  bool UseNEON = !InGPR && Subtarget->hasNEON();
3095
3096  if (UseNEON) {
3097    // Use VBSL to copy the sign bit.
3098    unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
3099    SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
3100                               DAG.getTargetConstant(EncodedVal, MVT::i32));
3101    EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
3102    if (VT == MVT::f64)
3103      Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3104                         DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
3105                         DAG.getConstant(32, MVT::i32));
3106    else /*if (VT == MVT::f32)*/
3107      Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
3108    if (SrcVT == MVT::f32) {
3109      Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
3110      if (VT == MVT::f64)
3111        Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3112                           DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
3113                           DAG.getConstant(32, MVT::i32));
3114    } else if (VT == MVT::f32)
3115      Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
3116                         DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
3117                         DAG.getConstant(32, MVT::i32));
3118    Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
3119    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
3120
3121    SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
3122                                            MVT::i32);
3123    AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
3124    SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
3125                                  DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
3126
3127    SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
3128                              DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
3129                              DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
3130    if (VT == MVT::f32) {
3131      Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
3132      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
3133                        DAG.getConstant(0, MVT::i32));
3134    } else {
3135      Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
3136    }
3137
3138    return Res;
3139  }
3140
3141  // Bitcast operand 1 to i32.
3142  if (SrcVT == MVT::f64)
3143    Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3144                       &Tmp1, 1).getValue(1);
3145  Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
3146
3147  // Or in the signbit with integer operations.
3148  SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
3149  SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
3150  Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
3151  if (VT == MVT::f32) {
3152    Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
3153                       DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
3154    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3155                       DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
3156  }
3157
3158  // f64: Or the high part with signbit and then combine two parts.
3159  Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3160                     &Tmp0, 1);
3161  SDValue Lo = Tmp0.getValue(0);
3162  SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
3163  Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
3164  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
3165}
3166
3167SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
3168  MachineFunction &MF = DAG.getMachineFunction();
3169  MachineFrameInfo *MFI = MF.getFrameInfo();
3170  MFI->setReturnAddressIsTaken(true);
3171
3172  EVT VT = Op.getValueType();
3173  DebugLoc dl = Op.getDebugLoc();
3174  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3175  if (Depth) {
3176    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3177    SDValue Offset = DAG.getConstant(4, MVT::i32);
3178    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
3179                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
3180                       MachinePointerInfo(), false, false, 0);
3181  }
3182
3183  // Return LR, which contains the return address. Mark it an implicit live-in.
3184  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3185  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
3186}
3187
3188SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
3189  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3190  MFI->setFrameAddressIsTaken(true);
3191
3192  EVT VT = Op.getValueType();
3193  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
3194  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3195  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
3196    ? ARM::R7 : ARM::R11;
3197  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
3198  while (Depth--)
3199    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
3200                            MachinePointerInfo(),
3201                            false, false, 0);
3202  return FrameAddr;
3203}
3204
3205/// ExpandBITCAST - If the target supports VFP, this function is called to
3206/// expand a bit convert where either the source or destination type is i64 to
3207/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
3208/// operand type is illegal (e.g., v2f32 for a target that doesn't support
3209/// vectors), since the legalizer won't know what to do with that.
3210static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
3211  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3212  DebugLoc dl = N->getDebugLoc();
3213  SDValue Op = N->getOperand(0);
3214
3215  // This function is only supposed to be called for i64 types, either as the
3216  // source or destination of the bit convert.
3217  EVT SrcVT = Op.getValueType();
3218  EVT DstVT = N->getValueType(0);
3219  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
3220         "ExpandBITCAST called for non-i64 type");
3221
3222  // Turn i64->f64 into VMOVDRR.
3223  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
3224    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3225                             DAG.getConstant(0, MVT::i32));
3226    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3227                             DAG.getConstant(1, MVT::i32));
3228    return DAG.getNode(ISD::BITCAST, dl, DstVT,
3229                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
3230  }
3231
3232  // Turn f64->i64 into VMOVRRD.
3233  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
3234    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
3235                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
3236    // Merge the pieces into a single i64 value.
3237    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
3238  }
3239
3240  return SDValue();
3241}
3242
3243/// getZeroVector - Returns a vector of specified type with all zero elements.
3244/// Zero vectors are used to represent vector negation and in those cases
3245/// will be implemented with the NEON VNEG instruction.  However, VNEG does
3246/// not support i64 elements, so sometimes the zero vectors will need to be
3247/// explicitly constructed.  Regardless, use a canonical VMOV to create the
3248/// zero vector.
3249static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3250  assert(VT.isVector() && "Expected a vector type");
3251  // The canonical modified immediate encoding of a zero vector is....0!
3252  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
3253  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
3254  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
3255  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3256}
3257
3258/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3259/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3260SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
3261                                                SelectionDAG &DAG) const {
3262  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3263  EVT VT = Op.getValueType();
3264  unsigned VTBits = VT.getSizeInBits();
3265  DebugLoc dl = Op.getDebugLoc();
3266  SDValue ShOpLo = Op.getOperand(0);
3267  SDValue ShOpHi = Op.getOperand(1);
3268  SDValue ShAmt  = Op.getOperand(2);
3269  SDValue ARMcc;
3270  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3271
3272  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3273
3274  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3275                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3276  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3277  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3278                                   DAG.getConstant(VTBits, MVT::i32));
3279  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3280  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3281  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3282
3283  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3284  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3285                          ARMcc, DAG, dl);
3286  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3287  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
3288                           CCR, Cmp);
3289
3290  SDValue Ops[2] = { Lo, Hi };
3291  return DAG.getMergeValues(Ops, 2, dl);
3292}
3293
3294/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
3295/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3296SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
3297                                               SelectionDAG &DAG) const {
3298  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3299  EVT VT = Op.getValueType();
3300  unsigned VTBits = VT.getSizeInBits();
3301  DebugLoc dl = Op.getDebugLoc();
3302  SDValue ShOpLo = Op.getOperand(0);
3303  SDValue ShOpHi = Op.getOperand(1);
3304  SDValue ShAmt  = Op.getOperand(2);
3305  SDValue ARMcc;
3306
3307  assert(Op.getOpcode() == ISD::SHL_PARTS);
3308  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3309                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3310  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
3311  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3312                                   DAG.getConstant(VTBits, MVT::i32));
3313  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
3314  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
3315
3316  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3317  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3318  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3319                          ARMcc, DAG, dl);
3320  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
3321  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
3322                           CCR, Cmp);
3323
3324  SDValue Ops[2] = { Lo, Hi };
3325  return DAG.getMergeValues(Ops, 2, dl);
3326}
3327
3328SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3329                                            SelectionDAG &DAG) const {
3330  // The rounding mode is in bits 23:22 of the FPSCR.
3331  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
3332  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
3333  // so that the shift + and get folded into a bitfield extract.
3334  DebugLoc dl = Op.getDebugLoc();
3335  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
3336                              DAG.getConstant(Intrinsic::arm_get_fpscr,
3337                                              MVT::i32));
3338  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
3339                                  DAG.getConstant(1U << 22, MVT::i32));
3340  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
3341                              DAG.getConstant(22, MVT::i32));
3342  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
3343                     DAG.getConstant(3, MVT::i32));
3344}
3345
3346static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
3347                         const ARMSubtarget *ST) {
3348  EVT VT = N->getValueType(0);
3349  DebugLoc dl = N->getDebugLoc();
3350
3351  if (!ST->hasV6T2Ops())
3352    return SDValue();
3353
3354  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
3355  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
3356}
3357
3358static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
3359                          const ARMSubtarget *ST) {
3360  EVT VT = N->getValueType(0);
3361  DebugLoc dl = N->getDebugLoc();
3362
3363  if (!VT.isVector())
3364    return SDValue();
3365
3366  // Lower vector shifts on NEON to use VSHL.
3367  assert(ST->hasNEON() && "unexpected vector shift");
3368
3369  // Left shifts translate directly to the vshiftu intrinsic.
3370  if (N->getOpcode() == ISD::SHL)
3371    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3372                       DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
3373                       N->getOperand(0), N->getOperand(1));
3374
3375  assert((N->getOpcode() == ISD::SRA ||
3376          N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
3377
3378  // NEON uses the same intrinsics for both left and right shifts.  For
3379  // right shifts, the shift amounts are negative, so negate the vector of
3380  // shift amounts.
3381  EVT ShiftVT = N->getOperand(1).getValueType();
3382  SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
3383                                     getZeroVector(ShiftVT, DAG, dl),
3384                                     N->getOperand(1));
3385  Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
3386                             Intrinsic::arm_neon_vshifts :
3387                             Intrinsic::arm_neon_vshiftu);
3388  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3389                     DAG.getConstant(vshiftInt, MVT::i32),
3390                     N->getOperand(0), NegatedCount);
3391}
3392
3393static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
3394                                const ARMSubtarget *ST) {
3395  EVT VT = N->getValueType(0);
3396  DebugLoc dl = N->getDebugLoc();
3397
3398  // We can get here for a node like i32 = ISD::SHL i32, i64
3399  if (VT != MVT::i64)
3400    return SDValue();
3401
3402  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
3403         "Unknown shift to lower!");
3404
3405  // We only lower SRA, SRL of 1 here, all others use generic lowering.
3406  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
3407      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
3408    return SDValue();
3409
3410  // If we are in thumb mode, we don't have RRX.
3411  if (ST->isThumb1Only()) return SDValue();
3412
3413  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
3414  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3415                           DAG.getConstant(0, MVT::i32));
3416  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3417                           DAG.getConstant(1, MVT::i32));
3418
3419  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
3420  // captures the result into a carry flag.
3421  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
3422  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
3423
3424  // The low part is an ARMISD::RRX operand, which shifts the carry in.
3425  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
3426
3427  // Merge the pieces into a single i64 value.
3428 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
3429}
3430
3431static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
3432  SDValue TmpOp0, TmpOp1;
3433  bool Invert = false;
3434  bool Swap = false;
3435  unsigned Opc = 0;
3436
3437  SDValue Op0 = Op.getOperand(0);
3438  SDValue Op1 = Op.getOperand(1);
3439  SDValue CC = Op.getOperand(2);
3440  EVT VT = Op.getValueType();
3441  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3442  DebugLoc dl = Op.getDebugLoc();
3443
3444  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
3445    switch (SetCCOpcode) {
3446    default: llvm_unreachable("Illegal FP comparison"); break;
3447    case ISD::SETUNE:
3448    case ISD::SETNE:  Invert = true; // Fallthrough
3449    case ISD::SETOEQ:
3450    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3451    case ISD::SETOLT:
3452    case ISD::SETLT: Swap = true; // Fallthrough
3453    case ISD::SETOGT:
3454    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3455    case ISD::SETOLE:
3456    case ISD::SETLE:  Swap = true; // Fallthrough
3457    case ISD::SETOGE:
3458    case ISD::SETGE: Opc = ARMISD::VCGE; break;
3459    case ISD::SETUGE: Swap = true; // Fallthrough
3460    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
3461    case ISD::SETUGT: Swap = true; // Fallthrough
3462    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
3463    case ISD::SETUEQ: Invert = true; // Fallthrough
3464    case ISD::SETONE:
3465      // Expand this to (OLT | OGT).
3466      TmpOp0 = Op0;
3467      TmpOp1 = Op1;
3468      Opc = ISD::OR;
3469      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3470      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
3471      break;
3472    case ISD::SETUO: Invert = true; // Fallthrough
3473    case ISD::SETO:
3474      // Expand this to (OLT | OGE).
3475      TmpOp0 = Op0;
3476      TmpOp1 = Op1;
3477      Opc = ISD::OR;
3478      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3479      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
3480      break;
3481    }
3482  } else {
3483    // Integer comparisons.
3484    switch (SetCCOpcode) {
3485    default: llvm_unreachable("Illegal integer comparison"); break;
3486    case ISD::SETNE:  Invert = true;
3487    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3488    case ISD::SETLT:  Swap = true;
3489    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3490    case ISD::SETLE:  Swap = true;
3491    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
3492    case ISD::SETULT: Swap = true;
3493    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
3494    case ISD::SETULE: Swap = true;
3495    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
3496    }
3497
3498    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
3499    if (Opc == ARMISD::VCEQ) {
3500
3501      SDValue AndOp;
3502      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3503        AndOp = Op0;
3504      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
3505        AndOp = Op1;
3506
3507      // Ignore bitconvert.
3508      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
3509        AndOp = AndOp.getOperand(0);
3510
3511      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
3512        Opc = ARMISD::VTST;
3513        Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
3514        Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
3515        Invert = !Invert;
3516      }
3517    }
3518  }
3519
3520  if (Swap)
3521    std::swap(Op0, Op1);
3522
3523  // If one of the operands is a constant vector zero, attempt to fold the
3524  // comparison to a specialized compare-against-zero form.
3525  SDValue SingleOp;
3526  if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3527    SingleOp = Op0;
3528  else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
3529    if (Opc == ARMISD::VCGE)
3530      Opc = ARMISD::VCLEZ;
3531    else if (Opc == ARMISD::VCGT)
3532      Opc = ARMISD::VCLTZ;
3533    SingleOp = Op1;
3534  }
3535
3536  SDValue Result;
3537  if (SingleOp.getNode()) {
3538    switch (Opc) {
3539    case ARMISD::VCEQ:
3540      Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
3541    case ARMISD::VCGE:
3542      Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
3543    case ARMISD::VCLEZ:
3544      Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
3545    case ARMISD::VCGT:
3546      Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
3547    case ARMISD::VCLTZ:
3548      Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
3549    default:
3550      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3551    }
3552  } else {
3553     Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3554  }
3555
3556  if (Invert)
3557    Result = DAG.getNOT(dl, Result, VT);
3558
3559  return Result;
3560}
3561
3562/// isNEONModifiedImm - Check if the specified splat value corresponds to a
3563/// valid vector constant for a NEON instruction with a "modified immediate"
3564/// operand (e.g., VMOV).  If so, return the encoded value.
3565static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3566                                 unsigned SplatBitSize, SelectionDAG &DAG,
3567                                 EVT &VT, bool is128Bits, NEONModImmType type) {
3568  unsigned OpCmode, Imm;
3569
3570  // SplatBitSize is set to the smallest size that splats the vector, so a
3571  // zero vector will always have SplatBitSize == 8.  However, NEON modified
3572  // immediate instructions others than VMOV do not support the 8-bit encoding
3573  // of a zero vector, and the default encoding of zero is supposed to be the
3574  // 32-bit version.
3575  if (SplatBits == 0)
3576    SplatBitSize = 32;
3577
3578  switch (SplatBitSize) {
3579  case 8:
3580    if (type != VMOVModImm)
3581      return SDValue();
3582    // Any 1-byte value is OK.  Op=0, Cmode=1110.
3583    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3584    OpCmode = 0xe;
3585    Imm = SplatBits;
3586    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3587    break;
3588
3589  case 16:
3590    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3591    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3592    if ((SplatBits & ~0xff) == 0) {
3593      // Value = 0x00nn: Op=x, Cmode=100x.
3594      OpCmode = 0x8;
3595      Imm = SplatBits;
3596      break;
3597    }
3598    if ((SplatBits & ~0xff00) == 0) {
3599      // Value = 0xnn00: Op=x, Cmode=101x.
3600      OpCmode = 0xa;
3601      Imm = SplatBits >> 8;
3602      break;
3603    }
3604    return SDValue();
3605
3606  case 32:
3607    // NEON's 32-bit VMOV supports splat values where:
3608    // * only one byte is nonzero, or
3609    // * the least significant byte is 0xff and the second byte is nonzero, or
3610    // * the least significant 2 bytes are 0xff and the third is nonzero.
3611    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3612    if ((SplatBits & ~0xff) == 0) {
3613      // Value = 0x000000nn: Op=x, Cmode=000x.
3614      OpCmode = 0;
3615      Imm = SplatBits;
3616      break;
3617    }
3618    if ((SplatBits & ~0xff00) == 0) {
3619      // Value = 0x0000nn00: Op=x, Cmode=001x.
3620      OpCmode = 0x2;
3621      Imm = SplatBits >> 8;
3622      break;
3623    }
3624    if ((SplatBits & ~0xff0000) == 0) {
3625      // Value = 0x00nn0000: Op=x, Cmode=010x.
3626      OpCmode = 0x4;
3627      Imm = SplatBits >> 16;
3628      break;
3629    }
3630    if ((SplatBits & ~0xff000000) == 0) {
3631      // Value = 0xnn000000: Op=x, Cmode=011x.
3632      OpCmode = 0x6;
3633      Imm = SplatBits >> 24;
3634      break;
3635    }
3636
3637    // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
3638    if (type == OtherModImm) return SDValue();
3639
3640    if ((SplatBits & ~0xffff) == 0 &&
3641        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3642      // Value = 0x0000nnff: Op=x, Cmode=1100.
3643      OpCmode = 0xc;
3644      Imm = SplatBits >> 8;
3645      SplatBits |= 0xff;
3646      break;
3647    }
3648
3649    if ((SplatBits & ~0xffffff) == 0 &&
3650        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3651      // Value = 0x00nnffff: Op=x, Cmode=1101.
3652      OpCmode = 0xd;
3653      Imm = SplatBits >> 16;
3654      SplatBits |= 0xffff;
3655      break;
3656    }
3657
3658    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3659    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3660    // VMOV.I32.  A (very) minor optimization would be to replicate the value
3661    // and fall through here to test for a valid 64-bit splat.  But, then the
3662    // caller would also need to check and handle the change in size.
3663    return SDValue();
3664
3665  case 64: {
3666    if (type != VMOVModImm)
3667      return SDValue();
3668    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3669    uint64_t BitMask = 0xff;
3670    uint64_t Val = 0;
3671    unsigned ImmMask = 1;
3672    Imm = 0;
3673    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3674      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3675        Val |= BitMask;
3676        Imm |= ImmMask;
3677      } else if ((SplatBits & BitMask) != 0) {
3678        return SDValue();
3679      }
3680      BitMask <<= 8;
3681      ImmMask <<= 1;
3682    }
3683    // Op=1, Cmode=1110.
3684    OpCmode = 0x1e;
3685    SplatBits = Val;
3686    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3687    break;
3688  }
3689
3690  default:
3691    llvm_unreachable("unexpected size for isNEONModifiedImm");
3692    return SDValue();
3693  }
3694
3695  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3696  return DAG.getTargetConstant(EncodedVal, MVT::i32);
3697}
3698
3699static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
3700                       bool &ReverseVEXT, unsigned &Imm) {
3701  unsigned NumElts = VT.getVectorNumElements();
3702  ReverseVEXT = false;
3703
3704  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
3705  if (M[0] < 0)
3706    return false;
3707
3708  Imm = M[0];
3709
3710  // If this is a VEXT shuffle, the immediate value is the index of the first
3711  // element.  The other shuffle indices must be the successive elements after
3712  // the first one.
3713  unsigned ExpectedElt = Imm;
3714  for (unsigned i = 1; i < NumElts; ++i) {
3715    // Increment the expected index.  If it wraps around, it may still be
3716    // a VEXT but the source vectors must be swapped.
3717    ExpectedElt += 1;
3718    if (ExpectedElt == NumElts * 2) {
3719      ExpectedElt = 0;
3720      ReverseVEXT = true;
3721    }
3722
3723    if (M[i] < 0) continue; // ignore UNDEF indices
3724    if (ExpectedElt != static_cast<unsigned>(M[i]))
3725      return false;
3726  }
3727
3728  // Adjust the index value if the source operands will be swapped.
3729  if (ReverseVEXT)
3730    Imm -= NumElts;
3731
3732  return true;
3733}
3734
3735/// isVREVMask - Check if a vector shuffle corresponds to a VREV
3736/// instruction with the specified blocksize.  (The order of the elements
3737/// within each block of the vector is reversed.)
3738static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
3739                       unsigned BlockSize) {
3740  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
3741         "Only possible block sizes for VREV are: 16, 32, 64");
3742
3743  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3744  if (EltSz == 64)
3745    return false;
3746
3747  unsigned NumElts = VT.getVectorNumElements();
3748  unsigned BlockElts = M[0] + 1;
3749  // If the first shuffle index is UNDEF, be optimistic.
3750  if (M[0] < 0)
3751    BlockElts = BlockSize / EltSz;
3752
3753  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3754    return false;
3755
3756  for (unsigned i = 0; i < NumElts; ++i) {
3757    if (M[i] < 0) continue; // ignore UNDEF indices
3758    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3759      return false;
3760  }
3761
3762  return true;
3763}
3764
3765static bool isVTBLMask(const SmallVectorImpl<int> &M, EVT VT) {
3766  // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
3767  // range, then 0 is placed into the resulting vector. So pretty much any mask
3768  // of 8 elements can work here.
3769  return VT == MVT::v8i8 && M.size() == 8;
3770}
3771
3772static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
3773                       unsigned &WhichResult) {
3774  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3775  if (EltSz == 64)
3776    return false;
3777
3778  unsigned NumElts = VT.getVectorNumElements();
3779  WhichResult = (M[0] == 0 ? 0 : 1);
3780  for (unsigned i = 0; i < NumElts; i += 2) {
3781    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3782        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
3783      return false;
3784  }
3785  return true;
3786}
3787
3788/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
3789/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3790/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
3791static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3792                                unsigned &WhichResult) {
3793  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3794  if (EltSz == 64)
3795    return false;
3796
3797  unsigned NumElts = VT.getVectorNumElements();
3798  WhichResult = (M[0] == 0 ? 0 : 1);
3799  for (unsigned i = 0; i < NumElts; i += 2) {
3800    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3801        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
3802      return false;
3803  }
3804  return true;
3805}
3806
3807static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
3808                       unsigned &WhichResult) {
3809  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3810  if (EltSz == 64)
3811    return false;
3812
3813  unsigned NumElts = VT.getVectorNumElements();
3814  WhichResult = (M[0] == 0 ? 0 : 1);
3815  for (unsigned i = 0; i != NumElts; ++i) {
3816    if (M[i] < 0) continue; // ignore UNDEF indices
3817    if ((unsigned) M[i] != 2 * i + WhichResult)
3818      return false;
3819  }
3820
3821  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3822  if (VT.is64BitVector() && EltSz == 32)
3823    return false;
3824
3825  return true;
3826}
3827
3828/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
3829/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3830/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
3831static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3832                                unsigned &WhichResult) {
3833  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3834  if (EltSz == 64)
3835    return false;
3836
3837  unsigned Half = VT.getVectorNumElements() / 2;
3838  WhichResult = (M[0] == 0 ? 0 : 1);
3839  for (unsigned j = 0; j != 2; ++j) {
3840    unsigned Idx = WhichResult;
3841    for (unsigned i = 0; i != Half; ++i) {
3842      int MIdx = M[i + j * Half];
3843      if (MIdx >= 0 && (unsigned) MIdx != Idx)
3844        return false;
3845      Idx += 2;
3846    }
3847  }
3848
3849  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3850  if (VT.is64BitVector() && EltSz == 32)
3851    return false;
3852
3853  return true;
3854}
3855
3856static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
3857                       unsigned &WhichResult) {
3858  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3859  if (EltSz == 64)
3860    return false;
3861
3862  unsigned NumElts = VT.getVectorNumElements();
3863  WhichResult = (M[0] == 0 ? 0 : 1);
3864  unsigned Idx = WhichResult * NumElts / 2;
3865  for (unsigned i = 0; i != NumElts; i += 2) {
3866    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3867        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
3868      return false;
3869    Idx += 1;
3870  }
3871
3872  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3873  if (VT.is64BitVector() && EltSz == 32)
3874    return false;
3875
3876  return true;
3877}
3878
3879/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
3880/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3881/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
3882static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3883                                unsigned &WhichResult) {
3884  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3885  if (EltSz == 64)
3886    return false;
3887
3888  unsigned NumElts = VT.getVectorNumElements();
3889  WhichResult = (M[0] == 0 ? 0 : 1);
3890  unsigned Idx = WhichResult * NumElts / 2;
3891  for (unsigned i = 0; i != NumElts; i += 2) {
3892    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3893        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
3894      return false;
3895    Idx += 1;
3896  }
3897
3898  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3899  if (VT.is64BitVector() && EltSz == 32)
3900    return false;
3901
3902  return true;
3903}
3904
3905// If N is an integer constant that can be moved into a register in one
3906// instruction, return an SDValue of such a constant (will become a MOV
3907// instruction).  Otherwise return null.
3908static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
3909                                     const ARMSubtarget *ST, DebugLoc dl) {
3910  uint64_t Val;
3911  if (!isa<ConstantSDNode>(N))
3912    return SDValue();
3913  Val = cast<ConstantSDNode>(N)->getZExtValue();
3914
3915  if (ST->isThumb1Only()) {
3916    if (Val <= 255 || ~Val <= 255)
3917      return DAG.getConstant(Val, MVT::i32);
3918  } else {
3919    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
3920      return DAG.getConstant(Val, MVT::i32);
3921  }
3922  return SDValue();
3923}
3924
3925// If this is a case we can't handle, return null and let the default
3926// expansion code take care of it.
3927SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
3928                                             const ARMSubtarget *ST) const {
3929  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
3930  DebugLoc dl = Op.getDebugLoc();
3931  EVT VT = Op.getValueType();
3932
3933  APInt SplatBits, SplatUndef;
3934  unsigned SplatBitSize;
3935  bool HasAnyUndefs;
3936  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
3937    if (SplatBitSize <= 64) {
3938      // Check if an immediate VMOV works.
3939      EVT VmovVT;
3940      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
3941                                      SplatUndef.getZExtValue(), SplatBitSize,
3942                                      DAG, VmovVT, VT.is128BitVector(),
3943                                      VMOVModImm);
3944      if (Val.getNode()) {
3945        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
3946        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3947      }
3948
3949      // Try an immediate VMVN.
3950      uint64_t NegatedImm = (~SplatBits).getZExtValue();
3951      Val = isNEONModifiedImm(NegatedImm,
3952                                      SplatUndef.getZExtValue(), SplatBitSize,
3953                                      DAG, VmovVT, VT.is128BitVector(),
3954                                      VMVNModImm);
3955      if (Val.getNode()) {
3956        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
3957        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3958      }
3959    }
3960  }
3961
3962  // Scan through the operands to see if only one value is used.
3963  unsigned NumElts = VT.getVectorNumElements();
3964  bool isOnlyLowElement = true;
3965  bool usesOnlyOneValue = true;
3966  bool isConstant = true;
3967  SDValue Value;
3968  for (unsigned i = 0; i < NumElts; ++i) {
3969    SDValue V = Op.getOperand(i);
3970    if (V.getOpcode() == ISD::UNDEF)
3971      continue;
3972    if (i > 0)
3973      isOnlyLowElement = false;
3974    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
3975      isConstant = false;
3976
3977    if (!Value.getNode())
3978      Value = V;
3979    else if (V != Value)
3980      usesOnlyOneValue = false;
3981  }
3982
3983  if (!Value.getNode())
3984    return DAG.getUNDEF(VT);
3985
3986  if (isOnlyLowElement)
3987    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
3988
3989  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3990
3991  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
3992  // i32 and try again.
3993  if (usesOnlyOneValue && EltSize <= 32) {
3994    if (!isConstant)
3995      return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
3996    if (VT.getVectorElementType().isFloatingPoint()) {
3997      SmallVector<SDValue, 8> Ops;
3998      for (unsigned i = 0; i < NumElts; ++i)
3999        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4000                                  Op.getOperand(i)));
4001      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
4002      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
4003      Val = LowerBUILD_VECTOR(Val, DAG, ST);
4004      if (Val.getNode())
4005        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4006    }
4007    SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
4008    if (Val.getNode())
4009      return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
4010  }
4011
4012  // If all elements are constants and the case above didn't get hit, fall back
4013  // to the default expansion, which will generate a load from the constant
4014  // pool.
4015  if (isConstant)
4016    return SDValue();
4017
4018  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
4019  if (NumElts >= 4) {
4020    SDValue shuffle = ReconstructShuffle(Op, DAG);
4021    if (shuffle != SDValue())
4022      return shuffle;
4023  }
4024
4025  // Vectors with 32- or 64-bit elements can be built by directly assigning
4026  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
4027  // will be legalized.
4028  if (EltSize >= 32) {
4029    // Do the expansion with floating-point types, since that is what the VFP
4030    // registers are defined to use, and since i64 is not legal.
4031    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4032    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4033    SmallVector<SDValue, 8> Ops;
4034    for (unsigned i = 0; i < NumElts; ++i)
4035      Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
4036    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4037    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4038  }
4039
4040  return SDValue();
4041}
4042
4043// Gather data to see if the operation can be modelled as a
4044// shuffle in combination with VEXTs.
4045SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
4046                                              SelectionDAG &DAG) const {
4047  DebugLoc dl = Op.getDebugLoc();
4048  EVT VT = Op.getValueType();
4049  unsigned NumElts = VT.getVectorNumElements();
4050
4051  SmallVector<SDValue, 2> SourceVecs;
4052  SmallVector<unsigned, 2> MinElts;
4053  SmallVector<unsigned, 2> MaxElts;
4054
4055  for (unsigned i = 0; i < NumElts; ++i) {
4056    SDValue V = Op.getOperand(i);
4057    if (V.getOpcode() == ISD::UNDEF)
4058      continue;
4059    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4060      // A shuffle can only come from building a vector from various
4061      // elements of other vectors.
4062      return SDValue();
4063    } else if (V.getOperand(0).getValueType().getVectorElementType() !=
4064               VT.getVectorElementType()) {
4065      // This code doesn't know how to handle shuffles where the vector
4066      // element types do not match (this happens because type legalization
4067      // promotes the return type of EXTRACT_VECTOR_ELT).
4068      // FIXME: It might be appropriate to extend this code to handle
4069      // mismatched types.
4070      return SDValue();
4071    }
4072
4073    // Record this extraction against the appropriate vector if possible...
4074    SDValue SourceVec = V.getOperand(0);
4075    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4076    bool FoundSource = false;
4077    for (unsigned j = 0; j < SourceVecs.size(); ++j) {
4078      if (SourceVecs[j] == SourceVec) {
4079        if (MinElts[j] > EltNo)
4080          MinElts[j] = EltNo;
4081        if (MaxElts[j] < EltNo)
4082          MaxElts[j] = EltNo;
4083        FoundSource = true;
4084        break;
4085      }
4086    }
4087
4088    // Or record a new source if not...
4089    if (!FoundSource) {
4090      SourceVecs.push_back(SourceVec);
4091      MinElts.push_back(EltNo);
4092      MaxElts.push_back(EltNo);
4093    }
4094  }
4095
4096  // Currently only do something sane when at most two source vectors
4097  // involved.
4098  if (SourceVecs.size() > 2)
4099    return SDValue();
4100
4101  SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
4102  int VEXTOffsets[2] = {0, 0};
4103
4104  // This loop extracts the usage patterns of the source vectors
4105  // and prepares appropriate SDValues for a shuffle if possible.
4106  for (unsigned i = 0; i < SourceVecs.size(); ++i) {
4107    if (SourceVecs[i].getValueType() == VT) {
4108      // No VEXT necessary
4109      ShuffleSrcs[i] = SourceVecs[i];
4110      VEXTOffsets[i] = 0;
4111      continue;
4112    } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
4113      // It probably isn't worth padding out a smaller vector just to
4114      // break it down again in a shuffle.
4115      return SDValue();
4116    }
4117
4118    // Since only 64-bit and 128-bit vectors are legal on ARM and
4119    // we've eliminated the other cases...
4120    assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
4121           "unexpected vector sizes in ReconstructShuffle");
4122
4123    if (MaxElts[i] - MinElts[i] >= NumElts) {
4124      // Span too large for a VEXT to cope
4125      return SDValue();
4126    }
4127
4128    if (MinElts[i] >= NumElts) {
4129      // The extraction can just take the second half
4130      VEXTOffsets[i] = NumElts;
4131      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4132                                   SourceVecs[i],
4133                                   DAG.getIntPtrConstant(NumElts));
4134    } else if (MaxElts[i] < NumElts) {
4135      // The extraction can just take the first half
4136      VEXTOffsets[i] = 0;
4137      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4138                                   SourceVecs[i],
4139                                   DAG.getIntPtrConstant(0));
4140    } else {
4141      // An actual VEXT is needed
4142      VEXTOffsets[i] = MinElts[i];
4143      SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4144                                     SourceVecs[i],
4145                                     DAG.getIntPtrConstant(0));
4146      SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4147                                     SourceVecs[i],
4148                                     DAG.getIntPtrConstant(NumElts));
4149      ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
4150                                   DAG.getConstant(VEXTOffsets[i], MVT::i32));
4151    }
4152  }
4153
4154  SmallVector<int, 8> Mask;
4155
4156  for (unsigned i = 0; i < NumElts; ++i) {
4157    SDValue Entry = Op.getOperand(i);
4158    if (Entry.getOpcode() == ISD::UNDEF) {
4159      Mask.push_back(-1);
4160      continue;
4161    }
4162
4163    SDValue ExtractVec = Entry.getOperand(0);
4164    int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
4165                                          .getOperand(1))->getSExtValue();
4166    if (ExtractVec == SourceVecs[0]) {
4167      Mask.push_back(ExtractElt - VEXTOffsets[0]);
4168    } else {
4169      Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
4170    }
4171  }
4172
4173  // Final check before we try to produce nonsense...
4174  if (isShuffleMaskLegal(Mask, VT))
4175    return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
4176                                &Mask[0]);
4177
4178  return SDValue();
4179}
4180
4181/// isShuffleMaskLegal - Targets can use this to indicate that they only
4182/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4183/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4184/// are assumed to be legal.
4185bool
4186ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
4187                                      EVT VT) const {
4188  if (VT.getVectorNumElements() == 4 &&
4189      (VT.is128BitVector() || VT.is64BitVector())) {
4190    unsigned PFIndexes[4];
4191    for (unsigned i = 0; i != 4; ++i) {
4192      if (M[i] < 0)
4193        PFIndexes[i] = 8;
4194      else
4195        PFIndexes[i] = M[i];
4196    }
4197
4198    // Compute the index in the perfect shuffle table.
4199    unsigned PFTableIndex =
4200      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4201    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4202    unsigned Cost = (PFEntry >> 30);
4203
4204    if (Cost <= 4)
4205      return true;
4206  }
4207
4208  bool ReverseVEXT;
4209  unsigned Imm, WhichResult;
4210
4211  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4212  return (EltSize >= 32 ||
4213          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
4214          isVREVMask(M, VT, 64) ||
4215          isVREVMask(M, VT, 32) ||
4216          isVREVMask(M, VT, 16) ||
4217          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
4218          isVTBLMask(M, VT) ||
4219          isVTRNMask(M, VT, WhichResult) ||
4220          isVUZPMask(M, VT, WhichResult) ||
4221          isVZIPMask(M, VT, WhichResult) ||
4222          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
4223          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
4224          isVZIP_v_undef_Mask(M, VT, WhichResult));
4225}
4226
4227/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4228/// the specified operations to build the shuffle.
4229static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4230                                      SDValue RHS, SelectionDAG &DAG,
4231                                      DebugLoc dl) {
4232  unsigned OpNum = (PFEntry >> 26) & 0x0F;
4233  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4234  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4235
4236  enum {
4237    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4238    OP_VREV,
4239    OP_VDUP0,
4240    OP_VDUP1,
4241    OP_VDUP2,
4242    OP_VDUP3,
4243    OP_VEXT1,
4244    OP_VEXT2,
4245    OP_VEXT3,
4246    OP_VUZPL, // VUZP, left result
4247    OP_VUZPR, // VUZP, right result
4248    OP_VZIPL, // VZIP, left result
4249    OP_VZIPR, // VZIP, right result
4250    OP_VTRNL, // VTRN, left result
4251    OP_VTRNR  // VTRN, right result
4252  };
4253
4254  if (OpNum == OP_COPY) {
4255    if (LHSID == (1*9+2)*9+3) return LHS;
4256    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4257    return RHS;
4258  }
4259
4260  SDValue OpLHS, OpRHS;
4261  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4262  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4263  EVT VT = OpLHS.getValueType();
4264
4265  switch (OpNum) {
4266  default: llvm_unreachable("Unknown shuffle opcode!");
4267  case OP_VREV:
4268    // VREV divides the vector in half and swaps within the half.
4269    if (VT.getVectorElementType() == MVT::i32 ||
4270        VT.getVectorElementType() == MVT::f32)
4271      return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
4272    // vrev <4 x i16> -> VREV32
4273    if (VT.getVectorElementType() == MVT::i16)
4274      return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
4275    // vrev <4 x i8> -> VREV16
4276    assert(VT.getVectorElementType() == MVT::i8);
4277    return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
4278  case OP_VDUP0:
4279  case OP_VDUP1:
4280  case OP_VDUP2:
4281  case OP_VDUP3:
4282    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4283                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
4284  case OP_VEXT1:
4285  case OP_VEXT2:
4286  case OP_VEXT3:
4287    return DAG.getNode(ARMISD::VEXT, dl, VT,
4288                       OpLHS, OpRHS,
4289                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
4290  case OP_VUZPL:
4291  case OP_VUZPR:
4292    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4293                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
4294  case OP_VZIPL:
4295  case OP_VZIPR:
4296    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4297                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
4298  case OP_VTRNL:
4299  case OP_VTRNR:
4300    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4301                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
4302  }
4303}
4304
4305static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
4306                                       SmallVectorImpl<int> &ShuffleMask,
4307                                       SelectionDAG &DAG) {
4308  // Check to see if we can use the VTBL instruction.
4309  SDValue V1 = Op.getOperand(0);
4310  SDValue V2 = Op.getOperand(1);
4311  DebugLoc DL = Op.getDebugLoc();
4312
4313  SmallVector<SDValue, 8> VTBLMask;
4314  for (SmallVectorImpl<int>::iterator
4315         I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
4316    VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
4317
4318  if (V2.getNode()->getOpcode() == ISD::UNDEF)
4319    return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
4320                       DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4321                                   &VTBLMask[0], 8));
4322
4323  return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
4324                     DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4325                                 &VTBLMask[0], 8));
4326}
4327
4328static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4329  SDValue V1 = Op.getOperand(0);
4330  SDValue V2 = Op.getOperand(1);
4331  DebugLoc dl = Op.getDebugLoc();
4332  EVT VT = Op.getValueType();
4333  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
4334  SmallVector<int, 8> ShuffleMask;
4335
4336  // Convert shuffles that are directly supported on NEON to target-specific
4337  // DAG nodes, instead of keeping them as shuffles and matching them again
4338  // during code selection.  This is more efficient and avoids the possibility
4339  // of inconsistencies between legalization and selection.
4340  // FIXME: floating-point vectors should be canonicalized to integer vectors
4341  // of the same time so that they get CSEd properly.
4342  SVN->getMask(ShuffleMask);
4343
4344  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4345  if (EltSize <= 32) {
4346    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
4347      int Lane = SVN->getSplatIndex();
4348      // If this is undef splat, generate it via "just" vdup, if possible.
4349      if (Lane == -1) Lane = 0;
4350
4351      // Test if V1 is a SCALAR_TO_VECTOR.
4352      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4353        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4354      }
4355      // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
4356      // (and probably will turn into a SCALAR_TO_VECTOR once legalization
4357      // reaches it).
4358      if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
4359          !isa<ConstantSDNode>(V1.getOperand(0))) {
4360        bool IsScalarToVector = true;
4361        for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
4362          if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
4363            IsScalarToVector = false;
4364            break;
4365          }
4366        if (IsScalarToVector)
4367          return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4368      }
4369      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
4370                         DAG.getConstant(Lane, MVT::i32));
4371    }
4372
4373    bool ReverseVEXT;
4374    unsigned Imm;
4375    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
4376      if (ReverseVEXT)
4377        std::swap(V1, V2);
4378      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
4379                         DAG.getConstant(Imm, MVT::i32));
4380    }
4381
4382    if (isVREVMask(ShuffleMask, VT, 64))
4383      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
4384    if (isVREVMask(ShuffleMask, VT, 32))
4385      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
4386    if (isVREVMask(ShuffleMask, VT, 16))
4387      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
4388
4389    // Check for Neon shuffles that modify both input vectors in place.
4390    // If both results are used, i.e., if there are two shuffles with the same
4391    // source operands and with masks corresponding to both results of one of
4392    // these operations, DAG memoization will ensure that a single node is
4393    // used for both shuffles.
4394    unsigned WhichResult;
4395    if (isVTRNMask(ShuffleMask, VT, WhichResult))
4396      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4397                         V1, V2).getValue(WhichResult);
4398    if (isVUZPMask(ShuffleMask, VT, WhichResult))
4399      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4400                         V1, V2).getValue(WhichResult);
4401    if (isVZIPMask(ShuffleMask, VT, WhichResult))
4402      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4403                         V1, V2).getValue(WhichResult);
4404
4405    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
4406      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4407                         V1, V1).getValue(WhichResult);
4408    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4409      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4410                         V1, V1).getValue(WhichResult);
4411    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4412      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4413                         V1, V1).getValue(WhichResult);
4414  }
4415
4416  // If the shuffle is not directly supported and it has 4 elements, use
4417  // the PerfectShuffle-generated table to synthesize it from other shuffles.
4418  unsigned NumElts = VT.getVectorNumElements();
4419  if (NumElts == 4) {
4420    unsigned PFIndexes[4];
4421    for (unsigned i = 0; i != 4; ++i) {
4422      if (ShuffleMask[i] < 0)
4423        PFIndexes[i] = 8;
4424      else
4425        PFIndexes[i] = ShuffleMask[i];
4426    }
4427
4428    // Compute the index in the perfect shuffle table.
4429    unsigned PFTableIndex =
4430      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4431    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4432    unsigned Cost = (PFEntry >> 30);
4433
4434    if (Cost <= 4)
4435      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4436  }
4437
4438  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
4439  if (EltSize >= 32) {
4440    // Do the expansion with floating-point types, since that is what the VFP
4441    // registers are defined to use, and since i64 is not legal.
4442    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4443    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4444    V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
4445    V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
4446    SmallVector<SDValue, 8> Ops;
4447    for (unsigned i = 0; i < NumElts; ++i) {
4448      if (ShuffleMask[i] < 0)
4449        Ops.push_back(DAG.getUNDEF(EltVT));
4450      else
4451        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
4452                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
4453                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
4454                                                  MVT::i32)));
4455    }
4456    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4457    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4458  }
4459
4460  if (VT == MVT::v8i8) {
4461    SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
4462    if (NewOp.getNode())
4463      return NewOp;
4464  }
4465
4466  return SDValue();
4467}
4468
4469static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4470  // INSERT_VECTOR_ELT is legal only for immediate indexes.
4471  SDValue Lane = Op.getOperand(2);
4472  if (!isa<ConstantSDNode>(Lane))
4473    return SDValue();
4474
4475  return Op;
4476}
4477
4478static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4479  // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
4480  SDValue Lane = Op.getOperand(1);
4481  if (!isa<ConstantSDNode>(Lane))
4482    return SDValue();
4483
4484  SDValue Vec = Op.getOperand(0);
4485  if (Op.getValueType() == MVT::i32 &&
4486      Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
4487    DebugLoc dl = Op.getDebugLoc();
4488    return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
4489  }
4490
4491  return Op;
4492}
4493
4494static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
4495  // The only time a CONCAT_VECTORS operation can have legal types is when
4496  // two 64-bit vectors are concatenated to a 128-bit vector.
4497  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
4498         "unexpected CONCAT_VECTORS");
4499  DebugLoc dl = Op.getDebugLoc();
4500  SDValue Val = DAG.getUNDEF(MVT::v2f64);
4501  SDValue Op0 = Op.getOperand(0);
4502  SDValue Op1 = Op.getOperand(1);
4503  if (Op0.getOpcode() != ISD::UNDEF)
4504    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4505                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
4506                      DAG.getIntPtrConstant(0));
4507  if (Op1.getOpcode() != ISD::UNDEF)
4508    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4509                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
4510                      DAG.getIntPtrConstant(1));
4511  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
4512}
4513
4514/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
4515/// element has been zero/sign-extended, depending on the isSigned parameter,
4516/// from an integer type half its size.
4517static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
4518                                   bool isSigned) {
4519  // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
4520  EVT VT = N->getValueType(0);
4521  if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
4522    SDNode *BVN = N->getOperand(0).getNode();
4523    if (BVN->getValueType(0) != MVT::v4i32 ||
4524        BVN->getOpcode() != ISD::BUILD_VECTOR)
4525      return false;
4526    unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4527    unsigned HiElt = 1 - LoElt;
4528    ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
4529    ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
4530    ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
4531    ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
4532    if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
4533      return false;
4534    if (isSigned) {
4535      if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
4536          Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
4537        return true;
4538    } else {
4539      if (Hi0->isNullValue() && Hi1->isNullValue())
4540        return true;
4541    }
4542    return false;
4543  }
4544
4545  if (N->getOpcode() != ISD::BUILD_VECTOR)
4546    return false;
4547
4548  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
4549    SDNode *Elt = N->getOperand(i).getNode();
4550    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
4551      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4552      unsigned HalfSize = EltSize / 2;
4553      if (isSigned) {
4554        if (!isIntN(HalfSize, C->getSExtValue()))
4555          return false;
4556      } else {
4557        if (!isUIntN(HalfSize, C->getZExtValue()))
4558          return false;
4559      }
4560      continue;
4561    }
4562    return false;
4563  }
4564
4565  return true;
4566}
4567
4568/// isSignExtended - Check if a node is a vector value that is sign-extended
4569/// or a constant BUILD_VECTOR with sign-extended elements.
4570static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
4571  if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
4572    return true;
4573  if (isExtendedBUILD_VECTOR(N, DAG, true))
4574    return true;
4575  return false;
4576}
4577
4578/// isZeroExtended - Check if a node is a vector value that is zero-extended
4579/// or a constant BUILD_VECTOR with zero-extended elements.
4580static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
4581  if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
4582    return true;
4583  if (isExtendedBUILD_VECTOR(N, DAG, false))
4584    return true;
4585  return false;
4586}
4587
4588/// SkipExtension - For a node that is a SIGN_EXTEND, ZERO_EXTEND, extending
4589/// load, or BUILD_VECTOR with extended elements, return the unextended value.
4590static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
4591  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
4592    return N->getOperand(0);
4593  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
4594    return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
4595                       LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
4596                       LD->isNonTemporal(), LD->getAlignment());
4597  // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
4598  // have been legalized as a BITCAST from v4i32.
4599  if (N->getOpcode() == ISD::BITCAST) {
4600    SDNode *BVN = N->getOperand(0).getNode();
4601    assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
4602           BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
4603    unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4604    return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
4605                       BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
4606  }
4607  // Construct a new BUILD_VECTOR with elements truncated to half the size.
4608  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
4609  EVT VT = N->getValueType(0);
4610  unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
4611  unsigned NumElts = VT.getVectorNumElements();
4612  MVT TruncVT = MVT::getIntegerVT(EltSize);
4613  SmallVector<SDValue, 8> Ops;
4614  for (unsigned i = 0; i != NumElts; ++i) {
4615    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
4616    const APInt &CInt = C->getAPIntValue();
4617    Ops.push_back(DAG.getConstant(CInt.trunc(EltSize), TruncVT));
4618  }
4619  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
4620                     MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
4621}
4622
4623static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
4624  unsigned Opcode = N->getOpcode();
4625  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4626    SDNode *N0 = N->getOperand(0).getNode();
4627    SDNode *N1 = N->getOperand(1).getNode();
4628    return N0->hasOneUse() && N1->hasOneUse() &&
4629      isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
4630  }
4631  return false;
4632}
4633
4634static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
4635  unsigned Opcode = N->getOpcode();
4636  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4637    SDNode *N0 = N->getOperand(0).getNode();
4638    SDNode *N1 = N->getOperand(1).getNode();
4639    return N0->hasOneUse() && N1->hasOneUse() &&
4640      isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
4641  }
4642  return false;
4643}
4644
4645static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
4646  // Multiplications are only custom-lowered for 128-bit vectors so that
4647  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
4648  EVT VT = Op.getValueType();
4649  assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
4650  SDNode *N0 = Op.getOperand(0).getNode();
4651  SDNode *N1 = Op.getOperand(1).getNode();
4652  unsigned NewOpc = 0;
4653  bool isMLA = false;
4654  bool isN0SExt = isSignExtended(N0, DAG);
4655  bool isN1SExt = isSignExtended(N1, DAG);
4656  if (isN0SExt && isN1SExt)
4657    NewOpc = ARMISD::VMULLs;
4658  else {
4659    bool isN0ZExt = isZeroExtended(N0, DAG);
4660    bool isN1ZExt = isZeroExtended(N1, DAG);
4661    if (isN0ZExt && isN1ZExt)
4662      NewOpc = ARMISD::VMULLu;
4663    else if (isN1SExt || isN1ZExt) {
4664      // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
4665      // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
4666      if (isN1SExt && isAddSubSExt(N0, DAG)) {
4667        NewOpc = ARMISD::VMULLs;
4668        isMLA = true;
4669      } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
4670        NewOpc = ARMISD::VMULLu;
4671        isMLA = true;
4672      } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
4673        std::swap(N0, N1);
4674        NewOpc = ARMISD::VMULLu;
4675        isMLA = true;
4676      }
4677    }
4678
4679    if (!NewOpc) {
4680      if (VT == MVT::v2i64)
4681        // Fall through to expand this.  It is not legal.
4682        return SDValue();
4683      else
4684        // Other vector multiplications are legal.
4685        return Op;
4686    }
4687  }
4688
4689  // Legalize to a VMULL instruction.
4690  DebugLoc DL = Op.getDebugLoc();
4691  SDValue Op0;
4692  SDValue Op1 = SkipExtension(N1, DAG);
4693  if (!isMLA) {
4694    Op0 = SkipExtension(N0, DAG);
4695    assert(Op0.getValueType().is64BitVector() &&
4696           Op1.getValueType().is64BitVector() &&
4697           "unexpected types for extended operands to VMULL");
4698    return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
4699  }
4700
4701  // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
4702  // isel lowering to take advantage of no-stall back to back vmul + vmla.
4703  //   vmull q0, d4, d6
4704  //   vmlal q0, d5, d6
4705  // is faster than
4706  //   vaddl q0, d4, d5
4707  //   vmovl q1, d6
4708  //   vmul  q0, q0, q1
4709  SDValue N00 = SkipExtension(N0->getOperand(0).getNode(), DAG);
4710  SDValue N01 = SkipExtension(N0->getOperand(1).getNode(), DAG);
4711  EVT Op1VT = Op1.getValueType();
4712  return DAG.getNode(N0->getOpcode(), DL, VT,
4713                     DAG.getNode(NewOpc, DL, VT,
4714                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
4715                     DAG.getNode(NewOpc, DL, VT,
4716                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
4717}
4718
4719static SDValue
4720LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) {
4721  // Convert to float
4722  // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
4723  // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
4724  X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
4725  Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
4726  X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
4727  Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
4728  // Get reciprocal estimate.
4729  // float4 recip = vrecpeq_f32(yf);
4730  Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4731                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
4732  // Because char has a smaller range than uchar, we can actually get away
4733  // without any newton steps.  This requires that we use a weird bias
4734  // of 0xb000, however (again, this has been exhaustively tested).
4735  // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
4736  X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
4737  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
4738  Y = DAG.getConstant(0xb000, MVT::i32);
4739  Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
4740  X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
4741  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
4742  // Convert back to short.
4743  X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
4744  X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
4745  return X;
4746}
4747
4748static SDValue
4749LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) {
4750  SDValue N2;
4751  // Convert to float.
4752  // float4 yf = vcvt_f32_s32(vmovl_s16(y));
4753  // float4 xf = vcvt_f32_s32(vmovl_s16(x));
4754  N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
4755  N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
4756  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4757  N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4758
4759  // Use reciprocal estimate and one refinement step.
4760  // float4 recip = vrecpeq_f32(yf);
4761  // recip *= vrecpsq_f32(yf, recip);
4762  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4763                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
4764  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4765                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4766                   N1, N2);
4767  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4768  // Because short has a smaller range than ushort, we can actually get away
4769  // with only a single newton step.  This requires that we use a weird bias
4770  // of 89, however (again, this has been exhaustively tested).
4771  // float4 result = as_float4(as_int4(xf*recip) + 0x89);
4772  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4773  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4774  N1 = DAG.getConstant(0x89, MVT::i32);
4775  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4776  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4777  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4778  // Convert back to integer and return.
4779  // return vmovn_s32(vcvt_s32_f32(result));
4780  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4781  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4782  return N0;
4783}
4784
4785static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
4786  EVT VT = Op.getValueType();
4787  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4788         "unexpected type for custom-lowering ISD::SDIV");
4789
4790  DebugLoc dl = Op.getDebugLoc();
4791  SDValue N0 = Op.getOperand(0);
4792  SDValue N1 = Op.getOperand(1);
4793  SDValue N2, N3;
4794
4795  if (VT == MVT::v8i8) {
4796    N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
4797    N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
4798
4799    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4800                     DAG.getIntPtrConstant(4));
4801    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4802                     DAG.getIntPtrConstant(4));
4803    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4804                     DAG.getIntPtrConstant(0));
4805    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4806                     DAG.getIntPtrConstant(0));
4807
4808    N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
4809    N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
4810
4811    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
4812    N0 = LowerCONCAT_VECTORS(N0, DAG);
4813
4814    N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
4815    return N0;
4816  }
4817  return LowerSDIV_v4i16(N0, N1, dl, DAG);
4818}
4819
4820static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
4821  EVT VT = Op.getValueType();
4822  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4823         "unexpected type for custom-lowering ISD::UDIV");
4824
4825  DebugLoc dl = Op.getDebugLoc();
4826  SDValue N0 = Op.getOperand(0);
4827  SDValue N1 = Op.getOperand(1);
4828  SDValue N2, N3;
4829
4830  if (VT == MVT::v8i8) {
4831    N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
4832    N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
4833
4834    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4835                     DAG.getIntPtrConstant(4));
4836    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4837                     DAG.getIntPtrConstant(4));
4838    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4839                     DAG.getIntPtrConstant(0));
4840    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4841                     DAG.getIntPtrConstant(0));
4842
4843    N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
4844    N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
4845
4846    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
4847    N0 = LowerCONCAT_VECTORS(N0, DAG);
4848
4849    N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
4850                     DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
4851                     N0);
4852    return N0;
4853  }
4854
4855  // v4i16 sdiv ... Convert to float.
4856  // float4 yf = vcvt_f32_s32(vmovl_u16(y));
4857  // float4 xf = vcvt_f32_s32(vmovl_u16(x));
4858  N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
4859  N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
4860  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4861  SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4862
4863  // Use reciprocal estimate and two refinement steps.
4864  // float4 recip = vrecpeq_f32(yf);
4865  // recip *= vrecpsq_f32(yf, recip);
4866  // recip *= vrecpsq_f32(yf, recip);
4867  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4868                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
4869  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4870                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4871                   BN1, N2);
4872  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4873  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4874                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4875                   BN1, N2);
4876  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4877  // Simply multiplying by the reciprocal estimate can leave us a few ulps
4878  // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
4879  // and that it will never cause us to return an answer too large).
4880  // float4 result = as_float4(as_int4(xf*recip) + 2);
4881  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4882  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4883  N1 = DAG.getConstant(2, MVT::i32);
4884  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4885  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4886  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4887  // Convert back to integer and return.
4888  // return vmovn_u32(vcvt_s32_f32(result));
4889  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4890  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4891  return N0;
4892}
4893
4894static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
4895  EVT VT = Op.getNode()->getValueType(0);
4896  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4897
4898  unsigned Opc;
4899  bool ExtraOp = false;
4900  switch (Op.getOpcode()) {
4901  default: assert(0 && "Invalid code");
4902  case ISD::ADDC: Opc = ARMISD::ADDC; break;
4903  case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
4904  case ISD::SUBC: Opc = ARMISD::SUBC; break;
4905  case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
4906  }
4907
4908  if (!ExtraOp)
4909    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
4910                       Op.getOperand(1));
4911  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
4912                     Op.getOperand(1), Op.getOperand(2));
4913}
4914
4915static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
4916  // Monotonic load/store is legal for all targets
4917  if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
4918    return Op;
4919
4920  // Aquire/Release load/store is not legal for targets without a
4921  // dmb or equivalent available.
4922  return SDValue();
4923}
4924
4925
4926static void
4927ReplaceATOMIC_OP_64(SDNode *Node, SmallVectorImpl<SDValue>& Results,
4928                    SelectionDAG &DAG, unsigned NewOp) {
4929  DebugLoc dl = Node->getDebugLoc();
4930  assert (Node->getValueType(0) == MVT::i64 &&
4931          "Only know how to expand i64 atomics");
4932
4933  SmallVector<SDValue, 6> Ops;
4934  Ops.push_back(Node->getOperand(0)); // Chain
4935  Ops.push_back(Node->getOperand(1)); // Ptr
4936  // Low part of Val1
4937  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4938                            Node->getOperand(2), DAG.getIntPtrConstant(0)));
4939  // High part of Val1
4940  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4941                            Node->getOperand(2), DAG.getIntPtrConstant(1)));
4942  if (NewOp == ARMISD::ATOMCMPXCHG64_DAG) {
4943    // High part of Val1
4944    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4945                              Node->getOperand(3), DAG.getIntPtrConstant(0)));
4946    // High part of Val2
4947    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4948                              Node->getOperand(3), DAG.getIntPtrConstant(1)));
4949  }
4950  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4951  SDValue Result =
4952    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops.data(), Ops.size(), MVT::i64,
4953                            cast<MemSDNode>(Node)->getMemOperand());
4954  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1) };
4955  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
4956  Results.push_back(Result.getValue(2));
4957}
4958
4959SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4960  switch (Op.getOpcode()) {
4961  default: llvm_unreachable("Don't know how to custom lower this!");
4962  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
4963  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
4964  case ISD::GlobalAddress:
4965    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
4966      LowerGlobalAddressELF(Op, DAG);
4967  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
4968  case ISD::SELECT:        return LowerSELECT(Op, DAG);
4969  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
4970  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
4971  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
4972  case ISD::VASTART:       return LowerVASTART(Op, DAG);
4973  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
4974  case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
4975  case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
4976  case ISD::SINT_TO_FP:
4977  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
4978  case ISD::FP_TO_SINT:
4979  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
4980  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
4981  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
4982  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
4983  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
4984  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
4985  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
4986  case ISD::EH_SJLJ_DISPATCHSETUP: return LowerEH_SJLJ_DISPATCHSETUP(Op, DAG);
4987  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
4988                                                               Subtarget);
4989  case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
4990  case ISD::SHL:
4991  case ISD::SRL:
4992  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
4993  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
4994  case ISD::SRL_PARTS:
4995  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
4996  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
4997  case ISD::SETCC:         return LowerVSETCC(Op, DAG);
4998  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
4999  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
5000  case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
5001  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5002  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
5003  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
5004  case ISD::MUL:           return LowerMUL(Op, DAG);
5005  case ISD::SDIV:          return LowerSDIV(Op, DAG);
5006  case ISD::UDIV:          return LowerUDIV(Op, DAG);
5007  case ISD::ADDC:
5008  case ISD::ADDE:
5009  case ISD::SUBC:
5010  case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
5011  case ISD::ATOMIC_LOAD:
5012  case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
5013  }
5014  return SDValue();
5015}
5016
5017/// ReplaceNodeResults - Replace the results of node with an illegal result
5018/// type with new values built out of custom code.
5019void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
5020                                           SmallVectorImpl<SDValue>&Results,
5021                                           SelectionDAG &DAG) const {
5022  SDValue Res;
5023  switch (N->getOpcode()) {
5024  default:
5025    llvm_unreachable("Don't know how to custom expand this!");
5026    break;
5027  case ISD::BITCAST:
5028    Res = ExpandBITCAST(N, DAG);
5029    break;
5030  case ISD::SRL:
5031  case ISD::SRA:
5032    Res = Expand64BitShift(N, DAG, Subtarget);
5033    break;
5034  case ISD::ATOMIC_LOAD_ADD:
5035    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMADD64_DAG);
5036    return;
5037  case ISD::ATOMIC_LOAD_AND:
5038    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMAND64_DAG);
5039    return;
5040  case ISD::ATOMIC_LOAD_NAND:
5041    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMNAND64_DAG);
5042    return;
5043  case ISD::ATOMIC_LOAD_OR:
5044    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMOR64_DAG);
5045    return;
5046  case ISD::ATOMIC_LOAD_SUB:
5047    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSUB64_DAG);
5048    return;
5049  case ISD::ATOMIC_LOAD_XOR:
5050    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMXOR64_DAG);
5051    return;
5052  case ISD::ATOMIC_SWAP:
5053    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSWAP64_DAG);
5054    return;
5055  case ISD::ATOMIC_CMP_SWAP:
5056    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMCMPXCHG64_DAG);
5057    return;
5058  }
5059  if (Res.getNode())
5060    Results.push_back(Res);
5061}
5062
5063//===----------------------------------------------------------------------===//
5064//                           ARM Scheduler Hooks
5065//===----------------------------------------------------------------------===//
5066
5067MachineBasicBlock *
5068ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
5069                                     MachineBasicBlock *BB,
5070                                     unsigned Size) const {
5071  unsigned dest    = MI->getOperand(0).getReg();
5072  unsigned ptr     = MI->getOperand(1).getReg();
5073  unsigned oldval  = MI->getOperand(2).getReg();
5074  unsigned newval  = MI->getOperand(3).getReg();
5075  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5076  DebugLoc dl = MI->getDebugLoc();
5077  bool isThumb2 = Subtarget->isThumb2();
5078
5079  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5080  unsigned scratch =
5081    MRI.createVirtualRegister(isThumb2 ? ARM::rGPRRegisterClass
5082                                       : ARM::GPRRegisterClass);
5083
5084  if (isThumb2) {
5085    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5086    MRI.constrainRegClass(oldval, ARM::rGPRRegisterClass);
5087    MRI.constrainRegClass(newval, ARM::rGPRRegisterClass);
5088  }
5089
5090  unsigned ldrOpc, strOpc;
5091  switch (Size) {
5092  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5093  case 1:
5094    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5095    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5096    break;
5097  case 2:
5098    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5099    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5100    break;
5101  case 4:
5102    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5103    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5104    break;
5105  }
5106
5107  MachineFunction *MF = BB->getParent();
5108  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5109  MachineFunction::iterator It = BB;
5110  ++It; // insert the new blocks after the current block
5111
5112  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5113  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5114  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5115  MF->insert(It, loop1MBB);
5116  MF->insert(It, loop2MBB);
5117  MF->insert(It, exitMBB);
5118
5119  // Transfer the remainder of BB and its successor edges to exitMBB.
5120  exitMBB->splice(exitMBB->begin(), BB,
5121                  llvm::next(MachineBasicBlock::iterator(MI)),
5122                  BB->end());
5123  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5124
5125  //  thisMBB:
5126  //   ...
5127  //   fallthrough --> loop1MBB
5128  BB->addSuccessor(loop1MBB);
5129
5130  // loop1MBB:
5131  //   ldrex dest, [ptr]
5132  //   cmp dest, oldval
5133  //   bne exitMBB
5134  BB = loop1MBB;
5135  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5136  if (ldrOpc == ARM::t2LDREX)
5137    MIB.addImm(0);
5138  AddDefaultPred(MIB);
5139  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5140                 .addReg(dest).addReg(oldval));
5141  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5142    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5143  BB->addSuccessor(loop2MBB);
5144  BB->addSuccessor(exitMBB);
5145
5146  // loop2MBB:
5147  //   strex scratch, newval, [ptr]
5148  //   cmp scratch, #0
5149  //   bne loop1MBB
5150  BB = loop2MBB;
5151  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval).addReg(ptr);
5152  if (strOpc == ARM::t2STREX)
5153    MIB.addImm(0);
5154  AddDefaultPred(MIB);
5155  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5156                 .addReg(scratch).addImm(0));
5157  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5158    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5159  BB->addSuccessor(loop1MBB);
5160  BB->addSuccessor(exitMBB);
5161
5162  //  exitMBB:
5163  //   ...
5164  BB = exitMBB;
5165
5166  MI->eraseFromParent();   // The instruction is gone now.
5167
5168  return BB;
5169}
5170
5171MachineBasicBlock *
5172ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
5173                                    unsigned Size, unsigned BinOpcode) const {
5174  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5175  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5176
5177  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5178  MachineFunction *MF = BB->getParent();
5179  MachineFunction::iterator It = BB;
5180  ++It;
5181
5182  unsigned dest = MI->getOperand(0).getReg();
5183  unsigned ptr = MI->getOperand(1).getReg();
5184  unsigned incr = MI->getOperand(2).getReg();
5185  DebugLoc dl = MI->getDebugLoc();
5186  bool isThumb2 = Subtarget->isThumb2();
5187
5188  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5189  if (isThumb2) {
5190    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5191    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5192  }
5193
5194  unsigned ldrOpc, strOpc;
5195  switch (Size) {
5196  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5197  case 1:
5198    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5199    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5200    break;
5201  case 2:
5202    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5203    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5204    break;
5205  case 4:
5206    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5207    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5208    break;
5209  }
5210
5211  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5212  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5213  MF->insert(It, loopMBB);
5214  MF->insert(It, exitMBB);
5215
5216  // Transfer the remainder of BB and its successor edges to exitMBB.
5217  exitMBB->splice(exitMBB->begin(), BB,
5218                  llvm::next(MachineBasicBlock::iterator(MI)),
5219                  BB->end());
5220  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5221
5222  TargetRegisterClass *TRC =
5223    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5224  unsigned scratch = MRI.createVirtualRegister(TRC);
5225  unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
5226
5227  //  thisMBB:
5228  //   ...
5229  //   fallthrough --> loopMBB
5230  BB->addSuccessor(loopMBB);
5231
5232  //  loopMBB:
5233  //   ldrex dest, ptr
5234  //   <binop> scratch2, dest, incr
5235  //   strex scratch, scratch2, ptr
5236  //   cmp scratch, #0
5237  //   bne- loopMBB
5238  //   fallthrough --> exitMBB
5239  BB = loopMBB;
5240  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5241  if (ldrOpc == ARM::t2LDREX)
5242    MIB.addImm(0);
5243  AddDefaultPred(MIB);
5244  if (BinOpcode) {
5245    // operand order needs to go the other way for NAND
5246    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
5247      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5248                     addReg(incr).addReg(dest)).addReg(0);
5249    else
5250      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5251                     addReg(dest).addReg(incr)).addReg(0);
5252  }
5253
5254  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5255  if (strOpc == ARM::t2STREX)
5256    MIB.addImm(0);
5257  AddDefaultPred(MIB);
5258  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5259                 .addReg(scratch).addImm(0));
5260  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5261    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5262
5263  BB->addSuccessor(loopMBB);
5264  BB->addSuccessor(exitMBB);
5265
5266  //  exitMBB:
5267  //   ...
5268  BB = exitMBB;
5269
5270  MI->eraseFromParent();   // The instruction is gone now.
5271
5272  return BB;
5273}
5274
5275MachineBasicBlock *
5276ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI,
5277                                          MachineBasicBlock *BB,
5278                                          unsigned Size,
5279                                          bool signExtend,
5280                                          ARMCC::CondCodes Cond) const {
5281  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5282
5283  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5284  MachineFunction *MF = BB->getParent();
5285  MachineFunction::iterator It = BB;
5286  ++It;
5287
5288  unsigned dest = MI->getOperand(0).getReg();
5289  unsigned ptr = MI->getOperand(1).getReg();
5290  unsigned incr = MI->getOperand(2).getReg();
5291  unsigned oldval = dest;
5292  DebugLoc dl = MI->getDebugLoc();
5293  bool isThumb2 = Subtarget->isThumb2();
5294
5295  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5296  if (isThumb2) {
5297    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5298    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5299  }
5300
5301  unsigned ldrOpc, strOpc, extendOpc;
5302  switch (Size) {
5303  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5304  case 1:
5305    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5306    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5307    extendOpc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
5308    break;
5309  case 2:
5310    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5311    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5312    extendOpc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
5313    break;
5314  case 4:
5315    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5316    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5317    extendOpc = 0;
5318    break;
5319  }
5320
5321  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5322  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5323  MF->insert(It, loopMBB);
5324  MF->insert(It, exitMBB);
5325
5326  // Transfer the remainder of BB and its successor edges to exitMBB.
5327  exitMBB->splice(exitMBB->begin(), BB,
5328                  llvm::next(MachineBasicBlock::iterator(MI)),
5329                  BB->end());
5330  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5331
5332  TargetRegisterClass *TRC =
5333    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5334  unsigned scratch = MRI.createVirtualRegister(TRC);
5335  unsigned scratch2 = MRI.createVirtualRegister(TRC);
5336
5337  //  thisMBB:
5338  //   ...
5339  //   fallthrough --> loopMBB
5340  BB->addSuccessor(loopMBB);
5341
5342  //  loopMBB:
5343  //   ldrex dest, ptr
5344  //   (sign extend dest, if required)
5345  //   cmp dest, incr
5346  //   cmov.cond scratch2, dest, incr
5347  //   strex scratch, scratch2, ptr
5348  //   cmp scratch, #0
5349  //   bne- loopMBB
5350  //   fallthrough --> exitMBB
5351  BB = loopMBB;
5352  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5353  if (ldrOpc == ARM::t2LDREX)
5354    MIB.addImm(0);
5355  AddDefaultPred(MIB);
5356
5357  // Sign extend the value, if necessary.
5358  if (signExtend && extendOpc) {
5359    oldval = MRI.createVirtualRegister(ARM::GPRRegisterClass);
5360    AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval)
5361                     .addReg(dest)
5362                     .addImm(0));
5363  }
5364
5365  // Build compare and cmov instructions.
5366  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5367                 .addReg(oldval).addReg(incr));
5368  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2)
5369         .addReg(oldval).addReg(incr).addImm(Cond).addReg(ARM::CPSR);
5370
5371  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5372  if (strOpc == ARM::t2STREX)
5373    MIB.addImm(0);
5374  AddDefaultPred(MIB);
5375  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5376                 .addReg(scratch).addImm(0));
5377  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5378    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5379
5380  BB->addSuccessor(loopMBB);
5381  BB->addSuccessor(exitMBB);
5382
5383  //  exitMBB:
5384  //   ...
5385  BB = exitMBB;
5386
5387  MI->eraseFromParent();   // The instruction is gone now.
5388
5389  return BB;
5390}
5391
5392MachineBasicBlock *
5393ARMTargetLowering::EmitAtomicBinary64(MachineInstr *MI, MachineBasicBlock *BB,
5394                                      unsigned Op1, unsigned Op2,
5395                                      bool NeedsCarry, bool IsCmpxchg) const {
5396  // This also handles ATOMIC_SWAP, indicated by Op1==0.
5397  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5398
5399  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5400  MachineFunction *MF = BB->getParent();
5401  MachineFunction::iterator It = BB;
5402  ++It;
5403
5404  unsigned destlo = MI->getOperand(0).getReg();
5405  unsigned desthi = MI->getOperand(1).getReg();
5406  unsigned ptr = MI->getOperand(2).getReg();
5407  unsigned vallo = MI->getOperand(3).getReg();
5408  unsigned valhi = MI->getOperand(4).getReg();
5409  DebugLoc dl = MI->getDebugLoc();
5410  bool isThumb2 = Subtarget->isThumb2();
5411
5412  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5413  if (isThumb2) {
5414    MRI.constrainRegClass(destlo, ARM::rGPRRegisterClass);
5415    MRI.constrainRegClass(desthi, ARM::rGPRRegisterClass);
5416    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5417  }
5418
5419  unsigned ldrOpc = isThumb2 ? ARM::t2LDREXD : ARM::LDREXD;
5420  unsigned strOpc = isThumb2 ? ARM::t2STREXD : ARM::STREXD;
5421
5422  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5423  MachineBasicBlock *contBB = 0, *cont2BB = 0;
5424  if (IsCmpxchg) {
5425    contBB = MF->CreateMachineBasicBlock(LLVM_BB);
5426    cont2BB = MF->CreateMachineBasicBlock(LLVM_BB);
5427  }
5428  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5429  MF->insert(It, loopMBB);
5430  if (IsCmpxchg) {
5431    MF->insert(It, contBB);
5432    MF->insert(It, cont2BB);
5433  }
5434  MF->insert(It, exitMBB);
5435
5436  // Transfer the remainder of BB and its successor edges to exitMBB.
5437  exitMBB->splice(exitMBB->begin(), BB,
5438                  llvm::next(MachineBasicBlock::iterator(MI)),
5439                  BB->end());
5440  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5441
5442  TargetRegisterClass *TRC =
5443    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5444  unsigned storesuccess = MRI.createVirtualRegister(TRC);
5445
5446  //  thisMBB:
5447  //   ...
5448  //   fallthrough --> loopMBB
5449  BB->addSuccessor(loopMBB);
5450
5451  //  loopMBB:
5452  //   ldrexd r2, r3, ptr
5453  //   <binopa> r0, r2, incr
5454  //   <binopb> r1, r3, incr
5455  //   strexd storesuccess, r0, r1, ptr
5456  //   cmp storesuccess, #0
5457  //   bne- loopMBB
5458  //   fallthrough --> exitMBB
5459  //
5460  // Note that the registers are explicitly specified because there is not any
5461  // way to force the register allocator to allocate a register pair.
5462  //
5463  // FIXME: The hardcoded registers are not necessary for Thumb2, but we
5464  // need to properly enforce the restriction that the two output registers
5465  // for ldrexd must be different.
5466  BB = loopMBB;
5467  // Load
5468  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc))
5469                 .addReg(ARM::R2, RegState::Define)
5470                 .addReg(ARM::R3, RegState::Define).addReg(ptr));
5471  // Copy r2/r3 into dest.  (This copy will normally be coalesced.)
5472  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), destlo).addReg(ARM::R2);
5473  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), desthi).addReg(ARM::R3);
5474
5475  if (IsCmpxchg) {
5476    // Add early exit
5477    for (unsigned i = 0; i < 2; i++) {
5478      AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr :
5479                                                         ARM::CMPrr))
5480                     .addReg(i == 0 ? destlo : desthi)
5481                     .addReg(i == 0 ? vallo : valhi));
5482      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5483        .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5484      BB->addSuccessor(exitMBB);
5485      BB->addSuccessor(i == 0 ? contBB : cont2BB);
5486      BB = (i == 0 ? contBB : cont2BB);
5487    }
5488
5489    // Copy to physregs for strexd
5490    unsigned setlo = MI->getOperand(5).getReg();
5491    unsigned sethi = MI->getOperand(6).getReg();
5492    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(setlo);
5493    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(sethi);
5494  } else if (Op1) {
5495    // Perform binary operation
5496    AddDefaultPred(BuildMI(BB, dl, TII->get(Op1), ARM::R0)
5497                   .addReg(destlo).addReg(vallo))
5498        .addReg(NeedsCarry ? ARM::CPSR : 0, getDefRegState(NeedsCarry));
5499    AddDefaultPred(BuildMI(BB, dl, TII->get(Op2), ARM::R1)
5500                   .addReg(desthi).addReg(valhi)).addReg(0);
5501  } else {
5502    // Copy to physregs for strexd
5503    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(vallo);
5504    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(valhi);
5505  }
5506
5507  // Store
5508  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), storesuccess)
5509                 .addReg(ARM::R0).addReg(ARM::R1).addReg(ptr));
5510  // Cmp+jump
5511  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5512                 .addReg(storesuccess).addImm(0));
5513  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5514    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5515
5516  BB->addSuccessor(loopMBB);
5517  BB->addSuccessor(exitMBB);
5518
5519  //  exitMBB:
5520  //   ...
5521  BB = exitMBB;
5522
5523  MI->eraseFromParent();   // The instruction is gone now.
5524
5525  return BB;
5526}
5527
5528/// EmitBasePointerRecalculation - For functions using a base pointer, we
5529/// rematerialize it (via the frame pointer).
5530void ARMTargetLowering::
5531EmitBasePointerRecalculation(MachineInstr *MI, MachineBasicBlock *MBB,
5532                             MachineBasicBlock *DispatchBB) const {
5533  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5534  const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
5535  MachineFunction &MF = *MI->getParent()->getParent();
5536  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
5537  const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
5538
5539  if (!RI.hasBasePointer(MF)) return;
5540
5541  MachineBasicBlock::iterator MBBI = MI;
5542
5543  int32_t NumBytes = AFI->getFramePtrSpillOffset();
5544  unsigned FramePtr = RI.getFrameRegister(MF);
5545  assert(MF.getTarget().getFrameLowering()->hasFP(MF) &&
5546         "Base pointer without frame pointer?");
5547
5548  if (AFI->isThumb2Function())
5549    llvm::emitT2RegPlusImmediate(*MBB, MBBI, MI->getDebugLoc(), ARM::R6,
5550                                 FramePtr, -NumBytes, ARMCC::AL, 0, *AII);
5551  else if (AFI->isThumbFunction())
5552    llvm::emitThumbRegPlusImmediate(*MBB, MBBI, MI->getDebugLoc(), ARM::R6,
5553                                    FramePtr, -NumBytes, *AII, RI);
5554  else
5555    llvm::emitARMRegPlusImmediate(*MBB, MBBI, MI->getDebugLoc(), ARM::R6,
5556                                  FramePtr, -NumBytes, ARMCC::AL, 0, *AII);
5557
5558  if (!RI.needsStackRealignment(MF)) return;
5559
5560  // If there's dynamic realignment, adjust for it.
5561  MachineFrameInfo *MFI = MF.getFrameInfo();
5562  unsigned MaxAlign = MFI->getMaxAlignment();
5563  assert(!AFI->isThumb1OnlyFunction());
5564
5565  // Emit bic r6, r6, MaxAlign
5566  unsigned bicOpc = AFI->isThumbFunction() ? ARM::t2BICri : ARM::BICri;
5567  AddDefaultCC(
5568    AddDefaultPred(
5569      BuildMI(*MBB, MBBI, MI->getDebugLoc(), TII->get(bicOpc), ARM::R6)
5570      .addReg(ARM::R6, RegState::Kill)
5571      .addImm(MaxAlign - 1)));
5572}
5573
5574/// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
5575/// registers the function context.
5576void ARMTargetLowering::
5577SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
5578                       MachineBasicBlock *DispatchBB, int FI) const {
5579  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5580  DebugLoc dl = MI->getDebugLoc();
5581  MachineFunction *MF = MBB->getParent();
5582  MachineRegisterInfo *MRI = &MF->getRegInfo();
5583  MachineConstantPool *MCP = MF->getConstantPool();
5584  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
5585  const Function *F = MF->getFunction();
5586
5587  bool isThumb = Subtarget->isThumb();
5588  bool isThumb2 = Subtarget->isThumb2();
5589
5590  unsigned PCLabelId = AFI->createPICLabelUId();
5591  unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
5592  ARMConstantPoolValue *CPV =
5593    ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
5594  unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
5595
5596  const TargetRegisterClass *TRC =
5597    isThumb ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5598
5599  // Grab constant pool and fixed stack memory operands.
5600  MachineMemOperand *CPMMO =
5601    MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(),
5602                             MachineMemOperand::MOLoad, 4, 4);
5603
5604  MachineMemOperand *FIMMOSt =
5605    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
5606                             MachineMemOperand::MOStore, 4, 4);
5607
5608  EmitBasePointerRecalculation(MI, MBB, DispatchBB);
5609
5610  // Load the address of the dispatch MBB into the jump buffer.
5611  if (isThumb2) {
5612    // Incoming value: jbuf
5613    //   ldr.n  r5, LCPI1_1
5614    //   orr    r5, r5, #1
5615    //   add    r5, pc
5616    //   str    r5, [$jbuf, #+4] ; &jbuf[1]
5617    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5618    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
5619                   .addConstantPoolIndex(CPI)
5620                   .addMemOperand(CPMMO));
5621    // Set the low bit because of thumb mode.
5622    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5623    AddDefaultCC(
5624      AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
5625                     .addReg(NewVReg1, RegState::Kill)
5626                     .addImm(0x01)));
5627    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5628    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
5629      .addReg(NewVReg2, RegState::Kill)
5630      .addImm(PCLabelId);
5631    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
5632                   .addReg(NewVReg3, RegState::Kill)
5633                   .addFrameIndex(FI)
5634                   .addImm(36)  // &jbuf[1] :: pc
5635                   .addMemOperand(FIMMOSt));
5636  } else if (isThumb) {
5637    // Incoming value: jbuf
5638    //   ldr.n  r1, LCPI1_4
5639    //   add    r1, pc
5640    //   mov    r2, #1
5641    //   orrs   r1, r2
5642    //   add    r2, $jbuf, #+4 ; &jbuf[1]
5643    //   str    r1, [r2]
5644    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5645    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
5646                   .addConstantPoolIndex(CPI)
5647                   .addMemOperand(CPMMO));
5648    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5649    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
5650      .addReg(NewVReg1, RegState::Kill)
5651      .addImm(PCLabelId);
5652    // Set the low bit because of thumb mode.
5653    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5654    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
5655                   .addReg(ARM::CPSR, RegState::Define)
5656                   .addImm(1));
5657    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5658    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
5659                   .addReg(ARM::CPSR, RegState::Define)
5660                   .addReg(NewVReg2, RegState::Kill)
5661                   .addReg(NewVReg3, RegState::Kill));
5662    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
5663    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5)
5664                   .addFrameIndex(FI)
5665                   .addImm(36)); // &jbuf[1] :: pc
5666    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
5667                   .addReg(NewVReg4, RegState::Kill)
5668                   .addReg(NewVReg5, RegState::Kill)
5669                   .addImm(0)
5670                   .addMemOperand(FIMMOSt));
5671  } else {
5672    // Incoming value: jbuf
5673    //   ldr  r1, LCPI1_1
5674    //   add  r1, pc, r1
5675    //   str  r1, [$jbuf, #+4] ; &jbuf[1]
5676    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5677    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12),  NewVReg1)
5678                   .addConstantPoolIndex(CPI)
5679                   .addImm(0)
5680                   .addMemOperand(CPMMO));
5681    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5682    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
5683                   .addReg(NewVReg1, RegState::Kill)
5684                   .addImm(PCLabelId));
5685    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
5686                   .addReg(NewVReg2, RegState::Kill)
5687                   .addFrameIndex(FI)
5688                   .addImm(36)  // &jbuf[1] :: pc
5689                   .addMemOperand(FIMMOSt));
5690  }
5691}
5692
5693MachineBasicBlock *ARMTargetLowering::
5694EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
5695  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5696  DebugLoc dl = MI->getDebugLoc();
5697  MachineFunction *MF = MBB->getParent();
5698  MachineRegisterInfo *MRI = &MF->getRegInfo();
5699  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
5700  MachineFrameInfo *MFI = MF->getFrameInfo();
5701  int FI = MFI->getFunctionContextIndex();
5702
5703  const TargetRegisterClass *TRC =
5704    Subtarget->isThumb() ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5705
5706  // Get a mapping of the call site numbers to all of the landing pads they're
5707  // associated with.
5708  DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
5709  unsigned MaxCSNum = 0;
5710  MachineModuleInfo &MMI = MF->getMMI();
5711  for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E; ++BB) {
5712    if (!BB->isLandingPad()) continue;
5713
5714    // FIXME: We should assert that the EH_LABEL is the first MI in the landing
5715    // pad.
5716    for (MachineBasicBlock::iterator
5717           II = BB->begin(), IE = BB->end(); II != IE; ++II) {
5718      if (!II->isEHLabel()) continue;
5719
5720      MCSymbol *Sym = II->getOperand(0).getMCSymbol();
5721      if (!MMI.hasCallSiteLandingPad(Sym)) continue;
5722
5723      SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
5724      for (SmallVectorImpl<unsigned>::iterator
5725             CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
5726           CSI != CSE; ++CSI) {
5727        CallSiteNumToLPad[*CSI].push_back(BB);
5728        MaxCSNum = std::max(MaxCSNum, *CSI);
5729      }
5730      break;
5731    }
5732  }
5733
5734  // Get an ordered list of the machine basic blocks for the jump table.
5735  std::vector<MachineBasicBlock*> LPadList;
5736  SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
5737  LPadList.reserve(CallSiteNumToLPad.size());
5738  for (unsigned I = 1; I <= MaxCSNum; ++I) {
5739    SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
5740    for (SmallVectorImpl<MachineBasicBlock*>::iterator
5741           II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
5742      LPadList.push_back(*II);
5743      InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
5744    }
5745  }
5746
5747  assert(!LPadList.empty() &&
5748         "No landing pad destinations for the dispatch jump table!");
5749
5750  // Create the jump table and associated information.
5751  MachineJumpTableInfo *JTI =
5752    MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
5753  unsigned MJTI = JTI->createJumpTableIndex(LPadList);
5754  unsigned UId = AFI->createJumpTableUId();
5755
5756  // Create the MBBs for the dispatch code.
5757
5758  // Shove the dispatch's address into the return slot in the function context.
5759  MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
5760  DispatchBB->setIsLandingPad();
5761
5762  MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
5763  BuildMI(TrapBB, dl, TII->get(Subtarget->isThumb() ? ARM::tTRAP : ARM::TRAP));
5764  DispatchBB->addSuccessor(TrapBB);
5765
5766  MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
5767  DispatchBB->addSuccessor(DispContBB);
5768
5769  // Insert and MBBs.
5770  MF->insert(MF->end(), DispatchBB);
5771  MF->insert(MF->end(), DispContBB);
5772  MF->insert(MF->end(), TrapBB);
5773
5774  // Insert code into the entry block that creates and registers the function
5775  // context.
5776  SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
5777
5778  MachineMemOperand *FIMMOLd =
5779    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
5780                             MachineMemOperand::MOLoad |
5781                             MachineMemOperand::MOVolatile, 4, 4);
5782
5783  unsigned NumLPads = LPadList.size();
5784  if (Subtarget->isThumb2()) {
5785    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5786    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
5787                   .addFrameIndex(FI)
5788                   .addImm(4)
5789                   .addMemOperand(FIMMOLd));
5790
5791    if (NumLPads < 256) {
5792      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
5793                     .addReg(NewVReg1)
5794                     .addImm(LPadList.size()));
5795    } else {
5796      unsigned VReg1 = MRI->createVirtualRegister(TRC);
5797      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
5798                     .addImm(NumLPads & 0xFFFF));
5799
5800      unsigned VReg2 = VReg1;
5801      if ((NumLPads & 0xFFFF0000) != 0) {
5802        VReg2 = MRI->createVirtualRegister(TRC);
5803        AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
5804                       .addReg(VReg1)
5805                       .addImm(NumLPads >> 16));
5806      }
5807
5808      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
5809                     .addReg(NewVReg1)
5810                     .addReg(VReg2));
5811    }
5812
5813    BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
5814      .addMBB(TrapBB)
5815      .addImm(ARMCC::HI)
5816      .addReg(ARM::CPSR);
5817
5818    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5819    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
5820                   .addJumpTableIndex(MJTI)
5821                   .addImm(UId));
5822
5823    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5824    AddDefaultCC(
5825      AddDefaultPred(
5826        BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
5827        .addReg(NewVReg3, RegState::Kill)
5828        .addReg(NewVReg1)
5829        .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
5830
5831    BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
5832      .addReg(NewVReg4, RegState::Kill)
5833      .addReg(NewVReg1)
5834      .addJumpTableIndex(MJTI)
5835      .addImm(UId);
5836  } else if (Subtarget->isThumb()) {
5837    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5838    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
5839                   .addFrameIndex(FI)
5840                   .addImm(1)
5841                   .addMemOperand(FIMMOLd));
5842
5843    if (NumLPads < 256) {
5844      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
5845                     .addReg(NewVReg1)
5846                     .addImm(NumLPads));
5847    } else {
5848      MachineConstantPool *ConstantPool = MF->getConstantPool();
5849      Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
5850      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
5851
5852      // MachineConstantPool wants an explicit alignment.
5853      unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
5854      if (Align == 0)
5855        Align = getTargetData()->getTypeAllocSize(C->getType());
5856      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
5857
5858      unsigned VReg1 = MRI->createVirtualRegister(TRC);
5859      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
5860                     .addReg(VReg1, RegState::Define)
5861                     .addConstantPoolIndex(Idx));
5862      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
5863                     .addReg(NewVReg1)
5864                     .addReg(VReg1));
5865    }
5866
5867    BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
5868      .addMBB(TrapBB)
5869      .addImm(ARMCC::HI)
5870      .addReg(ARM::CPSR);
5871
5872    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5873    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
5874                   .addReg(ARM::CPSR, RegState::Define)
5875                   .addReg(NewVReg1)
5876                   .addImm(2));
5877
5878    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5879    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
5880                   .addJumpTableIndex(MJTI)
5881                   .addImm(UId));
5882
5883    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5884    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
5885                   .addReg(ARM::CPSR, RegState::Define)
5886                   .addReg(NewVReg2, RegState::Kill)
5887                   .addReg(NewVReg3));
5888
5889    MachineMemOperand *JTMMOLd =
5890      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
5891                               MachineMemOperand::MOLoad, 4, 4);
5892
5893    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
5894    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
5895                   .addReg(NewVReg4, RegState::Kill)
5896                   .addImm(0)
5897                   .addMemOperand(JTMMOLd));
5898
5899    unsigned NewVReg6 = MRI->createVirtualRegister(TRC);
5900    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
5901                   .addReg(ARM::CPSR, RegState::Define)
5902                   .addReg(NewVReg5, RegState::Kill)
5903                   .addReg(NewVReg3));
5904
5905    BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
5906      .addReg(NewVReg6, RegState::Kill)
5907      .addJumpTableIndex(MJTI)
5908      .addImm(UId);
5909  } else {
5910    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5911    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
5912                   .addFrameIndex(FI)
5913                   .addImm(4)
5914                   .addMemOperand(FIMMOLd));
5915
5916    if (NumLPads < 256) {
5917      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
5918                     .addReg(NewVReg1)
5919                     .addImm(NumLPads));
5920    } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
5921      unsigned VReg1 = MRI->createVirtualRegister(TRC);
5922      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
5923                     .addImm(NumLPads & 0xFFFF));
5924
5925      unsigned VReg2 = VReg1;
5926      if ((NumLPads & 0xFFFF0000) != 0) {
5927        VReg2 = MRI->createVirtualRegister(TRC);
5928        AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
5929                       .addReg(VReg1)
5930                       .addImm(NumLPads >> 16));
5931      }
5932
5933      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
5934                     .addReg(NewVReg1)
5935                     .addReg(VReg2));
5936    } else {
5937      MachineConstantPool *ConstantPool = MF->getConstantPool();
5938      Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
5939      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
5940
5941      // MachineConstantPool wants an explicit alignment.
5942      unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
5943      if (Align == 0)
5944        Align = getTargetData()->getTypeAllocSize(C->getType());
5945      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
5946
5947      unsigned VReg1 = MRI->createVirtualRegister(TRC);
5948      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
5949                     .addReg(VReg1, RegState::Define)
5950                     .addConstantPoolIndex(Idx)
5951                     .addImm(0));
5952      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
5953                     .addReg(NewVReg1)
5954                     .addReg(VReg1, RegState::Kill));
5955    }
5956
5957    BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
5958      .addMBB(TrapBB)
5959      .addImm(ARMCC::HI)
5960      .addReg(ARM::CPSR);
5961
5962    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5963    AddDefaultCC(
5964      AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
5965                     .addReg(NewVReg1)
5966                     .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
5967    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5968    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
5969                   .addJumpTableIndex(MJTI)
5970                   .addImm(UId));
5971
5972    MachineMemOperand *JTMMOLd =
5973      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
5974                               MachineMemOperand::MOLoad, 4, 4);
5975    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
5976    AddDefaultPred(
5977      BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
5978      .addReg(NewVReg3, RegState::Kill)
5979      .addReg(NewVReg4)
5980      .addImm(0)
5981      .addMemOperand(JTMMOLd));
5982
5983    BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
5984      .addReg(NewVReg5, RegState::Kill)
5985      .addReg(NewVReg4)
5986      .addJumpTableIndex(MJTI)
5987      .addImm(UId);
5988  }
5989
5990  // Add the jump table entries as successors to the MBB.
5991  MachineBasicBlock *PrevMBB = 0;
5992  for (std::vector<MachineBasicBlock*>::iterator
5993         I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
5994    MachineBasicBlock *CurMBB = *I;
5995    if (PrevMBB != CurMBB)
5996      DispContBB->addSuccessor(CurMBB);
5997    PrevMBB = CurMBB;
5998  }
5999
6000  // N.B. the order the invoke BBs are processed in doesn't matter here.
6001  const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
6002  const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
6003  const unsigned *SavedRegs = RI.getCalleeSavedRegs(MF);
6004  SmallVector<MachineBasicBlock*, 64> MBBLPads;
6005  for (SmallPtrSet<MachineBasicBlock*, 64>::iterator
6006         I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) {
6007    MachineBasicBlock *BB = *I;
6008
6009    // Remove the landing pad successor from the invoke block and replace it
6010    // with the new dispatch block.
6011    SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
6012                                                  BB->succ_end());
6013    while (!Successors.empty()) {
6014      MachineBasicBlock *SMBB = Successors.pop_back_val();
6015      if (SMBB->isLandingPad()) {
6016        BB->removeSuccessor(SMBB);
6017        MBBLPads.push_back(SMBB);
6018      }
6019    }
6020
6021    BB->addSuccessor(DispatchBB);
6022
6023    // Find the invoke call and mark all of the callee-saved registers as
6024    // 'implicit defined' so that they're spilled. This prevents code from
6025    // moving instructions to before the EH block, where they will never be
6026    // executed.
6027    for (MachineBasicBlock::reverse_iterator
6028           II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
6029      if (!II->getDesc().isCall()) continue;
6030
6031      DenseMap<unsigned, bool> DefRegs;
6032      for (MachineInstr::mop_iterator
6033             OI = II->operands_begin(), OE = II->operands_end();
6034           OI != OE; ++OI) {
6035        if (!OI->isReg()) continue;
6036        DefRegs[OI->getReg()] = true;
6037      }
6038
6039      MachineInstrBuilder MIB(&*II);
6040
6041      for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
6042        unsigned Reg = SavedRegs[i];
6043        if (Subtarget->isThumb2() &&
6044            !ARM::tGPRRegisterClass->contains(Reg) &&
6045            !ARM::hGPRRegisterClass->contains(Reg))
6046          continue;
6047        else if (Subtarget->isThumb1Only() &&
6048                 !ARM::tGPRRegisterClass->contains(Reg))
6049          continue;
6050        else if (!Subtarget->isThumb() &&
6051                 !ARM::GPRRegisterClass->contains(Reg))
6052          continue;
6053        if (!DefRegs[Reg])
6054          MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
6055      }
6056
6057      break;
6058    }
6059  }
6060
6061  // Mark all former landing pads as non-landing pads. The dispatch is the only
6062  // landing pad now.
6063  for (SmallVectorImpl<MachineBasicBlock*>::iterator
6064         I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
6065    (*I)->setIsLandingPad(false);
6066
6067  // The instruction is gone now.
6068  MI->eraseFromParent();
6069
6070  return MBB;
6071}
6072
6073static
6074MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
6075  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
6076       E = MBB->succ_end(); I != E; ++I)
6077    if (*I != Succ)
6078      return *I;
6079  llvm_unreachable("Expecting a BB with two successors!");
6080}
6081
6082MachineBasicBlock *
6083ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6084                                               MachineBasicBlock *BB) const {
6085  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6086  DebugLoc dl = MI->getDebugLoc();
6087  bool isThumb2 = Subtarget->isThumb2();
6088  switch (MI->getOpcode()) {
6089  default: {
6090    MI->dump();
6091    llvm_unreachable("Unexpected instr type to insert");
6092  }
6093  // The Thumb2 pre-indexed stores have the same MI operands, they just
6094  // define them differently in the .td files from the isel patterns, so
6095  // they need pseudos.
6096  case ARM::t2STR_preidx:
6097    MI->setDesc(TII->get(ARM::t2STR_PRE));
6098    return BB;
6099  case ARM::t2STRB_preidx:
6100    MI->setDesc(TII->get(ARM::t2STRB_PRE));
6101    return BB;
6102  case ARM::t2STRH_preidx:
6103    MI->setDesc(TII->get(ARM::t2STRH_PRE));
6104    return BB;
6105
6106  case ARM::STRi_preidx:
6107  case ARM::STRBi_preidx: {
6108    unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
6109      ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
6110    // Decode the offset.
6111    unsigned Offset = MI->getOperand(4).getImm();
6112    bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
6113    Offset = ARM_AM::getAM2Offset(Offset);
6114    if (isSub)
6115      Offset = -Offset;
6116
6117    MachineMemOperand *MMO = *MI->memoperands_begin();
6118    BuildMI(*BB, MI, dl, TII->get(NewOpc))
6119      .addOperand(MI->getOperand(0))  // Rn_wb
6120      .addOperand(MI->getOperand(1))  // Rt
6121      .addOperand(MI->getOperand(2))  // Rn
6122      .addImm(Offset)                 // offset (skip GPR==zero_reg)
6123      .addOperand(MI->getOperand(5))  // pred
6124      .addOperand(MI->getOperand(6))
6125      .addMemOperand(MMO);
6126    MI->eraseFromParent();
6127    return BB;
6128  }
6129  case ARM::STRr_preidx:
6130  case ARM::STRBr_preidx:
6131  case ARM::STRH_preidx: {
6132    unsigned NewOpc;
6133    switch (MI->getOpcode()) {
6134    default: llvm_unreachable("unexpected opcode!");
6135    case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
6136    case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
6137    case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
6138    }
6139    MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
6140    for (unsigned i = 0; i < MI->getNumOperands(); ++i)
6141      MIB.addOperand(MI->getOperand(i));
6142    MI->eraseFromParent();
6143    return BB;
6144  }
6145  case ARM::ATOMIC_LOAD_ADD_I8:
6146     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6147  case ARM::ATOMIC_LOAD_ADD_I16:
6148     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6149  case ARM::ATOMIC_LOAD_ADD_I32:
6150     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6151
6152  case ARM::ATOMIC_LOAD_AND_I8:
6153     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6154  case ARM::ATOMIC_LOAD_AND_I16:
6155     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6156  case ARM::ATOMIC_LOAD_AND_I32:
6157     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6158
6159  case ARM::ATOMIC_LOAD_OR_I8:
6160     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6161  case ARM::ATOMIC_LOAD_OR_I16:
6162     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6163  case ARM::ATOMIC_LOAD_OR_I32:
6164     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6165
6166  case ARM::ATOMIC_LOAD_XOR_I8:
6167     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6168  case ARM::ATOMIC_LOAD_XOR_I16:
6169     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6170  case ARM::ATOMIC_LOAD_XOR_I32:
6171     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6172
6173  case ARM::ATOMIC_LOAD_NAND_I8:
6174     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6175  case ARM::ATOMIC_LOAD_NAND_I16:
6176     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6177  case ARM::ATOMIC_LOAD_NAND_I32:
6178     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6179
6180  case ARM::ATOMIC_LOAD_SUB_I8:
6181     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6182  case ARM::ATOMIC_LOAD_SUB_I16:
6183     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6184  case ARM::ATOMIC_LOAD_SUB_I32:
6185     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6186
6187  case ARM::ATOMIC_LOAD_MIN_I8:
6188     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT);
6189  case ARM::ATOMIC_LOAD_MIN_I16:
6190     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT);
6191  case ARM::ATOMIC_LOAD_MIN_I32:
6192     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT);
6193
6194  case ARM::ATOMIC_LOAD_MAX_I8:
6195     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT);
6196  case ARM::ATOMIC_LOAD_MAX_I16:
6197     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT);
6198  case ARM::ATOMIC_LOAD_MAX_I32:
6199     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT);
6200
6201  case ARM::ATOMIC_LOAD_UMIN_I8:
6202     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO);
6203  case ARM::ATOMIC_LOAD_UMIN_I16:
6204     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO);
6205  case ARM::ATOMIC_LOAD_UMIN_I32:
6206     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO);
6207
6208  case ARM::ATOMIC_LOAD_UMAX_I8:
6209     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI);
6210  case ARM::ATOMIC_LOAD_UMAX_I16:
6211     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI);
6212  case ARM::ATOMIC_LOAD_UMAX_I32:
6213     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI);
6214
6215  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
6216  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
6217  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
6218
6219  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
6220  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
6221  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
6222
6223
6224  case ARM::ATOMADD6432:
6225    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr,
6226                              isThumb2 ? ARM::t2ADCrr : ARM::ADCrr,
6227                              /*NeedsCarry*/ true);
6228  case ARM::ATOMSUB6432:
6229    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6230                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6231                              /*NeedsCarry*/ true);
6232  case ARM::ATOMOR6432:
6233    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr,
6234                              isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6235  case ARM::ATOMXOR6432:
6236    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2EORrr : ARM::EORrr,
6237                              isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6238  case ARM::ATOMAND6432:
6239    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr,
6240                              isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6241  case ARM::ATOMSWAP6432:
6242    return EmitAtomicBinary64(MI, BB, 0, 0, false);
6243  case ARM::ATOMCMPXCHG6432:
6244    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6245                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6246                              /*NeedsCarry*/ false, /*IsCmpxchg*/true);
6247
6248  case ARM::tMOVCCr_pseudo: {
6249    // To "insert" a SELECT_CC instruction, we actually have to insert the
6250    // diamond control-flow pattern.  The incoming instruction knows the
6251    // destination vreg to set, the condition code register to branch on, the
6252    // true/false values to select between, and a branch opcode to use.
6253    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6254    MachineFunction::iterator It = BB;
6255    ++It;
6256
6257    //  thisMBB:
6258    //  ...
6259    //   TrueVal = ...
6260    //   cmpTY ccX, r1, r2
6261    //   bCC copy1MBB
6262    //   fallthrough --> copy0MBB
6263    MachineBasicBlock *thisMBB  = BB;
6264    MachineFunction *F = BB->getParent();
6265    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6266    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
6267    F->insert(It, copy0MBB);
6268    F->insert(It, sinkMBB);
6269
6270    // Transfer the remainder of BB and its successor edges to sinkMBB.
6271    sinkMBB->splice(sinkMBB->begin(), BB,
6272                    llvm::next(MachineBasicBlock::iterator(MI)),
6273                    BB->end());
6274    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
6275
6276    BB->addSuccessor(copy0MBB);
6277    BB->addSuccessor(sinkMBB);
6278
6279    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
6280      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
6281
6282    //  copy0MBB:
6283    //   %FalseValue = ...
6284    //   # fallthrough to sinkMBB
6285    BB = copy0MBB;
6286
6287    // Update machine-CFG edges
6288    BB->addSuccessor(sinkMBB);
6289
6290    //  sinkMBB:
6291    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6292    //  ...
6293    BB = sinkMBB;
6294    BuildMI(*BB, BB->begin(), dl,
6295            TII->get(ARM::PHI), MI->getOperand(0).getReg())
6296      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
6297      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6298
6299    MI->eraseFromParent();   // The pseudo instruction is gone now.
6300    return BB;
6301  }
6302
6303  case ARM::BCCi64:
6304  case ARM::BCCZi64: {
6305    // If there is an unconditional branch to the other successor, remove it.
6306    BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
6307
6308    // Compare both parts that make up the double comparison separately for
6309    // equality.
6310    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
6311
6312    unsigned LHS1 = MI->getOperand(1).getReg();
6313    unsigned LHS2 = MI->getOperand(2).getReg();
6314    if (RHSisZero) {
6315      AddDefaultPred(BuildMI(BB, dl,
6316                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6317                     .addReg(LHS1).addImm(0));
6318      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6319        .addReg(LHS2).addImm(0)
6320        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
6321    } else {
6322      unsigned RHS1 = MI->getOperand(3).getReg();
6323      unsigned RHS2 = MI->getOperand(4).getReg();
6324      AddDefaultPred(BuildMI(BB, dl,
6325                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6326                     .addReg(LHS1).addReg(RHS1));
6327      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6328        .addReg(LHS2).addReg(RHS2)
6329        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
6330    }
6331
6332    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
6333    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
6334    if (MI->getOperand(0).getImm() == ARMCC::NE)
6335      std::swap(destMBB, exitMBB);
6336
6337    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6338      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
6339    if (isThumb2)
6340      AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
6341    else
6342      BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
6343
6344    MI->eraseFromParent();   // The pseudo instruction is gone now.
6345    return BB;
6346  }
6347
6348  case ARM::Int_eh_sjlj_setjmp:
6349  case ARM::Int_eh_sjlj_setjmp_nofp:
6350  case ARM::tInt_eh_sjlj_setjmp:
6351  case ARM::t2Int_eh_sjlj_setjmp:
6352  case ARM::t2Int_eh_sjlj_setjmp_nofp:
6353    EmitSjLjDispatchBlock(MI, BB);
6354    return BB;
6355
6356  case ARM::ABS:
6357  case ARM::t2ABS: {
6358    // To insert an ABS instruction, we have to insert the
6359    // diamond control-flow pattern.  The incoming instruction knows the
6360    // source vreg to test against 0, the destination vreg to set,
6361    // the condition code register to branch on, the
6362    // true/false values to select between, and a branch opcode to use.
6363    // It transforms
6364    //     V1 = ABS V0
6365    // into
6366    //     V2 = MOVS V0
6367    //     BCC                      (branch to SinkBB if V0 >= 0)
6368    //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
6369    //     SinkBB: V1 = PHI(V2, V3)
6370    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6371    MachineFunction::iterator BBI = BB;
6372    ++BBI;
6373    MachineFunction *Fn = BB->getParent();
6374    MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
6375    MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
6376    Fn->insert(BBI, RSBBB);
6377    Fn->insert(BBI, SinkBB);
6378
6379    unsigned int ABSSrcReg = MI->getOperand(1).getReg();
6380    unsigned int ABSDstReg = MI->getOperand(0).getReg();
6381    bool isThumb2 = Subtarget->isThumb2();
6382    MachineRegisterInfo &MRI = Fn->getRegInfo();
6383    // In Thumb mode S must not be specified if source register is the SP or
6384    // PC and if destination register is the SP, so restrict register class
6385    unsigned NewMovDstReg = MRI.createVirtualRegister(
6386      isThumb2 ? ARM::rGPRRegisterClass : ARM::GPRRegisterClass);
6387    unsigned NewRsbDstReg = MRI.createVirtualRegister(
6388      isThumb2 ? ARM::rGPRRegisterClass : ARM::GPRRegisterClass);
6389
6390    // Transfer the remainder of BB and its successor edges to sinkMBB.
6391    SinkBB->splice(SinkBB->begin(), BB,
6392      llvm::next(MachineBasicBlock::iterator(MI)),
6393      BB->end());
6394    SinkBB->transferSuccessorsAndUpdatePHIs(BB);
6395
6396    BB->addSuccessor(RSBBB);
6397    BB->addSuccessor(SinkBB);
6398
6399    // fall through to SinkMBB
6400    RSBBB->addSuccessor(SinkBB);
6401
6402    // insert a movs at the end of BB
6403    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVr : ARM::MOVr),
6404      NewMovDstReg)
6405      .addReg(ABSSrcReg, RegState::Kill)
6406      .addImm((unsigned)ARMCC::AL).addReg(0)
6407      .addReg(ARM::CPSR, RegState::Define);
6408
6409    // insert a bcc with opposite CC to ARMCC::MI at the end of BB
6410    BuildMI(BB, dl,
6411      TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
6412      .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
6413
6414    // insert rsbri in RSBBB
6415    // Note: BCC and rsbri will be converted into predicated rsbmi
6416    // by if-conversion pass
6417    BuildMI(*RSBBB, RSBBB->begin(), dl,
6418      TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
6419      .addReg(NewMovDstReg, RegState::Kill)
6420      .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
6421
6422    // insert PHI in SinkBB,
6423    // reuse ABSDstReg to not change uses of ABS instruction
6424    BuildMI(*SinkBB, SinkBB->begin(), dl,
6425      TII->get(ARM::PHI), ABSDstReg)
6426      .addReg(NewRsbDstReg).addMBB(RSBBB)
6427      .addReg(NewMovDstReg).addMBB(BB);
6428
6429    // remove ABS instruction
6430    MI->eraseFromParent();
6431
6432    // return last added BB
6433    return SinkBB;
6434  }
6435  }
6436}
6437
6438void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
6439                                                      SDNode *Node) const {
6440  const MCInstrDesc *MCID = &MI->getDesc();
6441  if (!MCID->hasPostISelHook()) {
6442    assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
6443           "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'");
6444    return;
6445  }
6446
6447  // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
6448  // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
6449  // operand is still set to noreg. If needed, set the optional operand's
6450  // register to CPSR, and remove the redundant implicit def.
6451  //
6452  // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
6453
6454  // Rename pseudo opcodes.
6455  unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
6456  if (NewOpc) {
6457    const ARMBaseInstrInfo *TII =
6458      static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo());
6459    MCID = &TII->get(NewOpc);
6460
6461    assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
6462           "converted opcode should be the same except for cc_out");
6463
6464    MI->setDesc(*MCID);
6465
6466    // Add the optional cc_out operand
6467    MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
6468  }
6469  unsigned ccOutIdx = MCID->getNumOperands() - 1;
6470
6471  // Any ARM instruction that sets the 's' bit should specify an optional
6472  // "cc_out" operand in the last operand position.
6473  if (!MCID->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
6474    assert(!NewOpc && "Optional cc_out operand required");
6475    return;
6476  }
6477  // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
6478  // since we already have an optional CPSR def.
6479  bool definesCPSR = false;
6480  bool deadCPSR = false;
6481  for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
6482       i != e; ++i) {
6483    const MachineOperand &MO = MI->getOperand(i);
6484    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
6485      definesCPSR = true;
6486      if (MO.isDead())
6487        deadCPSR = true;
6488      MI->RemoveOperand(i);
6489      break;
6490    }
6491  }
6492  if (!definesCPSR) {
6493    assert(!NewOpc && "Optional cc_out operand required");
6494    return;
6495  }
6496  assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
6497  if (deadCPSR) {
6498    assert(!MI->getOperand(ccOutIdx).getReg() &&
6499           "expect uninitialized optional cc_out operand");
6500    return;
6501  }
6502
6503  // If this instruction was defined with an optional CPSR def and its dag node
6504  // had a live implicit CPSR def, then activate the optional CPSR def.
6505  MachineOperand &MO = MI->getOperand(ccOutIdx);
6506  MO.setReg(ARM::CPSR);
6507  MO.setIsDef(true);
6508}
6509
6510//===----------------------------------------------------------------------===//
6511//                           ARM Optimization Hooks
6512//===----------------------------------------------------------------------===//
6513
6514static
6515SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
6516                            TargetLowering::DAGCombinerInfo &DCI) {
6517  SelectionDAG &DAG = DCI.DAG;
6518  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6519  EVT VT = N->getValueType(0);
6520  unsigned Opc = N->getOpcode();
6521  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
6522  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
6523  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
6524  ISD::CondCode CC = ISD::SETCC_INVALID;
6525
6526  if (isSlctCC) {
6527    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
6528  } else {
6529    SDValue CCOp = Slct.getOperand(0);
6530    if (CCOp.getOpcode() == ISD::SETCC)
6531      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
6532  }
6533
6534  bool DoXform = false;
6535  bool InvCC = false;
6536  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
6537          "Bad input!");
6538
6539  if (LHS.getOpcode() == ISD::Constant &&
6540      cast<ConstantSDNode>(LHS)->isNullValue()) {
6541    DoXform = true;
6542  } else if (CC != ISD::SETCC_INVALID &&
6543             RHS.getOpcode() == ISD::Constant &&
6544             cast<ConstantSDNode>(RHS)->isNullValue()) {
6545    std::swap(LHS, RHS);
6546    SDValue Op0 = Slct.getOperand(0);
6547    EVT OpVT = isSlctCC ? Op0.getValueType() :
6548                          Op0.getOperand(0).getValueType();
6549    bool isInt = OpVT.isInteger();
6550    CC = ISD::getSetCCInverse(CC, isInt);
6551
6552    if (!TLI.isCondCodeLegal(CC, OpVT))
6553      return SDValue();         // Inverse operator isn't legal.
6554
6555    DoXform = true;
6556    InvCC = true;
6557  }
6558
6559  if (DoXform) {
6560    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
6561    if (isSlctCC)
6562      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
6563                             Slct.getOperand(0), Slct.getOperand(1), CC);
6564    SDValue CCOp = Slct.getOperand(0);
6565    if (InvCC)
6566      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
6567                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
6568    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
6569                       CCOp, OtherOp, Result);
6570  }
6571  return SDValue();
6572}
6573
6574// AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
6575// (only after legalization).
6576static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
6577                                 TargetLowering::DAGCombinerInfo &DCI,
6578                                 const ARMSubtarget *Subtarget) {
6579
6580  // Only perform optimization if after legalize, and if NEON is available. We
6581  // also expected both operands to be BUILD_VECTORs.
6582  if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
6583      || N0.getOpcode() != ISD::BUILD_VECTOR
6584      || N1.getOpcode() != ISD::BUILD_VECTOR)
6585    return SDValue();
6586
6587  // Check output type since VPADDL operand elements can only be 8, 16, or 32.
6588  EVT VT = N->getValueType(0);
6589  if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
6590    return SDValue();
6591
6592  // Check that the vector operands are of the right form.
6593  // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
6594  // operands, where N is the size of the formed vector.
6595  // Each EXTRACT_VECTOR should have the same input vector and odd or even
6596  // index such that we have a pair wise add pattern.
6597
6598  // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
6599  if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6600    return SDValue();
6601  SDValue Vec = N0->getOperand(0)->getOperand(0);
6602  SDNode *V = Vec.getNode();
6603  unsigned nextIndex = 0;
6604
6605  // For each operands to the ADD which are BUILD_VECTORs,
6606  // check to see if each of their operands are an EXTRACT_VECTOR with
6607  // the same vector and appropriate index.
6608  for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
6609    if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
6610        && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
6611
6612      SDValue ExtVec0 = N0->getOperand(i);
6613      SDValue ExtVec1 = N1->getOperand(i);
6614
6615      // First operand is the vector, verify its the same.
6616      if (V != ExtVec0->getOperand(0).getNode() ||
6617          V != ExtVec1->getOperand(0).getNode())
6618        return SDValue();
6619
6620      // Second is the constant, verify its correct.
6621      ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
6622      ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
6623
6624      // For the constant, we want to see all the even or all the odd.
6625      if (!C0 || !C1 || C0->getZExtValue() != nextIndex
6626          || C1->getZExtValue() != nextIndex+1)
6627        return SDValue();
6628
6629      // Increment index.
6630      nextIndex+=2;
6631    } else
6632      return SDValue();
6633  }
6634
6635  // Create VPADDL node.
6636  SelectionDAG &DAG = DCI.DAG;
6637  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6638
6639  // Build operand list.
6640  SmallVector<SDValue, 8> Ops;
6641  Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
6642                                TLI.getPointerTy()));
6643
6644  // Input is the vector.
6645  Ops.push_back(Vec);
6646
6647  // Get widened type and narrowed type.
6648  MVT widenType;
6649  unsigned numElem = VT.getVectorNumElements();
6650  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
6651    case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
6652    case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
6653    case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
6654    default:
6655      assert(0 && "Invalid vector element type for padd optimization.");
6656  }
6657
6658  SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
6659                            widenType, &Ops[0], Ops.size());
6660  return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, tmp);
6661}
6662
6663/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
6664/// operands N0 and N1.  This is a helper for PerformADDCombine that is
6665/// called with the default operands, and if that fails, with commuted
6666/// operands.
6667static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
6668                                          TargetLowering::DAGCombinerInfo &DCI,
6669                                          const ARMSubtarget *Subtarget){
6670
6671  // Attempt to create vpaddl for this add.
6672  SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
6673  if (Result.getNode())
6674    return Result;
6675
6676  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
6677  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
6678    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
6679    if (Result.getNode()) return Result;
6680  }
6681  return SDValue();
6682}
6683
6684/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
6685///
6686static SDValue PerformADDCombine(SDNode *N,
6687                                 TargetLowering::DAGCombinerInfo &DCI,
6688                                 const ARMSubtarget *Subtarget) {
6689  SDValue N0 = N->getOperand(0);
6690  SDValue N1 = N->getOperand(1);
6691
6692  // First try with the default operand order.
6693  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
6694  if (Result.getNode())
6695    return Result;
6696
6697  // If that didn't work, try again with the operands commuted.
6698  return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
6699}
6700
6701/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
6702///
6703static SDValue PerformSUBCombine(SDNode *N,
6704                                 TargetLowering::DAGCombinerInfo &DCI) {
6705  SDValue N0 = N->getOperand(0);
6706  SDValue N1 = N->getOperand(1);
6707
6708  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
6709  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
6710    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
6711    if (Result.getNode()) return Result;
6712  }
6713
6714  return SDValue();
6715}
6716
6717/// PerformVMULCombine
6718/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
6719/// special multiplier accumulator forwarding.
6720///   vmul d3, d0, d2
6721///   vmla d3, d1, d2
6722/// is faster than
6723///   vadd d3, d0, d1
6724///   vmul d3, d3, d2
6725static SDValue PerformVMULCombine(SDNode *N,
6726                                  TargetLowering::DAGCombinerInfo &DCI,
6727                                  const ARMSubtarget *Subtarget) {
6728  if (!Subtarget->hasVMLxForwarding())
6729    return SDValue();
6730
6731  SelectionDAG &DAG = DCI.DAG;
6732  SDValue N0 = N->getOperand(0);
6733  SDValue N1 = N->getOperand(1);
6734  unsigned Opcode = N0.getOpcode();
6735  if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
6736      Opcode != ISD::FADD && Opcode != ISD::FSUB) {
6737    Opcode = N1.getOpcode();
6738    if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
6739        Opcode != ISD::FADD && Opcode != ISD::FSUB)
6740      return SDValue();
6741    std::swap(N0, N1);
6742  }
6743
6744  EVT VT = N->getValueType(0);
6745  DebugLoc DL = N->getDebugLoc();
6746  SDValue N00 = N0->getOperand(0);
6747  SDValue N01 = N0->getOperand(1);
6748  return DAG.getNode(Opcode, DL, VT,
6749                     DAG.getNode(ISD::MUL, DL, VT, N00, N1),
6750                     DAG.getNode(ISD::MUL, DL, VT, N01, N1));
6751}
6752
6753static SDValue PerformMULCombine(SDNode *N,
6754                                 TargetLowering::DAGCombinerInfo &DCI,
6755                                 const ARMSubtarget *Subtarget) {
6756  SelectionDAG &DAG = DCI.DAG;
6757
6758  if (Subtarget->isThumb1Only())
6759    return SDValue();
6760
6761  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
6762    return SDValue();
6763
6764  EVT VT = N->getValueType(0);
6765  if (VT.is64BitVector() || VT.is128BitVector())
6766    return PerformVMULCombine(N, DCI, Subtarget);
6767  if (VT != MVT::i32)
6768    return SDValue();
6769
6770  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
6771  if (!C)
6772    return SDValue();
6773
6774  uint64_t MulAmt = C->getZExtValue();
6775  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
6776  ShiftAmt = ShiftAmt & (32 - 1);
6777  SDValue V = N->getOperand(0);
6778  DebugLoc DL = N->getDebugLoc();
6779
6780  SDValue Res;
6781  MulAmt >>= ShiftAmt;
6782  if (isPowerOf2_32(MulAmt - 1)) {
6783    // (mul x, 2^N + 1) => (add (shl x, N), x)
6784    Res = DAG.getNode(ISD::ADD, DL, VT,
6785                      V, DAG.getNode(ISD::SHL, DL, VT,
6786                                     V, DAG.getConstant(Log2_32(MulAmt-1),
6787                                                        MVT::i32)));
6788  } else if (isPowerOf2_32(MulAmt + 1)) {
6789    // (mul x, 2^N - 1) => (sub (shl x, N), x)
6790    Res = DAG.getNode(ISD::SUB, DL, VT,
6791                      DAG.getNode(ISD::SHL, DL, VT,
6792                                  V, DAG.getConstant(Log2_32(MulAmt+1),
6793                                                     MVT::i32)),
6794                                                     V);
6795  } else
6796    return SDValue();
6797
6798  if (ShiftAmt != 0)
6799    Res = DAG.getNode(ISD::SHL, DL, VT, Res,
6800                      DAG.getConstant(ShiftAmt, MVT::i32));
6801
6802  // Do not add new nodes to DAG combiner worklist.
6803  DCI.CombineTo(N, Res, false);
6804  return SDValue();
6805}
6806
6807static SDValue PerformANDCombine(SDNode *N,
6808                                TargetLowering::DAGCombinerInfo &DCI) {
6809
6810  // Attempt to use immediate-form VBIC
6811  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
6812  DebugLoc dl = N->getDebugLoc();
6813  EVT VT = N->getValueType(0);
6814  SelectionDAG &DAG = DCI.DAG;
6815
6816  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
6817    return SDValue();
6818
6819  APInt SplatBits, SplatUndef;
6820  unsigned SplatBitSize;
6821  bool HasAnyUndefs;
6822  if (BVN &&
6823      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6824    if (SplatBitSize <= 64) {
6825      EVT VbicVT;
6826      SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
6827                                      SplatUndef.getZExtValue(), SplatBitSize,
6828                                      DAG, VbicVT, VT.is128BitVector(),
6829                                      OtherModImm);
6830      if (Val.getNode()) {
6831        SDValue Input =
6832          DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
6833        SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
6834        return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
6835      }
6836    }
6837  }
6838
6839  return SDValue();
6840}
6841
6842/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
6843static SDValue PerformORCombine(SDNode *N,
6844                                TargetLowering::DAGCombinerInfo &DCI,
6845                                const ARMSubtarget *Subtarget) {
6846  // Attempt to use immediate-form VORR
6847  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
6848  DebugLoc dl = N->getDebugLoc();
6849  EVT VT = N->getValueType(0);
6850  SelectionDAG &DAG = DCI.DAG;
6851
6852  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
6853    return SDValue();
6854
6855  APInt SplatBits, SplatUndef;
6856  unsigned SplatBitSize;
6857  bool HasAnyUndefs;
6858  if (BVN && Subtarget->hasNEON() &&
6859      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6860    if (SplatBitSize <= 64) {
6861      EVT VorrVT;
6862      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
6863                                      SplatUndef.getZExtValue(), SplatBitSize,
6864                                      DAG, VorrVT, VT.is128BitVector(),
6865                                      OtherModImm);
6866      if (Val.getNode()) {
6867        SDValue Input =
6868          DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
6869        SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
6870        return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
6871      }
6872    }
6873  }
6874
6875  SDValue N0 = N->getOperand(0);
6876  if (N0.getOpcode() != ISD::AND)
6877    return SDValue();
6878  SDValue N1 = N->getOperand(1);
6879
6880  // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
6881  if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
6882      DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
6883    APInt SplatUndef;
6884    unsigned SplatBitSize;
6885    bool HasAnyUndefs;
6886
6887    BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
6888    APInt SplatBits0;
6889    if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
6890                                  HasAnyUndefs) && !HasAnyUndefs) {
6891      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
6892      APInt SplatBits1;
6893      if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
6894                                    HasAnyUndefs) && !HasAnyUndefs &&
6895          SplatBits0 == ~SplatBits1) {
6896        // Canonicalize the vector type to make instruction selection simpler.
6897        EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
6898        SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
6899                                     N0->getOperand(1), N0->getOperand(0),
6900                                     N1->getOperand(0));
6901        return DAG.getNode(ISD::BITCAST, dl, VT, Result);
6902      }
6903    }
6904  }
6905
6906  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
6907  // reasonable.
6908
6909  // BFI is only available on V6T2+
6910  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
6911    return SDValue();
6912
6913  DebugLoc DL = N->getDebugLoc();
6914  // 1) or (and A, mask), val => ARMbfi A, val, mask
6915  //      iff (val & mask) == val
6916  //
6917  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
6918  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
6919  //          && mask == ~mask2
6920  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
6921  //          && ~mask == mask2
6922  //  (i.e., copy a bitfield value into another bitfield of the same width)
6923
6924  if (VT != MVT::i32)
6925    return SDValue();
6926
6927  SDValue N00 = N0.getOperand(0);
6928
6929  // The value and the mask need to be constants so we can verify this is
6930  // actually a bitfield set. If the mask is 0xffff, we can do better
6931  // via a movt instruction, so don't use BFI in that case.
6932  SDValue MaskOp = N0.getOperand(1);
6933  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
6934  if (!MaskC)
6935    return SDValue();
6936  unsigned Mask = MaskC->getZExtValue();
6937  if (Mask == 0xffff)
6938    return SDValue();
6939  SDValue Res;
6940  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
6941  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
6942  if (N1C) {
6943    unsigned Val = N1C->getZExtValue();
6944    if ((Val & ~Mask) != Val)
6945      return SDValue();
6946
6947    if (ARM::isBitFieldInvertedMask(Mask)) {
6948      Val >>= CountTrailingZeros_32(~Mask);
6949
6950      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
6951                        DAG.getConstant(Val, MVT::i32),
6952                        DAG.getConstant(Mask, MVT::i32));
6953
6954      // Do not add new nodes to DAG combiner worklist.
6955      DCI.CombineTo(N, Res, false);
6956      return SDValue();
6957    }
6958  } else if (N1.getOpcode() == ISD::AND) {
6959    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
6960    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
6961    if (!N11C)
6962      return SDValue();
6963    unsigned Mask2 = N11C->getZExtValue();
6964
6965    // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
6966    // as is to match.
6967    if (ARM::isBitFieldInvertedMask(Mask) &&
6968        (Mask == ~Mask2)) {
6969      // The pack halfword instruction works better for masks that fit it,
6970      // so use that when it's available.
6971      if (Subtarget->hasT2ExtractPack() &&
6972          (Mask == 0xffff || Mask == 0xffff0000))
6973        return SDValue();
6974      // 2a
6975      unsigned amt = CountTrailingZeros_32(Mask2);
6976      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
6977                        DAG.getConstant(amt, MVT::i32));
6978      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
6979                        DAG.getConstant(Mask, MVT::i32));
6980      // Do not add new nodes to DAG combiner worklist.
6981      DCI.CombineTo(N, Res, false);
6982      return SDValue();
6983    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
6984               (~Mask == Mask2)) {
6985      // The pack halfword instruction works better for masks that fit it,
6986      // so use that when it's available.
6987      if (Subtarget->hasT2ExtractPack() &&
6988          (Mask2 == 0xffff || Mask2 == 0xffff0000))
6989        return SDValue();
6990      // 2b
6991      unsigned lsb = CountTrailingZeros_32(Mask);
6992      Res = DAG.getNode(ISD::SRL, DL, VT, N00,
6993                        DAG.getConstant(lsb, MVT::i32));
6994      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
6995                        DAG.getConstant(Mask2, MVT::i32));
6996      // Do not add new nodes to DAG combiner worklist.
6997      DCI.CombineTo(N, Res, false);
6998      return SDValue();
6999    }
7000  }
7001
7002  if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
7003      N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
7004      ARM::isBitFieldInvertedMask(~Mask)) {
7005    // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
7006    // where lsb(mask) == #shamt and masked bits of B are known zero.
7007    SDValue ShAmt = N00.getOperand(1);
7008    unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
7009    unsigned LSB = CountTrailingZeros_32(Mask);
7010    if (ShAmtC != LSB)
7011      return SDValue();
7012
7013    Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
7014                      DAG.getConstant(~Mask, MVT::i32));
7015
7016    // Do not add new nodes to DAG combiner worklist.
7017    DCI.CombineTo(N, Res, false);
7018  }
7019
7020  return SDValue();
7021}
7022
7023/// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
7024/// the bits being cleared by the AND are not demanded by the BFI.
7025static SDValue PerformBFICombine(SDNode *N,
7026                                 TargetLowering::DAGCombinerInfo &DCI) {
7027  SDValue N1 = N->getOperand(1);
7028  if (N1.getOpcode() == ISD::AND) {
7029    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
7030    if (!N11C)
7031      return SDValue();
7032    unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
7033    unsigned LSB = CountTrailingZeros_32(~InvMask);
7034    unsigned Width = (32 - CountLeadingZeros_32(~InvMask)) - LSB;
7035    unsigned Mask = (1 << Width)-1;
7036    unsigned Mask2 = N11C->getZExtValue();
7037    if ((Mask & (~Mask2)) == 0)
7038      return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
7039                             N->getOperand(0), N1.getOperand(0),
7040                             N->getOperand(2));
7041  }
7042  return SDValue();
7043}
7044
7045/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
7046/// ARMISD::VMOVRRD.
7047static SDValue PerformVMOVRRDCombine(SDNode *N,
7048                                     TargetLowering::DAGCombinerInfo &DCI) {
7049  // vmovrrd(vmovdrr x, y) -> x,y
7050  SDValue InDouble = N->getOperand(0);
7051  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
7052    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
7053
7054  // vmovrrd(load f64) -> (load i32), (load i32)
7055  SDNode *InNode = InDouble.getNode();
7056  if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
7057      InNode->getValueType(0) == MVT::f64 &&
7058      InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
7059      !cast<LoadSDNode>(InNode)->isVolatile()) {
7060    // TODO: Should this be done for non-FrameIndex operands?
7061    LoadSDNode *LD = cast<LoadSDNode>(InNode);
7062
7063    SelectionDAG &DAG = DCI.DAG;
7064    DebugLoc DL = LD->getDebugLoc();
7065    SDValue BasePtr = LD->getBasePtr();
7066    SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
7067                                 LD->getPointerInfo(), LD->isVolatile(),
7068                                 LD->isNonTemporal(), LD->getAlignment());
7069
7070    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
7071                                    DAG.getConstant(4, MVT::i32));
7072    SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
7073                                 LD->getPointerInfo(), LD->isVolatile(),
7074                                 LD->isNonTemporal(),
7075                                 std::min(4U, LD->getAlignment() / 2));
7076
7077    DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
7078    SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
7079    DCI.RemoveFromWorklist(LD);
7080    DAG.DeleteNode(LD);
7081    return Result;
7082  }
7083
7084  return SDValue();
7085}
7086
7087/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
7088/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
7089static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
7090  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
7091  SDValue Op0 = N->getOperand(0);
7092  SDValue Op1 = N->getOperand(1);
7093  if (Op0.getOpcode() == ISD::BITCAST)
7094    Op0 = Op0.getOperand(0);
7095  if (Op1.getOpcode() == ISD::BITCAST)
7096    Op1 = Op1.getOperand(0);
7097  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
7098      Op0.getNode() == Op1.getNode() &&
7099      Op0.getResNo() == 0 && Op1.getResNo() == 1)
7100    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
7101                       N->getValueType(0), Op0.getOperand(0));
7102  return SDValue();
7103}
7104
7105/// PerformSTORECombine - Target-specific dag combine xforms for
7106/// ISD::STORE.
7107static SDValue PerformSTORECombine(SDNode *N,
7108                                   TargetLowering::DAGCombinerInfo &DCI) {
7109  // Bitcast an i64 store extracted from a vector to f64.
7110  // Otherwise, the i64 value will be legalized to a pair of i32 values.
7111  StoreSDNode *St = cast<StoreSDNode>(N);
7112  SDValue StVal = St->getValue();
7113  if (!ISD::isNormalStore(St) || St->isVolatile())
7114    return SDValue();
7115
7116  if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
7117      StVal.getNode()->hasOneUse() && !St->isVolatile()) {
7118    SelectionDAG  &DAG = DCI.DAG;
7119    DebugLoc DL = St->getDebugLoc();
7120    SDValue BasePtr = St->getBasePtr();
7121    SDValue NewST1 = DAG.getStore(St->getChain(), DL,
7122                                  StVal.getNode()->getOperand(0), BasePtr,
7123                                  St->getPointerInfo(), St->isVolatile(),
7124                                  St->isNonTemporal(), St->getAlignment());
7125
7126    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
7127                                    DAG.getConstant(4, MVT::i32));
7128    return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1),
7129                        OffsetPtr, St->getPointerInfo(), St->isVolatile(),
7130                        St->isNonTemporal(),
7131                        std::min(4U, St->getAlignment() / 2));
7132  }
7133
7134  if (StVal.getValueType() != MVT::i64 ||
7135      StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7136    return SDValue();
7137
7138  SelectionDAG &DAG = DCI.DAG;
7139  DebugLoc dl = StVal.getDebugLoc();
7140  SDValue IntVec = StVal.getOperand(0);
7141  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
7142                                 IntVec.getValueType().getVectorNumElements());
7143  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
7144  SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7145                               Vec, StVal.getOperand(1));
7146  dl = N->getDebugLoc();
7147  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
7148  // Make the DAGCombiner fold the bitcasts.
7149  DCI.AddToWorklist(Vec.getNode());
7150  DCI.AddToWorklist(ExtElt.getNode());
7151  DCI.AddToWorklist(V.getNode());
7152  return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
7153                      St->getPointerInfo(), St->isVolatile(),
7154                      St->isNonTemporal(), St->getAlignment(),
7155                      St->getTBAAInfo());
7156}
7157
7158/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
7159/// are normal, non-volatile loads.  If so, it is profitable to bitcast an
7160/// i64 vector to have f64 elements, since the value can then be loaded
7161/// directly into a VFP register.
7162static bool hasNormalLoadOperand(SDNode *N) {
7163  unsigned NumElts = N->getValueType(0).getVectorNumElements();
7164  for (unsigned i = 0; i < NumElts; ++i) {
7165    SDNode *Elt = N->getOperand(i).getNode();
7166    if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
7167      return true;
7168  }
7169  return false;
7170}
7171
7172/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
7173/// ISD::BUILD_VECTOR.
7174static SDValue PerformBUILD_VECTORCombine(SDNode *N,
7175                                          TargetLowering::DAGCombinerInfo &DCI){
7176  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
7177  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
7178  // into a pair of GPRs, which is fine when the value is used as a scalar,
7179  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
7180  SelectionDAG &DAG = DCI.DAG;
7181  if (N->getNumOperands() == 2) {
7182    SDValue RV = PerformVMOVDRRCombine(N, DAG);
7183    if (RV.getNode())
7184      return RV;
7185  }
7186
7187  // Load i64 elements as f64 values so that type legalization does not split
7188  // them up into i32 values.
7189  EVT VT = N->getValueType(0);
7190  if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
7191    return SDValue();
7192  DebugLoc dl = N->getDebugLoc();
7193  SmallVector<SDValue, 8> Ops;
7194  unsigned NumElts = VT.getVectorNumElements();
7195  for (unsigned i = 0; i < NumElts; ++i) {
7196    SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
7197    Ops.push_back(V);
7198    // Make the DAGCombiner fold the bitcast.
7199    DCI.AddToWorklist(V.getNode());
7200  }
7201  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
7202  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
7203  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
7204}
7205
7206/// PerformInsertEltCombine - Target-specific dag combine xforms for
7207/// ISD::INSERT_VECTOR_ELT.
7208static SDValue PerformInsertEltCombine(SDNode *N,
7209                                       TargetLowering::DAGCombinerInfo &DCI) {
7210  // Bitcast an i64 load inserted into a vector to f64.
7211  // Otherwise, the i64 value will be legalized to a pair of i32 values.
7212  EVT VT = N->getValueType(0);
7213  SDNode *Elt = N->getOperand(1).getNode();
7214  if (VT.getVectorElementType() != MVT::i64 ||
7215      !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
7216    return SDValue();
7217
7218  SelectionDAG &DAG = DCI.DAG;
7219  DebugLoc dl = N->getDebugLoc();
7220  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
7221                                 VT.getVectorNumElements());
7222  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
7223  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
7224  // Make the DAGCombiner fold the bitcasts.
7225  DCI.AddToWorklist(Vec.getNode());
7226  DCI.AddToWorklist(V.getNode());
7227  SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
7228                               Vec, V, N->getOperand(2));
7229  return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
7230}
7231
7232/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
7233/// ISD::VECTOR_SHUFFLE.
7234static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
7235  // The LLVM shufflevector instruction does not require the shuffle mask
7236  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
7237  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
7238  // operands do not match the mask length, they are extended by concatenating
7239  // them with undef vectors.  That is probably the right thing for other
7240  // targets, but for NEON it is better to concatenate two double-register
7241  // size vector operands into a single quad-register size vector.  Do that
7242  // transformation here:
7243  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
7244  //   shuffle(concat(v1, v2), undef)
7245  SDValue Op0 = N->getOperand(0);
7246  SDValue Op1 = N->getOperand(1);
7247  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
7248      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
7249      Op0.getNumOperands() != 2 ||
7250      Op1.getNumOperands() != 2)
7251    return SDValue();
7252  SDValue Concat0Op1 = Op0.getOperand(1);
7253  SDValue Concat1Op1 = Op1.getOperand(1);
7254  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
7255      Concat1Op1.getOpcode() != ISD::UNDEF)
7256    return SDValue();
7257  // Skip the transformation if any of the types are illegal.
7258  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7259  EVT VT = N->getValueType(0);
7260  if (!TLI.isTypeLegal(VT) ||
7261      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
7262      !TLI.isTypeLegal(Concat1Op1.getValueType()))
7263    return SDValue();
7264
7265  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
7266                                  Op0.getOperand(0), Op1.getOperand(0));
7267  // Translate the shuffle mask.
7268  SmallVector<int, 16> NewMask;
7269  unsigned NumElts = VT.getVectorNumElements();
7270  unsigned HalfElts = NumElts/2;
7271  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
7272  for (unsigned n = 0; n < NumElts; ++n) {
7273    int MaskElt = SVN->getMaskElt(n);
7274    int NewElt = -1;
7275    if (MaskElt < (int)HalfElts)
7276      NewElt = MaskElt;
7277    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
7278      NewElt = HalfElts + MaskElt - NumElts;
7279    NewMask.push_back(NewElt);
7280  }
7281  return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
7282                              DAG.getUNDEF(VT), NewMask.data());
7283}
7284
7285/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
7286/// NEON load/store intrinsics to merge base address updates.
7287static SDValue CombineBaseUpdate(SDNode *N,
7288                                 TargetLowering::DAGCombinerInfo &DCI) {
7289  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
7290    return SDValue();
7291
7292  SelectionDAG &DAG = DCI.DAG;
7293  bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
7294                      N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
7295  unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
7296  SDValue Addr = N->getOperand(AddrOpIdx);
7297
7298  // Search for a use of the address operand that is an increment.
7299  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
7300         UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
7301    SDNode *User = *UI;
7302    if (User->getOpcode() != ISD::ADD ||
7303        UI.getUse().getResNo() != Addr.getResNo())
7304      continue;
7305
7306    // Check that the add is independent of the load/store.  Otherwise, folding
7307    // it would create a cycle.
7308    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
7309      continue;
7310
7311    // Find the new opcode for the updating load/store.
7312    bool isLoad = true;
7313    bool isLaneOp = false;
7314    unsigned NewOpc = 0;
7315    unsigned NumVecs = 0;
7316    if (isIntrinsic) {
7317      unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
7318      switch (IntNo) {
7319      default: assert(0 && "unexpected intrinsic for Neon base update");
7320      case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
7321        NumVecs = 1; break;
7322      case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
7323        NumVecs = 2; break;
7324      case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
7325        NumVecs = 3; break;
7326      case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
7327        NumVecs = 4; break;
7328      case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
7329        NumVecs = 2; isLaneOp = true; break;
7330      case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
7331        NumVecs = 3; isLaneOp = true; break;
7332      case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
7333        NumVecs = 4; isLaneOp = true; break;
7334      case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
7335        NumVecs = 1; isLoad = false; break;
7336      case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
7337        NumVecs = 2; isLoad = false; break;
7338      case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
7339        NumVecs = 3; isLoad = false; break;
7340      case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
7341        NumVecs = 4; isLoad = false; break;
7342      case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
7343        NumVecs = 2; isLoad = false; isLaneOp = true; break;
7344      case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
7345        NumVecs = 3; isLoad = false; isLaneOp = true; break;
7346      case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
7347        NumVecs = 4; isLoad = false; isLaneOp = true; break;
7348      }
7349    } else {
7350      isLaneOp = true;
7351      switch (N->getOpcode()) {
7352      default: assert(0 && "unexpected opcode for Neon base update");
7353      case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
7354      case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
7355      case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
7356      }
7357    }
7358
7359    // Find the size of memory referenced by the load/store.
7360    EVT VecTy;
7361    if (isLoad)
7362      VecTy = N->getValueType(0);
7363    else
7364      VecTy = N->getOperand(AddrOpIdx+1).getValueType();
7365    unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
7366    if (isLaneOp)
7367      NumBytes /= VecTy.getVectorNumElements();
7368
7369    // If the increment is a constant, it must match the memory ref size.
7370    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
7371    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
7372      uint64_t IncVal = CInc->getZExtValue();
7373      if (IncVal != NumBytes)
7374        continue;
7375    } else if (NumBytes >= 3 * 16) {
7376      // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
7377      // separate instructions that make it harder to use a non-constant update.
7378      continue;
7379    }
7380
7381    // Create the new updating load/store node.
7382    EVT Tys[6];
7383    unsigned NumResultVecs = (isLoad ? NumVecs : 0);
7384    unsigned n;
7385    for (n = 0; n < NumResultVecs; ++n)
7386      Tys[n] = VecTy;
7387    Tys[n++] = MVT::i32;
7388    Tys[n] = MVT::Other;
7389    SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
7390    SmallVector<SDValue, 8> Ops;
7391    Ops.push_back(N->getOperand(0)); // incoming chain
7392    Ops.push_back(N->getOperand(AddrOpIdx));
7393    Ops.push_back(Inc);
7394    for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
7395      Ops.push_back(N->getOperand(i));
7396    }
7397    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
7398    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys,
7399                                           Ops.data(), Ops.size(),
7400                                           MemInt->getMemoryVT(),
7401                                           MemInt->getMemOperand());
7402
7403    // Update the uses.
7404    std::vector<SDValue> NewResults;
7405    for (unsigned i = 0; i < NumResultVecs; ++i) {
7406      NewResults.push_back(SDValue(UpdN.getNode(), i));
7407    }
7408    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
7409    DCI.CombineTo(N, NewResults);
7410    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
7411
7412    break;
7413  }
7414  return SDValue();
7415}
7416
7417/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
7418/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
7419/// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
7420/// return true.
7421static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
7422  SelectionDAG &DAG = DCI.DAG;
7423  EVT VT = N->getValueType(0);
7424  // vldN-dup instructions only support 64-bit vectors for N > 1.
7425  if (!VT.is64BitVector())
7426    return false;
7427
7428  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
7429  SDNode *VLD = N->getOperand(0).getNode();
7430  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
7431    return false;
7432  unsigned NumVecs = 0;
7433  unsigned NewOpc = 0;
7434  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
7435  if (IntNo == Intrinsic::arm_neon_vld2lane) {
7436    NumVecs = 2;
7437    NewOpc = ARMISD::VLD2DUP;
7438  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
7439    NumVecs = 3;
7440    NewOpc = ARMISD::VLD3DUP;
7441  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
7442    NumVecs = 4;
7443    NewOpc = ARMISD::VLD4DUP;
7444  } else {
7445    return false;
7446  }
7447
7448  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
7449  // numbers match the load.
7450  unsigned VLDLaneNo =
7451    cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
7452  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
7453       UI != UE; ++UI) {
7454    // Ignore uses of the chain result.
7455    if (UI.getUse().getResNo() == NumVecs)
7456      continue;
7457    SDNode *User = *UI;
7458    if (User->getOpcode() != ARMISD::VDUPLANE ||
7459        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
7460      return false;
7461  }
7462
7463  // Create the vldN-dup node.
7464  EVT Tys[5];
7465  unsigned n;
7466  for (n = 0; n < NumVecs; ++n)
7467    Tys[n] = VT;
7468  Tys[n] = MVT::Other;
7469  SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
7470  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
7471  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
7472  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
7473                                           Ops, 2, VLDMemInt->getMemoryVT(),
7474                                           VLDMemInt->getMemOperand());
7475
7476  // Update the uses.
7477  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
7478       UI != UE; ++UI) {
7479    unsigned ResNo = UI.getUse().getResNo();
7480    // Ignore uses of the chain result.
7481    if (ResNo == NumVecs)
7482      continue;
7483    SDNode *User = *UI;
7484    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
7485  }
7486
7487  // Now the vldN-lane intrinsic is dead except for its chain result.
7488  // Update uses of the chain.
7489  std::vector<SDValue> VLDDupResults;
7490  for (unsigned n = 0; n < NumVecs; ++n)
7491    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
7492  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
7493  DCI.CombineTo(VLD, VLDDupResults);
7494
7495  return true;
7496}
7497
7498/// PerformVDUPLANECombine - Target-specific dag combine xforms for
7499/// ARMISD::VDUPLANE.
7500static SDValue PerformVDUPLANECombine(SDNode *N,
7501                                      TargetLowering::DAGCombinerInfo &DCI) {
7502  SDValue Op = N->getOperand(0);
7503
7504  // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
7505  // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
7506  if (CombineVLDDUP(N, DCI))
7507    return SDValue(N, 0);
7508
7509  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
7510  // redundant.  Ignore bit_converts for now; element sizes are checked below.
7511  while (Op.getOpcode() == ISD::BITCAST)
7512    Op = Op.getOperand(0);
7513  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
7514    return SDValue();
7515
7516  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
7517  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
7518  // The canonical VMOV for a zero vector uses a 32-bit element size.
7519  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7520  unsigned EltBits;
7521  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
7522    EltSize = 8;
7523  EVT VT = N->getValueType(0);
7524  if (EltSize > VT.getVectorElementType().getSizeInBits())
7525    return SDValue();
7526
7527  return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
7528}
7529
7530// isConstVecPow2 - Return true if each vector element is a power of 2, all
7531// elements are the same constant, C, and Log2(C) ranges from 1 to 32.
7532static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
7533{
7534  integerPart cN;
7535  integerPart c0 = 0;
7536  for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
7537       I != E; I++) {
7538    ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
7539    if (!C)
7540      return false;
7541
7542    bool isExact;
7543    APFloat APF = C->getValueAPF();
7544    if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
7545        != APFloat::opOK || !isExact)
7546      return false;
7547
7548    c0 = (I == 0) ? cN : c0;
7549    if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
7550      return false;
7551  }
7552  C = c0;
7553  return true;
7554}
7555
7556/// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
7557/// can replace combinations of VMUL and VCVT (floating-point to integer)
7558/// when the VMUL has a constant operand that is a power of 2.
7559///
7560/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
7561///  vmul.f32        d16, d17, d16
7562///  vcvt.s32.f32    d16, d16
7563/// becomes:
7564///  vcvt.s32.f32    d16, d16, #3
7565static SDValue PerformVCVTCombine(SDNode *N,
7566                                  TargetLowering::DAGCombinerInfo &DCI,
7567                                  const ARMSubtarget *Subtarget) {
7568  SelectionDAG &DAG = DCI.DAG;
7569  SDValue Op = N->getOperand(0);
7570
7571  if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
7572      Op.getOpcode() != ISD::FMUL)
7573    return SDValue();
7574
7575  uint64_t C;
7576  SDValue N0 = Op->getOperand(0);
7577  SDValue ConstVec = Op->getOperand(1);
7578  bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
7579
7580  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
7581      !isConstVecPow2(ConstVec, isSigned, C))
7582    return SDValue();
7583
7584  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
7585    Intrinsic::arm_neon_vcvtfp2fxu;
7586  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
7587                     N->getValueType(0),
7588                     DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
7589                     DAG.getConstant(Log2_64(C), MVT::i32));
7590}
7591
7592/// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
7593/// can replace combinations of VCVT (integer to floating-point) and VDIV
7594/// when the VDIV has a constant operand that is a power of 2.
7595///
7596/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
7597///  vcvt.f32.s32    d16, d16
7598///  vdiv.f32        d16, d17, d16
7599/// becomes:
7600///  vcvt.f32.s32    d16, d16, #3
7601static SDValue PerformVDIVCombine(SDNode *N,
7602                                  TargetLowering::DAGCombinerInfo &DCI,
7603                                  const ARMSubtarget *Subtarget) {
7604  SelectionDAG &DAG = DCI.DAG;
7605  SDValue Op = N->getOperand(0);
7606  unsigned OpOpcode = Op.getNode()->getOpcode();
7607
7608  if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
7609      (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
7610    return SDValue();
7611
7612  uint64_t C;
7613  SDValue ConstVec = N->getOperand(1);
7614  bool isSigned = OpOpcode == ISD::SINT_TO_FP;
7615
7616  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
7617      !isConstVecPow2(ConstVec, isSigned, C))
7618    return SDValue();
7619
7620  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
7621    Intrinsic::arm_neon_vcvtfxu2fp;
7622  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
7623                     Op.getValueType(),
7624                     DAG.getConstant(IntrinsicOpcode, MVT::i32),
7625                     Op.getOperand(0), DAG.getConstant(Log2_64(C), MVT::i32));
7626}
7627
7628/// Getvshiftimm - Check if this is a valid build_vector for the immediate
7629/// operand of a vector shift operation, where all the elements of the
7630/// build_vector must have the same constant integer value.
7631static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
7632  // Ignore bit_converts.
7633  while (Op.getOpcode() == ISD::BITCAST)
7634    Op = Op.getOperand(0);
7635  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7636  APInt SplatBits, SplatUndef;
7637  unsigned SplatBitSize;
7638  bool HasAnyUndefs;
7639  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
7640                                      HasAnyUndefs, ElementBits) ||
7641      SplatBitSize > ElementBits)
7642    return false;
7643  Cnt = SplatBits.getSExtValue();
7644  return true;
7645}
7646
7647/// isVShiftLImm - Check if this is a valid build_vector for the immediate
7648/// operand of a vector shift left operation.  That value must be in the range:
7649///   0 <= Value < ElementBits for a left shift; or
7650///   0 <= Value <= ElementBits for a long left shift.
7651static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
7652  assert(VT.isVector() && "vector shift count is not a vector type");
7653  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
7654  if (! getVShiftImm(Op, ElementBits, Cnt))
7655    return false;
7656  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
7657}
7658
7659/// isVShiftRImm - Check if this is a valid build_vector for the immediate
7660/// operand of a vector shift right operation.  For a shift opcode, the value
7661/// is positive, but for an intrinsic the value count must be negative. The
7662/// absolute value must be in the range:
7663///   1 <= |Value| <= ElementBits for a right shift; or
7664///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
7665static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
7666                         int64_t &Cnt) {
7667  assert(VT.isVector() && "vector shift count is not a vector type");
7668  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
7669  if (! getVShiftImm(Op, ElementBits, Cnt))
7670    return false;
7671  if (isIntrinsic)
7672    Cnt = -Cnt;
7673  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
7674}
7675
7676/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
7677static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
7678  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
7679  switch (IntNo) {
7680  default:
7681    // Don't do anything for most intrinsics.
7682    break;
7683
7684  // Vector shifts: check for immediate versions and lower them.
7685  // Note: This is done during DAG combining instead of DAG legalizing because
7686  // the build_vectors for 64-bit vector element shift counts are generally
7687  // not legal, and it is hard to see their values after they get legalized to
7688  // loads from a constant pool.
7689  case Intrinsic::arm_neon_vshifts:
7690  case Intrinsic::arm_neon_vshiftu:
7691  case Intrinsic::arm_neon_vshiftls:
7692  case Intrinsic::arm_neon_vshiftlu:
7693  case Intrinsic::arm_neon_vshiftn:
7694  case Intrinsic::arm_neon_vrshifts:
7695  case Intrinsic::arm_neon_vrshiftu:
7696  case Intrinsic::arm_neon_vrshiftn:
7697  case Intrinsic::arm_neon_vqshifts:
7698  case Intrinsic::arm_neon_vqshiftu:
7699  case Intrinsic::arm_neon_vqshiftsu:
7700  case Intrinsic::arm_neon_vqshiftns:
7701  case Intrinsic::arm_neon_vqshiftnu:
7702  case Intrinsic::arm_neon_vqshiftnsu:
7703  case Intrinsic::arm_neon_vqrshiftns:
7704  case Intrinsic::arm_neon_vqrshiftnu:
7705  case Intrinsic::arm_neon_vqrshiftnsu: {
7706    EVT VT = N->getOperand(1).getValueType();
7707    int64_t Cnt;
7708    unsigned VShiftOpc = 0;
7709
7710    switch (IntNo) {
7711    case Intrinsic::arm_neon_vshifts:
7712    case Intrinsic::arm_neon_vshiftu:
7713      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
7714        VShiftOpc = ARMISD::VSHL;
7715        break;
7716      }
7717      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
7718        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
7719                     ARMISD::VSHRs : ARMISD::VSHRu);
7720        break;
7721      }
7722      return SDValue();
7723
7724    case Intrinsic::arm_neon_vshiftls:
7725    case Intrinsic::arm_neon_vshiftlu:
7726      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
7727        break;
7728      llvm_unreachable("invalid shift count for vshll intrinsic");
7729
7730    case Intrinsic::arm_neon_vrshifts:
7731    case Intrinsic::arm_neon_vrshiftu:
7732      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
7733        break;
7734      return SDValue();
7735
7736    case Intrinsic::arm_neon_vqshifts:
7737    case Intrinsic::arm_neon_vqshiftu:
7738      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
7739        break;
7740      return SDValue();
7741
7742    case Intrinsic::arm_neon_vqshiftsu:
7743      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
7744        break;
7745      llvm_unreachable("invalid shift count for vqshlu intrinsic");
7746
7747    case Intrinsic::arm_neon_vshiftn:
7748    case Intrinsic::arm_neon_vrshiftn:
7749    case Intrinsic::arm_neon_vqshiftns:
7750    case Intrinsic::arm_neon_vqshiftnu:
7751    case Intrinsic::arm_neon_vqshiftnsu:
7752    case Intrinsic::arm_neon_vqrshiftns:
7753    case Intrinsic::arm_neon_vqrshiftnu:
7754    case Intrinsic::arm_neon_vqrshiftnsu:
7755      // Narrowing shifts require an immediate right shift.
7756      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
7757        break;
7758      llvm_unreachable("invalid shift count for narrowing vector shift "
7759                       "intrinsic");
7760
7761    default:
7762      llvm_unreachable("unhandled vector shift");
7763    }
7764
7765    switch (IntNo) {
7766    case Intrinsic::arm_neon_vshifts:
7767    case Intrinsic::arm_neon_vshiftu:
7768      // Opcode already set above.
7769      break;
7770    case Intrinsic::arm_neon_vshiftls:
7771    case Intrinsic::arm_neon_vshiftlu:
7772      if (Cnt == VT.getVectorElementType().getSizeInBits())
7773        VShiftOpc = ARMISD::VSHLLi;
7774      else
7775        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
7776                     ARMISD::VSHLLs : ARMISD::VSHLLu);
7777      break;
7778    case Intrinsic::arm_neon_vshiftn:
7779      VShiftOpc = ARMISD::VSHRN; break;
7780    case Intrinsic::arm_neon_vrshifts:
7781      VShiftOpc = ARMISD::VRSHRs; break;
7782    case Intrinsic::arm_neon_vrshiftu:
7783      VShiftOpc = ARMISD::VRSHRu; break;
7784    case Intrinsic::arm_neon_vrshiftn:
7785      VShiftOpc = ARMISD::VRSHRN; break;
7786    case Intrinsic::arm_neon_vqshifts:
7787      VShiftOpc = ARMISD::VQSHLs; break;
7788    case Intrinsic::arm_neon_vqshiftu:
7789      VShiftOpc = ARMISD::VQSHLu; break;
7790    case Intrinsic::arm_neon_vqshiftsu:
7791      VShiftOpc = ARMISD::VQSHLsu; break;
7792    case Intrinsic::arm_neon_vqshiftns:
7793      VShiftOpc = ARMISD::VQSHRNs; break;
7794    case Intrinsic::arm_neon_vqshiftnu:
7795      VShiftOpc = ARMISD::VQSHRNu; break;
7796    case Intrinsic::arm_neon_vqshiftnsu:
7797      VShiftOpc = ARMISD::VQSHRNsu; break;
7798    case Intrinsic::arm_neon_vqrshiftns:
7799      VShiftOpc = ARMISD::VQRSHRNs; break;
7800    case Intrinsic::arm_neon_vqrshiftnu:
7801      VShiftOpc = ARMISD::VQRSHRNu; break;
7802    case Intrinsic::arm_neon_vqrshiftnsu:
7803      VShiftOpc = ARMISD::VQRSHRNsu; break;
7804    }
7805
7806    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
7807                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
7808  }
7809
7810  case Intrinsic::arm_neon_vshiftins: {
7811    EVT VT = N->getOperand(1).getValueType();
7812    int64_t Cnt;
7813    unsigned VShiftOpc = 0;
7814
7815    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
7816      VShiftOpc = ARMISD::VSLI;
7817    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
7818      VShiftOpc = ARMISD::VSRI;
7819    else {
7820      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
7821    }
7822
7823    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
7824                       N->getOperand(1), N->getOperand(2),
7825                       DAG.getConstant(Cnt, MVT::i32));
7826  }
7827
7828  case Intrinsic::arm_neon_vqrshifts:
7829  case Intrinsic::arm_neon_vqrshiftu:
7830    // No immediate versions of these to check for.
7831    break;
7832  }
7833
7834  return SDValue();
7835}
7836
7837/// PerformShiftCombine - Checks for immediate versions of vector shifts and
7838/// lowers them.  As with the vector shift intrinsics, this is done during DAG
7839/// combining instead of DAG legalizing because the build_vectors for 64-bit
7840/// vector element shift counts are generally not legal, and it is hard to see
7841/// their values after they get legalized to loads from a constant pool.
7842static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
7843                                   const ARMSubtarget *ST) {
7844  EVT VT = N->getValueType(0);
7845
7846  // Nothing to be done for scalar shifts.
7847  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7848  if (!VT.isVector() || !TLI.isTypeLegal(VT))
7849    return SDValue();
7850
7851  assert(ST->hasNEON() && "unexpected vector shift");
7852  int64_t Cnt;
7853
7854  switch (N->getOpcode()) {
7855  default: llvm_unreachable("unexpected shift opcode");
7856
7857  case ISD::SHL:
7858    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
7859      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
7860                         DAG.getConstant(Cnt, MVT::i32));
7861    break;
7862
7863  case ISD::SRA:
7864  case ISD::SRL:
7865    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
7866      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
7867                            ARMISD::VSHRs : ARMISD::VSHRu);
7868      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
7869                         DAG.getConstant(Cnt, MVT::i32));
7870    }
7871  }
7872  return SDValue();
7873}
7874
7875/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
7876/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
7877static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
7878                                    const ARMSubtarget *ST) {
7879  SDValue N0 = N->getOperand(0);
7880
7881  // Check for sign- and zero-extensions of vector extract operations of 8-
7882  // and 16-bit vector elements.  NEON supports these directly.  They are
7883  // handled during DAG combining because type legalization will promote them
7884  // to 32-bit types and it is messy to recognize the operations after that.
7885  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7886    SDValue Vec = N0.getOperand(0);
7887    SDValue Lane = N0.getOperand(1);
7888    EVT VT = N->getValueType(0);
7889    EVT EltVT = N0.getValueType();
7890    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7891
7892    if (VT == MVT::i32 &&
7893        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
7894        TLI.isTypeLegal(Vec.getValueType()) &&
7895        isa<ConstantSDNode>(Lane)) {
7896
7897      unsigned Opc = 0;
7898      switch (N->getOpcode()) {
7899      default: llvm_unreachable("unexpected opcode");
7900      case ISD::SIGN_EXTEND:
7901        Opc = ARMISD::VGETLANEs;
7902        break;
7903      case ISD::ZERO_EXTEND:
7904      case ISD::ANY_EXTEND:
7905        Opc = ARMISD::VGETLANEu;
7906        break;
7907      }
7908      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
7909    }
7910  }
7911
7912  return SDValue();
7913}
7914
7915/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
7916/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
7917static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
7918                                       const ARMSubtarget *ST) {
7919  // If the target supports NEON, try to use vmax/vmin instructions for f32
7920  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
7921  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
7922  // a NaN; only do the transformation when it matches that behavior.
7923
7924  // For now only do this when using NEON for FP operations; if using VFP, it
7925  // is not obvious that the benefit outweighs the cost of switching to the
7926  // NEON pipeline.
7927  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
7928      N->getValueType(0) != MVT::f32)
7929    return SDValue();
7930
7931  SDValue CondLHS = N->getOperand(0);
7932  SDValue CondRHS = N->getOperand(1);
7933  SDValue LHS = N->getOperand(2);
7934  SDValue RHS = N->getOperand(3);
7935  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
7936
7937  unsigned Opcode = 0;
7938  bool IsReversed;
7939  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
7940    IsReversed = false; // x CC y ? x : y
7941  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
7942    IsReversed = true ; // x CC y ? y : x
7943  } else {
7944    return SDValue();
7945  }
7946
7947  bool IsUnordered;
7948  switch (CC) {
7949  default: break;
7950  case ISD::SETOLT:
7951  case ISD::SETOLE:
7952  case ISD::SETLT:
7953  case ISD::SETLE:
7954  case ISD::SETULT:
7955  case ISD::SETULE:
7956    // If LHS is NaN, an ordered comparison will be false and the result will
7957    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
7958    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
7959    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
7960    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
7961      break;
7962    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
7963    // will return -0, so vmin can only be used for unsafe math or if one of
7964    // the operands is known to be nonzero.
7965    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
7966        !UnsafeFPMath &&
7967        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
7968      break;
7969    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
7970    break;
7971
7972  case ISD::SETOGT:
7973  case ISD::SETOGE:
7974  case ISD::SETGT:
7975  case ISD::SETGE:
7976  case ISD::SETUGT:
7977  case ISD::SETUGE:
7978    // If LHS is NaN, an ordered comparison will be false and the result will
7979    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
7980    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
7981    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
7982    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
7983      break;
7984    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
7985    // will return +0, so vmax can only be used for unsafe math or if one of
7986    // the operands is known to be nonzero.
7987    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
7988        !UnsafeFPMath &&
7989        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
7990      break;
7991    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
7992    break;
7993  }
7994
7995  if (!Opcode)
7996    return SDValue();
7997  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
7998}
7999
8000/// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
8001SDValue
8002ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
8003  SDValue Cmp = N->getOperand(4);
8004  if (Cmp.getOpcode() != ARMISD::CMPZ)
8005    // Only looking at EQ and NE cases.
8006    return SDValue();
8007
8008  EVT VT = N->getValueType(0);
8009  DebugLoc dl = N->getDebugLoc();
8010  SDValue LHS = Cmp.getOperand(0);
8011  SDValue RHS = Cmp.getOperand(1);
8012  SDValue FalseVal = N->getOperand(0);
8013  SDValue TrueVal = N->getOperand(1);
8014  SDValue ARMcc = N->getOperand(2);
8015  ARMCC::CondCodes CC =
8016    (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
8017
8018  // Simplify
8019  //   mov     r1, r0
8020  //   cmp     r1, x
8021  //   mov     r0, y
8022  //   moveq   r0, x
8023  // to
8024  //   cmp     r0, x
8025  //   movne   r0, y
8026  //
8027  //   mov     r1, r0
8028  //   cmp     r1, x
8029  //   mov     r0, x
8030  //   movne   r0, y
8031  // to
8032  //   cmp     r0, x
8033  //   movne   r0, y
8034  /// FIXME: Turn this into a target neutral optimization?
8035  SDValue Res;
8036  if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
8037    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
8038                      N->getOperand(3), Cmp);
8039  } else if (CC == ARMCC::EQ && TrueVal == RHS) {
8040    SDValue ARMcc;
8041    SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
8042    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
8043                      N->getOperand(3), NewCmp);
8044  }
8045
8046  if (Res.getNode()) {
8047    APInt KnownZero, KnownOne;
8048    APInt Mask = APInt::getAllOnesValue(VT.getScalarType().getSizeInBits());
8049    DAG.ComputeMaskedBits(SDValue(N,0), Mask, KnownZero, KnownOne);
8050    // Capture demanded bits information that would be otherwise lost.
8051    if (KnownZero == 0xfffffffe)
8052      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8053                        DAG.getValueType(MVT::i1));
8054    else if (KnownZero == 0xffffff00)
8055      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8056                        DAG.getValueType(MVT::i8));
8057    else if (KnownZero == 0xffff0000)
8058      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8059                        DAG.getValueType(MVT::i16));
8060  }
8061
8062  return Res;
8063}
8064
8065SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
8066                                             DAGCombinerInfo &DCI) const {
8067  switch (N->getOpcode()) {
8068  default: break;
8069  case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
8070  case ISD::SUB:        return PerformSUBCombine(N, DCI);
8071  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
8072  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
8073  case ISD::AND:        return PerformANDCombine(N, DCI);
8074  case ARMISD::BFI:     return PerformBFICombine(N, DCI);
8075  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
8076  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
8077  case ISD::STORE:      return PerformSTORECombine(N, DCI);
8078  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
8079  case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
8080  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
8081  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
8082  case ISD::FP_TO_SINT:
8083  case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
8084  case ISD::FDIV:       return PerformVDIVCombine(N, DCI, Subtarget);
8085  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
8086  case ISD::SHL:
8087  case ISD::SRA:
8088  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
8089  case ISD::SIGN_EXTEND:
8090  case ISD::ZERO_EXTEND:
8091  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
8092  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
8093  case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
8094  case ARMISD::VLD2DUP:
8095  case ARMISD::VLD3DUP:
8096  case ARMISD::VLD4DUP:
8097    return CombineBaseUpdate(N, DCI);
8098  case ISD::INTRINSIC_VOID:
8099  case ISD::INTRINSIC_W_CHAIN:
8100    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
8101    case Intrinsic::arm_neon_vld1:
8102    case Intrinsic::arm_neon_vld2:
8103    case Intrinsic::arm_neon_vld3:
8104    case Intrinsic::arm_neon_vld4:
8105    case Intrinsic::arm_neon_vld2lane:
8106    case Intrinsic::arm_neon_vld3lane:
8107    case Intrinsic::arm_neon_vld4lane:
8108    case Intrinsic::arm_neon_vst1:
8109    case Intrinsic::arm_neon_vst2:
8110    case Intrinsic::arm_neon_vst3:
8111    case Intrinsic::arm_neon_vst4:
8112    case Intrinsic::arm_neon_vst2lane:
8113    case Intrinsic::arm_neon_vst3lane:
8114    case Intrinsic::arm_neon_vst4lane:
8115      return CombineBaseUpdate(N, DCI);
8116    default: break;
8117    }
8118    break;
8119  }
8120  return SDValue();
8121}
8122
8123bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
8124                                                          EVT VT) const {
8125  return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
8126}
8127
8128bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
8129  if (!Subtarget->allowsUnalignedMem())
8130    return false;
8131
8132  switch (VT.getSimpleVT().SimpleTy) {
8133  default:
8134    return false;
8135  case MVT::i8:
8136  case MVT::i16:
8137  case MVT::i32:
8138    return true;
8139  // FIXME: VLD1 etc with standard alignment is legal.
8140  }
8141}
8142
8143static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
8144  if (V < 0)
8145    return false;
8146
8147  unsigned Scale = 1;
8148  switch (VT.getSimpleVT().SimpleTy) {
8149  default: return false;
8150  case MVT::i1:
8151  case MVT::i8:
8152    // Scale == 1;
8153    break;
8154  case MVT::i16:
8155    // Scale == 2;
8156    Scale = 2;
8157    break;
8158  case MVT::i32:
8159    // Scale == 4;
8160    Scale = 4;
8161    break;
8162  }
8163
8164  if ((V & (Scale - 1)) != 0)
8165    return false;
8166  V /= Scale;
8167  return V == (V & ((1LL << 5) - 1));
8168}
8169
8170static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
8171                                      const ARMSubtarget *Subtarget) {
8172  bool isNeg = false;
8173  if (V < 0) {
8174    isNeg = true;
8175    V = - V;
8176  }
8177
8178  switch (VT.getSimpleVT().SimpleTy) {
8179  default: return false;
8180  case MVT::i1:
8181  case MVT::i8:
8182  case MVT::i16:
8183  case MVT::i32:
8184    // + imm12 or - imm8
8185    if (isNeg)
8186      return V == (V & ((1LL << 8) - 1));
8187    return V == (V & ((1LL << 12) - 1));
8188  case MVT::f32:
8189  case MVT::f64:
8190    // Same as ARM mode. FIXME: NEON?
8191    if (!Subtarget->hasVFP2())
8192      return false;
8193    if ((V & 3) != 0)
8194      return false;
8195    V >>= 2;
8196    return V == (V & ((1LL << 8) - 1));
8197  }
8198}
8199
8200/// isLegalAddressImmediate - Return true if the integer value can be used
8201/// as the offset of the target addressing mode for load / store of the
8202/// given type.
8203static bool isLegalAddressImmediate(int64_t V, EVT VT,
8204                                    const ARMSubtarget *Subtarget) {
8205  if (V == 0)
8206    return true;
8207
8208  if (!VT.isSimple())
8209    return false;
8210
8211  if (Subtarget->isThumb1Only())
8212    return isLegalT1AddressImmediate(V, VT);
8213  else if (Subtarget->isThumb2())
8214    return isLegalT2AddressImmediate(V, VT, Subtarget);
8215
8216  // ARM mode.
8217  if (V < 0)
8218    V = - V;
8219  switch (VT.getSimpleVT().SimpleTy) {
8220  default: return false;
8221  case MVT::i1:
8222  case MVT::i8:
8223  case MVT::i32:
8224    // +- imm12
8225    return V == (V & ((1LL << 12) - 1));
8226  case MVT::i16:
8227    // +- imm8
8228    return V == (V & ((1LL << 8) - 1));
8229  case MVT::f32:
8230  case MVT::f64:
8231    if (!Subtarget->hasVFP2()) // FIXME: NEON?
8232      return false;
8233    if ((V & 3) != 0)
8234      return false;
8235    V >>= 2;
8236    return V == (V & ((1LL << 8) - 1));
8237  }
8238}
8239
8240bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
8241                                                      EVT VT) const {
8242  int Scale = AM.Scale;
8243  if (Scale < 0)
8244    return false;
8245
8246  switch (VT.getSimpleVT().SimpleTy) {
8247  default: return false;
8248  case MVT::i1:
8249  case MVT::i8:
8250  case MVT::i16:
8251  case MVT::i32:
8252    if (Scale == 1)
8253      return true;
8254    // r + r << imm
8255    Scale = Scale & ~1;
8256    return Scale == 2 || Scale == 4 || Scale == 8;
8257  case MVT::i64:
8258    // r + r
8259    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
8260      return true;
8261    return false;
8262  case MVT::isVoid:
8263    // Note, we allow "void" uses (basically, uses that aren't loads or
8264    // stores), because arm allows folding a scale into many arithmetic
8265    // operations.  This should be made more precise and revisited later.
8266
8267    // Allow r << imm, but the imm has to be a multiple of two.
8268    if (Scale & 1) return false;
8269    return isPowerOf2_32(Scale);
8270  }
8271}
8272
8273/// isLegalAddressingMode - Return true if the addressing mode represented
8274/// by AM is legal for this target, for a load/store of the specified type.
8275bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
8276                                              Type *Ty) const {
8277  EVT VT = getValueType(Ty, true);
8278  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
8279    return false;
8280
8281  // Can never fold addr of global into load/store.
8282  if (AM.BaseGV)
8283    return false;
8284
8285  switch (AM.Scale) {
8286  case 0:  // no scale reg, must be "r+i" or "r", or "i".
8287    break;
8288  case 1:
8289    if (Subtarget->isThumb1Only())
8290      return false;
8291    // FALL THROUGH.
8292  default:
8293    // ARM doesn't support any R+R*scale+imm addr modes.
8294    if (AM.BaseOffs)
8295      return false;
8296
8297    if (!VT.isSimple())
8298      return false;
8299
8300    if (Subtarget->isThumb2())
8301      return isLegalT2ScaledAddressingMode(AM, VT);
8302
8303    int Scale = AM.Scale;
8304    switch (VT.getSimpleVT().SimpleTy) {
8305    default: return false;
8306    case MVT::i1:
8307    case MVT::i8:
8308    case MVT::i32:
8309      if (Scale < 0) Scale = -Scale;
8310      if (Scale == 1)
8311        return true;
8312      // r + r << imm
8313      return isPowerOf2_32(Scale & ~1);
8314    case MVT::i16:
8315    case MVT::i64:
8316      // r + r
8317      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
8318        return true;
8319      return false;
8320
8321    case MVT::isVoid:
8322      // Note, we allow "void" uses (basically, uses that aren't loads or
8323      // stores), because arm allows folding a scale into many arithmetic
8324      // operations.  This should be made more precise and revisited later.
8325
8326      // Allow r << imm, but the imm has to be a multiple of two.
8327      if (Scale & 1) return false;
8328      return isPowerOf2_32(Scale);
8329    }
8330    break;
8331  }
8332  return true;
8333}
8334
8335/// isLegalICmpImmediate - Return true if the specified immediate is legal
8336/// icmp immediate, that is the target has icmp instructions which can compare
8337/// a register against the immediate without having to materialize the
8338/// immediate into a register.
8339bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
8340  if (!Subtarget->isThumb())
8341    return ARM_AM::getSOImmVal(Imm) != -1;
8342  if (Subtarget->isThumb2())
8343    return ARM_AM::getT2SOImmVal(Imm) != -1;
8344  return Imm >= 0 && Imm <= 255;
8345}
8346
8347/// isLegalAddImmediate - Return true if the specified immediate is legal
8348/// add immediate, that is the target has add instructions which can add
8349/// a register with the immediate without having to materialize the
8350/// immediate into a register.
8351bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
8352  return ARM_AM::getSOImmVal(Imm) != -1;
8353}
8354
8355static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
8356                                      bool isSEXTLoad, SDValue &Base,
8357                                      SDValue &Offset, bool &isInc,
8358                                      SelectionDAG &DAG) {
8359  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
8360    return false;
8361
8362  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
8363    // AddressingMode 3
8364    Base = Ptr->getOperand(0);
8365    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8366      int RHSC = (int)RHS->getZExtValue();
8367      if (RHSC < 0 && RHSC > -256) {
8368        assert(Ptr->getOpcode() == ISD::ADD);
8369        isInc = false;
8370        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8371        return true;
8372      }
8373    }
8374    isInc = (Ptr->getOpcode() == ISD::ADD);
8375    Offset = Ptr->getOperand(1);
8376    return true;
8377  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
8378    // AddressingMode 2
8379    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8380      int RHSC = (int)RHS->getZExtValue();
8381      if (RHSC < 0 && RHSC > -0x1000) {
8382        assert(Ptr->getOpcode() == ISD::ADD);
8383        isInc = false;
8384        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8385        Base = Ptr->getOperand(0);
8386        return true;
8387      }
8388    }
8389
8390    if (Ptr->getOpcode() == ISD::ADD) {
8391      isInc = true;
8392      ARM_AM::ShiftOpc ShOpcVal=
8393        ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
8394      if (ShOpcVal != ARM_AM::no_shift) {
8395        Base = Ptr->getOperand(1);
8396        Offset = Ptr->getOperand(0);
8397      } else {
8398        Base = Ptr->getOperand(0);
8399        Offset = Ptr->getOperand(1);
8400      }
8401      return true;
8402    }
8403
8404    isInc = (Ptr->getOpcode() == ISD::ADD);
8405    Base = Ptr->getOperand(0);
8406    Offset = Ptr->getOperand(1);
8407    return true;
8408  }
8409
8410  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
8411  return false;
8412}
8413
8414static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
8415                                     bool isSEXTLoad, SDValue &Base,
8416                                     SDValue &Offset, bool &isInc,
8417                                     SelectionDAG &DAG) {
8418  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
8419    return false;
8420
8421  Base = Ptr->getOperand(0);
8422  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8423    int RHSC = (int)RHS->getZExtValue();
8424    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
8425      assert(Ptr->getOpcode() == ISD::ADD);
8426      isInc = false;
8427      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8428      return true;
8429    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
8430      isInc = Ptr->getOpcode() == ISD::ADD;
8431      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
8432      return true;
8433    }
8434  }
8435
8436  return false;
8437}
8438
8439/// getPreIndexedAddressParts - returns true by value, base pointer and
8440/// offset pointer and addressing mode by reference if the node's address
8441/// can be legally represented as pre-indexed load / store address.
8442bool
8443ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
8444                                             SDValue &Offset,
8445                                             ISD::MemIndexedMode &AM,
8446                                             SelectionDAG &DAG) const {
8447  if (Subtarget->isThumb1Only())
8448    return false;
8449
8450  EVT VT;
8451  SDValue Ptr;
8452  bool isSEXTLoad = false;
8453  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8454    Ptr = LD->getBasePtr();
8455    VT  = LD->getMemoryVT();
8456    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
8457  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8458    Ptr = ST->getBasePtr();
8459    VT  = ST->getMemoryVT();
8460  } else
8461    return false;
8462
8463  bool isInc;
8464  bool isLegal = false;
8465  if (Subtarget->isThumb2())
8466    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
8467                                       Offset, isInc, DAG);
8468  else
8469    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
8470                                        Offset, isInc, DAG);
8471  if (!isLegal)
8472    return false;
8473
8474  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
8475  return true;
8476}
8477
8478/// getPostIndexedAddressParts - returns true by value, base pointer and
8479/// offset pointer and addressing mode by reference if this node can be
8480/// combined with a load / store to form a post-indexed load / store.
8481bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
8482                                                   SDValue &Base,
8483                                                   SDValue &Offset,
8484                                                   ISD::MemIndexedMode &AM,
8485                                                   SelectionDAG &DAG) const {
8486  if (Subtarget->isThumb1Only())
8487    return false;
8488
8489  EVT VT;
8490  SDValue Ptr;
8491  bool isSEXTLoad = false;
8492  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8493    VT  = LD->getMemoryVT();
8494    Ptr = LD->getBasePtr();
8495    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
8496  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8497    VT  = ST->getMemoryVT();
8498    Ptr = ST->getBasePtr();
8499  } else
8500    return false;
8501
8502  bool isInc;
8503  bool isLegal = false;
8504  if (Subtarget->isThumb2())
8505    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
8506                                       isInc, DAG);
8507  else
8508    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
8509                                        isInc, DAG);
8510  if (!isLegal)
8511    return false;
8512
8513  if (Ptr != Base) {
8514    // Swap base ptr and offset to catch more post-index load / store when
8515    // it's legal. In Thumb2 mode, offset must be an immediate.
8516    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
8517        !Subtarget->isThumb2())
8518      std::swap(Base, Offset);
8519
8520    // Post-indexed load / store update the base pointer.
8521    if (Ptr != Base)
8522      return false;
8523  }
8524
8525  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
8526  return true;
8527}
8528
8529void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8530                                                       const APInt &Mask,
8531                                                       APInt &KnownZero,
8532                                                       APInt &KnownOne,
8533                                                       const SelectionDAG &DAG,
8534                                                       unsigned Depth) const {
8535  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
8536  switch (Op.getOpcode()) {
8537  default: break;
8538  case ARMISD::CMOV: {
8539    // Bits are known zero/one if known on the LHS and RHS.
8540    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
8541    if (KnownZero == 0 && KnownOne == 0) return;
8542
8543    APInt KnownZeroRHS, KnownOneRHS;
8544    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
8545                          KnownZeroRHS, KnownOneRHS, Depth+1);
8546    KnownZero &= KnownZeroRHS;
8547    KnownOne  &= KnownOneRHS;
8548    return;
8549  }
8550  }
8551}
8552
8553//===----------------------------------------------------------------------===//
8554//                           ARM Inline Assembly Support
8555//===----------------------------------------------------------------------===//
8556
8557bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
8558  // Looking for "rev" which is V6+.
8559  if (!Subtarget->hasV6Ops())
8560    return false;
8561
8562  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
8563  std::string AsmStr = IA->getAsmString();
8564  SmallVector<StringRef, 4> AsmPieces;
8565  SplitString(AsmStr, AsmPieces, ";\n");
8566
8567  switch (AsmPieces.size()) {
8568  default: return false;
8569  case 1:
8570    AsmStr = AsmPieces[0];
8571    AsmPieces.clear();
8572    SplitString(AsmStr, AsmPieces, " \t,");
8573
8574    // rev $0, $1
8575    if (AsmPieces.size() == 3 &&
8576        AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
8577        IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
8578      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
8579      if (Ty && Ty->getBitWidth() == 32)
8580        return IntrinsicLowering::LowerToByteSwap(CI);
8581    }
8582    break;
8583  }
8584
8585  return false;
8586}
8587
8588/// getConstraintType - Given a constraint letter, return the type of
8589/// constraint it is for this target.
8590ARMTargetLowering::ConstraintType
8591ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
8592  if (Constraint.size() == 1) {
8593    switch (Constraint[0]) {
8594    default:  break;
8595    case 'l': return C_RegisterClass;
8596    case 'w': return C_RegisterClass;
8597    case 'h': return C_RegisterClass;
8598    case 'x': return C_RegisterClass;
8599    case 't': return C_RegisterClass;
8600    case 'j': return C_Other; // Constant for movw.
8601      // An address with a single base register. Due to the way we
8602      // currently handle addresses it is the same as an 'r' memory constraint.
8603    case 'Q': return C_Memory;
8604    }
8605  } else if (Constraint.size() == 2) {
8606    switch (Constraint[0]) {
8607    default: break;
8608    // All 'U+' constraints are addresses.
8609    case 'U': return C_Memory;
8610    }
8611  }
8612  return TargetLowering::getConstraintType(Constraint);
8613}
8614
8615/// Examine constraint type and operand type and determine a weight value.
8616/// This object must already have been set up with the operand type
8617/// and the current alternative constraint selected.
8618TargetLowering::ConstraintWeight
8619ARMTargetLowering::getSingleConstraintMatchWeight(
8620    AsmOperandInfo &info, const char *constraint) const {
8621  ConstraintWeight weight = CW_Invalid;
8622  Value *CallOperandVal = info.CallOperandVal;
8623    // If we don't have a value, we can't do a match,
8624    // but allow it at the lowest weight.
8625  if (CallOperandVal == NULL)
8626    return CW_Default;
8627  Type *type = CallOperandVal->getType();
8628  // Look at the constraint type.
8629  switch (*constraint) {
8630  default:
8631    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
8632    break;
8633  case 'l':
8634    if (type->isIntegerTy()) {
8635      if (Subtarget->isThumb())
8636        weight = CW_SpecificReg;
8637      else
8638        weight = CW_Register;
8639    }
8640    break;
8641  case 'w':
8642    if (type->isFloatingPointTy())
8643      weight = CW_Register;
8644    break;
8645  }
8646  return weight;
8647}
8648
8649typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
8650RCPair
8651ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
8652                                                EVT VT) const {
8653  if (Constraint.size() == 1) {
8654    // GCC ARM Constraint Letters
8655    switch (Constraint[0]) {
8656    case 'l': // Low regs or general regs.
8657      if (Subtarget->isThumb())
8658        return RCPair(0U, ARM::tGPRRegisterClass);
8659      else
8660        return RCPair(0U, ARM::GPRRegisterClass);
8661    case 'h': // High regs or no regs.
8662      if (Subtarget->isThumb())
8663        return RCPair(0U, ARM::hGPRRegisterClass);
8664      break;
8665    case 'r':
8666      return RCPair(0U, ARM::GPRRegisterClass);
8667    case 'w':
8668      if (VT == MVT::f32)
8669        return RCPair(0U, ARM::SPRRegisterClass);
8670      if (VT.getSizeInBits() == 64)
8671        return RCPair(0U, ARM::DPRRegisterClass);
8672      if (VT.getSizeInBits() == 128)
8673        return RCPair(0U, ARM::QPRRegisterClass);
8674      break;
8675    case 'x':
8676      if (VT == MVT::f32)
8677        return RCPair(0U, ARM::SPR_8RegisterClass);
8678      if (VT.getSizeInBits() == 64)
8679        return RCPair(0U, ARM::DPR_8RegisterClass);
8680      if (VT.getSizeInBits() == 128)
8681        return RCPair(0U, ARM::QPR_8RegisterClass);
8682      break;
8683    case 't':
8684      if (VT == MVT::f32)
8685        return RCPair(0U, ARM::SPRRegisterClass);
8686      break;
8687    }
8688  }
8689  if (StringRef("{cc}").equals_lower(Constraint))
8690    return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
8691
8692  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
8693}
8694
8695/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
8696/// vector.  If it is invalid, don't add anything to Ops.
8697void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
8698                                                     std::string &Constraint,
8699                                                     std::vector<SDValue>&Ops,
8700                                                     SelectionDAG &DAG) const {
8701  SDValue Result(0, 0);
8702
8703  // Currently only support length 1 constraints.
8704  if (Constraint.length() != 1) return;
8705
8706  char ConstraintLetter = Constraint[0];
8707  switch (ConstraintLetter) {
8708  default: break;
8709  case 'j':
8710  case 'I': case 'J': case 'K': case 'L':
8711  case 'M': case 'N': case 'O':
8712    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
8713    if (!C)
8714      return;
8715
8716    int64_t CVal64 = C->getSExtValue();
8717    int CVal = (int) CVal64;
8718    // None of these constraints allow values larger than 32 bits.  Check
8719    // that the value fits in an int.
8720    if (CVal != CVal64)
8721      return;
8722
8723    switch (ConstraintLetter) {
8724      case 'j':
8725        // Constant suitable for movw, must be between 0 and
8726        // 65535.
8727        if (Subtarget->hasV6T2Ops())
8728          if (CVal >= 0 && CVal <= 65535)
8729            break;
8730        return;
8731      case 'I':
8732        if (Subtarget->isThumb1Only()) {
8733          // This must be a constant between 0 and 255, for ADD
8734          // immediates.
8735          if (CVal >= 0 && CVal <= 255)
8736            break;
8737        } else if (Subtarget->isThumb2()) {
8738          // A constant that can be used as an immediate value in a
8739          // data-processing instruction.
8740          if (ARM_AM::getT2SOImmVal(CVal) != -1)
8741            break;
8742        } else {
8743          // A constant that can be used as an immediate value in a
8744          // data-processing instruction.
8745          if (ARM_AM::getSOImmVal(CVal) != -1)
8746            break;
8747        }
8748        return;
8749
8750      case 'J':
8751        if (Subtarget->isThumb()) {  // FIXME thumb2
8752          // This must be a constant between -255 and -1, for negated ADD
8753          // immediates. This can be used in GCC with an "n" modifier that
8754          // prints the negated value, for use with SUB instructions. It is
8755          // not useful otherwise but is implemented for compatibility.
8756          if (CVal >= -255 && CVal <= -1)
8757            break;
8758        } else {
8759          // This must be a constant between -4095 and 4095. It is not clear
8760          // what this constraint is intended for. Implemented for
8761          // compatibility with GCC.
8762          if (CVal >= -4095 && CVal <= 4095)
8763            break;
8764        }
8765        return;
8766
8767      case 'K':
8768        if (Subtarget->isThumb1Only()) {
8769          // A 32-bit value where only one byte has a nonzero value. Exclude
8770          // zero to match GCC. This constraint is used by GCC internally for
8771          // constants that can be loaded with a move/shift combination.
8772          // It is not useful otherwise but is implemented for compatibility.
8773          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
8774            break;
8775        } else if (Subtarget->isThumb2()) {
8776          // A constant whose bitwise inverse can be used as an immediate
8777          // value in a data-processing instruction. This can be used in GCC
8778          // with a "B" modifier that prints the inverted value, for use with
8779          // BIC and MVN instructions. It is not useful otherwise but is
8780          // implemented for compatibility.
8781          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
8782            break;
8783        } else {
8784          // A constant whose bitwise inverse can be used as an immediate
8785          // value in a data-processing instruction. This can be used in GCC
8786          // with a "B" modifier that prints the inverted value, for use with
8787          // BIC and MVN instructions. It is not useful otherwise but is
8788          // implemented for compatibility.
8789          if (ARM_AM::getSOImmVal(~CVal) != -1)
8790            break;
8791        }
8792        return;
8793
8794      case 'L':
8795        if (Subtarget->isThumb1Only()) {
8796          // This must be a constant between -7 and 7,
8797          // for 3-operand ADD/SUB immediate instructions.
8798          if (CVal >= -7 && CVal < 7)
8799            break;
8800        } else if (Subtarget->isThumb2()) {
8801          // A constant whose negation can be used as an immediate value in a
8802          // data-processing instruction. This can be used in GCC with an "n"
8803          // modifier that prints the negated value, for use with SUB
8804          // instructions. It is not useful otherwise but is implemented for
8805          // compatibility.
8806          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
8807            break;
8808        } else {
8809          // A constant whose negation can be used as an immediate value in a
8810          // data-processing instruction. This can be used in GCC with an "n"
8811          // modifier that prints the negated value, for use with SUB
8812          // instructions. It is not useful otherwise but is implemented for
8813          // compatibility.
8814          if (ARM_AM::getSOImmVal(-CVal) != -1)
8815            break;
8816        }
8817        return;
8818
8819      case 'M':
8820        if (Subtarget->isThumb()) { // FIXME thumb2
8821          // This must be a multiple of 4 between 0 and 1020, for
8822          // ADD sp + immediate.
8823          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
8824            break;
8825        } else {
8826          // A power of two or a constant between 0 and 32.  This is used in
8827          // GCC for the shift amount on shifted register operands, but it is
8828          // useful in general for any shift amounts.
8829          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
8830            break;
8831        }
8832        return;
8833
8834      case 'N':
8835        if (Subtarget->isThumb()) {  // FIXME thumb2
8836          // This must be a constant between 0 and 31, for shift amounts.
8837          if (CVal >= 0 && CVal <= 31)
8838            break;
8839        }
8840        return;
8841
8842      case 'O':
8843        if (Subtarget->isThumb()) {  // FIXME thumb2
8844          // This must be a multiple of 4 between -508 and 508, for
8845          // ADD/SUB sp = sp + immediate.
8846          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
8847            break;
8848        }
8849        return;
8850    }
8851    Result = DAG.getTargetConstant(CVal, Op.getValueType());
8852    break;
8853  }
8854
8855  if (Result.getNode()) {
8856    Ops.push_back(Result);
8857    return;
8858  }
8859  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
8860}
8861
8862bool
8863ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
8864  // The ARM target isn't yet aware of offsets.
8865  return false;
8866}
8867
8868bool ARM::isBitFieldInvertedMask(unsigned v) {
8869  if (v == 0xffffffff)
8870    return 0;
8871  // there can be 1's on either or both "outsides", all the "inside"
8872  // bits must be 0's
8873  unsigned int lsb = 0, msb = 31;
8874  while (v & (1 << msb)) --msb;
8875  while (v & (1 << lsb)) ++lsb;
8876  for (unsigned int i = lsb; i <= msb; ++i) {
8877    if (v & (1 << i))
8878      return 0;
8879  }
8880  return 1;
8881}
8882
8883/// isFPImmLegal - Returns true if the target can instruction select the
8884/// specified FP immediate natively. If false, the legalizer will
8885/// materialize the FP immediate as a load from a constant pool.
8886bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
8887  if (!Subtarget->hasVFP3())
8888    return false;
8889  if (VT == MVT::f32)
8890    return ARM_AM::getFP32Imm(Imm) != -1;
8891  if (VT == MVT::f64)
8892    return ARM_AM::getFP64Imm(Imm) != -1;
8893  return false;
8894}
8895
8896/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
8897/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
8898/// specified in the intrinsic calls.
8899bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
8900                                           const CallInst &I,
8901                                           unsigned Intrinsic) const {
8902  switch (Intrinsic) {
8903  case Intrinsic::arm_neon_vld1:
8904  case Intrinsic::arm_neon_vld2:
8905  case Intrinsic::arm_neon_vld3:
8906  case Intrinsic::arm_neon_vld4:
8907  case Intrinsic::arm_neon_vld2lane:
8908  case Intrinsic::arm_neon_vld3lane:
8909  case Intrinsic::arm_neon_vld4lane: {
8910    Info.opc = ISD::INTRINSIC_W_CHAIN;
8911    // Conservatively set memVT to the entire set of vectors loaded.
8912    uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
8913    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
8914    Info.ptrVal = I.getArgOperand(0);
8915    Info.offset = 0;
8916    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
8917    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
8918    Info.vol = false; // volatile loads with NEON intrinsics not supported
8919    Info.readMem = true;
8920    Info.writeMem = false;
8921    return true;
8922  }
8923  case Intrinsic::arm_neon_vst1:
8924  case Intrinsic::arm_neon_vst2:
8925  case Intrinsic::arm_neon_vst3:
8926  case Intrinsic::arm_neon_vst4:
8927  case Intrinsic::arm_neon_vst2lane:
8928  case Intrinsic::arm_neon_vst3lane:
8929  case Intrinsic::arm_neon_vst4lane: {
8930    Info.opc = ISD::INTRINSIC_VOID;
8931    // Conservatively set memVT to the entire set of vectors stored.
8932    unsigned NumElts = 0;
8933    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
8934      Type *ArgTy = I.getArgOperand(ArgI)->getType();
8935      if (!ArgTy->isVectorTy())
8936        break;
8937      NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
8938    }
8939    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
8940    Info.ptrVal = I.getArgOperand(0);
8941    Info.offset = 0;
8942    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
8943    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
8944    Info.vol = false; // volatile stores with NEON intrinsics not supported
8945    Info.readMem = false;
8946    Info.writeMem = true;
8947    return true;
8948  }
8949  case Intrinsic::arm_strexd: {
8950    Info.opc = ISD::INTRINSIC_W_CHAIN;
8951    Info.memVT = MVT::i64;
8952    Info.ptrVal = I.getArgOperand(2);
8953    Info.offset = 0;
8954    Info.align = 8;
8955    Info.vol = true;
8956    Info.readMem = false;
8957    Info.writeMem = true;
8958    return true;
8959  }
8960  case Intrinsic::arm_ldrexd: {
8961    Info.opc = ISD::INTRINSIC_W_CHAIN;
8962    Info.memVT = MVT::i64;
8963    Info.ptrVal = I.getArgOperand(0);
8964    Info.offset = 0;
8965    Info.align = 8;
8966    Info.vol = true;
8967    Info.readMem = true;
8968    Info.writeMem = false;
8969    return true;
8970  }
8971  default:
8972    break;
8973  }
8974
8975  return false;
8976}
8977