ARMISelLowering.cpp revision 35b3df6e31f9aac70fb471d74e39f899dfbd689f
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-isel"
16#include "ARMISelLowering.h"
17#include "ARM.h"
18#include "ARMCallingConv.h"
19#include "ARMConstantPoolValue.h"
20#include "ARMMachineFunctionInfo.h"
21#include "ARMPerfectShuffle.h"
22#include "ARMSubtarget.h"
23#include "ARMTargetMachine.h"
24#include "ARMTargetObjectFile.h"
25#include "MCTargetDesc/ARMAddressingModes.h"
26#include "llvm/CallingConv.h"
27#include "llvm/Constants.h"
28#include "llvm/Function.h"
29#include "llvm/GlobalValue.h"
30#include "llvm/Instruction.h"
31#include "llvm/Instructions.h"
32#include "llvm/Intrinsics.h"
33#include "llvm/Type.h"
34#include "llvm/CodeGen/CallingConvLower.h"
35#include "llvm/CodeGen/IntrinsicLowering.h"
36#include "llvm/CodeGen/MachineBasicBlock.h"
37#include "llvm/CodeGen/MachineFrameInfo.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineInstrBuilder.h"
40#include "llvm/CodeGen/MachineModuleInfo.h"
41#include "llvm/CodeGen/MachineRegisterInfo.h"
42#include "llvm/CodeGen/SelectionDAG.h"
43#include "llvm/MC/MCSectionMachO.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/ADT/StringExtras.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Support/raw_ostream.h"
51using namespace llvm;
52
53STATISTIC(NumTailCalls, "Number of tail calls");
54STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
55STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
56
57// This option should go away when tail calls fully work.
58static cl::opt<bool>
59EnableARMTailCalls("arm-tail-calls", cl::Hidden,
60  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
61  cl::init(false));
62
63cl::opt<bool>
64EnableARMLongCalls("arm-long-calls", cl::Hidden,
65  cl::desc("Generate calls via indirect call instructions"),
66  cl::init(false));
67
68static cl::opt<bool>
69ARMInterworking("arm-interworking", cl::Hidden,
70  cl::desc("Enable / disable ARM interworking (for debugging only)"),
71  cl::init(true));
72
73namespace {
74  class ARMCCState : public CCState {
75  public:
76    ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
77               const TargetMachine &TM, SmallVector<CCValAssign, 16> &locs,
78               LLVMContext &C, ParmContext PC)
79        : CCState(CC, isVarArg, MF, TM, locs, C) {
80      assert(((PC == Call) || (PC == Prologue)) &&
81             "ARMCCState users must specify whether their context is call"
82             "or prologue generation.");
83      CallOrPrologue = PC;
84    }
85  };
86}
87
88// The APCS parameter registers.
89static const uint16_t GPRArgRegs[] = {
90  ARM::R0, ARM::R1, ARM::R2, ARM::R3
91};
92
93void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
94                                       MVT PromotedBitwiseVT) {
95  if (VT != PromotedLdStVT) {
96    setOperationAction(ISD::LOAD, VT, Promote);
97    AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
98
99    setOperationAction(ISD::STORE, VT, Promote);
100    AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
101  }
102
103  MVT ElemTy = VT.getVectorElementType();
104  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
105    setOperationAction(ISD::SETCC, VT, Custom);
106  setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
107  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
108  if (ElemTy == MVT::i32) {
109    setOperationAction(ISD::SINT_TO_FP, VT, Custom);
110    setOperationAction(ISD::UINT_TO_FP, VT, Custom);
111    setOperationAction(ISD::FP_TO_SINT, VT, Custom);
112    setOperationAction(ISD::FP_TO_UINT, VT, Custom);
113  } else {
114    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
115    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
116    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
117    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
118  }
119  setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
120  setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
121  setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
122  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
123  setOperationAction(ISD::SELECT,            VT, Expand);
124  setOperationAction(ISD::SELECT_CC,         VT, Expand);
125  setOperationAction(ISD::VSELECT,           VT, Expand);
126  setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
127  if (VT.isInteger()) {
128    setOperationAction(ISD::SHL, VT, Custom);
129    setOperationAction(ISD::SRA, VT, Custom);
130    setOperationAction(ISD::SRL, VT, Custom);
131  }
132
133  // Promote all bit-wise operations.
134  if (VT.isInteger() && VT != PromotedBitwiseVT) {
135    setOperationAction(ISD::AND, VT, Promote);
136    AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
137    setOperationAction(ISD::OR,  VT, Promote);
138    AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
139    setOperationAction(ISD::XOR, VT, Promote);
140    AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
141  }
142
143  // Neon does not support vector divide/remainder operations.
144  setOperationAction(ISD::SDIV, VT, Expand);
145  setOperationAction(ISD::UDIV, VT, Expand);
146  setOperationAction(ISD::FDIV, VT, Expand);
147  setOperationAction(ISD::SREM, VT, Expand);
148  setOperationAction(ISD::UREM, VT, Expand);
149  setOperationAction(ISD::FREM, VT, Expand);
150}
151
152void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
153  addRegisterClass(VT, &ARM::DPRRegClass);
154  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
155}
156
157void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
158  addRegisterClass(VT, &ARM::QPRRegClass);
159  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
160}
161
162static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
163  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
164    return new TargetLoweringObjectFileMachO();
165
166  return new ARMElfTargetObjectFile();
167}
168
169ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
170    : TargetLowering(TM, createTLOF(TM)) {
171  Subtarget = &TM.getSubtarget<ARMSubtarget>();
172  RegInfo = TM.getRegisterInfo();
173  Itins = TM.getInstrItineraryData();
174
175  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
176
177  if (Subtarget->isTargetDarwin()) {
178    // Uses VFP for Thumb libfuncs if available.
179    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
180      // Single-precision floating-point arithmetic.
181      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
182      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
183      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
184      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
185
186      // Double-precision floating-point arithmetic.
187      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
188      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
189      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
190      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
191
192      // Single-precision comparisons.
193      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
194      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
195      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
196      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
197      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
198      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
199      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
200      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
201
202      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
203      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
204      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
205      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
206      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
207      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
208      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
209      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
210
211      // Double-precision comparisons.
212      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
213      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
214      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
215      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
216      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
217      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
218      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
219      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
220
221      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
222      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
223      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
224      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
225      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
226      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
227      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
228      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
229
230      // Floating-point to integer conversions.
231      // i64 conversions are done via library routines even when generating VFP
232      // instructions, so use the same ones.
233      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
234      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
235      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
236      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
237
238      // Conversions between floating types.
239      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
240      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
241
242      // Integer to floating-point conversions.
243      // i64 conversions are done via library routines even when generating VFP
244      // instructions, so use the same ones.
245      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
246      // e.g., __floatunsidf vs. __floatunssidfvfp.
247      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
248      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
249      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
250      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
251    }
252  }
253
254  // These libcalls are not available in 32-bit.
255  setLibcallName(RTLIB::SHL_I128, 0);
256  setLibcallName(RTLIB::SRL_I128, 0);
257  setLibcallName(RTLIB::SRA_I128, 0);
258
259  if (Subtarget->isAAPCS_ABI() && !Subtarget->isTargetDarwin()) {
260    // Double-precision floating-point arithmetic helper functions
261    // RTABI chapter 4.1.2, Table 2
262    setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
263    setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
264    setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
265    setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
266    setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
267    setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
268    setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
269    setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
270
271    // Double-precision floating-point comparison helper functions
272    // RTABI chapter 4.1.2, Table 3
273    setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
274    setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
275    setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
276    setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
277    setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
278    setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
279    setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
280    setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
281    setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
282    setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
283    setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
284    setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
285    setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
286    setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
287    setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
288    setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
289    setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
290    setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
291    setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
292    setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
293    setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
294    setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
295    setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
296    setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
297
298    // Single-precision floating-point arithmetic helper functions
299    // RTABI chapter 4.1.2, Table 4
300    setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
301    setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
302    setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
303    setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
304    setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
305    setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
306    setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
307    setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
308
309    // Single-precision floating-point comparison helper functions
310    // RTABI chapter 4.1.2, Table 5
311    setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
312    setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
313    setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
314    setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
315    setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
316    setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
317    setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
318    setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
319    setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
320    setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
321    setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
322    setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
323    setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
324    setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
325    setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
326    setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
327    setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
328    setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
329    setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
330    setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
331    setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
332    setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
333    setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
334    setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
335
336    // Floating-point to integer conversions.
337    // RTABI chapter 4.1.2, Table 6
338    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
339    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
340    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
341    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
342    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
343    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
344    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
345    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
346    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
347    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
348    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
349    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
350    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
351    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
352    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
353    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
354
355    // Conversions between floating types.
356    // RTABI chapter 4.1.2, Table 7
357    setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
358    setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
359    setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
360    setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
361
362    // Integer to floating-point conversions.
363    // RTABI chapter 4.1.2, Table 8
364    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
365    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
366    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
367    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
368    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
369    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
370    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
371    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
372    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
373    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
374    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
375    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
376    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
377    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
378    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
379    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
380
381    // Long long helper functions
382    // RTABI chapter 4.2, Table 9
383    setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
384    setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
385    setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
386    setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
387    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
388    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
389    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
390    setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
391    setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
392    setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
393
394    // Integer division functions
395    // RTABI chapter 4.3.1
396    setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
397    setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
398    setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
399    setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
400    setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
401    setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
402    setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
403    setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
404    setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
405    setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
406    setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
407    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
408    setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
409    setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
410    setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
411    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
412
413    // Memory operations
414    // RTABI chapter 4.3.4
415    setLibcallName(RTLIB::MEMCPY,  "__aeabi_memcpy");
416    setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove");
417    setLibcallName(RTLIB::MEMSET,  "__aeabi_memset");
418    setLibcallCallingConv(RTLIB::MEMCPY, CallingConv::ARM_AAPCS);
419    setLibcallCallingConv(RTLIB::MEMMOVE, CallingConv::ARM_AAPCS);
420    setLibcallCallingConv(RTLIB::MEMSET, CallingConv::ARM_AAPCS);
421  }
422
423  // Use divmod compiler-rt calls for iOS 5.0 and later.
424  if (Subtarget->getTargetTriple().getOS() == Triple::IOS &&
425      !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
426    setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
427    setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
428  }
429
430  if (Subtarget->isThumb1Only())
431    addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
432  else
433    addRegisterClass(MVT::i32, &ARM::GPRRegClass);
434  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
435      !Subtarget->isThumb1Only()) {
436    addRegisterClass(MVT::f32, &ARM::SPRRegClass);
437    if (!Subtarget->isFPOnlySP())
438      addRegisterClass(MVT::f64, &ARM::DPRRegClass);
439
440    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
441  }
442
443  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
444       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
445    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
446         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
447      setTruncStoreAction((MVT::SimpleValueType)VT,
448                          (MVT::SimpleValueType)InnerVT, Expand);
449    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
450    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
451    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
452  }
453
454  setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
455
456  if (Subtarget->hasNEON()) {
457    addDRTypeForNEON(MVT::v2f32);
458    addDRTypeForNEON(MVT::v8i8);
459    addDRTypeForNEON(MVT::v4i16);
460    addDRTypeForNEON(MVT::v2i32);
461    addDRTypeForNEON(MVT::v1i64);
462
463    addQRTypeForNEON(MVT::v4f32);
464    addQRTypeForNEON(MVT::v2f64);
465    addQRTypeForNEON(MVT::v16i8);
466    addQRTypeForNEON(MVT::v8i16);
467    addQRTypeForNEON(MVT::v4i32);
468    addQRTypeForNEON(MVT::v2i64);
469
470    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
471    // neither Neon nor VFP support any arithmetic operations on it.
472    // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
473    // supported for v4f32.
474    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
475    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
476    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
477    // FIXME: Code duplication: FDIV and FREM are expanded always, see
478    // ARMTargetLowering::addTypeForNEON method for details.
479    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
480    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
481    // FIXME: Create unittest.
482    // In another words, find a way when "copysign" appears in DAG with vector
483    // operands.
484    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
485    // FIXME: Code duplication: SETCC has custom operation action, see
486    // ARMTargetLowering::addTypeForNEON method for details.
487    setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
488    // FIXME: Create unittest for FNEG and for FABS.
489    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
490    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
491    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
492    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
493    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
494    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
495    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
496    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
497    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
498    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
499    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
500    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
501    // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
502    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
503    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
504    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
505    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
506    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
507
508    setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
509    setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
510    setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
511    setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
512    setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
513    setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
514    setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
515    setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
516    setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
517    setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
518    setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
519    setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
520    setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
521    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
522    setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
523
524    // Neon does not support some operations on v1i64 and v2i64 types.
525    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
526    // Custom handling for some quad-vector types to detect VMULL.
527    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
528    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
529    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
530    // Custom handling for some vector types to avoid expensive expansions
531    setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
532    setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
533    setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
534    setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
535    setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
536    setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
537    // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
538    // a destination type that is wider than the source, and nor does
539    // it have a FP_TO_[SU]INT instruction with a narrower destination than
540    // source.
541    setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
542    setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
543    setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
544    setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
545
546    setOperationAction(ISD::FP_ROUND,   MVT::v2f32, Expand);
547    setOperationAction(ISD::FP_EXTEND,  MVT::v2f64, Expand);
548
549    setTargetDAGCombine(ISD::INTRINSIC_VOID);
550    setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
551    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
552    setTargetDAGCombine(ISD::SHL);
553    setTargetDAGCombine(ISD::SRL);
554    setTargetDAGCombine(ISD::SRA);
555    setTargetDAGCombine(ISD::SIGN_EXTEND);
556    setTargetDAGCombine(ISD::ZERO_EXTEND);
557    setTargetDAGCombine(ISD::ANY_EXTEND);
558    setTargetDAGCombine(ISD::SELECT_CC);
559    setTargetDAGCombine(ISD::BUILD_VECTOR);
560    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
561    setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
562    setTargetDAGCombine(ISD::STORE);
563    setTargetDAGCombine(ISD::FP_TO_SINT);
564    setTargetDAGCombine(ISD::FP_TO_UINT);
565    setTargetDAGCombine(ISD::FDIV);
566
567    // It is legal to extload from v4i8 to v4i16 or v4i32.
568    MVT Tys[6] = {MVT::v8i8, MVT::v4i8, MVT::v2i8,
569                  MVT::v4i16, MVT::v2i16,
570                  MVT::v2i32};
571    for (unsigned i = 0; i < 6; ++i) {
572      setLoadExtAction(ISD::EXTLOAD, Tys[i], Legal);
573      setLoadExtAction(ISD::ZEXTLOAD, Tys[i], Legal);
574      setLoadExtAction(ISD::SEXTLOAD, Tys[i], Legal);
575    }
576  }
577
578  // ARM and Thumb2 support UMLAL/SMLAL.
579  if (!Subtarget->isThumb1Only())
580    setTargetDAGCombine(ISD::ADDC);
581
582
583  computeRegisterProperties();
584
585  // ARM does not have f32 extending load.
586  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
587
588  // ARM does not have i1 sign extending load.
589  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
590
591  // ARM supports all 4 flavors of integer indexed load / store.
592  if (!Subtarget->isThumb1Only()) {
593    for (unsigned im = (unsigned)ISD::PRE_INC;
594         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
595      setIndexedLoadAction(im,  MVT::i1,  Legal);
596      setIndexedLoadAction(im,  MVT::i8,  Legal);
597      setIndexedLoadAction(im,  MVT::i16, Legal);
598      setIndexedLoadAction(im,  MVT::i32, Legal);
599      setIndexedStoreAction(im, MVT::i1,  Legal);
600      setIndexedStoreAction(im, MVT::i8,  Legal);
601      setIndexedStoreAction(im, MVT::i16, Legal);
602      setIndexedStoreAction(im, MVT::i32, Legal);
603    }
604  }
605
606  // i64 operation support.
607  setOperationAction(ISD::MUL,     MVT::i64, Expand);
608  setOperationAction(ISD::MULHU,   MVT::i32, Expand);
609  if (Subtarget->isThumb1Only()) {
610    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
611    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
612  }
613  if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
614      || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
615    setOperationAction(ISD::MULHS, MVT::i32, Expand);
616
617  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
618  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
619  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
620  setOperationAction(ISD::SRL,       MVT::i64, Custom);
621  setOperationAction(ISD::SRA,       MVT::i64, Custom);
622
623  if (!Subtarget->isThumb1Only()) {
624    // FIXME: We should do this for Thumb1 as well.
625    setOperationAction(ISD::ADDC,    MVT::i32, Custom);
626    setOperationAction(ISD::ADDE,    MVT::i32, Custom);
627    setOperationAction(ISD::SUBC,    MVT::i32, Custom);
628    setOperationAction(ISD::SUBE,    MVT::i32, Custom);
629  }
630
631  // ARM does not have ROTL.
632  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
633  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
634  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
635  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
636    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
637
638  // These just redirect to CTTZ and CTLZ on ARM.
639  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i32  , Expand);
640  setOperationAction(ISD::CTLZ_ZERO_UNDEF  , MVT::i32  , Expand);
641
642  // Only ARMv6 has BSWAP.
643  if (!Subtarget->hasV6Ops())
644    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
645
646  if (!(Subtarget->hasDivide() && Subtarget->isThumb2()) &&
647      !(Subtarget->hasDivideInARMMode() && !Subtarget->isThumb())) {
648    // These are expanded into libcalls if the cpu doesn't have HW divider.
649    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
650    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
651  }
652  setOperationAction(ISD::SREM,  MVT::i32, Expand);
653  setOperationAction(ISD::UREM,  MVT::i32, Expand);
654  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
655  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
656
657  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
658  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
659  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
660  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
661  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
662
663  setOperationAction(ISD::TRAP, MVT::Other, Legal);
664
665  // Use the default implementation.
666  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
667  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
668  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
669  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
670  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
671  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
672
673  if (!Subtarget->isTargetDarwin()) {
674    // Non-Darwin platforms may return values in these registers via the
675    // personality function.
676    setOperationAction(ISD::EHSELECTION,      MVT::i32,   Expand);
677    setOperationAction(ISD::EXCEPTIONADDR,    MVT::i32,   Expand);
678    setExceptionPointerRegister(ARM::R0);
679    setExceptionSelectorRegister(ARM::R1);
680  }
681
682  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
683  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
684  // the default expansion.
685  // FIXME: This should be checking for v6k, not just v6.
686  if (Subtarget->hasDataBarrier() ||
687      (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
688    // membarrier needs custom lowering; the rest are legal and handled
689    // normally.
690    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
691    setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
692    // Custom lowering for 64-bit ops
693    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Custom);
694    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Custom);
695    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Custom);
696    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Custom);
697    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Custom);
698    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i64, Custom);
699    setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i64, Custom);
700    setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i64, Custom);
701    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom);
702    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom);
703    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
704    // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc.
705    setInsertFencesForAtomic(true);
706  } else {
707    // Set them all for expansion, which will force libcalls.
708    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
709    setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other, Expand);
710    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
711    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
712    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
713    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
714    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
715    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
716    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
717    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
718    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
719    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
720    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
721    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
722    // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
723    // Unordered/Monotonic case.
724    setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
725    setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
726    // Since the libcalls include locking, fold in the fences
727    setShouldFoldAtomicFences(true);
728  }
729
730  setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
731
732  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
733  if (!Subtarget->hasV6Ops()) {
734    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
735    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
736  }
737  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
738
739  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
740      !Subtarget->isThumb1Only()) {
741    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
742    // iff target supports vfp2.
743    setOperationAction(ISD::BITCAST, MVT::i64, Custom);
744    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
745  }
746
747  // We want to custom lower some of our intrinsics.
748  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
749  if (Subtarget->isTargetDarwin()) {
750    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
751    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
752    setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
753  }
754
755  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
756  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
757  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
758  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
759  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
760  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
761  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
762  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
763  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
764
765  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
766  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
767  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
768  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
769  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
770
771  // We don't support sin/cos/fmod/copysign/pow
772  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
773  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
774  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
775  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
776  setOperationAction(ISD::FREM,      MVT::f64, Expand);
777  setOperationAction(ISD::FREM,      MVT::f32, Expand);
778  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
779      !Subtarget->isThumb1Only()) {
780    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
781    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
782  }
783  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
784  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
785
786  if (!Subtarget->hasVFP4()) {
787    setOperationAction(ISD::FMA, MVT::f64, Expand);
788    setOperationAction(ISD::FMA, MVT::f32, Expand);
789  }
790
791  // Various VFP goodness
792  if (!TM.Options.UseSoftFloat && !Subtarget->isThumb1Only()) {
793    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
794    if (Subtarget->hasVFP2()) {
795      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
796      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
797      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
798      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
799    }
800    // Special handling for half-precision FP.
801    if (!Subtarget->hasFP16()) {
802      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
803      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
804    }
805  }
806
807  // We have target-specific dag combine patterns for the following nodes:
808  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
809  setTargetDAGCombine(ISD::ADD);
810  setTargetDAGCombine(ISD::SUB);
811  setTargetDAGCombine(ISD::MUL);
812  setTargetDAGCombine(ISD::AND);
813  setTargetDAGCombine(ISD::OR);
814  setTargetDAGCombine(ISD::XOR);
815
816  if (Subtarget->hasV6Ops())
817    setTargetDAGCombine(ISD::SRL);
818
819  setStackPointerRegisterToSaveRestore(ARM::SP);
820
821  if (TM.Options.UseSoftFloat || Subtarget->isThumb1Only() ||
822      !Subtarget->hasVFP2())
823    setSchedulingPreference(Sched::RegPressure);
824  else
825    setSchedulingPreference(Sched::Hybrid);
826
827  //// temporary - rewrite interface to use type
828  maxStoresPerMemcpy = maxStoresPerMemcpyOptSize = 1;
829  maxStoresPerMemset = 16;
830  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
831
832  // On ARM arguments smaller than 4 bytes are extended, so all arguments
833  // are at least 4 bytes aligned.
834  setMinStackArgumentAlignment(4);
835
836  benefitFromCodePlacementOpt = true;
837
838  // Prefer likely predicted branches to selects on out-of-order cores.
839  predictableSelectIsExpensive = Subtarget->isLikeA9();
840
841  setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
842}
843
844// FIXME: It might make sense to define the representative register class as the
845// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
846// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
847// SPR's representative would be DPR_VFP2. This should work well if register
848// pressure tracking were modified such that a register use would increment the
849// pressure of the register class's representative and all of it's super
850// classes' representatives transitively. We have not implemented this because
851// of the difficulty prior to coalescing of modeling operand register classes
852// due to the common occurrence of cross class copies and subregister insertions
853// and extractions.
854std::pair<const TargetRegisterClass*, uint8_t>
855ARMTargetLowering::findRepresentativeClass(EVT VT) const{
856  const TargetRegisterClass *RRC = 0;
857  uint8_t Cost = 1;
858  switch (VT.getSimpleVT().SimpleTy) {
859  default:
860    return TargetLowering::findRepresentativeClass(VT);
861  // Use DPR as representative register class for all floating point
862  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
863  // the cost is 1 for both f32 and f64.
864  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
865  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
866    RRC = &ARM::DPRRegClass;
867    // When NEON is used for SP, only half of the register file is available
868    // because operations that define both SP and DP results will be constrained
869    // to the VFP2 class (D0-D15). We currently model this constraint prior to
870    // coalescing by double-counting the SP regs. See the FIXME above.
871    if (Subtarget->useNEONForSinglePrecisionFP())
872      Cost = 2;
873    break;
874  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
875  case MVT::v4f32: case MVT::v2f64:
876    RRC = &ARM::DPRRegClass;
877    Cost = 2;
878    break;
879  case MVT::v4i64:
880    RRC = &ARM::DPRRegClass;
881    Cost = 4;
882    break;
883  case MVT::v8i64:
884    RRC = &ARM::DPRRegClass;
885    Cost = 8;
886    break;
887  }
888  return std::make_pair(RRC, Cost);
889}
890
891const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
892  switch (Opcode) {
893  default: return 0;
894  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
895  case ARMISD::WrapperDYN:    return "ARMISD::WrapperDYN";
896  case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
897  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
898  case ARMISD::CALL:          return "ARMISD::CALL";
899  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
900  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
901  case ARMISD::tCALL:         return "ARMISD::tCALL";
902  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
903  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
904  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
905  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
906  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
907  case ARMISD::CMP:           return "ARMISD::CMP";
908  case ARMISD::CMN:           return "ARMISD::CMN";
909  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
910  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
911  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
912  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
913  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
914
915  case ARMISD::CMOV:          return "ARMISD::CMOV";
916
917  case ARMISD::RBIT:          return "ARMISD::RBIT";
918
919  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
920  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
921  case ARMISD::SITOF:         return "ARMISD::SITOF";
922  case ARMISD::UITOF:         return "ARMISD::UITOF";
923
924  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
925  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
926  case ARMISD::RRX:           return "ARMISD::RRX";
927
928  case ARMISD::ADDC:          return "ARMISD::ADDC";
929  case ARMISD::ADDE:          return "ARMISD::ADDE";
930  case ARMISD::SUBC:          return "ARMISD::SUBC";
931  case ARMISD::SUBE:          return "ARMISD::SUBE";
932
933  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
934  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
935
936  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
937  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
938
939  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
940
941  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
942
943  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
944
945  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
946  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
947
948  case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
949
950  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
951  case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
952  case ARMISD::VCGE:          return "ARMISD::VCGE";
953  case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
954  case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
955  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
956  case ARMISD::VCGT:          return "ARMISD::VCGT";
957  case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
958  case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
959  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
960  case ARMISD::VTST:          return "ARMISD::VTST";
961
962  case ARMISD::VSHL:          return "ARMISD::VSHL";
963  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
964  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
965  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
966  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
967  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
968  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
969  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
970  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
971  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
972  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
973  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
974  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
975  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
976  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
977  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
978  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
979  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
980  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
981  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
982  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
983  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
984  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
985  case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
986  case ARMISD::VDUP:          return "ARMISD::VDUP";
987  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
988  case ARMISD::VEXT:          return "ARMISD::VEXT";
989  case ARMISD::VREV64:        return "ARMISD::VREV64";
990  case ARMISD::VREV32:        return "ARMISD::VREV32";
991  case ARMISD::VREV16:        return "ARMISD::VREV16";
992  case ARMISD::VZIP:          return "ARMISD::VZIP";
993  case ARMISD::VUZP:          return "ARMISD::VUZP";
994  case ARMISD::VTRN:          return "ARMISD::VTRN";
995  case ARMISD::VTBL1:         return "ARMISD::VTBL1";
996  case ARMISD::VTBL2:         return "ARMISD::VTBL2";
997  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
998  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
999  case ARMISD::UMLAL:         return "ARMISD::UMLAL";
1000  case ARMISD::SMLAL:         return "ARMISD::SMLAL";
1001  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
1002  case ARMISD::FMAX:          return "ARMISD::FMAX";
1003  case ARMISD::FMIN:          return "ARMISD::FMIN";
1004  case ARMISD::BFI:           return "ARMISD::BFI";
1005  case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
1006  case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
1007  case ARMISD::VBSL:          return "ARMISD::VBSL";
1008  case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
1009  case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
1010  case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
1011  case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
1012  case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
1013  case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
1014  case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
1015  case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
1016  case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
1017  case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
1018  case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
1019  case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
1020  case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
1021  case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
1022  case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
1023  case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
1024  case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
1025  case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
1026  case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
1027  case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
1028  }
1029}
1030
1031EVT ARMTargetLowering::getSetCCResultType(EVT VT) const {
1032  if (!VT.isVector()) return getPointerTy();
1033  return VT.changeVectorElementTypeToInteger();
1034}
1035
1036/// getRegClassFor - Return the register class that should be used for the
1037/// specified value type.
1038const TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
1039  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1040  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1041  // load / store 4 to 8 consecutive D registers.
1042  if (Subtarget->hasNEON()) {
1043    if (VT == MVT::v4i64)
1044      return &ARM::QQPRRegClass;
1045    if (VT == MVT::v8i64)
1046      return &ARM::QQQQPRRegClass;
1047  }
1048  return TargetLowering::getRegClassFor(VT);
1049}
1050
1051// Create a fast isel object.
1052FastISel *
1053ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1054                                  const TargetLibraryInfo *libInfo) const {
1055  return ARM::createFastISel(funcInfo, libInfo);
1056}
1057
1058/// getMaximalGlobalOffset - Returns the maximal possible offset which can
1059/// be used for loads / stores from the global.
1060unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
1061  return (Subtarget->isThumb1Only() ? 127 : 4095);
1062}
1063
1064Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1065  unsigned NumVals = N->getNumValues();
1066  if (!NumVals)
1067    return Sched::RegPressure;
1068
1069  for (unsigned i = 0; i != NumVals; ++i) {
1070    EVT VT = N->getValueType(i);
1071    if (VT == MVT::Glue || VT == MVT::Other)
1072      continue;
1073    if (VT.isFloatingPoint() || VT.isVector())
1074      return Sched::ILP;
1075  }
1076
1077  if (!N->isMachineOpcode())
1078    return Sched::RegPressure;
1079
1080  // Load are scheduled for latency even if there instruction itinerary
1081  // is not available.
1082  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1083  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1084
1085  if (MCID.getNumDefs() == 0)
1086    return Sched::RegPressure;
1087  if (!Itins->isEmpty() &&
1088      Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1089    return Sched::ILP;
1090
1091  return Sched::RegPressure;
1092}
1093
1094//===----------------------------------------------------------------------===//
1095// Lowering Code
1096//===----------------------------------------------------------------------===//
1097
1098/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1099static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1100  switch (CC) {
1101  default: llvm_unreachable("Unknown condition code!");
1102  case ISD::SETNE:  return ARMCC::NE;
1103  case ISD::SETEQ:  return ARMCC::EQ;
1104  case ISD::SETGT:  return ARMCC::GT;
1105  case ISD::SETGE:  return ARMCC::GE;
1106  case ISD::SETLT:  return ARMCC::LT;
1107  case ISD::SETLE:  return ARMCC::LE;
1108  case ISD::SETUGT: return ARMCC::HI;
1109  case ISD::SETUGE: return ARMCC::HS;
1110  case ISD::SETULT: return ARMCC::LO;
1111  case ISD::SETULE: return ARMCC::LS;
1112  }
1113}
1114
1115/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1116static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1117                        ARMCC::CondCodes &CondCode2) {
1118  CondCode2 = ARMCC::AL;
1119  switch (CC) {
1120  default: llvm_unreachable("Unknown FP condition!");
1121  case ISD::SETEQ:
1122  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1123  case ISD::SETGT:
1124  case ISD::SETOGT: CondCode = ARMCC::GT; break;
1125  case ISD::SETGE:
1126  case ISD::SETOGE: CondCode = ARMCC::GE; break;
1127  case ISD::SETOLT: CondCode = ARMCC::MI; break;
1128  case ISD::SETOLE: CondCode = ARMCC::LS; break;
1129  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1130  case ISD::SETO:   CondCode = ARMCC::VC; break;
1131  case ISD::SETUO:  CondCode = ARMCC::VS; break;
1132  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1133  case ISD::SETUGT: CondCode = ARMCC::HI; break;
1134  case ISD::SETUGE: CondCode = ARMCC::PL; break;
1135  case ISD::SETLT:
1136  case ISD::SETULT: CondCode = ARMCC::LT; break;
1137  case ISD::SETLE:
1138  case ISD::SETULE: CondCode = ARMCC::LE; break;
1139  case ISD::SETNE:
1140  case ISD::SETUNE: CondCode = ARMCC::NE; break;
1141  }
1142}
1143
1144//===----------------------------------------------------------------------===//
1145//                      Calling Convention Implementation
1146//===----------------------------------------------------------------------===//
1147
1148#include "ARMGenCallingConv.inc"
1149
1150/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1151/// given CallingConvention value.
1152CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1153                                                 bool Return,
1154                                                 bool isVarArg) const {
1155  switch (CC) {
1156  default:
1157    llvm_unreachable("Unsupported calling convention");
1158  case CallingConv::Fast:
1159    if (Subtarget->hasVFP2() && !isVarArg) {
1160      if (!Subtarget->isAAPCS_ABI())
1161        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1162      // For AAPCS ABI targets, just use VFP variant of the calling convention.
1163      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1164    }
1165    // Fallthrough
1166  case CallingConv::C: {
1167    // Use target triple & subtarget features to do actual dispatch.
1168    if (!Subtarget->isAAPCS_ABI())
1169      return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1170    else if (Subtarget->hasVFP2() &&
1171             getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1172             !isVarArg)
1173      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1174    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1175  }
1176  case CallingConv::ARM_AAPCS_VFP:
1177    if (!isVarArg)
1178      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1179    // Fallthrough
1180  case CallingConv::ARM_AAPCS:
1181    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1182  case CallingConv::ARM_APCS:
1183    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1184  case CallingConv::GHC:
1185    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
1186  }
1187}
1188
1189/// LowerCallResult - Lower the result values of a call into the
1190/// appropriate copies out of appropriate physical registers.
1191SDValue
1192ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1193                                   CallingConv::ID CallConv, bool isVarArg,
1194                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1195                                   DebugLoc dl, SelectionDAG &DAG,
1196                                   SmallVectorImpl<SDValue> &InVals) const {
1197
1198  // Assign locations to each value returned by this call.
1199  SmallVector<CCValAssign, 16> RVLocs;
1200  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1201                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1202  CCInfo.AnalyzeCallResult(Ins,
1203                           CCAssignFnForNode(CallConv, /* Return*/ true,
1204                                             isVarArg));
1205
1206  // Copy all of the result registers out of their specified physreg.
1207  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1208    CCValAssign VA = RVLocs[i];
1209
1210    SDValue Val;
1211    if (VA.needsCustom()) {
1212      // Handle f64 or half of a v2f64.
1213      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1214                                      InFlag);
1215      Chain = Lo.getValue(1);
1216      InFlag = Lo.getValue(2);
1217      VA = RVLocs[++i]; // skip ahead to next loc
1218      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1219                                      InFlag);
1220      Chain = Hi.getValue(1);
1221      InFlag = Hi.getValue(2);
1222      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1223
1224      if (VA.getLocVT() == MVT::v2f64) {
1225        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1226        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1227                          DAG.getConstant(0, MVT::i32));
1228
1229        VA = RVLocs[++i]; // skip ahead to next loc
1230        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1231        Chain = Lo.getValue(1);
1232        InFlag = Lo.getValue(2);
1233        VA = RVLocs[++i]; // skip ahead to next loc
1234        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1235        Chain = Hi.getValue(1);
1236        InFlag = Hi.getValue(2);
1237        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1238        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1239                          DAG.getConstant(1, MVT::i32));
1240      }
1241    } else {
1242      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1243                               InFlag);
1244      Chain = Val.getValue(1);
1245      InFlag = Val.getValue(2);
1246    }
1247
1248    switch (VA.getLocInfo()) {
1249    default: llvm_unreachable("Unknown loc info!");
1250    case CCValAssign::Full: break;
1251    case CCValAssign::BCvt:
1252      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1253      break;
1254    }
1255
1256    InVals.push_back(Val);
1257  }
1258
1259  return Chain;
1260}
1261
1262/// LowerMemOpCallTo - Store the argument to the stack.
1263SDValue
1264ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1265                                    SDValue StackPtr, SDValue Arg,
1266                                    DebugLoc dl, SelectionDAG &DAG,
1267                                    const CCValAssign &VA,
1268                                    ISD::ArgFlagsTy Flags) const {
1269  unsigned LocMemOffset = VA.getLocMemOffset();
1270  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1271  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1272  return DAG.getStore(Chain, dl, Arg, PtrOff,
1273                      MachinePointerInfo::getStack(LocMemOffset),
1274                      false, false, 0);
1275}
1276
1277void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1278                                         SDValue Chain, SDValue &Arg,
1279                                         RegsToPassVector &RegsToPass,
1280                                         CCValAssign &VA, CCValAssign &NextVA,
1281                                         SDValue &StackPtr,
1282                                         SmallVector<SDValue, 8> &MemOpChains,
1283                                         ISD::ArgFlagsTy Flags) const {
1284
1285  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1286                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1287  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1288
1289  if (NextVA.isRegLoc())
1290    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1291  else {
1292    assert(NextVA.isMemLoc());
1293    if (StackPtr.getNode() == 0)
1294      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1295
1296    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1297                                           dl, DAG, NextVA,
1298                                           Flags));
1299  }
1300}
1301
1302/// LowerCall - Lowering a call into a callseq_start <-
1303/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1304/// nodes.
1305SDValue
1306ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1307                             SmallVectorImpl<SDValue> &InVals) const {
1308  SelectionDAG &DAG                     = CLI.DAG;
1309  DebugLoc &dl                          = CLI.DL;
1310  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
1311  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
1312  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
1313  SDValue Chain                         = CLI.Chain;
1314  SDValue Callee                        = CLI.Callee;
1315  bool &isTailCall                      = CLI.IsTailCall;
1316  CallingConv::ID CallConv              = CLI.CallConv;
1317  bool doesNotRet                       = CLI.DoesNotReturn;
1318  bool isVarArg                         = CLI.IsVarArg;
1319
1320  MachineFunction &MF = DAG.getMachineFunction();
1321  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1322  bool IsSibCall = false;
1323  // Disable tail calls if they're not supported.
1324  if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
1325    isTailCall = false;
1326  if (isTailCall) {
1327    // Check if it's really possible to do a tail call.
1328    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1329                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1330                                                   Outs, OutVals, Ins, DAG);
1331    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1332    // detected sibcalls.
1333    if (isTailCall) {
1334      ++NumTailCalls;
1335      IsSibCall = true;
1336    }
1337  }
1338
1339  // Analyze operands of the call, assigning locations to each operand.
1340  SmallVector<CCValAssign, 16> ArgLocs;
1341  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1342                 getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1343  CCInfo.AnalyzeCallOperands(Outs,
1344                             CCAssignFnForNode(CallConv, /* Return*/ false,
1345                                               isVarArg));
1346
1347  // Get a count of how many bytes are to be pushed on the stack.
1348  unsigned NumBytes = CCInfo.getNextStackOffset();
1349
1350  // For tail calls, memory operands are available in our caller's stack.
1351  if (IsSibCall)
1352    NumBytes = 0;
1353
1354  // Adjust the stack pointer for the new arguments...
1355  // These operations are automatically eliminated by the prolog/epilog pass
1356  if (!IsSibCall)
1357    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1358
1359  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1360
1361  RegsToPassVector RegsToPass;
1362  SmallVector<SDValue, 8> MemOpChains;
1363
1364  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1365  // of tail call optimization, arguments are handled later.
1366  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1367       i != e;
1368       ++i, ++realArgIdx) {
1369    CCValAssign &VA = ArgLocs[i];
1370    SDValue Arg = OutVals[realArgIdx];
1371    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1372    bool isByVal = Flags.isByVal();
1373
1374    // Promote the value if needed.
1375    switch (VA.getLocInfo()) {
1376    default: llvm_unreachable("Unknown loc info!");
1377    case CCValAssign::Full: break;
1378    case CCValAssign::SExt:
1379      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1380      break;
1381    case CCValAssign::ZExt:
1382      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1383      break;
1384    case CCValAssign::AExt:
1385      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1386      break;
1387    case CCValAssign::BCvt:
1388      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1389      break;
1390    }
1391
1392    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1393    if (VA.needsCustom()) {
1394      if (VA.getLocVT() == MVT::v2f64) {
1395        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1396                                  DAG.getConstant(0, MVT::i32));
1397        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1398                                  DAG.getConstant(1, MVT::i32));
1399
1400        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1401                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1402
1403        VA = ArgLocs[++i]; // skip ahead to next loc
1404        if (VA.isRegLoc()) {
1405          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1406                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1407        } else {
1408          assert(VA.isMemLoc());
1409
1410          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1411                                                 dl, DAG, VA, Flags));
1412        }
1413      } else {
1414        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1415                         StackPtr, MemOpChains, Flags);
1416      }
1417    } else if (VA.isRegLoc()) {
1418      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1419    } else if (isByVal) {
1420      assert(VA.isMemLoc());
1421      unsigned offset = 0;
1422
1423      // True if this byval aggregate will be split between registers
1424      // and memory.
1425      if (CCInfo.isFirstByValRegValid()) {
1426        EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1427        unsigned int i, j;
1428        for (i = 0, j = CCInfo.getFirstByValReg(); j < ARM::R4; i++, j++) {
1429          SDValue Const = DAG.getConstant(4*i, MVT::i32);
1430          SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1431          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1432                                     MachinePointerInfo(),
1433                                     false, false, false, 0);
1434          MemOpChains.push_back(Load.getValue(1));
1435          RegsToPass.push_back(std::make_pair(j, Load));
1436        }
1437        offset = ARM::R4 - CCInfo.getFirstByValReg();
1438        CCInfo.clearFirstByValReg();
1439      }
1440
1441      if (Flags.getByValSize() - 4*offset > 0) {
1442        unsigned LocMemOffset = VA.getLocMemOffset();
1443        SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
1444        SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
1445                                  StkPtrOff);
1446        SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
1447        SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
1448        SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
1449                                           MVT::i32);
1450        SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), MVT::i32);
1451
1452        SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
1453        SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
1454        MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
1455                                          Ops, array_lengthof(Ops)));
1456      }
1457    } else if (!IsSibCall) {
1458      assert(VA.isMemLoc());
1459
1460      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1461                                             dl, DAG, VA, Flags));
1462    }
1463  }
1464
1465  if (!MemOpChains.empty())
1466    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1467                        &MemOpChains[0], MemOpChains.size());
1468
1469  // Build a sequence of copy-to-reg nodes chained together with token chain
1470  // and flag operands which copy the outgoing args into the appropriate regs.
1471  SDValue InFlag;
1472  // Tail call byval lowering might overwrite argument registers so in case of
1473  // tail call optimization the copies to registers are lowered later.
1474  if (!isTailCall)
1475    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1476      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1477                               RegsToPass[i].second, InFlag);
1478      InFlag = Chain.getValue(1);
1479    }
1480
1481  // For tail calls lower the arguments to the 'real' stack slot.
1482  if (isTailCall) {
1483    // Force all the incoming stack arguments to be loaded from the stack
1484    // before any new outgoing arguments are stored to the stack, because the
1485    // outgoing stack slots may alias the incoming argument stack slots, and
1486    // the alias isn't otherwise explicit. This is slightly more conservative
1487    // than necessary, because it means that each store effectively depends
1488    // on every argument instead of just those arguments it would clobber.
1489
1490    // Do not flag preceding copytoreg stuff together with the following stuff.
1491    InFlag = SDValue();
1492    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1493      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1494                               RegsToPass[i].second, InFlag);
1495      InFlag = Chain.getValue(1);
1496    }
1497    InFlag =SDValue();
1498  }
1499
1500  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1501  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1502  // node so that legalize doesn't hack it.
1503  bool isDirect = false;
1504  bool isARMFunc = false;
1505  bool isLocalARMFunc = false;
1506  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1507
1508  if (EnableARMLongCalls) {
1509    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1510            && "long-calls with non-static relocation model!");
1511    // Handle a global address or an external symbol. If it's not one of
1512    // those, the target's already in a register, so we don't need to do
1513    // anything extra.
1514    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1515      const GlobalValue *GV = G->getGlobal();
1516      // Create a constant pool entry for the callee address
1517      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1518      ARMConstantPoolValue *CPV =
1519        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
1520
1521      // Get the address of the callee into a register
1522      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1523      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1524      Callee = DAG.getLoad(getPointerTy(), dl,
1525                           DAG.getEntryNode(), CPAddr,
1526                           MachinePointerInfo::getConstantPool(),
1527                           false, false, false, 0);
1528    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1529      const char *Sym = S->getSymbol();
1530
1531      // Create a constant pool entry for the callee address
1532      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1533      ARMConstantPoolValue *CPV =
1534        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1535                                      ARMPCLabelIndex, 0);
1536      // Get the address of the callee into a register
1537      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1538      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1539      Callee = DAG.getLoad(getPointerTy(), dl,
1540                           DAG.getEntryNode(), CPAddr,
1541                           MachinePointerInfo::getConstantPool(),
1542                           false, false, false, 0);
1543    }
1544  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1545    const GlobalValue *GV = G->getGlobal();
1546    isDirect = true;
1547    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1548    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1549                   getTargetMachine().getRelocationModel() != Reloc::Static;
1550    isARMFunc = !Subtarget->isThumb() || isStub;
1551    // ARM call to a local ARM function is predicable.
1552    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1553    // tBX takes a register source operand.
1554    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1555      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1556      ARMConstantPoolValue *CPV =
1557        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 4);
1558      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1559      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1560      Callee = DAG.getLoad(getPointerTy(), dl,
1561                           DAG.getEntryNode(), CPAddr,
1562                           MachinePointerInfo::getConstantPool(),
1563                           false, false, false, 0);
1564      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1565      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1566                           getPointerTy(), Callee, PICLabel);
1567    } else {
1568      // On ELF targets for PIC code, direct calls should go through the PLT
1569      unsigned OpFlags = 0;
1570      if (Subtarget->isTargetELF() &&
1571                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1572        OpFlags = ARMII::MO_PLT;
1573      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1574    }
1575  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1576    isDirect = true;
1577    bool isStub = Subtarget->isTargetDarwin() &&
1578                  getTargetMachine().getRelocationModel() != Reloc::Static;
1579    isARMFunc = !Subtarget->isThumb() || isStub;
1580    // tBX takes a register source operand.
1581    const char *Sym = S->getSymbol();
1582    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1583      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1584      ARMConstantPoolValue *CPV =
1585        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1586                                      ARMPCLabelIndex, 4);
1587      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1588      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1589      Callee = DAG.getLoad(getPointerTy(), dl,
1590                           DAG.getEntryNode(), CPAddr,
1591                           MachinePointerInfo::getConstantPool(),
1592                           false, false, false, 0);
1593      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1594      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1595                           getPointerTy(), Callee, PICLabel);
1596    } else {
1597      unsigned OpFlags = 0;
1598      // On ELF targets for PIC code, direct calls should go through the PLT
1599      if (Subtarget->isTargetELF() &&
1600                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1601        OpFlags = ARMII::MO_PLT;
1602      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1603    }
1604  }
1605
1606  // FIXME: handle tail calls differently.
1607  unsigned CallOpc;
1608  bool HasMinSizeAttr = MF.getFunction()->getFnAttributes().
1609    hasAttribute(Attributes::MinSize);
1610  if (Subtarget->isThumb()) {
1611    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1612      CallOpc = ARMISD::CALL_NOLINK;
1613    else
1614      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1615  } else {
1616    if (!isDirect && !Subtarget->hasV5TOps())
1617      CallOpc = ARMISD::CALL_NOLINK;
1618    else if (doesNotRet && isDirect && Subtarget->hasRAS() &&
1619               // Emit regular call when code size is the priority
1620               !HasMinSizeAttr)
1621      // "mov lr, pc; b _foo" to avoid confusing the RSP
1622      CallOpc = ARMISD::CALL_NOLINK;
1623    else
1624      CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
1625  }
1626
1627  std::vector<SDValue> Ops;
1628  Ops.push_back(Chain);
1629  Ops.push_back(Callee);
1630
1631  // Add argument registers to the end of the list so that they are known live
1632  // into the call.
1633  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1634    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1635                                  RegsToPass[i].second.getValueType()));
1636
1637  // Add a register mask operand representing the call-preserved registers.
1638  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
1639  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
1640  assert(Mask && "Missing call preserved mask for calling convention");
1641  Ops.push_back(DAG.getRegisterMask(Mask));
1642
1643  if (InFlag.getNode())
1644    Ops.push_back(InFlag);
1645
1646  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1647  if (isTailCall)
1648    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1649
1650  // Returns a chain and a flag for retval copy to use.
1651  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1652  InFlag = Chain.getValue(1);
1653
1654  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1655                             DAG.getIntPtrConstant(0, true), InFlag);
1656  if (!Ins.empty())
1657    InFlag = Chain.getValue(1);
1658
1659  // Handle result values, copying them out of physregs into vregs that we
1660  // return.
1661  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1662                         dl, DAG, InVals);
1663}
1664
1665/// HandleByVal - Every parameter *after* a byval parameter is passed
1666/// on the stack.  Remember the next parameter register to allocate,
1667/// and then confiscate the rest of the parameter registers to insure
1668/// this.
1669void
1670ARMTargetLowering::HandleByVal(
1671    CCState *State, unsigned &size, unsigned Align) const {
1672  unsigned reg = State->AllocateReg(GPRArgRegs, 4);
1673  assert((State->getCallOrPrologue() == Prologue ||
1674          State->getCallOrPrologue() == Call) &&
1675         "unhandled ParmContext");
1676  if ((!State->isFirstByValRegValid()) &&
1677      (ARM::R0 <= reg) && (reg <= ARM::R3)) {
1678    if (Subtarget->isAAPCS_ABI() && Align > 4) {
1679      unsigned AlignInRegs = Align / 4;
1680      unsigned Waste = (ARM::R4 - reg) % AlignInRegs;
1681      for (unsigned i = 0; i < Waste; ++i)
1682        reg = State->AllocateReg(GPRArgRegs, 4);
1683    }
1684    if (reg != 0) {
1685      State->setFirstByValReg(reg);
1686      // At a call site, a byval parameter that is split between
1687      // registers and memory needs its size truncated here.  In a
1688      // function prologue, such byval parameters are reassembled in
1689      // memory, and are not truncated.
1690      if (State->getCallOrPrologue() == Call) {
1691        unsigned excess = 4 * (ARM::R4 - reg);
1692        assert(size >= excess && "expected larger existing stack allocation");
1693        size -= excess;
1694      }
1695    }
1696  }
1697  // Confiscate any remaining parameter registers to preclude their
1698  // assignment to subsequent parameters.
1699  while (State->AllocateReg(GPRArgRegs, 4))
1700    ;
1701}
1702
1703/// MatchingStackOffset - Return true if the given stack call argument is
1704/// already available in the same position (relatively) of the caller's
1705/// incoming argument stack.
1706static
1707bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1708                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1709                         const TargetInstrInfo *TII) {
1710  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1711  int FI = INT_MAX;
1712  if (Arg.getOpcode() == ISD::CopyFromReg) {
1713    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1714    if (!TargetRegisterInfo::isVirtualRegister(VR))
1715      return false;
1716    MachineInstr *Def = MRI->getVRegDef(VR);
1717    if (!Def)
1718      return false;
1719    if (!Flags.isByVal()) {
1720      if (!TII->isLoadFromStackSlot(Def, FI))
1721        return false;
1722    } else {
1723      return false;
1724    }
1725  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1726    if (Flags.isByVal())
1727      // ByVal argument is passed in as a pointer but it's now being
1728      // dereferenced. e.g.
1729      // define @foo(%struct.X* %A) {
1730      //   tail call @bar(%struct.X* byval %A)
1731      // }
1732      return false;
1733    SDValue Ptr = Ld->getBasePtr();
1734    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1735    if (!FINode)
1736      return false;
1737    FI = FINode->getIndex();
1738  } else
1739    return false;
1740
1741  assert(FI != INT_MAX);
1742  if (!MFI->isFixedObjectIndex(FI))
1743    return false;
1744  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1745}
1746
1747/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1748/// for tail call optimization. Targets which want to do tail call
1749/// optimization should implement this function.
1750bool
1751ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1752                                                     CallingConv::ID CalleeCC,
1753                                                     bool isVarArg,
1754                                                     bool isCalleeStructRet,
1755                                                     bool isCallerStructRet,
1756                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1757                                    const SmallVectorImpl<SDValue> &OutVals,
1758                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1759                                                     SelectionDAG& DAG) const {
1760  const Function *CallerF = DAG.getMachineFunction().getFunction();
1761  CallingConv::ID CallerCC = CallerF->getCallingConv();
1762  bool CCMatch = CallerCC == CalleeCC;
1763
1764  // Look for obvious safe cases to perform tail call optimization that do not
1765  // require ABI changes. This is what gcc calls sibcall.
1766
1767  // Do not sibcall optimize vararg calls unless the call site is not passing
1768  // any arguments.
1769  if (isVarArg && !Outs.empty())
1770    return false;
1771
1772  // Also avoid sibcall optimization if either caller or callee uses struct
1773  // return semantics.
1774  if (isCalleeStructRet || isCallerStructRet)
1775    return false;
1776
1777  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1778  // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
1779  // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
1780  // support in the assembler and linker to be used. This would need to be
1781  // fixed to fully support tail calls in Thumb1.
1782  //
1783  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1784  // LR.  This means if we need to reload LR, it takes an extra instructions,
1785  // which outweighs the value of the tail call; but here we don't know yet
1786  // whether LR is going to be used.  Probably the right approach is to
1787  // generate the tail call here and turn it back into CALL/RET in
1788  // emitEpilogue if LR is used.
1789
1790  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1791  // but we need to make sure there are enough registers; the only valid
1792  // registers are the 4 used for parameters.  We don't currently do this
1793  // case.
1794  if (Subtarget->isThumb1Only())
1795    return false;
1796
1797  // If the calling conventions do not match, then we'd better make sure the
1798  // results are returned in the same way as what the caller expects.
1799  if (!CCMatch) {
1800    SmallVector<CCValAssign, 16> RVLocs1;
1801    ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1802                       getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
1803    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1804
1805    SmallVector<CCValAssign, 16> RVLocs2;
1806    ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1807                       getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
1808    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1809
1810    if (RVLocs1.size() != RVLocs2.size())
1811      return false;
1812    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1813      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1814        return false;
1815      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1816        return false;
1817      if (RVLocs1[i].isRegLoc()) {
1818        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1819          return false;
1820      } else {
1821        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1822          return false;
1823      }
1824    }
1825  }
1826
1827  // If Caller's vararg or byval argument has been split between registers and
1828  // stack, do not perform tail call, since part of the argument is in caller's
1829  // local frame.
1830  const ARMFunctionInfo *AFI_Caller = DAG.getMachineFunction().
1831                                      getInfo<ARMFunctionInfo>();
1832  if (AFI_Caller->getVarArgsRegSaveSize())
1833    return false;
1834
1835  // If the callee takes no arguments then go on to check the results of the
1836  // call.
1837  if (!Outs.empty()) {
1838    // Check if stack adjustment is needed. For now, do not do this if any
1839    // argument is passed on the stack.
1840    SmallVector<CCValAssign, 16> ArgLocs;
1841    ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
1842                      getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1843    CCInfo.AnalyzeCallOperands(Outs,
1844                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1845    if (CCInfo.getNextStackOffset()) {
1846      MachineFunction &MF = DAG.getMachineFunction();
1847
1848      // Check if the arguments are already laid out in the right way as
1849      // the caller's fixed stack objects.
1850      MachineFrameInfo *MFI = MF.getFrameInfo();
1851      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1852      const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1853      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1854           i != e;
1855           ++i, ++realArgIdx) {
1856        CCValAssign &VA = ArgLocs[i];
1857        EVT RegVT = VA.getLocVT();
1858        SDValue Arg = OutVals[realArgIdx];
1859        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1860        if (VA.getLocInfo() == CCValAssign::Indirect)
1861          return false;
1862        if (VA.needsCustom()) {
1863          // f64 and vector types are split into multiple registers or
1864          // register/stack-slot combinations.  The types will not match
1865          // the registers; give up on memory f64 refs until we figure
1866          // out what to do about this.
1867          if (!VA.isRegLoc())
1868            return false;
1869          if (!ArgLocs[++i].isRegLoc())
1870            return false;
1871          if (RegVT == MVT::v2f64) {
1872            if (!ArgLocs[++i].isRegLoc())
1873              return false;
1874            if (!ArgLocs[++i].isRegLoc())
1875              return false;
1876          }
1877        } else if (!VA.isRegLoc()) {
1878          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1879                                   MFI, MRI, TII))
1880            return false;
1881        }
1882      }
1883    }
1884  }
1885
1886  return true;
1887}
1888
1889bool
1890ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1891                                  MachineFunction &MF, bool isVarArg,
1892                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
1893                                  LLVMContext &Context) const {
1894  SmallVector<CCValAssign, 16> RVLocs;
1895  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context);
1896  return CCInfo.CheckReturn(Outs, CCAssignFnForNode(CallConv, /*Return=*/true,
1897                                                    isVarArg));
1898}
1899
1900SDValue
1901ARMTargetLowering::LowerReturn(SDValue Chain,
1902                               CallingConv::ID CallConv, bool isVarArg,
1903                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1904                               const SmallVectorImpl<SDValue> &OutVals,
1905                               DebugLoc dl, SelectionDAG &DAG) const {
1906
1907  // CCValAssign - represent the assignment of the return value to a location.
1908  SmallVector<CCValAssign, 16> RVLocs;
1909
1910  // CCState - Info about the registers and stack slots.
1911  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1912                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1913
1914  // Analyze outgoing return values.
1915  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1916                                               isVarArg));
1917
1918  // If this is the first return lowered for this function, add
1919  // the regs to the liveout set for the function.
1920  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1921    for (unsigned i = 0; i != RVLocs.size(); ++i)
1922      if (RVLocs[i].isRegLoc())
1923        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1924  }
1925
1926  SDValue Flag;
1927
1928  // Copy the result values into the output registers.
1929  for (unsigned i = 0, realRVLocIdx = 0;
1930       i != RVLocs.size();
1931       ++i, ++realRVLocIdx) {
1932    CCValAssign &VA = RVLocs[i];
1933    assert(VA.isRegLoc() && "Can only return in registers!");
1934
1935    SDValue Arg = OutVals[realRVLocIdx];
1936
1937    switch (VA.getLocInfo()) {
1938    default: llvm_unreachable("Unknown loc info!");
1939    case CCValAssign::Full: break;
1940    case CCValAssign::BCvt:
1941      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1942      break;
1943    }
1944
1945    if (VA.needsCustom()) {
1946      if (VA.getLocVT() == MVT::v2f64) {
1947        // Extract the first half and return it in two registers.
1948        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1949                                   DAG.getConstant(0, MVT::i32));
1950        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1951                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1952
1953        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1954        Flag = Chain.getValue(1);
1955        VA = RVLocs[++i]; // skip ahead to next loc
1956        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1957                                 HalfGPRs.getValue(1), Flag);
1958        Flag = Chain.getValue(1);
1959        VA = RVLocs[++i]; // skip ahead to next loc
1960
1961        // Extract the 2nd half and fall through to handle it as an f64 value.
1962        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1963                          DAG.getConstant(1, MVT::i32));
1964      }
1965      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1966      // available.
1967      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1968                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1969      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1970      Flag = Chain.getValue(1);
1971      VA = RVLocs[++i]; // skip ahead to next loc
1972      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1973                               Flag);
1974    } else
1975      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1976
1977    // Guarantee that all emitted copies are
1978    // stuck together, avoiding something bad.
1979    Flag = Chain.getValue(1);
1980  }
1981
1982  SDValue result;
1983  if (Flag.getNode())
1984    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1985  else // Return Void
1986    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1987
1988  return result;
1989}
1990
1991bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1992  if (N->getNumValues() != 1)
1993    return false;
1994  if (!N->hasNUsesOfValue(1, 0))
1995    return false;
1996
1997  SDValue TCChain = Chain;
1998  SDNode *Copy = *N->use_begin();
1999  if (Copy->getOpcode() == ISD::CopyToReg) {
2000    // If the copy has a glue operand, we conservatively assume it isn't safe to
2001    // perform a tail call.
2002    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2003      return false;
2004    TCChain = Copy->getOperand(0);
2005  } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
2006    SDNode *VMov = Copy;
2007    // f64 returned in a pair of GPRs.
2008    SmallPtrSet<SDNode*, 2> Copies;
2009    for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2010         UI != UE; ++UI) {
2011      if (UI->getOpcode() != ISD::CopyToReg)
2012        return false;
2013      Copies.insert(*UI);
2014    }
2015    if (Copies.size() > 2)
2016      return false;
2017
2018    for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2019         UI != UE; ++UI) {
2020      SDValue UseChain = UI->getOperand(0);
2021      if (Copies.count(UseChain.getNode()))
2022        // Second CopyToReg
2023        Copy = *UI;
2024      else
2025        // First CopyToReg
2026        TCChain = UseChain;
2027    }
2028  } else if (Copy->getOpcode() == ISD::BITCAST) {
2029    // f32 returned in a single GPR.
2030    if (!Copy->hasOneUse())
2031      return false;
2032    Copy = *Copy->use_begin();
2033    if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
2034      return false;
2035    Chain = Copy->getOperand(0);
2036  } else {
2037    return false;
2038  }
2039
2040  bool HasRet = false;
2041  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2042       UI != UE; ++UI) {
2043    if (UI->getOpcode() != ARMISD::RET_FLAG)
2044      return false;
2045    HasRet = true;
2046  }
2047
2048  if (!HasRet)
2049    return false;
2050
2051  Chain = TCChain;
2052  return true;
2053}
2054
2055bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
2056  if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
2057    return false;
2058
2059  if (!CI->isTailCall())
2060    return false;
2061
2062  return !Subtarget->isThumb1Only();
2063}
2064
2065// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2066// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2067// one of the above mentioned nodes. It has to be wrapped because otherwise
2068// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2069// be used to form addressing mode. These wrapped nodes will be selected
2070// into MOVi.
2071static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
2072  EVT PtrVT = Op.getValueType();
2073  // FIXME there is no actual debug info here
2074  DebugLoc dl = Op.getDebugLoc();
2075  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2076  SDValue Res;
2077  if (CP->isMachineConstantPoolEntry())
2078    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2079                                    CP->getAlignment());
2080  else
2081    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2082                                    CP->getAlignment());
2083  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
2084}
2085
2086unsigned ARMTargetLowering::getJumpTableEncoding() const {
2087  return MachineJumpTableInfo::EK_Inline;
2088}
2089
2090SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
2091                                             SelectionDAG &DAG) const {
2092  MachineFunction &MF = DAG.getMachineFunction();
2093  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2094  unsigned ARMPCLabelIndex = 0;
2095  DebugLoc DL = Op.getDebugLoc();
2096  EVT PtrVT = getPointerTy();
2097  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2098  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2099  SDValue CPAddr;
2100  if (RelocM == Reloc::Static) {
2101    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
2102  } else {
2103    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2104    ARMPCLabelIndex = AFI->createPICLabelUId();
2105    ARMConstantPoolValue *CPV =
2106      ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
2107                                      ARMCP::CPBlockAddress, PCAdj);
2108    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2109  }
2110  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2111  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
2112                               MachinePointerInfo::getConstantPool(),
2113                               false, false, false, 0);
2114  if (RelocM == Reloc::Static)
2115    return Result;
2116  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2117  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2118}
2119
2120// Lower ISD::GlobalTLSAddress using the "general dynamic" model
2121SDValue
2122ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
2123                                                 SelectionDAG &DAG) const {
2124  DebugLoc dl = GA->getDebugLoc();
2125  EVT PtrVT = getPointerTy();
2126  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2127  MachineFunction &MF = DAG.getMachineFunction();
2128  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2129  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2130  ARMConstantPoolValue *CPV =
2131    ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2132                                    ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
2133  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2134  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
2135  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
2136                         MachinePointerInfo::getConstantPool(),
2137                         false, false, false, 0);
2138  SDValue Chain = Argument.getValue(1);
2139
2140  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2141  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
2142
2143  // call __tls_get_addr.
2144  ArgListTy Args;
2145  ArgListEntry Entry;
2146  Entry.Node = Argument;
2147  Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2148  Args.push_back(Entry);
2149  // FIXME: is there useful debug info available here?
2150  TargetLowering::CallLoweringInfo CLI(Chain,
2151                (Type *) Type::getInt32Ty(*DAG.getContext()),
2152                false, false, false, false,
2153                0, CallingConv::C, /*isTailCall=*/false,
2154                /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
2155                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
2156  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2157  return CallResult.first;
2158}
2159
2160// Lower ISD::GlobalTLSAddress using the "initial exec" or
2161// "local exec" model.
2162SDValue
2163ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2164                                        SelectionDAG &DAG,
2165                                        TLSModel::Model model) const {
2166  const GlobalValue *GV = GA->getGlobal();
2167  DebugLoc dl = GA->getDebugLoc();
2168  SDValue Offset;
2169  SDValue Chain = DAG.getEntryNode();
2170  EVT PtrVT = getPointerTy();
2171  // Get the Thread Pointer
2172  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2173
2174  if (model == TLSModel::InitialExec) {
2175    MachineFunction &MF = DAG.getMachineFunction();
2176    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2177    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2178    // Initial exec model.
2179    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2180    ARMConstantPoolValue *CPV =
2181      ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2182                                      ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2183                                      true);
2184    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2185    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2186    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2187                         MachinePointerInfo::getConstantPool(),
2188                         false, false, false, 0);
2189    Chain = Offset.getValue(1);
2190
2191    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2192    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2193
2194    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2195                         MachinePointerInfo::getConstantPool(),
2196                         false, false, false, 0);
2197  } else {
2198    // local exec model
2199    assert(model == TLSModel::LocalExec);
2200    ARMConstantPoolValue *CPV =
2201      ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
2202    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2203    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2204    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2205                         MachinePointerInfo::getConstantPool(),
2206                         false, false, false, 0);
2207  }
2208
2209  // The address of the thread local variable is the add of the thread
2210  // pointer with the offset of the variable.
2211  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2212}
2213
2214SDValue
2215ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2216  // TODO: implement the "local dynamic" model
2217  assert(Subtarget->isTargetELF() &&
2218         "TLS not implemented for non-ELF targets");
2219  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2220
2221  TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
2222
2223  switch (model) {
2224    case TLSModel::GeneralDynamic:
2225    case TLSModel::LocalDynamic:
2226      return LowerToTLSGeneralDynamicModel(GA, DAG);
2227    case TLSModel::InitialExec:
2228    case TLSModel::LocalExec:
2229      return LowerToTLSExecModels(GA, DAG, model);
2230  }
2231  llvm_unreachable("bogus TLS model");
2232}
2233
2234SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2235                                                 SelectionDAG &DAG) const {
2236  EVT PtrVT = getPointerTy();
2237  DebugLoc dl = Op.getDebugLoc();
2238  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2239  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2240  if (RelocM == Reloc::PIC_) {
2241    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2242    ARMConstantPoolValue *CPV =
2243      ARMConstantPoolConstant::Create(GV,
2244                                      UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2245    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2246    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2247    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
2248                                 CPAddr,
2249                                 MachinePointerInfo::getConstantPool(),
2250                                 false, false, false, 0);
2251    SDValue Chain = Result.getValue(1);
2252    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2253    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
2254    if (!UseGOTOFF)
2255      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2256                           MachinePointerInfo::getGOT(),
2257                           false, false, false, 0);
2258    return Result;
2259  }
2260
2261  // If we have T2 ops, we can materialize the address directly via movt/movw
2262  // pair. This is always cheaper.
2263  if (Subtarget->useMovt()) {
2264    ++NumMovwMovt;
2265    // FIXME: Once remat is capable of dealing with instructions with register
2266    // operands, expand this into two nodes.
2267    return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2268                       DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2269  } else {
2270    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2271    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2272    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2273                       MachinePointerInfo::getConstantPool(),
2274                       false, false, false, 0);
2275  }
2276}
2277
2278SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2279                                                    SelectionDAG &DAG) const {
2280  EVT PtrVT = getPointerTy();
2281  DebugLoc dl = Op.getDebugLoc();
2282  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2283  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2284  MachineFunction &MF = DAG.getMachineFunction();
2285  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2286
2287  // FIXME: Enable this for static codegen when tool issues are fixed.  Also
2288  // update ARMFastISel::ARMMaterializeGV.
2289  if (Subtarget->useMovt() && RelocM != Reloc::Static) {
2290    ++NumMovwMovt;
2291    // FIXME: Once remat is capable of dealing with instructions with register
2292    // operands, expand this into two nodes.
2293    if (RelocM == Reloc::Static)
2294      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2295                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2296
2297    unsigned Wrapper = (RelocM == Reloc::PIC_)
2298      ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
2299    SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
2300                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2301    if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2302      Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2303                           MachinePointerInfo::getGOT(),
2304                           false, false, false, 0);
2305    return Result;
2306  }
2307
2308  unsigned ARMPCLabelIndex = 0;
2309  SDValue CPAddr;
2310  if (RelocM == Reloc::Static) {
2311    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2312  } else {
2313    ARMPCLabelIndex = AFI->createPICLabelUId();
2314    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
2315    ARMConstantPoolValue *CPV =
2316      ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue,
2317                                      PCAdj);
2318    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2319  }
2320  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2321
2322  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2323                               MachinePointerInfo::getConstantPool(),
2324                               false, false, false, 0);
2325  SDValue Chain = Result.getValue(1);
2326
2327  if (RelocM == Reloc::PIC_) {
2328    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2329    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2330  }
2331
2332  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2333    Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
2334                         false, false, false, 0);
2335
2336  return Result;
2337}
2338
2339SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
2340                                                    SelectionDAG &DAG) const {
2341  assert(Subtarget->isTargetELF() &&
2342         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
2343  MachineFunction &MF = DAG.getMachineFunction();
2344  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2345  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2346  EVT PtrVT = getPointerTy();
2347  DebugLoc dl = Op.getDebugLoc();
2348  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2349  ARMConstantPoolValue *CPV =
2350    ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
2351                                  ARMPCLabelIndex, PCAdj);
2352  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2353  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2354  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2355                               MachinePointerInfo::getConstantPool(),
2356                               false, false, false, 0);
2357  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2358  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2359}
2360
2361SDValue
2362ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2363  DebugLoc dl = Op.getDebugLoc();
2364  SDValue Val = DAG.getConstant(0, MVT::i32);
2365  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
2366                     DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
2367                     Op.getOperand(1), Val);
2368}
2369
2370SDValue
2371ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2372  DebugLoc dl = Op.getDebugLoc();
2373  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2374                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2375}
2376
2377SDValue
2378ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2379                                          const ARMSubtarget *Subtarget) const {
2380  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2381  DebugLoc dl = Op.getDebugLoc();
2382  switch (IntNo) {
2383  default: return SDValue();    // Don't custom lower most intrinsics.
2384  case Intrinsic::arm_thread_pointer: {
2385    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2386    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2387  }
2388  case Intrinsic::eh_sjlj_lsda: {
2389    MachineFunction &MF = DAG.getMachineFunction();
2390    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2391    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2392    EVT PtrVT = getPointerTy();
2393    DebugLoc dl = Op.getDebugLoc();
2394    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2395    SDValue CPAddr;
2396    unsigned PCAdj = (RelocM != Reloc::PIC_)
2397      ? 0 : (Subtarget->isThumb() ? 4 : 8);
2398    ARMConstantPoolValue *CPV =
2399      ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
2400                                      ARMCP::CPLSDA, PCAdj);
2401    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2402    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2403    SDValue Result =
2404      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2405                  MachinePointerInfo::getConstantPool(),
2406                  false, false, false, 0);
2407
2408    if (RelocM == Reloc::PIC_) {
2409      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2410      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2411    }
2412    return Result;
2413  }
2414  case Intrinsic::arm_neon_vmulls:
2415  case Intrinsic::arm_neon_vmullu: {
2416    unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2417      ? ARMISD::VMULLs : ARMISD::VMULLu;
2418    return DAG.getNode(NewOpc, Op.getDebugLoc(), Op.getValueType(),
2419                       Op.getOperand(1), Op.getOperand(2));
2420  }
2421  }
2422}
2423
2424static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
2425                               const ARMSubtarget *Subtarget) {
2426  DebugLoc dl = Op.getDebugLoc();
2427  if (!Subtarget->hasDataBarrier()) {
2428    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2429    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2430    // here.
2431    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2432           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2433    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2434                       DAG.getConstant(0, MVT::i32));
2435  }
2436
2437  SDValue Op5 = Op.getOperand(5);
2438  bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
2439  unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2440  unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2441  bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
2442
2443  ARM_MB::MemBOpt DMBOpt;
2444  if (isDeviceBarrier)
2445    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
2446  else
2447    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
2448  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2449                     DAG.getConstant(DMBOpt, MVT::i32));
2450}
2451
2452
2453static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
2454                                 const ARMSubtarget *Subtarget) {
2455  // FIXME: handle "fence singlethread" more efficiently.
2456  DebugLoc dl = Op.getDebugLoc();
2457  if (!Subtarget->hasDataBarrier()) {
2458    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2459    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2460    // here.
2461    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2462           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2463    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2464                       DAG.getConstant(0, MVT::i32));
2465  }
2466
2467  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2468                     DAG.getConstant(ARM_MB::ISH, MVT::i32));
2469}
2470
2471static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2472                             const ARMSubtarget *Subtarget) {
2473  // ARM pre v5TE and Thumb1 does not have preload instructions.
2474  if (!(Subtarget->isThumb2() ||
2475        (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2476    // Just preserve the chain.
2477    return Op.getOperand(0);
2478
2479  DebugLoc dl = Op.getDebugLoc();
2480  unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2481  if (!isRead &&
2482      (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2483    // ARMv7 with MP extension has PLDW.
2484    return Op.getOperand(0);
2485
2486  unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2487  if (Subtarget->isThumb()) {
2488    // Invert the bits.
2489    isRead = ~isRead & 1;
2490    isData = ~isData & 1;
2491  }
2492
2493  return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2494                     Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2495                     DAG.getConstant(isData, MVT::i32));
2496}
2497
2498static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2499  MachineFunction &MF = DAG.getMachineFunction();
2500  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2501
2502  // vastart just stores the address of the VarArgsFrameIndex slot into the
2503  // memory location argument.
2504  DebugLoc dl = Op.getDebugLoc();
2505  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2506  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2507  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2508  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2509                      MachinePointerInfo(SV), false, false, 0);
2510}
2511
2512SDValue
2513ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2514                                        SDValue &Root, SelectionDAG &DAG,
2515                                        DebugLoc dl) const {
2516  MachineFunction &MF = DAG.getMachineFunction();
2517  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2518
2519  const TargetRegisterClass *RC;
2520  if (AFI->isThumb1OnlyFunction())
2521    RC = &ARM::tGPRRegClass;
2522  else
2523    RC = &ARM::GPRRegClass;
2524
2525  // Transform the arguments stored in physical registers into virtual ones.
2526  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2527  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2528
2529  SDValue ArgValue2;
2530  if (NextVA.isMemLoc()) {
2531    MachineFrameInfo *MFI = MF.getFrameInfo();
2532    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2533
2534    // Create load node to retrieve arguments from the stack.
2535    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2536    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2537                            MachinePointerInfo::getFixedStack(FI),
2538                            false, false, false, 0);
2539  } else {
2540    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2541    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2542  }
2543
2544  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2545}
2546
2547void
2548ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
2549                                  unsigned &VARegSize, unsigned &VARegSaveSize)
2550  const {
2551  unsigned NumGPRs;
2552  if (CCInfo.isFirstByValRegValid())
2553    NumGPRs = ARM::R4 - CCInfo.getFirstByValReg();
2554  else {
2555    unsigned int firstUnalloced;
2556    firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
2557                                                sizeof(GPRArgRegs) /
2558                                                sizeof(GPRArgRegs[0]));
2559    NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
2560  }
2561
2562  unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
2563  VARegSize = NumGPRs * 4;
2564  VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2565}
2566
2567// The remaining GPRs hold either the beginning of variable-argument
2568// data, or the beginning of an aggregate passed by value (usuall
2569// byval).  Either way, we allocate stack slots adjacent to the data
2570// provided by our caller, and store the unallocated registers there.
2571// If this is a variadic function, the va_list pointer will begin with
2572// these values; otherwise, this reassembles a (byval) structure that
2573// was split between registers and memory.
2574void
2575ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
2576                                        DebugLoc dl, SDValue &Chain,
2577                                        const Value *OrigArg,
2578                                        unsigned OffsetFromOrigArg,
2579                                        unsigned ArgOffset,
2580                                        bool ForceMutable) const {
2581  MachineFunction &MF = DAG.getMachineFunction();
2582  MachineFrameInfo *MFI = MF.getFrameInfo();
2583  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2584  unsigned firstRegToSaveIndex;
2585  if (CCInfo.isFirstByValRegValid())
2586    firstRegToSaveIndex = CCInfo.getFirstByValReg() - ARM::R0;
2587  else {
2588    firstRegToSaveIndex = CCInfo.getFirstUnallocated
2589      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2590  }
2591
2592  unsigned VARegSize, VARegSaveSize;
2593  computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2594  if (VARegSaveSize) {
2595    // If this function is vararg, store any remaining integer argument regs
2596    // to their spots on the stack so that they may be loaded by deferencing
2597    // the result of va_next.
2598    AFI->setVarArgsRegSaveSize(VARegSaveSize);
2599    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(VARegSaveSize,
2600                                                     ArgOffset + VARegSaveSize
2601                                                     - VARegSize,
2602                                                     false));
2603    SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2604                                    getPointerTy());
2605
2606    SmallVector<SDValue, 4> MemOps;
2607    for (unsigned i = 0; firstRegToSaveIndex < 4; ++firstRegToSaveIndex, ++i) {
2608      const TargetRegisterClass *RC;
2609      if (AFI->isThumb1OnlyFunction())
2610        RC = &ARM::tGPRRegClass;
2611      else
2612        RC = &ARM::GPRRegClass;
2613
2614      unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
2615      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2616      SDValue Store =
2617        DAG.getStore(Val.getValue(1), dl, Val, FIN,
2618                     MachinePointerInfo(OrigArg, OffsetFromOrigArg + 4*i),
2619                     false, false, 0);
2620      MemOps.push_back(Store);
2621      FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2622                        DAG.getConstant(4, getPointerTy()));
2623    }
2624    if (!MemOps.empty())
2625      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2626                          &MemOps[0], MemOps.size());
2627  } else
2628    // This will point to the next argument passed via stack.
2629    AFI->setVarArgsFrameIndex(
2630        MFI->CreateFixedObject(4, ArgOffset, !ForceMutable));
2631}
2632
2633SDValue
2634ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2635                                        CallingConv::ID CallConv, bool isVarArg,
2636                                        const SmallVectorImpl<ISD::InputArg>
2637                                          &Ins,
2638                                        DebugLoc dl, SelectionDAG &DAG,
2639                                        SmallVectorImpl<SDValue> &InVals)
2640                                          const {
2641  MachineFunction &MF = DAG.getMachineFunction();
2642  MachineFrameInfo *MFI = MF.getFrameInfo();
2643
2644  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2645
2646  // Assign locations to all of the incoming arguments.
2647  SmallVector<CCValAssign, 16> ArgLocs;
2648  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2649                    getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
2650  CCInfo.AnalyzeFormalArguments(Ins,
2651                                CCAssignFnForNode(CallConv, /* Return*/ false,
2652                                                  isVarArg));
2653
2654  SmallVector<SDValue, 16> ArgValues;
2655  int lastInsIndex = -1;
2656  SDValue ArgValue;
2657  Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
2658  unsigned CurArgIdx = 0;
2659  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2660    CCValAssign &VA = ArgLocs[i];
2661    std::advance(CurOrigArg, Ins[VA.getValNo()].OrigArgIndex - CurArgIdx);
2662    CurArgIdx = Ins[VA.getValNo()].OrigArgIndex;
2663    // Arguments stored in registers.
2664    if (VA.isRegLoc()) {
2665      EVT RegVT = VA.getLocVT();
2666
2667      if (VA.needsCustom()) {
2668        // f64 and vector types are split up into multiple registers or
2669        // combinations of registers and stack slots.
2670        if (VA.getLocVT() == MVT::v2f64) {
2671          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2672                                                   Chain, DAG, dl);
2673          VA = ArgLocs[++i]; // skip ahead to next loc
2674          SDValue ArgValue2;
2675          if (VA.isMemLoc()) {
2676            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2677            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2678            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2679                                    MachinePointerInfo::getFixedStack(FI),
2680                                    false, false, false, 0);
2681          } else {
2682            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2683                                             Chain, DAG, dl);
2684          }
2685          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2686          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2687                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2688          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2689                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2690        } else
2691          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2692
2693      } else {
2694        const TargetRegisterClass *RC;
2695
2696        if (RegVT == MVT::f32)
2697          RC = &ARM::SPRRegClass;
2698        else if (RegVT == MVT::f64)
2699          RC = &ARM::DPRRegClass;
2700        else if (RegVT == MVT::v2f64)
2701          RC = &ARM::QPRRegClass;
2702        else if (RegVT == MVT::i32)
2703          RC = AFI->isThumb1OnlyFunction() ?
2704            (const TargetRegisterClass*)&ARM::tGPRRegClass :
2705            (const TargetRegisterClass*)&ARM::GPRRegClass;
2706        else
2707          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2708
2709        // Transform the arguments in physical registers into virtual ones.
2710        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2711        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2712      }
2713
2714      // If this is an 8 or 16-bit value, it is really passed promoted
2715      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2716      // truncate to the right size.
2717      switch (VA.getLocInfo()) {
2718      default: llvm_unreachable("Unknown loc info!");
2719      case CCValAssign::Full: break;
2720      case CCValAssign::BCvt:
2721        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2722        break;
2723      case CCValAssign::SExt:
2724        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2725                               DAG.getValueType(VA.getValVT()));
2726        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2727        break;
2728      case CCValAssign::ZExt:
2729        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2730                               DAG.getValueType(VA.getValVT()));
2731        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2732        break;
2733      }
2734
2735      InVals.push_back(ArgValue);
2736
2737    } else { // VA.isRegLoc()
2738
2739      // sanity check
2740      assert(VA.isMemLoc());
2741      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2742
2743      int index = ArgLocs[i].getValNo();
2744
2745      // Some Ins[] entries become multiple ArgLoc[] entries.
2746      // Process them only once.
2747      if (index != lastInsIndex)
2748        {
2749          ISD::ArgFlagsTy Flags = Ins[index].Flags;
2750          // FIXME: For now, all byval parameter objects are marked mutable.
2751          // This can be changed with more analysis.
2752          // In case of tail call optimization mark all arguments mutable.
2753          // Since they could be overwritten by lowering of arguments in case of
2754          // a tail call.
2755          if (Flags.isByVal()) {
2756            ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2757            if (!AFI->getVarArgsFrameIndex()) {
2758              VarArgStyleRegisters(CCInfo, DAG,
2759                                   dl, Chain, CurOrigArg,
2760                                   Ins[VA.getValNo()].PartOffset,
2761                                   VA.getLocMemOffset(),
2762                                   true /*force mutable frames*/);
2763              int VAFrameIndex = AFI->getVarArgsFrameIndex();
2764              InVals.push_back(DAG.getFrameIndex(VAFrameIndex, getPointerTy()));
2765            } else {
2766              int FI = MFI->CreateFixedObject(Flags.getByValSize(),
2767                                              VA.getLocMemOffset(), false);
2768              InVals.push_back(DAG.getFrameIndex(FI, getPointerTy()));
2769            }
2770          } else {
2771            int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
2772                                            VA.getLocMemOffset(), true);
2773
2774            // Create load nodes to retrieve arguments from the stack.
2775            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2776            InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2777                                         MachinePointerInfo::getFixedStack(FI),
2778                                         false, false, false, 0));
2779          }
2780          lastInsIndex = index;
2781        }
2782    }
2783  }
2784
2785  // varargs
2786  if (isVarArg)
2787    VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 0, 0,
2788                         CCInfo.getNextStackOffset());
2789
2790  return Chain;
2791}
2792
2793/// isFloatingPointZero - Return true if this is +0.0.
2794static bool isFloatingPointZero(SDValue Op) {
2795  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2796    return CFP->getValueAPF().isPosZero();
2797  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2798    // Maybe this has already been legalized into the constant pool?
2799    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2800      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2801      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2802        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2803          return CFP->getValueAPF().isPosZero();
2804    }
2805  }
2806  return false;
2807}
2808
2809/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2810/// the given operands.
2811SDValue
2812ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2813                             SDValue &ARMcc, SelectionDAG &DAG,
2814                             DebugLoc dl) const {
2815  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2816    unsigned C = RHSC->getZExtValue();
2817    if (!isLegalICmpImmediate(C)) {
2818      // Constant does not fit, try adjusting it by one?
2819      switch (CC) {
2820      default: break;
2821      case ISD::SETLT:
2822      case ISD::SETGE:
2823        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
2824          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2825          RHS = DAG.getConstant(C-1, MVT::i32);
2826        }
2827        break;
2828      case ISD::SETULT:
2829      case ISD::SETUGE:
2830        if (C != 0 && isLegalICmpImmediate(C-1)) {
2831          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2832          RHS = DAG.getConstant(C-1, MVT::i32);
2833        }
2834        break;
2835      case ISD::SETLE:
2836      case ISD::SETGT:
2837        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
2838          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2839          RHS = DAG.getConstant(C+1, MVT::i32);
2840        }
2841        break;
2842      case ISD::SETULE:
2843      case ISD::SETUGT:
2844        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
2845          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2846          RHS = DAG.getConstant(C+1, MVT::i32);
2847        }
2848        break;
2849      }
2850    }
2851  }
2852
2853  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2854  ARMISD::NodeType CompareType;
2855  switch (CondCode) {
2856  default:
2857    CompareType = ARMISD::CMP;
2858    break;
2859  case ARMCC::EQ:
2860  case ARMCC::NE:
2861    // Uses only Z Flag
2862    CompareType = ARMISD::CMPZ;
2863    break;
2864  }
2865  ARMcc = DAG.getConstant(CondCode, MVT::i32);
2866  return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
2867}
2868
2869/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2870SDValue
2871ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2872                             DebugLoc dl) const {
2873  SDValue Cmp;
2874  if (!isFloatingPointZero(RHS))
2875    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
2876  else
2877    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
2878  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
2879}
2880
2881/// duplicateCmp - Glue values can have only one use, so this function
2882/// duplicates a comparison node.
2883SDValue
2884ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
2885  unsigned Opc = Cmp.getOpcode();
2886  DebugLoc DL = Cmp.getDebugLoc();
2887  if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
2888    return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2889
2890  assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
2891  Cmp = Cmp.getOperand(0);
2892  Opc = Cmp.getOpcode();
2893  if (Opc == ARMISD::CMPFP)
2894    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2895  else {
2896    assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
2897    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
2898  }
2899  return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
2900}
2901
2902SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2903  SDValue Cond = Op.getOperand(0);
2904  SDValue SelectTrue = Op.getOperand(1);
2905  SDValue SelectFalse = Op.getOperand(2);
2906  DebugLoc dl = Op.getDebugLoc();
2907
2908  // Convert:
2909  //
2910  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2911  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2912  //
2913  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2914    const ConstantSDNode *CMOVTrue =
2915      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2916    const ConstantSDNode *CMOVFalse =
2917      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2918
2919    if (CMOVTrue && CMOVFalse) {
2920      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2921      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2922
2923      SDValue True;
2924      SDValue False;
2925      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2926        True = SelectTrue;
2927        False = SelectFalse;
2928      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2929        True = SelectFalse;
2930        False = SelectTrue;
2931      }
2932
2933      if (True.getNode() && False.getNode()) {
2934        EVT VT = Op.getValueType();
2935        SDValue ARMcc = Cond.getOperand(2);
2936        SDValue CCR = Cond.getOperand(3);
2937        SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
2938        assert(True.getValueType() == VT);
2939        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2940      }
2941    }
2942  }
2943
2944  // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
2945  // undefined bits before doing a full-word comparison with zero.
2946  Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
2947                     DAG.getConstant(1, Cond.getValueType()));
2948
2949  return DAG.getSelectCC(dl, Cond,
2950                         DAG.getConstant(0, Cond.getValueType()),
2951                         SelectTrue, SelectFalse, ISD::SETNE);
2952}
2953
2954SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2955  EVT VT = Op.getValueType();
2956  SDValue LHS = Op.getOperand(0);
2957  SDValue RHS = Op.getOperand(1);
2958  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2959  SDValue TrueVal = Op.getOperand(2);
2960  SDValue FalseVal = Op.getOperand(3);
2961  DebugLoc dl = Op.getDebugLoc();
2962
2963  if (LHS.getValueType() == MVT::i32) {
2964    SDValue ARMcc;
2965    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2966    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2967    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2968  }
2969
2970  ARMCC::CondCodes CondCode, CondCode2;
2971  FPCCToARMCC(CC, CondCode, CondCode2);
2972
2973  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2974  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2975  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2976  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2977                               ARMcc, CCR, Cmp);
2978  if (CondCode2 != ARMCC::AL) {
2979    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2980    // FIXME: Needs another CMP because flag can have but one use.
2981    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2982    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2983                         Result, TrueVal, ARMcc2, CCR, Cmp2);
2984  }
2985  return Result;
2986}
2987
2988/// canChangeToInt - Given the fp compare operand, return true if it is suitable
2989/// to morph to an integer compare sequence.
2990static bool canChangeToInt(SDValue Op, bool &SeenZero,
2991                           const ARMSubtarget *Subtarget) {
2992  SDNode *N = Op.getNode();
2993  if (!N->hasOneUse())
2994    // Otherwise it requires moving the value from fp to integer registers.
2995    return false;
2996  if (!N->getNumValues())
2997    return false;
2998  EVT VT = Op.getValueType();
2999  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
3000    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
3001    // vmrs are very slow, e.g. cortex-a8.
3002    return false;
3003
3004  if (isFloatingPointZero(Op)) {
3005    SeenZero = true;
3006    return true;
3007  }
3008  return ISD::isNormalLoad(N);
3009}
3010
3011static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
3012  if (isFloatingPointZero(Op))
3013    return DAG.getConstant(0, MVT::i32);
3014
3015  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
3016    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
3017                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
3018                       Ld->isVolatile(), Ld->isNonTemporal(),
3019                       Ld->isInvariant(), Ld->getAlignment());
3020
3021  llvm_unreachable("Unknown VFP cmp argument!");
3022}
3023
3024static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
3025                           SDValue &RetVal1, SDValue &RetVal2) {
3026  if (isFloatingPointZero(Op)) {
3027    RetVal1 = DAG.getConstant(0, MVT::i32);
3028    RetVal2 = DAG.getConstant(0, MVT::i32);
3029    return;
3030  }
3031
3032  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
3033    SDValue Ptr = Ld->getBasePtr();
3034    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
3035                          Ld->getChain(), Ptr,
3036                          Ld->getPointerInfo(),
3037                          Ld->isVolatile(), Ld->isNonTemporal(),
3038                          Ld->isInvariant(), Ld->getAlignment());
3039
3040    EVT PtrType = Ptr.getValueType();
3041    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
3042    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
3043                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
3044    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
3045                          Ld->getChain(), NewPtr,
3046                          Ld->getPointerInfo().getWithOffset(4),
3047                          Ld->isVolatile(), Ld->isNonTemporal(),
3048                          Ld->isInvariant(), NewAlign);
3049    return;
3050  }
3051
3052  llvm_unreachable("Unknown VFP cmp argument!");
3053}
3054
3055/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
3056/// f32 and even f64 comparisons to integer ones.
3057SDValue
3058ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
3059  SDValue Chain = Op.getOperand(0);
3060  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3061  SDValue LHS = Op.getOperand(2);
3062  SDValue RHS = Op.getOperand(3);
3063  SDValue Dest = Op.getOperand(4);
3064  DebugLoc dl = Op.getDebugLoc();
3065
3066  bool LHSSeenZero = false;
3067  bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
3068  bool RHSSeenZero = false;
3069  bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
3070  if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
3071    // If unsafe fp math optimization is enabled and there are no other uses of
3072    // the CMP operands, and the condition code is EQ or NE, we can optimize it
3073    // to an integer comparison.
3074    if (CC == ISD::SETOEQ)
3075      CC = ISD::SETEQ;
3076    else if (CC == ISD::SETUNE)
3077      CC = ISD::SETNE;
3078
3079    SDValue Mask = DAG.getConstant(0x7fffffff, MVT::i32);
3080    SDValue ARMcc;
3081    if (LHS.getValueType() == MVT::f32) {
3082      LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3083                        bitcastf32Toi32(LHS, DAG), Mask);
3084      RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3085                        bitcastf32Toi32(RHS, DAG), Mask);
3086      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3087      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3088      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3089                         Chain, Dest, ARMcc, CCR, Cmp);
3090    }
3091
3092    SDValue LHS1, LHS2;
3093    SDValue RHS1, RHS2;
3094    expandf64Toi32(LHS, DAG, LHS1, LHS2);
3095    expandf64Toi32(RHS, DAG, RHS1, RHS2);
3096    LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
3097    RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
3098    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3099    ARMcc = DAG.getConstant(CondCode, MVT::i32);
3100    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3101    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
3102    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
3103  }
3104
3105  return SDValue();
3106}
3107
3108SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3109  SDValue Chain = Op.getOperand(0);
3110  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3111  SDValue LHS = Op.getOperand(2);
3112  SDValue RHS = Op.getOperand(3);
3113  SDValue Dest = Op.getOperand(4);
3114  DebugLoc dl = Op.getDebugLoc();
3115
3116  if (LHS.getValueType() == MVT::i32) {
3117    SDValue ARMcc;
3118    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3119    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3120    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3121                       Chain, Dest, ARMcc, CCR, Cmp);
3122  }
3123
3124  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3125
3126  if (getTargetMachine().Options.UnsafeFPMath &&
3127      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
3128       CC == ISD::SETNE || CC == ISD::SETUNE)) {
3129    SDValue Result = OptimizeVFPBrcond(Op, DAG);
3130    if (Result.getNode())
3131      return Result;
3132  }
3133
3134  ARMCC::CondCodes CondCode, CondCode2;
3135  FPCCToARMCC(CC, CondCode, CondCode2);
3136
3137  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
3138  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
3139  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3140  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3141  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
3142  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3143  if (CondCode2 != ARMCC::AL) {
3144    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
3145    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
3146    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3147  }
3148  return Res;
3149}
3150
3151SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
3152  SDValue Chain = Op.getOperand(0);
3153  SDValue Table = Op.getOperand(1);
3154  SDValue Index = Op.getOperand(2);
3155  DebugLoc dl = Op.getDebugLoc();
3156
3157  EVT PTy = getPointerTy();
3158  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
3159  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
3160  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
3161  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
3162  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
3163  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
3164  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3165  if (Subtarget->isThumb2()) {
3166    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
3167    // which does another jump to the destination. This also makes it easier
3168    // to translate it to TBB / TBH later.
3169    // FIXME: This might not work if the function is extremely large.
3170    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
3171                       Addr, Op.getOperand(2), JTI, UId);
3172  }
3173  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
3174    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
3175                       MachinePointerInfo::getJumpTable(),
3176                       false, false, false, 0);
3177    Chain = Addr.getValue(1);
3178    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
3179    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3180  } else {
3181    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
3182                       MachinePointerInfo::getJumpTable(),
3183                       false, false, false, 0);
3184    Chain = Addr.getValue(1);
3185    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3186  }
3187}
3188
3189static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3190  EVT VT = Op.getValueType();
3191  DebugLoc dl = Op.getDebugLoc();
3192
3193  if (Op.getValueType().getVectorElementType() == MVT::i32) {
3194    if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
3195      return Op;
3196    return DAG.UnrollVectorOp(Op.getNode());
3197  }
3198
3199  assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
3200         "Invalid type for custom lowering!");
3201  if (VT != MVT::v4i16)
3202    return DAG.UnrollVectorOp(Op.getNode());
3203
3204  Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
3205  return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
3206}
3207
3208static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3209  EVT VT = Op.getValueType();
3210  if (VT.isVector())
3211    return LowerVectorFP_TO_INT(Op, DAG);
3212
3213  DebugLoc dl = Op.getDebugLoc();
3214  unsigned Opc;
3215
3216  switch (Op.getOpcode()) {
3217  default: llvm_unreachable("Invalid opcode!");
3218  case ISD::FP_TO_SINT:
3219    Opc = ARMISD::FTOSI;
3220    break;
3221  case ISD::FP_TO_UINT:
3222    Opc = ARMISD::FTOUI;
3223    break;
3224  }
3225  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
3226  return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3227}
3228
3229static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3230  EVT VT = Op.getValueType();
3231  DebugLoc dl = Op.getDebugLoc();
3232
3233  if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
3234    if (VT.getVectorElementType() == MVT::f32)
3235      return Op;
3236    return DAG.UnrollVectorOp(Op.getNode());
3237  }
3238
3239  assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
3240         "Invalid type for custom lowering!");
3241  if (VT != MVT::v4f32)
3242    return DAG.UnrollVectorOp(Op.getNode());
3243
3244  unsigned CastOpc;
3245  unsigned Opc;
3246  switch (Op.getOpcode()) {
3247  default: llvm_unreachable("Invalid opcode!");
3248  case ISD::SINT_TO_FP:
3249    CastOpc = ISD::SIGN_EXTEND;
3250    Opc = ISD::SINT_TO_FP;
3251    break;
3252  case ISD::UINT_TO_FP:
3253    CastOpc = ISD::ZERO_EXTEND;
3254    Opc = ISD::UINT_TO_FP;
3255    break;
3256  }
3257
3258  Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
3259  return DAG.getNode(Opc, dl, VT, Op);
3260}
3261
3262static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3263  EVT VT = Op.getValueType();
3264  if (VT.isVector())
3265    return LowerVectorINT_TO_FP(Op, DAG);
3266
3267  DebugLoc dl = Op.getDebugLoc();
3268  unsigned Opc;
3269
3270  switch (Op.getOpcode()) {
3271  default: llvm_unreachable("Invalid opcode!");
3272  case ISD::SINT_TO_FP:
3273    Opc = ARMISD::SITOF;
3274    break;
3275  case ISD::UINT_TO_FP:
3276    Opc = ARMISD::UITOF;
3277    break;
3278  }
3279
3280  Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
3281  return DAG.getNode(Opc, dl, VT, Op);
3282}
3283
3284SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
3285  // Implement fcopysign with a fabs and a conditional fneg.
3286  SDValue Tmp0 = Op.getOperand(0);
3287  SDValue Tmp1 = Op.getOperand(1);
3288  DebugLoc dl = Op.getDebugLoc();
3289  EVT VT = Op.getValueType();
3290  EVT SrcVT = Tmp1.getValueType();
3291  bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
3292    Tmp0.getOpcode() == ARMISD::VMOVDRR;
3293  bool UseNEON = !InGPR && Subtarget->hasNEON();
3294
3295  if (UseNEON) {
3296    // Use VBSL to copy the sign bit.
3297    unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
3298    SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
3299                               DAG.getTargetConstant(EncodedVal, MVT::i32));
3300    EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
3301    if (VT == MVT::f64)
3302      Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3303                         DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
3304                         DAG.getConstant(32, MVT::i32));
3305    else /*if (VT == MVT::f32)*/
3306      Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
3307    if (SrcVT == MVT::f32) {
3308      Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
3309      if (VT == MVT::f64)
3310        Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3311                           DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
3312                           DAG.getConstant(32, MVT::i32));
3313    } else if (VT == MVT::f32)
3314      Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
3315                         DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
3316                         DAG.getConstant(32, MVT::i32));
3317    Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
3318    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
3319
3320    SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
3321                                            MVT::i32);
3322    AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
3323    SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
3324                                  DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
3325
3326    SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
3327                              DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
3328                              DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
3329    if (VT == MVT::f32) {
3330      Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
3331      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
3332                        DAG.getConstant(0, MVT::i32));
3333    } else {
3334      Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
3335    }
3336
3337    return Res;
3338  }
3339
3340  // Bitcast operand 1 to i32.
3341  if (SrcVT == MVT::f64)
3342    Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3343                       &Tmp1, 1).getValue(1);
3344  Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
3345
3346  // Or in the signbit with integer operations.
3347  SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
3348  SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
3349  Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
3350  if (VT == MVT::f32) {
3351    Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
3352                       DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
3353    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3354                       DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
3355  }
3356
3357  // f64: Or the high part with signbit and then combine two parts.
3358  Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3359                     &Tmp0, 1);
3360  SDValue Lo = Tmp0.getValue(0);
3361  SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
3362  Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
3363  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
3364}
3365
3366SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
3367  MachineFunction &MF = DAG.getMachineFunction();
3368  MachineFrameInfo *MFI = MF.getFrameInfo();
3369  MFI->setReturnAddressIsTaken(true);
3370
3371  EVT VT = Op.getValueType();
3372  DebugLoc dl = Op.getDebugLoc();
3373  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3374  if (Depth) {
3375    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3376    SDValue Offset = DAG.getConstant(4, MVT::i32);
3377    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
3378                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
3379                       MachinePointerInfo(), false, false, false, 0);
3380  }
3381
3382  // Return LR, which contains the return address. Mark it an implicit live-in.
3383  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3384  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
3385}
3386
3387SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
3388  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3389  MFI->setFrameAddressIsTaken(true);
3390
3391  EVT VT = Op.getValueType();
3392  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
3393  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3394  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
3395    ? ARM::R7 : ARM::R11;
3396  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
3397  while (Depth--)
3398    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
3399                            MachinePointerInfo(),
3400                            false, false, false, 0);
3401  return FrameAddr;
3402}
3403
3404/// ExpandBITCAST - If the target supports VFP, this function is called to
3405/// expand a bit convert where either the source or destination type is i64 to
3406/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
3407/// operand type is illegal (e.g., v2f32 for a target that doesn't support
3408/// vectors), since the legalizer won't know what to do with that.
3409static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
3410  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3411  DebugLoc dl = N->getDebugLoc();
3412  SDValue Op = N->getOperand(0);
3413
3414  // This function is only supposed to be called for i64 types, either as the
3415  // source or destination of the bit convert.
3416  EVT SrcVT = Op.getValueType();
3417  EVT DstVT = N->getValueType(0);
3418  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
3419         "ExpandBITCAST called for non-i64 type");
3420
3421  // Turn i64->f64 into VMOVDRR.
3422  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
3423    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3424                             DAG.getConstant(0, MVT::i32));
3425    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3426                             DAG.getConstant(1, MVT::i32));
3427    return DAG.getNode(ISD::BITCAST, dl, DstVT,
3428                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
3429  }
3430
3431  // Turn f64->i64 into VMOVRRD.
3432  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
3433    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
3434                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
3435    // Merge the pieces into a single i64 value.
3436    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
3437  }
3438
3439  return SDValue();
3440}
3441
3442/// getZeroVector - Returns a vector of specified type with all zero elements.
3443/// Zero vectors are used to represent vector negation and in those cases
3444/// will be implemented with the NEON VNEG instruction.  However, VNEG does
3445/// not support i64 elements, so sometimes the zero vectors will need to be
3446/// explicitly constructed.  Regardless, use a canonical VMOV to create the
3447/// zero vector.
3448static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3449  assert(VT.isVector() && "Expected a vector type");
3450  // The canonical modified immediate encoding of a zero vector is....0!
3451  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
3452  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
3453  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
3454  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3455}
3456
3457/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3458/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3459SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
3460                                                SelectionDAG &DAG) const {
3461  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3462  EVT VT = Op.getValueType();
3463  unsigned VTBits = VT.getSizeInBits();
3464  DebugLoc dl = Op.getDebugLoc();
3465  SDValue ShOpLo = Op.getOperand(0);
3466  SDValue ShOpHi = Op.getOperand(1);
3467  SDValue ShAmt  = Op.getOperand(2);
3468  SDValue ARMcc;
3469  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3470
3471  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3472
3473  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3474                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3475  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3476  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3477                                   DAG.getConstant(VTBits, MVT::i32));
3478  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3479  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3480  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3481
3482  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3483  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3484                          ARMcc, DAG, dl);
3485  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3486  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
3487                           CCR, Cmp);
3488
3489  SDValue Ops[2] = { Lo, Hi };
3490  return DAG.getMergeValues(Ops, 2, dl);
3491}
3492
3493/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
3494/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3495SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
3496                                               SelectionDAG &DAG) const {
3497  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3498  EVT VT = Op.getValueType();
3499  unsigned VTBits = VT.getSizeInBits();
3500  DebugLoc dl = Op.getDebugLoc();
3501  SDValue ShOpLo = Op.getOperand(0);
3502  SDValue ShOpHi = Op.getOperand(1);
3503  SDValue ShAmt  = Op.getOperand(2);
3504  SDValue ARMcc;
3505
3506  assert(Op.getOpcode() == ISD::SHL_PARTS);
3507  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3508                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3509  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
3510  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3511                                   DAG.getConstant(VTBits, MVT::i32));
3512  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
3513  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
3514
3515  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3516  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3517  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3518                          ARMcc, DAG, dl);
3519  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
3520  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
3521                           CCR, Cmp);
3522
3523  SDValue Ops[2] = { Lo, Hi };
3524  return DAG.getMergeValues(Ops, 2, dl);
3525}
3526
3527SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3528                                            SelectionDAG &DAG) const {
3529  // The rounding mode is in bits 23:22 of the FPSCR.
3530  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
3531  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
3532  // so that the shift + and get folded into a bitfield extract.
3533  DebugLoc dl = Op.getDebugLoc();
3534  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
3535                              DAG.getConstant(Intrinsic::arm_get_fpscr,
3536                                              MVT::i32));
3537  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
3538                                  DAG.getConstant(1U << 22, MVT::i32));
3539  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
3540                              DAG.getConstant(22, MVT::i32));
3541  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
3542                     DAG.getConstant(3, MVT::i32));
3543}
3544
3545static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
3546                         const ARMSubtarget *ST) {
3547  EVT VT = N->getValueType(0);
3548  DebugLoc dl = N->getDebugLoc();
3549
3550  if (!ST->hasV6T2Ops())
3551    return SDValue();
3552
3553  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
3554  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
3555}
3556
3557static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
3558                          const ARMSubtarget *ST) {
3559  EVT VT = N->getValueType(0);
3560  DebugLoc dl = N->getDebugLoc();
3561
3562  if (!VT.isVector())
3563    return SDValue();
3564
3565  // Lower vector shifts on NEON to use VSHL.
3566  assert(ST->hasNEON() && "unexpected vector shift");
3567
3568  // Left shifts translate directly to the vshiftu intrinsic.
3569  if (N->getOpcode() == ISD::SHL)
3570    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3571                       DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
3572                       N->getOperand(0), N->getOperand(1));
3573
3574  assert((N->getOpcode() == ISD::SRA ||
3575          N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
3576
3577  // NEON uses the same intrinsics for both left and right shifts.  For
3578  // right shifts, the shift amounts are negative, so negate the vector of
3579  // shift amounts.
3580  EVT ShiftVT = N->getOperand(1).getValueType();
3581  SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
3582                                     getZeroVector(ShiftVT, DAG, dl),
3583                                     N->getOperand(1));
3584  Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
3585                             Intrinsic::arm_neon_vshifts :
3586                             Intrinsic::arm_neon_vshiftu);
3587  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3588                     DAG.getConstant(vshiftInt, MVT::i32),
3589                     N->getOperand(0), NegatedCount);
3590}
3591
3592static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
3593                                const ARMSubtarget *ST) {
3594  EVT VT = N->getValueType(0);
3595  DebugLoc dl = N->getDebugLoc();
3596
3597  // We can get here for a node like i32 = ISD::SHL i32, i64
3598  if (VT != MVT::i64)
3599    return SDValue();
3600
3601  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
3602         "Unknown shift to lower!");
3603
3604  // We only lower SRA, SRL of 1 here, all others use generic lowering.
3605  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
3606      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
3607    return SDValue();
3608
3609  // If we are in thumb mode, we don't have RRX.
3610  if (ST->isThumb1Only()) return SDValue();
3611
3612  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
3613  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3614                           DAG.getConstant(0, MVT::i32));
3615  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3616                           DAG.getConstant(1, MVT::i32));
3617
3618  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
3619  // captures the result into a carry flag.
3620  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
3621  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
3622
3623  // The low part is an ARMISD::RRX operand, which shifts the carry in.
3624  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
3625
3626  // Merge the pieces into a single i64 value.
3627 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
3628}
3629
3630static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
3631  SDValue TmpOp0, TmpOp1;
3632  bool Invert = false;
3633  bool Swap = false;
3634  unsigned Opc = 0;
3635
3636  SDValue Op0 = Op.getOperand(0);
3637  SDValue Op1 = Op.getOperand(1);
3638  SDValue CC = Op.getOperand(2);
3639  EVT VT = Op.getValueType();
3640  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3641  DebugLoc dl = Op.getDebugLoc();
3642
3643  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
3644    switch (SetCCOpcode) {
3645    default: llvm_unreachable("Illegal FP comparison");
3646    case ISD::SETUNE:
3647    case ISD::SETNE:  Invert = true; // Fallthrough
3648    case ISD::SETOEQ:
3649    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3650    case ISD::SETOLT:
3651    case ISD::SETLT: Swap = true; // Fallthrough
3652    case ISD::SETOGT:
3653    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3654    case ISD::SETOLE:
3655    case ISD::SETLE:  Swap = true; // Fallthrough
3656    case ISD::SETOGE:
3657    case ISD::SETGE: Opc = ARMISD::VCGE; break;
3658    case ISD::SETUGE: Swap = true; // Fallthrough
3659    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
3660    case ISD::SETUGT: Swap = true; // Fallthrough
3661    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
3662    case ISD::SETUEQ: Invert = true; // Fallthrough
3663    case ISD::SETONE:
3664      // Expand this to (OLT | OGT).
3665      TmpOp0 = Op0;
3666      TmpOp1 = Op1;
3667      Opc = ISD::OR;
3668      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3669      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
3670      break;
3671    case ISD::SETUO: Invert = true; // Fallthrough
3672    case ISD::SETO:
3673      // Expand this to (OLT | OGE).
3674      TmpOp0 = Op0;
3675      TmpOp1 = Op1;
3676      Opc = ISD::OR;
3677      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3678      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
3679      break;
3680    }
3681  } else {
3682    // Integer comparisons.
3683    switch (SetCCOpcode) {
3684    default: llvm_unreachable("Illegal integer comparison");
3685    case ISD::SETNE:  Invert = true;
3686    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3687    case ISD::SETLT:  Swap = true;
3688    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3689    case ISD::SETLE:  Swap = true;
3690    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
3691    case ISD::SETULT: Swap = true;
3692    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
3693    case ISD::SETULE: Swap = true;
3694    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
3695    }
3696
3697    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
3698    if (Opc == ARMISD::VCEQ) {
3699
3700      SDValue AndOp;
3701      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3702        AndOp = Op0;
3703      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
3704        AndOp = Op1;
3705
3706      // Ignore bitconvert.
3707      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
3708        AndOp = AndOp.getOperand(0);
3709
3710      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
3711        Opc = ARMISD::VTST;
3712        Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
3713        Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
3714        Invert = !Invert;
3715      }
3716    }
3717  }
3718
3719  if (Swap)
3720    std::swap(Op0, Op1);
3721
3722  // If one of the operands is a constant vector zero, attempt to fold the
3723  // comparison to a specialized compare-against-zero form.
3724  SDValue SingleOp;
3725  if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3726    SingleOp = Op0;
3727  else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
3728    if (Opc == ARMISD::VCGE)
3729      Opc = ARMISD::VCLEZ;
3730    else if (Opc == ARMISD::VCGT)
3731      Opc = ARMISD::VCLTZ;
3732    SingleOp = Op1;
3733  }
3734
3735  SDValue Result;
3736  if (SingleOp.getNode()) {
3737    switch (Opc) {
3738    case ARMISD::VCEQ:
3739      Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
3740    case ARMISD::VCGE:
3741      Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
3742    case ARMISD::VCLEZ:
3743      Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
3744    case ARMISD::VCGT:
3745      Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
3746    case ARMISD::VCLTZ:
3747      Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
3748    default:
3749      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3750    }
3751  } else {
3752     Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3753  }
3754
3755  if (Invert)
3756    Result = DAG.getNOT(dl, Result, VT);
3757
3758  return Result;
3759}
3760
3761/// isNEONModifiedImm - Check if the specified splat value corresponds to a
3762/// valid vector constant for a NEON instruction with a "modified immediate"
3763/// operand (e.g., VMOV).  If so, return the encoded value.
3764static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3765                                 unsigned SplatBitSize, SelectionDAG &DAG,
3766                                 EVT &VT, bool is128Bits, NEONModImmType type) {
3767  unsigned OpCmode, Imm;
3768
3769  // SplatBitSize is set to the smallest size that splats the vector, so a
3770  // zero vector will always have SplatBitSize == 8.  However, NEON modified
3771  // immediate instructions others than VMOV do not support the 8-bit encoding
3772  // of a zero vector, and the default encoding of zero is supposed to be the
3773  // 32-bit version.
3774  if (SplatBits == 0)
3775    SplatBitSize = 32;
3776
3777  switch (SplatBitSize) {
3778  case 8:
3779    if (type != VMOVModImm)
3780      return SDValue();
3781    // Any 1-byte value is OK.  Op=0, Cmode=1110.
3782    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3783    OpCmode = 0xe;
3784    Imm = SplatBits;
3785    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3786    break;
3787
3788  case 16:
3789    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3790    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3791    if ((SplatBits & ~0xff) == 0) {
3792      // Value = 0x00nn: Op=x, Cmode=100x.
3793      OpCmode = 0x8;
3794      Imm = SplatBits;
3795      break;
3796    }
3797    if ((SplatBits & ~0xff00) == 0) {
3798      // Value = 0xnn00: Op=x, Cmode=101x.
3799      OpCmode = 0xa;
3800      Imm = SplatBits >> 8;
3801      break;
3802    }
3803    return SDValue();
3804
3805  case 32:
3806    // NEON's 32-bit VMOV supports splat values where:
3807    // * only one byte is nonzero, or
3808    // * the least significant byte is 0xff and the second byte is nonzero, or
3809    // * the least significant 2 bytes are 0xff and the third is nonzero.
3810    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3811    if ((SplatBits & ~0xff) == 0) {
3812      // Value = 0x000000nn: Op=x, Cmode=000x.
3813      OpCmode = 0;
3814      Imm = SplatBits;
3815      break;
3816    }
3817    if ((SplatBits & ~0xff00) == 0) {
3818      // Value = 0x0000nn00: Op=x, Cmode=001x.
3819      OpCmode = 0x2;
3820      Imm = SplatBits >> 8;
3821      break;
3822    }
3823    if ((SplatBits & ~0xff0000) == 0) {
3824      // Value = 0x00nn0000: Op=x, Cmode=010x.
3825      OpCmode = 0x4;
3826      Imm = SplatBits >> 16;
3827      break;
3828    }
3829    if ((SplatBits & ~0xff000000) == 0) {
3830      // Value = 0xnn000000: Op=x, Cmode=011x.
3831      OpCmode = 0x6;
3832      Imm = SplatBits >> 24;
3833      break;
3834    }
3835
3836    // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
3837    if (type == OtherModImm) return SDValue();
3838
3839    if ((SplatBits & ~0xffff) == 0 &&
3840        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3841      // Value = 0x0000nnff: Op=x, Cmode=1100.
3842      OpCmode = 0xc;
3843      Imm = SplatBits >> 8;
3844      SplatBits |= 0xff;
3845      break;
3846    }
3847
3848    if ((SplatBits & ~0xffffff) == 0 &&
3849        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3850      // Value = 0x00nnffff: Op=x, Cmode=1101.
3851      OpCmode = 0xd;
3852      Imm = SplatBits >> 16;
3853      SplatBits |= 0xffff;
3854      break;
3855    }
3856
3857    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3858    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3859    // VMOV.I32.  A (very) minor optimization would be to replicate the value
3860    // and fall through here to test for a valid 64-bit splat.  But, then the
3861    // caller would also need to check and handle the change in size.
3862    return SDValue();
3863
3864  case 64: {
3865    if (type != VMOVModImm)
3866      return SDValue();
3867    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3868    uint64_t BitMask = 0xff;
3869    uint64_t Val = 0;
3870    unsigned ImmMask = 1;
3871    Imm = 0;
3872    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3873      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3874        Val |= BitMask;
3875        Imm |= ImmMask;
3876      } else if ((SplatBits & BitMask) != 0) {
3877        return SDValue();
3878      }
3879      BitMask <<= 8;
3880      ImmMask <<= 1;
3881    }
3882    // Op=1, Cmode=1110.
3883    OpCmode = 0x1e;
3884    SplatBits = Val;
3885    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3886    break;
3887  }
3888
3889  default:
3890    llvm_unreachable("unexpected size for isNEONModifiedImm");
3891  }
3892
3893  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3894  return DAG.getTargetConstant(EncodedVal, MVT::i32);
3895}
3896
3897SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
3898                                           const ARMSubtarget *ST) const {
3899  if (!ST->useNEONForSinglePrecisionFP() || !ST->hasVFP3() || ST->hasD16())
3900    return SDValue();
3901
3902  ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
3903  assert(Op.getValueType() == MVT::f32 &&
3904         "ConstantFP custom lowering should only occur for f32.");
3905
3906  // Try splatting with a VMOV.f32...
3907  APFloat FPVal = CFP->getValueAPF();
3908  int ImmVal = ARM_AM::getFP32Imm(FPVal);
3909  if (ImmVal != -1) {
3910    DebugLoc DL = Op.getDebugLoc();
3911    SDValue NewVal = DAG.getTargetConstant(ImmVal, MVT::i32);
3912    SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
3913                                      NewVal);
3914    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
3915                       DAG.getConstant(0, MVT::i32));
3916  }
3917
3918  // If that fails, try a VMOV.i32
3919  EVT VMovVT;
3920  unsigned iVal = FPVal.bitcastToAPInt().getZExtValue();
3921  SDValue NewVal = isNEONModifiedImm(iVal, 0, 32, DAG, VMovVT, false,
3922                                     VMOVModImm);
3923  if (NewVal != SDValue()) {
3924    DebugLoc DL = Op.getDebugLoc();
3925    SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
3926                                      NewVal);
3927    SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
3928                                       VecConstant);
3929    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
3930                       DAG.getConstant(0, MVT::i32));
3931  }
3932
3933  // Finally, try a VMVN.i32
3934  NewVal = isNEONModifiedImm(~iVal & 0xffffffff, 0, 32, DAG, VMovVT, false,
3935                             VMVNModImm);
3936  if (NewVal != SDValue()) {
3937    DebugLoc DL = Op.getDebugLoc();
3938    SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
3939    SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
3940                                       VecConstant);
3941    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
3942                       DAG.getConstant(0, MVT::i32));
3943  }
3944
3945  return SDValue();
3946}
3947
3948// check if an VEXT instruction can handle the shuffle mask when the
3949// vector sources of the shuffle are the same.
3950static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
3951  unsigned NumElts = VT.getVectorNumElements();
3952
3953  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
3954  if (M[0] < 0)
3955    return false;
3956
3957  Imm = M[0];
3958
3959  // If this is a VEXT shuffle, the immediate value is the index of the first
3960  // element.  The other shuffle indices must be the successive elements after
3961  // the first one.
3962  unsigned ExpectedElt = Imm;
3963  for (unsigned i = 1; i < NumElts; ++i) {
3964    // Increment the expected index.  If it wraps around, just follow it
3965    // back to index zero and keep going.
3966    ++ExpectedElt;
3967    if (ExpectedElt == NumElts)
3968      ExpectedElt = 0;
3969
3970    if (M[i] < 0) continue; // ignore UNDEF indices
3971    if (ExpectedElt != static_cast<unsigned>(M[i]))
3972      return false;
3973  }
3974
3975  return true;
3976}
3977
3978
3979static bool isVEXTMask(ArrayRef<int> M, EVT VT,
3980                       bool &ReverseVEXT, unsigned &Imm) {
3981  unsigned NumElts = VT.getVectorNumElements();
3982  ReverseVEXT = false;
3983
3984  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
3985  if (M[0] < 0)
3986    return false;
3987
3988  Imm = M[0];
3989
3990  // If this is a VEXT shuffle, the immediate value is the index of the first
3991  // element.  The other shuffle indices must be the successive elements after
3992  // the first one.
3993  unsigned ExpectedElt = Imm;
3994  for (unsigned i = 1; i < NumElts; ++i) {
3995    // Increment the expected index.  If it wraps around, it may still be
3996    // a VEXT but the source vectors must be swapped.
3997    ExpectedElt += 1;
3998    if (ExpectedElt == NumElts * 2) {
3999      ExpectedElt = 0;
4000      ReverseVEXT = true;
4001    }
4002
4003    if (M[i] < 0) continue; // ignore UNDEF indices
4004    if (ExpectedElt != static_cast<unsigned>(M[i]))
4005      return false;
4006  }
4007
4008  // Adjust the index value if the source operands will be swapped.
4009  if (ReverseVEXT)
4010    Imm -= NumElts;
4011
4012  return true;
4013}
4014
4015/// isVREVMask - Check if a vector shuffle corresponds to a VREV
4016/// instruction with the specified blocksize.  (The order of the elements
4017/// within each block of the vector is reversed.)
4018static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
4019  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
4020         "Only possible block sizes for VREV are: 16, 32, 64");
4021
4022  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4023  if (EltSz == 64)
4024    return false;
4025
4026  unsigned NumElts = VT.getVectorNumElements();
4027  unsigned BlockElts = M[0] + 1;
4028  // If the first shuffle index is UNDEF, be optimistic.
4029  if (M[0] < 0)
4030    BlockElts = BlockSize / EltSz;
4031
4032  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
4033    return false;
4034
4035  for (unsigned i = 0; i < NumElts; ++i) {
4036    if (M[i] < 0) continue; // ignore UNDEF indices
4037    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
4038      return false;
4039  }
4040
4041  return true;
4042}
4043
4044static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
4045  // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
4046  // range, then 0 is placed into the resulting vector. So pretty much any mask
4047  // of 8 elements can work here.
4048  return VT == MVT::v8i8 && M.size() == 8;
4049}
4050
4051static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4052  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4053  if (EltSz == 64)
4054    return false;
4055
4056  unsigned NumElts = VT.getVectorNumElements();
4057  WhichResult = (M[0] == 0 ? 0 : 1);
4058  for (unsigned i = 0; i < NumElts; i += 2) {
4059    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
4060        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
4061      return false;
4062  }
4063  return true;
4064}
4065
4066/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
4067/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4068/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
4069static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4070  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4071  if (EltSz == 64)
4072    return false;
4073
4074  unsigned NumElts = VT.getVectorNumElements();
4075  WhichResult = (M[0] == 0 ? 0 : 1);
4076  for (unsigned i = 0; i < NumElts; i += 2) {
4077    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
4078        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
4079      return false;
4080  }
4081  return true;
4082}
4083
4084static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4085  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4086  if (EltSz == 64)
4087    return false;
4088
4089  unsigned NumElts = VT.getVectorNumElements();
4090  WhichResult = (M[0] == 0 ? 0 : 1);
4091  for (unsigned i = 0; i != NumElts; ++i) {
4092    if (M[i] < 0) continue; // ignore UNDEF indices
4093    if ((unsigned) M[i] != 2 * i + WhichResult)
4094      return false;
4095  }
4096
4097  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4098  if (VT.is64BitVector() && EltSz == 32)
4099    return false;
4100
4101  return true;
4102}
4103
4104/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
4105/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4106/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
4107static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4108  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4109  if (EltSz == 64)
4110    return false;
4111
4112  unsigned Half = VT.getVectorNumElements() / 2;
4113  WhichResult = (M[0] == 0 ? 0 : 1);
4114  for (unsigned j = 0; j != 2; ++j) {
4115    unsigned Idx = WhichResult;
4116    for (unsigned i = 0; i != Half; ++i) {
4117      int MIdx = M[i + j * Half];
4118      if (MIdx >= 0 && (unsigned) MIdx != Idx)
4119        return false;
4120      Idx += 2;
4121    }
4122  }
4123
4124  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4125  if (VT.is64BitVector() && EltSz == 32)
4126    return false;
4127
4128  return true;
4129}
4130
4131static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4132  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4133  if (EltSz == 64)
4134    return false;
4135
4136  unsigned NumElts = VT.getVectorNumElements();
4137  WhichResult = (M[0] == 0 ? 0 : 1);
4138  unsigned Idx = WhichResult * NumElts / 2;
4139  for (unsigned i = 0; i != NumElts; i += 2) {
4140    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
4141        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
4142      return false;
4143    Idx += 1;
4144  }
4145
4146  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4147  if (VT.is64BitVector() && EltSz == 32)
4148    return false;
4149
4150  return true;
4151}
4152
4153/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
4154/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4155/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
4156static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4157  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4158  if (EltSz == 64)
4159    return false;
4160
4161  unsigned NumElts = VT.getVectorNumElements();
4162  WhichResult = (M[0] == 0 ? 0 : 1);
4163  unsigned Idx = WhichResult * NumElts / 2;
4164  for (unsigned i = 0; i != NumElts; i += 2) {
4165    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
4166        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
4167      return false;
4168    Idx += 1;
4169  }
4170
4171  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4172  if (VT.is64BitVector() && EltSz == 32)
4173    return false;
4174
4175  return true;
4176}
4177
4178// If N is an integer constant that can be moved into a register in one
4179// instruction, return an SDValue of such a constant (will become a MOV
4180// instruction).  Otherwise return null.
4181static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
4182                                     const ARMSubtarget *ST, DebugLoc dl) {
4183  uint64_t Val;
4184  if (!isa<ConstantSDNode>(N))
4185    return SDValue();
4186  Val = cast<ConstantSDNode>(N)->getZExtValue();
4187
4188  if (ST->isThumb1Only()) {
4189    if (Val <= 255 || ~Val <= 255)
4190      return DAG.getConstant(Val, MVT::i32);
4191  } else {
4192    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
4193      return DAG.getConstant(Val, MVT::i32);
4194  }
4195  return SDValue();
4196}
4197
4198// If this is a case we can't handle, return null and let the default
4199// expansion code take care of it.
4200SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
4201                                             const ARMSubtarget *ST) const {
4202  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
4203  DebugLoc dl = Op.getDebugLoc();
4204  EVT VT = Op.getValueType();
4205
4206  APInt SplatBits, SplatUndef;
4207  unsigned SplatBitSize;
4208  bool HasAnyUndefs;
4209  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
4210    if (SplatBitSize <= 64) {
4211      // Check if an immediate VMOV works.
4212      EVT VmovVT;
4213      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
4214                                      SplatUndef.getZExtValue(), SplatBitSize,
4215                                      DAG, VmovVT, VT.is128BitVector(),
4216                                      VMOVModImm);
4217      if (Val.getNode()) {
4218        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
4219        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4220      }
4221
4222      // Try an immediate VMVN.
4223      uint64_t NegatedImm = (~SplatBits).getZExtValue();
4224      Val = isNEONModifiedImm(NegatedImm,
4225                                      SplatUndef.getZExtValue(), SplatBitSize,
4226                                      DAG, VmovVT, VT.is128BitVector(),
4227                                      VMVNModImm);
4228      if (Val.getNode()) {
4229        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
4230        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4231      }
4232
4233      // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
4234      if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
4235        int ImmVal = ARM_AM::getFP32Imm(SplatBits);
4236        if (ImmVal != -1) {
4237          SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
4238          return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
4239        }
4240      }
4241    }
4242  }
4243
4244  // Scan through the operands to see if only one value is used.
4245  //
4246  // As an optimisation, even if more than one value is used it may be more
4247  // profitable to splat with one value then change some lanes.
4248  //
4249  // Heuristically we decide to do this if the vector has a "dominant" value,
4250  // defined as splatted to more than half of the lanes.
4251  unsigned NumElts = VT.getVectorNumElements();
4252  bool isOnlyLowElement = true;
4253  bool usesOnlyOneValue = true;
4254  bool hasDominantValue = false;
4255  bool isConstant = true;
4256
4257  // Map of the number of times a particular SDValue appears in the
4258  // element list.
4259  DenseMap<SDValue, unsigned> ValueCounts;
4260  SDValue Value;
4261  for (unsigned i = 0; i < NumElts; ++i) {
4262    SDValue V = Op.getOperand(i);
4263    if (V.getOpcode() == ISD::UNDEF)
4264      continue;
4265    if (i > 0)
4266      isOnlyLowElement = false;
4267    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
4268      isConstant = false;
4269
4270    ValueCounts.insert(std::make_pair(V, 0));
4271    unsigned &Count = ValueCounts[V];
4272
4273    // Is this value dominant? (takes up more than half of the lanes)
4274    if (++Count > (NumElts / 2)) {
4275      hasDominantValue = true;
4276      Value = V;
4277    }
4278  }
4279  if (ValueCounts.size() != 1)
4280    usesOnlyOneValue = false;
4281  if (!Value.getNode() && ValueCounts.size() > 0)
4282    Value = ValueCounts.begin()->first;
4283
4284  if (ValueCounts.size() == 0)
4285    return DAG.getUNDEF(VT);
4286
4287  if (isOnlyLowElement)
4288    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
4289
4290  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4291
4292  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
4293  // i32 and try again.
4294  if (hasDominantValue && EltSize <= 32) {
4295    if (!isConstant) {
4296      SDValue N;
4297
4298      // If we are VDUPing a value that comes directly from a vector, that will
4299      // cause an unnecessary move to and from a GPR, where instead we could
4300      // just use VDUPLANE.
4301      if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
4302        // We need to create a new undef vector to use for the VDUPLANE if the
4303        // size of the vector from which we get the value is different than the
4304        // size of the vector that we need to create. We will insert the element
4305        // such that the register coalescer will remove unnecessary copies.
4306        if (VT != Value->getOperand(0).getValueType()) {
4307          ConstantSDNode *constIndex;
4308          constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1));
4309          assert(constIndex && "The index is not a constant!");
4310          unsigned index = constIndex->getAPIntValue().getLimitedValue() %
4311                             VT.getVectorNumElements();
4312          N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4313                 DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
4314                        Value, DAG.getConstant(index, MVT::i32)),
4315                           DAG.getConstant(index, MVT::i32));
4316        } else {
4317          N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4318                        Value->getOperand(0), Value->getOperand(1));
4319        }
4320      }
4321      else
4322        N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
4323
4324      if (!usesOnlyOneValue) {
4325        // The dominant value was splatted as 'N', but we now have to insert
4326        // all differing elements.
4327        for (unsigned I = 0; I < NumElts; ++I) {
4328          if (Op.getOperand(I) == Value)
4329            continue;
4330          SmallVector<SDValue, 3> Ops;
4331          Ops.push_back(N);
4332          Ops.push_back(Op.getOperand(I));
4333          Ops.push_back(DAG.getConstant(I, MVT::i32));
4334          N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, &Ops[0], 3);
4335        }
4336      }
4337      return N;
4338    }
4339    if (VT.getVectorElementType().isFloatingPoint()) {
4340      SmallVector<SDValue, 8> Ops;
4341      for (unsigned i = 0; i < NumElts; ++i)
4342        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4343                                  Op.getOperand(i)));
4344      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
4345      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
4346      Val = LowerBUILD_VECTOR(Val, DAG, ST);
4347      if (Val.getNode())
4348        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4349    }
4350    if (usesOnlyOneValue) {
4351      SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
4352      if (isConstant && Val.getNode())
4353        return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
4354    }
4355  }
4356
4357  // If all elements are constants and the case above didn't get hit, fall back
4358  // to the default expansion, which will generate a load from the constant
4359  // pool.
4360  if (isConstant)
4361    return SDValue();
4362
4363  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
4364  if (NumElts >= 4) {
4365    SDValue shuffle = ReconstructShuffle(Op, DAG);
4366    if (shuffle != SDValue())
4367      return shuffle;
4368  }
4369
4370  // Vectors with 32- or 64-bit elements can be built by directly assigning
4371  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
4372  // will be legalized.
4373  if (EltSize >= 32) {
4374    // Do the expansion with floating-point types, since that is what the VFP
4375    // registers are defined to use, and since i64 is not legal.
4376    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4377    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4378    SmallVector<SDValue, 8> Ops;
4379    for (unsigned i = 0; i < NumElts; ++i)
4380      Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
4381    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4382    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4383  }
4384
4385  return SDValue();
4386}
4387
4388// Gather data to see if the operation can be modelled as a
4389// shuffle in combination with VEXTs.
4390SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
4391                                              SelectionDAG &DAG) const {
4392  DebugLoc dl = Op.getDebugLoc();
4393  EVT VT = Op.getValueType();
4394  unsigned NumElts = VT.getVectorNumElements();
4395
4396  SmallVector<SDValue, 2> SourceVecs;
4397  SmallVector<unsigned, 2> MinElts;
4398  SmallVector<unsigned, 2> MaxElts;
4399
4400  for (unsigned i = 0; i < NumElts; ++i) {
4401    SDValue V = Op.getOperand(i);
4402    if (V.getOpcode() == ISD::UNDEF)
4403      continue;
4404    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4405      // A shuffle can only come from building a vector from various
4406      // elements of other vectors.
4407      return SDValue();
4408    } else if (V.getOperand(0).getValueType().getVectorElementType() !=
4409               VT.getVectorElementType()) {
4410      // This code doesn't know how to handle shuffles where the vector
4411      // element types do not match (this happens because type legalization
4412      // promotes the return type of EXTRACT_VECTOR_ELT).
4413      // FIXME: It might be appropriate to extend this code to handle
4414      // mismatched types.
4415      return SDValue();
4416    }
4417
4418    // Record this extraction against the appropriate vector if possible...
4419    SDValue SourceVec = V.getOperand(0);
4420    // If the element number isn't a constant, we can't effectively
4421    // analyze what's going on.
4422    if (!isa<ConstantSDNode>(V.getOperand(1)))
4423      return SDValue();
4424    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4425    bool FoundSource = false;
4426    for (unsigned j = 0; j < SourceVecs.size(); ++j) {
4427      if (SourceVecs[j] == SourceVec) {
4428        if (MinElts[j] > EltNo)
4429          MinElts[j] = EltNo;
4430        if (MaxElts[j] < EltNo)
4431          MaxElts[j] = EltNo;
4432        FoundSource = true;
4433        break;
4434      }
4435    }
4436
4437    // Or record a new source if not...
4438    if (!FoundSource) {
4439      SourceVecs.push_back(SourceVec);
4440      MinElts.push_back(EltNo);
4441      MaxElts.push_back(EltNo);
4442    }
4443  }
4444
4445  // Currently only do something sane when at most two source vectors
4446  // involved.
4447  if (SourceVecs.size() > 2)
4448    return SDValue();
4449
4450  SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
4451  int VEXTOffsets[2] = {0, 0};
4452
4453  // This loop extracts the usage patterns of the source vectors
4454  // and prepares appropriate SDValues for a shuffle if possible.
4455  for (unsigned i = 0; i < SourceVecs.size(); ++i) {
4456    if (SourceVecs[i].getValueType() == VT) {
4457      // No VEXT necessary
4458      ShuffleSrcs[i] = SourceVecs[i];
4459      VEXTOffsets[i] = 0;
4460      continue;
4461    } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
4462      // It probably isn't worth padding out a smaller vector just to
4463      // break it down again in a shuffle.
4464      return SDValue();
4465    }
4466
4467    // Since only 64-bit and 128-bit vectors are legal on ARM and
4468    // we've eliminated the other cases...
4469    assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
4470           "unexpected vector sizes in ReconstructShuffle");
4471
4472    if (MaxElts[i] - MinElts[i] >= NumElts) {
4473      // Span too large for a VEXT to cope
4474      return SDValue();
4475    }
4476
4477    if (MinElts[i] >= NumElts) {
4478      // The extraction can just take the second half
4479      VEXTOffsets[i] = NumElts;
4480      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4481                                   SourceVecs[i],
4482                                   DAG.getIntPtrConstant(NumElts));
4483    } else if (MaxElts[i] < NumElts) {
4484      // The extraction can just take the first half
4485      VEXTOffsets[i] = 0;
4486      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4487                                   SourceVecs[i],
4488                                   DAG.getIntPtrConstant(0));
4489    } else {
4490      // An actual VEXT is needed
4491      VEXTOffsets[i] = MinElts[i];
4492      SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4493                                     SourceVecs[i],
4494                                     DAG.getIntPtrConstant(0));
4495      SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4496                                     SourceVecs[i],
4497                                     DAG.getIntPtrConstant(NumElts));
4498      ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
4499                                   DAG.getConstant(VEXTOffsets[i], MVT::i32));
4500    }
4501  }
4502
4503  SmallVector<int, 8> Mask;
4504
4505  for (unsigned i = 0; i < NumElts; ++i) {
4506    SDValue Entry = Op.getOperand(i);
4507    if (Entry.getOpcode() == ISD::UNDEF) {
4508      Mask.push_back(-1);
4509      continue;
4510    }
4511
4512    SDValue ExtractVec = Entry.getOperand(0);
4513    int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
4514                                          .getOperand(1))->getSExtValue();
4515    if (ExtractVec == SourceVecs[0]) {
4516      Mask.push_back(ExtractElt - VEXTOffsets[0]);
4517    } else {
4518      Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
4519    }
4520  }
4521
4522  // Final check before we try to produce nonsense...
4523  if (isShuffleMaskLegal(Mask, VT))
4524    return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
4525                                &Mask[0]);
4526
4527  return SDValue();
4528}
4529
4530/// isShuffleMaskLegal - Targets can use this to indicate that they only
4531/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4532/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4533/// are assumed to be legal.
4534bool
4535ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
4536                                      EVT VT) const {
4537  if (VT.getVectorNumElements() == 4 &&
4538      (VT.is128BitVector() || VT.is64BitVector())) {
4539    unsigned PFIndexes[4];
4540    for (unsigned i = 0; i != 4; ++i) {
4541      if (M[i] < 0)
4542        PFIndexes[i] = 8;
4543      else
4544        PFIndexes[i] = M[i];
4545    }
4546
4547    // Compute the index in the perfect shuffle table.
4548    unsigned PFTableIndex =
4549      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4550    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4551    unsigned Cost = (PFEntry >> 30);
4552
4553    if (Cost <= 4)
4554      return true;
4555  }
4556
4557  bool ReverseVEXT;
4558  unsigned Imm, WhichResult;
4559
4560  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4561  return (EltSize >= 32 ||
4562          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
4563          isVREVMask(M, VT, 64) ||
4564          isVREVMask(M, VT, 32) ||
4565          isVREVMask(M, VT, 16) ||
4566          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
4567          isVTBLMask(M, VT) ||
4568          isVTRNMask(M, VT, WhichResult) ||
4569          isVUZPMask(M, VT, WhichResult) ||
4570          isVZIPMask(M, VT, WhichResult) ||
4571          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
4572          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
4573          isVZIP_v_undef_Mask(M, VT, WhichResult));
4574}
4575
4576/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4577/// the specified operations to build the shuffle.
4578static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4579                                      SDValue RHS, SelectionDAG &DAG,
4580                                      DebugLoc dl) {
4581  unsigned OpNum = (PFEntry >> 26) & 0x0F;
4582  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4583  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4584
4585  enum {
4586    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4587    OP_VREV,
4588    OP_VDUP0,
4589    OP_VDUP1,
4590    OP_VDUP2,
4591    OP_VDUP3,
4592    OP_VEXT1,
4593    OP_VEXT2,
4594    OP_VEXT3,
4595    OP_VUZPL, // VUZP, left result
4596    OP_VUZPR, // VUZP, right result
4597    OP_VZIPL, // VZIP, left result
4598    OP_VZIPR, // VZIP, right result
4599    OP_VTRNL, // VTRN, left result
4600    OP_VTRNR  // VTRN, right result
4601  };
4602
4603  if (OpNum == OP_COPY) {
4604    if (LHSID == (1*9+2)*9+3) return LHS;
4605    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4606    return RHS;
4607  }
4608
4609  SDValue OpLHS, OpRHS;
4610  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4611  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4612  EVT VT = OpLHS.getValueType();
4613
4614  switch (OpNum) {
4615  default: llvm_unreachable("Unknown shuffle opcode!");
4616  case OP_VREV:
4617    // VREV divides the vector in half and swaps within the half.
4618    if (VT.getVectorElementType() == MVT::i32 ||
4619        VT.getVectorElementType() == MVT::f32)
4620      return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
4621    // vrev <4 x i16> -> VREV32
4622    if (VT.getVectorElementType() == MVT::i16)
4623      return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
4624    // vrev <4 x i8> -> VREV16
4625    assert(VT.getVectorElementType() == MVT::i8);
4626    return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
4627  case OP_VDUP0:
4628  case OP_VDUP1:
4629  case OP_VDUP2:
4630  case OP_VDUP3:
4631    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4632                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
4633  case OP_VEXT1:
4634  case OP_VEXT2:
4635  case OP_VEXT3:
4636    return DAG.getNode(ARMISD::VEXT, dl, VT,
4637                       OpLHS, OpRHS,
4638                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
4639  case OP_VUZPL:
4640  case OP_VUZPR:
4641    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4642                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
4643  case OP_VZIPL:
4644  case OP_VZIPR:
4645    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4646                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
4647  case OP_VTRNL:
4648  case OP_VTRNR:
4649    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4650                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
4651  }
4652}
4653
4654static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
4655                                       ArrayRef<int> ShuffleMask,
4656                                       SelectionDAG &DAG) {
4657  // Check to see if we can use the VTBL instruction.
4658  SDValue V1 = Op.getOperand(0);
4659  SDValue V2 = Op.getOperand(1);
4660  DebugLoc DL = Op.getDebugLoc();
4661
4662  SmallVector<SDValue, 8> VTBLMask;
4663  for (ArrayRef<int>::iterator
4664         I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
4665    VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
4666
4667  if (V2.getNode()->getOpcode() == ISD::UNDEF)
4668    return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
4669                       DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4670                                   &VTBLMask[0], 8));
4671
4672  return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
4673                     DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4674                                 &VTBLMask[0], 8));
4675}
4676
4677static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4678  SDValue V1 = Op.getOperand(0);
4679  SDValue V2 = Op.getOperand(1);
4680  DebugLoc dl = Op.getDebugLoc();
4681  EVT VT = Op.getValueType();
4682  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
4683
4684  // Convert shuffles that are directly supported on NEON to target-specific
4685  // DAG nodes, instead of keeping them as shuffles and matching them again
4686  // during code selection.  This is more efficient and avoids the possibility
4687  // of inconsistencies between legalization and selection.
4688  // FIXME: floating-point vectors should be canonicalized to integer vectors
4689  // of the same time so that they get CSEd properly.
4690  ArrayRef<int> ShuffleMask = SVN->getMask();
4691
4692  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4693  if (EltSize <= 32) {
4694    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
4695      int Lane = SVN->getSplatIndex();
4696      // If this is undef splat, generate it via "just" vdup, if possible.
4697      if (Lane == -1) Lane = 0;
4698
4699      // Test if V1 is a SCALAR_TO_VECTOR.
4700      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4701        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4702      }
4703      // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
4704      // (and probably will turn into a SCALAR_TO_VECTOR once legalization
4705      // reaches it).
4706      if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
4707          !isa<ConstantSDNode>(V1.getOperand(0))) {
4708        bool IsScalarToVector = true;
4709        for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
4710          if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
4711            IsScalarToVector = false;
4712            break;
4713          }
4714        if (IsScalarToVector)
4715          return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4716      }
4717      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
4718                         DAG.getConstant(Lane, MVT::i32));
4719    }
4720
4721    bool ReverseVEXT;
4722    unsigned Imm;
4723    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
4724      if (ReverseVEXT)
4725        std::swap(V1, V2);
4726      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
4727                         DAG.getConstant(Imm, MVT::i32));
4728    }
4729
4730    if (isVREVMask(ShuffleMask, VT, 64))
4731      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
4732    if (isVREVMask(ShuffleMask, VT, 32))
4733      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
4734    if (isVREVMask(ShuffleMask, VT, 16))
4735      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
4736
4737    if (V2->getOpcode() == ISD::UNDEF &&
4738        isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
4739      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
4740                         DAG.getConstant(Imm, MVT::i32));
4741    }
4742
4743    // Check for Neon shuffles that modify both input vectors in place.
4744    // If both results are used, i.e., if there are two shuffles with the same
4745    // source operands and with masks corresponding to both results of one of
4746    // these operations, DAG memoization will ensure that a single node is
4747    // used for both shuffles.
4748    unsigned WhichResult;
4749    if (isVTRNMask(ShuffleMask, VT, WhichResult))
4750      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4751                         V1, V2).getValue(WhichResult);
4752    if (isVUZPMask(ShuffleMask, VT, WhichResult))
4753      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4754                         V1, V2).getValue(WhichResult);
4755    if (isVZIPMask(ShuffleMask, VT, WhichResult))
4756      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4757                         V1, V2).getValue(WhichResult);
4758
4759    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
4760      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4761                         V1, V1).getValue(WhichResult);
4762    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4763      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4764                         V1, V1).getValue(WhichResult);
4765    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4766      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4767                         V1, V1).getValue(WhichResult);
4768  }
4769
4770  // If the shuffle is not directly supported and it has 4 elements, use
4771  // the PerfectShuffle-generated table to synthesize it from other shuffles.
4772  unsigned NumElts = VT.getVectorNumElements();
4773  if (NumElts == 4) {
4774    unsigned PFIndexes[4];
4775    for (unsigned i = 0; i != 4; ++i) {
4776      if (ShuffleMask[i] < 0)
4777        PFIndexes[i] = 8;
4778      else
4779        PFIndexes[i] = ShuffleMask[i];
4780    }
4781
4782    // Compute the index in the perfect shuffle table.
4783    unsigned PFTableIndex =
4784      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4785    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4786    unsigned Cost = (PFEntry >> 30);
4787
4788    if (Cost <= 4)
4789      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4790  }
4791
4792  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
4793  if (EltSize >= 32) {
4794    // Do the expansion with floating-point types, since that is what the VFP
4795    // registers are defined to use, and since i64 is not legal.
4796    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4797    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4798    V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
4799    V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
4800    SmallVector<SDValue, 8> Ops;
4801    for (unsigned i = 0; i < NumElts; ++i) {
4802      if (ShuffleMask[i] < 0)
4803        Ops.push_back(DAG.getUNDEF(EltVT));
4804      else
4805        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
4806                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
4807                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
4808                                                  MVT::i32)));
4809    }
4810    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4811    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4812  }
4813
4814  if (VT == MVT::v8i8) {
4815    SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
4816    if (NewOp.getNode())
4817      return NewOp;
4818  }
4819
4820  return SDValue();
4821}
4822
4823static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4824  // INSERT_VECTOR_ELT is legal only for immediate indexes.
4825  SDValue Lane = Op.getOperand(2);
4826  if (!isa<ConstantSDNode>(Lane))
4827    return SDValue();
4828
4829  return Op;
4830}
4831
4832static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4833  // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
4834  SDValue Lane = Op.getOperand(1);
4835  if (!isa<ConstantSDNode>(Lane))
4836    return SDValue();
4837
4838  SDValue Vec = Op.getOperand(0);
4839  if (Op.getValueType() == MVT::i32 &&
4840      Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
4841    DebugLoc dl = Op.getDebugLoc();
4842    return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
4843  }
4844
4845  return Op;
4846}
4847
4848static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
4849  // The only time a CONCAT_VECTORS operation can have legal types is when
4850  // two 64-bit vectors are concatenated to a 128-bit vector.
4851  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
4852         "unexpected CONCAT_VECTORS");
4853  DebugLoc dl = Op.getDebugLoc();
4854  SDValue Val = DAG.getUNDEF(MVT::v2f64);
4855  SDValue Op0 = Op.getOperand(0);
4856  SDValue Op1 = Op.getOperand(1);
4857  if (Op0.getOpcode() != ISD::UNDEF)
4858    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4859                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
4860                      DAG.getIntPtrConstant(0));
4861  if (Op1.getOpcode() != ISD::UNDEF)
4862    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4863                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
4864                      DAG.getIntPtrConstant(1));
4865  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
4866}
4867
4868/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
4869/// element has been zero/sign-extended, depending on the isSigned parameter,
4870/// from an integer type half its size.
4871static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
4872                                   bool isSigned) {
4873  // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
4874  EVT VT = N->getValueType(0);
4875  if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
4876    SDNode *BVN = N->getOperand(0).getNode();
4877    if (BVN->getValueType(0) != MVT::v4i32 ||
4878        BVN->getOpcode() != ISD::BUILD_VECTOR)
4879      return false;
4880    unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4881    unsigned HiElt = 1 - LoElt;
4882    ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
4883    ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
4884    ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
4885    ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
4886    if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
4887      return false;
4888    if (isSigned) {
4889      if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
4890          Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
4891        return true;
4892    } else {
4893      if (Hi0->isNullValue() && Hi1->isNullValue())
4894        return true;
4895    }
4896    return false;
4897  }
4898
4899  if (N->getOpcode() != ISD::BUILD_VECTOR)
4900    return false;
4901
4902  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
4903    SDNode *Elt = N->getOperand(i).getNode();
4904    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
4905      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4906      unsigned HalfSize = EltSize / 2;
4907      if (isSigned) {
4908        if (!isIntN(HalfSize, C->getSExtValue()))
4909          return false;
4910      } else {
4911        if (!isUIntN(HalfSize, C->getZExtValue()))
4912          return false;
4913      }
4914      continue;
4915    }
4916    return false;
4917  }
4918
4919  return true;
4920}
4921
4922/// isSignExtended - Check if a node is a vector value that is sign-extended
4923/// or a constant BUILD_VECTOR with sign-extended elements.
4924static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
4925  if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
4926    return true;
4927  if (isExtendedBUILD_VECTOR(N, DAG, true))
4928    return true;
4929  return false;
4930}
4931
4932/// isZeroExtended - Check if a node is a vector value that is zero-extended
4933/// or a constant BUILD_VECTOR with zero-extended elements.
4934static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
4935  if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
4936    return true;
4937  if (isExtendedBUILD_VECTOR(N, DAG, false))
4938    return true;
4939  return false;
4940}
4941
4942/// SkipExtension - For a node that is a SIGN_EXTEND, ZERO_EXTEND, extending
4943/// load, or BUILD_VECTOR with extended elements, return the unextended value.
4944static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
4945  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
4946    return N->getOperand(0);
4947  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
4948    return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
4949                       LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
4950                       LD->isNonTemporal(), LD->isInvariant(),
4951                       LD->getAlignment());
4952  // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
4953  // have been legalized as a BITCAST from v4i32.
4954  if (N->getOpcode() == ISD::BITCAST) {
4955    SDNode *BVN = N->getOperand(0).getNode();
4956    assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
4957           BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
4958    unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4959    return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
4960                       BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
4961  }
4962  // Construct a new BUILD_VECTOR with elements truncated to half the size.
4963  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
4964  EVT VT = N->getValueType(0);
4965  unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
4966  unsigned NumElts = VT.getVectorNumElements();
4967  MVT TruncVT = MVT::getIntegerVT(EltSize);
4968  SmallVector<SDValue, 8> Ops;
4969  for (unsigned i = 0; i != NumElts; ++i) {
4970    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
4971    const APInt &CInt = C->getAPIntValue();
4972    // Element types smaller than 32 bits are not legal, so use i32 elements.
4973    // The values are implicitly truncated so sext vs. zext doesn't matter.
4974    Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32));
4975  }
4976  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
4977                     MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
4978}
4979
4980static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
4981  unsigned Opcode = N->getOpcode();
4982  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4983    SDNode *N0 = N->getOperand(0).getNode();
4984    SDNode *N1 = N->getOperand(1).getNode();
4985    return N0->hasOneUse() && N1->hasOneUse() &&
4986      isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
4987  }
4988  return false;
4989}
4990
4991static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
4992  unsigned Opcode = N->getOpcode();
4993  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4994    SDNode *N0 = N->getOperand(0).getNode();
4995    SDNode *N1 = N->getOperand(1).getNode();
4996    return N0->hasOneUse() && N1->hasOneUse() &&
4997      isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
4998  }
4999  return false;
5000}
5001
5002static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
5003  // Multiplications are only custom-lowered for 128-bit vectors so that
5004  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
5005  EVT VT = Op.getValueType();
5006  assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
5007  SDNode *N0 = Op.getOperand(0).getNode();
5008  SDNode *N1 = Op.getOperand(1).getNode();
5009  unsigned NewOpc = 0;
5010  bool isMLA = false;
5011  bool isN0SExt = isSignExtended(N0, DAG);
5012  bool isN1SExt = isSignExtended(N1, DAG);
5013  if (isN0SExt && isN1SExt)
5014    NewOpc = ARMISD::VMULLs;
5015  else {
5016    bool isN0ZExt = isZeroExtended(N0, DAG);
5017    bool isN1ZExt = isZeroExtended(N1, DAG);
5018    if (isN0ZExt && isN1ZExt)
5019      NewOpc = ARMISD::VMULLu;
5020    else if (isN1SExt || isN1ZExt) {
5021      // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
5022      // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
5023      if (isN1SExt && isAddSubSExt(N0, DAG)) {
5024        NewOpc = ARMISD::VMULLs;
5025        isMLA = true;
5026      } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
5027        NewOpc = ARMISD::VMULLu;
5028        isMLA = true;
5029      } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
5030        std::swap(N0, N1);
5031        NewOpc = ARMISD::VMULLu;
5032        isMLA = true;
5033      }
5034    }
5035
5036    if (!NewOpc) {
5037      if (VT == MVT::v2i64)
5038        // Fall through to expand this.  It is not legal.
5039        return SDValue();
5040      else
5041        // Other vector multiplications are legal.
5042        return Op;
5043    }
5044  }
5045
5046  // Legalize to a VMULL instruction.
5047  DebugLoc DL = Op.getDebugLoc();
5048  SDValue Op0;
5049  SDValue Op1 = SkipExtension(N1, DAG);
5050  if (!isMLA) {
5051    Op0 = SkipExtension(N0, DAG);
5052    assert(Op0.getValueType().is64BitVector() &&
5053           Op1.getValueType().is64BitVector() &&
5054           "unexpected types for extended operands to VMULL");
5055    return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
5056  }
5057
5058  // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
5059  // isel lowering to take advantage of no-stall back to back vmul + vmla.
5060  //   vmull q0, d4, d6
5061  //   vmlal q0, d5, d6
5062  // is faster than
5063  //   vaddl q0, d4, d5
5064  //   vmovl q1, d6
5065  //   vmul  q0, q0, q1
5066  SDValue N00 = SkipExtension(N0->getOperand(0).getNode(), DAG);
5067  SDValue N01 = SkipExtension(N0->getOperand(1).getNode(), DAG);
5068  EVT Op1VT = Op1.getValueType();
5069  return DAG.getNode(N0->getOpcode(), DL, VT,
5070                     DAG.getNode(NewOpc, DL, VT,
5071                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
5072                     DAG.getNode(NewOpc, DL, VT,
5073                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
5074}
5075
5076static SDValue
5077LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) {
5078  // Convert to float
5079  // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
5080  // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
5081  X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
5082  Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
5083  X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
5084  Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
5085  // Get reciprocal estimate.
5086  // float4 recip = vrecpeq_f32(yf);
5087  Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5088                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
5089  // Because char has a smaller range than uchar, we can actually get away
5090  // without any newton steps.  This requires that we use a weird bias
5091  // of 0xb000, however (again, this has been exhaustively tested).
5092  // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
5093  X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
5094  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
5095  Y = DAG.getConstant(0xb000, MVT::i32);
5096  Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
5097  X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
5098  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
5099  // Convert back to short.
5100  X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
5101  X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
5102  return X;
5103}
5104
5105static SDValue
5106LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) {
5107  SDValue N2;
5108  // Convert to float.
5109  // float4 yf = vcvt_f32_s32(vmovl_s16(y));
5110  // float4 xf = vcvt_f32_s32(vmovl_s16(x));
5111  N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
5112  N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
5113  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
5114  N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
5115
5116  // Use reciprocal estimate and one refinement step.
5117  // float4 recip = vrecpeq_f32(yf);
5118  // recip *= vrecpsq_f32(yf, recip);
5119  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5120                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
5121  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5122                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5123                   N1, N2);
5124  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5125  // Because short has a smaller range than ushort, we can actually get away
5126  // with only a single newton step.  This requires that we use a weird bias
5127  // of 89, however (again, this has been exhaustively tested).
5128  // float4 result = as_float4(as_int4(xf*recip) + 0x89);
5129  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
5130  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
5131  N1 = DAG.getConstant(0x89, MVT::i32);
5132  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
5133  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
5134  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
5135  // Convert back to integer and return.
5136  // return vmovn_s32(vcvt_s32_f32(result));
5137  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
5138  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
5139  return N0;
5140}
5141
5142static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
5143  EVT VT = Op.getValueType();
5144  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
5145         "unexpected type for custom-lowering ISD::SDIV");
5146
5147  DebugLoc dl = Op.getDebugLoc();
5148  SDValue N0 = Op.getOperand(0);
5149  SDValue N1 = Op.getOperand(1);
5150  SDValue N2, N3;
5151
5152  if (VT == MVT::v8i8) {
5153    N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
5154    N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
5155
5156    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5157                     DAG.getIntPtrConstant(4));
5158    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5159                     DAG.getIntPtrConstant(4));
5160    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5161                     DAG.getIntPtrConstant(0));
5162    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5163                     DAG.getIntPtrConstant(0));
5164
5165    N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
5166    N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
5167
5168    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
5169    N0 = LowerCONCAT_VECTORS(N0, DAG);
5170
5171    N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
5172    return N0;
5173  }
5174  return LowerSDIV_v4i16(N0, N1, dl, DAG);
5175}
5176
5177static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
5178  EVT VT = Op.getValueType();
5179  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
5180         "unexpected type for custom-lowering ISD::UDIV");
5181
5182  DebugLoc dl = Op.getDebugLoc();
5183  SDValue N0 = Op.getOperand(0);
5184  SDValue N1 = Op.getOperand(1);
5185  SDValue N2, N3;
5186
5187  if (VT == MVT::v8i8) {
5188    N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
5189    N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
5190
5191    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5192                     DAG.getIntPtrConstant(4));
5193    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5194                     DAG.getIntPtrConstant(4));
5195    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5196                     DAG.getIntPtrConstant(0));
5197    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5198                     DAG.getIntPtrConstant(0));
5199
5200    N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
5201    N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
5202
5203    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
5204    N0 = LowerCONCAT_VECTORS(N0, DAG);
5205
5206    N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
5207                     DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
5208                     N0);
5209    return N0;
5210  }
5211
5212  // v4i16 sdiv ... Convert to float.
5213  // float4 yf = vcvt_f32_s32(vmovl_u16(y));
5214  // float4 xf = vcvt_f32_s32(vmovl_u16(x));
5215  N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
5216  N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
5217  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
5218  SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
5219
5220  // Use reciprocal estimate and two refinement steps.
5221  // float4 recip = vrecpeq_f32(yf);
5222  // recip *= vrecpsq_f32(yf, recip);
5223  // recip *= vrecpsq_f32(yf, recip);
5224  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5225                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
5226  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5227                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5228                   BN1, N2);
5229  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5230  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5231                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5232                   BN1, N2);
5233  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5234  // Simply multiplying by the reciprocal estimate can leave us a few ulps
5235  // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
5236  // and that it will never cause us to return an answer too large).
5237  // float4 result = as_float4(as_int4(xf*recip) + 2);
5238  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
5239  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
5240  N1 = DAG.getConstant(2, MVT::i32);
5241  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
5242  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
5243  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
5244  // Convert back to integer and return.
5245  // return vmovn_u32(vcvt_s32_f32(result));
5246  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
5247  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
5248  return N0;
5249}
5250
5251static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
5252  EVT VT = Op.getNode()->getValueType(0);
5253  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
5254
5255  unsigned Opc;
5256  bool ExtraOp = false;
5257  switch (Op.getOpcode()) {
5258  default: llvm_unreachable("Invalid code");
5259  case ISD::ADDC: Opc = ARMISD::ADDC; break;
5260  case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
5261  case ISD::SUBC: Opc = ARMISD::SUBC; break;
5262  case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
5263  }
5264
5265  if (!ExtraOp)
5266    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
5267                       Op.getOperand(1));
5268  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
5269                     Op.getOperand(1), Op.getOperand(2));
5270}
5271
5272static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
5273  // Monotonic load/store is legal for all targets
5274  if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
5275    return Op;
5276
5277  // Aquire/Release load/store is not legal for targets without a
5278  // dmb or equivalent available.
5279  return SDValue();
5280}
5281
5282
5283static void
5284ReplaceATOMIC_OP_64(SDNode *Node, SmallVectorImpl<SDValue>& Results,
5285                    SelectionDAG &DAG, unsigned NewOp) {
5286  DebugLoc dl = Node->getDebugLoc();
5287  assert (Node->getValueType(0) == MVT::i64 &&
5288          "Only know how to expand i64 atomics");
5289
5290  SmallVector<SDValue, 6> Ops;
5291  Ops.push_back(Node->getOperand(0)); // Chain
5292  Ops.push_back(Node->getOperand(1)); // Ptr
5293  // Low part of Val1
5294  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5295                            Node->getOperand(2), DAG.getIntPtrConstant(0)));
5296  // High part of Val1
5297  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5298                            Node->getOperand(2), DAG.getIntPtrConstant(1)));
5299  if (NewOp == ARMISD::ATOMCMPXCHG64_DAG) {
5300    // High part of Val1
5301    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5302                              Node->getOperand(3), DAG.getIntPtrConstant(0)));
5303    // High part of Val2
5304    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5305                              Node->getOperand(3), DAG.getIntPtrConstant(1)));
5306  }
5307  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
5308  SDValue Result =
5309    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops.data(), Ops.size(), MVT::i64,
5310                            cast<MemSDNode>(Node)->getMemOperand());
5311  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1) };
5312  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
5313  Results.push_back(Result.getValue(2));
5314}
5315
5316SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5317  switch (Op.getOpcode()) {
5318  default: llvm_unreachable("Don't know how to custom lower this!");
5319  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
5320  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
5321  case ISD::GlobalAddress:
5322    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
5323      LowerGlobalAddressELF(Op, DAG);
5324  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
5325  case ISD::SELECT:        return LowerSELECT(Op, DAG);
5326  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
5327  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
5328  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
5329  case ISD::VASTART:       return LowerVASTART(Op, DAG);
5330  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
5331  case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
5332  case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
5333  case ISD::SINT_TO_FP:
5334  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
5335  case ISD::FP_TO_SINT:
5336  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
5337  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
5338  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
5339  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
5340  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
5341  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
5342  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
5343  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
5344                                                               Subtarget);
5345  case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
5346  case ISD::SHL:
5347  case ISD::SRL:
5348  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
5349  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
5350  case ISD::SRL_PARTS:
5351  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
5352  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
5353  case ISD::SETCC:         return LowerVSETCC(Op, DAG);
5354  case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
5355  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
5356  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
5357  case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
5358  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5359  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
5360  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
5361  case ISD::MUL:           return LowerMUL(Op, DAG);
5362  case ISD::SDIV:          return LowerSDIV(Op, DAG);
5363  case ISD::UDIV:          return LowerUDIV(Op, DAG);
5364  case ISD::ADDC:
5365  case ISD::ADDE:
5366  case ISD::SUBC:
5367  case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
5368  case ISD::ATOMIC_LOAD:
5369  case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
5370  }
5371}
5372
5373/// ReplaceNodeResults - Replace the results of node with an illegal result
5374/// type with new values built out of custom code.
5375void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
5376                                           SmallVectorImpl<SDValue>&Results,
5377                                           SelectionDAG &DAG) const {
5378  SDValue Res;
5379  switch (N->getOpcode()) {
5380  default:
5381    llvm_unreachable("Don't know how to custom expand this!");
5382  case ISD::BITCAST:
5383    Res = ExpandBITCAST(N, DAG);
5384    break;
5385  case ISD::SRL:
5386  case ISD::SRA:
5387    Res = Expand64BitShift(N, DAG, Subtarget);
5388    break;
5389  case ISD::ATOMIC_LOAD_ADD:
5390    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMADD64_DAG);
5391    return;
5392  case ISD::ATOMIC_LOAD_AND:
5393    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMAND64_DAG);
5394    return;
5395  case ISD::ATOMIC_LOAD_NAND:
5396    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMNAND64_DAG);
5397    return;
5398  case ISD::ATOMIC_LOAD_OR:
5399    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMOR64_DAG);
5400    return;
5401  case ISD::ATOMIC_LOAD_SUB:
5402    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSUB64_DAG);
5403    return;
5404  case ISD::ATOMIC_LOAD_XOR:
5405    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMXOR64_DAG);
5406    return;
5407  case ISD::ATOMIC_SWAP:
5408    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSWAP64_DAG);
5409    return;
5410  case ISD::ATOMIC_CMP_SWAP:
5411    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMCMPXCHG64_DAG);
5412    return;
5413  case ISD::ATOMIC_LOAD_MIN:
5414    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMMIN64_DAG);
5415    return;
5416  case ISD::ATOMIC_LOAD_UMIN:
5417    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMUMIN64_DAG);
5418    return;
5419  case ISD::ATOMIC_LOAD_MAX:
5420    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMMAX64_DAG);
5421    return;
5422  case ISD::ATOMIC_LOAD_UMAX:
5423    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMUMAX64_DAG);
5424    return;
5425  }
5426  if (Res.getNode())
5427    Results.push_back(Res);
5428}
5429
5430//===----------------------------------------------------------------------===//
5431//                           ARM Scheduler Hooks
5432//===----------------------------------------------------------------------===//
5433
5434MachineBasicBlock *
5435ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
5436                                     MachineBasicBlock *BB,
5437                                     unsigned Size) const {
5438  unsigned dest    = MI->getOperand(0).getReg();
5439  unsigned ptr     = MI->getOperand(1).getReg();
5440  unsigned oldval  = MI->getOperand(2).getReg();
5441  unsigned newval  = MI->getOperand(3).getReg();
5442  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5443  DebugLoc dl = MI->getDebugLoc();
5444  bool isThumb2 = Subtarget->isThumb2();
5445
5446  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5447  unsigned scratch = MRI.createVirtualRegister(isThumb2 ?
5448    (const TargetRegisterClass*)&ARM::rGPRRegClass :
5449    (const TargetRegisterClass*)&ARM::GPRRegClass);
5450
5451  if (isThumb2) {
5452    MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
5453    MRI.constrainRegClass(oldval, &ARM::rGPRRegClass);
5454    MRI.constrainRegClass(newval, &ARM::rGPRRegClass);
5455  }
5456
5457  unsigned ldrOpc, strOpc;
5458  switch (Size) {
5459  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5460  case 1:
5461    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5462    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5463    break;
5464  case 2:
5465    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5466    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5467    break;
5468  case 4:
5469    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5470    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5471    break;
5472  }
5473
5474  MachineFunction *MF = BB->getParent();
5475  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5476  MachineFunction::iterator It = BB;
5477  ++It; // insert the new blocks after the current block
5478
5479  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5480  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5481  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5482  MF->insert(It, loop1MBB);
5483  MF->insert(It, loop2MBB);
5484  MF->insert(It, exitMBB);
5485
5486  // Transfer the remainder of BB and its successor edges to exitMBB.
5487  exitMBB->splice(exitMBB->begin(), BB,
5488                  llvm::next(MachineBasicBlock::iterator(MI)),
5489                  BB->end());
5490  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5491
5492  //  thisMBB:
5493  //   ...
5494  //   fallthrough --> loop1MBB
5495  BB->addSuccessor(loop1MBB);
5496
5497  // loop1MBB:
5498  //   ldrex dest, [ptr]
5499  //   cmp dest, oldval
5500  //   bne exitMBB
5501  BB = loop1MBB;
5502  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5503  if (ldrOpc == ARM::t2LDREX)
5504    MIB.addImm(0);
5505  AddDefaultPred(MIB);
5506  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5507                 .addReg(dest).addReg(oldval));
5508  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5509    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5510  BB->addSuccessor(loop2MBB);
5511  BB->addSuccessor(exitMBB);
5512
5513  // loop2MBB:
5514  //   strex scratch, newval, [ptr]
5515  //   cmp scratch, #0
5516  //   bne loop1MBB
5517  BB = loop2MBB;
5518  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval).addReg(ptr);
5519  if (strOpc == ARM::t2STREX)
5520    MIB.addImm(0);
5521  AddDefaultPred(MIB);
5522  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5523                 .addReg(scratch).addImm(0));
5524  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5525    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5526  BB->addSuccessor(loop1MBB);
5527  BB->addSuccessor(exitMBB);
5528
5529  //  exitMBB:
5530  //   ...
5531  BB = exitMBB;
5532
5533  MI->eraseFromParent();   // The instruction is gone now.
5534
5535  return BB;
5536}
5537
5538MachineBasicBlock *
5539ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
5540                                    unsigned Size, unsigned BinOpcode) const {
5541  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5542  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5543
5544  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5545  MachineFunction *MF = BB->getParent();
5546  MachineFunction::iterator It = BB;
5547  ++It;
5548
5549  unsigned dest = MI->getOperand(0).getReg();
5550  unsigned ptr = MI->getOperand(1).getReg();
5551  unsigned incr = MI->getOperand(2).getReg();
5552  DebugLoc dl = MI->getDebugLoc();
5553  bool isThumb2 = Subtarget->isThumb2();
5554
5555  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5556  if (isThumb2) {
5557    MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
5558    MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
5559  }
5560
5561  unsigned ldrOpc, strOpc;
5562  switch (Size) {
5563  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5564  case 1:
5565    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5566    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5567    break;
5568  case 2:
5569    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5570    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5571    break;
5572  case 4:
5573    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5574    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5575    break;
5576  }
5577
5578  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5579  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5580  MF->insert(It, loopMBB);
5581  MF->insert(It, exitMBB);
5582
5583  // Transfer the remainder of BB and its successor edges to exitMBB.
5584  exitMBB->splice(exitMBB->begin(), BB,
5585                  llvm::next(MachineBasicBlock::iterator(MI)),
5586                  BB->end());
5587  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5588
5589  const TargetRegisterClass *TRC = isThumb2 ?
5590    (const TargetRegisterClass*)&ARM::rGPRRegClass :
5591    (const TargetRegisterClass*)&ARM::GPRRegClass;
5592  unsigned scratch = MRI.createVirtualRegister(TRC);
5593  unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
5594
5595  //  thisMBB:
5596  //   ...
5597  //   fallthrough --> loopMBB
5598  BB->addSuccessor(loopMBB);
5599
5600  //  loopMBB:
5601  //   ldrex dest, ptr
5602  //   <binop> scratch2, dest, incr
5603  //   strex scratch, scratch2, ptr
5604  //   cmp scratch, #0
5605  //   bne- loopMBB
5606  //   fallthrough --> exitMBB
5607  BB = loopMBB;
5608  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5609  if (ldrOpc == ARM::t2LDREX)
5610    MIB.addImm(0);
5611  AddDefaultPred(MIB);
5612  if (BinOpcode) {
5613    // operand order needs to go the other way for NAND
5614    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
5615      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5616                     addReg(incr).addReg(dest)).addReg(0);
5617    else
5618      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5619                     addReg(dest).addReg(incr)).addReg(0);
5620  }
5621
5622  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5623  if (strOpc == ARM::t2STREX)
5624    MIB.addImm(0);
5625  AddDefaultPred(MIB);
5626  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5627                 .addReg(scratch).addImm(0));
5628  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5629    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5630
5631  BB->addSuccessor(loopMBB);
5632  BB->addSuccessor(exitMBB);
5633
5634  //  exitMBB:
5635  //   ...
5636  BB = exitMBB;
5637
5638  MI->eraseFromParent();   // The instruction is gone now.
5639
5640  return BB;
5641}
5642
5643MachineBasicBlock *
5644ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI,
5645                                          MachineBasicBlock *BB,
5646                                          unsigned Size,
5647                                          bool signExtend,
5648                                          ARMCC::CondCodes Cond) const {
5649  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5650
5651  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5652  MachineFunction *MF = BB->getParent();
5653  MachineFunction::iterator It = BB;
5654  ++It;
5655
5656  unsigned dest = MI->getOperand(0).getReg();
5657  unsigned ptr = MI->getOperand(1).getReg();
5658  unsigned incr = MI->getOperand(2).getReg();
5659  unsigned oldval = dest;
5660  DebugLoc dl = MI->getDebugLoc();
5661  bool isThumb2 = Subtarget->isThumb2();
5662
5663  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5664  if (isThumb2) {
5665    MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
5666    MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
5667  }
5668
5669  unsigned ldrOpc, strOpc, extendOpc;
5670  switch (Size) {
5671  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5672  case 1:
5673    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5674    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5675    extendOpc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
5676    break;
5677  case 2:
5678    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5679    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5680    extendOpc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
5681    break;
5682  case 4:
5683    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5684    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5685    extendOpc = 0;
5686    break;
5687  }
5688
5689  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5690  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5691  MF->insert(It, loopMBB);
5692  MF->insert(It, exitMBB);
5693
5694  // Transfer the remainder of BB and its successor edges to exitMBB.
5695  exitMBB->splice(exitMBB->begin(), BB,
5696                  llvm::next(MachineBasicBlock::iterator(MI)),
5697                  BB->end());
5698  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5699
5700  const TargetRegisterClass *TRC = isThumb2 ?
5701    (const TargetRegisterClass*)&ARM::rGPRRegClass :
5702    (const TargetRegisterClass*)&ARM::GPRRegClass;
5703  unsigned scratch = MRI.createVirtualRegister(TRC);
5704  unsigned scratch2 = MRI.createVirtualRegister(TRC);
5705
5706  //  thisMBB:
5707  //   ...
5708  //   fallthrough --> loopMBB
5709  BB->addSuccessor(loopMBB);
5710
5711  //  loopMBB:
5712  //   ldrex dest, ptr
5713  //   (sign extend dest, if required)
5714  //   cmp dest, incr
5715  //   cmov.cond scratch2, incr, dest
5716  //   strex scratch, scratch2, ptr
5717  //   cmp scratch, #0
5718  //   bne- loopMBB
5719  //   fallthrough --> exitMBB
5720  BB = loopMBB;
5721  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5722  if (ldrOpc == ARM::t2LDREX)
5723    MIB.addImm(0);
5724  AddDefaultPred(MIB);
5725
5726  // Sign extend the value, if necessary.
5727  if (signExtend && extendOpc) {
5728    oldval = MRI.createVirtualRegister(&ARM::GPRRegClass);
5729    AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval)
5730                     .addReg(dest)
5731                     .addImm(0));
5732  }
5733
5734  // Build compare and cmov instructions.
5735  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5736                 .addReg(oldval).addReg(incr));
5737  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2)
5738         .addReg(incr).addReg(oldval).addImm(Cond).addReg(ARM::CPSR);
5739
5740  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5741  if (strOpc == ARM::t2STREX)
5742    MIB.addImm(0);
5743  AddDefaultPred(MIB);
5744  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5745                 .addReg(scratch).addImm(0));
5746  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5747    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5748
5749  BB->addSuccessor(loopMBB);
5750  BB->addSuccessor(exitMBB);
5751
5752  //  exitMBB:
5753  //   ...
5754  BB = exitMBB;
5755
5756  MI->eraseFromParent();   // The instruction is gone now.
5757
5758  return BB;
5759}
5760
5761MachineBasicBlock *
5762ARMTargetLowering::EmitAtomicBinary64(MachineInstr *MI, MachineBasicBlock *BB,
5763                                      unsigned Op1, unsigned Op2,
5764                                      bool NeedsCarry, bool IsCmpxchg,
5765                                      bool IsMinMax, ARMCC::CondCodes CC) const {
5766  // This also handles ATOMIC_SWAP, indicated by Op1==0.
5767  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5768
5769  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5770  MachineFunction *MF = BB->getParent();
5771  MachineFunction::iterator It = BB;
5772  ++It;
5773
5774  unsigned destlo = MI->getOperand(0).getReg();
5775  unsigned desthi = MI->getOperand(1).getReg();
5776  unsigned ptr = MI->getOperand(2).getReg();
5777  unsigned vallo = MI->getOperand(3).getReg();
5778  unsigned valhi = MI->getOperand(4).getReg();
5779  DebugLoc dl = MI->getDebugLoc();
5780  bool isThumb2 = Subtarget->isThumb2();
5781
5782  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5783  if (isThumb2) {
5784    MRI.constrainRegClass(destlo, &ARM::rGPRRegClass);
5785    MRI.constrainRegClass(desthi, &ARM::rGPRRegClass);
5786    MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
5787  }
5788
5789  unsigned ldrOpc = isThumb2 ? ARM::t2LDREXD : ARM::LDREXD;
5790  unsigned strOpc = isThumb2 ? ARM::t2STREXD : ARM::STREXD;
5791
5792  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5793  MachineBasicBlock *contBB = 0, *cont2BB = 0;
5794  if (IsCmpxchg || IsMinMax)
5795    contBB = MF->CreateMachineBasicBlock(LLVM_BB);
5796  if (IsCmpxchg)
5797    cont2BB = MF->CreateMachineBasicBlock(LLVM_BB);
5798  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5799
5800  MF->insert(It, loopMBB);
5801  if (IsCmpxchg || IsMinMax) MF->insert(It, contBB);
5802  if (IsCmpxchg) MF->insert(It, cont2BB);
5803  MF->insert(It, exitMBB);
5804
5805  // Transfer the remainder of BB and its successor edges to exitMBB.
5806  exitMBB->splice(exitMBB->begin(), BB,
5807                  llvm::next(MachineBasicBlock::iterator(MI)),
5808                  BB->end());
5809  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5810
5811  const TargetRegisterClass *TRC = isThumb2 ?
5812    (const TargetRegisterClass*)&ARM::tGPRRegClass :
5813    (const TargetRegisterClass*)&ARM::GPRRegClass;
5814  unsigned storesuccess = MRI.createVirtualRegister(TRC);
5815
5816  //  thisMBB:
5817  //   ...
5818  //   fallthrough --> loopMBB
5819  BB->addSuccessor(loopMBB);
5820
5821  //  loopMBB:
5822  //   ldrexd r2, r3, ptr
5823  //   <binopa> r0, r2, incr
5824  //   <binopb> r1, r3, incr
5825  //   strexd storesuccess, r0, r1, ptr
5826  //   cmp storesuccess, #0
5827  //   bne- loopMBB
5828  //   fallthrough --> exitMBB
5829  //
5830  // Note that the registers are explicitly specified because there is not any
5831  // way to force the register allocator to allocate a register pair.
5832  //
5833  // FIXME: The hardcoded registers are not necessary for Thumb2, but we
5834  // need to properly enforce the restriction that the two output registers
5835  // for ldrexd must be different.
5836  BB = loopMBB;
5837  // Load
5838  unsigned GPRPair0 = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
5839  unsigned GPRPair1 = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
5840  unsigned GPRPair2;
5841  if (IsMinMax) {
5842    //We need an extra double register for doing min/max.
5843    unsigned undef = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
5844    unsigned r1 = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
5845    GPRPair2 = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
5846    BuildMI(BB, dl, TII->get(TargetOpcode::IMPLICIT_DEF), undef);
5847    BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), r1)
5848      .addReg(undef)
5849      .addReg(vallo)
5850      .addImm(ARM::gsub_0);
5851    BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), GPRPair2)
5852      .addReg(r1)
5853      .addReg(valhi)
5854      .addImm(ARM::gsub_1);
5855  }
5856
5857  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc))
5858                 .addReg(GPRPair0, RegState::Define).addReg(ptr));
5859  // Copy r2/r3 into dest.  (This copy will normally be coalesced.)
5860  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), destlo)
5861    .addReg(GPRPair0, 0, ARM::gsub_0);
5862  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), desthi)
5863    .addReg(GPRPair0, 0, ARM::gsub_1);
5864
5865  if (IsCmpxchg) {
5866    // Add early exit
5867    for (unsigned i = 0; i < 2; i++) {
5868      AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr :
5869                                                         ARM::CMPrr))
5870                     .addReg(i == 0 ? destlo : desthi)
5871                     .addReg(i == 0 ? vallo : valhi));
5872      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5873        .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5874      BB->addSuccessor(exitMBB);
5875      BB->addSuccessor(i == 0 ? contBB : cont2BB);
5876      BB = (i == 0 ? contBB : cont2BB);
5877    }
5878
5879    // Copy to physregs for strexd
5880    unsigned setlo = MI->getOperand(5).getReg();
5881    unsigned sethi = MI->getOperand(6).getReg();
5882    unsigned undef = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
5883    unsigned r1 = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
5884    BuildMI(BB, dl, TII->get(TargetOpcode::IMPLICIT_DEF), undef);
5885    BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), r1)
5886      .addReg(undef)
5887      .addReg(setlo)
5888      .addImm(ARM::gsub_0);
5889    BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), GPRPair1)
5890      .addReg(r1)
5891      .addReg(sethi)
5892      .addImm(ARM::gsub_1);
5893  } else if (Op1) {
5894    // Perform binary operation
5895    unsigned tmpRegLo = MRI.createVirtualRegister(TRC);
5896    AddDefaultPred(BuildMI(BB, dl, TII->get(Op1), tmpRegLo)
5897                   .addReg(destlo).addReg(vallo))
5898        .addReg(NeedsCarry ? ARM::CPSR : 0, getDefRegState(NeedsCarry));
5899    unsigned tmpRegHi = MRI.createVirtualRegister(TRC);
5900    AddDefaultPred(BuildMI(BB, dl, TII->get(Op2), tmpRegHi)
5901                   .addReg(desthi).addReg(valhi))
5902        .addReg(IsMinMax ? ARM::CPSR : 0, getDefRegState(IsMinMax));
5903
5904    unsigned UndefPair = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
5905    BuildMI(BB, dl, TII->get(TargetOpcode::IMPLICIT_DEF), UndefPair);
5906    unsigned r1 = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
5907    BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), r1)
5908      .addReg(UndefPair)
5909      .addReg(tmpRegLo)
5910      .addImm(ARM::gsub_0);
5911    BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), GPRPair1)
5912      .addReg(r1)
5913      .addReg(tmpRegHi)
5914      .addImm(ARM::gsub_1);
5915  } else {
5916    // Copy to physregs for strexd
5917    unsigned UndefPair = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
5918    unsigned r1 = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
5919    BuildMI(BB, dl, TII->get(TargetOpcode::IMPLICIT_DEF), UndefPair);
5920    BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), r1)
5921      .addReg(UndefPair)
5922      .addReg(vallo)
5923      .addImm(ARM::gsub_0);
5924    BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), GPRPair1)
5925      .addReg(r1)
5926      .addReg(valhi)
5927      .addImm(ARM::gsub_1);
5928  }
5929  unsigned GPRPairStore = GPRPair1;
5930  if (IsMinMax) {
5931    // Compare and branch to exit block.
5932    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5933      .addMBB(exitMBB).addImm(CC).addReg(ARM::CPSR);
5934    BB->addSuccessor(exitMBB);
5935    BB->addSuccessor(contBB);
5936    BB = contBB;
5937    GPRPairStore = GPRPair2;
5938  }
5939
5940  // Store
5941  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), storesuccess)
5942                 .addReg(GPRPairStore).addReg(ptr));
5943  // Cmp+jump
5944  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5945                 .addReg(storesuccess).addImm(0));
5946  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5947    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5948
5949  BB->addSuccessor(loopMBB);
5950  BB->addSuccessor(exitMBB);
5951
5952  //  exitMBB:
5953  //   ...
5954  BB = exitMBB;
5955
5956  MI->eraseFromParent();   // The instruction is gone now.
5957
5958  return BB;
5959}
5960
5961/// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
5962/// registers the function context.
5963void ARMTargetLowering::
5964SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
5965                       MachineBasicBlock *DispatchBB, int FI) const {
5966  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5967  DebugLoc dl = MI->getDebugLoc();
5968  MachineFunction *MF = MBB->getParent();
5969  MachineRegisterInfo *MRI = &MF->getRegInfo();
5970  MachineConstantPool *MCP = MF->getConstantPool();
5971  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
5972  const Function *F = MF->getFunction();
5973
5974  bool isThumb = Subtarget->isThumb();
5975  bool isThumb2 = Subtarget->isThumb2();
5976
5977  unsigned PCLabelId = AFI->createPICLabelUId();
5978  unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
5979  ARMConstantPoolValue *CPV =
5980    ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
5981  unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
5982
5983  const TargetRegisterClass *TRC = isThumb ?
5984    (const TargetRegisterClass*)&ARM::tGPRRegClass :
5985    (const TargetRegisterClass*)&ARM::GPRRegClass;
5986
5987  // Grab constant pool and fixed stack memory operands.
5988  MachineMemOperand *CPMMO =
5989    MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(),
5990                             MachineMemOperand::MOLoad, 4, 4);
5991
5992  MachineMemOperand *FIMMOSt =
5993    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
5994                             MachineMemOperand::MOStore, 4, 4);
5995
5996  // Load the address of the dispatch MBB into the jump buffer.
5997  if (isThumb2) {
5998    // Incoming value: jbuf
5999    //   ldr.n  r5, LCPI1_1
6000    //   orr    r5, r5, #1
6001    //   add    r5, pc
6002    //   str    r5, [$jbuf, #+4] ; &jbuf[1]
6003    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6004    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
6005                   .addConstantPoolIndex(CPI)
6006                   .addMemOperand(CPMMO));
6007    // Set the low bit because of thumb mode.
6008    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6009    AddDefaultCC(
6010      AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
6011                     .addReg(NewVReg1, RegState::Kill)
6012                     .addImm(0x01)));
6013    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6014    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
6015      .addReg(NewVReg2, RegState::Kill)
6016      .addImm(PCLabelId);
6017    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
6018                   .addReg(NewVReg3, RegState::Kill)
6019                   .addFrameIndex(FI)
6020                   .addImm(36)  // &jbuf[1] :: pc
6021                   .addMemOperand(FIMMOSt));
6022  } else if (isThumb) {
6023    // Incoming value: jbuf
6024    //   ldr.n  r1, LCPI1_4
6025    //   add    r1, pc
6026    //   mov    r2, #1
6027    //   orrs   r1, r2
6028    //   add    r2, $jbuf, #+4 ; &jbuf[1]
6029    //   str    r1, [r2]
6030    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6031    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
6032                   .addConstantPoolIndex(CPI)
6033                   .addMemOperand(CPMMO));
6034    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6035    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
6036      .addReg(NewVReg1, RegState::Kill)
6037      .addImm(PCLabelId);
6038    // Set the low bit because of thumb mode.
6039    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6040    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
6041                   .addReg(ARM::CPSR, RegState::Define)
6042                   .addImm(1));
6043    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6044    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
6045                   .addReg(ARM::CPSR, RegState::Define)
6046                   .addReg(NewVReg2, RegState::Kill)
6047                   .addReg(NewVReg3, RegState::Kill));
6048    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6049    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5)
6050                   .addFrameIndex(FI)
6051                   .addImm(36)); // &jbuf[1] :: pc
6052    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
6053                   .addReg(NewVReg4, RegState::Kill)
6054                   .addReg(NewVReg5, RegState::Kill)
6055                   .addImm(0)
6056                   .addMemOperand(FIMMOSt));
6057  } else {
6058    // Incoming value: jbuf
6059    //   ldr  r1, LCPI1_1
6060    //   add  r1, pc, r1
6061    //   str  r1, [$jbuf, #+4] ; &jbuf[1]
6062    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6063    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12),  NewVReg1)
6064                   .addConstantPoolIndex(CPI)
6065                   .addImm(0)
6066                   .addMemOperand(CPMMO));
6067    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6068    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
6069                   .addReg(NewVReg1, RegState::Kill)
6070                   .addImm(PCLabelId));
6071    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
6072                   .addReg(NewVReg2, RegState::Kill)
6073                   .addFrameIndex(FI)
6074                   .addImm(36)  // &jbuf[1] :: pc
6075                   .addMemOperand(FIMMOSt));
6076  }
6077}
6078
6079MachineBasicBlock *ARMTargetLowering::
6080EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
6081  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6082  DebugLoc dl = MI->getDebugLoc();
6083  MachineFunction *MF = MBB->getParent();
6084  MachineRegisterInfo *MRI = &MF->getRegInfo();
6085  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
6086  MachineFrameInfo *MFI = MF->getFrameInfo();
6087  int FI = MFI->getFunctionContextIndex();
6088
6089  const TargetRegisterClass *TRC = Subtarget->isThumb() ?
6090    (const TargetRegisterClass*)&ARM::tGPRRegClass :
6091    (const TargetRegisterClass*)&ARM::GPRnopcRegClass;
6092
6093  // Get a mapping of the call site numbers to all of the landing pads they're
6094  // associated with.
6095  DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
6096  unsigned MaxCSNum = 0;
6097  MachineModuleInfo &MMI = MF->getMMI();
6098  for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
6099       ++BB) {
6100    if (!BB->isLandingPad()) continue;
6101
6102    // FIXME: We should assert that the EH_LABEL is the first MI in the landing
6103    // pad.
6104    for (MachineBasicBlock::iterator
6105           II = BB->begin(), IE = BB->end(); II != IE; ++II) {
6106      if (!II->isEHLabel()) continue;
6107
6108      MCSymbol *Sym = II->getOperand(0).getMCSymbol();
6109      if (!MMI.hasCallSiteLandingPad(Sym)) continue;
6110
6111      SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
6112      for (SmallVectorImpl<unsigned>::iterator
6113             CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
6114           CSI != CSE; ++CSI) {
6115        CallSiteNumToLPad[*CSI].push_back(BB);
6116        MaxCSNum = std::max(MaxCSNum, *CSI);
6117      }
6118      break;
6119    }
6120  }
6121
6122  // Get an ordered list of the machine basic blocks for the jump table.
6123  std::vector<MachineBasicBlock*> LPadList;
6124  SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
6125  LPadList.reserve(CallSiteNumToLPad.size());
6126  for (unsigned I = 1; I <= MaxCSNum; ++I) {
6127    SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
6128    for (SmallVectorImpl<MachineBasicBlock*>::iterator
6129           II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
6130      LPadList.push_back(*II);
6131      InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
6132    }
6133  }
6134
6135  assert(!LPadList.empty() &&
6136         "No landing pad destinations for the dispatch jump table!");
6137
6138  // Create the jump table and associated information.
6139  MachineJumpTableInfo *JTI =
6140    MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
6141  unsigned MJTI = JTI->createJumpTableIndex(LPadList);
6142  unsigned UId = AFI->createJumpTableUId();
6143
6144  // Create the MBBs for the dispatch code.
6145
6146  // Shove the dispatch's address into the return slot in the function context.
6147  MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
6148  DispatchBB->setIsLandingPad();
6149
6150  MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
6151  BuildMI(TrapBB, dl, TII->get(Subtarget->isThumb() ? ARM::tTRAP : ARM::TRAP));
6152  DispatchBB->addSuccessor(TrapBB);
6153
6154  MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
6155  DispatchBB->addSuccessor(DispContBB);
6156
6157  // Insert and MBBs.
6158  MF->insert(MF->end(), DispatchBB);
6159  MF->insert(MF->end(), DispContBB);
6160  MF->insert(MF->end(), TrapBB);
6161
6162  // Insert code into the entry block that creates and registers the function
6163  // context.
6164  SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
6165
6166  MachineMemOperand *FIMMOLd =
6167    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
6168                             MachineMemOperand::MOLoad |
6169                             MachineMemOperand::MOVolatile, 4, 4);
6170
6171  MachineInstrBuilder MIB;
6172  MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
6173
6174  const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
6175  const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
6176
6177  // Add a register mask with no preserved registers.  This results in all
6178  // registers being marked as clobbered.
6179  MIB.addRegMask(RI.getNoPreservedMask());
6180
6181  unsigned NumLPads = LPadList.size();
6182  if (Subtarget->isThumb2()) {
6183    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6184    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
6185                   .addFrameIndex(FI)
6186                   .addImm(4)
6187                   .addMemOperand(FIMMOLd));
6188
6189    if (NumLPads < 256) {
6190      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
6191                     .addReg(NewVReg1)
6192                     .addImm(LPadList.size()));
6193    } else {
6194      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6195      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
6196                     .addImm(NumLPads & 0xFFFF));
6197
6198      unsigned VReg2 = VReg1;
6199      if ((NumLPads & 0xFFFF0000) != 0) {
6200        VReg2 = MRI->createVirtualRegister(TRC);
6201        AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
6202                       .addReg(VReg1)
6203                       .addImm(NumLPads >> 16));
6204      }
6205
6206      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
6207                     .addReg(NewVReg1)
6208                     .addReg(VReg2));
6209    }
6210
6211    BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
6212      .addMBB(TrapBB)
6213      .addImm(ARMCC::HI)
6214      .addReg(ARM::CPSR);
6215
6216    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6217    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
6218                   .addJumpTableIndex(MJTI)
6219                   .addImm(UId));
6220
6221    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6222    AddDefaultCC(
6223      AddDefaultPred(
6224        BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
6225        .addReg(NewVReg3, RegState::Kill)
6226        .addReg(NewVReg1)
6227        .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
6228
6229    BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
6230      .addReg(NewVReg4, RegState::Kill)
6231      .addReg(NewVReg1)
6232      .addJumpTableIndex(MJTI)
6233      .addImm(UId);
6234  } else if (Subtarget->isThumb()) {
6235    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6236    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
6237                   .addFrameIndex(FI)
6238                   .addImm(1)
6239                   .addMemOperand(FIMMOLd));
6240
6241    if (NumLPads < 256) {
6242      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
6243                     .addReg(NewVReg1)
6244                     .addImm(NumLPads));
6245    } else {
6246      MachineConstantPool *ConstantPool = MF->getConstantPool();
6247      Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6248      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
6249
6250      // MachineConstantPool wants an explicit alignment.
6251      unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
6252      if (Align == 0)
6253        Align = getDataLayout()->getTypeAllocSize(C->getType());
6254      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6255
6256      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6257      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
6258                     .addReg(VReg1, RegState::Define)
6259                     .addConstantPoolIndex(Idx));
6260      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
6261                     .addReg(NewVReg1)
6262                     .addReg(VReg1));
6263    }
6264
6265    BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
6266      .addMBB(TrapBB)
6267      .addImm(ARMCC::HI)
6268      .addReg(ARM::CPSR);
6269
6270    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6271    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
6272                   .addReg(ARM::CPSR, RegState::Define)
6273                   .addReg(NewVReg1)
6274                   .addImm(2));
6275
6276    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6277    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
6278                   .addJumpTableIndex(MJTI)
6279                   .addImm(UId));
6280
6281    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6282    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
6283                   .addReg(ARM::CPSR, RegState::Define)
6284                   .addReg(NewVReg2, RegState::Kill)
6285                   .addReg(NewVReg3));
6286
6287    MachineMemOperand *JTMMOLd =
6288      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
6289                               MachineMemOperand::MOLoad, 4, 4);
6290
6291    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6292    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
6293                   .addReg(NewVReg4, RegState::Kill)
6294                   .addImm(0)
6295                   .addMemOperand(JTMMOLd));
6296
6297    unsigned NewVReg6 = MRI->createVirtualRegister(TRC);
6298    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
6299                   .addReg(ARM::CPSR, RegState::Define)
6300                   .addReg(NewVReg5, RegState::Kill)
6301                   .addReg(NewVReg3));
6302
6303    BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
6304      .addReg(NewVReg6, RegState::Kill)
6305      .addJumpTableIndex(MJTI)
6306      .addImm(UId);
6307  } else {
6308    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6309    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
6310                   .addFrameIndex(FI)
6311                   .addImm(4)
6312                   .addMemOperand(FIMMOLd));
6313
6314    if (NumLPads < 256) {
6315      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
6316                     .addReg(NewVReg1)
6317                     .addImm(NumLPads));
6318    } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
6319      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6320      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
6321                     .addImm(NumLPads & 0xFFFF));
6322
6323      unsigned VReg2 = VReg1;
6324      if ((NumLPads & 0xFFFF0000) != 0) {
6325        VReg2 = MRI->createVirtualRegister(TRC);
6326        AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
6327                       .addReg(VReg1)
6328                       .addImm(NumLPads >> 16));
6329      }
6330
6331      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
6332                     .addReg(NewVReg1)
6333                     .addReg(VReg2));
6334    } else {
6335      MachineConstantPool *ConstantPool = MF->getConstantPool();
6336      Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6337      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
6338
6339      // MachineConstantPool wants an explicit alignment.
6340      unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
6341      if (Align == 0)
6342        Align = getDataLayout()->getTypeAllocSize(C->getType());
6343      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6344
6345      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6346      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
6347                     .addReg(VReg1, RegState::Define)
6348                     .addConstantPoolIndex(Idx)
6349                     .addImm(0));
6350      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
6351                     .addReg(NewVReg1)
6352                     .addReg(VReg1, RegState::Kill));
6353    }
6354
6355    BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
6356      .addMBB(TrapBB)
6357      .addImm(ARMCC::HI)
6358      .addReg(ARM::CPSR);
6359
6360    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6361    AddDefaultCC(
6362      AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
6363                     .addReg(NewVReg1)
6364                     .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
6365    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6366    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
6367                   .addJumpTableIndex(MJTI)
6368                   .addImm(UId));
6369
6370    MachineMemOperand *JTMMOLd =
6371      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
6372                               MachineMemOperand::MOLoad, 4, 4);
6373    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6374    AddDefaultPred(
6375      BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
6376      .addReg(NewVReg3, RegState::Kill)
6377      .addReg(NewVReg4)
6378      .addImm(0)
6379      .addMemOperand(JTMMOLd));
6380
6381    BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
6382      .addReg(NewVReg5, RegState::Kill)
6383      .addReg(NewVReg4)
6384      .addJumpTableIndex(MJTI)
6385      .addImm(UId);
6386  }
6387
6388  // Add the jump table entries as successors to the MBB.
6389  SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
6390  for (std::vector<MachineBasicBlock*>::iterator
6391         I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
6392    MachineBasicBlock *CurMBB = *I;
6393    if (SeenMBBs.insert(CurMBB))
6394      DispContBB->addSuccessor(CurMBB);
6395  }
6396
6397  // N.B. the order the invoke BBs are processed in doesn't matter here.
6398  const uint16_t *SavedRegs = RI.getCalleeSavedRegs(MF);
6399  SmallVector<MachineBasicBlock*, 64> MBBLPads;
6400  for (SmallPtrSet<MachineBasicBlock*, 64>::iterator
6401         I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) {
6402    MachineBasicBlock *BB = *I;
6403
6404    // Remove the landing pad successor from the invoke block and replace it
6405    // with the new dispatch block.
6406    SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
6407                                                  BB->succ_end());
6408    while (!Successors.empty()) {
6409      MachineBasicBlock *SMBB = Successors.pop_back_val();
6410      if (SMBB->isLandingPad()) {
6411        BB->removeSuccessor(SMBB);
6412        MBBLPads.push_back(SMBB);
6413      }
6414    }
6415
6416    BB->addSuccessor(DispatchBB);
6417
6418    // Find the invoke call and mark all of the callee-saved registers as
6419    // 'implicit defined' so that they're spilled. This prevents code from
6420    // moving instructions to before the EH block, where they will never be
6421    // executed.
6422    for (MachineBasicBlock::reverse_iterator
6423           II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
6424      if (!II->isCall()) continue;
6425
6426      DenseMap<unsigned, bool> DefRegs;
6427      for (MachineInstr::mop_iterator
6428             OI = II->operands_begin(), OE = II->operands_end();
6429           OI != OE; ++OI) {
6430        if (!OI->isReg()) continue;
6431        DefRegs[OI->getReg()] = true;
6432      }
6433
6434      MachineInstrBuilder MIB(&*II);
6435
6436      for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
6437        unsigned Reg = SavedRegs[i];
6438        if (Subtarget->isThumb2() &&
6439            !ARM::tGPRRegClass.contains(Reg) &&
6440            !ARM::hGPRRegClass.contains(Reg))
6441          continue;
6442        if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
6443          continue;
6444        if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
6445          continue;
6446        if (!DefRegs[Reg])
6447          MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
6448      }
6449
6450      break;
6451    }
6452  }
6453
6454  // Mark all former landing pads as non-landing pads. The dispatch is the only
6455  // landing pad now.
6456  for (SmallVectorImpl<MachineBasicBlock*>::iterator
6457         I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
6458    (*I)->setIsLandingPad(false);
6459
6460  // The instruction is gone now.
6461  MI->eraseFromParent();
6462
6463  return MBB;
6464}
6465
6466static
6467MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
6468  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
6469       E = MBB->succ_end(); I != E; ++I)
6470    if (*I != Succ)
6471      return *I;
6472  llvm_unreachable("Expecting a BB with two successors!");
6473}
6474
6475MachineBasicBlock *ARMTargetLowering::
6476EmitStructByval(MachineInstr *MI, MachineBasicBlock *BB) const {
6477  // This pseudo instruction has 3 operands: dst, src, size
6478  // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
6479  // Otherwise, we will generate unrolled scalar copies.
6480  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6481  const BasicBlock *LLVM_BB = BB->getBasicBlock();
6482  MachineFunction::iterator It = BB;
6483  ++It;
6484
6485  unsigned dest = MI->getOperand(0).getReg();
6486  unsigned src = MI->getOperand(1).getReg();
6487  unsigned SizeVal = MI->getOperand(2).getImm();
6488  unsigned Align = MI->getOperand(3).getImm();
6489  DebugLoc dl = MI->getDebugLoc();
6490
6491  bool isThumb2 = Subtarget->isThumb2();
6492  MachineFunction *MF = BB->getParent();
6493  MachineRegisterInfo &MRI = MF->getRegInfo();
6494  unsigned ldrOpc, strOpc, UnitSize = 0;
6495
6496  const TargetRegisterClass *TRC = isThumb2 ?
6497    (const TargetRegisterClass*)&ARM::tGPRRegClass :
6498    (const TargetRegisterClass*)&ARM::GPRRegClass;
6499  const TargetRegisterClass *TRC_Vec = 0;
6500
6501  if (Align & 1) {
6502    ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
6503    strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
6504    UnitSize = 1;
6505  } else if (Align & 2) {
6506    ldrOpc = isThumb2 ? ARM::t2LDRH_POST : ARM::LDRH_POST;
6507    strOpc = isThumb2 ? ARM::t2STRH_POST : ARM::STRH_POST;
6508    UnitSize = 2;
6509  } else {
6510    // Check whether we can use NEON instructions.
6511    if (!MF->getFunction()->getFnAttributes().
6512          hasAttribute(Attributes::NoImplicitFloat) &&
6513        Subtarget->hasNEON()) {
6514      if ((Align % 16 == 0) && SizeVal >= 16) {
6515        ldrOpc = ARM::VLD1q32wb_fixed;
6516        strOpc = ARM::VST1q32wb_fixed;
6517        UnitSize = 16;
6518        TRC_Vec = (const TargetRegisterClass*)&ARM::DPairRegClass;
6519      }
6520      else if ((Align % 8 == 0) && SizeVal >= 8) {
6521        ldrOpc = ARM::VLD1d32wb_fixed;
6522        strOpc = ARM::VST1d32wb_fixed;
6523        UnitSize = 8;
6524        TRC_Vec = (const TargetRegisterClass*)&ARM::DPRRegClass;
6525      }
6526    }
6527    // Can't use NEON instructions.
6528    if (UnitSize == 0) {
6529      ldrOpc = isThumb2 ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
6530      strOpc = isThumb2 ? ARM::t2STR_POST : ARM::STR_POST_IMM;
6531      UnitSize = 4;
6532    }
6533  }
6534
6535  unsigned BytesLeft = SizeVal % UnitSize;
6536  unsigned LoopSize = SizeVal - BytesLeft;
6537
6538  if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
6539    // Use LDR and STR to copy.
6540    // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
6541    // [destOut] = STR_POST(scratch, destIn, UnitSize)
6542    unsigned srcIn = src;
6543    unsigned destIn = dest;
6544    for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
6545      unsigned scratch = MRI.createVirtualRegister(UnitSize >= 8 ? TRC_Vec:TRC);
6546      unsigned srcOut = MRI.createVirtualRegister(TRC);
6547      unsigned destOut = MRI.createVirtualRegister(TRC);
6548      if (UnitSize >= 8) {
6549        AddDefaultPred(BuildMI(*BB, MI, dl,
6550          TII->get(ldrOpc), scratch)
6551          .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(0));
6552
6553        AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
6554          .addReg(destIn).addImm(0).addReg(scratch));
6555      } else if (isThumb2) {
6556        AddDefaultPred(BuildMI(*BB, MI, dl,
6557          TII->get(ldrOpc), scratch)
6558          .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(UnitSize));
6559
6560        AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
6561          .addReg(scratch).addReg(destIn)
6562          .addImm(UnitSize));
6563      } else {
6564        AddDefaultPred(BuildMI(*BB, MI, dl,
6565          TII->get(ldrOpc), scratch)
6566          .addReg(srcOut, RegState::Define).addReg(srcIn).addReg(0)
6567          .addImm(UnitSize));
6568
6569        AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
6570          .addReg(scratch).addReg(destIn)
6571          .addReg(0).addImm(UnitSize));
6572      }
6573      srcIn = srcOut;
6574      destIn = destOut;
6575    }
6576
6577    // Handle the leftover bytes with LDRB and STRB.
6578    // [scratch, srcOut] = LDRB_POST(srcIn, 1)
6579    // [destOut] = STRB_POST(scratch, destIn, 1)
6580    ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
6581    strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
6582    for (unsigned i = 0; i < BytesLeft; i++) {
6583      unsigned scratch = MRI.createVirtualRegister(TRC);
6584      unsigned srcOut = MRI.createVirtualRegister(TRC);
6585      unsigned destOut = MRI.createVirtualRegister(TRC);
6586      if (isThumb2) {
6587        AddDefaultPred(BuildMI(*BB, MI, dl,
6588          TII->get(ldrOpc),scratch)
6589          .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(1));
6590
6591        AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
6592          .addReg(scratch).addReg(destIn)
6593          .addReg(0).addImm(1));
6594      } else {
6595        AddDefaultPred(BuildMI(*BB, MI, dl,
6596          TII->get(ldrOpc),scratch)
6597          .addReg(srcOut, RegState::Define).addReg(srcIn)
6598          .addReg(0).addImm(1));
6599
6600        AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
6601          .addReg(scratch).addReg(destIn)
6602          .addReg(0).addImm(1));
6603      }
6604      srcIn = srcOut;
6605      destIn = destOut;
6606    }
6607    MI->eraseFromParent();   // The instruction is gone now.
6608    return BB;
6609  }
6610
6611  // Expand the pseudo op to a loop.
6612  // thisMBB:
6613  //   ...
6614  //   movw varEnd, # --> with thumb2
6615  //   movt varEnd, #
6616  //   ldrcp varEnd, idx --> without thumb2
6617  //   fallthrough --> loopMBB
6618  // loopMBB:
6619  //   PHI varPhi, varEnd, varLoop
6620  //   PHI srcPhi, src, srcLoop
6621  //   PHI destPhi, dst, destLoop
6622  //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
6623  //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
6624  //   subs varLoop, varPhi, #UnitSize
6625  //   bne loopMBB
6626  //   fallthrough --> exitMBB
6627  // exitMBB:
6628  //   epilogue to handle left-over bytes
6629  //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
6630  //   [destOut] = STRB_POST(scratch, destLoop, 1)
6631  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6632  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6633  MF->insert(It, loopMBB);
6634  MF->insert(It, exitMBB);
6635
6636  // Transfer the remainder of BB and its successor edges to exitMBB.
6637  exitMBB->splice(exitMBB->begin(), BB,
6638                  llvm::next(MachineBasicBlock::iterator(MI)),
6639                  BB->end());
6640  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6641
6642  // Load an immediate to varEnd.
6643  unsigned varEnd = MRI.createVirtualRegister(TRC);
6644  if (isThumb2) {
6645    unsigned VReg1 = varEnd;
6646    if ((LoopSize & 0xFFFF0000) != 0)
6647      VReg1 = MRI.createVirtualRegister(TRC);
6648    AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVi16), VReg1)
6649                   .addImm(LoopSize & 0xFFFF));
6650
6651    if ((LoopSize & 0xFFFF0000) != 0)
6652      AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVTi16), varEnd)
6653                     .addReg(VReg1)
6654                     .addImm(LoopSize >> 16));
6655  } else {
6656    MachineConstantPool *ConstantPool = MF->getConstantPool();
6657    Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6658    const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
6659
6660    // MachineConstantPool wants an explicit alignment.
6661    unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
6662    if (Align == 0)
6663      Align = getDataLayout()->getTypeAllocSize(C->getType());
6664    unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6665
6666    AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::LDRcp))
6667                   .addReg(varEnd, RegState::Define)
6668                   .addConstantPoolIndex(Idx)
6669                   .addImm(0));
6670  }
6671  BB->addSuccessor(loopMBB);
6672
6673  // Generate the loop body:
6674  //   varPhi = PHI(varLoop, varEnd)
6675  //   srcPhi = PHI(srcLoop, src)
6676  //   destPhi = PHI(destLoop, dst)
6677  MachineBasicBlock *entryBB = BB;
6678  BB = loopMBB;
6679  unsigned varLoop = MRI.createVirtualRegister(TRC);
6680  unsigned varPhi = MRI.createVirtualRegister(TRC);
6681  unsigned srcLoop = MRI.createVirtualRegister(TRC);
6682  unsigned srcPhi = MRI.createVirtualRegister(TRC);
6683  unsigned destLoop = MRI.createVirtualRegister(TRC);
6684  unsigned destPhi = MRI.createVirtualRegister(TRC);
6685
6686  BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
6687    .addReg(varLoop).addMBB(loopMBB)
6688    .addReg(varEnd).addMBB(entryBB);
6689  BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
6690    .addReg(srcLoop).addMBB(loopMBB)
6691    .addReg(src).addMBB(entryBB);
6692  BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
6693    .addReg(destLoop).addMBB(loopMBB)
6694    .addReg(dest).addMBB(entryBB);
6695
6696  //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
6697  //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
6698  unsigned scratch = MRI.createVirtualRegister(UnitSize >= 8 ? TRC_Vec:TRC);
6699  if (UnitSize >= 8) {
6700    AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
6701      .addReg(srcLoop, RegState::Define).addReg(srcPhi).addImm(0));
6702
6703    AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
6704      .addReg(destPhi).addImm(0).addReg(scratch));
6705  } else if (isThumb2) {
6706    AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
6707      .addReg(srcLoop, RegState::Define).addReg(srcPhi).addImm(UnitSize));
6708
6709    AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
6710      .addReg(scratch).addReg(destPhi)
6711      .addImm(UnitSize));
6712  } else {
6713    AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
6714      .addReg(srcLoop, RegState::Define).addReg(srcPhi).addReg(0)
6715      .addImm(UnitSize));
6716
6717    AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
6718      .addReg(scratch).addReg(destPhi)
6719      .addReg(0).addImm(UnitSize));
6720  }
6721
6722  // Decrement loop variable by UnitSize.
6723  MachineInstrBuilder MIB = BuildMI(BB, dl,
6724    TII->get(isThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
6725  AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize)));
6726  MIB->getOperand(5).setReg(ARM::CPSR);
6727  MIB->getOperand(5).setIsDef(true);
6728
6729  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6730    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
6731
6732  // loopMBB can loop back to loopMBB or fall through to exitMBB.
6733  BB->addSuccessor(loopMBB);
6734  BB->addSuccessor(exitMBB);
6735
6736  // Add epilogue to handle BytesLeft.
6737  BB = exitMBB;
6738  MachineInstr *StartOfExit = exitMBB->begin();
6739  ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
6740  strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
6741
6742  //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
6743  //   [destOut] = STRB_POST(scratch, destLoop, 1)
6744  unsigned srcIn = srcLoop;
6745  unsigned destIn = destLoop;
6746  for (unsigned i = 0; i < BytesLeft; i++) {
6747    unsigned scratch = MRI.createVirtualRegister(TRC);
6748    unsigned srcOut = MRI.createVirtualRegister(TRC);
6749    unsigned destOut = MRI.createVirtualRegister(TRC);
6750    if (isThumb2) {
6751      AddDefaultPred(BuildMI(*BB, StartOfExit, dl,
6752        TII->get(ldrOpc),scratch)
6753        .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(1));
6754
6755      AddDefaultPred(BuildMI(*BB, StartOfExit, dl, TII->get(strOpc), destOut)
6756        .addReg(scratch).addReg(destIn)
6757        .addImm(1));
6758    } else {
6759      AddDefaultPred(BuildMI(*BB, StartOfExit, dl,
6760        TII->get(ldrOpc),scratch)
6761        .addReg(srcOut, RegState::Define).addReg(srcIn).addReg(0).addImm(1));
6762
6763      AddDefaultPred(BuildMI(*BB, StartOfExit, dl, TII->get(strOpc), destOut)
6764        .addReg(scratch).addReg(destIn)
6765        .addReg(0).addImm(1));
6766    }
6767    srcIn = srcOut;
6768    destIn = destOut;
6769  }
6770
6771  MI->eraseFromParent();   // The instruction is gone now.
6772  return BB;
6773}
6774
6775MachineBasicBlock *
6776ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6777                                               MachineBasicBlock *BB) const {
6778  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6779  DebugLoc dl = MI->getDebugLoc();
6780  bool isThumb2 = Subtarget->isThumb2();
6781  switch (MI->getOpcode()) {
6782  default: {
6783    MI->dump();
6784    llvm_unreachable("Unexpected instr type to insert");
6785  }
6786  // The Thumb2 pre-indexed stores have the same MI operands, they just
6787  // define them differently in the .td files from the isel patterns, so
6788  // they need pseudos.
6789  case ARM::t2STR_preidx:
6790    MI->setDesc(TII->get(ARM::t2STR_PRE));
6791    return BB;
6792  case ARM::t2STRB_preidx:
6793    MI->setDesc(TII->get(ARM::t2STRB_PRE));
6794    return BB;
6795  case ARM::t2STRH_preidx:
6796    MI->setDesc(TII->get(ARM::t2STRH_PRE));
6797    return BB;
6798
6799  case ARM::STRi_preidx:
6800  case ARM::STRBi_preidx: {
6801    unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
6802      ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
6803    // Decode the offset.
6804    unsigned Offset = MI->getOperand(4).getImm();
6805    bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
6806    Offset = ARM_AM::getAM2Offset(Offset);
6807    if (isSub)
6808      Offset = -Offset;
6809
6810    MachineMemOperand *MMO = *MI->memoperands_begin();
6811    BuildMI(*BB, MI, dl, TII->get(NewOpc))
6812      .addOperand(MI->getOperand(0))  // Rn_wb
6813      .addOperand(MI->getOperand(1))  // Rt
6814      .addOperand(MI->getOperand(2))  // Rn
6815      .addImm(Offset)                 // offset (skip GPR==zero_reg)
6816      .addOperand(MI->getOperand(5))  // pred
6817      .addOperand(MI->getOperand(6))
6818      .addMemOperand(MMO);
6819    MI->eraseFromParent();
6820    return BB;
6821  }
6822  case ARM::STRr_preidx:
6823  case ARM::STRBr_preidx:
6824  case ARM::STRH_preidx: {
6825    unsigned NewOpc;
6826    switch (MI->getOpcode()) {
6827    default: llvm_unreachable("unexpected opcode!");
6828    case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
6829    case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
6830    case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
6831    }
6832    MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
6833    for (unsigned i = 0; i < MI->getNumOperands(); ++i)
6834      MIB.addOperand(MI->getOperand(i));
6835    MI->eraseFromParent();
6836    return BB;
6837  }
6838  case ARM::ATOMIC_LOAD_ADD_I8:
6839     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6840  case ARM::ATOMIC_LOAD_ADD_I16:
6841     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6842  case ARM::ATOMIC_LOAD_ADD_I32:
6843     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6844
6845  case ARM::ATOMIC_LOAD_AND_I8:
6846     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6847  case ARM::ATOMIC_LOAD_AND_I16:
6848     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6849  case ARM::ATOMIC_LOAD_AND_I32:
6850     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6851
6852  case ARM::ATOMIC_LOAD_OR_I8:
6853     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6854  case ARM::ATOMIC_LOAD_OR_I16:
6855     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6856  case ARM::ATOMIC_LOAD_OR_I32:
6857     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6858
6859  case ARM::ATOMIC_LOAD_XOR_I8:
6860     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6861  case ARM::ATOMIC_LOAD_XOR_I16:
6862     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6863  case ARM::ATOMIC_LOAD_XOR_I32:
6864     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6865
6866  case ARM::ATOMIC_LOAD_NAND_I8:
6867     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6868  case ARM::ATOMIC_LOAD_NAND_I16:
6869     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6870  case ARM::ATOMIC_LOAD_NAND_I32:
6871     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6872
6873  case ARM::ATOMIC_LOAD_SUB_I8:
6874     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6875  case ARM::ATOMIC_LOAD_SUB_I16:
6876     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6877  case ARM::ATOMIC_LOAD_SUB_I32:
6878     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6879
6880  case ARM::ATOMIC_LOAD_MIN_I8:
6881     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT);
6882  case ARM::ATOMIC_LOAD_MIN_I16:
6883     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT);
6884  case ARM::ATOMIC_LOAD_MIN_I32:
6885     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT);
6886
6887  case ARM::ATOMIC_LOAD_MAX_I8:
6888     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT);
6889  case ARM::ATOMIC_LOAD_MAX_I16:
6890     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT);
6891  case ARM::ATOMIC_LOAD_MAX_I32:
6892     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT);
6893
6894  case ARM::ATOMIC_LOAD_UMIN_I8:
6895     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO);
6896  case ARM::ATOMIC_LOAD_UMIN_I16:
6897     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO);
6898  case ARM::ATOMIC_LOAD_UMIN_I32:
6899     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO);
6900
6901  case ARM::ATOMIC_LOAD_UMAX_I8:
6902     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI);
6903  case ARM::ATOMIC_LOAD_UMAX_I16:
6904     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI);
6905  case ARM::ATOMIC_LOAD_UMAX_I32:
6906     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI);
6907
6908  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
6909  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
6910  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
6911
6912  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
6913  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
6914  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
6915
6916
6917  case ARM::ATOMADD6432:
6918    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr,
6919                              isThumb2 ? ARM::t2ADCrr : ARM::ADCrr,
6920                              /*NeedsCarry*/ true);
6921  case ARM::ATOMSUB6432:
6922    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6923                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6924                              /*NeedsCarry*/ true);
6925  case ARM::ATOMOR6432:
6926    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr,
6927                              isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6928  case ARM::ATOMXOR6432:
6929    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2EORrr : ARM::EORrr,
6930                              isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6931  case ARM::ATOMAND6432:
6932    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr,
6933                              isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6934  case ARM::ATOMSWAP6432:
6935    return EmitAtomicBinary64(MI, BB, 0, 0, false);
6936  case ARM::ATOMCMPXCHG6432:
6937    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6938                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6939                              /*NeedsCarry*/ false, /*IsCmpxchg*/true);
6940  case ARM::ATOMMIN6432:
6941    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6942                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6943                              /*NeedsCarry*/ true, /*IsCmpxchg*/false,
6944                              /*IsMinMax*/ true, ARMCC::LE);
6945  case ARM::ATOMMAX6432:
6946    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6947                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6948                              /*NeedsCarry*/ true, /*IsCmpxchg*/false,
6949                              /*IsMinMax*/ true, ARMCC::GE);
6950  case ARM::ATOMUMIN6432:
6951    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6952                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6953                              /*NeedsCarry*/ true, /*IsCmpxchg*/false,
6954                              /*IsMinMax*/ true, ARMCC::LS);
6955  case ARM::ATOMUMAX6432:
6956    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6957                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6958                              /*NeedsCarry*/ true, /*IsCmpxchg*/false,
6959                              /*IsMinMax*/ true, ARMCC::HS);
6960
6961  case ARM::tMOVCCr_pseudo: {
6962    // To "insert" a SELECT_CC instruction, we actually have to insert the
6963    // diamond control-flow pattern.  The incoming instruction knows the
6964    // destination vreg to set, the condition code register to branch on, the
6965    // true/false values to select between, and a branch opcode to use.
6966    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6967    MachineFunction::iterator It = BB;
6968    ++It;
6969
6970    //  thisMBB:
6971    //  ...
6972    //   TrueVal = ...
6973    //   cmpTY ccX, r1, r2
6974    //   bCC copy1MBB
6975    //   fallthrough --> copy0MBB
6976    MachineBasicBlock *thisMBB  = BB;
6977    MachineFunction *F = BB->getParent();
6978    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6979    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
6980    F->insert(It, copy0MBB);
6981    F->insert(It, sinkMBB);
6982
6983    // Transfer the remainder of BB and its successor edges to sinkMBB.
6984    sinkMBB->splice(sinkMBB->begin(), BB,
6985                    llvm::next(MachineBasicBlock::iterator(MI)),
6986                    BB->end());
6987    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
6988
6989    BB->addSuccessor(copy0MBB);
6990    BB->addSuccessor(sinkMBB);
6991
6992    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
6993      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
6994
6995    //  copy0MBB:
6996    //   %FalseValue = ...
6997    //   # fallthrough to sinkMBB
6998    BB = copy0MBB;
6999
7000    // Update machine-CFG edges
7001    BB->addSuccessor(sinkMBB);
7002
7003    //  sinkMBB:
7004    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7005    //  ...
7006    BB = sinkMBB;
7007    BuildMI(*BB, BB->begin(), dl,
7008            TII->get(ARM::PHI), MI->getOperand(0).getReg())
7009      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
7010      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
7011
7012    MI->eraseFromParent();   // The pseudo instruction is gone now.
7013    return BB;
7014  }
7015
7016  case ARM::BCCi64:
7017  case ARM::BCCZi64: {
7018    // If there is an unconditional branch to the other successor, remove it.
7019    BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
7020
7021    // Compare both parts that make up the double comparison separately for
7022    // equality.
7023    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
7024
7025    unsigned LHS1 = MI->getOperand(1).getReg();
7026    unsigned LHS2 = MI->getOperand(2).getReg();
7027    if (RHSisZero) {
7028      AddDefaultPred(BuildMI(BB, dl,
7029                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
7030                     .addReg(LHS1).addImm(0));
7031      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
7032        .addReg(LHS2).addImm(0)
7033        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
7034    } else {
7035      unsigned RHS1 = MI->getOperand(3).getReg();
7036      unsigned RHS2 = MI->getOperand(4).getReg();
7037      AddDefaultPred(BuildMI(BB, dl,
7038                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
7039                     .addReg(LHS1).addReg(RHS1));
7040      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
7041        .addReg(LHS2).addReg(RHS2)
7042        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
7043    }
7044
7045    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
7046    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
7047    if (MI->getOperand(0).getImm() == ARMCC::NE)
7048      std::swap(destMBB, exitMBB);
7049
7050    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
7051      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
7052    if (isThumb2)
7053      AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
7054    else
7055      BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
7056
7057    MI->eraseFromParent();   // The pseudo instruction is gone now.
7058    return BB;
7059  }
7060
7061  case ARM::Int_eh_sjlj_setjmp:
7062  case ARM::Int_eh_sjlj_setjmp_nofp:
7063  case ARM::tInt_eh_sjlj_setjmp:
7064  case ARM::t2Int_eh_sjlj_setjmp:
7065  case ARM::t2Int_eh_sjlj_setjmp_nofp:
7066    EmitSjLjDispatchBlock(MI, BB);
7067    return BB;
7068
7069  case ARM::ABS:
7070  case ARM::t2ABS: {
7071    // To insert an ABS instruction, we have to insert the
7072    // diamond control-flow pattern.  The incoming instruction knows the
7073    // source vreg to test against 0, the destination vreg to set,
7074    // the condition code register to branch on, the
7075    // true/false values to select between, and a branch opcode to use.
7076    // It transforms
7077    //     V1 = ABS V0
7078    // into
7079    //     V2 = MOVS V0
7080    //     BCC                      (branch to SinkBB if V0 >= 0)
7081    //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
7082    //     SinkBB: V1 = PHI(V2, V3)
7083    const BasicBlock *LLVM_BB = BB->getBasicBlock();
7084    MachineFunction::iterator BBI = BB;
7085    ++BBI;
7086    MachineFunction *Fn = BB->getParent();
7087    MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
7088    MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
7089    Fn->insert(BBI, RSBBB);
7090    Fn->insert(BBI, SinkBB);
7091
7092    unsigned int ABSSrcReg = MI->getOperand(1).getReg();
7093    unsigned int ABSDstReg = MI->getOperand(0).getReg();
7094    bool isThumb2 = Subtarget->isThumb2();
7095    MachineRegisterInfo &MRI = Fn->getRegInfo();
7096    // In Thumb mode S must not be specified if source register is the SP or
7097    // PC and if destination register is the SP, so restrict register class
7098    unsigned NewRsbDstReg = MRI.createVirtualRegister(isThumb2 ?
7099      (const TargetRegisterClass*)&ARM::rGPRRegClass :
7100      (const TargetRegisterClass*)&ARM::GPRRegClass);
7101
7102    // Transfer the remainder of BB and its successor edges to sinkMBB.
7103    SinkBB->splice(SinkBB->begin(), BB,
7104      llvm::next(MachineBasicBlock::iterator(MI)),
7105      BB->end());
7106    SinkBB->transferSuccessorsAndUpdatePHIs(BB);
7107
7108    BB->addSuccessor(RSBBB);
7109    BB->addSuccessor(SinkBB);
7110
7111    // fall through to SinkMBB
7112    RSBBB->addSuccessor(SinkBB);
7113
7114    // insert a cmp at the end of BB
7115    AddDefaultPred(BuildMI(BB, dl,
7116                           TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
7117                   .addReg(ABSSrcReg).addImm(0));
7118
7119    // insert a bcc with opposite CC to ARMCC::MI at the end of BB
7120    BuildMI(BB, dl,
7121      TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
7122      .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
7123
7124    // insert rsbri in RSBBB
7125    // Note: BCC and rsbri will be converted into predicated rsbmi
7126    // by if-conversion pass
7127    BuildMI(*RSBBB, RSBBB->begin(), dl,
7128      TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
7129      .addReg(ABSSrcReg, RegState::Kill)
7130      .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
7131
7132    // insert PHI in SinkBB,
7133    // reuse ABSDstReg to not change uses of ABS instruction
7134    BuildMI(*SinkBB, SinkBB->begin(), dl,
7135      TII->get(ARM::PHI), ABSDstReg)
7136      .addReg(NewRsbDstReg).addMBB(RSBBB)
7137      .addReg(ABSSrcReg).addMBB(BB);
7138
7139    // remove ABS instruction
7140    MI->eraseFromParent();
7141
7142    // return last added BB
7143    return SinkBB;
7144  }
7145  case ARM::COPY_STRUCT_BYVAL_I32:
7146    ++NumLoopByVals;
7147    return EmitStructByval(MI, BB);
7148  }
7149}
7150
7151void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
7152                                                      SDNode *Node) const {
7153  if (!MI->hasPostISelHook()) {
7154    assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
7155           "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'");
7156    return;
7157  }
7158
7159  const MCInstrDesc *MCID = &MI->getDesc();
7160  // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
7161  // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
7162  // operand is still set to noreg. If needed, set the optional operand's
7163  // register to CPSR, and remove the redundant implicit def.
7164  //
7165  // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
7166
7167  // Rename pseudo opcodes.
7168  unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
7169  if (NewOpc) {
7170    const ARMBaseInstrInfo *TII =
7171      static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo());
7172    MCID = &TII->get(NewOpc);
7173
7174    assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
7175           "converted opcode should be the same except for cc_out");
7176
7177    MI->setDesc(*MCID);
7178
7179    // Add the optional cc_out operand
7180    MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
7181  }
7182  unsigned ccOutIdx = MCID->getNumOperands() - 1;
7183
7184  // Any ARM instruction that sets the 's' bit should specify an optional
7185  // "cc_out" operand in the last operand position.
7186  if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
7187    assert(!NewOpc && "Optional cc_out operand required");
7188    return;
7189  }
7190  // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
7191  // since we already have an optional CPSR def.
7192  bool definesCPSR = false;
7193  bool deadCPSR = false;
7194  for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
7195       i != e; ++i) {
7196    const MachineOperand &MO = MI->getOperand(i);
7197    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
7198      definesCPSR = true;
7199      if (MO.isDead())
7200        deadCPSR = true;
7201      MI->RemoveOperand(i);
7202      break;
7203    }
7204  }
7205  if (!definesCPSR) {
7206    assert(!NewOpc && "Optional cc_out operand required");
7207    return;
7208  }
7209  assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
7210  if (deadCPSR) {
7211    assert(!MI->getOperand(ccOutIdx).getReg() &&
7212           "expect uninitialized optional cc_out operand");
7213    return;
7214  }
7215
7216  // If this instruction was defined with an optional CPSR def and its dag node
7217  // had a live implicit CPSR def, then activate the optional CPSR def.
7218  MachineOperand &MO = MI->getOperand(ccOutIdx);
7219  MO.setReg(ARM::CPSR);
7220  MO.setIsDef(true);
7221}
7222
7223//===----------------------------------------------------------------------===//
7224//                           ARM Optimization Hooks
7225//===----------------------------------------------------------------------===//
7226
7227// Helper function that checks if N is a null or all ones constant.
7228static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
7229  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
7230  if (!C)
7231    return false;
7232  return AllOnes ? C->isAllOnesValue() : C->isNullValue();
7233}
7234
7235// Return true if N is conditionally 0 or all ones.
7236// Detects these expressions where cc is an i1 value:
7237//
7238//   (select cc 0, y)   [AllOnes=0]
7239//   (select cc y, 0)   [AllOnes=0]
7240//   (zext cc)          [AllOnes=0]
7241//   (sext cc)          [AllOnes=0/1]
7242//   (select cc -1, y)  [AllOnes=1]
7243//   (select cc y, -1)  [AllOnes=1]
7244//
7245// Invert is set when N is the null/all ones constant when CC is false.
7246// OtherOp is set to the alternative value of N.
7247static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
7248                                       SDValue &CC, bool &Invert,
7249                                       SDValue &OtherOp,
7250                                       SelectionDAG &DAG) {
7251  switch (N->getOpcode()) {
7252  default: return false;
7253  case ISD::SELECT: {
7254    CC = N->getOperand(0);
7255    SDValue N1 = N->getOperand(1);
7256    SDValue N2 = N->getOperand(2);
7257    if (isZeroOrAllOnes(N1, AllOnes)) {
7258      Invert = false;
7259      OtherOp = N2;
7260      return true;
7261    }
7262    if (isZeroOrAllOnes(N2, AllOnes)) {
7263      Invert = true;
7264      OtherOp = N1;
7265      return true;
7266    }
7267    return false;
7268  }
7269  case ISD::ZERO_EXTEND:
7270    // (zext cc) can never be the all ones value.
7271    if (AllOnes)
7272      return false;
7273    // Fall through.
7274  case ISD::SIGN_EXTEND: {
7275    EVT VT = N->getValueType(0);
7276    CC = N->getOperand(0);
7277    if (CC.getValueType() != MVT::i1)
7278      return false;
7279    Invert = !AllOnes;
7280    if (AllOnes)
7281      // When looking for an AllOnes constant, N is an sext, and the 'other'
7282      // value is 0.
7283      OtherOp = DAG.getConstant(0, VT);
7284    else if (N->getOpcode() == ISD::ZERO_EXTEND)
7285      // When looking for a 0 constant, N can be zext or sext.
7286      OtherOp = DAG.getConstant(1, VT);
7287    else
7288      OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
7289    return true;
7290  }
7291  }
7292}
7293
7294// Combine a constant select operand into its use:
7295//
7296//   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
7297//   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
7298//   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
7299//   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
7300//   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
7301//
7302// The transform is rejected if the select doesn't have a constant operand that
7303// is null, or all ones when AllOnes is set.
7304//
7305// Also recognize sext/zext from i1:
7306//
7307//   (add (zext cc), x) -> (select cc (add x, 1), x)
7308//   (add (sext cc), x) -> (select cc (add x, -1), x)
7309//
7310// These transformations eventually create predicated instructions.
7311//
7312// @param N       The node to transform.
7313// @param Slct    The N operand that is a select.
7314// @param OtherOp The other N operand (x above).
7315// @param DCI     Context.
7316// @param AllOnes Require the select constant to be all ones instead of null.
7317// @returns The new node, or SDValue() on failure.
7318static
7319SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7320                            TargetLowering::DAGCombinerInfo &DCI,
7321                            bool AllOnes = false) {
7322  SelectionDAG &DAG = DCI.DAG;
7323  EVT VT = N->getValueType(0);
7324  SDValue NonConstantVal;
7325  SDValue CCOp;
7326  bool SwapSelectOps;
7327  if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
7328                                  NonConstantVal, DAG))
7329    return SDValue();
7330
7331  // Slct is now know to be the desired identity constant when CC is true.
7332  SDValue TrueVal = OtherOp;
7333  SDValue FalseVal = DAG.getNode(N->getOpcode(), N->getDebugLoc(), VT,
7334                                 OtherOp, NonConstantVal);
7335  // Unless SwapSelectOps says CC should be false.
7336  if (SwapSelectOps)
7337    std::swap(TrueVal, FalseVal);
7338
7339  return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
7340                     CCOp, TrueVal, FalseVal);
7341}
7342
7343// Attempt combineSelectAndUse on each operand of a commutative operator N.
7344static
7345SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
7346                                       TargetLowering::DAGCombinerInfo &DCI) {
7347  SDValue N0 = N->getOperand(0);
7348  SDValue N1 = N->getOperand(1);
7349  if (N0.getNode()->hasOneUse()) {
7350    SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes);
7351    if (Result.getNode())
7352      return Result;
7353  }
7354  if (N1.getNode()->hasOneUse()) {
7355    SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes);
7356    if (Result.getNode())
7357      return Result;
7358  }
7359  return SDValue();
7360}
7361
7362// AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
7363// (only after legalization).
7364static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
7365                                 TargetLowering::DAGCombinerInfo &DCI,
7366                                 const ARMSubtarget *Subtarget) {
7367
7368  // Only perform optimization if after legalize, and if NEON is available. We
7369  // also expected both operands to be BUILD_VECTORs.
7370  if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
7371      || N0.getOpcode() != ISD::BUILD_VECTOR
7372      || N1.getOpcode() != ISD::BUILD_VECTOR)
7373    return SDValue();
7374
7375  // Check output type since VPADDL operand elements can only be 8, 16, or 32.
7376  EVT VT = N->getValueType(0);
7377  if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
7378    return SDValue();
7379
7380  // Check that the vector operands are of the right form.
7381  // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
7382  // operands, where N is the size of the formed vector.
7383  // Each EXTRACT_VECTOR should have the same input vector and odd or even
7384  // index such that we have a pair wise add pattern.
7385
7386  // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
7387  if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7388    return SDValue();
7389  SDValue Vec = N0->getOperand(0)->getOperand(0);
7390  SDNode *V = Vec.getNode();
7391  unsigned nextIndex = 0;
7392
7393  // For each operands to the ADD which are BUILD_VECTORs,
7394  // check to see if each of their operands are an EXTRACT_VECTOR with
7395  // the same vector and appropriate index.
7396  for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
7397    if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
7398        && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7399
7400      SDValue ExtVec0 = N0->getOperand(i);
7401      SDValue ExtVec1 = N1->getOperand(i);
7402
7403      // First operand is the vector, verify its the same.
7404      if (V != ExtVec0->getOperand(0).getNode() ||
7405          V != ExtVec1->getOperand(0).getNode())
7406        return SDValue();
7407
7408      // Second is the constant, verify its correct.
7409      ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
7410      ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
7411
7412      // For the constant, we want to see all the even or all the odd.
7413      if (!C0 || !C1 || C0->getZExtValue() != nextIndex
7414          || C1->getZExtValue() != nextIndex+1)
7415        return SDValue();
7416
7417      // Increment index.
7418      nextIndex+=2;
7419    } else
7420      return SDValue();
7421  }
7422
7423  // Create VPADDL node.
7424  SelectionDAG &DAG = DCI.DAG;
7425  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7426
7427  // Build operand list.
7428  SmallVector<SDValue, 8> Ops;
7429  Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
7430                                TLI.getPointerTy()));
7431
7432  // Input is the vector.
7433  Ops.push_back(Vec);
7434
7435  // Get widened type and narrowed type.
7436  MVT widenType;
7437  unsigned numElem = VT.getVectorNumElements();
7438  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
7439    case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
7440    case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
7441    case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
7442    default:
7443      llvm_unreachable("Invalid vector element type for padd optimization.");
7444  }
7445
7446  SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
7447                            widenType, &Ops[0], Ops.size());
7448  return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, tmp);
7449}
7450
7451static SDValue findMUL_LOHI(SDValue V) {
7452  if (V->getOpcode() == ISD::UMUL_LOHI ||
7453      V->getOpcode() == ISD::SMUL_LOHI)
7454    return V;
7455  return SDValue();
7456}
7457
7458static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode,
7459                                     TargetLowering::DAGCombinerInfo &DCI,
7460                                     const ARMSubtarget *Subtarget) {
7461
7462  if (Subtarget->isThumb1Only()) return SDValue();
7463
7464  // Only perform the checks after legalize when the pattern is available.
7465  if (DCI.isBeforeLegalize()) return SDValue();
7466
7467  // Look for multiply add opportunities.
7468  // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
7469  // each add nodes consumes a value from ISD::UMUL_LOHI and there is
7470  // a glue link from the first add to the second add.
7471  // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
7472  // a S/UMLAL instruction.
7473  //          loAdd   UMUL_LOHI
7474  //            \    / :lo    \ :hi
7475  //             \  /          \          [no multiline comment]
7476  //              ADDC         |  hiAdd
7477  //                 \ :glue  /  /
7478  //                  \      /  /
7479  //                    ADDE
7480  //
7481  assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC");
7482  SDValue AddcOp0 = AddcNode->getOperand(0);
7483  SDValue AddcOp1 = AddcNode->getOperand(1);
7484
7485  // Check if the two operands are from the same mul_lohi node.
7486  if (AddcOp0.getNode() == AddcOp1.getNode())
7487    return SDValue();
7488
7489  assert(AddcNode->getNumValues() == 2 &&
7490         AddcNode->getValueType(0) == MVT::i32 &&
7491         AddcNode->getValueType(1) == MVT::Glue &&
7492         "Expect ADDC with two result values: i32, glue");
7493
7494  // Check that the ADDC adds the low result of the S/UMUL_LOHI.
7495  if (AddcOp0->getOpcode() != ISD::UMUL_LOHI &&
7496      AddcOp0->getOpcode() != ISD::SMUL_LOHI &&
7497      AddcOp1->getOpcode() != ISD::UMUL_LOHI &&
7498      AddcOp1->getOpcode() != ISD::SMUL_LOHI)
7499    return SDValue();
7500
7501  // Look for the glued ADDE.
7502  SDNode* AddeNode = AddcNode->getGluedUser();
7503  if (AddeNode == NULL)
7504    return SDValue();
7505
7506  // Make sure it is really an ADDE.
7507  if (AddeNode->getOpcode() != ISD::ADDE)
7508    return SDValue();
7509
7510  assert(AddeNode->getNumOperands() == 3 &&
7511         AddeNode->getOperand(2).getValueType() == MVT::Glue &&
7512         "ADDE node has the wrong inputs");
7513
7514  // Check for the triangle shape.
7515  SDValue AddeOp0 = AddeNode->getOperand(0);
7516  SDValue AddeOp1 = AddeNode->getOperand(1);
7517
7518  // Make sure that the ADDE operands are not coming from the same node.
7519  if (AddeOp0.getNode() == AddeOp1.getNode())
7520    return SDValue();
7521
7522  // Find the MUL_LOHI node walking up ADDE's operands.
7523  bool IsLeftOperandMUL = false;
7524  SDValue MULOp = findMUL_LOHI(AddeOp0);
7525  if (MULOp == SDValue())
7526   MULOp = findMUL_LOHI(AddeOp1);
7527  else
7528    IsLeftOperandMUL = true;
7529  if (MULOp == SDValue())
7530     return SDValue();
7531
7532  // Figure out the right opcode.
7533  unsigned Opc = MULOp->getOpcode();
7534  unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
7535
7536  // Figure out the high and low input values to the MLAL node.
7537  SDValue* HiMul = &MULOp;
7538  SDValue* HiAdd = NULL;
7539  SDValue* LoMul = NULL;
7540  SDValue* LowAdd = NULL;
7541
7542  if (IsLeftOperandMUL)
7543    HiAdd = &AddeOp1;
7544  else
7545    HiAdd = &AddeOp0;
7546
7547
7548  if (AddcOp0->getOpcode() == Opc) {
7549    LoMul = &AddcOp0;
7550    LowAdd = &AddcOp1;
7551  }
7552  if (AddcOp1->getOpcode() == Opc) {
7553    LoMul = &AddcOp1;
7554    LowAdd = &AddcOp0;
7555  }
7556
7557  if (LoMul == NULL)
7558    return SDValue();
7559
7560  if (LoMul->getNode() != HiMul->getNode())
7561    return SDValue();
7562
7563  // Create the merged node.
7564  SelectionDAG &DAG = DCI.DAG;
7565
7566  // Build operand list.
7567  SmallVector<SDValue, 8> Ops;
7568  Ops.push_back(LoMul->getOperand(0));
7569  Ops.push_back(LoMul->getOperand(1));
7570  Ops.push_back(*LowAdd);
7571  Ops.push_back(*HiAdd);
7572
7573  SDValue MLALNode =  DAG.getNode(FinalOpc, AddcNode->getDebugLoc(),
7574                                 DAG.getVTList(MVT::i32, MVT::i32),
7575                                 &Ops[0], Ops.size());
7576
7577  // Replace the ADDs' nodes uses by the MLA node's values.
7578  SDValue HiMLALResult(MLALNode.getNode(), 1);
7579  DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
7580
7581  SDValue LoMLALResult(MLALNode.getNode(), 0);
7582  DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
7583
7584  // Return original node to notify the driver to stop replacing.
7585  SDValue resNode(AddcNode, 0);
7586  return resNode;
7587}
7588
7589/// PerformADDCCombine - Target-specific dag combine transform from
7590/// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL.
7591static SDValue PerformADDCCombine(SDNode *N,
7592                                 TargetLowering::DAGCombinerInfo &DCI,
7593                                 const ARMSubtarget *Subtarget) {
7594
7595  return AddCombineTo64bitMLAL(N, DCI, Subtarget);
7596
7597}
7598
7599/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
7600/// operands N0 and N1.  This is a helper for PerformADDCombine that is
7601/// called with the default operands, and if that fails, with commuted
7602/// operands.
7603static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
7604                                          TargetLowering::DAGCombinerInfo &DCI,
7605                                          const ARMSubtarget *Subtarget){
7606
7607  // Attempt to create vpaddl for this add.
7608  SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
7609  if (Result.getNode())
7610    return Result;
7611
7612  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
7613  if (N0.getNode()->hasOneUse()) {
7614    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
7615    if (Result.getNode()) return Result;
7616  }
7617  return SDValue();
7618}
7619
7620/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
7621///
7622static SDValue PerformADDCombine(SDNode *N,
7623                                 TargetLowering::DAGCombinerInfo &DCI,
7624                                 const ARMSubtarget *Subtarget) {
7625  SDValue N0 = N->getOperand(0);
7626  SDValue N1 = N->getOperand(1);
7627
7628  // First try with the default operand order.
7629  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
7630  if (Result.getNode())
7631    return Result;
7632
7633  // If that didn't work, try again with the operands commuted.
7634  return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
7635}
7636
7637/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
7638///
7639static SDValue PerformSUBCombine(SDNode *N,
7640                                 TargetLowering::DAGCombinerInfo &DCI) {
7641  SDValue N0 = N->getOperand(0);
7642  SDValue N1 = N->getOperand(1);
7643
7644  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
7645  if (N1.getNode()->hasOneUse()) {
7646    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
7647    if (Result.getNode()) return Result;
7648  }
7649
7650  return SDValue();
7651}
7652
7653/// PerformVMULCombine
7654/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
7655/// special multiplier accumulator forwarding.
7656///   vmul d3, d0, d2
7657///   vmla d3, d1, d2
7658/// is faster than
7659///   vadd d3, d0, d1
7660///   vmul d3, d3, d2
7661static SDValue PerformVMULCombine(SDNode *N,
7662                                  TargetLowering::DAGCombinerInfo &DCI,
7663                                  const ARMSubtarget *Subtarget) {
7664  if (!Subtarget->hasVMLxForwarding())
7665    return SDValue();
7666
7667  SelectionDAG &DAG = DCI.DAG;
7668  SDValue N0 = N->getOperand(0);
7669  SDValue N1 = N->getOperand(1);
7670  unsigned Opcode = N0.getOpcode();
7671  if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
7672      Opcode != ISD::FADD && Opcode != ISD::FSUB) {
7673    Opcode = N1.getOpcode();
7674    if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
7675        Opcode != ISD::FADD && Opcode != ISD::FSUB)
7676      return SDValue();
7677    std::swap(N0, N1);
7678  }
7679
7680  EVT VT = N->getValueType(0);
7681  DebugLoc DL = N->getDebugLoc();
7682  SDValue N00 = N0->getOperand(0);
7683  SDValue N01 = N0->getOperand(1);
7684  return DAG.getNode(Opcode, DL, VT,
7685                     DAG.getNode(ISD::MUL, DL, VT, N00, N1),
7686                     DAG.getNode(ISD::MUL, DL, VT, N01, N1));
7687}
7688
7689static SDValue PerformMULCombine(SDNode *N,
7690                                 TargetLowering::DAGCombinerInfo &DCI,
7691                                 const ARMSubtarget *Subtarget) {
7692  SelectionDAG &DAG = DCI.DAG;
7693
7694  if (Subtarget->isThumb1Only())
7695    return SDValue();
7696
7697  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
7698    return SDValue();
7699
7700  EVT VT = N->getValueType(0);
7701  if (VT.is64BitVector() || VT.is128BitVector())
7702    return PerformVMULCombine(N, DCI, Subtarget);
7703  if (VT != MVT::i32)
7704    return SDValue();
7705
7706  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
7707  if (!C)
7708    return SDValue();
7709
7710  int64_t MulAmt = C->getSExtValue();
7711  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
7712
7713  ShiftAmt = ShiftAmt & (32 - 1);
7714  SDValue V = N->getOperand(0);
7715  DebugLoc DL = N->getDebugLoc();
7716
7717  SDValue Res;
7718  MulAmt >>= ShiftAmt;
7719
7720  if (MulAmt >= 0) {
7721    if (isPowerOf2_32(MulAmt - 1)) {
7722      // (mul x, 2^N + 1) => (add (shl x, N), x)
7723      Res = DAG.getNode(ISD::ADD, DL, VT,
7724                        V,
7725                        DAG.getNode(ISD::SHL, DL, VT,
7726                                    V,
7727                                    DAG.getConstant(Log2_32(MulAmt - 1),
7728                                                    MVT::i32)));
7729    } else if (isPowerOf2_32(MulAmt + 1)) {
7730      // (mul x, 2^N - 1) => (sub (shl x, N), x)
7731      Res = DAG.getNode(ISD::SUB, DL, VT,
7732                        DAG.getNode(ISD::SHL, DL, VT,
7733                                    V,
7734                                    DAG.getConstant(Log2_32(MulAmt + 1),
7735                                                    MVT::i32)),
7736                        V);
7737    } else
7738      return SDValue();
7739  } else {
7740    uint64_t MulAmtAbs = -MulAmt;
7741    if (isPowerOf2_32(MulAmtAbs + 1)) {
7742      // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
7743      Res = DAG.getNode(ISD::SUB, DL, VT,
7744                        V,
7745                        DAG.getNode(ISD::SHL, DL, VT,
7746                                    V,
7747                                    DAG.getConstant(Log2_32(MulAmtAbs + 1),
7748                                                    MVT::i32)));
7749    } else if (isPowerOf2_32(MulAmtAbs - 1)) {
7750      // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
7751      Res = DAG.getNode(ISD::ADD, DL, VT,
7752                        V,
7753                        DAG.getNode(ISD::SHL, DL, VT,
7754                                    V,
7755                                    DAG.getConstant(Log2_32(MulAmtAbs-1),
7756                                                    MVT::i32)));
7757      Res = DAG.getNode(ISD::SUB, DL, VT,
7758                        DAG.getConstant(0, MVT::i32),Res);
7759
7760    } else
7761      return SDValue();
7762  }
7763
7764  if (ShiftAmt != 0)
7765    Res = DAG.getNode(ISD::SHL, DL, VT,
7766                      Res, DAG.getConstant(ShiftAmt, MVT::i32));
7767
7768  // Do not add new nodes to DAG combiner worklist.
7769  DCI.CombineTo(N, Res, false);
7770  return SDValue();
7771}
7772
7773static SDValue PerformANDCombine(SDNode *N,
7774                                 TargetLowering::DAGCombinerInfo &DCI,
7775                                 const ARMSubtarget *Subtarget) {
7776
7777  // Attempt to use immediate-form VBIC
7778  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
7779  DebugLoc dl = N->getDebugLoc();
7780  EVT VT = N->getValueType(0);
7781  SelectionDAG &DAG = DCI.DAG;
7782
7783  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7784    return SDValue();
7785
7786  APInt SplatBits, SplatUndef;
7787  unsigned SplatBitSize;
7788  bool HasAnyUndefs;
7789  if (BVN &&
7790      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
7791    if (SplatBitSize <= 64) {
7792      EVT VbicVT;
7793      SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
7794                                      SplatUndef.getZExtValue(), SplatBitSize,
7795                                      DAG, VbicVT, VT.is128BitVector(),
7796                                      OtherModImm);
7797      if (Val.getNode()) {
7798        SDValue Input =
7799          DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
7800        SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
7801        return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
7802      }
7803    }
7804  }
7805
7806  if (!Subtarget->isThumb1Only()) {
7807    // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
7808    SDValue Result = combineSelectAndUseCommutative(N, true, DCI);
7809    if (Result.getNode())
7810      return Result;
7811  }
7812
7813  return SDValue();
7814}
7815
7816/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
7817static SDValue PerformORCombine(SDNode *N,
7818                                TargetLowering::DAGCombinerInfo &DCI,
7819                                const ARMSubtarget *Subtarget) {
7820  // Attempt to use immediate-form VORR
7821  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
7822  DebugLoc dl = N->getDebugLoc();
7823  EVT VT = N->getValueType(0);
7824  SelectionDAG &DAG = DCI.DAG;
7825
7826  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7827    return SDValue();
7828
7829  APInt SplatBits, SplatUndef;
7830  unsigned SplatBitSize;
7831  bool HasAnyUndefs;
7832  if (BVN && Subtarget->hasNEON() &&
7833      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
7834    if (SplatBitSize <= 64) {
7835      EVT VorrVT;
7836      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
7837                                      SplatUndef.getZExtValue(), SplatBitSize,
7838                                      DAG, VorrVT, VT.is128BitVector(),
7839                                      OtherModImm);
7840      if (Val.getNode()) {
7841        SDValue Input =
7842          DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
7843        SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
7844        return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
7845      }
7846    }
7847  }
7848
7849  if (!Subtarget->isThumb1Only()) {
7850    // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
7851    SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
7852    if (Result.getNode())
7853      return Result;
7854  }
7855
7856  // The code below optimizes (or (and X, Y), Z).
7857  // The AND operand needs to have a single user to make these optimizations
7858  // profitable.
7859  SDValue N0 = N->getOperand(0);
7860  if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
7861    return SDValue();
7862  SDValue N1 = N->getOperand(1);
7863
7864  // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
7865  if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
7866      DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
7867    APInt SplatUndef;
7868    unsigned SplatBitSize;
7869    bool HasAnyUndefs;
7870
7871    BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
7872    APInt SplatBits0;
7873    if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
7874                                  HasAnyUndefs) && !HasAnyUndefs) {
7875      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
7876      APInt SplatBits1;
7877      if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
7878                                    HasAnyUndefs) && !HasAnyUndefs &&
7879          SplatBits0 == ~SplatBits1) {
7880        // Canonicalize the vector type to make instruction selection simpler.
7881        EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
7882        SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
7883                                     N0->getOperand(1), N0->getOperand(0),
7884                                     N1->getOperand(0));
7885        return DAG.getNode(ISD::BITCAST, dl, VT, Result);
7886      }
7887    }
7888  }
7889
7890  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
7891  // reasonable.
7892
7893  // BFI is only available on V6T2+
7894  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
7895    return SDValue();
7896
7897  DebugLoc DL = N->getDebugLoc();
7898  // 1) or (and A, mask), val => ARMbfi A, val, mask
7899  //      iff (val & mask) == val
7900  //
7901  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
7902  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
7903  //          && mask == ~mask2
7904  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
7905  //          && ~mask == mask2
7906  //  (i.e., copy a bitfield value into another bitfield of the same width)
7907
7908  if (VT != MVT::i32)
7909    return SDValue();
7910
7911  SDValue N00 = N0.getOperand(0);
7912
7913  // The value and the mask need to be constants so we can verify this is
7914  // actually a bitfield set. If the mask is 0xffff, we can do better
7915  // via a movt instruction, so don't use BFI in that case.
7916  SDValue MaskOp = N0.getOperand(1);
7917  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
7918  if (!MaskC)
7919    return SDValue();
7920  unsigned Mask = MaskC->getZExtValue();
7921  if (Mask == 0xffff)
7922    return SDValue();
7923  SDValue Res;
7924  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
7925  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
7926  if (N1C) {
7927    unsigned Val = N1C->getZExtValue();
7928    if ((Val & ~Mask) != Val)
7929      return SDValue();
7930
7931    if (ARM::isBitFieldInvertedMask(Mask)) {
7932      Val >>= CountTrailingZeros_32(~Mask);
7933
7934      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
7935                        DAG.getConstant(Val, MVT::i32),
7936                        DAG.getConstant(Mask, MVT::i32));
7937
7938      // Do not add new nodes to DAG combiner worklist.
7939      DCI.CombineTo(N, Res, false);
7940      return SDValue();
7941    }
7942  } else if (N1.getOpcode() == ISD::AND) {
7943    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
7944    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
7945    if (!N11C)
7946      return SDValue();
7947    unsigned Mask2 = N11C->getZExtValue();
7948
7949    // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
7950    // as is to match.
7951    if (ARM::isBitFieldInvertedMask(Mask) &&
7952        (Mask == ~Mask2)) {
7953      // The pack halfword instruction works better for masks that fit it,
7954      // so use that when it's available.
7955      if (Subtarget->hasT2ExtractPack() &&
7956          (Mask == 0xffff || Mask == 0xffff0000))
7957        return SDValue();
7958      // 2a
7959      unsigned amt = CountTrailingZeros_32(Mask2);
7960      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
7961                        DAG.getConstant(amt, MVT::i32));
7962      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
7963                        DAG.getConstant(Mask, MVT::i32));
7964      // Do not add new nodes to DAG combiner worklist.
7965      DCI.CombineTo(N, Res, false);
7966      return SDValue();
7967    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
7968               (~Mask == Mask2)) {
7969      // The pack halfword instruction works better for masks that fit it,
7970      // so use that when it's available.
7971      if (Subtarget->hasT2ExtractPack() &&
7972          (Mask2 == 0xffff || Mask2 == 0xffff0000))
7973        return SDValue();
7974      // 2b
7975      unsigned lsb = CountTrailingZeros_32(Mask);
7976      Res = DAG.getNode(ISD::SRL, DL, VT, N00,
7977                        DAG.getConstant(lsb, MVT::i32));
7978      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
7979                        DAG.getConstant(Mask2, MVT::i32));
7980      // Do not add new nodes to DAG combiner worklist.
7981      DCI.CombineTo(N, Res, false);
7982      return SDValue();
7983    }
7984  }
7985
7986  if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
7987      N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
7988      ARM::isBitFieldInvertedMask(~Mask)) {
7989    // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
7990    // where lsb(mask) == #shamt and masked bits of B are known zero.
7991    SDValue ShAmt = N00.getOperand(1);
7992    unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
7993    unsigned LSB = CountTrailingZeros_32(Mask);
7994    if (ShAmtC != LSB)
7995      return SDValue();
7996
7997    Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
7998                      DAG.getConstant(~Mask, MVT::i32));
7999
8000    // Do not add new nodes to DAG combiner worklist.
8001    DCI.CombineTo(N, Res, false);
8002  }
8003
8004  return SDValue();
8005}
8006
8007static SDValue PerformXORCombine(SDNode *N,
8008                                 TargetLowering::DAGCombinerInfo &DCI,
8009                                 const ARMSubtarget *Subtarget) {
8010  EVT VT = N->getValueType(0);
8011  SelectionDAG &DAG = DCI.DAG;
8012
8013  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
8014    return SDValue();
8015
8016  if (!Subtarget->isThumb1Only()) {
8017    // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
8018    SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
8019    if (Result.getNode())
8020      return Result;
8021  }
8022
8023  return SDValue();
8024}
8025
8026/// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
8027/// the bits being cleared by the AND are not demanded by the BFI.
8028static SDValue PerformBFICombine(SDNode *N,
8029                                 TargetLowering::DAGCombinerInfo &DCI) {
8030  SDValue N1 = N->getOperand(1);
8031  if (N1.getOpcode() == ISD::AND) {
8032    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
8033    if (!N11C)
8034      return SDValue();
8035    unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
8036    unsigned LSB = CountTrailingZeros_32(~InvMask);
8037    unsigned Width = (32 - CountLeadingZeros_32(~InvMask)) - LSB;
8038    unsigned Mask = (1 << Width)-1;
8039    unsigned Mask2 = N11C->getZExtValue();
8040    if ((Mask & (~Mask2)) == 0)
8041      return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
8042                             N->getOperand(0), N1.getOperand(0),
8043                             N->getOperand(2));
8044  }
8045  return SDValue();
8046}
8047
8048/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
8049/// ARMISD::VMOVRRD.
8050static SDValue PerformVMOVRRDCombine(SDNode *N,
8051                                     TargetLowering::DAGCombinerInfo &DCI) {
8052  // vmovrrd(vmovdrr x, y) -> x,y
8053  SDValue InDouble = N->getOperand(0);
8054  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
8055    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
8056
8057  // vmovrrd(load f64) -> (load i32), (load i32)
8058  SDNode *InNode = InDouble.getNode();
8059  if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
8060      InNode->getValueType(0) == MVT::f64 &&
8061      InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
8062      !cast<LoadSDNode>(InNode)->isVolatile()) {
8063    // TODO: Should this be done for non-FrameIndex operands?
8064    LoadSDNode *LD = cast<LoadSDNode>(InNode);
8065
8066    SelectionDAG &DAG = DCI.DAG;
8067    DebugLoc DL = LD->getDebugLoc();
8068    SDValue BasePtr = LD->getBasePtr();
8069    SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
8070                                 LD->getPointerInfo(), LD->isVolatile(),
8071                                 LD->isNonTemporal(), LD->isInvariant(),
8072                                 LD->getAlignment());
8073
8074    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
8075                                    DAG.getConstant(4, MVT::i32));
8076    SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
8077                                 LD->getPointerInfo(), LD->isVolatile(),
8078                                 LD->isNonTemporal(), LD->isInvariant(),
8079                                 std::min(4U, LD->getAlignment() / 2));
8080
8081    DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
8082    SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
8083    DCI.RemoveFromWorklist(LD);
8084    DAG.DeleteNode(LD);
8085    return Result;
8086  }
8087
8088  return SDValue();
8089}
8090
8091/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
8092/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
8093static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
8094  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
8095  SDValue Op0 = N->getOperand(0);
8096  SDValue Op1 = N->getOperand(1);
8097  if (Op0.getOpcode() == ISD::BITCAST)
8098    Op0 = Op0.getOperand(0);
8099  if (Op1.getOpcode() == ISD::BITCAST)
8100    Op1 = Op1.getOperand(0);
8101  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
8102      Op0.getNode() == Op1.getNode() &&
8103      Op0.getResNo() == 0 && Op1.getResNo() == 1)
8104    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
8105                       N->getValueType(0), Op0.getOperand(0));
8106  return SDValue();
8107}
8108
8109/// PerformSTORECombine - Target-specific dag combine xforms for
8110/// ISD::STORE.
8111static SDValue PerformSTORECombine(SDNode *N,
8112                                   TargetLowering::DAGCombinerInfo &DCI) {
8113  StoreSDNode *St = cast<StoreSDNode>(N);
8114  if (St->isVolatile())
8115    return SDValue();
8116
8117  // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
8118  // pack all of the elements in one place.  Next, store to memory in fewer
8119  // chunks.
8120  SDValue StVal = St->getValue();
8121  EVT VT = StVal.getValueType();
8122  if (St->isTruncatingStore() && VT.isVector()) {
8123    SelectionDAG &DAG = DCI.DAG;
8124    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8125    EVT StVT = St->getMemoryVT();
8126    unsigned NumElems = VT.getVectorNumElements();
8127    assert(StVT != VT && "Cannot truncate to the same type");
8128    unsigned FromEltSz = VT.getVectorElementType().getSizeInBits();
8129    unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits();
8130
8131    // From, To sizes and ElemCount must be pow of two
8132    if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
8133
8134    // We are going to use the original vector elt for storing.
8135    // Accumulated smaller vector elements must be a multiple of the store size.
8136    if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
8137
8138    unsigned SizeRatio  = FromEltSz / ToEltSz;
8139    assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
8140
8141    // Create a type on which we perform the shuffle.
8142    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
8143                                     NumElems*SizeRatio);
8144    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
8145
8146    DebugLoc DL = St->getDebugLoc();
8147    SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
8148    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
8149    for (unsigned i = 0; i < NumElems; ++i) ShuffleVec[i] = i * SizeRatio;
8150
8151    // Can't shuffle using an illegal type.
8152    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
8153
8154    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
8155                                DAG.getUNDEF(WideVec.getValueType()),
8156                                ShuffleVec.data());
8157    // At this point all of the data is stored at the bottom of the
8158    // register. We now need to save it to mem.
8159
8160    // Find the largest store unit
8161    MVT StoreType = MVT::i8;
8162    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
8163         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
8164      MVT Tp = (MVT::SimpleValueType)tp;
8165      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
8166        StoreType = Tp;
8167    }
8168    // Didn't find a legal store type.
8169    if (!TLI.isTypeLegal(StoreType))
8170      return SDValue();
8171
8172    // Bitcast the original vector into a vector of store-size units
8173    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
8174            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
8175    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
8176    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
8177    SmallVector<SDValue, 8> Chains;
8178    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
8179                                        TLI.getPointerTy());
8180    SDValue BasePtr = St->getBasePtr();
8181
8182    // Perform one or more big stores into memory.
8183    unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
8184    for (unsigned I = 0; I < E; I++) {
8185      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
8186                                   StoreType, ShuffWide,
8187                                   DAG.getIntPtrConstant(I));
8188      SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
8189                                St->getPointerInfo(), St->isVolatile(),
8190                                St->isNonTemporal(), St->getAlignment());
8191      BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
8192                            Increment);
8193      Chains.push_back(Ch);
8194    }
8195    return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &Chains[0],
8196                       Chains.size());
8197  }
8198
8199  if (!ISD::isNormalStore(St))
8200    return SDValue();
8201
8202  // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
8203  // ARM stores of arguments in the same cache line.
8204  if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
8205      StVal.getNode()->hasOneUse()) {
8206    SelectionDAG  &DAG = DCI.DAG;
8207    DebugLoc DL = St->getDebugLoc();
8208    SDValue BasePtr = St->getBasePtr();
8209    SDValue NewST1 = DAG.getStore(St->getChain(), DL,
8210                                  StVal.getNode()->getOperand(0), BasePtr,
8211                                  St->getPointerInfo(), St->isVolatile(),
8212                                  St->isNonTemporal(), St->getAlignment());
8213
8214    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
8215                                    DAG.getConstant(4, MVT::i32));
8216    return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1),
8217                        OffsetPtr, St->getPointerInfo(), St->isVolatile(),
8218                        St->isNonTemporal(),
8219                        std::min(4U, St->getAlignment() / 2));
8220  }
8221
8222  if (StVal.getValueType() != MVT::i64 ||
8223      StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8224    return SDValue();
8225
8226  // Bitcast an i64 store extracted from a vector to f64.
8227  // Otherwise, the i64 value will be legalized to a pair of i32 values.
8228  SelectionDAG &DAG = DCI.DAG;
8229  DebugLoc dl = StVal.getDebugLoc();
8230  SDValue IntVec = StVal.getOperand(0);
8231  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
8232                                 IntVec.getValueType().getVectorNumElements());
8233  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
8234  SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8235                               Vec, StVal.getOperand(1));
8236  dl = N->getDebugLoc();
8237  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
8238  // Make the DAGCombiner fold the bitcasts.
8239  DCI.AddToWorklist(Vec.getNode());
8240  DCI.AddToWorklist(ExtElt.getNode());
8241  DCI.AddToWorklist(V.getNode());
8242  return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
8243                      St->getPointerInfo(), St->isVolatile(),
8244                      St->isNonTemporal(), St->getAlignment(),
8245                      St->getTBAAInfo());
8246}
8247
8248/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
8249/// are normal, non-volatile loads.  If so, it is profitable to bitcast an
8250/// i64 vector to have f64 elements, since the value can then be loaded
8251/// directly into a VFP register.
8252static bool hasNormalLoadOperand(SDNode *N) {
8253  unsigned NumElts = N->getValueType(0).getVectorNumElements();
8254  for (unsigned i = 0; i < NumElts; ++i) {
8255    SDNode *Elt = N->getOperand(i).getNode();
8256    if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
8257      return true;
8258  }
8259  return false;
8260}
8261
8262/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
8263/// ISD::BUILD_VECTOR.
8264static SDValue PerformBUILD_VECTORCombine(SDNode *N,
8265                                          TargetLowering::DAGCombinerInfo &DCI){
8266  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
8267  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
8268  // into a pair of GPRs, which is fine when the value is used as a scalar,
8269  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
8270  SelectionDAG &DAG = DCI.DAG;
8271  if (N->getNumOperands() == 2) {
8272    SDValue RV = PerformVMOVDRRCombine(N, DAG);
8273    if (RV.getNode())
8274      return RV;
8275  }
8276
8277  // Load i64 elements as f64 values so that type legalization does not split
8278  // them up into i32 values.
8279  EVT VT = N->getValueType(0);
8280  if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
8281    return SDValue();
8282  DebugLoc dl = N->getDebugLoc();
8283  SmallVector<SDValue, 8> Ops;
8284  unsigned NumElts = VT.getVectorNumElements();
8285  for (unsigned i = 0; i < NumElts; ++i) {
8286    SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
8287    Ops.push_back(V);
8288    // Make the DAGCombiner fold the bitcast.
8289    DCI.AddToWorklist(V.getNode());
8290  }
8291  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
8292  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
8293  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
8294}
8295
8296/// PerformInsertEltCombine - Target-specific dag combine xforms for
8297/// ISD::INSERT_VECTOR_ELT.
8298static SDValue PerformInsertEltCombine(SDNode *N,
8299                                       TargetLowering::DAGCombinerInfo &DCI) {
8300  // Bitcast an i64 load inserted into a vector to f64.
8301  // Otherwise, the i64 value will be legalized to a pair of i32 values.
8302  EVT VT = N->getValueType(0);
8303  SDNode *Elt = N->getOperand(1).getNode();
8304  if (VT.getVectorElementType() != MVT::i64 ||
8305      !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
8306    return SDValue();
8307
8308  SelectionDAG &DAG = DCI.DAG;
8309  DebugLoc dl = N->getDebugLoc();
8310  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
8311                                 VT.getVectorNumElements());
8312  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
8313  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
8314  // Make the DAGCombiner fold the bitcasts.
8315  DCI.AddToWorklist(Vec.getNode());
8316  DCI.AddToWorklist(V.getNode());
8317  SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
8318                               Vec, V, N->getOperand(2));
8319  return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
8320}
8321
8322/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
8323/// ISD::VECTOR_SHUFFLE.
8324static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
8325  // The LLVM shufflevector instruction does not require the shuffle mask
8326  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
8327  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
8328  // operands do not match the mask length, they are extended by concatenating
8329  // them with undef vectors.  That is probably the right thing for other
8330  // targets, but for NEON it is better to concatenate two double-register
8331  // size vector operands into a single quad-register size vector.  Do that
8332  // transformation here:
8333  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
8334  //   shuffle(concat(v1, v2), undef)
8335  SDValue Op0 = N->getOperand(0);
8336  SDValue Op1 = N->getOperand(1);
8337  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
8338      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
8339      Op0.getNumOperands() != 2 ||
8340      Op1.getNumOperands() != 2)
8341    return SDValue();
8342  SDValue Concat0Op1 = Op0.getOperand(1);
8343  SDValue Concat1Op1 = Op1.getOperand(1);
8344  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
8345      Concat1Op1.getOpcode() != ISD::UNDEF)
8346    return SDValue();
8347  // Skip the transformation if any of the types are illegal.
8348  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8349  EVT VT = N->getValueType(0);
8350  if (!TLI.isTypeLegal(VT) ||
8351      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
8352      !TLI.isTypeLegal(Concat1Op1.getValueType()))
8353    return SDValue();
8354
8355  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
8356                                  Op0.getOperand(0), Op1.getOperand(0));
8357  // Translate the shuffle mask.
8358  SmallVector<int, 16> NewMask;
8359  unsigned NumElts = VT.getVectorNumElements();
8360  unsigned HalfElts = NumElts/2;
8361  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8362  for (unsigned n = 0; n < NumElts; ++n) {
8363    int MaskElt = SVN->getMaskElt(n);
8364    int NewElt = -1;
8365    if (MaskElt < (int)HalfElts)
8366      NewElt = MaskElt;
8367    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
8368      NewElt = HalfElts + MaskElt - NumElts;
8369    NewMask.push_back(NewElt);
8370  }
8371  return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
8372                              DAG.getUNDEF(VT), NewMask.data());
8373}
8374
8375/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
8376/// NEON load/store intrinsics to merge base address updates.
8377static SDValue CombineBaseUpdate(SDNode *N,
8378                                 TargetLowering::DAGCombinerInfo &DCI) {
8379  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8380    return SDValue();
8381
8382  SelectionDAG &DAG = DCI.DAG;
8383  bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
8384                      N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
8385  unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
8386  SDValue Addr = N->getOperand(AddrOpIdx);
8387
8388  // Search for a use of the address operand that is an increment.
8389  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
8390         UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
8391    SDNode *User = *UI;
8392    if (User->getOpcode() != ISD::ADD ||
8393        UI.getUse().getResNo() != Addr.getResNo())
8394      continue;
8395
8396    // Check that the add is independent of the load/store.  Otherwise, folding
8397    // it would create a cycle.
8398    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
8399      continue;
8400
8401    // Find the new opcode for the updating load/store.
8402    bool isLoad = true;
8403    bool isLaneOp = false;
8404    unsigned NewOpc = 0;
8405    unsigned NumVecs = 0;
8406    if (isIntrinsic) {
8407      unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
8408      switch (IntNo) {
8409      default: llvm_unreachable("unexpected intrinsic for Neon base update");
8410      case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
8411        NumVecs = 1; break;
8412      case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
8413        NumVecs = 2; break;
8414      case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
8415        NumVecs = 3; break;
8416      case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
8417        NumVecs = 4; break;
8418      case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
8419        NumVecs = 2; isLaneOp = true; break;
8420      case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
8421        NumVecs = 3; isLaneOp = true; break;
8422      case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
8423        NumVecs = 4; isLaneOp = true; break;
8424      case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
8425        NumVecs = 1; isLoad = false; break;
8426      case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
8427        NumVecs = 2; isLoad = false; break;
8428      case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
8429        NumVecs = 3; isLoad = false; break;
8430      case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
8431        NumVecs = 4; isLoad = false; break;
8432      case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
8433        NumVecs = 2; isLoad = false; isLaneOp = true; break;
8434      case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
8435        NumVecs = 3; isLoad = false; isLaneOp = true; break;
8436      case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
8437        NumVecs = 4; isLoad = false; isLaneOp = true; break;
8438      }
8439    } else {
8440      isLaneOp = true;
8441      switch (N->getOpcode()) {
8442      default: llvm_unreachable("unexpected opcode for Neon base update");
8443      case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
8444      case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
8445      case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
8446      }
8447    }
8448
8449    // Find the size of memory referenced by the load/store.
8450    EVT VecTy;
8451    if (isLoad)
8452      VecTy = N->getValueType(0);
8453    else
8454      VecTy = N->getOperand(AddrOpIdx+1).getValueType();
8455    unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
8456    if (isLaneOp)
8457      NumBytes /= VecTy.getVectorNumElements();
8458
8459    // If the increment is a constant, it must match the memory ref size.
8460    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
8461    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
8462      uint64_t IncVal = CInc->getZExtValue();
8463      if (IncVal != NumBytes)
8464        continue;
8465    } else if (NumBytes >= 3 * 16) {
8466      // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
8467      // separate instructions that make it harder to use a non-constant update.
8468      continue;
8469    }
8470
8471    // Create the new updating load/store node.
8472    EVT Tys[6];
8473    unsigned NumResultVecs = (isLoad ? NumVecs : 0);
8474    unsigned n;
8475    for (n = 0; n < NumResultVecs; ++n)
8476      Tys[n] = VecTy;
8477    Tys[n++] = MVT::i32;
8478    Tys[n] = MVT::Other;
8479    SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
8480    SmallVector<SDValue, 8> Ops;
8481    Ops.push_back(N->getOperand(0)); // incoming chain
8482    Ops.push_back(N->getOperand(AddrOpIdx));
8483    Ops.push_back(Inc);
8484    for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
8485      Ops.push_back(N->getOperand(i));
8486    }
8487    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
8488    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys,
8489                                           Ops.data(), Ops.size(),
8490                                           MemInt->getMemoryVT(),
8491                                           MemInt->getMemOperand());
8492
8493    // Update the uses.
8494    std::vector<SDValue> NewResults;
8495    for (unsigned i = 0; i < NumResultVecs; ++i) {
8496      NewResults.push_back(SDValue(UpdN.getNode(), i));
8497    }
8498    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
8499    DCI.CombineTo(N, NewResults);
8500    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
8501
8502    break;
8503  }
8504  return SDValue();
8505}
8506
8507/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
8508/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
8509/// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
8510/// return true.
8511static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
8512  SelectionDAG &DAG = DCI.DAG;
8513  EVT VT = N->getValueType(0);
8514  // vldN-dup instructions only support 64-bit vectors for N > 1.
8515  if (!VT.is64BitVector())
8516    return false;
8517
8518  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
8519  SDNode *VLD = N->getOperand(0).getNode();
8520  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
8521    return false;
8522  unsigned NumVecs = 0;
8523  unsigned NewOpc = 0;
8524  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
8525  if (IntNo == Intrinsic::arm_neon_vld2lane) {
8526    NumVecs = 2;
8527    NewOpc = ARMISD::VLD2DUP;
8528  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
8529    NumVecs = 3;
8530    NewOpc = ARMISD::VLD3DUP;
8531  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
8532    NumVecs = 4;
8533    NewOpc = ARMISD::VLD4DUP;
8534  } else {
8535    return false;
8536  }
8537
8538  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
8539  // numbers match the load.
8540  unsigned VLDLaneNo =
8541    cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
8542  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
8543       UI != UE; ++UI) {
8544    // Ignore uses of the chain result.
8545    if (UI.getUse().getResNo() == NumVecs)
8546      continue;
8547    SDNode *User = *UI;
8548    if (User->getOpcode() != ARMISD::VDUPLANE ||
8549        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
8550      return false;
8551  }
8552
8553  // Create the vldN-dup node.
8554  EVT Tys[5];
8555  unsigned n;
8556  for (n = 0; n < NumVecs; ++n)
8557    Tys[n] = VT;
8558  Tys[n] = MVT::Other;
8559  SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
8560  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
8561  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
8562  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
8563                                           Ops, 2, VLDMemInt->getMemoryVT(),
8564                                           VLDMemInt->getMemOperand());
8565
8566  // Update the uses.
8567  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
8568       UI != UE; ++UI) {
8569    unsigned ResNo = UI.getUse().getResNo();
8570    // Ignore uses of the chain result.
8571    if (ResNo == NumVecs)
8572      continue;
8573    SDNode *User = *UI;
8574    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
8575  }
8576
8577  // Now the vldN-lane intrinsic is dead except for its chain result.
8578  // Update uses of the chain.
8579  std::vector<SDValue> VLDDupResults;
8580  for (unsigned n = 0; n < NumVecs; ++n)
8581    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
8582  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
8583  DCI.CombineTo(VLD, VLDDupResults);
8584
8585  return true;
8586}
8587
8588/// PerformVDUPLANECombine - Target-specific dag combine xforms for
8589/// ARMISD::VDUPLANE.
8590static SDValue PerformVDUPLANECombine(SDNode *N,
8591                                      TargetLowering::DAGCombinerInfo &DCI) {
8592  SDValue Op = N->getOperand(0);
8593
8594  // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
8595  // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
8596  if (CombineVLDDUP(N, DCI))
8597    return SDValue(N, 0);
8598
8599  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
8600  // redundant.  Ignore bit_converts for now; element sizes are checked below.
8601  while (Op.getOpcode() == ISD::BITCAST)
8602    Op = Op.getOperand(0);
8603  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
8604    return SDValue();
8605
8606  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
8607  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
8608  // The canonical VMOV for a zero vector uses a 32-bit element size.
8609  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8610  unsigned EltBits;
8611  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
8612    EltSize = 8;
8613  EVT VT = N->getValueType(0);
8614  if (EltSize > VT.getVectorElementType().getSizeInBits())
8615    return SDValue();
8616
8617  return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
8618}
8619
8620// isConstVecPow2 - Return true if each vector element is a power of 2, all
8621// elements are the same constant, C, and Log2(C) ranges from 1 to 32.
8622static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
8623{
8624  integerPart cN;
8625  integerPart c0 = 0;
8626  for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
8627       I != E; I++) {
8628    ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
8629    if (!C)
8630      return false;
8631
8632    bool isExact;
8633    APFloat APF = C->getValueAPF();
8634    if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
8635        != APFloat::opOK || !isExact)
8636      return false;
8637
8638    c0 = (I == 0) ? cN : c0;
8639    if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
8640      return false;
8641  }
8642  C = c0;
8643  return true;
8644}
8645
8646/// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
8647/// can replace combinations of VMUL and VCVT (floating-point to integer)
8648/// when the VMUL has a constant operand that is a power of 2.
8649///
8650/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
8651///  vmul.f32        d16, d17, d16
8652///  vcvt.s32.f32    d16, d16
8653/// becomes:
8654///  vcvt.s32.f32    d16, d16, #3
8655static SDValue PerformVCVTCombine(SDNode *N,
8656                                  TargetLowering::DAGCombinerInfo &DCI,
8657                                  const ARMSubtarget *Subtarget) {
8658  SelectionDAG &DAG = DCI.DAG;
8659  SDValue Op = N->getOperand(0);
8660
8661  if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
8662      Op.getOpcode() != ISD::FMUL)
8663    return SDValue();
8664
8665  uint64_t C;
8666  SDValue N0 = Op->getOperand(0);
8667  SDValue ConstVec = Op->getOperand(1);
8668  bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
8669
8670  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
8671      !isConstVecPow2(ConstVec, isSigned, C))
8672    return SDValue();
8673
8674  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
8675    Intrinsic::arm_neon_vcvtfp2fxu;
8676  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
8677                     N->getValueType(0),
8678                     DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
8679                     DAG.getConstant(Log2_64(C), MVT::i32));
8680}
8681
8682/// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
8683/// can replace combinations of VCVT (integer to floating-point) and VDIV
8684/// when the VDIV has a constant operand that is a power of 2.
8685///
8686/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
8687///  vcvt.f32.s32    d16, d16
8688///  vdiv.f32        d16, d17, d16
8689/// becomes:
8690///  vcvt.f32.s32    d16, d16, #3
8691static SDValue PerformVDIVCombine(SDNode *N,
8692                                  TargetLowering::DAGCombinerInfo &DCI,
8693                                  const ARMSubtarget *Subtarget) {
8694  SelectionDAG &DAG = DCI.DAG;
8695  SDValue Op = N->getOperand(0);
8696  unsigned OpOpcode = Op.getNode()->getOpcode();
8697
8698  if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
8699      (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
8700    return SDValue();
8701
8702  uint64_t C;
8703  SDValue ConstVec = N->getOperand(1);
8704  bool isSigned = OpOpcode == ISD::SINT_TO_FP;
8705
8706  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
8707      !isConstVecPow2(ConstVec, isSigned, C))
8708    return SDValue();
8709
8710  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
8711    Intrinsic::arm_neon_vcvtfxu2fp;
8712  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
8713                     Op.getValueType(),
8714                     DAG.getConstant(IntrinsicOpcode, MVT::i32),
8715                     Op.getOperand(0), DAG.getConstant(Log2_64(C), MVT::i32));
8716}
8717
8718/// Getvshiftimm - Check if this is a valid build_vector for the immediate
8719/// operand of a vector shift operation, where all the elements of the
8720/// build_vector must have the same constant integer value.
8721static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
8722  // Ignore bit_converts.
8723  while (Op.getOpcode() == ISD::BITCAST)
8724    Op = Op.getOperand(0);
8725  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
8726  APInt SplatBits, SplatUndef;
8727  unsigned SplatBitSize;
8728  bool HasAnyUndefs;
8729  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
8730                                      HasAnyUndefs, ElementBits) ||
8731      SplatBitSize > ElementBits)
8732    return false;
8733  Cnt = SplatBits.getSExtValue();
8734  return true;
8735}
8736
8737/// isVShiftLImm - Check if this is a valid build_vector for the immediate
8738/// operand of a vector shift left operation.  That value must be in the range:
8739///   0 <= Value < ElementBits for a left shift; or
8740///   0 <= Value <= ElementBits for a long left shift.
8741static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
8742  assert(VT.isVector() && "vector shift count is not a vector type");
8743  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
8744  if (! getVShiftImm(Op, ElementBits, Cnt))
8745    return false;
8746  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
8747}
8748
8749/// isVShiftRImm - Check if this is a valid build_vector for the immediate
8750/// operand of a vector shift right operation.  For a shift opcode, the value
8751/// is positive, but for an intrinsic the value count must be negative. The
8752/// absolute value must be in the range:
8753///   1 <= |Value| <= ElementBits for a right shift; or
8754///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
8755static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
8756                         int64_t &Cnt) {
8757  assert(VT.isVector() && "vector shift count is not a vector type");
8758  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
8759  if (! getVShiftImm(Op, ElementBits, Cnt))
8760    return false;
8761  if (isIntrinsic)
8762    Cnt = -Cnt;
8763  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
8764}
8765
8766/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
8767static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
8768  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
8769  switch (IntNo) {
8770  default:
8771    // Don't do anything for most intrinsics.
8772    break;
8773
8774  // Vector shifts: check for immediate versions and lower them.
8775  // Note: This is done during DAG combining instead of DAG legalizing because
8776  // the build_vectors for 64-bit vector element shift counts are generally
8777  // not legal, and it is hard to see their values after they get legalized to
8778  // loads from a constant pool.
8779  case Intrinsic::arm_neon_vshifts:
8780  case Intrinsic::arm_neon_vshiftu:
8781  case Intrinsic::arm_neon_vshiftls:
8782  case Intrinsic::arm_neon_vshiftlu:
8783  case Intrinsic::arm_neon_vshiftn:
8784  case Intrinsic::arm_neon_vrshifts:
8785  case Intrinsic::arm_neon_vrshiftu:
8786  case Intrinsic::arm_neon_vrshiftn:
8787  case Intrinsic::arm_neon_vqshifts:
8788  case Intrinsic::arm_neon_vqshiftu:
8789  case Intrinsic::arm_neon_vqshiftsu:
8790  case Intrinsic::arm_neon_vqshiftns:
8791  case Intrinsic::arm_neon_vqshiftnu:
8792  case Intrinsic::arm_neon_vqshiftnsu:
8793  case Intrinsic::arm_neon_vqrshiftns:
8794  case Intrinsic::arm_neon_vqrshiftnu:
8795  case Intrinsic::arm_neon_vqrshiftnsu: {
8796    EVT VT = N->getOperand(1).getValueType();
8797    int64_t Cnt;
8798    unsigned VShiftOpc = 0;
8799
8800    switch (IntNo) {
8801    case Intrinsic::arm_neon_vshifts:
8802    case Intrinsic::arm_neon_vshiftu:
8803      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
8804        VShiftOpc = ARMISD::VSHL;
8805        break;
8806      }
8807      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
8808        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
8809                     ARMISD::VSHRs : ARMISD::VSHRu);
8810        break;
8811      }
8812      return SDValue();
8813
8814    case Intrinsic::arm_neon_vshiftls:
8815    case Intrinsic::arm_neon_vshiftlu:
8816      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
8817        break;
8818      llvm_unreachable("invalid shift count for vshll intrinsic");
8819
8820    case Intrinsic::arm_neon_vrshifts:
8821    case Intrinsic::arm_neon_vrshiftu:
8822      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
8823        break;
8824      return SDValue();
8825
8826    case Intrinsic::arm_neon_vqshifts:
8827    case Intrinsic::arm_neon_vqshiftu:
8828      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
8829        break;
8830      return SDValue();
8831
8832    case Intrinsic::arm_neon_vqshiftsu:
8833      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
8834        break;
8835      llvm_unreachable("invalid shift count for vqshlu intrinsic");
8836
8837    case Intrinsic::arm_neon_vshiftn:
8838    case Intrinsic::arm_neon_vrshiftn:
8839    case Intrinsic::arm_neon_vqshiftns:
8840    case Intrinsic::arm_neon_vqshiftnu:
8841    case Intrinsic::arm_neon_vqshiftnsu:
8842    case Intrinsic::arm_neon_vqrshiftns:
8843    case Intrinsic::arm_neon_vqrshiftnu:
8844    case Intrinsic::arm_neon_vqrshiftnsu:
8845      // Narrowing shifts require an immediate right shift.
8846      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
8847        break;
8848      llvm_unreachable("invalid shift count for narrowing vector shift "
8849                       "intrinsic");
8850
8851    default:
8852      llvm_unreachable("unhandled vector shift");
8853    }
8854
8855    switch (IntNo) {
8856    case Intrinsic::arm_neon_vshifts:
8857    case Intrinsic::arm_neon_vshiftu:
8858      // Opcode already set above.
8859      break;
8860    case Intrinsic::arm_neon_vshiftls:
8861    case Intrinsic::arm_neon_vshiftlu:
8862      if (Cnt == VT.getVectorElementType().getSizeInBits())
8863        VShiftOpc = ARMISD::VSHLLi;
8864      else
8865        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
8866                     ARMISD::VSHLLs : ARMISD::VSHLLu);
8867      break;
8868    case Intrinsic::arm_neon_vshiftn:
8869      VShiftOpc = ARMISD::VSHRN; break;
8870    case Intrinsic::arm_neon_vrshifts:
8871      VShiftOpc = ARMISD::VRSHRs; break;
8872    case Intrinsic::arm_neon_vrshiftu:
8873      VShiftOpc = ARMISD::VRSHRu; break;
8874    case Intrinsic::arm_neon_vrshiftn:
8875      VShiftOpc = ARMISD::VRSHRN; break;
8876    case Intrinsic::arm_neon_vqshifts:
8877      VShiftOpc = ARMISD::VQSHLs; break;
8878    case Intrinsic::arm_neon_vqshiftu:
8879      VShiftOpc = ARMISD::VQSHLu; break;
8880    case Intrinsic::arm_neon_vqshiftsu:
8881      VShiftOpc = ARMISD::VQSHLsu; break;
8882    case Intrinsic::arm_neon_vqshiftns:
8883      VShiftOpc = ARMISD::VQSHRNs; break;
8884    case Intrinsic::arm_neon_vqshiftnu:
8885      VShiftOpc = ARMISD::VQSHRNu; break;
8886    case Intrinsic::arm_neon_vqshiftnsu:
8887      VShiftOpc = ARMISD::VQSHRNsu; break;
8888    case Intrinsic::arm_neon_vqrshiftns:
8889      VShiftOpc = ARMISD::VQRSHRNs; break;
8890    case Intrinsic::arm_neon_vqrshiftnu:
8891      VShiftOpc = ARMISD::VQRSHRNu; break;
8892    case Intrinsic::arm_neon_vqrshiftnsu:
8893      VShiftOpc = ARMISD::VQRSHRNsu; break;
8894    }
8895
8896    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
8897                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
8898  }
8899
8900  case Intrinsic::arm_neon_vshiftins: {
8901    EVT VT = N->getOperand(1).getValueType();
8902    int64_t Cnt;
8903    unsigned VShiftOpc = 0;
8904
8905    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
8906      VShiftOpc = ARMISD::VSLI;
8907    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
8908      VShiftOpc = ARMISD::VSRI;
8909    else {
8910      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
8911    }
8912
8913    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
8914                       N->getOperand(1), N->getOperand(2),
8915                       DAG.getConstant(Cnt, MVT::i32));
8916  }
8917
8918  case Intrinsic::arm_neon_vqrshifts:
8919  case Intrinsic::arm_neon_vqrshiftu:
8920    // No immediate versions of these to check for.
8921    break;
8922  }
8923
8924  return SDValue();
8925}
8926
8927/// PerformShiftCombine - Checks for immediate versions of vector shifts and
8928/// lowers them.  As with the vector shift intrinsics, this is done during DAG
8929/// combining instead of DAG legalizing because the build_vectors for 64-bit
8930/// vector element shift counts are generally not legal, and it is hard to see
8931/// their values after they get legalized to loads from a constant pool.
8932static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
8933                                   const ARMSubtarget *ST) {
8934  EVT VT = N->getValueType(0);
8935  if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
8936    // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
8937    // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
8938    SDValue N1 = N->getOperand(1);
8939    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
8940      SDValue N0 = N->getOperand(0);
8941      if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
8942          DAG.MaskedValueIsZero(N0.getOperand(0),
8943                                APInt::getHighBitsSet(32, 16)))
8944        return DAG.getNode(ISD::ROTR, N->getDebugLoc(), VT, N0, N1);
8945    }
8946  }
8947
8948  // Nothing to be done for scalar shifts.
8949  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8950  if (!VT.isVector() || !TLI.isTypeLegal(VT))
8951    return SDValue();
8952
8953  assert(ST->hasNEON() && "unexpected vector shift");
8954  int64_t Cnt;
8955
8956  switch (N->getOpcode()) {
8957  default: llvm_unreachable("unexpected shift opcode");
8958
8959  case ISD::SHL:
8960    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
8961      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
8962                         DAG.getConstant(Cnt, MVT::i32));
8963    break;
8964
8965  case ISD::SRA:
8966  case ISD::SRL:
8967    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
8968      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
8969                            ARMISD::VSHRs : ARMISD::VSHRu);
8970      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
8971                         DAG.getConstant(Cnt, MVT::i32));
8972    }
8973  }
8974  return SDValue();
8975}
8976
8977/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
8978/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
8979static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
8980                                    const ARMSubtarget *ST) {
8981  SDValue N0 = N->getOperand(0);
8982
8983  // Check for sign- and zero-extensions of vector extract operations of 8-
8984  // and 16-bit vector elements.  NEON supports these directly.  They are
8985  // handled during DAG combining because type legalization will promote them
8986  // to 32-bit types and it is messy to recognize the operations after that.
8987  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
8988    SDValue Vec = N0.getOperand(0);
8989    SDValue Lane = N0.getOperand(1);
8990    EVT VT = N->getValueType(0);
8991    EVT EltVT = N0.getValueType();
8992    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8993
8994    if (VT == MVT::i32 &&
8995        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
8996        TLI.isTypeLegal(Vec.getValueType()) &&
8997        isa<ConstantSDNode>(Lane)) {
8998
8999      unsigned Opc = 0;
9000      switch (N->getOpcode()) {
9001      default: llvm_unreachable("unexpected opcode");
9002      case ISD::SIGN_EXTEND:
9003        Opc = ARMISD::VGETLANEs;
9004        break;
9005      case ISD::ZERO_EXTEND:
9006      case ISD::ANY_EXTEND:
9007        Opc = ARMISD::VGETLANEu;
9008        break;
9009      }
9010      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
9011    }
9012  }
9013
9014  return SDValue();
9015}
9016
9017/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
9018/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
9019static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
9020                                       const ARMSubtarget *ST) {
9021  // If the target supports NEON, try to use vmax/vmin instructions for f32
9022  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
9023  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
9024  // a NaN; only do the transformation when it matches that behavior.
9025
9026  // For now only do this when using NEON for FP operations; if using VFP, it
9027  // is not obvious that the benefit outweighs the cost of switching to the
9028  // NEON pipeline.
9029  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
9030      N->getValueType(0) != MVT::f32)
9031    return SDValue();
9032
9033  SDValue CondLHS = N->getOperand(0);
9034  SDValue CondRHS = N->getOperand(1);
9035  SDValue LHS = N->getOperand(2);
9036  SDValue RHS = N->getOperand(3);
9037  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
9038
9039  unsigned Opcode = 0;
9040  bool IsReversed;
9041  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
9042    IsReversed = false; // x CC y ? x : y
9043  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
9044    IsReversed = true ; // x CC y ? y : x
9045  } else {
9046    return SDValue();
9047  }
9048
9049  bool IsUnordered;
9050  switch (CC) {
9051  default: break;
9052  case ISD::SETOLT:
9053  case ISD::SETOLE:
9054  case ISD::SETLT:
9055  case ISD::SETLE:
9056  case ISD::SETULT:
9057  case ISD::SETULE:
9058    // If LHS is NaN, an ordered comparison will be false and the result will
9059    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
9060    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
9061    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
9062    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
9063      break;
9064    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
9065    // will return -0, so vmin can only be used for unsafe math or if one of
9066    // the operands is known to be nonzero.
9067    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
9068        !DAG.getTarget().Options.UnsafeFPMath &&
9069        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9070      break;
9071    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
9072    break;
9073
9074  case ISD::SETOGT:
9075  case ISD::SETOGE:
9076  case ISD::SETGT:
9077  case ISD::SETGE:
9078  case ISD::SETUGT:
9079  case ISD::SETUGE:
9080    // If LHS is NaN, an ordered comparison will be false and the result will
9081    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
9082    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
9083    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
9084    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
9085      break;
9086    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
9087    // will return +0, so vmax can only be used for unsafe math or if one of
9088    // the operands is known to be nonzero.
9089    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
9090        !DAG.getTarget().Options.UnsafeFPMath &&
9091        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9092      break;
9093    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
9094    break;
9095  }
9096
9097  if (!Opcode)
9098    return SDValue();
9099  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
9100}
9101
9102/// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
9103SDValue
9104ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
9105  SDValue Cmp = N->getOperand(4);
9106  if (Cmp.getOpcode() != ARMISD::CMPZ)
9107    // Only looking at EQ and NE cases.
9108    return SDValue();
9109
9110  EVT VT = N->getValueType(0);
9111  DebugLoc dl = N->getDebugLoc();
9112  SDValue LHS = Cmp.getOperand(0);
9113  SDValue RHS = Cmp.getOperand(1);
9114  SDValue FalseVal = N->getOperand(0);
9115  SDValue TrueVal = N->getOperand(1);
9116  SDValue ARMcc = N->getOperand(2);
9117  ARMCC::CondCodes CC =
9118    (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
9119
9120  // Simplify
9121  //   mov     r1, r0
9122  //   cmp     r1, x
9123  //   mov     r0, y
9124  //   moveq   r0, x
9125  // to
9126  //   cmp     r0, x
9127  //   movne   r0, y
9128  //
9129  //   mov     r1, r0
9130  //   cmp     r1, x
9131  //   mov     r0, x
9132  //   movne   r0, y
9133  // to
9134  //   cmp     r0, x
9135  //   movne   r0, y
9136  /// FIXME: Turn this into a target neutral optimization?
9137  SDValue Res;
9138  if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
9139    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
9140                      N->getOperand(3), Cmp);
9141  } else if (CC == ARMCC::EQ && TrueVal == RHS) {
9142    SDValue ARMcc;
9143    SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
9144    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
9145                      N->getOperand(3), NewCmp);
9146  }
9147
9148  if (Res.getNode()) {
9149    APInt KnownZero, KnownOne;
9150    DAG.ComputeMaskedBits(SDValue(N,0), KnownZero, KnownOne);
9151    // Capture demanded bits information that would be otherwise lost.
9152    if (KnownZero == 0xfffffffe)
9153      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
9154                        DAG.getValueType(MVT::i1));
9155    else if (KnownZero == 0xffffff00)
9156      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
9157                        DAG.getValueType(MVT::i8));
9158    else if (KnownZero == 0xffff0000)
9159      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
9160                        DAG.getValueType(MVT::i16));
9161  }
9162
9163  return Res;
9164}
9165
9166SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
9167                                             DAGCombinerInfo &DCI) const {
9168  switch (N->getOpcode()) {
9169  default: break;
9170  case ISD::ADDC:       return PerformADDCCombine(N, DCI, Subtarget);
9171  case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
9172  case ISD::SUB:        return PerformSUBCombine(N, DCI);
9173  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
9174  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
9175  case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
9176  case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
9177  case ARMISD::BFI:     return PerformBFICombine(N, DCI);
9178  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
9179  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
9180  case ISD::STORE:      return PerformSTORECombine(N, DCI);
9181  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
9182  case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
9183  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
9184  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
9185  case ISD::FP_TO_SINT:
9186  case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
9187  case ISD::FDIV:       return PerformVDIVCombine(N, DCI, Subtarget);
9188  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
9189  case ISD::SHL:
9190  case ISD::SRA:
9191  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
9192  case ISD::SIGN_EXTEND:
9193  case ISD::ZERO_EXTEND:
9194  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
9195  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
9196  case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
9197  case ARMISD::VLD2DUP:
9198  case ARMISD::VLD3DUP:
9199  case ARMISD::VLD4DUP:
9200    return CombineBaseUpdate(N, DCI);
9201  case ISD::INTRINSIC_VOID:
9202  case ISD::INTRINSIC_W_CHAIN:
9203    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9204    case Intrinsic::arm_neon_vld1:
9205    case Intrinsic::arm_neon_vld2:
9206    case Intrinsic::arm_neon_vld3:
9207    case Intrinsic::arm_neon_vld4:
9208    case Intrinsic::arm_neon_vld2lane:
9209    case Intrinsic::arm_neon_vld3lane:
9210    case Intrinsic::arm_neon_vld4lane:
9211    case Intrinsic::arm_neon_vst1:
9212    case Intrinsic::arm_neon_vst2:
9213    case Intrinsic::arm_neon_vst3:
9214    case Intrinsic::arm_neon_vst4:
9215    case Intrinsic::arm_neon_vst2lane:
9216    case Intrinsic::arm_neon_vst3lane:
9217    case Intrinsic::arm_neon_vst4lane:
9218      return CombineBaseUpdate(N, DCI);
9219    default: break;
9220    }
9221    break;
9222  }
9223  return SDValue();
9224}
9225
9226bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
9227                                                          EVT VT) const {
9228  return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
9229}
9230
9231bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
9232  // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
9233  bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
9234
9235  switch (VT.getSimpleVT().SimpleTy) {
9236  default:
9237    return false;
9238  case MVT::i8:
9239  case MVT::i16:
9240  case MVT::i32:
9241    // Unaligned access can use (for example) LRDB, LRDH, LDR
9242    return AllowsUnaligned;
9243  case MVT::f64:
9244  case MVT::v2f64:
9245    // For any little-endian targets with neon, we can support unaligned ld/st
9246    // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
9247    // A big-endian target may also explictly support unaligned accesses
9248    return Subtarget->hasNEON() && (AllowsUnaligned || isLittleEndian());
9249  }
9250}
9251
9252static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
9253                       unsigned AlignCheck) {
9254  return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
9255          (DstAlign == 0 || DstAlign % AlignCheck == 0));
9256}
9257
9258EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
9259                                           unsigned DstAlign, unsigned SrcAlign,
9260                                           bool IsZeroVal,
9261                                           bool MemcpyStrSrc,
9262                                           MachineFunction &MF) const {
9263  const Function *F = MF.getFunction();
9264
9265  // See if we can use NEON instructions for this...
9266  if (IsZeroVal &&
9267      !F->getFnAttributes().hasAttribute(Attributes::NoImplicitFloat) &&
9268      Subtarget->hasNEON()) {
9269    if (memOpAlign(SrcAlign, DstAlign, 16) && Size >= 16) {
9270      return MVT::v4i32;
9271    } else if (memOpAlign(SrcAlign, DstAlign, 8) && Size >= 8) {
9272      return MVT::v2i32;
9273    }
9274  }
9275
9276  // Lowering to i32/i16 if the size permits.
9277  if (Size >= 4) {
9278    return MVT::i32;
9279  } else if (Size >= 2) {
9280    return MVT::i16;
9281  }
9282
9283  // Let the target-independent logic figure it out.
9284  return MVT::Other;
9285}
9286
9287static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
9288  if (V < 0)
9289    return false;
9290
9291  unsigned Scale = 1;
9292  switch (VT.getSimpleVT().SimpleTy) {
9293  default: return false;
9294  case MVT::i1:
9295  case MVT::i8:
9296    // Scale == 1;
9297    break;
9298  case MVT::i16:
9299    // Scale == 2;
9300    Scale = 2;
9301    break;
9302  case MVT::i32:
9303    // Scale == 4;
9304    Scale = 4;
9305    break;
9306  }
9307
9308  if ((V & (Scale - 1)) != 0)
9309    return false;
9310  V /= Scale;
9311  return V == (V & ((1LL << 5) - 1));
9312}
9313
9314static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
9315                                      const ARMSubtarget *Subtarget) {
9316  bool isNeg = false;
9317  if (V < 0) {
9318    isNeg = true;
9319    V = - V;
9320  }
9321
9322  switch (VT.getSimpleVT().SimpleTy) {
9323  default: return false;
9324  case MVT::i1:
9325  case MVT::i8:
9326  case MVT::i16:
9327  case MVT::i32:
9328    // + imm12 or - imm8
9329    if (isNeg)
9330      return V == (V & ((1LL << 8) - 1));
9331    return V == (V & ((1LL << 12) - 1));
9332  case MVT::f32:
9333  case MVT::f64:
9334    // Same as ARM mode. FIXME: NEON?
9335    if (!Subtarget->hasVFP2())
9336      return false;
9337    if ((V & 3) != 0)
9338      return false;
9339    V >>= 2;
9340    return V == (V & ((1LL << 8) - 1));
9341  }
9342}
9343
9344/// isLegalAddressImmediate - Return true if the integer value can be used
9345/// as the offset of the target addressing mode for load / store of the
9346/// given type.
9347static bool isLegalAddressImmediate(int64_t V, EVT VT,
9348                                    const ARMSubtarget *Subtarget) {
9349  if (V == 0)
9350    return true;
9351
9352  if (!VT.isSimple())
9353    return false;
9354
9355  if (Subtarget->isThumb1Only())
9356    return isLegalT1AddressImmediate(V, VT);
9357  else if (Subtarget->isThumb2())
9358    return isLegalT2AddressImmediate(V, VT, Subtarget);
9359
9360  // ARM mode.
9361  if (V < 0)
9362    V = - V;
9363  switch (VT.getSimpleVT().SimpleTy) {
9364  default: return false;
9365  case MVT::i1:
9366  case MVT::i8:
9367  case MVT::i32:
9368    // +- imm12
9369    return V == (V & ((1LL << 12) - 1));
9370  case MVT::i16:
9371    // +- imm8
9372    return V == (V & ((1LL << 8) - 1));
9373  case MVT::f32:
9374  case MVT::f64:
9375    if (!Subtarget->hasVFP2()) // FIXME: NEON?
9376      return false;
9377    if ((V & 3) != 0)
9378      return false;
9379    V >>= 2;
9380    return V == (V & ((1LL << 8) - 1));
9381  }
9382}
9383
9384bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
9385                                                      EVT VT) const {
9386  int Scale = AM.Scale;
9387  if (Scale < 0)
9388    return false;
9389
9390  switch (VT.getSimpleVT().SimpleTy) {
9391  default: return false;
9392  case MVT::i1:
9393  case MVT::i8:
9394  case MVT::i16:
9395  case MVT::i32:
9396    if (Scale == 1)
9397      return true;
9398    // r + r << imm
9399    Scale = Scale & ~1;
9400    return Scale == 2 || Scale == 4 || Scale == 8;
9401  case MVT::i64:
9402    // r + r
9403    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
9404      return true;
9405    return false;
9406  case MVT::isVoid:
9407    // Note, we allow "void" uses (basically, uses that aren't loads or
9408    // stores), because arm allows folding a scale into many arithmetic
9409    // operations.  This should be made more precise and revisited later.
9410
9411    // Allow r << imm, but the imm has to be a multiple of two.
9412    if (Scale & 1) return false;
9413    return isPowerOf2_32(Scale);
9414  }
9415}
9416
9417/// isLegalAddressingMode - Return true if the addressing mode represented
9418/// by AM is legal for this target, for a load/store of the specified type.
9419bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
9420                                              Type *Ty) const {
9421  EVT VT = getValueType(Ty, true);
9422  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
9423    return false;
9424
9425  // Can never fold addr of global into load/store.
9426  if (AM.BaseGV)
9427    return false;
9428
9429  switch (AM.Scale) {
9430  case 0:  // no scale reg, must be "r+i" or "r", or "i".
9431    break;
9432  case 1:
9433    if (Subtarget->isThumb1Only())
9434      return false;
9435    // FALL THROUGH.
9436  default:
9437    // ARM doesn't support any R+R*scale+imm addr modes.
9438    if (AM.BaseOffs)
9439      return false;
9440
9441    if (!VT.isSimple())
9442      return false;
9443
9444    if (Subtarget->isThumb2())
9445      return isLegalT2ScaledAddressingMode(AM, VT);
9446
9447    int Scale = AM.Scale;
9448    switch (VT.getSimpleVT().SimpleTy) {
9449    default: return false;
9450    case MVT::i1:
9451    case MVT::i8:
9452    case MVT::i32:
9453      if (Scale < 0) Scale = -Scale;
9454      if (Scale == 1)
9455        return true;
9456      // r + r << imm
9457      return isPowerOf2_32(Scale & ~1);
9458    case MVT::i16:
9459    case MVT::i64:
9460      // r + r
9461      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
9462        return true;
9463      return false;
9464
9465    case MVT::isVoid:
9466      // Note, we allow "void" uses (basically, uses that aren't loads or
9467      // stores), because arm allows folding a scale into many arithmetic
9468      // operations.  This should be made more precise and revisited later.
9469
9470      // Allow r << imm, but the imm has to be a multiple of two.
9471      if (Scale & 1) return false;
9472      return isPowerOf2_32(Scale);
9473    }
9474  }
9475  return true;
9476}
9477
9478/// isLegalICmpImmediate - Return true if the specified immediate is legal
9479/// icmp immediate, that is the target has icmp instructions which can compare
9480/// a register against the immediate without having to materialize the
9481/// immediate into a register.
9482bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
9483  // Thumb2 and ARM modes can use cmn for negative immediates.
9484  if (!Subtarget->isThumb())
9485    return ARM_AM::getSOImmVal(llvm::abs64(Imm)) != -1;
9486  if (Subtarget->isThumb2())
9487    return ARM_AM::getT2SOImmVal(llvm::abs64(Imm)) != -1;
9488  // Thumb1 doesn't have cmn, and only 8-bit immediates.
9489  return Imm >= 0 && Imm <= 255;
9490}
9491
9492/// isLegalAddImmediate - Return true if the specified immediate is a legal add
9493/// *or sub* immediate, that is the target has add or sub instructions which can
9494/// add a register with the immediate without having to materialize the
9495/// immediate into a register.
9496bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
9497  // Same encoding for add/sub, just flip the sign.
9498  int64_t AbsImm = llvm::abs64(Imm);
9499  if (!Subtarget->isThumb())
9500    return ARM_AM::getSOImmVal(AbsImm) != -1;
9501  if (Subtarget->isThumb2())
9502    return ARM_AM::getT2SOImmVal(AbsImm) != -1;
9503  // Thumb1 only has 8-bit unsigned immediate.
9504  return AbsImm >= 0 && AbsImm <= 255;
9505}
9506
9507static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
9508                                      bool isSEXTLoad, SDValue &Base,
9509                                      SDValue &Offset, bool &isInc,
9510                                      SelectionDAG &DAG) {
9511  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
9512    return false;
9513
9514  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
9515    // AddressingMode 3
9516    Base = Ptr->getOperand(0);
9517    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
9518      int RHSC = (int)RHS->getZExtValue();
9519      if (RHSC < 0 && RHSC > -256) {
9520        assert(Ptr->getOpcode() == ISD::ADD);
9521        isInc = false;
9522        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
9523        return true;
9524      }
9525    }
9526    isInc = (Ptr->getOpcode() == ISD::ADD);
9527    Offset = Ptr->getOperand(1);
9528    return true;
9529  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
9530    // AddressingMode 2
9531    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
9532      int RHSC = (int)RHS->getZExtValue();
9533      if (RHSC < 0 && RHSC > -0x1000) {
9534        assert(Ptr->getOpcode() == ISD::ADD);
9535        isInc = false;
9536        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
9537        Base = Ptr->getOperand(0);
9538        return true;
9539      }
9540    }
9541
9542    if (Ptr->getOpcode() == ISD::ADD) {
9543      isInc = true;
9544      ARM_AM::ShiftOpc ShOpcVal=
9545        ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
9546      if (ShOpcVal != ARM_AM::no_shift) {
9547        Base = Ptr->getOperand(1);
9548        Offset = Ptr->getOperand(0);
9549      } else {
9550        Base = Ptr->getOperand(0);
9551        Offset = Ptr->getOperand(1);
9552      }
9553      return true;
9554    }
9555
9556    isInc = (Ptr->getOpcode() == ISD::ADD);
9557    Base = Ptr->getOperand(0);
9558    Offset = Ptr->getOperand(1);
9559    return true;
9560  }
9561
9562  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
9563  return false;
9564}
9565
9566static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
9567                                     bool isSEXTLoad, SDValue &Base,
9568                                     SDValue &Offset, bool &isInc,
9569                                     SelectionDAG &DAG) {
9570  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
9571    return false;
9572
9573  Base = Ptr->getOperand(0);
9574  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
9575    int RHSC = (int)RHS->getZExtValue();
9576    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
9577      assert(Ptr->getOpcode() == ISD::ADD);
9578      isInc = false;
9579      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
9580      return true;
9581    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
9582      isInc = Ptr->getOpcode() == ISD::ADD;
9583      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
9584      return true;
9585    }
9586  }
9587
9588  return false;
9589}
9590
9591/// getPreIndexedAddressParts - returns true by value, base pointer and
9592/// offset pointer and addressing mode by reference if the node's address
9593/// can be legally represented as pre-indexed load / store address.
9594bool
9595ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
9596                                             SDValue &Offset,
9597                                             ISD::MemIndexedMode &AM,
9598                                             SelectionDAG &DAG) const {
9599  if (Subtarget->isThumb1Only())
9600    return false;
9601
9602  EVT VT;
9603  SDValue Ptr;
9604  bool isSEXTLoad = false;
9605  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
9606    Ptr = LD->getBasePtr();
9607    VT  = LD->getMemoryVT();
9608    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
9609  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
9610    Ptr = ST->getBasePtr();
9611    VT  = ST->getMemoryVT();
9612  } else
9613    return false;
9614
9615  bool isInc;
9616  bool isLegal = false;
9617  if (Subtarget->isThumb2())
9618    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
9619                                       Offset, isInc, DAG);
9620  else
9621    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
9622                                        Offset, isInc, DAG);
9623  if (!isLegal)
9624    return false;
9625
9626  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
9627  return true;
9628}
9629
9630/// getPostIndexedAddressParts - returns true by value, base pointer and
9631/// offset pointer and addressing mode by reference if this node can be
9632/// combined with a load / store to form a post-indexed load / store.
9633bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
9634                                                   SDValue &Base,
9635                                                   SDValue &Offset,
9636                                                   ISD::MemIndexedMode &AM,
9637                                                   SelectionDAG &DAG) const {
9638  if (Subtarget->isThumb1Only())
9639    return false;
9640
9641  EVT VT;
9642  SDValue Ptr;
9643  bool isSEXTLoad = false;
9644  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
9645    VT  = LD->getMemoryVT();
9646    Ptr = LD->getBasePtr();
9647    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
9648  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
9649    VT  = ST->getMemoryVT();
9650    Ptr = ST->getBasePtr();
9651  } else
9652    return false;
9653
9654  bool isInc;
9655  bool isLegal = false;
9656  if (Subtarget->isThumb2())
9657    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
9658                                       isInc, DAG);
9659  else
9660    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
9661                                        isInc, DAG);
9662  if (!isLegal)
9663    return false;
9664
9665  if (Ptr != Base) {
9666    // Swap base ptr and offset to catch more post-index load / store when
9667    // it's legal. In Thumb2 mode, offset must be an immediate.
9668    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
9669        !Subtarget->isThumb2())
9670      std::swap(Base, Offset);
9671
9672    // Post-indexed load / store update the base pointer.
9673    if (Ptr != Base)
9674      return false;
9675  }
9676
9677  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
9678  return true;
9679}
9680
9681void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
9682                                                       APInt &KnownZero,
9683                                                       APInt &KnownOne,
9684                                                       const SelectionDAG &DAG,
9685                                                       unsigned Depth) const {
9686  KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
9687  switch (Op.getOpcode()) {
9688  default: break;
9689  case ARMISD::CMOV: {
9690    // Bits are known zero/one if known on the LHS and RHS.
9691    DAG.ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
9692    if (KnownZero == 0 && KnownOne == 0) return;
9693
9694    APInt KnownZeroRHS, KnownOneRHS;
9695    DAG.ComputeMaskedBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1);
9696    KnownZero &= KnownZeroRHS;
9697    KnownOne  &= KnownOneRHS;
9698    return;
9699  }
9700  }
9701}
9702
9703//===----------------------------------------------------------------------===//
9704//                           ARM Inline Assembly Support
9705//===----------------------------------------------------------------------===//
9706
9707bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
9708  // Looking for "rev" which is V6+.
9709  if (!Subtarget->hasV6Ops())
9710    return false;
9711
9712  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
9713  std::string AsmStr = IA->getAsmString();
9714  SmallVector<StringRef, 4> AsmPieces;
9715  SplitString(AsmStr, AsmPieces, ";\n");
9716
9717  switch (AsmPieces.size()) {
9718  default: return false;
9719  case 1:
9720    AsmStr = AsmPieces[0];
9721    AsmPieces.clear();
9722    SplitString(AsmStr, AsmPieces, " \t,");
9723
9724    // rev $0, $1
9725    if (AsmPieces.size() == 3 &&
9726        AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
9727        IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
9728      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
9729      if (Ty && Ty->getBitWidth() == 32)
9730        return IntrinsicLowering::LowerToByteSwap(CI);
9731    }
9732    break;
9733  }
9734
9735  return false;
9736}
9737
9738/// getConstraintType - Given a constraint letter, return the type of
9739/// constraint it is for this target.
9740ARMTargetLowering::ConstraintType
9741ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
9742  if (Constraint.size() == 1) {
9743    switch (Constraint[0]) {
9744    default:  break;
9745    case 'l': return C_RegisterClass;
9746    case 'w': return C_RegisterClass;
9747    case 'h': return C_RegisterClass;
9748    case 'x': return C_RegisterClass;
9749    case 't': return C_RegisterClass;
9750    case 'j': return C_Other; // Constant for movw.
9751      // An address with a single base register. Due to the way we
9752      // currently handle addresses it is the same as an 'r' memory constraint.
9753    case 'Q': return C_Memory;
9754    }
9755  } else if (Constraint.size() == 2) {
9756    switch (Constraint[0]) {
9757    default: break;
9758    // All 'U+' constraints are addresses.
9759    case 'U': return C_Memory;
9760    }
9761  }
9762  return TargetLowering::getConstraintType(Constraint);
9763}
9764
9765/// Examine constraint type and operand type and determine a weight value.
9766/// This object must already have been set up with the operand type
9767/// and the current alternative constraint selected.
9768TargetLowering::ConstraintWeight
9769ARMTargetLowering::getSingleConstraintMatchWeight(
9770    AsmOperandInfo &info, const char *constraint) const {
9771  ConstraintWeight weight = CW_Invalid;
9772  Value *CallOperandVal = info.CallOperandVal;
9773    // If we don't have a value, we can't do a match,
9774    // but allow it at the lowest weight.
9775  if (CallOperandVal == NULL)
9776    return CW_Default;
9777  Type *type = CallOperandVal->getType();
9778  // Look at the constraint type.
9779  switch (*constraint) {
9780  default:
9781    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
9782    break;
9783  case 'l':
9784    if (type->isIntegerTy()) {
9785      if (Subtarget->isThumb())
9786        weight = CW_SpecificReg;
9787      else
9788        weight = CW_Register;
9789    }
9790    break;
9791  case 'w':
9792    if (type->isFloatingPointTy())
9793      weight = CW_Register;
9794    break;
9795  }
9796  return weight;
9797}
9798
9799typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
9800RCPair
9801ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
9802                                                EVT VT) const {
9803  if (Constraint.size() == 1) {
9804    // GCC ARM Constraint Letters
9805    switch (Constraint[0]) {
9806    case 'l': // Low regs or general regs.
9807      if (Subtarget->isThumb())
9808        return RCPair(0U, &ARM::tGPRRegClass);
9809      return RCPair(0U, &ARM::GPRRegClass);
9810    case 'h': // High regs or no regs.
9811      if (Subtarget->isThumb())
9812        return RCPair(0U, &ARM::hGPRRegClass);
9813      break;
9814    case 'r':
9815      return RCPair(0U, &ARM::GPRRegClass);
9816    case 'w':
9817      if (VT == MVT::f32)
9818        return RCPair(0U, &ARM::SPRRegClass);
9819      if (VT.getSizeInBits() == 64)
9820        return RCPair(0U, &ARM::DPRRegClass);
9821      if (VT.getSizeInBits() == 128)
9822        return RCPair(0U, &ARM::QPRRegClass);
9823      break;
9824    case 'x':
9825      if (VT == MVT::f32)
9826        return RCPair(0U, &ARM::SPR_8RegClass);
9827      if (VT.getSizeInBits() == 64)
9828        return RCPair(0U, &ARM::DPR_8RegClass);
9829      if (VT.getSizeInBits() == 128)
9830        return RCPair(0U, &ARM::QPR_8RegClass);
9831      break;
9832    case 't':
9833      if (VT == MVT::f32)
9834        return RCPair(0U, &ARM::SPRRegClass);
9835      break;
9836    }
9837  }
9838  if (StringRef("{cc}").equals_lower(Constraint))
9839    return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
9840
9841  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
9842}
9843
9844/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
9845/// vector.  If it is invalid, don't add anything to Ops.
9846void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
9847                                                     std::string &Constraint,
9848                                                     std::vector<SDValue>&Ops,
9849                                                     SelectionDAG &DAG) const {
9850  SDValue Result(0, 0);
9851
9852  // Currently only support length 1 constraints.
9853  if (Constraint.length() != 1) return;
9854
9855  char ConstraintLetter = Constraint[0];
9856  switch (ConstraintLetter) {
9857  default: break;
9858  case 'j':
9859  case 'I': case 'J': case 'K': case 'L':
9860  case 'M': case 'N': case 'O':
9861    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
9862    if (!C)
9863      return;
9864
9865    int64_t CVal64 = C->getSExtValue();
9866    int CVal = (int) CVal64;
9867    // None of these constraints allow values larger than 32 bits.  Check
9868    // that the value fits in an int.
9869    if (CVal != CVal64)
9870      return;
9871
9872    switch (ConstraintLetter) {
9873      case 'j':
9874        // Constant suitable for movw, must be between 0 and
9875        // 65535.
9876        if (Subtarget->hasV6T2Ops())
9877          if (CVal >= 0 && CVal <= 65535)
9878            break;
9879        return;
9880      case 'I':
9881        if (Subtarget->isThumb1Only()) {
9882          // This must be a constant between 0 and 255, for ADD
9883          // immediates.
9884          if (CVal >= 0 && CVal <= 255)
9885            break;
9886        } else if (Subtarget->isThumb2()) {
9887          // A constant that can be used as an immediate value in a
9888          // data-processing instruction.
9889          if (ARM_AM::getT2SOImmVal(CVal) != -1)
9890            break;
9891        } else {
9892          // A constant that can be used as an immediate value in a
9893          // data-processing instruction.
9894          if (ARM_AM::getSOImmVal(CVal) != -1)
9895            break;
9896        }
9897        return;
9898
9899      case 'J':
9900        if (Subtarget->isThumb()) {  // FIXME thumb2
9901          // This must be a constant between -255 and -1, for negated ADD
9902          // immediates. This can be used in GCC with an "n" modifier that
9903          // prints the negated value, for use with SUB instructions. It is
9904          // not useful otherwise but is implemented for compatibility.
9905          if (CVal >= -255 && CVal <= -1)
9906            break;
9907        } else {
9908          // This must be a constant between -4095 and 4095. It is not clear
9909          // what this constraint is intended for. Implemented for
9910          // compatibility with GCC.
9911          if (CVal >= -4095 && CVal <= 4095)
9912            break;
9913        }
9914        return;
9915
9916      case 'K':
9917        if (Subtarget->isThumb1Only()) {
9918          // A 32-bit value where only one byte has a nonzero value. Exclude
9919          // zero to match GCC. This constraint is used by GCC internally for
9920          // constants that can be loaded with a move/shift combination.
9921          // It is not useful otherwise but is implemented for compatibility.
9922          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
9923            break;
9924        } else if (Subtarget->isThumb2()) {
9925          // A constant whose bitwise inverse can be used as an immediate
9926          // value in a data-processing instruction. This can be used in GCC
9927          // with a "B" modifier that prints the inverted value, for use with
9928          // BIC and MVN instructions. It is not useful otherwise but is
9929          // implemented for compatibility.
9930          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
9931            break;
9932        } else {
9933          // A constant whose bitwise inverse can be used as an immediate
9934          // value in a data-processing instruction. This can be used in GCC
9935          // with a "B" modifier that prints the inverted value, for use with
9936          // BIC and MVN instructions. It is not useful otherwise but is
9937          // implemented for compatibility.
9938          if (ARM_AM::getSOImmVal(~CVal) != -1)
9939            break;
9940        }
9941        return;
9942
9943      case 'L':
9944        if (Subtarget->isThumb1Only()) {
9945          // This must be a constant between -7 and 7,
9946          // for 3-operand ADD/SUB immediate instructions.
9947          if (CVal >= -7 && CVal < 7)
9948            break;
9949        } else if (Subtarget->isThumb2()) {
9950          // A constant whose negation can be used as an immediate value in a
9951          // data-processing instruction. This can be used in GCC with an "n"
9952          // modifier that prints the negated value, for use with SUB
9953          // instructions. It is not useful otherwise but is implemented for
9954          // compatibility.
9955          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
9956            break;
9957        } else {
9958          // A constant whose negation can be used as an immediate value in a
9959          // data-processing instruction. This can be used in GCC with an "n"
9960          // modifier that prints the negated value, for use with SUB
9961          // instructions. It is not useful otherwise but is implemented for
9962          // compatibility.
9963          if (ARM_AM::getSOImmVal(-CVal) != -1)
9964            break;
9965        }
9966        return;
9967
9968      case 'M':
9969        if (Subtarget->isThumb()) { // FIXME thumb2
9970          // This must be a multiple of 4 between 0 and 1020, for
9971          // ADD sp + immediate.
9972          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
9973            break;
9974        } else {
9975          // A power of two or a constant between 0 and 32.  This is used in
9976          // GCC for the shift amount on shifted register operands, but it is
9977          // useful in general for any shift amounts.
9978          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
9979            break;
9980        }
9981        return;
9982
9983      case 'N':
9984        if (Subtarget->isThumb()) {  // FIXME thumb2
9985          // This must be a constant between 0 and 31, for shift amounts.
9986          if (CVal >= 0 && CVal <= 31)
9987            break;
9988        }
9989        return;
9990
9991      case 'O':
9992        if (Subtarget->isThumb()) {  // FIXME thumb2
9993          // This must be a multiple of 4 between -508 and 508, for
9994          // ADD/SUB sp = sp + immediate.
9995          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
9996            break;
9997        }
9998        return;
9999    }
10000    Result = DAG.getTargetConstant(CVal, Op.getValueType());
10001    break;
10002  }
10003
10004  if (Result.getNode()) {
10005    Ops.push_back(Result);
10006    return;
10007  }
10008  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
10009}
10010
10011bool
10012ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
10013  // The ARM target isn't yet aware of offsets.
10014  return false;
10015}
10016
10017bool ARM::isBitFieldInvertedMask(unsigned v) {
10018  if (v == 0xffffffff)
10019    return 0;
10020  // there can be 1's on either or both "outsides", all the "inside"
10021  // bits must be 0's
10022  unsigned int lsb = 0, msb = 31;
10023  while (v & (1 << msb)) --msb;
10024  while (v & (1 << lsb)) ++lsb;
10025  for (unsigned int i = lsb; i <= msb; ++i) {
10026    if (v & (1 << i))
10027      return 0;
10028  }
10029  return 1;
10030}
10031
10032/// isFPImmLegal - Returns true if the target can instruction select the
10033/// specified FP immediate natively. If false, the legalizer will
10034/// materialize the FP immediate as a load from a constant pool.
10035bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
10036  if (!Subtarget->hasVFP3())
10037    return false;
10038  if (VT == MVT::f32)
10039    return ARM_AM::getFP32Imm(Imm) != -1;
10040  if (VT == MVT::f64)
10041    return ARM_AM::getFP64Imm(Imm) != -1;
10042  return false;
10043}
10044
10045/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
10046/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
10047/// specified in the intrinsic calls.
10048bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
10049                                           const CallInst &I,
10050                                           unsigned Intrinsic) const {
10051  switch (Intrinsic) {
10052  case Intrinsic::arm_neon_vld1:
10053  case Intrinsic::arm_neon_vld2:
10054  case Intrinsic::arm_neon_vld3:
10055  case Intrinsic::arm_neon_vld4:
10056  case Intrinsic::arm_neon_vld2lane:
10057  case Intrinsic::arm_neon_vld3lane:
10058  case Intrinsic::arm_neon_vld4lane: {
10059    Info.opc = ISD::INTRINSIC_W_CHAIN;
10060    // Conservatively set memVT to the entire set of vectors loaded.
10061    uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
10062    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
10063    Info.ptrVal = I.getArgOperand(0);
10064    Info.offset = 0;
10065    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
10066    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
10067    Info.vol = false; // volatile loads with NEON intrinsics not supported
10068    Info.readMem = true;
10069    Info.writeMem = false;
10070    return true;
10071  }
10072  case Intrinsic::arm_neon_vst1:
10073  case Intrinsic::arm_neon_vst2:
10074  case Intrinsic::arm_neon_vst3:
10075  case Intrinsic::arm_neon_vst4:
10076  case Intrinsic::arm_neon_vst2lane:
10077  case Intrinsic::arm_neon_vst3lane:
10078  case Intrinsic::arm_neon_vst4lane: {
10079    Info.opc = ISD::INTRINSIC_VOID;
10080    // Conservatively set memVT to the entire set of vectors stored.
10081    unsigned NumElts = 0;
10082    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
10083      Type *ArgTy = I.getArgOperand(ArgI)->getType();
10084      if (!ArgTy->isVectorTy())
10085        break;
10086      NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
10087    }
10088    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
10089    Info.ptrVal = I.getArgOperand(0);
10090    Info.offset = 0;
10091    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
10092    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
10093    Info.vol = false; // volatile stores with NEON intrinsics not supported
10094    Info.readMem = false;
10095    Info.writeMem = true;
10096    return true;
10097  }
10098  case Intrinsic::arm_strexd: {
10099    Info.opc = ISD::INTRINSIC_W_CHAIN;
10100    Info.memVT = MVT::i64;
10101    Info.ptrVal = I.getArgOperand(2);
10102    Info.offset = 0;
10103    Info.align = 8;
10104    Info.vol = true;
10105    Info.readMem = false;
10106    Info.writeMem = true;
10107    return true;
10108  }
10109  case Intrinsic::arm_ldrexd: {
10110    Info.opc = ISD::INTRINSIC_W_CHAIN;
10111    Info.memVT = MVT::i64;
10112    Info.ptrVal = I.getArgOperand(0);
10113    Info.offset = 0;
10114    Info.align = 8;
10115    Info.vol = true;
10116    Info.readMem = true;
10117    Info.writeMem = false;
10118    return true;
10119  }
10120  default:
10121    break;
10122  }
10123
10124  return false;
10125}
10126