ARMISelLowering.cpp revision 4815d56bb2c356a610f46753c5f1cefafa113b21
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-isel"
16#include "ARM.h"
17#include "ARMCallingConv.h"
18#include "ARMConstantPoolValue.h"
19#include "ARMISelLowering.h"
20#include "ARMMachineFunctionInfo.h"
21#include "ARMPerfectShuffle.h"
22#include "ARMRegisterInfo.h"
23#include "ARMSubtarget.h"
24#include "ARMTargetMachine.h"
25#include "ARMTargetObjectFile.h"
26#include "MCTargetDesc/ARMAddressingModes.h"
27#include "llvm/CallingConv.h"
28#include "llvm/Constants.h"
29#include "llvm/Function.h"
30#include "llvm/GlobalValue.h"
31#include "llvm/Instruction.h"
32#include "llvm/Instructions.h"
33#include "llvm/Intrinsics.h"
34#include "llvm/Type.h"
35#include "llvm/CodeGen/CallingConvLower.h"
36#include "llvm/CodeGen/IntrinsicLowering.h"
37#include "llvm/CodeGen/MachineBasicBlock.h"
38#include "llvm/CodeGen/MachineFrameInfo.h"
39#include "llvm/CodeGen/MachineFunction.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineRegisterInfo.h"
42#include "llvm/CodeGen/PseudoSourceValue.h"
43#include "llvm/CodeGen/SelectionDAG.h"
44#include "llvm/MC/MCSectionMachO.h"
45#include "llvm/Target/TargetOptions.h"
46#include "llvm/ADT/VectorExtras.h"
47#include "llvm/ADT/StringExtras.h"
48#include "llvm/ADT/Statistic.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/raw_ostream.h"
53#include <sstream>
54using namespace llvm;
55
56STATISTIC(NumTailCalls, "Number of tail calls");
57STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
58
59// This option should go away when tail calls fully work.
60static cl::opt<bool>
61EnableARMTailCalls("arm-tail-calls", cl::Hidden,
62  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
63  cl::init(false));
64
65cl::opt<bool>
66EnableARMLongCalls("arm-long-calls", cl::Hidden,
67  cl::desc("Generate calls via indirect call instructions"),
68  cl::init(false));
69
70static cl::opt<bool>
71ARMInterworking("arm-interworking", cl::Hidden,
72  cl::desc("Enable / disable ARM interworking (for debugging only)"),
73  cl::init(true));
74
75namespace llvm {
76  class ARMCCState : public CCState {
77  public:
78    ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
79               const TargetMachine &TM, SmallVector<CCValAssign, 16> &locs,
80               LLVMContext &C, ParmContext PC)
81        : CCState(CC, isVarArg, MF, TM, locs, C) {
82      assert(((PC == Call) || (PC == Prologue)) &&
83             "ARMCCState users must specify whether their context is call"
84             "or prologue generation.");
85      CallOrPrologue = PC;
86    }
87  };
88}
89
90// The APCS parameter registers.
91static const unsigned GPRArgRegs[] = {
92  ARM::R0, ARM::R1, ARM::R2, ARM::R3
93};
94
95void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
96                                       EVT PromotedBitwiseVT) {
97  if (VT != PromotedLdStVT) {
98    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
99    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
100                       PromotedLdStVT.getSimpleVT());
101
102    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
103    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
104                       PromotedLdStVT.getSimpleVT());
105  }
106
107  EVT ElemTy = VT.getVectorElementType();
108  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
109    setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
110  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
111  if (ElemTy != MVT::i32) {
112    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
113    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
114    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
115    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
116  }
117  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
118  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
119  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
120  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Legal);
121  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
122  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
123  if (VT.isInteger()) {
124    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
125    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
126    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
127    setLoadExtAction(ISD::SEXTLOAD, VT.getSimpleVT(), Expand);
128    setLoadExtAction(ISD::ZEXTLOAD, VT.getSimpleVT(), Expand);
129    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
130         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
131      setTruncStoreAction(VT.getSimpleVT(),
132                          (MVT::SimpleValueType)InnerVT, Expand);
133  }
134  setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
135
136  // Promote all bit-wise operations.
137  if (VT.isInteger() && VT != PromotedBitwiseVT) {
138    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
139    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
140                       PromotedBitwiseVT.getSimpleVT());
141    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
142    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
143                       PromotedBitwiseVT.getSimpleVT());
144    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
145    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
146                       PromotedBitwiseVT.getSimpleVT());
147  }
148
149  // Neon does not support vector divide/remainder operations.
150  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
151  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
152  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
153  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
154  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
155  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
156}
157
158void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
159  addRegisterClass(VT, ARM::DPRRegisterClass);
160  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
161}
162
163void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
164  addRegisterClass(VT, ARM::QPRRegisterClass);
165  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
166}
167
168static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
169  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
170    return new TargetLoweringObjectFileMachO();
171
172  return new ARMElfTargetObjectFile();
173}
174
175ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
176    : TargetLowering(TM, createTLOF(TM)) {
177  Subtarget = &TM.getSubtarget<ARMSubtarget>();
178  RegInfo = TM.getRegisterInfo();
179  Itins = TM.getInstrItineraryData();
180
181  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
182
183  if (Subtarget->isTargetDarwin()) {
184    // Uses VFP for Thumb libfuncs if available.
185    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
186      // Single-precision floating-point arithmetic.
187      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
188      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
189      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
190      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
191
192      // Double-precision floating-point arithmetic.
193      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
194      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
195      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
196      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
197
198      // Single-precision comparisons.
199      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
200      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
201      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
202      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
203      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
204      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
205      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
206      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
207
208      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
209      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
210      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
211      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
212      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
213      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
214      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
215      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
216
217      // Double-precision comparisons.
218      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
219      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
220      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
221      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
222      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
223      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
224      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
225      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
226
227      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
228      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
229      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
230      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
231      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
232      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
233      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
234      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
235
236      // Floating-point to integer conversions.
237      // i64 conversions are done via library routines even when generating VFP
238      // instructions, so use the same ones.
239      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
240      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
241      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
242      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
243
244      // Conversions between floating types.
245      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
246      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
247
248      // Integer to floating-point conversions.
249      // i64 conversions are done via library routines even when generating VFP
250      // instructions, so use the same ones.
251      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
252      // e.g., __floatunsidf vs. __floatunssidfvfp.
253      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
254      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
255      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
256      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
257    }
258  }
259
260  // These libcalls are not available in 32-bit.
261  setLibcallName(RTLIB::SHL_I128, 0);
262  setLibcallName(RTLIB::SRL_I128, 0);
263  setLibcallName(RTLIB::SRA_I128, 0);
264
265  if (Subtarget->isAAPCS_ABI()) {
266    // Double-precision floating-point arithmetic helper functions
267    // RTABI chapter 4.1.2, Table 2
268    setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
269    setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
270    setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
271    setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
272    setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
273    setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
274    setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
275    setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
276
277    // Double-precision floating-point comparison helper functions
278    // RTABI chapter 4.1.2, Table 3
279    setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
280    setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
281    setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
282    setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
283    setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
284    setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
285    setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
286    setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
287    setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
288    setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
289    setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
290    setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
291    setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
292    setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
293    setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
294    setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
295    setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
296    setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
297    setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
298    setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
299    setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
300    setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
301    setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
302    setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
303
304    // Single-precision floating-point arithmetic helper functions
305    // RTABI chapter 4.1.2, Table 4
306    setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
307    setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
308    setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
309    setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
310    setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
311    setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
312    setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
313    setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
314
315    // Single-precision floating-point comparison helper functions
316    // RTABI chapter 4.1.2, Table 5
317    setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
318    setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
319    setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
320    setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
321    setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
322    setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
323    setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
324    setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
325    setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
326    setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
327    setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
328    setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
329    setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
330    setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
331    setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
332    setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
333    setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
334    setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
335    setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
336    setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
337    setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
338    setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
339    setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
340    setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
341
342    // Floating-point to integer conversions.
343    // RTABI chapter 4.1.2, Table 6
344    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
345    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
346    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
347    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
348    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
349    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
350    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
351    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
352    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
353    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
354    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
355    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
356    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
357    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
358    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
359    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
360
361    // Conversions between floating types.
362    // RTABI chapter 4.1.2, Table 7
363    setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
364    setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
365    setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
366    setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
367
368    // Integer to floating-point conversions.
369    // RTABI chapter 4.1.2, Table 8
370    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
371    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
372    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
373    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
374    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
375    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
376    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
377    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
378    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
379    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
380    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
381    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
382    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
383    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
384    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
385    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
386
387    // Long long helper functions
388    // RTABI chapter 4.2, Table 9
389    setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
390    setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
391    setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
392    setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
393    setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
394    setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
395    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
396    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
397    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
398    setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
399    setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
400    setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
401
402    // Integer division functions
403    // RTABI chapter 4.3.1
404    setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
405    setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
406    setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
407    setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
408    setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
409    setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
410    setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
411    setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
412    setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
413    setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
414    setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
415    setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
416
417    // Memory operations
418    // RTABI chapter 4.3.4
419    setLibcallName(RTLIB::MEMCPY,  "__aeabi_memcpy");
420    setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove");
421    setLibcallName(RTLIB::MEMSET,  "__aeabi_memset");
422  }
423
424  if (Subtarget->isThumb1Only())
425    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
426  else
427    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
428  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
429    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
430    if (!Subtarget->isFPOnlySP())
431      addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
432
433    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
434  }
435
436  if (Subtarget->hasNEON()) {
437    addDRTypeForNEON(MVT::v2f32);
438    addDRTypeForNEON(MVT::v8i8);
439    addDRTypeForNEON(MVT::v4i16);
440    addDRTypeForNEON(MVT::v2i32);
441    addDRTypeForNEON(MVT::v1i64);
442
443    addQRTypeForNEON(MVT::v4f32);
444    addQRTypeForNEON(MVT::v2f64);
445    addQRTypeForNEON(MVT::v16i8);
446    addQRTypeForNEON(MVT::v8i16);
447    addQRTypeForNEON(MVT::v4i32);
448    addQRTypeForNEON(MVT::v2i64);
449
450    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
451    // neither Neon nor VFP support any arithmetic operations on it.
452    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
453    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
454    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
455    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
456    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
457    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
458    setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
459    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
460    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
461    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
462    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
463    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
464    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
465    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
466    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
467    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
468    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
469    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
470    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
471    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
472    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
473    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
474    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
475    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
476
477    setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
478
479    // Neon does not support some operations on v1i64 and v2i64 types.
480    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
481    // Custom handling for some quad-vector types to detect VMULL.
482    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
483    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
484    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
485    // Custom handling for some vector types to avoid expensive expansions
486    setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
487    setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
488    setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
489    setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
490    setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
491    setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
492    // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
493    // a destination type that is wider than the source.
494    setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
495    setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
496
497    setTargetDAGCombine(ISD::INTRINSIC_VOID);
498    setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
499    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
500    setTargetDAGCombine(ISD::SHL);
501    setTargetDAGCombine(ISD::SRL);
502    setTargetDAGCombine(ISD::SRA);
503    setTargetDAGCombine(ISD::SIGN_EXTEND);
504    setTargetDAGCombine(ISD::ZERO_EXTEND);
505    setTargetDAGCombine(ISD::ANY_EXTEND);
506    setTargetDAGCombine(ISD::SELECT_CC);
507    setTargetDAGCombine(ISD::BUILD_VECTOR);
508    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
509    setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
510    setTargetDAGCombine(ISD::STORE);
511    setTargetDAGCombine(ISD::FP_TO_SINT);
512    setTargetDAGCombine(ISD::FP_TO_UINT);
513    setTargetDAGCombine(ISD::FDIV);
514  }
515
516  computeRegisterProperties();
517
518  // ARM does not have f32 extending load.
519  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
520
521  // ARM does not have i1 sign extending load.
522  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
523
524  // ARM supports all 4 flavors of integer indexed load / store.
525  if (!Subtarget->isThumb1Only()) {
526    for (unsigned im = (unsigned)ISD::PRE_INC;
527         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
528      setIndexedLoadAction(im,  MVT::i1,  Legal);
529      setIndexedLoadAction(im,  MVT::i8,  Legal);
530      setIndexedLoadAction(im,  MVT::i16, Legal);
531      setIndexedLoadAction(im,  MVT::i32, Legal);
532      setIndexedStoreAction(im, MVT::i1,  Legal);
533      setIndexedStoreAction(im, MVT::i8,  Legal);
534      setIndexedStoreAction(im, MVT::i16, Legal);
535      setIndexedStoreAction(im, MVT::i32, Legal);
536    }
537  }
538
539  // i64 operation support.
540  setOperationAction(ISD::MUL,     MVT::i64, Expand);
541  setOperationAction(ISD::MULHU,   MVT::i32, Expand);
542  if (Subtarget->isThumb1Only()) {
543    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
544    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
545  }
546  if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
547      || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
548    setOperationAction(ISD::MULHS, MVT::i32, Expand);
549
550  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
551  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
552  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
553  setOperationAction(ISD::SRL,       MVT::i64, Custom);
554  setOperationAction(ISD::SRA,       MVT::i64, Custom);
555
556  if (!Subtarget->isThumb1Only()) {
557    // FIXME: We should do this for Thumb1 as well.
558    setOperationAction(ISD::ADDC,    MVT::i32, Custom);
559    setOperationAction(ISD::ADDE,    MVT::i32, Custom);
560    setOperationAction(ISD::SUBC,    MVT::i32, Custom);
561    setOperationAction(ISD::SUBE,    MVT::i32, Custom);
562  }
563
564  // ARM does not have ROTL.
565  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
566  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
567  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
568  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
569    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
570
571  // Only ARMv6 has BSWAP.
572  if (!Subtarget->hasV6Ops())
573    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
574
575  // These are expanded into libcalls.
576  if (!Subtarget->hasDivide() || !Subtarget->isThumb2()) {
577    // v7M has a hardware divider
578    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
579    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
580  }
581  setOperationAction(ISD::SREM,  MVT::i32, Expand);
582  setOperationAction(ISD::UREM,  MVT::i32, Expand);
583  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
584  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
585
586  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
587  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
588  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
589  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
590  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
591
592  setOperationAction(ISD::TRAP, MVT::Other, Legal);
593
594  // Use the default implementation.
595  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
596  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
597  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
598  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
599  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
600  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
601  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
602  setOperationAction(ISD::EXCEPTIONADDR,      MVT::i32,   Expand);
603  setExceptionPointerRegister(ARM::R0);
604  setExceptionSelectorRegister(ARM::R1);
605
606  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
607  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
608  // the default expansion.
609  // FIXME: This should be checking for v6k, not just v6.
610  if (Subtarget->hasDataBarrier() ||
611      (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
612    // membarrier needs custom lowering; the rest are legal and handled
613    // normally.
614    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
615    setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
616    // Custom lowering for 64-bit ops
617    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Custom);
618    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Custom);
619    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Custom);
620    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Custom);
621    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Custom);
622    setOperationAction(ISD::ATOMIC_SWAP,  MVT::i64, Custom);
623    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
624    // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc.
625    setInsertFencesForAtomic(true);
626  } else {
627    // Set them all for expansion, which will force libcalls.
628    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
629    setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other, Expand);
630    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
631    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
632    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
633    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
634    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
635    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
636    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
637    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
638    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
639    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
640    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
641    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
642    // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
643    // Unordered/Monotonic case.
644    setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
645    setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
646    // Since the libcalls include locking, fold in the fences
647    setShouldFoldAtomicFences(true);
648  }
649
650  setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
651
652  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
653  if (!Subtarget->hasV6Ops()) {
654    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
655    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
656  }
657  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
658
659  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
660    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
661    // iff target supports vfp2.
662    setOperationAction(ISD::BITCAST, MVT::i64, Custom);
663    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
664  }
665
666  // We want to custom lower some of our intrinsics.
667  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
668  if (Subtarget->isTargetDarwin()) {
669    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
670    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
671    setOperationAction(ISD::EH_SJLJ_DISPATCHSETUP, MVT::Other, Custom);
672    setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
673  }
674
675  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
676  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
677  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
678  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
679  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
680  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
681  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
682  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
683  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
684
685  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
686  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
687  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
688  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
689  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
690
691  // We don't support sin/cos/fmod/copysign/pow
692  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
693  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
694  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
695  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
696  setOperationAction(ISD::FREM,      MVT::f64, Expand);
697  setOperationAction(ISD::FREM,      MVT::f32, Expand);
698  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
699    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
700    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
701  }
702  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
703  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
704
705  setOperationAction(ISD::FMA, MVT::f64, Expand);
706  setOperationAction(ISD::FMA, MVT::f32, Expand);
707
708  // Various VFP goodness
709  if (!UseSoftFloat && !Subtarget->isThumb1Only()) {
710    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
711    if (Subtarget->hasVFP2()) {
712      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
713      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
714      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
715      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
716    }
717    // Special handling for half-precision FP.
718    if (!Subtarget->hasFP16()) {
719      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
720      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
721    }
722  }
723
724  // We have target-specific dag combine patterns for the following nodes:
725  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
726  setTargetDAGCombine(ISD::ADD);
727  setTargetDAGCombine(ISD::SUB);
728  setTargetDAGCombine(ISD::MUL);
729
730  if (Subtarget->hasV6T2Ops() || Subtarget->hasNEON())
731    setTargetDAGCombine(ISD::OR);
732  if (Subtarget->hasNEON())
733    setTargetDAGCombine(ISD::AND);
734
735  setStackPointerRegisterToSaveRestore(ARM::SP);
736
737  if (UseSoftFloat || Subtarget->isThumb1Only() || !Subtarget->hasVFP2())
738    setSchedulingPreference(Sched::RegPressure);
739  else
740    setSchedulingPreference(Sched::Hybrid);
741
742  //// temporary - rewrite interface to use type
743  maxStoresPerMemcpy = maxStoresPerMemcpyOptSize = 1;
744
745  // On ARM arguments smaller than 4 bytes are extended, so all arguments
746  // are at least 4 bytes aligned.
747  setMinStackArgumentAlignment(4);
748
749  benefitFromCodePlacementOpt = true;
750
751  setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
752}
753
754// FIXME: It might make sense to define the representative register class as the
755// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
756// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
757// SPR's representative would be DPR_VFP2. This should work well if register
758// pressure tracking were modified such that a register use would increment the
759// pressure of the register class's representative and all of it's super
760// classes' representatives transitively. We have not implemented this because
761// of the difficulty prior to coalescing of modeling operand register classes
762// due to the common occurrence of cross class copies and subregister insertions
763// and extractions.
764std::pair<const TargetRegisterClass*, uint8_t>
765ARMTargetLowering::findRepresentativeClass(EVT VT) const{
766  const TargetRegisterClass *RRC = 0;
767  uint8_t Cost = 1;
768  switch (VT.getSimpleVT().SimpleTy) {
769  default:
770    return TargetLowering::findRepresentativeClass(VT);
771  // Use DPR as representative register class for all floating point
772  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
773  // the cost is 1 for both f32 and f64.
774  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
775  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
776    RRC = ARM::DPRRegisterClass;
777    // When NEON is used for SP, only half of the register file is available
778    // because operations that define both SP and DP results will be constrained
779    // to the VFP2 class (D0-D15). We currently model this constraint prior to
780    // coalescing by double-counting the SP regs. See the FIXME above.
781    if (Subtarget->useNEONForSinglePrecisionFP())
782      Cost = 2;
783    break;
784  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
785  case MVT::v4f32: case MVT::v2f64:
786    RRC = ARM::DPRRegisterClass;
787    Cost = 2;
788    break;
789  case MVT::v4i64:
790    RRC = ARM::DPRRegisterClass;
791    Cost = 4;
792    break;
793  case MVT::v8i64:
794    RRC = ARM::DPRRegisterClass;
795    Cost = 8;
796    break;
797  }
798  return std::make_pair(RRC, Cost);
799}
800
801const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
802  switch (Opcode) {
803  default: return 0;
804  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
805  case ARMISD::WrapperDYN:    return "ARMISD::WrapperDYN";
806  case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
807  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
808  case ARMISD::CALL:          return "ARMISD::CALL";
809  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
810  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
811  case ARMISD::tCALL:         return "ARMISD::tCALL";
812  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
813  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
814  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
815  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
816  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
817  case ARMISD::CMP:           return "ARMISD::CMP";
818  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
819  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
820  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
821  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
822  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
823  case ARMISD::CMOV:          return "ARMISD::CMOV";
824
825  case ARMISD::RBIT:          return "ARMISD::RBIT";
826
827  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
828  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
829  case ARMISD::SITOF:         return "ARMISD::SITOF";
830  case ARMISD::UITOF:         return "ARMISD::UITOF";
831
832  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
833  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
834  case ARMISD::RRX:           return "ARMISD::RRX";
835
836  case ARMISD::ADDC:          return "ARMISD::ADDC";
837  case ARMISD::ADDE:          return "ARMISD::ADDE";
838  case ARMISD::SUBC:          return "ARMISD::SUBC";
839  case ARMISD::SUBE:          return "ARMISD::SUBE";
840
841  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
842  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
843
844  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
845  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
846  case ARMISD::EH_SJLJ_DISPATCHSETUP:return "ARMISD::EH_SJLJ_DISPATCHSETUP";
847
848  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
849
850  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
851
852  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
853
854  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
855  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
856
857  case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
858
859  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
860  case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
861  case ARMISD::VCGE:          return "ARMISD::VCGE";
862  case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
863  case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
864  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
865  case ARMISD::VCGT:          return "ARMISD::VCGT";
866  case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
867  case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
868  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
869  case ARMISD::VTST:          return "ARMISD::VTST";
870
871  case ARMISD::VSHL:          return "ARMISD::VSHL";
872  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
873  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
874  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
875  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
876  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
877  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
878  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
879  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
880  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
881  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
882  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
883  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
884  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
885  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
886  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
887  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
888  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
889  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
890  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
891  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
892  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
893  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
894  case ARMISD::VDUP:          return "ARMISD::VDUP";
895  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
896  case ARMISD::VEXT:          return "ARMISD::VEXT";
897  case ARMISD::VREV64:        return "ARMISD::VREV64";
898  case ARMISD::VREV32:        return "ARMISD::VREV32";
899  case ARMISD::VREV16:        return "ARMISD::VREV16";
900  case ARMISD::VZIP:          return "ARMISD::VZIP";
901  case ARMISD::VUZP:          return "ARMISD::VUZP";
902  case ARMISD::VTRN:          return "ARMISD::VTRN";
903  case ARMISD::VTBL1:         return "ARMISD::VTBL1";
904  case ARMISD::VTBL2:         return "ARMISD::VTBL2";
905  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
906  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
907  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
908  case ARMISD::FMAX:          return "ARMISD::FMAX";
909  case ARMISD::FMIN:          return "ARMISD::FMIN";
910  case ARMISD::BFI:           return "ARMISD::BFI";
911  case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
912  case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
913  case ARMISD::VBSL:          return "ARMISD::VBSL";
914  case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
915  case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
916  case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
917  case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
918  case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
919  case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
920  case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
921  case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
922  case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
923  case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
924  case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
925  case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
926  case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
927  case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
928  case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
929  case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
930  case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
931  case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
932  case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
933  case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
934  }
935}
936
937EVT ARMTargetLowering::getSetCCResultType(EVT VT) const {
938  if (!VT.isVector()) return getPointerTy();
939  return VT.changeVectorElementTypeToInteger();
940}
941
942/// getRegClassFor - Return the register class that should be used for the
943/// specified value type.
944TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
945  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
946  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
947  // load / store 4 to 8 consecutive D registers.
948  if (Subtarget->hasNEON()) {
949    if (VT == MVT::v4i64)
950      return ARM::QQPRRegisterClass;
951    else if (VT == MVT::v8i64)
952      return ARM::QQQQPRRegisterClass;
953  }
954  return TargetLowering::getRegClassFor(VT);
955}
956
957// Create a fast isel object.
958FastISel *
959ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
960  return ARM::createFastISel(funcInfo);
961}
962
963/// getMaximalGlobalOffset - Returns the maximal possible offset which can
964/// be used for loads / stores from the global.
965unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
966  return (Subtarget->isThumb1Only() ? 127 : 4095);
967}
968
969Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
970  unsigned NumVals = N->getNumValues();
971  if (!NumVals)
972    return Sched::RegPressure;
973
974  for (unsigned i = 0; i != NumVals; ++i) {
975    EVT VT = N->getValueType(i);
976    if (VT == MVT::Glue || VT == MVT::Other)
977      continue;
978    if (VT.isFloatingPoint() || VT.isVector())
979      return Sched::Latency;
980  }
981
982  if (!N->isMachineOpcode())
983    return Sched::RegPressure;
984
985  // Load are scheduled for latency even if there instruction itinerary
986  // is not available.
987  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
988  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
989
990  if (MCID.getNumDefs() == 0)
991    return Sched::RegPressure;
992  if (!Itins->isEmpty() &&
993      Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
994    return Sched::Latency;
995
996  return Sched::RegPressure;
997}
998
999//===----------------------------------------------------------------------===//
1000// Lowering Code
1001//===----------------------------------------------------------------------===//
1002
1003/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1004static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1005  switch (CC) {
1006  default: llvm_unreachable("Unknown condition code!");
1007  case ISD::SETNE:  return ARMCC::NE;
1008  case ISD::SETEQ:  return ARMCC::EQ;
1009  case ISD::SETGT:  return ARMCC::GT;
1010  case ISD::SETGE:  return ARMCC::GE;
1011  case ISD::SETLT:  return ARMCC::LT;
1012  case ISD::SETLE:  return ARMCC::LE;
1013  case ISD::SETUGT: return ARMCC::HI;
1014  case ISD::SETUGE: return ARMCC::HS;
1015  case ISD::SETULT: return ARMCC::LO;
1016  case ISD::SETULE: return ARMCC::LS;
1017  }
1018}
1019
1020/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1021static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1022                        ARMCC::CondCodes &CondCode2) {
1023  CondCode2 = ARMCC::AL;
1024  switch (CC) {
1025  default: llvm_unreachable("Unknown FP condition!");
1026  case ISD::SETEQ:
1027  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1028  case ISD::SETGT:
1029  case ISD::SETOGT: CondCode = ARMCC::GT; break;
1030  case ISD::SETGE:
1031  case ISD::SETOGE: CondCode = ARMCC::GE; break;
1032  case ISD::SETOLT: CondCode = ARMCC::MI; break;
1033  case ISD::SETOLE: CondCode = ARMCC::LS; break;
1034  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1035  case ISD::SETO:   CondCode = ARMCC::VC; break;
1036  case ISD::SETUO:  CondCode = ARMCC::VS; break;
1037  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1038  case ISD::SETUGT: CondCode = ARMCC::HI; break;
1039  case ISD::SETUGE: CondCode = ARMCC::PL; break;
1040  case ISD::SETLT:
1041  case ISD::SETULT: CondCode = ARMCC::LT; break;
1042  case ISD::SETLE:
1043  case ISD::SETULE: CondCode = ARMCC::LE; break;
1044  case ISD::SETNE:
1045  case ISD::SETUNE: CondCode = ARMCC::NE; break;
1046  }
1047}
1048
1049//===----------------------------------------------------------------------===//
1050//                      Calling Convention Implementation
1051//===----------------------------------------------------------------------===//
1052
1053#include "ARMGenCallingConv.inc"
1054
1055/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1056/// given CallingConvention value.
1057CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1058                                                 bool Return,
1059                                                 bool isVarArg) const {
1060  switch (CC) {
1061  default:
1062    llvm_unreachable("Unsupported calling convention");
1063  case CallingConv::Fast:
1064    if (Subtarget->hasVFP2() && !isVarArg) {
1065      if (!Subtarget->isAAPCS_ABI())
1066        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1067      // For AAPCS ABI targets, just use VFP variant of the calling convention.
1068      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1069    }
1070    // Fallthrough
1071  case CallingConv::C: {
1072    // Use target triple & subtarget features to do actual dispatch.
1073    if (!Subtarget->isAAPCS_ABI())
1074      return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1075    else if (Subtarget->hasVFP2() &&
1076             FloatABIType == FloatABI::Hard && !isVarArg)
1077      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1078    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1079  }
1080  case CallingConv::ARM_AAPCS_VFP:
1081    return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1082  case CallingConv::ARM_AAPCS:
1083    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1084  case CallingConv::ARM_APCS:
1085    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1086  }
1087}
1088
1089/// LowerCallResult - Lower the result values of a call into the
1090/// appropriate copies out of appropriate physical registers.
1091SDValue
1092ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1093                                   CallingConv::ID CallConv, bool isVarArg,
1094                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1095                                   DebugLoc dl, SelectionDAG &DAG,
1096                                   SmallVectorImpl<SDValue> &InVals) const {
1097
1098  // Assign locations to each value returned by this call.
1099  SmallVector<CCValAssign, 16> RVLocs;
1100  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1101                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1102  CCInfo.AnalyzeCallResult(Ins,
1103                           CCAssignFnForNode(CallConv, /* Return*/ true,
1104                                             isVarArg));
1105
1106  // Copy all of the result registers out of their specified physreg.
1107  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1108    CCValAssign VA = RVLocs[i];
1109
1110    SDValue Val;
1111    if (VA.needsCustom()) {
1112      // Handle f64 or half of a v2f64.
1113      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1114                                      InFlag);
1115      Chain = Lo.getValue(1);
1116      InFlag = Lo.getValue(2);
1117      VA = RVLocs[++i]; // skip ahead to next loc
1118      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1119                                      InFlag);
1120      Chain = Hi.getValue(1);
1121      InFlag = Hi.getValue(2);
1122      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1123
1124      if (VA.getLocVT() == MVT::v2f64) {
1125        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1126        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1127                          DAG.getConstant(0, MVT::i32));
1128
1129        VA = RVLocs[++i]; // skip ahead to next loc
1130        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1131        Chain = Lo.getValue(1);
1132        InFlag = Lo.getValue(2);
1133        VA = RVLocs[++i]; // skip ahead to next loc
1134        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1135        Chain = Hi.getValue(1);
1136        InFlag = Hi.getValue(2);
1137        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1138        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1139                          DAG.getConstant(1, MVT::i32));
1140      }
1141    } else {
1142      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1143                               InFlag);
1144      Chain = Val.getValue(1);
1145      InFlag = Val.getValue(2);
1146    }
1147
1148    switch (VA.getLocInfo()) {
1149    default: llvm_unreachable("Unknown loc info!");
1150    case CCValAssign::Full: break;
1151    case CCValAssign::BCvt:
1152      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1153      break;
1154    }
1155
1156    InVals.push_back(Val);
1157  }
1158
1159  return Chain;
1160}
1161
1162/// LowerMemOpCallTo - Store the argument to the stack.
1163SDValue
1164ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1165                                    SDValue StackPtr, SDValue Arg,
1166                                    DebugLoc dl, SelectionDAG &DAG,
1167                                    const CCValAssign &VA,
1168                                    ISD::ArgFlagsTy Flags) const {
1169  unsigned LocMemOffset = VA.getLocMemOffset();
1170  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1171  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1172  return DAG.getStore(Chain, dl, Arg, PtrOff,
1173                      MachinePointerInfo::getStack(LocMemOffset),
1174                      false, false, 0);
1175}
1176
1177void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1178                                         SDValue Chain, SDValue &Arg,
1179                                         RegsToPassVector &RegsToPass,
1180                                         CCValAssign &VA, CCValAssign &NextVA,
1181                                         SDValue &StackPtr,
1182                                         SmallVector<SDValue, 8> &MemOpChains,
1183                                         ISD::ArgFlagsTy Flags) const {
1184
1185  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1186                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1187  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1188
1189  if (NextVA.isRegLoc())
1190    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1191  else {
1192    assert(NextVA.isMemLoc());
1193    if (StackPtr.getNode() == 0)
1194      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1195
1196    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1197                                           dl, DAG, NextVA,
1198                                           Flags));
1199  }
1200}
1201
1202/// LowerCall - Lowering a call into a callseq_start <-
1203/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1204/// nodes.
1205SDValue
1206ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1207                             CallingConv::ID CallConv, bool isVarArg,
1208                             bool &isTailCall,
1209                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1210                             const SmallVectorImpl<SDValue> &OutVals,
1211                             const SmallVectorImpl<ISD::InputArg> &Ins,
1212                             DebugLoc dl, SelectionDAG &DAG,
1213                             SmallVectorImpl<SDValue> &InVals) const {
1214  MachineFunction &MF = DAG.getMachineFunction();
1215  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1216  bool IsSibCall = false;
1217  // Temporarily disable tail calls so things don't break.
1218  if (!EnableARMTailCalls)
1219    isTailCall = false;
1220  if (isTailCall) {
1221    // Check if it's really possible to do a tail call.
1222    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1223                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1224                                                   Outs, OutVals, Ins, DAG);
1225    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1226    // detected sibcalls.
1227    if (isTailCall) {
1228      ++NumTailCalls;
1229      IsSibCall = true;
1230    }
1231  }
1232
1233  // Analyze operands of the call, assigning locations to each operand.
1234  SmallVector<CCValAssign, 16> ArgLocs;
1235  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1236                 getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1237  CCInfo.AnalyzeCallOperands(Outs,
1238                             CCAssignFnForNode(CallConv, /* Return*/ false,
1239                                               isVarArg));
1240
1241  // Get a count of how many bytes are to be pushed on the stack.
1242  unsigned NumBytes = CCInfo.getNextStackOffset();
1243
1244  // For tail calls, memory operands are available in our caller's stack.
1245  if (IsSibCall)
1246    NumBytes = 0;
1247
1248  // Adjust the stack pointer for the new arguments...
1249  // These operations are automatically eliminated by the prolog/epilog pass
1250  if (!IsSibCall)
1251    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1252
1253  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1254
1255  RegsToPassVector RegsToPass;
1256  SmallVector<SDValue, 8> MemOpChains;
1257
1258  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1259  // of tail call optimization, arguments are handled later.
1260  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1261       i != e;
1262       ++i, ++realArgIdx) {
1263    CCValAssign &VA = ArgLocs[i];
1264    SDValue Arg = OutVals[realArgIdx];
1265    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1266    bool isByVal = Flags.isByVal();
1267
1268    // Promote the value if needed.
1269    switch (VA.getLocInfo()) {
1270    default: llvm_unreachable("Unknown loc info!");
1271    case CCValAssign::Full: break;
1272    case CCValAssign::SExt:
1273      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1274      break;
1275    case CCValAssign::ZExt:
1276      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1277      break;
1278    case CCValAssign::AExt:
1279      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1280      break;
1281    case CCValAssign::BCvt:
1282      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1283      break;
1284    }
1285
1286    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1287    if (VA.needsCustom()) {
1288      if (VA.getLocVT() == MVT::v2f64) {
1289        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1290                                  DAG.getConstant(0, MVT::i32));
1291        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1292                                  DAG.getConstant(1, MVT::i32));
1293
1294        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1295                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1296
1297        VA = ArgLocs[++i]; // skip ahead to next loc
1298        if (VA.isRegLoc()) {
1299          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1300                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1301        } else {
1302          assert(VA.isMemLoc());
1303
1304          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1305                                                 dl, DAG, VA, Flags));
1306        }
1307      } else {
1308        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1309                         StackPtr, MemOpChains, Flags);
1310      }
1311    } else if (VA.isRegLoc()) {
1312      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1313    } else if (isByVal) {
1314      assert(VA.isMemLoc());
1315      unsigned offset = 0;
1316
1317      // True if this byval aggregate will be split between registers
1318      // and memory.
1319      if (CCInfo.isFirstByValRegValid()) {
1320        EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1321        unsigned int i, j;
1322        for (i = 0, j = CCInfo.getFirstByValReg(); j < ARM::R4; i++, j++) {
1323          SDValue Const = DAG.getConstant(4*i, MVT::i32);
1324          SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1325          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1326                                     MachinePointerInfo(),
1327                                     false, false, 0);
1328          MemOpChains.push_back(Load.getValue(1));
1329          RegsToPass.push_back(std::make_pair(j, Load));
1330        }
1331        offset = ARM::R4 - CCInfo.getFirstByValReg();
1332        CCInfo.clearFirstByValReg();
1333      }
1334
1335      unsigned LocMemOffset = VA.getLocMemOffset();
1336      SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
1337      SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
1338                                StkPtrOff);
1339      SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
1340      SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
1341      SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
1342                                         MVT::i32);
1343      MemOpChains.push_back(DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
1344                                          Flags.getByValAlign(),
1345                                          /*isVolatile=*/false,
1346                                          /*AlwaysInline=*/false,
1347                                          MachinePointerInfo(0),
1348                                          MachinePointerInfo(0)));
1349
1350    } else if (!IsSibCall) {
1351      assert(VA.isMemLoc());
1352
1353      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1354                                             dl, DAG, VA, Flags));
1355    }
1356  }
1357
1358  if (!MemOpChains.empty())
1359    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1360                        &MemOpChains[0], MemOpChains.size());
1361
1362  // Build a sequence of copy-to-reg nodes chained together with token chain
1363  // and flag operands which copy the outgoing args into the appropriate regs.
1364  SDValue InFlag;
1365  // Tail call byval lowering might overwrite argument registers so in case of
1366  // tail call optimization the copies to registers are lowered later.
1367  if (!isTailCall)
1368    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1369      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1370                               RegsToPass[i].second, InFlag);
1371      InFlag = Chain.getValue(1);
1372    }
1373
1374  // For tail calls lower the arguments to the 'real' stack slot.
1375  if (isTailCall) {
1376    // Force all the incoming stack arguments to be loaded from the stack
1377    // before any new outgoing arguments are stored to the stack, because the
1378    // outgoing stack slots may alias the incoming argument stack slots, and
1379    // the alias isn't otherwise explicit. This is slightly more conservative
1380    // than necessary, because it means that each store effectively depends
1381    // on every argument instead of just those arguments it would clobber.
1382
1383    // Do not flag preceding copytoreg stuff together with the following stuff.
1384    InFlag = SDValue();
1385    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1386      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1387                               RegsToPass[i].second, InFlag);
1388      InFlag = Chain.getValue(1);
1389    }
1390    InFlag =SDValue();
1391  }
1392
1393  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1394  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1395  // node so that legalize doesn't hack it.
1396  bool isDirect = false;
1397  bool isARMFunc = false;
1398  bool isLocalARMFunc = false;
1399  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1400
1401  if (EnableARMLongCalls) {
1402    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1403            && "long-calls with non-static relocation model!");
1404    // Handle a global address or an external symbol. If it's not one of
1405    // those, the target's already in a register, so we don't need to do
1406    // anything extra.
1407    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1408      const GlobalValue *GV = G->getGlobal();
1409      // Create a constant pool entry for the callee address
1410      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1411      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1412                                                           ARMPCLabelIndex,
1413                                                           ARMCP::CPValue, 0);
1414      // Get the address of the callee into a register
1415      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1416      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1417      Callee = DAG.getLoad(getPointerTy(), dl,
1418                           DAG.getEntryNode(), CPAddr,
1419                           MachinePointerInfo::getConstantPool(),
1420                           false, false, 0);
1421    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1422      const char *Sym = S->getSymbol();
1423
1424      // Create a constant pool entry for the callee address
1425      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1426      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1427                                                       Sym, ARMPCLabelIndex, 0);
1428      // Get the address of the callee into a register
1429      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1430      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1431      Callee = DAG.getLoad(getPointerTy(), dl,
1432                           DAG.getEntryNode(), CPAddr,
1433                           MachinePointerInfo::getConstantPool(),
1434                           false, false, 0);
1435    }
1436  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1437    const GlobalValue *GV = G->getGlobal();
1438    isDirect = true;
1439    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1440    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1441                   getTargetMachine().getRelocationModel() != Reloc::Static;
1442    isARMFunc = !Subtarget->isThumb() || isStub;
1443    // ARM call to a local ARM function is predicable.
1444    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1445    // tBX takes a register source operand.
1446    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1447      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1448      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1449                                                           ARMPCLabelIndex,
1450                                                           ARMCP::CPValue, 4);
1451      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1452      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1453      Callee = DAG.getLoad(getPointerTy(), dl,
1454                           DAG.getEntryNode(), CPAddr,
1455                           MachinePointerInfo::getConstantPool(),
1456                           false, false, 0);
1457      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1458      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1459                           getPointerTy(), Callee, PICLabel);
1460    } else {
1461      // On ELF targets for PIC code, direct calls should go through the PLT
1462      unsigned OpFlags = 0;
1463      if (Subtarget->isTargetELF() &&
1464                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1465        OpFlags = ARMII::MO_PLT;
1466      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1467    }
1468  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1469    isDirect = true;
1470    bool isStub = Subtarget->isTargetDarwin() &&
1471                  getTargetMachine().getRelocationModel() != Reloc::Static;
1472    isARMFunc = !Subtarget->isThumb() || isStub;
1473    // tBX takes a register source operand.
1474    const char *Sym = S->getSymbol();
1475    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1476      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1477      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1478                                                       Sym, ARMPCLabelIndex, 4);
1479      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1480      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1481      Callee = DAG.getLoad(getPointerTy(), dl,
1482                           DAG.getEntryNode(), CPAddr,
1483                           MachinePointerInfo::getConstantPool(),
1484                           false, false, 0);
1485      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1486      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1487                           getPointerTy(), Callee, PICLabel);
1488    } else {
1489      unsigned OpFlags = 0;
1490      // On ELF targets for PIC code, direct calls should go through the PLT
1491      if (Subtarget->isTargetELF() &&
1492                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1493        OpFlags = ARMII::MO_PLT;
1494      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1495    }
1496  }
1497
1498  // FIXME: handle tail calls differently.
1499  unsigned CallOpc;
1500  if (Subtarget->isThumb()) {
1501    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1502      CallOpc = ARMISD::CALL_NOLINK;
1503    else
1504      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1505  } else {
1506    CallOpc = (isDirect || Subtarget->hasV5TOps())
1507      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1508      : ARMISD::CALL_NOLINK;
1509  }
1510
1511  std::vector<SDValue> Ops;
1512  Ops.push_back(Chain);
1513  Ops.push_back(Callee);
1514
1515  // Add argument registers to the end of the list so that they are known live
1516  // into the call.
1517  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1518    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1519                                  RegsToPass[i].second.getValueType()));
1520
1521  if (InFlag.getNode())
1522    Ops.push_back(InFlag);
1523
1524  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1525  if (isTailCall)
1526    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1527
1528  // Returns a chain and a flag for retval copy to use.
1529  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1530  InFlag = Chain.getValue(1);
1531
1532  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1533                             DAG.getIntPtrConstant(0, true), InFlag);
1534  if (!Ins.empty())
1535    InFlag = Chain.getValue(1);
1536
1537  // Handle result values, copying them out of physregs into vregs that we
1538  // return.
1539  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1540                         dl, DAG, InVals);
1541}
1542
1543/// HandleByVal - Every parameter *after* a byval parameter is passed
1544/// on the stack.  Remember the next parameter register to allocate,
1545/// and then confiscate the rest of the parameter registers to insure
1546/// this.
1547void
1548llvm::ARMTargetLowering::HandleByVal(CCState *State, unsigned &size) const {
1549  unsigned reg = State->AllocateReg(GPRArgRegs, 4);
1550  assert((State->getCallOrPrologue() == Prologue ||
1551          State->getCallOrPrologue() == Call) &&
1552         "unhandled ParmContext");
1553  if ((!State->isFirstByValRegValid()) &&
1554      (ARM::R0 <= reg) && (reg <= ARM::R3)) {
1555    State->setFirstByValReg(reg);
1556    // At a call site, a byval parameter that is split between
1557    // registers and memory needs its size truncated here.  In a
1558    // function prologue, such byval parameters are reassembled in
1559    // memory, and are not truncated.
1560    if (State->getCallOrPrologue() == Call) {
1561      unsigned excess = 4 * (ARM::R4 - reg);
1562      assert(size >= excess && "expected larger existing stack allocation");
1563      size -= excess;
1564    }
1565  }
1566  // Confiscate any remaining parameter registers to preclude their
1567  // assignment to subsequent parameters.
1568  while (State->AllocateReg(GPRArgRegs, 4))
1569    ;
1570}
1571
1572/// MatchingStackOffset - Return true if the given stack call argument is
1573/// already available in the same position (relatively) of the caller's
1574/// incoming argument stack.
1575static
1576bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1577                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1578                         const ARMInstrInfo *TII) {
1579  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1580  int FI = INT_MAX;
1581  if (Arg.getOpcode() == ISD::CopyFromReg) {
1582    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1583    if (!TargetRegisterInfo::isVirtualRegister(VR))
1584      return false;
1585    MachineInstr *Def = MRI->getVRegDef(VR);
1586    if (!Def)
1587      return false;
1588    if (!Flags.isByVal()) {
1589      if (!TII->isLoadFromStackSlot(Def, FI))
1590        return false;
1591    } else {
1592      return false;
1593    }
1594  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1595    if (Flags.isByVal())
1596      // ByVal argument is passed in as a pointer but it's now being
1597      // dereferenced. e.g.
1598      // define @foo(%struct.X* %A) {
1599      //   tail call @bar(%struct.X* byval %A)
1600      // }
1601      return false;
1602    SDValue Ptr = Ld->getBasePtr();
1603    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1604    if (!FINode)
1605      return false;
1606    FI = FINode->getIndex();
1607  } else
1608    return false;
1609
1610  assert(FI != INT_MAX);
1611  if (!MFI->isFixedObjectIndex(FI))
1612    return false;
1613  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1614}
1615
1616/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1617/// for tail call optimization. Targets which want to do tail call
1618/// optimization should implement this function.
1619bool
1620ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1621                                                     CallingConv::ID CalleeCC,
1622                                                     bool isVarArg,
1623                                                     bool isCalleeStructRet,
1624                                                     bool isCallerStructRet,
1625                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1626                                    const SmallVectorImpl<SDValue> &OutVals,
1627                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1628                                                     SelectionDAG& DAG) const {
1629  const Function *CallerF = DAG.getMachineFunction().getFunction();
1630  CallingConv::ID CallerCC = CallerF->getCallingConv();
1631  bool CCMatch = CallerCC == CalleeCC;
1632
1633  // Look for obvious safe cases to perform tail call optimization that do not
1634  // require ABI changes. This is what gcc calls sibcall.
1635
1636  // Do not sibcall optimize vararg calls unless the call site is not passing
1637  // any arguments.
1638  if (isVarArg && !Outs.empty())
1639    return false;
1640
1641  // Also avoid sibcall optimization if either caller or callee uses struct
1642  // return semantics.
1643  if (isCalleeStructRet || isCallerStructRet)
1644    return false;
1645
1646  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1647  // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
1648  // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
1649  // support in the assembler and linker to be used. This would need to be
1650  // fixed to fully support tail calls in Thumb1.
1651  //
1652  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1653  // LR.  This means if we need to reload LR, it takes an extra instructions,
1654  // which outweighs the value of the tail call; but here we don't know yet
1655  // whether LR is going to be used.  Probably the right approach is to
1656  // generate the tail call here and turn it back into CALL/RET in
1657  // emitEpilogue if LR is used.
1658
1659  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1660  // but we need to make sure there are enough registers; the only valid
1661  // registers are the 4 used for parameters.  We don't currently do this
1662  // case.
1663  if (Subtarget->isThumb1Only())
1664    return false;
1665
1666  // If the calling conventions do not match, then we'd better make sure the
1667  // results are returned in the same way as what the caller expects.
1668  if (!CCMatch) {
1669    SmallVector<CCValAssign, 16> RVLocs1;
1670    ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1671                       getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
1672    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1673
1674    SmallVector<CCValAssign, 16> RVLocs2;
1675    ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1676                       getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
1677    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1678
1679    if (RVLocs1.size() != RVLocs2.size())
1680      return false;
1681    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1682      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1683        return false;
1684      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1685        return false;
1686      if (RVLocs1[i].isRegLoc()) {
1687        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1688          return false;
1689      } else {
1690        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1691          return false;
1692      }
1693    }
1694  }
1695
1696  // If the callee takes no arguments then go on to check the results of the
1697  // call.
1698  if (!Outs.empty()) {
1699    // Check if stack adjustment is needed. For now, do not do this if any
1700    // argument is passed on the stack.
1701    SmallVector<CCValAssign, 16> ArgLocs;
1702    ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
1703                      getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1704    CCInfo.AnalyzeCallOperands(Outs,
1705                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1706    if (CCInfo.getNextStackOffset()) {
1707      MachineFunction &MF = DAG.getMachineFunction();
1708
1709      // Check if the arguments are already laid out in the right way as
1710      // the caller's fixed stack objects.
1711      MachineFrameInfo *MFI = MF.getFrameInfo();
1712      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1713      const ARMInstrInfo *TII =
1714        ((ARMTargetMachine&)getTargetMachine()).getInstrInfo();
1715      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1716           i != e;
1717           ++i, ++realArgIdx) {
1718        CCValAssign &VA = ArgLocs[i];
1719        EVT RegVT = VA.getLocVT();
1720        SDValue Arg = OutVals[realArgIdx];
1721        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1722        if (VA.getLocInfo() == CCValAssign::Indirect)
1723          return false;
1724        if (VA.needsCustom()) {
1725          // f64 and vector types are split into multiple registers or
1726          // register/stack-slot combinations.  The types will not match
1727          // the registers; give up on memory f64 refs until we figure
1728          // out what to do about this.
1729          if (!VA.isRegLoc())
1730            return false;
1731          if (!ArgLocs[++i].isRegLoc())
1732            return false;
1733          if (RegVT == MVT::v2f64) {
1734            if (!ArgLocs[++i].isRegLoc())
1735              return false;
1736            if (!ArgLocs[++i].isRegLoc())
1737              return false;
1738          }
1739        } else if (!VA.isRegLoc()) {
1740          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1741                                   MFI, MRI, TII))
1742            return false;
1743        }
1744      }
1745    }
1746  }
1747
1748  return true;
1749}
1750
1751SDValue
1752ARMTargetLowering::LowerReturn(SDValue Chain,
1753                               CallingConv::ID CallConv, bool isVarArg,
1754                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1755                               const SmallVectorImpl<SDValue> &OutVals,
1756                               DebugLoc dl, SelectionDAG &DAG) const {
1757
1758  // CCValAssign - represent the assignment of the return value to a location.
1759  SmallVector<CCValAssign, 16> RVLocs;
1760
1761  // CCState - Info about the registers and stack slots.
1762  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1763                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1764
1765  // Analyze outgoing return values.
1766  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1767                                               isVarArg));
1768
1769  // If this is the first return lowered for this function, add
1770  // the regs to the liveout set for the function.
1771  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1772    for (unsigned i = 0; i != RVLocs.size(); ++i)
1773      if (RVLocs[i].isRegLoc())
1774        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1775  }
1776
1777  SDValue Flag;
1778
1779  // Copy the result values into the output registers.
1780  for (unsigned i = 0, realRVLocIdx = 0;
1781       i != RVLocs.size();
1782       ++i, ++realRVLocIdx) {
1783    CCValAssign &VA = RVLocs[i];
1784    assert(VA.isRegLoc() && "Can only return in registers!");
1785
1786    SDValue Arg = OutVals[realRVLocIdx];
1787
1788    switch (VA.getLocInfo()) {
1789    default: llvm_unreachable("Unknown loc info!");
1790    case CCValAssign::Full: break;
1791    case CCValAssign::BCvt:
1792      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1793      break;
1794    }
1795
1796    if (VA.needsCustom()) {
1797      if (VA.getLocVT() == MVT::v2f64) {
1798        // Extract the first half and return it in two registers.
1799        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1800                                   DAG.getConstant(0, MVT::i32));
1801        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1802                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1803
1804        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1805        Flag = Chain.getValue(1);
1806        VA = RVLocs[++i]; // skip ahead to next loc
1807        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1808                                 HalfGPRs.getValue(1), Flag);
1809        Flag = Chain.getValue(1);
1810        VA = RVLocs[++i]; // skip ahead to next loc
1811
1812        // Extract the 2nd half and fall through to handle it as an f64 value.
1813        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1814                          DAG.getConstant(1, MVT::i32));
1815      }
1816      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1817      // available.
1818      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1819                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1820      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1821      Flag = Chain.getValue(1);
1822      VA = RVLocs[++i]; // skip ahead to next loc
1823      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1824                               Flag);
1825    } else
1826      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1827
1828    // Guarantee that all emitted copies are
1829    // stuck together, avoiding something bad.
1830    Flag = Chain.getValue(1);
1831  }
1832
1833  SDValue result;
1834  if (Flag.getNode())
1835    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1836  else // Return Void
1837    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1838
1839  return result;
1840}
1841
1842bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N) const {
1843  if (N->getNumValues() != 1)
1844    return false;
1845  if (!N->hasNUsesOfValue(1, 0))
1846    return false;
1847
1848  unsigned NumCopies = 0;
1849  SDNode* Copies[2];
1850  SDNode *Use = *N->use_begin();
1851  if (Use->getOpcode() == ISD::CopyToReg) {
1852    Copies[NumCopies++] = Use;
1853  } else if (Use->getOpcode() == ARMISD::VMOVRRD) {
1854    // f64 returned in a pair of GPRs.
1855    for (SDNode::use_iterator UI = Use->use_begin(), UE = Use->use_end();
1856         UI != UE; ++UI) {
1857      if (UI->getOpcode() != ISD::CopyToReg)
1858        return false;
1859      Copies[UI.getUse().getResNo()] = *UI;
1860      ++NumCopies;
1861    }
1862  } else if (Use->getOpcode() == ISD::BITCAST) {
1863    // f32 returned in a single GPR.
1864    if (!Use->hasNUsesOfValue(1, 0))
1865      return false;
1866    Use = *Use->use_begin();
1867    if (Use->getOpcode() != ISD::CopyToReg || !Use->hasNUsesOfValue(1, 0))
1868      return false;
1869    Copies[NumCopies++] = Use;
1870  } else {
1871    return false;
1872  }
1873
1874  if (NumCopies != 1 && NumCopies != 2)
1875    return false;
1876
1877  bool HasRet = false;
1878  for (unsigned i = 0; i < NumCopies; ++i) {
1879    SDNode *Copy = Copies[i];
1880    for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1881         UI != UE; ++UI) {
1882      if (UI->getOpcode() == ISD::CopyToReg) {
1883        SDNode *Use = *UI;
1884        if (Use == Copies[0] || Use == Copies[1])
1885          continue;
1886        return false;
1887      }
1888      if (UI->getOpcode() != ARMISD::RET_FLAG)
1889        return false;
1890      HasRet = true;
1891    }
1892  }
1893
1894  return HasRet;
1895}
1896
1897bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1898  if (!EnableARMTailCalls)
1899    return false;
1900
1901  if (!CI->isTailCall())
1902    return false;
1903
1904  return !Subtarget->isThumb1Only();
1905}
1906
1907// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1908// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1909// one of the above mentioned nodes. It has to be wrapped because otherwise
1910// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1911// be used to form addressing mode. These wrapped nodes will be selected
1912// into MOVi.
1913static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1914  EVT PtrVT = Op.getValueType();
1915  // FIXME there is no actual debug info here
1916  DebugLoc dl = Op.getDebugLoc();
1917  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1918  SDValue Res;
1919  if (CP->isMachineConstantPoolEntry())
1920    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1921                                    CP->getAlignment());
1922  else
1923    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1924                                    CP->getAlignment());
1925  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1926}
1927
1928unsigned ARMTargetLowering::getJumpTableEncoding() const {
1929  return MachineJumpTableInfo::EK_Inline;
1930}
1931
1932SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
1933                                             SelectionDAG &DAG) const {
1934  MachineFunction &MF = DAG.getMachineFunction();
1935  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1936  unsigned ARMPCLabelIndex = 0;
1937  DebugLoc DL = Op.getDebugLoc();
1938  EVT PtrVT = getPointerTy();
1939  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1940  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1941  SDValue CPAddr;
1942  if (RelocM == Reloc::Static) {
1943    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
1944  } else {
1945    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1946    ARMPCLabelIndex = AFI->createPICLabelUId();
1947    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex,
1948                                                         ARMCP::CPBlockAddress,
1949                                                         PCAdj);
1950    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1951  }
1952  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
1953  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
1954                               MachinePointerInfo::getConstantPool(),
1955                               false, false, 0);
1956  if (RelocM == Reloc::Static)
1957    return Result;
1958  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1959  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
1960}
1961
1962// Lower ISD::GlobalTLSAddress using the "general dynamic" model
1963SDValue
1964ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1965                                                 SelectionDAG &DAG) const {
1966  DebugLoc dl = GA->getDebugLoc();
1967  EVT PtrVT = getPointerTy();
1968  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1969  MachineFunction &MF = DAG.getMachineFunction();
1970  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1971  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1972  ARMConstantPoolValue *CPV =
1973    new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1974                             ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
1975  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1976  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1977  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
1978                         MachinePointerInfo::getConstantPool(),
1979                         false, false, 0);
1980  SDValue Chain = Argument.getValue(1);
1981
1982  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1983  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1984
1985  // call __tls_get_addr.
1986  ArgListTy Args;
1987  ArgListEntry Entry;
1988  Entry.Node = Argument;
1989  Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
1990  Args.push_back(Entry);
1991  // FIXME: is there useful debug info available here?
1992  std::pair<SDValue, SDValue> CallResult =
1993    LowerCallTo(Chain, (Type *) Type::getInt32Ty(*DAG.getContext()),
1994                false, false, false, false,
1995                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
1996                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
1997  return CallResult.first;
1998}
1999
2000// Lower ISD::GlobalTLSAddress using the "initial exec" or
2001// "local exec" model.
2002SDValue
2003ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2004                                        SelectionDAG &DAG) const {
2005  const GlobalValue *GV = GA->getGlobal();
2006  DebugLoc dl = GA->getDebugLoc();
2007  SDValue Offset;
2008  SDValue Chain = DAG.getEntryNode();
2009  EVT PtrVT = getPointerTy();
2010  // Get the Thread Pointer
2011  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2012
2013  if (GV->isDeclaration()) {
2014    MachineFunction &MF = DAG.getMachineFunction();
2015    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2016    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2017    // Initial exec model.
2018    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2019    ARMConstantPoolValue *CPV =
2020      new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
2021                               ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF, true);
2022    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2023    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2024    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2025                         MachinePointerInfo::getConstantPool(),
2026                         false, false, 0);
2027    Chain = Offset.getValue(1);
2028
2029    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2030    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2031
2032    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2033                         MachinePointerInfo::getConstantPool(),
2034                         false, false, 0);
2035  } else {
2036    // local exec model
2037    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMCP::TPOFF);
2038    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2039    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2040    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2041                         MachinePointerInfo::getConstantPool(),
2042                         false, false, 0);
2043  }
2044
2045  // The address of the thread local variable is the add of the thread
2046  // pointer with the offset of the variable.
2047  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2048}
2049
2050SDValue
2051ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2052  // TODO: implement the "local dynamic" model
2053  assert(Subtarget->isTargetELF() &&
2054         "TLS not implemented for non-ELF targets");
2055  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2056  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
2057  // otherwise use the "Local Exec" TLS Model
2058  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
2059    return LowerToTLSGeneralDynamicModel(GA, DAG);
2060  else
2061    return LowerToTLSExecModels(GA, DAG);
2062}
2063
2064SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2065                                                 SelectionDAG &DAG) const {
2066  EVT PtrVT = getPointerTy();
2067  DebugLoc dl = Op.getDebugLoc();
2068  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2069  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2070  if (RelocM == Reloc::PIC_) {
2071    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2072    ARMConstantPoolValue *CPV =
2073      new ARMConstantPoolValue(GV, UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2074    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2075    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2076    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
2077                                 CPAddr,
2078                                 MachinePointerInfo::getConstantPool(),
2079                                 false, false, 0);
2080    SDValue Chain = Result.getValue(1);
2081    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2082    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
2083    if (!UseGOTOFF)
2084      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2085                           MachinePointerInfo::getGOT(), false, false, 0);
2086    return Result;
2087  }
2088
2089  // If we have T2 ops, we can materialize the address directly via movt/movw
2090  // pair. This is always cheaper.
2091  if (Subtarget->useMovt()) {
2092    ++NumMovwMovt;
2093    // FIXME: Once remat is capable of dealing with instructions with register
2094    // operands, expand this into two nodes.
2095    return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2096                       DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2097  } else {
2098    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2099    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2100    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2101                       MachinePointerInfo::getConstantPool(),
2102                       false, false, 0);
2103  }
2104}
2105
2106SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2107                                                    SelectionDAG &DAG) const {
2108  EVT PtrVT = getPointerTy();
2109  DebugLoc dl = Op.getDebugLoc();
2110  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2111  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2112  MachineFunction &MF = DAG.getMachineFunction();
2113  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2114
2115  // FIXME: Enable this for static codegen when tool issues are fixed.
2116  if (Subtarget->useMovt() && RelocM != Reloc::Static) {
2117    ++NumMovwMovt;
2118    // FIXME: Once remat is capable of dealing with instructions with register
2119    // operands, expand this into two nodes.
2120    if (RelocM == Reloc::Static)
2121      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2122                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2123
2124    unsigned Wrapper = (RelocM == Reloc::PIC_)
2125      ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
2126    SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
2127                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2128    if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2129      Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2130                           MachinePointerInfo::getGOT(), false, false, 0);
2131    return Result;
2132  }
2133
2134  unsigned ARMPCLabelIndex = 0;
2135  SDValue CPAddr;
2136  if (RelocM == Reloc::Static) {
2137    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2138  } else {
2139    ARMPCLabelIndex = AFI->createPICLabelUId();
2140    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
2141    ARMConstantPoolValue *CPV =
2142      new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj);
2143    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2144  }
2145  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2146
2147  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2148                               MachinePointerInfo::getConstantPool(),
2149                               false, false, 0);
2150  SDValue Chain = Result.getValue(1);
2151
2152  if (RelocM == Reloc::PIC_) {
2153    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2154    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2155  }
2156
2157  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2158    Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
2159                         false, false, 0);
2160
2161  return Result;
2162}
2163
2164SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
2165                                                    SelectionDAG &DAG) const {
2166  assert(Subtarget->isTargetELF() &&
2167         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
2168  MachineFunction &MF = DAG.getMachineFunction();
2169  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2170  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2171  EVT PtrVT = getPointerTy();
2172  DebugLoc dl = Op.getDebugLoc();
2173  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2174  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
2175                                                       "_GLOBAL_OFFSET_TABLE_",
2176                                                       ARMPCLabelIndex, PCAdj);
2177  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2178  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2179  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2180                               MachinePointerInfo::getConstantPool(),
2181                               false, false, 0);
2182  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2183  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2184}
2185
2186SDValue
2187ARMTargetLowering::LowerEH_SJLJ_DISPATCHSETUP(SDValue Op, SelectionDAG &DAG)
2188  const {
2189  DebugLoc dl = Op.getDebugLoc();
2190  return DAG.getNode(ARMISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
2191                     Op.getOperand(0), Op.getOperand(1));
2192}
2193
2194SDValue
2195ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2196  DebugLoc dl = Op.getDebugLoc();
2197  SDValue Val = DAG.getConstant(0, MVT::i32);
2198  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(0),
2199                     Op.getOperand(1), Val);
2200}
2201
2202SDValue
2203ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2204  DebugLoc dl = Op.getDebugLoc();
2205  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2206                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2207}
2208
2209SDValue
2210ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2211                                          const ARMSubtarget *Subtarget) const {
2212  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2213  DebugLoc dl = Op.getDebugLoc();
2214  switch (IntNo) {
2215  default: return SDValue();    // Don't custom lower most intrinsics.
2216  case Intrinsic::arm_thread_pointer: {
2217    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2218    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2219  }
2220  case Intrinsic::eh_sjlj_lsda: {
2221    MachineFunction &MF = DAG.getMachineFunction();
2222    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2223    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2224    EVT PtrVT = getPointerTy();
2225    DebugLoc dl = Op.getDebugLoc();
2226    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2227    SDValue CPAddr;
2228    unsigned PCAdj = (RelocM != Reloc::PIC_)
2229      ? 0 : (Subtarget->isThumb() ? 4 : 8);
2230    ARMConstantPoolValue *CPV =
2231      new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex,
2232                               ARMCP::CPLSDA, PCAdj);
2233    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2234    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2235    SDValue Result =
2236      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2237                  MachinePointerInfo::getConstantPool(),
2238                  false, false, 0);
2239
2240    if (RelocM == Reloc::PIC_) {
2241      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2242      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2243    }
2244    return Result;
2245  }
2246  case Intrinsic::arm_neon_vmulls:
2247  case Intrinsic::arm_neon_vmullu: {
2248    unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2249      ? ARMISD::VMULLs : ARMISD::VMULLu;
2250    return DAG.getNode(NewOpc, Op.getDebugLoc(), Op.getValueType(),
2251                       Op.getOperand(1), Op.getOperand(2));
2252  }
2253  }
2254}
2255
2256static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
2257                               const ARMSubtarget *Subtarget) {
2258  DebugLoc dl = Op.getDebugLoc();
2259  if (!Subtarget->hasDataBarrier()) {
2260    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2261    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2262    // here.
2263    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2264           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2265    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2266                       DAG.getConstant(0, MVT::i32));
2267  }
2268
2269  SDValue Op5 = Op.getOperand(5);
2270  bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
2271  unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2272  unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2273  bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
2274
2275  ARM_MB::MemBOpt DMBOpt;
2276  if (isDeviceBarrier)
2277    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
2278  else
2279    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
2280  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2281                     DAG.getConstant(DMBOpt, MVT::i32));
2282}
2283
2284
2285static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
2286                                 const ARMSubtarget *Subtarget) {
2287  // FIXME: handle "fence singlethread" more efficiently.
2288  DebugLoc dl = Op.getDebugLoc();
2289  if (!Subtarget->hasDataBarrier()) {
2290    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2291    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2292    // here.
2293    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2294           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2295    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2296                       DAG.getConstant(0, MVT::i32));
2297  }
2298
2299  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2300                     DAG.getConstant(ARM_MB::ISH, MVT::i32));
2301}
2302
2303static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2304                             const ARMSubtarget *Subtarget) {
2305  // ARM pre v5TE and Thumb1 does not have preload instructions.
2306  if (!(Subtarget->isThumb2() ||
2307        (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2308    // Just preserve the chain.
2309    return Op.getOperand(0);
2310
2311  DebugLoc dl = Op.getDebugLoc();
2312  unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2313  if (!isRead &&
2314      (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2315    // ARMv7 with MP extension has PLDW.
2316    return Op.getOperand(0);
2317
2318  unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2319  if (Subtarget->isThumb()) {
2320    // Invert the bits.
2321    isRead = ~isRead & 1;
2322    isData = ~isData & 1;
2323  }
2324
2325  return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2326                     Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2327                     DAG.getConstant(isData, MVT::i32));
2328}
2329
2330static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2331  MachineFunction &MF = DAG.getMachineFunction();
2332  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2333
2334  // vastart just stores the address of the VarArgsFrameIndex slot into the
2335  // memory location argument.
2336  DebugLoc dl = Op.getDebugLoc();
2337  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2338  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2339  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2340  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2341                      MachinePointerInfo(SV), false, false, 0);
2342}
2343
2344SDValue
2345ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2346                                        SDValue &Root, SelectionDAG &DAG,
2347                                        DebugLoc dl) const {
2348  MachineFunction &MF = DAG.getMachineFunction();
2349  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2350
2351  TargetRegisterClass *RC;
2352  if (AFI->isThumb1OnlyFunction())
2353    RC = ARM::tGPRRegisterClass;
2354  else
2355    RC = ARM::GPRRegisterClass;
2356
2357  // Transform the arguments stored in physical registers into virtual ones.
2358  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2359  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2360
2361  SDValue ArgValue2;
2362  if (NextVA.isMemLoc()) {
2363    MachineFrameInfo *MFI = MF.getFrameInfo();
2364    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2365
2366    // Create load node to retrieve arguments from the stack.
2367    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2368    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2369                            MachinePointerInfo::getFixedStack(FI),
2370                            false, false, 0);
2371  } else {
2372    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2373    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2374  }
2375
2376  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2377}
2378
2379void
2380ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
2381                                  unsigned &VARegSize, unsigned &VARegSaveSize)
2382  const {
2383  unsigned NumGPRs;
2384  if (CCInfo.isFirstByValRegValid())
2385    NumGPRs = ARM::R4 - CCInfo.getFirstByValReg();
2386  else {
2387    unsigned int firstUnalloced;
2388    firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
2389                                                sizeof(GPRArgRegs) /
2390                                                sizeof(GPRArgRegs[0]));
2391    NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
2392  }
2393
2394  unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
2395  VARegSize = NumGPRs * 4;
2396  VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2397}
2398
2399// The remaining GPRs hold either the beginning of variable-argument
2400// data, or the beginning of an aggregate passed by value (usuall
2401// byval).  Either way, we allocate stack slots adjacent to the data
2402// provided by our caller, and store the unallocated registers there.
2403// If this is a variadic function, the va_list pointer will begin with
2404// these values; otherwise, this reassembles a (byval) structure that
2405// was split between registers and memory.
2406void
2407ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
2408                                        DebugLoc dl, SDValue &Chain,
2409                                        unsigned ArgOffset) const {
2410  MachineFunction &MF = DAG.getMachineFunction();
2411  MachineFrameInfo *MFI = MF.getFrameInfo();
2412  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2413  unsigned firstRegToSaveIndex;
2414  if (CCInfo.isFirstByValRegValid())
2415    firstRegToSaveIndex = CCInfo.getFirstByValReg() - ARM::R0;
2416  else {
2417    firstRegToSaveIndex = CCInfo.getFirstUnallocated
2418      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2419  }
2420
2421  unsigned VARegSize, VARegSaveSize;
2422  computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2423  if (VARegSaveSize) {
2424    // If this function is vararg, store any remaining integer argument regs
2425    // to their spots on the stack so that they may be loaded by deferencing
2426    // the result of va_next.
2427    AFI->setVarArgsRegSaveSize(VARegSaveSize);
2428    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(VARegSaveSize,
2429                                                     ArgOffset + VARegSaveSize
2430                                                     - VARegSize,
2431                                                     false));
2432    SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2433                                    getPointerTy());
2434
2435    SmallVector<SDValue, 4> MemOps;
2436    for (; firstRegToSaveIndex < 4; ++firstRegToSaveIndex) {
2437      TargetRegisterClass *RC;
2438      if (AFI->isThumb1OnlyFunction())
2439        RC = ARM::tGPRRegisterClass;
2440      else
2441        RC = ARM::GPRRegisterClass;
2442
2443      unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
2444      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2445      SDValue Store =
2446        DAG.getStore(Val.getValue(1), dl, Val, FIN,
2447                 MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
2448                     false, false, 0);
2449      MemOps.push_back(Store);
2450      FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2451                        DAG.getConstant(4, getPointerTy()));
2452    }
2453    if (!MemOps.empty())
2454      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2455                          &MemOps[0], MemOps.size());
2456  } else
2457    // This will point to the next argument passed via stack.
2458    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
2459}
2460
2461SDValue
2462ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2463                                        CallingConv::ID CallConv, bool isVarArg,
2464                                        const SmallVectorImpl<ISD::InputArg>
2465                                          &Ins,
2466                                        DebugLoc dl, SelectionDAG &DAG,
2467                                        SmallVectorImpl<SDValue> &InVals)
2468                                          const {
2469  MachineFunction &MF = DAG.getMachineFunction();
2470  MachineFrameInfo *MFI = MF.getFrameInfo();
2471
2472  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2473
2474  // Assign locations to all of the incoming arguments.
2475  SmallVector<CCValAssign, 16> ArgLocs;
2476  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2477                    getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
2478  CCInfo.AnalyzeFormalArguments(Ins,
2479                                CCAssignFnForNode(CallConv, /* Return*/ false,
2480                                                  isVarArg));
2481
2482  SmallVector<SDValue, 16> ArgValues;
2483  int lastInsIndex = -1;
2484
2485  SDValue ArgValue;
2486  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2487    CCValAssign &VA = ArgLocs[i];
2488
2489    // Arguments stored in registers.
2490    if (VA.isRegLoc()) {
2491      EVT RegVT = VA.getLocVT();
2492
2493      if (VA.needsCustom()) {
2494        // f64 and vector types are split up into multiple registers or
2495        // combinations of registers and stack slots.
2496        if (VA.getLocVT() == MVT::v2f64) {
2497          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2498                                                   Chain, DAG, dl);
2499          VA = ArgLocs[++i]; // skip ahead to next loc
2500          SDValue ArgValue2;
2501          if (VA.isMemLoc()) {
2502            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2503            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2504            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2505                                    MachinePointerInfo::getFixedStack(FI),
2506                                    false, false, 0);
2507          } else {
2508            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2509                                             Chain, DAG, dl);
2510          }
2511          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2512          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2513                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2514          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2515                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2516        } else
2517          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2518
2519      } else {
2520        TargetRegisterClass *RC;
2521
2522        if (RegVT == MVT::f32)
2523          RC = ARM::SPRRegisterClass;
2524        else if (RegVT == MVT::f64)
2525          RC = ARM::DPRRegisterClass;
2526        else if (RegVT == MVT::v2f64)
2527          RC = ARM::QPRRegisterClass;
2528        else if (RegVT == MVT::i32)
2529          RC = (AFI->isThumb1OnlyFunction() ?
2530                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
2531        else
2532          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2533
2534        // Transform the arguments in physical registers into virtual ones.
2535        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2536        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2537      }
2538
2539      // If this is an 8 or 16-bit value, it is really passed promoted
2540      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2541      // truncate to the right size.
2542      switch (VA.getLocInfo()) {
2543      default: llvm_unreachable("Unknown loc info!");
2544      case CCValAssign::Full: break;
2545      case CCValAssign::BCvt:
2546        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2547        break;
2548      case CCValAssign::SExt:
2549        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2550                               DAG.getValueType(VA.getValVT()));
2551        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2552        break;
2553      case CCValAssign::ZExt:
2554        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2555                               DAG.getValueType(VA.getValVT()));
2556        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2557        break;
2558      }
2559
2560      InVals.push_back(ArgValue);
2561
2562    } else { // VA.isRegLoc()
2563
2564      // sanity check
2565      assert(VA.isMemLoc());
2566      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2567
2568      int index = ArgLocs[i].getValNo();
2569
2570      // Some Ins[] entries become multiple ArgLoc[] entries.
2571      // Process them only once.
2572      if (index != lastInsIndex)
2573        {
2574          ISD::ArgFlagsTy Flags = Ins[index].Flags;
2575          // FIXME: For now, all byval parameter objects are marked mutable.
2576          // This can be changed with more analysis.
2577          // In case of tail call optimization mark all arguments mutable.
2578          // Since they could be overwritten by lowering of arguments in case of
2579          // a tail call.
2580          if (Flags.isByVal()) {
2581            unsigned VARegSize, VARegSaveSize;
2582            computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2583            VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 0);
2584            unsigned Bytes = Flags.getByValSize() - VARegSize;
2585            if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
2586            int FI = MFI->CreateFixedObject(Bytes,
2587                                            VA.getLocMemOffset(), false);
2588            InVals.push_back(DAG.getFrameIndex(FI, getPointerTy()));
2589          } else {
2590            int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
2591                                            VA.getLocMemOffset(), true);
2592
2593            // Create load nodes to retrieve arguments from the stack.
2594            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2595            InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2596                                         MachinePointerInfo::getFixedStack(FI),
2597                                         false, false, 0));
2598          }
2599          lastInsIndex = index;
2600        }
2601    }
2602  }
2603
2604  // varargs
2605  if (isVarArg)
2606    VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getNextStackOffset());
2607
2608  return Chain;
2609}
2610
2611/// isFloatingPointZero - Return true if this is +0.0.
2612static bool isFloatingPointZero(SDValue Op) {
2613  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2614    return CFP->getValueAPF().isPosZero();
2615  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2616    // Maybe this has already been legalized into the constant pool?
2617    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2618      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2619      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2620        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2621          return CFP->getValueAPF().isPosZero();
2622    }
2623  }
2624  return false;
2625}
2626
2627/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2628/// the given operands.
2629SDValue
2630ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2631                             SDValue &ARMcc, SelectionDAG &DAG,
2632                             DebugLoc dl) const {
2633  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2634    unsigned C = RHSC->getZExtValue();
2635    if (!isLegalICmpImmediate(C)) {
2636      // Constant does not fit, try adjusting it by one?
2637      switch (CC) {
2638      default: break;
2639      case ISD::SETLT:
2640      case ISD::SETGE:
2641        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
2642          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2643          RHS = DAG.getConstant(C-1, MVT::i32);
2644        }
2645        break;
2646      case ISD::SETULT:
2647      case ISD::SETUGE:
2648        if (C != 0 && isLegalICmpImmediate(C-1)) {
2649          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2650          RHS = DAG.getConstant(C-1, MVT::i32);
2651        }
2652        break;
2653      case ISD::SETLE:
2654      case ISD::SETGT:
2655        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
2656          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2657          RHS = DAG.getConstant(C+1, MVT::i32);
2658        }
2659        break;
2660      case ISD::SETULE:
2661      case ISD::SETUGT:
2662        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
2663          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2664          RHS = DAG.getConstant(C+1, MVT::i32);
2665        }
2666        break;
2667      }
2668    }
2669  }
2670
2671  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2672  ARMISD::NodeType CompareType;
2673  switch (CondCode) {
2674  default:
2675    CompareType = ARMISD::CMP;
2676    break;
2677  case ARMCC::EQ:
2678  case ARMCC::NE:
2679    // Uses only Z Flag
2680    CompareType = ARMISD::CMPZ;
2681    break;
2682  }
2683  ARMcc = DAG.getConstant(CondCode, MVT::i32);
2684  return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
2685}
2686
2687/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2688SDValue
2689ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2690                             DebugLoc dl) const {
2691  SDValue Cmp;
2692  if (!isFloatingPointZero(RHS))
2693    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
2694  else
2695    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
2696  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
2697}
2698
2699/// duplicateCmp - Glue values can have only one use, so this function
2700/// duplicates a comparison node.
2701SDValue
2702ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
2703  unsigned Opc = Cmp.getOpcode();
2704  DebugLoc DL = Cmp.getDebugLoc();
2705  if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
2706    return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2707
2708  assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
2709  Cmp = Cmp.getOperand(0);
2710  Opc = Cmp.getOpcode();
2711  if (Opc == ARMISD::CMPFP)
2712    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2713  else {
2714    assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
2715    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
2716  }
2717  return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
2718}
2719
2720SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2721  SDValue Cond = Op.getOperand(0);
2722  SDValue SelectTrue = Op.getOperand(1);
2723  SDValue SelectFalse = Op.getOperand(2);
2724  DebugLoc dl = Op.getDebugLoc();
2725
2726  // Convert:
2727  //
2728  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2729  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2730  //
2731  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2732    const ConstantSDNode *CMOVTrue =
2733      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2734    const ConstantSDNode *CMOVFalse =
2735      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2736
2737    if (CMOVTrue && CMOVFalse) {
2738      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2739      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2740
2741      SDValue True;
2742      SDValue False;
2743      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2744        True = SelectTrue;
2745        False = SelectFalse;
2746      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2747        True = SelectFalse;
2748        False = SelectTrue;
2749      }
2750
2751      if (True.getNode() && False.getNode()) {
2752        EVT VT = Op.getValueType();
2753        SDValue ARMcc = Cond.getOperand(2);
2754        SDValue CCR = Cond.getOperand(3);
2755        SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
2756        assert(True.getValueType() == VT);
2757        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2758      }
2759    }
2760  }
2761
2762  return DAG.getSelectCC(dl, Cond,
2763                         DAG.getConstant(0, Cond.getValueType()),
2764                         SelectTrue, SelectFalse, ISD::SETNE);
2765}
2766
2767SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2768  EVT VT = Op.getValueType();
2769  SDValue LHS = Op.getOperand(0);
2770  SDValue RHS = Op.getOperand(1);
2771  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2772  SDValue TrueVal = Op.getOperand(2);
2773  SDValue FalseVal = Op.getOperand(3);
2774  DebugLoc dl = Op.getDebugLoc();
2775
2776  if (LHS.getValueType() == MVT::i32) {
2777    SDValue ARMcc;
2778    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2779    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2780    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2781  }
2782
2783  ARMCC::CondCodes CondCode, CondCode2;
2784  FPCCToARMCC(CC, CondCode, CondCode2);
2785
2786  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2787  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2788  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2789  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2790                               ARMcc, CCR, Cmp);
2791  if (CondCode2 != ARMCC::AL) {
2792    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2793    // FIXME: Needs another CMP because flag can have but one use.
2794    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2795    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2796                         Result, TrueVal, ARMcc2, CCR, Cmp2);
2797  }
2798  return Result;
2799}
2800
2801/// canChangeToInt - Given the fp compare operand, return true if it is suitable
2802/// to morph to an integer compare sequence.
2803static bool canChangeToInt(SDValue Op, bool &SeenZero,
2804                           const ARMSubtarget *Subtarget) {
2805  SDNode *N = Op.getNode();
2806  if (!N->hasOneUse())
2807    // Otherwise it requires moving the value from fp to integer registers.
2808    return false;
2809  if (!N->getNumValues())
2810    return false;
2811  EVT VT = Op.getValueType();
2812  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
2813    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
2814    // vmrs are very slow, e.g. cortex-a8.
2815    return false;
2816
2817  if (isFloatingPointZero(Op)) {
2818    SeenZero = true;
2819    return true;
2820  }
2821  return ISD::isNormalLoad(N);
2822}
2823
2824static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
2825  if (isFloatingPointZero(Op))
2826    return DAG.getConstant(0, MVT::i32);
2827
2828  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
2829    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2830                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
2831                       Ld->isVolatile(), Ld->isNonTemporal(),
2832                       Ld->getAlignment());
2833
2834  llvm_unreachable("Unknown VFP cmp argument!");
2835}
2836
2837static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
2838                           SDValue &RetVal1, SDValue &RetVal2) {
2839  if (isFloatingPointZero(Op)) {
2840    RetVal1 = DAG.getConstant(0, MVT::i32);
2841    RetVal2 = DAG.getConstant(0, MVT::i32);
2842    return;
2843  }
2844
2845  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
2846    SDValue Ptr = Ld->getBasePtr();
2847    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2848                          Ld->getChain(), Ptr,
2849                          Ld->getPointerInfo(),
2850                          Ld->isVolatile(), Ld->isNonTemporal(),
2851                          Ld->getAlignment());
2852
2853    EVT PtrType = Ptr.getValueType();
2854    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
2855    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
2856                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
2857    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2858                          Ld->getChain(), NewPtr,
2859                          Ld->getPointerInfo().getWithOffset(4),
2860                          Ld->isVolatile(), Ld->isNonTemporal(),
2861                          NewAlign);
2862    return;
2863  }
2864
2865  llvm_unreachable("Unknown VFP cmp argument!");
2866}
2867
2868/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
2869/// f32 and even f64 comparisons to integer ones.
2870SDValue
2871ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
2872  SDValue Chain = Op.getOperand(0);
2873  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2874  SDValue LHS = Op.getOperand(2);
2875  SDValue RHS = Op.getOperand(3);
2876  SDValue Dest = Op.getOperand(4);
2877  DebugLoc dl = Op.getDebugLoc();
2878
2879  bool SeenZero = false;
2880  if (canChangeToInt(LHS, SeenZero, Subtarget) &&
2881      canChangeToInt(RHS, SeenZero, Subtarget) &&
2882      // If one of the operand is zero, it's safe to ignore the NaN case since
2883      // we only care about equality comparisons.
2884      (SeenZero || (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS)))) {
2885    // If unsafe fp math optimization is enabled and there are no other uses of
2886    // the CMP operands, and the condition code is EQ or NE, we can optimize it
2887    // to an integer comparison.
2888    if (CC == ISD::SETOEQ)
2889      CC = ISD::SETEQ;
2890    else if (CC == ISD::SETUNE)
2891      CC = ISD::SETNE;
2892
2893    SDValue ARMcc;
2894    if (LHS.getValueType() == MVT::f32) {
2895      LHS = bitcastf32Toi32(LHS, DAG);
2896      RHS = bitcastf32Toi32(RHS, DAG);
2897      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2898      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2899      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2900                         Chain, Dest, ARMcc, CCR, Cmp);
2901    }
2902
2903    SDValue LHS1, LHS2;
2904    SDValue RHS1, RHS2;
2905    expandf64Toi32(LHS, DAG, LHS1, LHS2);
2906    expandf64Toi32(RHS, DAG, RHS1, RHS2);
2907    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2908    ARMcc = DAG.getConstant(CondCode, MVT::i32);
2909    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
2910    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
2911    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
2912  }
2913
2914  return SDValue();
2915}
2916
2917SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2918  SDValue Chain = Op.getOperand(0);
2919  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2920  SDValue LHS = Op.getOperand(2);
2921  SDValue RHS = Op.getOperand(3);
2922  SDValue Dest = Op.getOperand(4);
2923  DebugLoc dl = Op.getDebugLoc();
2924
2925  if (LHS.getValueType() == MVT::i32) {
2926    SDValue ARMcc;
2927    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2928    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2929    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2930                       Chain, Dest, ARMcc, CCR, Cmp);
2931  }
2932
2933  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
2934
2935  if (UnsafeFPMath &&
2936      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
2937       CC == ISD::SETNE || CC == ISD::SETUNE)) {
2938    SDValue Result = OptimizeVFPBrcond(Op, DAG);
2939    if (Result.getNode())
2940      return Result;
2941  }
2942
2943  ARMCC::CondCodes CondCode, CondCode2;
2944  FPCCToARMCC(CC, CondCode, CondCode2);
2945
2946  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2947  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2948  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2949  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
2950  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
2951  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2952  if (CondCode2 != ARMCC::AL) {
2953    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
2954    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
2955    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2956  }
2957  return Res;
2958}
2959
2960SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
2961  SDValue Chain = Op.getOperand(0);
2962  SDValue Table = Op.getOperand(1);
2963  SDValue Index = Op.getOperand(2);
2964  DebugLoc dl = Op.getDebugLoc();
2965
2966  EVT PTy = getPointerTy();
2967  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
2968  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2969  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
2970  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
2971  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
2972  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
2973  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2974  if (Subtarget->isThumb2()) {
2975    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
2976    // which does another jump to the destination. This also makes it easier
2977    // to translate it to TBB / TBH later.
2978    // FIXME: This might not work if the function is extremely large.
2979    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
2980                       Addr, Op.getOperand(2), JTI, UId);
2981  }
2982  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2983    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
2984                       MachinePointerInfo::getJumpTable(),
2985                       false, false, 0);
2986    Chain = Addr.getValue(1);
2987    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
2988    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2989  } else {
2990    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
2991                       MachinePointerInfo::getJumpTable(), false, false, 0);
2992    Chain = Addr.getValue(1);
2993    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2994  }
2995}
2996
2997static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
2998  DebugLoc dl = Op.getDebugLoc();
2999  unsigned Opc;
3000
3001  switch (Op.getOpcode()) {
3002  default:
3003    assert(0 && "Invalid opcode!");
3004  case ISD::FP_TO_SINT:
3005    Opc = ARMISD::FTOSI;
3006    break;
3007  case ISD::FP_TO_UINT:
3008    Opc = ARMISD::FTOUI;
3009    break;
3010  }
3011  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
3012  return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3013}
3014
3015static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3016  EVT VT = Op.getValueType();
3017  DebugLoc dl = Op.getDebugLoc();
3018
3019  assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
3020         "Invalid type for custom lowering!");
3021  if (VT != MVT::v4f32)
3022    return DAG.UnrollVectorOp(Op.getNode());
3023
3024  unsigned CastOpc;
3025  unsigned Opc;
3026  switch (Op.getOpcode()) {
3027  default:
3028    assert(0 && "Invalid opcode!");
3029  case ISD::SINT_TO_FP:
3030    CastOpc = ISD::SIGN_EXTEND;
3031    Opc = ISD::SINT_TO_FP;
3032    break;
3033  case ISD::UINT_TO_FP:
3034    CastOpc = ISD::ZERO_EXTEND;
3035    Opc = ISD::UINT_TO_FP;
3036    break;
3037  }
3038
3039  Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
3040  return DAG.getNode(Opc, dl, VT, Op);
3041}
3042
3043static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3044  EVT VT = Op.getValueType();
3045  if (VT.isVector())
3046    return LowerVectorINT_TO_FP(Op, DAG);
3047
3048  DebugLoc dl = Op.getDebugLoc();
3049  unsigned Opc;
3050
3051  switch (Op.getOpcode()) {
3052  default:
3053    assert(0 && "Invalid opcode!");
3054  case ISD::SINT_TO_FP:
3055    Opc = ARMISD::SITOF;
3056    break;
3057  case ISD::UINT_TO_FP:
3058    Opc = ARMISD::UITOF;
3059    break;
3060  }
3061
3062  Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
3063  return DAG.getNode(Opc, dl, VT, Op);
3064}
3065
3066SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
3067  // Implement fcopysign with a fabs and a conditional fneg.
3068  SDValue Tmp0 = Op.getOperand(0);
3069  SDValue Tmp1 = Op.getOperand(1);
3070  DebugLoc dl = Op.getDebugLoc();
3071  EVT VT = Op.getValueType();
3072  EVT SrcVT = Tmp1.getValueType();
3073  bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
3074    Tmp0.getOpcode() == ARMISD::VMOVDRR;
3075  bool UseNEON = !InGPR && Subtarget->hasNEON();
3076
3077  if (UseNEON) {
3078    // Use VBSL to copy the sign bit.
3079    unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
3080    SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
3081                               DAG.getTargetConstant(EncodedVal, MVT::i32));
3082    EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
3083    if (VT == MVT::f64)
3084      Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3085                         DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
3086                         DAG.getConstant(32, MVT::i32));
3087    else /*if (VT == MVT::f32)*/
3088      Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
3089    if (SrcVT == MVT::f32) {
3090      Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
3091      if (VT == MVT::f64)
3092        Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3093                           DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
3094                           DAG.getConstant(32, MVT::i32));
3095    } else if (VT == MVT::f32)
3096      Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
3097                         DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
3098                         DAG.getConstant(32, MVT::i32));
3099    Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
3100    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
3101
3102    SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
3103                                            MVT::i32);
3104    AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
3105    SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
3106                                  DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
3107
3108    SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
3109                              DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
3110                              DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
3111    if (VT == MVT::f32) {
3112      Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
3113      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
3114                        DAG.getConstant(0, MVT::i32));
3115    } else {
3116      Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
3117    }
3118
3119    return Res;
3120  }
3121
3122  // Bitcast operand 1 to i32.
3123  if (SrcVT == MVT::f64)
3124    Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3125                       &Tmp1, 1).getValue(1);
3126  Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
3127
3128  // Or in the signbit with integer operations.
3129  SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
3130  SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
3131  Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
3132  if (VT == MVT::f32) {
3133    Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
3134                       DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
3135    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3136                       DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
3137  }
3138
3139  // f64: Or the high part with signbit and then combine two parts.
3140  Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3141                     &Tmp0, 1);
3142  SDValue Lo = Tmp0.getValue(0);
3143  SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
3144  Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
3145  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
3146}
3147
3148SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
3149  MachineFunction &MF = DAG.getMachineFunction();
3150  MachineFrameInfo *MFI = MF.getFrameInfo();
3151  MFI->setReturnAddressIsTaken(true);
3152
3153  EVT VT = Op.getValueType();
3154  DebugLoc dl = Op.getDebugLoc();
3155  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3156  if (Depth) {
3157    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3158    SDValue Offset = DAG.getConstant(4, MVT::i32);
3159    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
3160                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
3161                       MachinePointerInfo(), false, false, 0);
3162  }
3163
3164  // Return LR, which contains the return address. Mark it an implicit live-in.
3165  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3166  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
3167}
3168
3169SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
3170  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3171  MFI->setFrameAddressIsTaken(true);
3172
3173  EVT VT = Op.getValueType();
3174  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
3175  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3176  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
3177    ? ARM::R7 : ARM::R11;
3178  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
3179  while (Depth--)
3180    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
3181                            MachinePointerInfo(),
3182                            false, false, 0);
3183  return FrameAddr;
3184}
3185
3186/// ExpandBITCAST - If the target supports VFP, this function is called to
3187/// expand a bit convert where either the source or destination type is i64 to
3188/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
3189/// operand type is illegal (e.g., v2f32 for a target that doesn't support
3190/// vectors), since the legalizer won't know what to do with that.
3191static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
3192  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3193  DebugLoc dl = N->getDebugLoc();
3194  SDValue Op = N->getOperand(0);
3195
3196  // This function is only supposed to be called for i64 types, either as the
3197  // source or destination of the bit convert.
3198  EVT SrcVT = Op.getValueType();
3199  EVT DstVT = N->getValueType(0);
3200  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
3201         "ExpandBITCAST called for non-i64 type");
3202
3203  // Turn i64->f64 into VMOVDRR.
3204  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
3205    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3206                             DAG.getConstant(0, MVT::i32));
3207    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3208                             DAG.getConstant(1, MVT::i32));
3209    return DAG.getNode(ISD::BITCAST, dl, DstVT,
3210                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
3211  }
3212
3213  // Turn f64->i64 into VMOVRRD.
3214  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
3215    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
3216                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
3217    // Merge the pieces into a single i64 value.
3218    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
3219  }
3220
3221  return SDValue();
3222}
3223
3224/// getZeroVector - Returns a vector of specified type with all zero elements.
3225/// Zero vectors are used to represent vector negation and in those cases
3226/// will be implemented with the NEON VNEG instruction.  However, VNEG does
3227/// not support i64 elements, so sometimes the zero vectors will need to be
3228/// explicitly constructed.  Regardless, use a canonical VMOV to create the
3229/// zero vector.
3230static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3231  assert(VT.isVector() && "Expected a vector type");
3232  // The canonical modified immediate encoding of a zero vector is....0!
3233  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
3234  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
3235  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
3236  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3237}
3238
3239/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3240/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3241SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
3242                                                SelectionDAG &DAG) const {
3243  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3244  EVT VT = Op.getValueType();
3245  unsigned VTBits = VT.getSizeInBits();
3246  DebugLoc dl = Op.getDebugLoc();
3247  SDValue ShOpLo = Op.getOperand(0);
3248  SDValue ShOpHi = Op.getOperand(1);
3249  SDValue ShAmt  = Op.getOperand(2);
3250  SDValue ARMcc;
3251  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3252
3253  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3254
3255  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3256                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3257  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3258  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3259                                   DAG.getConstant(VTBits, MVT::i32));
3260  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3261  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3262  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3263
3264  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3265  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3266                          ARMcc, DAG, dl);
3267  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3268  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
3269                           CCR, Cmp);
3270
3271  SDValue Ops[2] = { Lo, Hi };
3272  return DAG.getMergeValues(Ops, 2, dl);
3273}
3274
3275/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
3276/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3277SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
3278                                               SelectionDAG &DAG) const {
3279  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3280  EVT VT = Op.getValueType();
3281  unsigned VTBits = VT.getSizeInBits();
3282  DebugLoc dl = Op.getDebugLoc();
3283  SDValue ShOpLo = Op.getOperand(0);
3284  SDValue ShOpHi = Op.getOperand(1);
3285  SDValue ShAmt  = Op.getOperand(2);
3286  SDValue ARMcc;
3287
3288  assert(Op.getOpcode() == ISD::SHL_PARTS);
3289  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3290                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3291  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
3292  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3293                                   DAG.getConstant(VTBits, MVT::i32));
3294  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
3295  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
3296
3297  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3298  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3299  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3300                          ARMcc, DAG, dl);
3301  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
3302  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
3303                           CCR, Cmp);
3304
3305  SDValue Ops[2] = { Lo, Hi };
3306  return DAG.getMergeValues(Ops, 2, dl);
3307}
3308
3309SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3310                                            SelectionDAG &DAG) const {
3311  // The rounding mode is in bits 23:22 of the FPSCR.
3312  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
3313  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
3314  // so that the shift + and get folded into a bitfield extract.
3315  DebugLoc dl = Op.getDebugLoc();
3316  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
3317                              DAG.getConstant(Intrinsic::arm_get_fpscr,
3318                                              MVT::i32));
3319  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
3320                                  DAG.getConstant(1U << 22, MVT::i32));
3321  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
3322                              DAG.getConstant(22, MVT::i32));
3323  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
3324                     DAG.getConstant(3, MVT::i32));
3325}
3326
3327static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
3328                         const ARMSubtarget *ST) {
3329  EVT VT = N->getValueType(0);
3330  DebugLoc dl = N->getDebugLoc();
3331
3332  if (!ST->hasV6T2Ops())
3333    return SDValue();
3334
3335  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
3336  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
3337}
3338
3339static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
3340                          const ARMSubtarget *ST) {
3341  EVT VT = N->getValueType(0);
3342  DebugLoc dl = N->getDebugLoc();
3343
3344  if (!VT.isVector())
3345    return SDValue();
3346
3347  // Lower vector shifts on NEON to use VSHL.
3348  assert(ST->hasNEON() && "unexpected vector shift");
3349
3350  // Left shifts translate directly to the vshiftu intrinsic.
3351  if (N->getOpcode() == ISD::SHL)
3352    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3353                       DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
3354                       N->getOperand(0), N->getOperand(1));
3355
3356  assert((N->getOpcode() == ISD::SRA ||
3357          N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
3358
3359  // NEON uses the same intrinsics for both left and right shifts.  For
3360  // right shifts, the shift amounts are negative, so negate the vector of
3361  // shift amounts.
3362  EVT ShiftVT = N->getOperand(1).getValueType();
3363  SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
3364                                     getZeroVector(ShiftVT, DAG, dl),
3365                                     N->getOperand(1));
3366  Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
3367                             Intrinsic::arm_neon_vshifts :
3368                             Intrinsic::arm_neon_vshiftu);
3369  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3370                     DAG.getConstant(vshiftInt, MVT::i32),
3371                     N->getOperand(0), NegatedCount);
3372}
3373
3374static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
3375                                const ARMSubtarget *ST) {
3376  EVT VT = N->getValueType(0);
3377  DebugLoc dl = N->getDebugLoc();
3378
3379  // We can get here for a node like i32 = ISD::SHL i32, i64
3380  if (VT != MVT::i64)
3381    return SDValue();
3382
3383  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
3384         "Unknown shift to lower!");
3385
3386  // We only lower SRA, SRL of 1 here, all others use generic lowering.
3387  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
3388      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
3389    return SDValue();
3390
3391  // If we are in thumb mode, we don't have RRX.
3392  if (ST->isThumb1Only()) return SDValue();
3393
3394  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
3395  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3396                           DAG.getConstant(0, MVT::i32));
3397  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3398                           DAG.getConstant(1, MVT::i32));
3399
3400  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
3401  // captures the result into a carry flag.
3402  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
3403  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
3404
3405  // The low part is an ARMISD::RRX operand, which shifts the carry in.
3406  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
3407
3408  // Merge the pieces into a single i64 value.
3409 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
3410}
3411
3412static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
3413  SDValue TmpOp0, TmpOp1;
3414  bool Invert = false;
3415  bool Swap = false;
3416  unsigned Opc = 0;
3417
3418  SDValue Op0 = Op.getOperand(0);
3419  SDValue Op1 = Op.getOperand(1);
3420  SDValue CC = Op.getOperand(2);
3421  EVT VT = Op.getValueType();
3422  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3423  DebugLoc dl = Op.getDebugLoc();
3424
3425  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
3426    switch (SetCCOpcode) {
3427    default: llvm_unreachable("Illegal FP comparison"); break;
3428    case ISD::SETUNE:
3429    case ISD::SETNE:  Invert = true; // Fallthrough
3430    case ISD::SETOEQ:
3431    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3432    case ISD::SETOLT:
3433    case ISD::SETLT: Swap = true; // Fallthrough
3434    case ISD::SETOGT:
3435    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3436    case ISD::SETOLE:
3437    case ISD::SETLE:  Swap = true; // Fallthrough
3438    case ISD::SETOGE:
3439    case ISD::SETGE: Opc = ARMISD::VCGE; break;
3440    case ISD::SETUGE: Swap = true; // Fallthrough
3441    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
3442    case ISD::SETUGT: Swap = true; // Fallthrough
3443    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
3444    case ISD::SETUEQ: Invert = true; // Fallthrough
3445    case ISD::SETONE:
3446      // Expand this to (OLT | OGT).
3447      TmpOp0 = Op0;
3448      TmpOp1 = Op1;
3449      Opc = ISD::OR;
3450      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3451      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
3452      break;
3453    case ISD::SETUO: Invert = true; // Fallthrough
3454    case ISD::SETO:
3455      // Expand this to (OLT | OGE).
3456      TmpOp0 = Op0;
3457      TmpOp1 = Op1;
3458      Opc = ISD::OR;
3459      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3460      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
3461      break;
3462    }
3463  } else {
3464    // Integer comparisons.
3465    switch (SetCCOpcode) {
3466    default: llvm_unreachable("Illegal integer comparison"); break;
3467    case ISD::SETNE:  Invert = true;
3468    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3469    case ISD::SETLT:  Swap = true;
3470    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3471    case ISD::SETLE:  Swap = true;
3472    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
3473    case ISD::SETULT: Swap = true;
3474    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
3475    case ISD::SETULE: Swap = true;
3476    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
3477    }
3478
3479    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
3480    if (Opc == ARMISD::VCEQ) {
3481
3482      SDValue AndOp;
3483      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3484        AndOp = Op0;
3485      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
3486        AndOp = Op1;
3487
3488      // Ignore bitconvert.
3489      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
3490        AndOp = AndOp.getOperand(0);
3491
3492      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
3493        Opc = ARMISD::VTST;
3494        Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
3495        Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
3496        Invert = !Invert;
3497      }
3498    }
3499  }
3500
3501  if (Swap)
3502    std::swap(Op0, Op1);
3503
3504  // If one of the operands is a constant vector zero, attempt to fold the
3505  // comparison to a specialized compare-against-zero form.
3506  SDValue SingleOp;
3507  if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3508    SingleOp = Op0;
3509  else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
3510    if (Opc == ARMISD::VCGE)
3511      Opc = ARMISD::VCLEZ;
3512    else if (Opc == ARMISD::VCGT)
3513      Opc = ARMISD::VCLTZ;
3514    SingleOp = Op1;
3515  }
3516
3517  SDValue Result;
3518  if (SingleOp.getNode()) {
3519    switch (Opc) {
3520    case ARMISD::VCEQ:
3521      Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
3522    case ARMISD::VCGE:
3523      Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
3524    case ARMISD::VCLEZ:
3525      Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
3526    case ARMISD::VCGT:
3527      Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
3528    case ARMISD::VCLTZ:
3529      Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
3530    default:
3531      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3532    }
3533  } else {
3534     Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3535  }
3536
3537  if (Invert)
3538    Result = DAG.getNOT(dl, Result, VT);
3539
3540  return Result;
3541}
3542
3543/// isNEONModifiedImm - Check if the specified splat value corresponds to a
3544/// valid vector constant for a NEON instruction with a "modified immediate"
3545/// operand (e.g., VMOV).  If so, return the encoded value.
3546static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3547                                 unsigned SplatBitSize, SelectionDAG &DAG,
3548                                 EVT &VT, bool is128Bits, NEONModImmType type) {
3549  unsigned OpCmode, Imm;
3550
3551  // SplatBitSize is set to the smallest size that splats the vector, so a
3552  // zero vector will always have SplatBitSize == 8.  However, NEON modified
3553  // immediate instructions others than VMOV do not support the 8-bit encoding
3554  // of a zero vector, and the default encoding of zero is supposed to be the
3555  // 32-bit version.
3556  if (SplatBits == 0)
3557    SplatBitSize = 32;
3558
3559  switch (SplatBitSize) {
3560  case 8:
3561    if (type != VMOVModImm)
3562      return SDValue();
3563    // Any 1-byte value is OK.  Op=0, Cmode=1110.
3564    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3565    OpCmode = 0xe;
3566    Imm = SplatBits;
3567    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3568    break;
3569
3570  case 16:
3571    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3572    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3573    if ((SplatBits & ~0xff) == 0) {
3574      // Value = 0x00nn: Op=x, Cmode=100x.
3575      OpCmode = 0x8;
3576      Imm = SplatBits;
3577      break;
3578    }
3579    if ((SplatBits & ~0xff00) == 0) {
3580      // Value = 0xnn00: Op=x, Cmode=101x.
3581      OpCmode = 0xa;
3582      Imm = SplatBits >> 8;
3583      break;
3584    }
3585    return SDValue();
3586
3587  case 32:
3588    // NEON's 32-bit VMOV supports splat values where:
3589    // * only one byte is nonzero, or
3590    // * the least significant byte is 0xff and the second byte is nonzero, or
3591    // * the least significant 2 bytes are 0xff and the third is nonzero.
3592    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3593    if ((SplatBits & ~0xff) == 0) {
3594      // Value = 0x000000nn: Op=x, Cmode=000x.
3595      OpCmode = 0;
3596      Imm = SplatBits;
3597      break;
3598    }
3599    if ((SplatBits & ~0xff00) == 0) {
3600      // Value = 0x0000nn00: Op=x, Cmode=001x.
3601      OpCmode = 0x2;
3602      Imm = SplatBits >> 8;
3603      break;
3604    }
3605    if ((SplatBits & ~0xff0000) == 0) {
3606      // Value = 0x00nn0000: Op=x, Cmode=010x.
3607      OpCmode = 0x4;
3608      Imm = SplatBits >> 16;
3609      break;
3610    }
3611    if ((SplatBits & ~0xff000000) == 0) {
3612      // Value = 0xnn000000: Op=x, Cmode=011x.
3613      OpCmode = 0x6;
3614      Imm = SplatBits >> 24;
3615      break;
3616    }
3617
3618    // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
3619    if (type == OtherModImm) return SDValue();
3620
3621    if ((SplatBits & ~0xffff) == 0 &&
3622        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3623      // Value = 0x0000nnff: Op=x, Cmode=1100.
3624      OpCmode = 0xc;
3625      Imm = SplatBits >> 8;
3626      SplatBits |= 0xff;
3627      break;
3628    }
3629
3630    if ((SplatBits & ~0xffffff) == 0 &&
3631        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3632      // Value = 0x00nnffff: Op=x, Cmode=1101.
3633      OpCmode = 0xd;
3634      Imm = SplatBits >> 16;
3635      SplatBits |= 0xffff;
3636      break;
3637    }
3638
3639    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3640    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3641    // VMOV.I32.  A (very) minor optimization would be to replicate the value
3642    // and fall through here to test for a valid 64-bit splat.  But, then the
3643    // caller would also need to check and handle the change in size.
3644    return SDValue();
3645
3646  case 64: {
3647    if (type != VMOVModImm)
3648      return SDValue();
3649    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3650    uint64_t BitMask = 0xff;
3651    uint64_t Val = 0;
3652    unsigned ImmMask = 1;
3653    Imm = 0;
3654    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3655      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3656        Val |= BitMask;
3657        Imm |= ImmMask;
3658      } else if ((SplatBits & BitMask) != 0) {
3659        return SDValue();
3660      }
3661      BitMask <<= 8;
3662      ImmMask <<= 1;
3663    }
3664    // Op=1, Cmode=1110.
3665    OpCmode = 0x1e;
3666    SplatBits = Val;
3667    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3668    break;
3669  }
3670
3671  default:
3672    llvm_unreachable("unexpected size for isNEONModifiedImm");
3673    return SDValue();
3674  }
3675
3676  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3677  return DAG.getTargetConstant(EncodedVal, MVT::i32);
3678}
3679
3680static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
3681                       bool &ReverseVEXT, unsigned &Imm) {
3682  unsigned NumElts = VT.getVectorNumElements();
3683  ReverseVEXT = false;
3684
3685  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
3686  if (M[0] < 0)
3687    return false;
3688
3689  Imm = M[0];
3690
3691  // If this is a VEXT shuffle, the immediate value is the index of the first
3692  // element.  The other shuffle indices must be the successive elements after
3693  // the first one.
3694  unsigned ExpectedElt = Imm;
3695  for (unsigned i = 1; i < NumElts; ++i) {
3696    // Increment the expected index.  If it wraps around, it may still be
3697    // a VEXT but the source vectors must be swapped.
3698    ExpectedElt += 1;
3699    if (ExpectedElt == NumElts * 2) {
3700      ExpectedElt = 0;
3701      ReverseVEXT = true;
3702    }
3703
3704    if (M[i] < 0) continue; // ignore UNDEF indices
3705    if (ExpectedElt != static_cast<unsigned>(M[i]))
3706      return false;
3707  }
3708
3709  // Adjust the index value if the source operands will be swapped.
3710  if (ReverseVEXT)
3711    Imm -= NumElts;
3712
3713  return true;
3714}
3715
3716/// isVREVMask - Check if a vector shuffle corresponds to a VREV
3717/// instruction with the specified blocksize.  (The order of the elements
3718/// within each block of the vector is reversed.)
3719static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
3720                       unsigned BlockSize) {
3721  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
3722         "Only possible block sizes for VREV are: 16, 32, 64");
3723
3724  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3725  if (EltSz == 64)
3726    return false;
3727
3728  unsigned NumElts = VT.getVectorNumElements();
3729  unsigned BlockElts = M[0] + 1;
3730  // If the first shuffle index is UNDEF, be optimistic.
3731  if (M[0] < 0)
3732    BlockElts = BlockSize / EltSz;
3733
3734  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3735    return false;
3736
3737  for (unsigned i = 0; i < NumElts; ++i) {
3738    if (M[i] < 0) continue; // ignore UNDEF indices
3739    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3740      return false;
3741  }
3742
3743  return true;
3744}
3745
3746static bool isVTBLMask(const SmallVectorImpl<int> &M, EVT VT) {
3747  // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
3748  // range, then 0 is placed into the resulting vector. So pretty much any mask
3749  // of 8 elements can work here.
3750  return VT == MVT::v8i8 && M.size() == 8;
3751}
3752
3753static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
3754                       unsigned &WhichResult) {
3755  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3756  if (EltSz == 64)
3757    return false;
3758
3759  unsigned NumElts = VT.getVectorNumElements();
3760  WhichResult = (M[0] == 0 ? 0 : 1);
3761  for (unsigned i = 0; i < NumElts; i += 2) {
3762    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3763        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
3764      return false;
3765  }
3766  return true;
3767}
3768
3769/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
3770/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3771/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
3772static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3773                                unsigned &WhichResult) {
3774  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3775  if (EltSz == 64)
3776    return false;
3777
3778  unsigned NumElts = VT.getVectorNumElements();
3779  WhichResult = (M[0] == 0 ? 0 : 1);
3780  for (unsigned i = 0; i < NumElts; i += 2) {
3781    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3782        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
3783      return false;
3784  }
3785  return true;
3786}
3787
3788static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
3789                       unsigned &WhichResult) {
3790  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3791  if (EltSz == 64)
3792    return false;
3793
3794  unsigned NumElts = VT.getVectorNumElements();
3795  WhichResult = (M[0] == 0 ? 0 : 1);
3796  for (unsigned i = 0; i != NumElts; ++i) {
3797    if (M[i] < 0) continue; // ignore UNDEF indices
3798    if ((unsigned) M[i] != 2 * i + WhichResult)
3799      return false;
3800  }
3801
3802  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3803  if (VT.is64BitVector() && EltSz == 32)
3804    return false;
3805
3806  return true;
3807}
3808
3809/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
3810/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3811/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
3812static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3813                                unsigned &WhichResult) {
3814  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3815  if (EltSz == 64)
3816    return false;
3817
3818  unsigned Half = VT.getVectorNumElements() / 2;
3819  WhichResult = (M[0] == 0 ? 0 : 1);
3820  for (unsigned j = 0; j != 2; ++j) {
3821    unsigned Idx = WhichResult;
3822    for (unsigned i = 0; i != Half; ++i) {
3823      int MIdx = M[i + j * Half];
3824      if (MIdx >= 0 && (unsigned) MIdx != Idx)
3825        return false;
3826      Idx += 2;
3827    }
3828  }
3829
3830  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3831  if (VT.is64BitVector() && EltSz == 32)
3832    return false;
3833
3834  return true;
3835}
3836
3837static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
3838                       unsigned &WhichResult) {
3839  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3840  if (EltSz == 64)
3841    return false;
3842
3843  unsigned NumElts = VT.getVectorNumElements();
3844  WhichResult = (M[0] == 0 ? 0 : 1);
3845  unsigned Idx = WhichResult * NumElts / 2;
3846  for (unsigned i = 0; i != NumElts; i += 2) {
3847    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3848        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
3849      return false;
3850    Idx += 1;
3851  }
3852
3853  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3854  if (VT.is64BitVector() && EltSz == 32)
3855    return false;
3856
3857  return true;
3858}
3859
3860/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
3861/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3862/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
3863static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3864                                unsigned &WhichResult) {
3865  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3866  if (EltSz == 64)
3867    return false;
3868
3869  unsigned NumElts = VT.getVectorNumElements();
3870  WhichResult = (M[0] == 0 ? 0 : 1);
3871  unsigned Idx = WhichResult * NumElts / 2;
3872  for (unsigned i = 0; i != NumElts; i += 2) {
3873    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3874        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
3875      return false;
3876    Idx += 1;
3877  }
3878
3879  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3880  if (VT.is64BitVector() && EltSz == 32)
3881    return false;
3882
3883  return true;
3884}
3885
3886// If N is an integer constant that can be moved into a register in one
3887// instruction, return an SDValue of such a constant (will become a MOV
3888// instruction).  Otherwise return null.
3889static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
3890                                     const ARMSubtarget *ST, DebugLoc dl) {
3891  uint64_t Val;
3892  if (!isa<ConstantSDNode>(N))
3893    return SDValue();
3894  Val = cast<ConstantSDNode>(N)->getZExtValue();
3895
3896  if (ST->isThumb1Only()) {
3897    if (Val <= 255 || ~Val <= 255)
3898      return DAG.getConstant(Val, MVT::i32);
3899  } else {
3900    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
3901      return DAG.getConstant(Val, MVT::i32);
3902  }
3903  return SDValue();
3904}
3905
3906// If this is a case we can't handle, return null and let the default
3907// expansion code take care of it.
3908SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
3909                                             const ARMSubtarget *ST) const {
3910  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
3911  DebugLoc dl = Op.getDebugLoc();
3912  EVT VT = Op.getValueType();
3913
3914  APInt SplatBits, SplatUndef;
3915  unsigned SplatBitSize;
3916  bool HasAnyUndefs;
3917  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
3918    if (SplatBitSize <= 64) {
3919      // Check if an immediate VMOV works.
3920      EVT VmovVT;
3921      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
3922                                      SplatUndef.getZExtValue(), SplatBitSize,
3923                                      DAG, VmovVT, VT.is128BitVector(),
3924                                      VMOVModImm);
3925      if (Val.getNode()) {
3926        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
3927        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3928      }
3929
3930      // Try an immediate VMVN.
3931      uint64_t NegatedImm = (SplatBits.getZExtValue() ^
3932                             ((1LL << SplatBitSize) - 1));
3933      Val = isNEONModifiedImm(NegatedImm,
3934                                      SplatUndef.getZExtValue(), SplatBitSize,
3935                                      DAG, VmovVT, VT.is128BitVector(),
3936                                      VMVNModImm);
3937      if (Val.getNode()) {
3938        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
3939        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3940      }
3941    }
3942  }
3943
3944  // Scan through the operands to see if only one value is used.
3945  unsigned NumElts = VT.getVectorNumElements();
3946  bool isOnlyLowElement = true;
3947  bool usesOnlyOneValue = true;
3948  bool isConstant = true;
3949  SDValue Value;
3950  for (unsigned i = 0; i < NumElts; ++i) {
3951    SDValue V = Op.getOperand(i);
3952    if (V.getOpcode() == ISD::UNDEF)
3953      continue;
3954    if (i > 0)
3955      isOnlyLowElement = false;
3956    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
3957      isConstant = false;
3958
3959    if (!Value.getNode())
3960      Value = V;
3961    else if (V != Value)
3962      usesOnlyOneValue = false;
3963  }
3964
3965  if (!Value.getNode())
3966    return DAG.getUNDEF(VT);
3967
3968  if (isOnlyLowElement)
3969    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
3970
3971  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3972
3973  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
3974  // i32 and try again.
3975  if (usesOnlyOneValue && EltSize <= 32) {
3976    if (!isConstant)
3977      return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
3978    if (VT.getVectorElementType().isFloatingPoint()) {
3979      SmallVector<SDValue, 8> Ops;
3980      for (unsigned i = 0; i < NumElts; ++i)
3981        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
3982                                  Op.getOperand(i)));
3983      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
3984      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
3985      Val = LowerBUILD_VECTOR(Val, DAG, ST);
3986      if (Val.getNode())
3987        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
3988    }
3989    SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
3990    if (Val.getNode())
3991      return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
3992  }
3993
3994  // If all elements are constants and the case above didn't get hit, fall back
3995  // to the default expansion, which will generate a load from the constant
3996  // pool.
3997  if (isConstant)
3998    return SDValue();
3999
4000  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
4001  if (NumElts >= 4) {
4002    SDValue shuffle = ReconstructShuffle(Op, DAG);
4003    if (shuffle != SDValue())
4004      return shuffle;
4005  }
4006
4007  // Vectors with 32- or 64-bit elements can be built by directly assigning
4008  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
4009  // will be legalized.
4010  if (EltSize >= 32) {
4011    // Do the expansion with floating-point types, since that is what the VFP
4012    // registers are defined to use, and since i64 is not legal.
4013    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4014    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4015    SmallVector<SDValue, 8> Ops;
4016    for (unsigned i = 0; i < NumElts; ++i)
4017      Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
4018    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4019    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4020  }
4021
4022  return SDValue();
4023}
4024
4025// Gather data to see if the operation can be modelled as a
4026// shuffle in combination with VEXTs.
4027SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
4028                                              SelectionDAG &DAG) const {
4029  DebugLoc dl = Op.getDebugLoc();
4030  EVT VT = Op.getValueType();
4031  unsigned NumElts = VT.getVectorNumElements();
4032
4033  SmallVector<SDValue, 2> SourceVecs;
4034  SmallVector<unsigned, 2> MinElts;
4035  SmallVector<unsigned, 2> MaxElts;
4036
4037  for (unsigned i = 0; i < NumElts; ++i) {
4038    SDValue V = Op.getOperand(i);
4039    if (V.getOpcode() == ISD::UNDEF)
4040      continue;
4041    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4042      // A shuffle can only come from building a vector from various
4043      // elements of other vectors.
4044      return SDValue();
4045    }
4046
4047    // Record this extraction against the appropriate vector if possible...
4048    SDValue SourceVec = V.getOperand(0);
4049    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4050    bool FoundSource = false;
4051    for (unsigned j = 0; j < SourceVecs.size(); ++j) {
4052      if (SourceVecs[j] == SourceVec) {
4053        if (MinElts[j] > EltNo)
4054          MinElts[j] = EltNo;
4055        if (MaxElts[j] < EltNo)
4056          MaxElts[j] = EltNo;
4057        FoundSource = true;
4058        break;
4059      }
4060    }
4061
4062    // Or record a new source if not...
4063    if (!FoundSource) {
4064      SourceVecs.push_back(SourceVec);
4065      MinElts.push_back(EltNo);
4066      MaxElts.push_back(EltNo);
4067    }
4068  }
4069
4070  // Currently only do something sane when at most two source vectors
4071  // involved.
4072  if (SourceVecs.size() > 2)
4073    return SDValue();
4074
4075  SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
4076  int VEXTOffsets[2] = {0, 0};
4077
4078  // This loop extracts the usage patterns of the source vectors
4079  // and prepares appropriate SDValues for a shuffle if possible.
4080  for (unsigned i = 0; i < SourceVecs.size(); ++i) {
4081    if (SourceVecs[i].getValueType() == VT) {
4082      // No VEXT necessary
4083      ShuffleSrcs[i] = SourceVecs[i];
4084      VEXTOffsets[i] = 0;
4085      continue;
4086    } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
4087      // It probably isn't worth padding out a smaller vector just to
4088      // break it down again in a shuffle.
4089      return SDValue();
4090    }
4091
4092    // Since only 64-bit and 128-bit vectors are legal on ARM and
4093    // we've eliminated the other cases...
4094    assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
4095           "unexpected vector sizes in ReconstructShuffle");
4096
4097    if (MaxElts[i] - MinElts[i] >= NumElts) {
4098      // Span too large for a VEXT to cope
4099      return SDValue();
4100    }
4101
4102    if (MinElts[i] >= NumElts) {
4103      // The extraction can just take the second half
4104      VEXTOffsets[i] = NumElts;
4105      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4106                                   SourceVecs[i],
4107                                   DAG.getIntPtrConstant(NumElts));
4108    } else if (MaxElts[i] < NumElts) {
4109      // The extraction can just take the first half
4110      VEXTOffsets[i] = 0;
4111      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4112                                   SourceVecs[i],
4113                                   DAG.getIntPtrConstant(0));
4114    } else {
4115      // An actual VEXT is needed
4116      VEXTOffsets[i] = MinElts[i];
4117      SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4118                                     SourceVecs[i],
4119                                     DAG.getIntPtrConstant(0));
4120      SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4121                                     SourceVecs[i],
4122                                     DAG.getIntPtrConstant(NumElts));
4123      ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
4124                                   DAG.getConstant(VEXTOffsets[i], MVT::i32));
4125    }
4126  }
4127
4128  SmallVector<int, 8> Mask;
4129
4130  for (unsigned i = 0; i < NumElts; ++i) {
4131    SDValue Entry = Op.getOperand(i);
4132    if (Entry.getOpcode() == ISD::UNDEF) {
4133      Mask.push_back(-1);
4134      continue;
4135    }
4136
4137    SDValue ExtractVec = Entry.getOperand(0);
4138    int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
4139                                          .getOperand(1))->getSExtValue();
4140    if (ExtractVec == SourceVecs[0]) {
4141      Mask.push_back(ExtractElt - VEXTOffsets[0]);
4142    } else {
4143      Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
4144    }
4145  }
4146
4147  // Final check before we try to produce nonsense...
4148  if (isShuffleMaskLegal(Mask, VT))
4149    return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
4150                                &Mask[0]);
4151
4152  return SDValue();
4153}
4154
4155/// isShuffleMaskLegal - Targets can use this to indicate that they only
4156/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4157/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4158/// are assumed to be legal.
4159bool
4160ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
4161                                      EVT VT) const {
4162  if (VT.getVectorNumElements() == 4 &&
4163      (VT.is128BitVector() || VT.is64BitVector())) {
4164    unsigned PFIndexes[4];
4165    for (unsigned i = 0; i != 4; ++i) {
4166      if (M[i] < 0)
4167        PFIndexes[i] = 8;
4168      else
4169        PFIndexes[i] = M[i];
4170    }
4171
4172    // Compute the index in the perfect shuffle table.
4173    unsigned PFTableIndex =
4174      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4175    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4176    unsigned Cost = (PFEntry >> 30);
4177
4178    if (Cost <= 4)
4179      return true;
4180  }
4181
4182  bool ReverseVEXT;
4183  unsigned Imm, WhichResult;
4184
4185  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4186  return (EltSize >= 32 ||
4187          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
4188          isVREVMask(M, VT, 64) ||
4189          isVREVMask(M, VT, 32) ||
4190          isVREVMask(M, VT, 16) ||
4191          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
4192          isVTBLMask(M, VT) ||
4193          isVTRNMask(M, VT, WhichResult) ||
4194          isVUZPMask(M, VT, WhichResult) ||
4195          isVZIPMask(M, VT, WhichResult) ||
4196          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
4197          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
4198          isVZIP_v_undef_Mask(M, VT, WhichResult));
4199}
4200
4201/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4202/// the specified operations to build the shuffle.
4203static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4204                                      SDValue RHS, SelectionDAG &DAG,
4205                                      DebugLoc dl) {
4206  unsigned OpNum = (PFEntry >> 26) & 0x0F;
4207  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4208  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4209
4210  enum {
4211    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4212    OP_VREV,
4213    OP_VDUP0,
4214    OP_VDUP1,
4215    OP_VDUP2,
4216    OP_VDUP3,
4217    OP_VEXT1,
4218    OP_VEXT2,
4219    OP_VEXT3,
4220    OP_VUZPL, // VUZP, left result
4221    OP_VUZPR, // VUZP, right result
4222    OP_VZIPL, // VZIP, left result
4223    OP_VZIPR, // VZIP, right result
4224    OP_VTRNL, // VTRN, left result
4225    OP_VTRNR  // VTRN, right result
4226  };
4227
4228  if (OpNum == OP_COPY) {
4229    if (LHSID == (1*9+2)*9+3) return LHS;
4230    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4231    return RHS;
4232  }
4233
4234  SDValue OpLHS, OpRHS;
4235  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4236  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4237  EVT VT = OpLHS.getValueType();
4238
4239  switch (OpNum) {
4240  default: llvm_unreachable("Unknown shuffle opcode!");
4241  case OP_VREV:
4242    // VREV divides the vector in half and swaps within the half.
4243    if (VT.getVectorElementType() == MVT::i32 ||
4244        VT.getVectorElementType() == MVT::f32)
4245      return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
4246    // vrev <4 x i16> -> VREV32
4247    if (VT.getVectorElementType() == MVT::i16)
4248      return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
4249    // vrev <4 x i8> -> VREV16
4250    assert(VT.getVectorElementType() == MVT::i8);
4251    return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
4252  case OP_VDUP0:
4253  case OP_VDUP1:
4254  case OP_VDUP2:
4255  case OP_VDUP3:
4256    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4257                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
4258  case OP_VEXT1:
4259  case OP_VEXT2:
4260  case OP_VEXT3:
4261    return DAG.getNode(ARMISD::VEXT, dl, VT,
4262                       OpLHS, OpRHS,
4263                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
4264  case OP_VUZPL:
4265  case OP_VUZPR:
4266    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4267                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
4268  case OP_VZIPL:
4269  case OP_VZIPR:
4270    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4271                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
4272  case OP_VTRNL:
4273  case OP_VTRNR:
4274    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4275                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
4276  }
4277}
4278
4279static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
4280                                       SmallVectorImpl<int> &ShuffleMask,
4281                                       SelectionDAG &DAG) {
4282  // Check to see if we can use the VTBL instruction.
4283  SDValue V1 = Op.getOperand(0);
4284  SDValue V2 = Op.getOperand(1);
4285  DebugLoc DL = Op.getDebugLoc();
4286
4287  SmallVector<SDValue, 8> VTBLMask;
4288  for (SmallVectorImpl<int>::iterator
4289         I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
4290    VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
4291
4292  if (V2.getNode()->getOpcode() == ISD::UNDEF)
4293    return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
4294                       DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4295                                   &VTBLMask[0], 8));
4296
4297  return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
4298                     DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4299                                 &VTBLMask[0], 8));
4300}
4301
4302static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4303  SDValue V1 = Op.getOperand(0);
4304  SDValue V2 = Op.getOperand(1);
4305  DebugLoc dl = Op.getDebugLoc();
4306  EVT VT = Op.getValueType();
4307  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
4308  SmallVector<int, 8> ShuffleMask;
4309
4310  // Convert shuffles that are directly supported on NEON to target-specific
4311  // DAG nodes, instead of keeping them as shuffles and matching them again
4312  // during code selection.  This is more efficient and avoids the possibility
4313  // of inconsistencies between legalization and selection.
4314  // FIXME: floating-point vectors should be canonicalized to integer vectors
4315  // of the same time so that they get CSEd properly.
4316  SVN->getMask(ShuffleMask);
4317
4318  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4319  if (EltSize <= 32) {
4320    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
4321      int Lane = SVN->getSplatIndex();
4322      // If this is undef splat, generate it via "just" vdup, if possible.
4323      if (Lane == -1) Lane = 0;
4324
4325      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4326        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4327      }
4328      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
4329                         DAG.getConstant(Lane, MVT::i32));
4330    }
4331
4332    bool ReverseVEXT;
4333    unsigned Imm;
4334    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
4335      if (ReverseVEXT)
4336        std::swap(V1, V2);
4337      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
4338                         DAG.getConstant(Imm, MVT::i32));
4339    }
4340
4341    if (isVREVMask(ShuffleMask, VT, 64))
4342      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
4343    if (isVREVMask(ShuffleMask, VT, 32))
4344      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
4345    if (isVREVMask(ShuffleMask, VT, 16))
4346      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
4347
4348    // Check for Neon shuffles that modify both input vectors in place.
4349    // If both results are used, i.e., if there are two shuffles with the same
4350    // source operands and with masks corresponding to both results of one of
4351    // these operations, DAG memoization will ensure that a single node is
4352    // used for both shuffles.
4353    unsigned WhichResult;
4354    if (isVTRNMask(ShuffleMask, VT, WhichResult))
4355      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4356                         V1, V2).getValue(WhichResult);
4357    if (isVUZPMask(ShuffleMask, VT, WhichResult))
4358      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4359                         V1, V2).getValue(WhichResult);
4360    if (isVZIPMask(ShuffleMask, VT, WhichResult))
4361      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4362                         V1, V2).getValue(WhichResult);
4363
4364    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
4365      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4366                         V1, V1).getValue(WhichResult);
4367    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4368      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4369                         V1, V1).getValue(WhichResult);
4370    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4371      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4372                         V1, V1).getValue(WhichResult);
4373  }
4374
4375  // If the shuffle is not directly supported and it has 4 elements, use
4376  // the PerfectShuffle-generated table to synthesize it from other shuffles.
4377  unsigned NumElts = VT.getVectorNumElements();
4378  if (NumElts == 4) {
4379    unsigned PFIndexes[4];
4380    for (unsigned i = 0; i != 4; ++i) {
4381      if (ShuffleMask[i] < 0)
4382        PFIndexes[i] = 8;
4383      else
4384        PFIndexes[i] = ShuffleMask[i];
4385    }
4386
4387    // Compute the index in the perfect shuffle table.
4388    unsigned PFTableIndex =
4389      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4390    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4391    unsigned Cost = (PFEntry >> 30);
4392
4393    if (Cost <= 4)
4394      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4395  }
4396
4397  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
4398  if (EltSize >= 32) {
4399    // Do the expansion with floating-point types, since that is what the VFP
4400    // registers are defined to use, and since i64 is not legal.
4401    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4402    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4403    V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
4404    V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
4405    SmallVector<SDValue, 8> Ops;
4406    for (unsigned i = 0; i < NumElts; ++i) {
4407      if (ShuffleMask[i] < 0)
4408        Ops.push_back(DAG.getUNDEF(EltVT));
4409      else
4410        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
4411                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
4412                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
4413                                                  MVT::i32)));
4414    }
4415    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4416    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4417  }
4418
4419  if (VT == MVT::v8i8) {
4420    SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
4421    if (NewOp.getNode())
4422      return NewOp;
4423  }
4424
4425  return SDValue();
4426}
4427
4428static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4429  // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
4430  SDValue Lane = Op.getOperand(1);
4431  if (!isa<ConstantSDNode>(Lane))
4432    return SDValue();
4433
4434  SDValue Vec = Op.getOperand(0);
4435  if (Op.getValueType() == MVT::i32 &&
4436      Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
4437    DebugLoc dl = Op.getDebugLoc();
4438    return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
4439  }
4440
4441  return Op;
4442}
4443
4444static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
4445  // The only time a CONCAT_VECTORS operation can have legal types is when
4446  // two 64-bit vectors are concatenated to a 128-bit vector.
4447  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
4448         "unexpected CONCAT_VECTORS");
4449  DebugLoc dl = Op.getDebugLoc();
4450  SDValue Val = DAG.getUNDEF(MVT::v2f64);
4451  SDValue Op0 = Op.getOperand(0);
4452  SDValue Op1 = Op.getOperand(1);
4453  if (Op0.getOpcode() != ISD::UNDEF)
4454    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4455                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
4456                      DAG.getIntPtrConstant(0));
4457  if (Op1.getOpcode() != ISD::UNDEF)
4458    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4459                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
4460                      DAG.getIntPtrConstant(1));
4461  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
4462}
4463
4464/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
4465/// element has been zero/sign-extended, depending on the isSigned parameter,
4466/// from an integer type half its size.
4467static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
4468                                   bool isSigned) {
4469  // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
4470  EVT VT = N->getValueType(0);
4471  if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
4472    SDNode *BVN = N->getOperand(0).getNode();
4473    if (BVN->getValueType(0) != MVT::v4i32 ||
4474        BVN->getOpcode() != ISD::BUILD_VECTOR)
4475      return false;
4476    unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4477    unsigned HiElt = 1 - LoElt;
4478    ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
4479    ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
4480    ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
4481    ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
4482    if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
4483      return false;
4484    if (isSigned) {
4485      if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
4486          Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
4487        return true;
4488    } else {
4489      if (Hi0->isNullValue() && Hi1->isNullValue())
4490        return true;
4491    }
4492    return false;
4493  }
4494
4495  if (N->getOpcode() != ISD::BUILD_VECTOR)
4496    return false;
4497
4498  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
4499    SDNode *Elt = N->getOperand(i).getNode();
4500    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
4501      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4502      unsigned HalfSize = EltSize / 2;
4503      if (isSigned) {
4504        int64_t SExtVal = C->getSExtValue();
4505        if ((SExtVal >> HalfSize) != (SExtVal >> EltSize))
4506          return false;
4507      } else {
4508        if ((C->getZExtValue() >> HalfSize) != 0)
4509          return false;
4510      }
4511      continue;
4512    }
4513    return false;
4514  }
4515
4516  return true;
4517}
4518
4519/// isSignExtended - Check if a node is a vector value that is sign-extended
4520/// or a constant BUILD_VECTOR with sign-extended elements.
4521static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
4522  if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
4523    return true;
4524  if (isExtendedBUILD_VECTOR(N, DAG, true))
4525    return true;
4526  return false;
4527}
4528
4529/// isZeroExtended - Check if a node is a vector value that is zero-extended
4530/// or a constant BUILD_VECTOR with zero-extended elements.
4531static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
4532  if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
4533    return true;
4534  if (isExtendedBUILD_VECTOR(N, DAG, false))
4535    return true;
4536  return false;
4537}
4538
4539/// SkipExtension - For a node that is a SIGN_EXTEND, ZERO_EXTEND, extending
4540/// load, or BUILD_VECTOR with extended elements, return the unextended value.
4541static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
4542  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
4543    return N->getOperand(0);
4544  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
4545    return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
4546                       LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
4547                       LD->isNonTemporal(), LD->getAlignment());
4548  // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
4549  // have been legalized as a BITCAST from v4i32.
4550  if (N->getOpcode() == ISD::BITCAST) {
4551    SDNode *BVN = N->getOperand(0).getNode();
4552    assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
4553           BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
4554    unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4555    return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
4556                       BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
4557  }
4558  // Construct a new BUILD_VECTOR with elements truncated to half the size.
4559  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
4560  EVT VT = N->getValueType(0);
4561  unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
4562  unsigned NumElts = VT.getVectorNumElements();
4563  MVT TruncVT = MVT::getIntegerVT(EltSize);
4564  SmallVector<SDValue, 8> Ops;
4565  for (unsigned i = 0; i != NumElts; ++i) {
4566    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
4567    const APInt &CInt = C->getAPIntValue();
4568    Ops.push_back(DAG.getConstant(CInt.trunc(EltSize), TruncVT));
4569  }
4570  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
4571                     MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
4572}
4573
4574static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
4575  unsigned Opcode = N->getOpcode();
4576  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4577    SDNode *N0 = N->getOperand(0).getNode();
4578    SDNode *N1 = N->getOperand(1).getNode();
4579    return N0->hasOneUse() && N1->hasOneUse() &&
4580      isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
4581  }
4582  return false;
4583}
4584
4585static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
4586  unsigned Opcode = N->getOpcode();
4587  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4588    SDNode *N0 = N->getOperand(0).getNode();
4589    SDNode *N1 = N->getOperand(1).getNode();
4590    return N0->hasOneUse() && N1->hasOneUse() &&
4591      isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
4592  }
4593  return false;
4594}
4595
4596static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
4597  // Multiplications are only custom-lowered for 128-bit vectors so that
4598  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
4599  EVT VT = Op.getValueType();
4600  assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
4601  SDNode *N0 = Op.getOperand(0).getNode();
4602  SDNode *N1 = Op.getOperand(1).getNode();
4603  unsigned NewOpc = 0;
4604  bool isMLA = false;
4605  bool isN0SExt = isSignExtended(N0, DAG);
4606  bool isN1SExt = isSignExtended(N1, DAG);
4607  if (isN0SExt && isN1SExt)
4608    NewOpc = ARMISD::VMULLs;
4609  else {
4610    bool isN0ZExt = isZeroExtended(N0, DAG);
4611    bool isN1ZExt = isZeroExtended(N1, DAG);
4612    if (isN0ZExt && isN1ZExt)
4613      NewOpc = ARMISD::VMULLu;
4614    else if (isN1SExt || isN1ZExt) {
4615      // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
4616      // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
4617      if (isN1SExt && isAddSubSExt(N0, DAG)) {
4618        NewOpc = ARMISD::VMULLs;
4619        isMLA = true;
4620      } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
4621        NewOpc = ARMISD::VMULLu;
4622        isMLA = true;
4623      } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
4624        std::swap(N0, N1);
4625        NewOpc = ARMISD::VMULLu;
4626        isMLA = true;
4627      }
4628    }
4629
4630    if (!NewOpc) {
4631      if (VT == MVT::v2i64)
4632        // Fall through to expand this.  It is not legal.
4633        return SDValue();
4634      else
4635        // Other vector multiplications are legal.
4636        return Op;
4637    }
4638  }
4639
4640  // Legalize to a VMULL instruction.
4641  DebugLoc DL = Op.getDebugLoc();
4642  SDValue Op0;
4643  SDValue Op1 = SkipExtension(N1, DAG);
4644  if (!isMLA) {
4645    Op0 = SkipExtension(N0, DAG);
4646    assert(Op0.getValueType().is64BitVector() &&
4647           Op1.getValueType().is64BitVector() &&
4648           "unexpected types for extended operands to VMULL");
4649    return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
4650  }
4651
4652  // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
4653  // isel lowering to take advantage of no-stall back to back vmul + vmla.
4654  //   vmull q0, d4, d6
4655  //   vmlal q0, d5, d6
4656  // is faster than
4657  //   vaddl q0, d4, d5
4658  //   vmovl q1, d6
4659  //   vmul  q0, q0, q1
4660  SDValue N00 = SkipExtension(N0->getOperand(0).getNode(), DAG);
4661  SDValue N01 = SkipExtension(N0->getOperand(1).getNode(), DAG);
4662  EVT Op1VT = Op1.getValueType();
4663  return DAG.getNode(N0->getOpcode(), DL, VT,
4664                     DAG.getNode(NewOpc, DL, VT,
4665                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
4666                     DAG.getNode(NewOpc, DL, VT,
4667                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
4668}
4669
4670static SDValue
4671LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) {
4672  // Convert to float
4673  // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
4674  // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
4675  X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
4676  Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
4677  X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
4678  Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
4679  // Get reciprocal estimate.
4680  // float4 recip = vrecpeq_f32(yf);
4681  Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4682                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
4683  // Because char has a smaller range than uchar, we can actually get away
4684  // without any newton steps.  This requires that we use a weird bias
4685  // of 0xb000, however (again, this has been exhaustively tested).
4686  // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
4687  X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
4688  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
4689  Y = DAG.getConstant(0xb000, MVT::i32);
4690  Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
4691  X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
4692  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
4693  // Convert back to short.
4694  X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
4695  X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
4696  return X;
4697}
4698
4699static SDValue
4700LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) {
4701  SDValue N2;
4702  // Convert to float.
4703  // float4 yf = vcvt_f32_s32(vmovl_s16(y));
4704  // float4 xf = vcvt_f32_s32(vmovl_s16(x));
4705  N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
4706  N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
4707  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4708  N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4709
4710  // Use reciprocal estimate and one refinement step.
4711  // float4 recip = vrecpeq_f32(yf);
4712  // recip *= vrecpsq_f32(yf, recip);
4713  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4714                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
4715  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4716                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4717                   N1, N2);
4718  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4719  // Because short has a smaller range than ushort, we can actually get away
4720  // with only a single newton step.  This requires that we use a weird bias
4721  // of 89, however (again, this has been exhaustively tested).
4722  // float4 result = as_float4(as_int4(xf*recip) + 0x89);
4723  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4724  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4725  N1 = DAG.getConstant(0x89, MVT::i32);
4726  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4727  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4728  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4729  // Convert back to integer and return.
4730  // return vmovn_s32(vcvt_s32_f32(result));
4731  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4732  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4733  return N0;
4734}
4735
4736static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
4737  EVT VT = Op.getValueType();
4738  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4739         "unexpected type for custom-lowering ISD::SDIV");
4740
4741  DebugLoc dl = Op.getDebugLoc();
4742  SDValue N0 = Op.getOperand(0);
4743  SDValue N1 = Op.getOperand(1);
4744  SDValue N2, N3;
4745
4746  if (VT == MVT::v8i8) {
4747    N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
4748    N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
4749
4750    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4751                     DAG.getIntPtrConstant(4));
4752    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4753                     DAG.getIntPtrConstant(4));
4754    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4755                     DAG.getIntPtrConstant(0));
4756    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4757                     DAG.getIntPtrConstant(0));
4758
4759    N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
4760    N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
4761
4762    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
4763    N0 = LowerCONCAT_VECTORS(N0, DAG);
4764
4765    N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
4766    return N0;
4767  }
4768  return LowerSDIV_v4i16(N0, N1, dl, DAG);
4769}
4770
4771static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
4772  EVT VT = Op.getValueType();
4773  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4774         "unexpected type for custom-lowering ISD::UDIV");
4775
4776  DebugLoc dl = Op.getDebugLoc();
4777  SDValue N0 = Op.getOperand(0);
4778  SDValue N1 = Op.getOperand(1);
4779  SDValue N2, N3;
4780
4781  if (VT == MVT::v8i8) {
4782    N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
4783    N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
4784
4785    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4786                     DAG.getIntPtrConstant(4));
4787    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4788                     DAG.getIntPtrConstant(4));
4789    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4790                     DAG.getIntPtrConstant(0));
4791    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4792                     DAG.getIntPtrConstant(0));
4793
4794    N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
4795    N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
4796
4797    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
4798    N0 = LowerCONCAT_VECTORS(N0, DAG);
4799
4800    N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
4801                     DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
4802                     N0);
4803    return N0;
4804  }
4805
4806  // v4i16 sdiv ... Convert to float.
4807  // float4 yf = vcvt_f32_s32(vmovl_u16(y));
4808  // float4 xf = vcvt_f32_s32(vmovl_u16(x));
4809  N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
4810  N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
4811  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4812  SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4813
4814  // Use reciprocal estimate and two refinement steps.
4815  // float4 recip = vrecpeq_f32(yf);
4816  // recip *= vrecpsq_f32(yf, recip);
4817  // recip *= vrecpsq_f32(yf, recip);
4818  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4819                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
4820  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4821                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4822                   BN1, N2);
4823  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4824  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4825                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4826                   BN1, N2);
4827  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4828  // Simply multiplying by the reciprocal estimate can leave us a few ulps
4829  // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
4830  // and that it will never cause us to return an answer too large).
4831  // float4 result = as_float4(as_int4(xf*recip) + 2);
4832  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4833  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4834  N1 = DAG.getConstant(2, MVT::i32);
4835  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4836  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4837  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4838  // Convert back to integer and return.
4839  // return vmovn_u32(vcvt_s32_f32(result));
4840  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4841  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4842  return N0;
4843}
4844
4845static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
4846  EVT VT = Op.getNode()->getValueType(0);
4847  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4848
4849  unsigned Opc;
4850  bool ExtraOp = false;
4851  switch (Op.getOpcode()) {
4852  default: assert(0 && "Invalid code");
4853  case ISD::ADDC: Opc = ARMISD::ADDC; break;
4854  case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
4855  case ISD::SUBC: Opc = ARMISD::SUBC; break;
4856  case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
4857  }
4858
4859  if (!ExtraOp)
4860    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
4861                       Op.getOperand(1));
4862  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
4863                     Op.getOperand(1), Op.getOperand(2));
4864}
4865
4866static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
4867  // Monotonic load/store is legal for all targets
4868  if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
4869    return Op;
4870
4871  // Aquire/Release load/store is not legal for targets without a
4872  // dmb or equivalent available.
4873  return SDValue();
4874}
4875
4876
4877static void
4878ReplaceATOMIC_OP_64(SDNode *Node, SmallVectorImpl<SDValue>& Results,
4879                    SelectionDAG &DAG, unsigned NewOp) {
4880  EVT T = Node->getValueType(0);
4881  DebugLoc dl = Node->getDebugLoc();
4882  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
4883
4884  SmallVector<SDValue, 6> Ops;
4885  Ops.push_back(Node->getOperand(0)); // Chain
4886  Ops.push_back(Node->getOperand(1)); // Ptr
4887  // Low part of Val1
4888  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4889                            Node->getOperand(2), DAG.getIntPtrConstant(0)));
4890  // High part of Val1
4891  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4892                            Node->getOperand(2), DAG.getIntPtrConstant(1)));
4893  if (NewOp == ARMISD::ATOMCMPXCHG64_DAG) {
4894    // High part of Val1
4895    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4896                              Node->getOperand(3), DAG.getIntPtrConstant(0)));
4897    // High part of Val2
4898    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4899                              Node->getOperand(3), DAG.getIntPtrConstant(1)));
4900  }
4901  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4902  SDValue Result =
4903    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops.data(), Ops.size(), MVT::i64,
4904                            cast<MemSDNode>(Node)->getMemOperand());
4905  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1) };
4906  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
4907  Results.push_back(Result.getValue(2));
4908}
4909
4910SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4911  switch (Op.getOpcode()) {
4912  default: llvm_unreachable("Don't know how to custom lower this!");
4913  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
4914  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
4915  case ISD::GlobalAddress:
4916    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
4917      LowerGlobalAddressELF(Op, DAG);
4918  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
4919  case ISD::SELECT:        return LowerSELECT(Op, DAG);
4920  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
4921  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
4922  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
4923  case ISD::VASTART:       return LowerVASTART(Op, DAG);
4924  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
4925  case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
4926  case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
4927  case ISD::SINT_TO_FP:
4928  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
4929  case ISD::FP_TO_SINT:
4930  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
4931  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
4932  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
4933  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
4934  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
4935  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
4936  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
4937  case ISD::EH_SJLJ_DISPATCHSETUP: return LowerEH_SJLJ_DISPATCHSETUP(Op, DAG);
4938  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
4939                                                               Subtarget);
4940  case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
4941  case ISD::SHL:
4942  case ISD::SRL:
4943  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
4944  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
4945  case ISD::SRL_PARTS:
4946  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
4947  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
4948  case ISD::SETCC:         return LowerVSETCC(Op, DAG);
4949  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
4950  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
4951  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4952  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
4953  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
4954  case ISD::MUL:           return LowerMUL(Op, DAG);
4955  case ISD::SDIV:          return LowerSDIV(Op, DAG);
4956  case ISD::UDIV:          return LowerUDIV(Op, DAG);
4957  case ISD::ADDC:
4958  case ISD::ADDE:
4959  case ISD::SUBC:
4960  case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
4961  case ISD::ATOMIC_LOAD:
4962  case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
4963  }
4964  return SDValue();
4965}
4966
4967/// ReplaceNodeResults - Replace the results of node with an illegal result
4968/// type with new values built out of custom code.
4969void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
4970                                           SmallVectorImpl<SDValue>&Results,
4971                                           SelectionDAG &DAG) const {
4972  SDValue Res;
4973  switch (N->getOpcode()) {
4974  default:
4975    llvm_unreachable("Don't know how to custom expand this!");
4976    break;
4977  case ISD::BITCAST:
4978    Res = ExpandBITCAST(N, DAG);
4979    break;
4980  case ISD::SRL:
4981  case ISD::SRA:
4982    Res = Expand64BitShift(N, DAG, Subtarget);
4983    break;
4984  case ISD::ATOMIC_LOAD_ADD:
4985    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMADD64_DAG);
4986    return;
4987  case ISD::ATOMIC_LOAD_AND:
4988    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMAND64_DAG);
4989    return;
4990  case ISD::ATOMIC_LOAD_NAND:
4991    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMNAND64_DAG);
4992    return;
4993  case ISD::ATOMIC_LOAD_OR:
4994    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMOR64_DAG);
4995    return;
4996  case ISD::ATOMIC_LOAD_SUB:
4997    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSUB64_DAG);
4998    return;
4999  case ISD::ATOMIC_LOAD_XOR:
5000    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMXOR64_DAG);
5001    return;
5002  case ISD::ATOMIC_SWAP:
5003    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSWAP64_DAG);
5004    return;
5005  case ISD::ATOMIC_CMP_SWAP:
5006    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMCMPXCHG64_DAG);
5007    return;
5008  }
5009  if (Res.getNode())
5010    Results.push_back(Res);
5011}
5012
5013//===----------------------------------------------------------------------===//
5014//                           ARM Scheduler Hooks
5015//===----------------------------------------------------------------------===//
5016
5017MachineBasicBlock *
5018ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
5019                                     MachineBasicBlock *BB,
5020                                     unsigned Size) const {
5021  unsigned dest    = MI->getOperand(0).getReg();
5022  unsigned ptr     = MI->getOperand(1).getReg();
5023  unsigned oldval  = MI->getOperand(2).getReg();
5024  unsigned newval  = MI->getOperand(3).getReg();
5025  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5026  DebugLoc dl = MI->getDebugLoc();
5027  bool isThumb2 = Subtarget->isThumb2();
5028
5029  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5030  unsigned scratch =
5031    MRI.createVirtualRegister(isThumb2 ? ARM::rGPRRegisterClass
5032                                       : ARM::GPRRegisterClass);
5033
5034  if (isThumb2) {
5035    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5036    MRI.constrainRegClass(oldval, ARM::rGPRRegisterClass);
5037    MRI.constrainRegClass(newval, ARM::rGPRRegisterClass);
5038  }
5039
5040  unsigned ldrOpc, strOpc;
5041  switch (Size) {
5042  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5043  case 1:
5044    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5045    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5046    break;
5047  case 2:
5048    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5049    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5050    break;
5051  case 4:
5052    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5053    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5054    break;
5055  }
5056
5057  MachineFunction *MF = BB->getParent();
5058  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5059  MachineFunction::iterator It = BB;
5060  ++It; // insert the new blocks after the current block
5061
5062  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5063  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5064  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5065  MF->insert(It, loop1MBB);
5066  MF->insert(It, loop2MBB);
5067  MF->insert(It, exitMBB);
5068
5069  // Transfer the remainder of BB and its successor edges to exitMBB.
5070  exitMBB->splice(exitMBB->begin(), BB,
5071                  llvm::next(MachineBasicBlock::iterator(MI)),
5072                  BB->end());
5073  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5074
5075  //  thisMBB:
5076  //   ...
5077  //   fallthrough --> loop1MBB
5078  BB->addSuccessor(loop1MBB);
5079
5080  // loop1MBB:
5081  //   ldrex dest, [ptr]
5082  //   cmp dest, oldval
5083  //   bne exitMBB
5084  BB = loop1MBB;
5085  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5086  if (ldrOpc == ARM::t2LDREX)
5087    MIB.addImm(0);
5088  AddDefaultPred(MIB);
5089  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5090                 .addReg(dest).addReg(oldval));
5091  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5092    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5093  BB->addSuccessor(loop2MBB);
5094  BB->addSuccessor(exitMBB);
5095
5096  // loop2MBB:
5097  //   strex scratch, newval, [ptr]
5098  //   cmp scratch, #0
5099  //   bne loop1MBB
5100  BB = loop2MBB;
5101  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval).addReg(ptr);
5102  if (strOpc == ARM::t2STREX)
5103    MIB.addImm(0);
5104  AddDefaultPred(MIB);
5105  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5106                 .addReg(scratch).addImm(0));
5107  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5108    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5109  BB->addSuccessor(loop1MBB);
5110  BB->addSuccessor(exitMBB);
5111
5112  //  exitMBB:
5113  //   ...
5114  BB = exitMBB;
5115
5116  MI->eraseFromParent();   // The instruction is gone now.
5117
5118  return BB;
5119}
5120
5121MachineBasicBlock *
5122ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
5123                                    unsigned Size, unsigned BinOpcode) const {
5124  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5125  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5126
5127  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5128  MachineFunction *MF = BB->getParent();
5129  MachineFunction::iterator It = BB;
5130  ++It;
5131
5132  unsigned dest = MI->getOperand(0).getReg();
5133  unsigned ptr = MI->getOperand(1).getReg();
5134  unsigned incr = MI->getOperand(2).getReg();
5135  DebugLoc dl = MI->getDebugLoc();
5136  bool isThumb2 = Subtarget->isThumb2();
5137
5138  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5139  if (isThumb2) {
5140    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5141    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5142  }
5143
5144  unsigned ldrOpc, strOpc;
5145  switch (Size) {
5146  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5147  case 1:
5148    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5149    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5150    break;
5151  case 2:
5152    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5153    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5154    break;
5155  case 4:
5156    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5157    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5158    break;
5159  }
5160
5161  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5162  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5163  MF->insert(It, loopMBB);
5164  MF->insert(It, exitMBB);
5165
5166  // Transfer the remainder of BB and its successor edges to exitMBB.
5167  exitMBB->splice(exitMBB->begin(), BB,
5168                  llvm::next(MachineBasicBlock::iterator(MI)),
5169                  BB->end());
5170  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5171
5172  TargetRegisterClass *TRC =
5173    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5174  unsigned scratch = MRI.createVirtualRegister(TRC);
5175  unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
5176
5177  //  thisMBB:
5178  //   ...
5179  //   fallthrough --> loopMBB
5180  BB->addSuccessor(loopMBB);
5181
5182  //  loopMBB:
5183  //   ldrex dest, ptr
5184  //   <binop> scratch2, dest, incr
5185  //   strex scratch, scratch2, ptr
5186  //   cmp scratch, #0
5187  //   bne- loopMBB
5188  //   fallthrough --> exitMBB
5189  BB = loopMBB;
5190  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5191  if (ldrOpc == ARM::t2LDREX)
5192    MIB.addImm(0);
5193  AddDefaultPred(MIB);
5194  if (BinOpcode) {
5195    // operand order needs to go the other way for NAND
5196    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
5197      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5198                     addReg(incr).addReg(dest)).addReg(0);
5199    else
5200      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5201                     addReg(dest).addReg(incr)).addReg(0);
5202  }
5203
5204  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5205  if (strOpc == ARM::t2STREX)
5206    MIB.addImm(0);
5207  AddDefaultPred(MIB);
5208  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5209                 .addReg(scratch).addImm(0));
5210  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5211    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5212
5213  BB->addSuccessor(loopMBB);
5214  BB->addSuccessor(exitMBB);
5215
5216  //  exitMBB:
5217  //   ...
5218  BB = exitMBB;
5219
5220  MI->eraseFromParent();   // The instruction is gone now.
5221
5222  return BB;
5223}
5224
5225MachineBasicBlock *
5226ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI,
5227                                          MachineBasicBlock *BB,
5228                                          unsigned Size,
5229                                          bool signExtend,
5230                                          ARMCC::CondCodes Cond) const {
5231  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5232
5233  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5234  MachineFunction *MF = BB->getParent();
5235  MachineFunction::iterator It = BB;
5236  ++It;
5237
5238  unsigned dest = MI->getOperand(0).getReg();
5239  unsigned ptr = MI->getOperand(1).getReg();
5240  unsigned incr = MI->getOperand(2).getReg();
5241  unsigned oldval = dest;
5242  DebugLoc dl = MI->getDebugLoc();
5243  bool isThumb2 = Subtarget->isThumb2();
5244
5245  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5246  if (isThumb2) {
5247    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5248    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5249  }
5250
5251  unsigned ldrOpc, strOpc, extendOpc;
5252  switch (Size) {
5253  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5254  case 1:
5255    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5256    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5257    extendOpc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
5258    break;
5259  case 2:
5260    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5261    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5262    extendOpc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
5263    break;
5264  case 4:
5265    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5266    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5267    extendOpc = 0;
5268    break;
5269  }
5270
5271  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5272  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5273  MF->insert(It, loopMBB);
5274  MF->insert(It, exitMBB);
5275
5276  // Transfer the remainder of BB and its successor edges to exitMBB.
5277  exitMBB->splice(exitMBB->begin(), BB,
5278                  llvm::next(MachineBasicBlock::iterator(MI)),
5279                  BB->end());
5280  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5281
5282  TargetRegisterClass *TRC =
5283    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5284  unsigned scratch = MRI.createVirtualRegister(TRC);
5285  unsigned scratch2 = MRI.createVirtualRegister(TRC);
5286
5287  //  thisMBB:
5288  //   ...
5289  //   fallthrough --> loopMBB
5290  BB->addSuccessor(loopMBB);
5291
5292  //  loopMBB:
5293  //   ldrex dest, ptr
5294  //   (sign extend dest, if required)
5295  //   cmp dest, incr
5296  //   cmov.cond scratch2, dest, incr
5297  //   strex scratch, scratch2, ptr
5298  //   cmp scratch, #0
5299  //   bne- loopMBB
5300  //   fallthrough --> exitMBB
5301  BB = loopMBB;
5302  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5303  if (ldrOpc == ARM::t2LDREX)
5304    MIB.addImm(0);
5305  AddDefaultPred(MIB);
5306
5307  // Sign extend the value, if necessary.
5308  if (signExtend && extendOpc) {
5309    oldval = MRI.createVirtualRegister(ARM::GPRRegisterClass);
5310    AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval)
5311                     .addReg(dest)
5312                     .addImm(0));
5313  }
5314
5315  // Build compare and cmov instructions.
5316  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5317                 .addReg(oldval).addReg(incr));
5318  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2)
5319         .addReg(oldval).addReg(incr).addImm(Cond).addReg(ARM::CPSR);
5320
5321  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5322  if (strOpc == ARM::t2STREX)
5323    MIB.addImm(0);
5324  AddDefaultPred(MIB);
5325  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5326                 .addReg(scratch).addImm(0));
5327  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5328    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5329
5330  BB->addSuccessor(loopMBB);
5331  BB->addSuccessor(exitMBB);
5332
5333  //  exitMBB:
5334  //   ...
5335  BB = exitMBB;
5336
5337  MI->eraseFromParent();   // The instruction is gone now.
5338
5339  return BB;
5340}
5341
5342MachineBasicBlock *
5343ARMTargetLowering::EmitAtomicBinary64(MachineInstr *MI, MachineBasicBlock *BB,
5344                                      unsigned Op1, unsigned Op2,
5345                                      bool NeedsCarry, bool IsCmpxchg) const {
5346  // This also handles ATOMIC_SWAP, indicated by Op1==0.
5347  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5348
5349  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5350  MachineFunction *MF = BB->getParent();
5351  MachineFunction::iterator It = BB;
5352  ++It;
5353
5354  unsigned destlo = MI->getOperand(0).getReg();
5355  unsigned desthi = MI->getOperand(1).getReg();
5356  unsigned ptr = MI->getOperand(2).getReg();
5357  unsigned vallo = MI->getOperand(3).getReg();
5358  unsigned valhi = MI->getOperand(4).getReg();
5359  DebugLoc dl = MI->getDebugLoc();
5360  bool isThumb2 = Subtarget->isThumb2();
5361
5362  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5363  if (isThumb2) {
5364    MRI.constrainRegClass(destlo, ARM::rGPRRegisterClass);
5365    MRI.constrainRegClass(desthi, ARM::rGPRRegisterClass);
5366    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5367  }
5368
5369  unsigned ldrOpc = isThumb2 ? ARM::t2LDREXD : ARM::LDREXD;
5370  unsigned strOpc = isThumb2 ? ARM::t2STREXD : ARM::STREXD;
5371
5372  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5373  MachineBasicBlock *contBB = 0, *cont2BB = 0;
5374  if (IsCmpxchg) {
5375    contBB = MF->CreateMachineBasicBlock(LLVM_BB);
5376    cont2BB = MF->CreateMachineBasicBlock(LLVM_BB);
5377  }
5378  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5379  MF->insert(It, loopMBB);
5380  if (IsCmpxchg) {
5381    MF->insert(It, contBB);
5382    MF->insert(It, cont2BB);
5383  }
5384  MF->insert(It, exitMBB);
5385
5386  // Transfer the remainder of BB and its successor edges to exitMBB.
5387  exitMBB->splice(exitMBB->begin(), BB,
5388                  llvm::next(MachineBasicBlock::iterator(MI)),
5389                  BB->end());
5390  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5391
5392  TargetRegisterClass *TRC =
5393    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5394  unsigned storesuccess = MRI.createVirtualRegister(TRC);
5395
5396  //  thisMBB:
5397  //   ...
5398  //   fallthrough --> loopMBB
5399  BB->addSuccessor(loopMBB);
5400
5401  //  loopMBB:
5402  //   ldrexd r2, r3, ptr
5403  //   <binopa> r0, r2, incr
5404  //   <binopb> r1, r3, incr
5405  //   strexd storesuccess, r0, r1, ptr
5406  //   cmp storesuccess, #0
5407  //   bne- loopMBB
5408  //   fallthrough --> exitMBB
5409  //
5410  // Note that the registers are explicitly specified because there is not any
5411  // way to force the register allocator to allocate a register pair.
5412  //
5413  // FIXME: The hardcoded registers are not necessary for Thumb2, but we
5414  // need to properly enforce the restriction that the two output registers
5415  // for ldrexd must be different.
5416  BB = loopMBB;
5417  // Load
5418  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc))
5419                 .addReg(ARM::R2, RegState::Define)
5420                 .addReg(ARM::R3, RegState::Define).addReg(ptr));
5421  // Copy r2/r3 into dest.  (This copy will normally be coalesced.)
5422  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), destlo).addReg(ARM::R2);
5423  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), desthi).addReg(ARM::R3);
5424
5425  if (IsCmpxchg) {
5426    // Add early exit
5427    for (unsigned i = 0; i < 2; i++) {
5428      AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr :
5429                                                         ARM::CMPrr))
5430                     .addReg(i == 0 ? destlo : desthi)
5431                     .addReg(i == 0 ? vallo : valhi));
5432      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5433        .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5434      BB->addSuccessor(exitMBB);
5435      BB->addSuccessor(i == 0 ? contBB : cont2BB);
5436      BB = (i == 0 ? contBB : cont2BB);
5437    }
5438
5439    // Copy to physregs for strexd
5440    unsigned setlo = MI->getOperand(5).getReg();
5441    unsigned sethi = MI->getOperand(6).getReg();
5442    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(setlo);
5443    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(sethi);
5444  } else if (Op1) {
5445    // Perform binary operation
5446    AddDefaultPred(BuildMI(BB, dl, TII->get(Op1), ARM::R0)
5447                   .addReg(destlo).addReg(vallo))
5448        .addReg(NeedsCarry ? ARM::CPSR : 0, getDefRegState(NeedsCarry));
5449    AddDefaultPred(BuildMI(BB, dl, TII->get(Op2), ARM::R1)
5450                   .addReg(desthi).addReg(valhi)).addReg(0);
5451  } else {
5452    // Copy to physregs for strexd
5453    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(vallo);
5454    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(valhi);
5455  }
5456
5457  // Store
5458  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), storesuccess)
5459                 .addReg(ARM::R0).addReg(ARM::R1).addReg(ptr));
5460  // Cmp+jump
5461  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5462                 .addReg(storesuccess).addImm(0));
5463  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5464    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5465
5466  BB->addSuccessor(loopMBB);
5467  BB->addSuccessor(exitMBB);
5468
5469  //  exitMBB:
5470  //   ...
5471  BB = exitMBB;
5472
5473  MI->eraseFromParent();   // The instruction is gone now.
5474
5475  return BB;
5476}
5477
5478static
5479MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
5480  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
5481       E = MBB->succ_end(); I != E; ++I)
5482    if (*I != Succ)
5483      return *I;
5484  llvm_unreachable("Expecting a BB with two successors!");
5485}
5486
5487MachineBasicBlock *
5488ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
5489                                               MachineBasicBlock *BB) const {
5490  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5491  DebugLoc dl = MI->getDebugLoc();
5492  bool isThumb2 = Subtarget->isThumb2();
5493  switch (MI->getOpcode()) {
5494  default: {
5495    MI->dump();
5496    llvm_unreachable("Unexpected instr type to insert");
5497  }
5498  // The Thumb2 pre-indexed stores have the same MI operands, they just
5499  // define them differently in the .td files from the isel patterns, so
5500  // they need pseudos.
5501  case ARM::t2STR_preidx:
5502    MI->setDesc(TII->get(ARM::t2STR_PRE));
5503    return BB;
5504  case ARM::t2STRB_preidx:
5505    MI->setDesc(TII->get(ARM::t2STRB_PRE));
5506    return BB;
5507  case ARM::t2STRH_preidx:
5508    MI->setDesc(TII->get(ARM::t2STRH_PRE));
5509    return BB;
5510
5511  case ARM::STRi_preidx:
5512  case ARM::STRBi_preidx: {
5513    unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
5514      ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
5515    // Decode the offset.
5516    unsigned Offset = MI->getOperand(4).getImm();
5517    bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
5518    Offset = ARM_AM::getAM2Offset(Offset);
5519    if (isSub)
5520      Offset = -Offset;
5521
5522    MachineMemOperand *MMO = *MI->memoperands_begin();
5523    BuildMI(*BB, MI, dl, TII->get(NewOpc))
5524      .addOperand(MI->getOperand(0))  // Rn_wb
5525      .addOperand(MI->getOperand(1))  // Rt
5526      .addOperand(MI->getOperand(2))  // Rn
5527      .addImm(Offset)                 // offset (skip GPR==zero_reg)
5528      .addOperand(MI->getOperand(5))  // pred
5529      .addOperand(MI->getOperand(6))
5530      .addMemOperand(MMO);
5531    MI->eraseFromParent();
5532    return BB;
5533  }
5534  case ARM::STRr_preidx:
5535  case ARM::STRBr_preidx:
5536  case ARM::STRH_preidx: {
5537    unsigned NewOpc;
5538    switch (MI->getOpcode()) {
5539    default: llvm_unreachable("unexpected opcode!");
5540    case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
5541    case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
5542    case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
5543    }
5544    MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
5545    for (unsigned i = 0; i < MI->getNumOperands(); ++i)
5546      MIB.addOperand(MI->getOperand(i));
5547    MI->eraseFromParent();
5548    return BB;
5549  }
5550  case ARM::ATOMIC_LOAD_ADD_I8:
5551     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
5552  case ARM::ATOMIC_LOAD_ADD_I16:
5553     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
5554  case ARM::ATOMIC_LOAD_ADD_I32:
5555     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
5556
5557  case ARM::ATOMIC_LOAD_AND_I8:
5558     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
5559  case ARM::ATOMIC_LOAD_AND_I16:
5560     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
5561  case ARM::ATOMIC_LOAD_AND_I32:
5562     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
5563
5564  case ARM::ATOMIC_LOAD_OR_I8:
5565     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
5566  case ARM::ATOMIC_LOAD_OR_I16:
5567     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
5568  case ARM::ATOMIC_LOAD_OR_I32:
5569     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
5570
5571  case ARM::ATOMIC_LOAD_XOR_I8:
5572     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
5573  case ARM::ATOMIC_LOAD_XOR_I16:
5574     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
5575  case ARM::ATOMIC_LOAD_XOR_I32:
5576     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
5577
5578  case ARM::ATOMIC_LOAD_NAND_I8:
5579     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
5580  case ARM::ATOMIC_LOAD_NAND_I16:
5581     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
5582  case ARM::ATOMIC_LOAD_NAND_I32:
5583     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
5584
5585  case ARM::ATOMIC_LOAD_SUB_I8:
5586     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
5587  case ARM::ATOMIC_LOAD_SUB_I16:
5588     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
5589  case ARM::ATOMIC_LOAD_SUB_I32:
5590     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
5591
5592  case ARM::ATOMIC_LOAD_MIN_I8:
5593     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT);
5594  case ARM::ATOMIC_LOAD_MIN_I16:
5595     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT);
5596  case ARM::ATOMIC_LOAD_MIN_I32:
5597     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT);
5598
5599  case ARM::ATOMIC_LOAD_MAX_I8:
5600     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT);
5601  case ARM::ATOMIC_LOAD_MAX_I16:
5602     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT);
5603  case ARM::ATOMIC_LOAD_MAX_I32:
5604     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT);
5605
5606  case ARM::ATOMIC_LOAD_UMIN_I8:
5607     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO);
5608  case ARM::ATOMIC_LOAD_UMIN_I16:
5609     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO);
5610  case ARM::ATOMIC_LOAD_UMIN_I32:
5611     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO);
5612
5613  case ARM::ATOMIC_LOAD_UMAX_I8:
5614     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI);
5615  case ARM::ATOMIC_LOAD_UMAX_I16:
5616     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI);
5617  case ARM::ATOMIC_LOAD_UMAX_I32:
5618     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI);
5619
5620  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
5621  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
5622  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
5623
5624  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
5625  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
5626  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
5627
5628
5629  case ARM::ATOMADD6432:
5630    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr,
5631                              isThumb2 ? ARM::t2ADCrr : ARM::ADCrr,
5632                              /*NeedsCarry*/ true);
5633  case ARM::ATOMSUB6432:
5634    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
5635                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
5636                              /*NeedsCarry*/ true);
5637  case ARM::ATOMOR6432:
5638    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr,
5639                              isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
5640  case ARM::ATOMXOR6432:
5641    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2EORrr : ARM::EORrr,
5642                              isThumb2 ? ARM::t2EORrr : ARM::EORrr);
5643  case ARM::ATOMAND6432:
5644    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr,
5645                              isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
5646  case ARM::ATOMSWAP6432:
5647    return EmitAtomicBinary64(MI, BB, 0, 0, false);
5648  case ARM::ATOMCMPXCHG6432:
5649    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
5650                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
5651                              /*NeedsCarry*/ false, /*IsCmpxchg*/true);
5652
5653  case ARM::tMOVCCr_pseudo: {
5654    // To "insert" a SELECT_CC instruction, we actually have to insert the
5655    // diamond control-flow pattern.  The incoming instruction knows the
5656    // destination vreg to set, the condition code register to branch on, the
5657    // true/false values to select between, and a branch opcode to use.
5658    const BasicBlock *LLVM_BB = BB->getBasicBlock();
5659    MachineFunction::iterator It = BB;
5660    ++It;
5661
5662    //  thisMBB:
5663    //  ...
5664    //   TrueVal = ...
5665    //   cmpTY ccX, r1, r2
5666    //   bCC copy1MBB
5667    //   fallthrough --> copy0MBB
5668    MachineBasicBlock *thisMBB  = BB;
5669    MachineFunction *F = BB->getParent();
5670    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
5671    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
5672    F->insert(It, copy0MBB);
5673    F->insert(It, sinkMBB);
5674
5675    // Transfer the remainder of BB and its successor edges to sinkMBB.
5676    sinkMBB->splice(sinkMBB->begin(), BB,
5677                    llvm::next(MachineBasicBlock::iterator(MI)),
5678                    BB->end());
5679    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
5680
5681    BB->addSuccessor(copy0MBB);
5682    BB->addSuccessor(sinkMBB);
5683
5684    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
5685      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
5686
5687    //  copy0MBB:
5688    //   %FalseValue = ...
5689    //   # fallthrough to sinkMBB
5690    BB = copy0MBB;
5691
5692    // Update machine-CFG edges
5693    BB->addSuccessor(sinkMBB);
5694
5695    //  sinkMBB:
5696    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
5697    //  ...
5698    BB = sinkMBB;
5699    BuildMI(*BB, BB->begin(), dl,
5700            TII->get(ARM::PHI), MI->getOperand(0).getReg())
5701      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
5702      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
5703
5704    MI->eraseFromParent();   // The pseudo instruction is gone now.
5705    return BB;
5706  }
5707
5708  case ARM::BCCi64:
5709  case ARM::BCCZi64: {
5710    // If there is an unconditional branch to the other successor, remove it.
5711    BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
5712
5713    // Compare both parts that make up the double comparison separately for
5714    // equality.
5715    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
5716
5717    unsigned LHS1 = MI->getOperand(1).getReg();
5718    unsigned LHS2 = MI->getOperand(2).getReg();
5719    if (RHSisZero) {
5720      AddDefaultPred(BuildMI(BB, dl,
5721                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5722                     .addReg(LHS1).addImm(0));
5723      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5724        .addReg(LHS2).addImm(0)
5725        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
5726    } else {
5727      unsigned RHS1 = MI->getOperand(3).getReg();
5728      unsigned RHS2 = MI->getOperand(4).getReg();
5729      AddDefaultPred(BuildMI(BB, dl,
5730                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5731                     .addReg(LHS1).addReg(RHS1));
5732      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5733        .addReg(LHS2).addReg(RHS2)
5734        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
5735    }
5736
5737    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
5738    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
5739    if (MI->getOperand(0).getImm() == ARMCC::NE)
5740      std::swap(destMBB, exitMBB);
5741
5742    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5743      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
5744    if (isThumb2)
5745      AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
5746    else
5747      BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
5748
5749    MI->eraseFromParent();   // The pseudo instruction is gone now.
5750    return BB;
5751  }
5752  }
5753}
5754
5755/// Generally, ARM instructions may be optionally encoded with a 's'
5756/// bit. However, some opcodes have a compact encoding that forces an implicit
5757/// 's' bit. List these exceptions here.
5758static bool hasForcedCPSRDef(const MCInstrDesc &MCID) {
5759  switch (MCID.getOpcode()) {
5760  case ARM::t2ADDSri:
5761  case ARM::t2ADDSrr:
5762  case ARM::t2ADDSrs:
5763  case ARM::t2SUBSri:
5764  case ARM::t2SUBSrr:
5765  case ARM::t2SUBSrs:
5766    return true;
5767  }
5768  return false;
5769}
5770
5771void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
5772                                                      SDNode *Node) const {
5773  // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
5774  // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
5775  // operand is still set to noreg. If needed, set the optional operand's
5776  // register to CPSR, and remove the redundant implicit def.
5777
5778  const MCInstrDesc &MCID = MI->getDesc();
5779  unsigned ccOutIdx = MCID.getNumOperands() - 1;
5780  bool forcedCPSR = hasForcedCPSRDef(MCID);
5781
5782  // Any ARM instruction that sets the 's' bit should specify an optional
5783  // "cc_out" operand in the last operand position.
5784  if (!MCID.hasOptionalDef() || !MCID.OpInfo[ccOutIdx].isOptionalDef()) {
5785    assert(!forcedCPSR && "Optional cc_out operand required");
5786    return;
5787  }
5788  // Look for an implicit def of CPSR added by MachineInstr ctor.
5789  bool definesCPSR = false;
5790  bool deadCPSR = false;
5791  for (unsigned i = MCID.getNumOperands(), e = MI->getNumOperands();
5792       i != e; ++i) {
5793    const MachineOperand &MO = MI->getOperand(i);
5794    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
5795      definesCPSR = true;
5796      if (MO.isDead())
5797        deadCPSR = true;
5798      MI->RemoveOperand(i);
5799      break;
5800    }
5801  }
5802  if (!definesCPSR) {
5803    assert(!forcedCPSR && "Optional cc_out operand required");
5804    return;
5805  }
5806  assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
5807
5808  // If possible, select the encoding that does not set the 's' bit.
5809  if (deadCPSR && !forcedCPSR)
5810    return;
5811
5812  MachineOperand &MO = MI->getOperand(ccOutIdx);
5813  MO.setReg(ARM::CPSR);
5814  MO.setIsDef(true);
5815  if (deadCPSR)
5816    MO.setIsDead();
5817}
5818
5819//===----------------------------------------------------------------------===//
5820//                           ARM Optimization Hooks
5821//===----------------------------------------------------------------------===//
5822
5823static
5824SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
5825                            TargetLowering::DAGCombinerInfo &DCI) {
5826  SelectionDAG &DAG = DCI.DAG;
5827  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5828  EVT VT = N->getValueType(0);
5829  unsigned Opc = N->getOpcode();
5830  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
5831  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
5832  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
5833  ISD::CondCode CC = ISD::SETCC_INVALID;
5834
5835  if (isSlctCC) {
5836    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
5837  } else {
5838    SDValue CCOp = Slct.getOperand(0);
5839    if (CCOp.getOpcode() == ISD::SETCC)
5840      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
5841  }
5842
5843  bool DoXform = false;
5844  bool InvCC = false;
5845  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
5846          "Bad input!");
5847
5848  if (LHS.getOpcode() == ISD::Constant &&
5849      cast<ConstantSDNode>(LHS)->isNullValue()) {
5850    DoXform = true;
5851  } else if (CC != ISD::SETCC_INVALID &&
5852             RHS.getOpcode() == ISD::Constant &&
5853             cast<ConstantSDNode>(RHS)->isNullValue()) {
5854    std::swap(LHS, RHS);
5855    SDValue Op0 = Slct.getOperand(0);
5856    EVT OpVT = isSlctCC ? Op0.getValueType() :
5857                          Op0.getOperand(0).getValueType();
5858    bool isInt = OpVT.isInteger();
5859    CC = ISD::getSetCCInverse(CC, isInt);
5860
5861    if (!TLI.isCondCodeLegal(CC, OpVT))
5862      return SDValue();         // Inverse operator isn't legal.
5863
5864    DoXform = true;
5865    InvCC = true;
5866  }
5867
5868  if (DoXform) {
5869    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
5870    if (isSlctCC)
5871      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
5872                             Slct.getOperand(0), Slct.getOperand(1), CC);
5873    SDValue CCOp = Slct.getOperand(0);
5874    if (InvCC)
5875      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
5876                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
5877    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
5878                       CCOp, OtherOp, Result);
5879  }
5880  return SDValue();
5881}
5882
5883// AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
5884// (only after legalization).
5885static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
5886                                 TargetLowering::DAGCombinerInfo &DCI,
5887                                 const ARMSubtarget *Subtarget) {
5888
5889  // Only perform optimization if after legalize, and if NEON is available. We
5890  // also expected both operands to be BUILD_VECTORs.
5891  if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
5892      || N0.getOpcode() != ISD::BUILD_VECTOR
5893      || N1.getOpcode() != ISD::BUILD_VECTOR)
5894    return SDValue();
5895
5896  // Check output type since VPADDL operand elements can only be 8, 16, or 32.
5897  EVT VT = N->getValueType(0);
5898  if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
5899    return SDValue();
5900
5901  // Check that the vector operands are of the right form.
5902  // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
5903  // operands, where N is the size of the formed vector.
5904  // Each EXTRACT_VECTOR should have the same input vector and odd or even
5905  // index such that we have a pair wise add pattern.
5906
5907  // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
5908  if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5909    return SDValue();
5910  SDValue Vec = N0->getOperand(0)->getOperand(0);
5911  SDNode *V = Vec.getNode();
5912  unsigned nextIndex = 0;
5913
5914  // For each operands to the ADD which are BUILD_VECTORs,
5915  // check to see if each of their operands are an EXTRACT_VECTOR with
5916  // the same vector and appropriate index.
5917  for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
5918    if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
5919        && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
5920
5921      SDValue ExtVec0 = N0->getOperand(i);
5922      SDValue ExtVec1 = N1->getOperand(i);
5923
5924      // First operand is the vector, verify its the same.
5925      if (V != ExtVec0->getOperand(0).getNode() ||
5926          V != ExtVec1->getOperand(0).getNode())
5927        return SDValue();
5928
5929      // Second is the constant, verify its correct.
5930      ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
5931      ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
5932
5933      // For the constant, we want to see all the even or all the odd.
5934      if (!C0 || !C1 || C0->getZExtValue() != nextIndex
5935          || C1->getZExtValue() != nextIndex+1)
5936        return SDValue();
5937
5938      // Increment index.
5939      nextIndex+=2;
5940    } else
5941      return SDValue();
5942  }
5943
5944  // Create VPADDL node.
5945  SelectionDAG &DAG = DCI.DAG;
5946  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5947
5948  // Build operand list.
5949  SmallVector<SDValue, 8> Ops;
5950  Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
5951                                TLI.getPointerTy()));
5952
5953  // Input is the vector.
5954  Ops.push_back(Vec);
5955
5956  // Get widened type and narrowed type.
5957  MVT widenType;
5958  unsigned numElem = VT.getVectorNumElements();
5959  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
5960    case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
5961    case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
5962    case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
5963    default:
5964      assert(0 && "Invalid vector element type for padd optimization.");
5965  }
5966
5967  SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
5968                            widenType, &Ops[0], Ops.size());
5969  return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, tmp);
5970}
5971
5972/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
5973/// operands N0 and N1.  This is a helper for PerformADDCombine that is
5974/// called with the default operands, and if that fails, with commuted
5975/// operands.
5976static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
5977                                          TargetLowering::DAGCombinerInfo &DCI,
5978                                          const ARMSubtarget *Subtarget){
5979
5980  // Attempt to create vpaddl for this add.
5981  SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
5982  if (Result.getNode())
5983    return Result;
5984
5985  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
5986  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
5987    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
5988    if (Result.getNode()) return Result;
5989  }
5990  return SDValue();
5991}
5992
5993/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
5994///
5995static SDValue PerformADDCombine(SDNode *N,
5996                                 TargetLowering::DAGCombinerInfo &DCI,
5997                                 const ARMSubtarget *Subtarget) {
5998  SDValue N0 = N->getOperand(0);
5999  SDValue N1 = N->getOperand(1);
6000
6001  // First try with the default operand order.
6002  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
6003  if (Result.getNode())
6004    return Result;
6005
6006  // If that didn't work, try again with the operands commuted.
6007  return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
6008}
6009
6010/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
6011///
6012static SDValue PerformSUBCombine(SDNode *N,
6013                                 TargetLowering::DAGCombinerInfo &DCI) {
6014  SDValue N0 = N->getOperand(0);
6015  SDValue N1 = N->getOperand(1);
6016
6017  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
6018  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
6019    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
6020    if (Result.getNode()) return Result;
6021  }
6022
6023  return SDValue();
6024}
6025
6026/// PerformVMULCombine
6027/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
6028/// special multiplier accumulator forwarding.
6029///   vmul d3, d0, d2
6030///   vmla d3, d1, d2
6031/// is faster than
6032///   vadd d3, d0, d1
6033///   vmul d3, d3, d2
6034static SDValue PerformVMULCombine(SDNode *N,
6035                                  TargetLowering::DAGCombinerInfo &DCI,
6036                                  const ARMSubtarget *Subtarget) {
6037  if (!Subtarget->hasVMLxForwarding())
6038    return SDValue();
6039
6040  SelectionDAG &DAG = DCI.DAG;
6041  SDValue N0 = N->getOperand(0);
6042  SDValue N1 = N->getOperand(1);
6043  unsigned Opcode = N0.getOpcode();
6044  if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
6045      Opcode != ISD::FADD && Opcode != ISD::FSUB) {
6046    Opcode = N1.getOpcode();
6047    if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
6048        Opcode != ISD::FADD && Opcode != ISD::FSUB)
6049      return SDValue();
6050    std::swap(N0, N1);
6051  }
6052
6053  EVT VT = N->getValueType(0);
6054  DebugLoc DL = N->getDebugLoc();
6055  SDValue N00 = N0->getOperand(0);
6056  SDValue N01 = N0->getOperand(1);
6057  return DAG.getNode(Opcode, DL, VT,
6058                     DAG.getNode(ISD::MUL, DL, VT, N00, N1),
6059                     DAG.getNode(ISD::MUL, DL, VT, N01, N1));
6060}
6061
6062static SDValue PerformMULCombine(SDNode *N,
6063                                 TargetLowering::DAGCombinerInfo &DCI,
6064                                 const ARMSubtarget *Subtarget) {
6065  SelectionDAG &DAG = DCI.DAG;
6066
6067  if (Subtarget->isThumb1Only())
6068    return SDValue();
6069
6070  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
6071    return SDValue();
6072
6073  EVT VT = N->getValueType(0);
6074  if (VT.is64BitVector() || VT.is128BitVector())
6075    return PerformVMULCombine(N, DCI, Subtarget);
6076  if (VT != MVT::i32)
6077    return SDValue();
6078
6079  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
6080  if (!C)
6081    return SDValue();
6082
6083  uint64_t MulAmt = C->getZExtValue();
6084  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
6085  ShiftAmt = ShiftAmt & (32 - 1);
6086  SDValue V = N->getOperand(0);
6087  DebugLoc DL = N->getDebugLoc();
6088
6089  SDValue Res;
6090  MulAmt >>= ShiftAmt;
6091  if (isPowerOf2_32(MulAmt - 1)) {
6092    // (mul x, 2^N + 1) => (add (shl x, N), x)
6093    Res = DAG.getNode(ISD::ADD, DL, VT,
6094                      V, DAG.getNode(ISD::SHL, DL, VT,
6095                                     V, DAG.getConstant(Log2_32(MulAmt-1),
6096                                                        MVT::i32)));
6097  } else if (isPowerOf2_32(MulAmt + 1)) {
6098    // (mul x, 2^N - 1) => (sub (shl x, N), x)
6099    Res = DAG.getNode(ISD::SUB, DL, VT,
6100                      DAG.getNode(ISD::SHL, DL, VT,
6101                                  V, DAG.getConstant(Log2_32(MulAmt+1),
6102                                                     MVT::i32)),
6103                                                     V);
6104  } else
6105    return SDValue();
6106
6107  if (ShiftAmt != 0)
6108    Res = DAG.getNode(ISD::SHL, DL, VT, Res,
6109                      DAG.getConstant(ShiftAmt, MVT::i32));
6110
6111  // Do not add new nodes to DAG combiner worklist.
6112  DCI.CombineTo(N, Res, false);
6113  return SDValue();
6114}
6115
6116static SDValue PerformANDCombine(SDNode *N,
6117                                TargetLowering::DAGCombinerInfo &DCI) {
6118
6119  // Attempt to use immediate-form VBIC
6120  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
6121  DebugLoc dl = N->getDebugLoc();
6122  EVT VT = N->getValueType(0);
6123  SelectionDAG &DAG = DCI.DAG;
6124
6125  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
6126    return SDValue();
6127
6128  APInt SplatBits, SplatUndef;
6129  unsigned SplatBitSize;
6130  bool HasAnyUndefs;
6131  if (BVN &&
6132      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6133    if (SplatBitSize <= 64) {
6134      EVT VbicVT;
6135      SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
6136                                      SplatUndef.getZExtValue(), SplatBitSize,
6137                                      DAG, VbicVT, VT.is128BitVector(),
6138                                      OtherModImm);
6139      if (Val.getNode()) {
6140        SDValue Input =
6141          DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
6142        SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
6143        return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
6144      }
6145    }
6146  }
6147
6148  return SDValue();
6149}
6150
6151/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
6152static SDValue PerformORCombine(SDNode *N,
6153                                TargetLowering::DAGCombinerInfo &DCI,
6154                                const ARMSubtarget *Subtarget) {
6155  // Attempt to use immediate-form VORR
6156  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
6157  DebugLoc dl = N->getDebugLoc();
6158  EVT VT = N->getValueType(0);
6159  SelectionDAG &DAG = DCI.DAG;
6160
6161  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
6162    return SDValue();
6163
6164  APInt SplatBits, SplatUndef;
6165  unsigned SplatBitSize;
6166  bool HasAnyUndefs;
6167  if (BVN && Subtarget->hasNEON() &&
6168      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6169    if (SplatBitSize <= 64) {
6170      EVT VorrVT;
6171      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
6172                                      SplatUndef.getZExtValue(), SplatBitSize,
6173                                      DAG, VorrVT, VT.is128BitVector(),
6174                                      OtherModImm);
6175      if (Val.getNode()) {
6176        SDValue Input =
6177          DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
6178        SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
6179        return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
6180      }
6181    }
6182  }
6183
6184  SDValue N0 = N->getOperand(0);
6185  if (N0.getOpcode() != ISD::AND)
6186    return SDValue();
6187  SDValue N1 = N->getOperand(1);
6188
6189  // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
6190  if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
6191      DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
6192    APInt SplatUndef;
6193    unsigned SplatBitSize;
6194    bool HasAnyUndefs;
6195
6196    BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
6197    APInt SplatBits0;
6198    if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
6199                                  HasAnyUndefs) && !HasAnyUndefs) {
6200      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
6201      APInt SplatBits1;
6202      if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
6203                                    HasAnyUndefs) && !HasAnyUndefs &&
6204          SplatBits0 == ~SplatBits1) {
6205        // Canonicalize the vector type to make instruction selection simpler.
6206        EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
6207        SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
6208                                     N0->getOperand(1), N0->getOperand(0),
6209                                     N1->getOperand(0));
6210        return DAG.getNode(ISD::BITCAST, dl, VT, Result);
6211      }
6212    }
6213  }
6214
6215  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
6216  // reasonable.
6217
6218  // BFI is only available on V6T2+
6219  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
6220    return SDValue();
6221
6222  DebugLoc DL = N->getDebugLoc();
6223  // 1) or (and A, mask), val => ARMbfi A, val, mask
6224  //      iff (val & mask) == val
6225  //
6226  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
6227  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
6228  //          && mask == ~mask2
6229  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
6230  //          && ~mask == mask2
6231  //  (i.e., copy a bitfield value into another bitfield of the same width)
6232
6233  if (VT != MVT::i32)
6234    return SDValue();
6235
6236  SDValue N00 = N0.getOperand(0);
6237
6238  // The value and the mask need to be constants so we can verify this is
6239  // actually a bitfield set. If the mask is 0xffff, we can do better
6240  // via a movt instruction, so don't use BFI in that case.
6241  SDValue MaskOp = N0.getOperand(1);
6242  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
6243  if (!MaskC)
6244    return SDValue();
6245  unsigned Mask = MaskC->getZExtValue();
6246  if (Mask == 0xffff)
6247    return SDValue();
6248  SDValue Res;
6249  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
6250  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
6251  if (N1C) {
6252    unsigned Val = N1C->getZExtValue();
6253    if ((Val & ~Mask) != Val)
6254      return SDValue();
6255
6256    if (ARM::isBitFieldInvertedMask(Mask)) {
6257      Val >>= CountTrailingZeros_32(~Mask);
6258
6259      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
6260                        DAG.getConstant(Val, MVT::i32),
6261                        DAG.getConstant(Mask, MVT::i32));
6262
6263      // Do not add new nodes to DAG combiner worklist.
6264      DCI.CombineTo(N, Res, false);
6265      return SDValue();
6266    }
6267  } else if (N1.getOpcode() == ISD::AND) {
6268    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
6269    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
6270    if (!N11C)
6271      return SDValue();
6272    unsigned Mask2 = N11C->getZExtValue();
6273
6274    // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
6275    // as is to match.
6276    if (ARM::isBitFieldInvertedMask(Mask) &&
6277        (Mask == ~Mask2)) {
6278      // The pack halfword instruction works better for masks that fit it,
6279      // so use that when it's available.
6280      if (Subtarget->hasT2ExtractPack() &&
6281          (Mask == 0xffff || Mask == 0xffff0000))
6282        return SDValue();
6283      // 2a
6284      unsigned amt = CountTrailingZeros_32(Mask2);
6285      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
6286                        DAG.getConstant(amt, MVT::i32));
6287      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
6288                        DAG.getConstant(Mask, MVT::i32));
6289      // Do not add new nodes to DAG combiner worklist.
6290      DCI.CombineTo(N, Res, false);
6291      return SDValue();
6292    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
6293               (~Mask == Mask2)) {
6294      // The pack halfword instruction works better for masks that fit it,
6295      // so use that when it's available.
6296      if (Subtarget->hasT2ExtractPack() &&
6297          (Mask2 == 0xffff || Mask2 == 0xffff0000))
6298        return SDValue();
6299      // 2b
6300      unsigned lsb = CountTrailingZeros_32(Mask);
6301      Res = DAG.getNode(ISD::SRL, DL, VT, N00,
6302                        DAG.getConstant(lsb, MVT::i32));
6303      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
6304                        DAG.getConstant(Mask2, MVT::i32));
6305      // Do not add new nodes to DAG combiner worklist.
6306      DCI.CombineTo(N, Res, false);
6307      return SDValue();
6308    }
6309  }
6310
6311  if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
6312      N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
6313      ARM::isBitFieldInvertedMask(~Mask)) {
6314    // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
6315    // where lsb(mask) == #shamt and masked bits of B are known zero.
6316    SDValue ShAmt = N00.getOperand(1);
6317    unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
6318    unsigned LSB = CountTrailingZeros_32(Mask);
6319    if (ShAmtC != LSB)
6320      return SDValue();
6321
6322    Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
6323                      DAG.getConstant(~Mask, MVT::i32));
6324
6325    // Do not add new nodes to DAG combiner worklist.
6326    DCI.CombineTo(N, Res, false);
6327  }
6328
6329  return SDValue();
6330}
6331
6332/// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
6333/// the bits being cleared by the AND are not demanded by the BFI.
6334static SDValue PerformBFICombine(SDNode *N,
6335                                 TargetLowering::DAGCombinerInfo &DCI) {
6336  SDValue N1 = N->getOperand(1);
6337  if (N1.getOpcode() == ISD::AND) {
6338    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
6339    if (!N11C)
6340      return SDValue();
6341    unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
6342    unsigned LSB = CountTrailingZeros_32(~InvMask);
6343    unsigned Width = (32 - CountLeadingZeros_32(~InvMask)) - LSB;
6344    unsigned Mask = (1 << Width)-1;
6345    unsigned Mask2 = N11C->getZExtValue();
6346    if ((Mask & (~Mask2)) == 0)
6347      return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
6348                             N->getOperand(0), N1.getOperand(0),
6349                             N->getOperand(2));
6350  }
6351  return SDValue();
6352}
6353
6354/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
6355/// ARMISD::VMOVRRD.
6356static SDValue PerformVMOVRRDCombine(SDNode *N,
6357                                     TargetLowering::DAGCombinerInfo &DCI) {
6358  // vmovrrd(vmovdrr x, y) -> x,y
6359  SDValue InDouble = N->getOperand(0);
6360  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
6361    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
6362
6363  // vmovrrd(load f64) -> (load i32), (load i32)
6364  SDNode *InNode = InDouble.getNode();
6365  if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
6366      InNode->getValueType(0) == MVT::f64 &&
6367      InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
6368      !cast<LoadSDNode>(InNode)->isVolatile()) {
6369    // TODO: Should this be done for non-FrameIndex operands?
6370    LoadSDNode *LD = cast<LoadSDNode>(InNode);
6371
6372    SelectionDAG &DAG = DCI.DAG;
6373    DebugLoc DL = LD->getDebugLoc();
6374    SDValue BasePtr = LD->getBasePtr();
6375    SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
6376                                 LD->getPointerInfo(), LD->isVolatile(),
6377                                 LD->isNonTemporal(), LD->getAlignment());
6378
6379    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
6380                                    DAG.getConstant(4, MVT::i32));
6381    SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
6382                                 LD->getPointerInfo(), LD->isVolatile(),
6383                                 LD->isNonTemporal(),
6384                                 std::min(4U, LD->getAlignment() / 2));
6385
6386    DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
6387    SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
6388    DCI.RemoveFromWorklist(LD);
6389    DAG.DeleteNode(LD);
6390    return Result;
6391  }
6392
6393  return SDValue();
6394}
6395
6396/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
6397/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
6398static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
6399  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
6400  SDValue Op0 = N->getOperand(0);
6401  SDValue Op1 = N->getOperand(1);
6402  if (Op0.getOpcode() == ISD::BITCAST)
6403    Op0 = Op0.getOperand(0);
6404  if (Op1.getOpcode() == ISD::BITCAST)
6405    Op1 = Op1.getOperand(0);
6406  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
6407      Op0.getNode() == Op1.getNode() &&
6408      Op0.getResNo() == 0 && Op1.getResNo() == 1)
6409    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
6410                       N->getValueType(0), Op0.getOperand(0));
6411  return SDValue();
6412}
6413
6414/// PerformSTORECombine - Target-specific dag combine xforms for
6415/// ISD::STORE.
6416static SDValue PerformSTORECombine(SDNode *N,
6417                                   TargetLowering::DAGCombinerInfo &DCI) {
6418  // Bitcast an i64 store extracted from a vector to f64.
6419  // Otherwise, the i64 value will be legalized to a pair of i32 values.
6420  StoreSDNode *St = cast<StoreSDNode>(N);
6421  SDValue StVal = St->getValue();
6422  if (!ISD::isNormalStore(St) || St->isVolatile())
6423    return SDValue();
6424
6425  if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
6426      StVal.getNode()->hasOneUse() && !St->isVolatile()) {
6427    SelectionDAG  &DAG = DCI.DAG;
6428    DebugLoc DL = St->getDebugLoc();
6429    SDValue BasePtr = St->getBasePtr();
6430    SDValue NewST1 = DAG.getStore(St->getChain(), DL,
6431                                  StVal.getNode()->getOperand(0), BasePtr,
6432                                  St->getPointerInfo(), St->isVolatile(),
6433                                  St->isNonTemporal(), St->getAlignment());
6434
6435    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
6436                                    DAG.getConstant(4, MVT::i32));
6437    return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1),
6438                        OffsetPtr, St->getPointerInfo(), St->isVolatile(),
6439                        St->isNonTemporal(),
6440                        std::min(4U, St->getAlignment() / 2));
6441  }
6442
6443  if (StVal.getValueType() != MVT::i64 ||
6444      StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6445    return SDValue();
6446
6447  SelectionDAG &DAG = DCI.DAG;
6448  DebugLoc dl = StVal.getDebugLoc();
6449  SDValue IntVec = StVal.getOperand(0);
6450  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
6451                                 IntVec.getValueType().getVectorNumElements());
6452  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
6453  SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6454                               Vec, StVal.getOperand(1));
6455  dl = N->getDebugLoc();
6456  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
6457  // Make the DAGCombiner fold the bitcasts.
6458  DCI.AddToWorklist(Vec.getNode());
6459  DCI.AddToWorklist(ExtElt.getNode());
6460  DCI.AddToWorklist(V.getNode());
6461  return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
6462                      St->getPointerInfo(), St->isVolatile(),
6463                      St->isNonTemporal(), St->getAlignment(),
6464                      St->getTBAAInfo());
6465}
6466
6467/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
6468/// are normal, non-volatile loads.  If so, it is profitable to bitcast an
6469/// i64 vector to have f64 elements, since the value can then be loaded
6470/// directly into a VFP register.
6471static bool hasNormalLoadOperand(SDNode *N) {
6472  unsigned NumElts = N->getValueType(0).getVectorNumElements();
6473  for (unsigned i = 0; i < NumElts; ++i) {
6474    SDNode *Elt = N->getOperand(i).getNode();
6475    if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
6476      return true;
6477  }
6478  return false;
6479}
6480
6481/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
6482/// ISD::BUILD_VECTOR.
6483static SDValue PerformBUILD_VECTORCombine(SDNode *N,
6484                                          TargetLowering::DAGCombinerInfo &DCI){
6485  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
6486  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
6487  // into a pair of GPRs, which is fine when the value is used as a scalar,
6488  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
6489  SelectionDAG &DAG = DCI.DAG;
6490  if (N->getNumOperands() == 2) {
6491    SDValue RV = PerformVMOVDRRCombine(N, DAG);
6492    if (RV.getNode())
6493      return RV;
6494  }
6495
6496  // Load i64 elements as f64 values so that type legalization does not split
6497  // them up into i32 values.
6498  EVT VT = N->getValueType(0);
6499  if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
6500    return SDValue();
6501  DebugLoc dl = N->getDebugLoc();
6502  SmallVector<SDValue, 8> Ops;
6503  unsigned NumElts = VT.getVectorNumElements();
6504  for (unsigned i = 0; i < NumElts; ++i) {
6505    SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
6506    Ops.push_back(V);
6507    // Make the DAGCombiner fold the bitcast.
6508    DCI.AddToWorklist(V.getNode());
6509  }
6510  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
6511  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
6512  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
6513}
6514
6515/// PerformInsertEltCombine - Target-specific dag combine xforms for
6516/// ISD::INSERT_VECTOR_ELT.
6517static SDValue PerformInsertEltCombine(SDNode *N,
6518                                       TargetLowering::DAGCombinerInfo &DCI) {
6519  // Bitcast an i64 load inserted into a vector to f64.
6520  // Otherwise, the i64 value will be legalized to a pair of i32 values.
6521  EVT VT = N->getValueType(0);
6522  SDNode *Elt = N->getOperand(1).getNode();
6523  if (VT.getVectorElementType() != MVT::i64 ||
6524      !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
6525    return SDValue();
6526
6527  SelectionDAG &DAG = DCI.DAG;
6528  DebugLoc dl = N->getDebugLoc();
6529  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
6530                                 VT.getVectorNumElements());
6531  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
6532  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
6533  // Make the DAGCombiner fold the bitcasts.
6534  DCI.AddToWorklist(Vec.getNode());
6535  DCI.AddToWorklist(V.getNode());
6536  SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
6537                               Vec, V, N->getOperand(2));
6538  return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
6539}
6540
6541/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
6542/// ISD::VECTOR_SHUFFLE.
6543static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
6544  // The LLVM shufflevector instruction does not require the shuffle mask
6545  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
6546  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
6547  // operands do not match the mask length, they are extended by concatenating
6548  // them with undef vectors.  That is probably the right thing for other
6549  // targets, but for NEON it is better to concatenate two double-register
6550  // size vector operands into a single quad-register size vector.  Do that
6551  // transformation here:
6552  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
6553  //   shuffle(concat(v1, v2), undef)
6554  SDValue Op0 = N->getOperand(0);
6555  SDValue Op1 = N->getOperand(1);
6556  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
6557      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
6558      Op0.getNumOperands() != 2 ||
6559      Op1.getNumOperands() != 2)
6560    return SDValue();
6561  SDValue Concat0Op1 = Op0.getOperand(1);
6562  SDValue Concat1Op1 = Op1.getOperand(1);
6563  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
6564      Concat1Op1.getOpcode() != ISD::UNDEF)
6565    return SDValue();
6566  // Skip the transformation if any of the types are illegal.
6567  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6568  EVT VT = N->getValueType(0);
6569  if (!TLI.isTypeLegal(VT) ||
6570      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
6571      !TLI.isTypeLegal(Concat1Op1.getValueType()))
6572    return SDValue();
6573
6574  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
6575                                  Op0.getOperand(0), Op1.getOperand(0));
6576  // Translate the shuffle mask.
6577  SmallVector<int, 16> NewMask;
6578  unsigned NumElts = VT.getVectorNumElements();
6579  unsigned HalfElts = NumElts/2;
6580  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
6581  for (unsigned n = 0; n < NumElts; ++n) {
6582    int MaskElt = SVN->getMaskElt(n);
6583    int NewElt = -1;
6584    if (MaskElt < (int)HalfElts)
6585      NewElt = MaskElt;
6586    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
6587      NewElt = HalfElts + MaskElt - NumElts;
6588    NewMask.push_back(NewElt);
6589  }
6590  return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
6591                              DAG.getUNDEF(VT), NewMask.data());
6592}
6593
6594/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
6595/// NEON load/store intrinsics to merge base address updates.
6596static SDValue CombineBaseUpdate(SDNode *N,
6597                                 TargetLowering::DAGCombinerInfo &DCI) {
6598  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
6599    return SDValue();
6600
6601  SelectionDAG &DAG = DCI.DAG;
6602  bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
6603                      N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
6604  unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
6605  SDValue Addr = N->getOperand(AddrOpIdx);
6606
6607  // Search for a use of the address operand that is an increment.
6608  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
6609         UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
6610    SDNode *User = *UI;
6611    if (User->getOpcode() != ISD::ADD ||
6612        UI.getUse().getResNo() != Addr.getResNo())
6613      continue;
6614
6615    // Check that the add is independent of the load/store.  Otherwise, folding
6616    // it would create a cycle.
6617    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
6618      continue;
6619
6620    // Find the new opcode for the updating load/store.
6621    bool isLoad = true;
6622    bool isLaneOp = false;
6623    unsigned NewOpc = 0;
6624    unsigned NumVecs = 0;
6625    if (isIntrinsic) {
6626      unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
6627      switch (IntNo) {
6628      default: assert(0 && "unexpected intrinsic for Neon base update");
6629      case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
6630        NumVecs = 1; break;
6631      case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
6632        NumVecs = 2; break;
6633      case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
6634        NumVecs = 3; break;
6635      case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
6636        NumVecs = 4; break;
6637      case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
6638        NumVecs = 2; isLaneOp = true; break;
6639      case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
6640        NumVecs = 3; isLaneOp = true; break;
6641      case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
6642        NumVecs = 4; isLaneOp = true; break;
6643      case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
6644        NumVecs = 1; isLoad = false; break;
6645      case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
6646        NumVecs = 2; isLoad = false; break;
6647      case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
6648        NumVecs = 3; isLoad = false; break;
6649      case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
6650        NumVecs = 4; isLoad = false; break;
6651      case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
6652        NumVecs = 2; isLoad = false; isLaneOp = true; break;
6653      case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
6654        NumVecs = 3; isLoad = false; isLaneOp = true; break;
6655      case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
6656        NumVecs = 4; isLoad = false; isLaneOp = true; break;
6657      }
6658    } else {
6659      isLaneOp = true;
6660      switch (N->getOpcode()) {
6661      default: assert(0 && "unexpected opcode for Neon base update");
6662      case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
6663      case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
6664      case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
6665      }
6666    }
6667
6668    // Find the size of memory referenced by the load/store.
6669    EVT VecTy;
6670    if (isLoad)
6671      VecTy = N->getValueType(0);
6672    else
6673      VecTy = N->getOperand(AddrOpIdx+1).getValueType();
6674    unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
6675    if (isLaneOp)
6676      NumBytes /= VecTy.getVectorNumElements();
6677
6678    // If the increment is a constant, it must match the memory ref size.
6679    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
6680    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
6681      uint64_t IncVal = CInc->getZExtValue();
6682      if (IncVal != NumBytes)
6683        continue;
6684    } else if (NumBytes >= 3 * 16) {
6685      // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
6686      // separate instructions that make it harder to use a non-constant update.
6687      continue;
6688    }
6689
6690    // Create the new updating load/store node.
6691    EVT Tys[6];
6692    unsigned NumResultVecs = (isLoad ? NumVecs : 0);
6693    unsigned n;
6694    for (n = 0; n < NumResultVecs; ++n)
6695      Tys[n] = VecTy;
6696    Tys[n++] = MVT::i32;
6697    Tys[n] = MVT::Other;
6698    SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
6699    SmallVector<SDValue, 8> Ops;
6700    Ops.push_back(N->getOperand(0)); // incoming chain
6701    Ops.push_back(N->getOperand(AddrOpIdx));
6702    Ops.push_back(Inc);
6703    for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
6704      Ops.push_back(N->getOperand(i));
6705    }
6706    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
6707    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys,
6708                                           Ops.data(), Ops.size(),
6709                                           MemInt->getMemoryVT(),
6710                                           MemInt->getMemOperand());
6711
6712    // Update the uses.
6713    std::vector<SDValue> NewResults;
6714    for (unsigned i = 0; i < NumResultVecs; ++i) {
6715      NewResults.push_back(SDValue(UpdN.getNode(), i));
6716    }
6717    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
6718    DCI.CombineTo(N, NewResults);
6719    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
6720
6721    break;
6722  }
6723  return SDValue();
6724}
6725
6726/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
6727/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
6728/// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
6729/// return true.
6730static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
6731  SelectionDAG &DAG = DCI.DAG;
6732  EVT VT = N->getValueType(0);
6733  // vldN-dup instructions only support 64-bit vectors for N > 1.
6734  if (!VT.is64BitVector())
6735    return false;
6736
6737  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
6738  SDNode *VLD = N->getOperand(0).getNode();
6739  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
6740    return false;
6741  unsigned NumVecs = 0;
6742  unsigned NewOpc = 0;
6743  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
6744  if (IntNo == Intrinsic::arm_neon_vld2lane) {
6745    NumVecs = 2;
6746    NewOpc = ARMISD::VLD2DUP;
6747  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
6748    NumVecs = 3;
6749    NewOpc = ARMISD::VLD3DUP;
6750  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
6751    NumVecs = 4;
6752    NewOpc = ARMISD::VLD4DUP;
6753  } else {
6754    return false;
6755  }
6756
6757  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
6758  // numbers match the load.
6759  unsigned VLDLaneNo =
6760    cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
6761  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
6762       UI != UE; ++UI) {
6763    // Ignore uses of the chain result.
6764    if (UI.getUse().getResNo() == NumVecs)
6765      continue;
6766    SDNode *User = *UI;
6767    if (User->getOpcode() != ARMISD::VDUPLANE ||
6768        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
6769      return false;
6770  }
6771
6772  // Create the vldN-dup node.
6773  EVT Tys[5];
6774  unsigned n;
6775  for (n = 0; n < NumVecs; ++n)
6776    Tys[n] = VT;
6777  Tys[n] = MVT::Other;
6778  SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
6779  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
6780  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
6781  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
6782                                           Ops, 2, VLDMemInt->getMemoryVT(),
6783                                           VLDMemInt->getMemOperand());
6784
6785  // Update the uses.
6786  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
6787       UI != UE; ++UI) {
6788    unsigned ResNo = UI.getUse().getResNo();
6789    // Ignore uses of the chain result.
6790    if (ResNo == NumVecs)
6791      continue;
6792    SDNode *User = *UI;
6793    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
6794  }
6795
6796  // Now the vldN-lane intrinsic is dead except for its chain result.
6797  // Update uses of the chain.
6798  std::vector<SDValue> VLDDupResults;
6799  for (unsigned n = 0; n < NumVecs; ++n)
6800    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
6801  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
6802  DCI.CombineTo(VLD, VLDDupResults);
6803
6804  return true;
6805}
6806
6807/// PerformVDUPLANECombine - Target-specific dag combine xforms for
6808/// ARMISD::VDUPLANE.
6809static SDValue PerformVDUPLANECombine(SDNode *N,
6810                                      TargetLowering::DAGCombinerInfo &DCI) {
6811  SDValue Op = N->getOperand(0);
6812
6813  // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
6814  // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
6815  if (CombineVLDDUP(N, DCI))
6816    return SDValue(N, 0);
6817
6818  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
6819  // redundant.  Ignore bit_converts for now; element sizes are checked below.
6820  while (Op.getOpcode() == ISD::BITCAST)
6821    Op = Op.getOperand(0);
6822  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
6823    return SDValue();
6824
6825  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
6826  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
6827  // The canonical VMOV for a zero vector uses a 32-bit element size.
6828  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6829  unsigned EltBits;
6830  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
6831    EltSize = 8;
6832  EVT VT = N->getValueType(0);
6833  if (EltSize > VT.getVectorElementType().getSizeInBits())
6834    return SDValue();
6835
6836  return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
6837}
6838
6839// isConstVecPow2 - Return true if each vector element is a power of 2, all
6840// elements are the same constant, C, and Log2(C) ranges from 1 to 32.
6841static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
6842{
6843  integerPart cN;
6844  integerPart c0 = 0;
6845  for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
6846       I != E; I++) {
6847    ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
6848    if (!C)
6849      return false;
6850
6851    bool isExact;
6852    APFloat APF = C->getValueAPF();
6853    if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
6854        != APFloat::opOK || !isExact)
6855      return false;
6856
6857    c0 = (I == 0) ? cN : c0;
6858    if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
6859      return false;
6860  }
6861  C = c0;
6862  return true;
6863}
6864
6865/// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
6866/// can replace combinations of VMUL and VCVT (floating-point to integer)
6867/// when the VMUL has a constant operand that is a power of 2.
6868///
6869/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
6870///  vmul.f32        d16, d17, d16
6871///  vcvt.s32.f32    d16, d16
6872/// becomes:
6873///  vcvt.s32.f32    d16, d16, #3
6874static SDValue PerformVCVTCombine(SDNode *N,
6875                                  TargetLowering::DAGCombinerInfo &DCI,
6876                                  const ARMSubtarget *Subtarget) {
6877  SelectionDAG &DAG = DCI.DAG;
6878  SDValue Op = N->getOperand(0);
6879
6880  if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
6881      Op.getOpcode() != ISD::FMUL)
6882    return SDValue();
6883
6884  uint64_t C;
6885  SDValue N0 = Op->getOperand(0);
6886  SDValue ConstVec = Op->getOperand(1);
6887  bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
6888
6889  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
6890      !isConstVecPow2(ConstVec, isSigned, C))
6891    return SDValue();
6892
6893  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
6894    Intrinsic::arm_neon_vcvtfp2fxu;
6895  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
6896                     N->getValueType(0),
6897                     DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
6898                     DAG.getConstant(Log2_64(C), MVT::i32));
6899}
6900
6901/// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
6902/// can replace combinations of VCVT (integer to floating-point) and VDIV
6903/// when the VDIV has a constant operand that is a power of 2.
6904///
6905/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
6906///  vcvt.f32.s32    d16, d16
6907///  vdiv.f32        d16, d17, d16
6908/// becomes:
6909///  vcvt.f32.s32    d16, d16, #3
6910static SDValue PerformVDIVCombine(SDNode *N,
6911                                  TargetLowering::DAGCombinerInfo &DCI,
6912                                  const ARMSubtarget *Subtarget) {
6913  SelectionDAG &DAG = DCI.DAG;
6914  SDValue Op = N->getOperand(0);
6915  unsigned OpOpcode = Op.getNode()->getOpcode();
6916
6917  if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
6918      (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
6919    return SDValue();
6920
6921  uint64_t C;
6922  SDValue ConstVec = N->getOperand(1);
6923  bool isSigned = OpOpcode == ISD::SINT_TO_FP;
6924
6925  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
6926      !isConstVecPow2(ConstVec, isSigned, C))
6927    return SDValue();
6928
6929  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
6930    Intrinsic::arm_neon_vcvtfxu2fp;
6931  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
6932                     Op.getValueType(),
6933                     DAG.getConstant(IntrinsicOpcode, MVT::i32),
6934                     Op.getOperand(0), DAG.getConstant(Log2_64(C), MVT::i32));
6935}
6936
6937/// Getvshiftimm - Check if this is a valid build_vector for the immediate
6938/// operand of a vector shift operation, where all the elements of the
6939/// build_vector must have the same constant integer value.
6940static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6941  // Ignore bit_converts.
6942  while (Op.getOpcode() == ISD::BITCAST)
6943    Op = Op.getOperand(0);
6944  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6945  APInt SplatBits, SplatUndef;
6946  unsigned SplatBitSize;
6947  bool HasAnyUndefs;
6948  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
6949                                      HasAnyUndefs, ElementBits) ||
6950      SplatBitSize > ElementBits)
6951    return false;
6952  Cnt = SplatBits.getSExtValue();
6953  return true;
6954}
6955
6956/// isVShiftLImm - Check if this is a valid build_vector for the immediate
6957/// operand of a vector shift left operation.  That value must be in the range:
6958///   0 <= Value < ElementBits for a left shift; or
6959///   0 <= Value <= ElementBits for a long left shift.
6960static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6961  assert(VT.isVector() && "vector shift count is not a vector type");
6962  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6963  if (! getVShiftImm(Op, ElementBits, Cnt))
6964    return false;
6965  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
6966}
6967
6968/// isVShiftRImm - Check if this is a valid build_vector for the immediate
6969/// operand of a vector shift right operation.  For a shift opcode, the value
6970/// is positive, but for an intrinsic the value count must be negative. The
6971/// absolute value must be in the range:
6972///   1 <= |Value| <= ElementBits for a right shift; or
6973///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
6974static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
6975                         int64_t &Cnt) {
6976  assert(VT.isVector() && "vector shift count is not a vector type");
6977  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6978  if (! getVShiftImm(Op, ElementBits, Cnt))
6979    return false;
6980  if (isIntrinsic)
6981    Cnt = -Cnt;
6982  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
6983}
6984
6985/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
6986static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
6987  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
6988  switch (IntNo) {
6989  default:
6990    // Don't do anything for most intrinsics.
6991    break;
6992
6993  // Vector shifts: check for immediate versions and lower them.
6994  // Note: This is done during DAG combining instead of DAG legalizing because
6995  // the build_vectors for 64-bit vector element shift counts are generally
6996  // not legal, and it is hard to see their values after they get legalized to
6997  // loads from a constant pool.
6998  case Intrinsic::arm_neon_vshifts:
6999  case Intrinsic::arm_neon_vshiftu:
7000  case Intrinsic::arm_neon_vshiftls:
7001  case Intrinsic::arm_neon_vshiftlu:
7002  case Intrinsic::arm_neon_vshiftn:
7003  case Intrinsic::arm_neon_vrshifts:
7004  case Intrinsic::arm_neon_vrshiftu:
7005  case Intrinsic::arm_neon_vrshiftn:
7006  case Intrinsic::arm_neon_vqshifts:
7007  case Intrinsic::arm_neon_vqshiftu:
7008  case Intrinsic::arm_neon_vqshiftsu:
7009  case Intrinsic::arm_neon_vqshiftns:
7010  case Intrinsic::arm_neon_vqshiftnu:
7011  case Intrinsic::arm_neon_vqshiftnsu:
7012  case Intrinsic::arm_neon_vqrshiftns:
7013  case Intrinsic::arm_neon_vqrshiftnu:
7014  case Intrinsic::arm_neon_vqrshiftnsu: {
7015    EVT VT = N->getOperand(1).getValueType();
7016    int64_t Cnt;
7017    unsigned VShiftOpc = 0;
7018
7019    switch (IntNo) {
7020    case Intrinsic::arm_neon_vshifts:
7021    case Intrinsic::arm_neon_vshiftu:
7022      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
7023        VShiftOpc = ARMISD::VSHL;
7024        break;
7025      }
7026      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
7027        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
7028                     ARMISD::VSHRs : ARMISD::VSHRu);
7029        break;
7030      }
7031      return SDValue();
7032
7033    case Intrinsic::arm_neon_vshiftls:
7034    case Intrinsic::arm_neon_vshiftlu:
7035      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
7036        break;
7037      llvm_unreachable("invalid shift count for vshll intrinsic");
7038
7039    case Intrinsic::arm_neon_vrshifts:
7040    case Intrinsic::arm_neon_vrshiftu:
7041      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
7042        break;
7043      return SDValue();
7044
7045    case Intrinsic::arm_neon_vqshifts:
7046    case Intrinsic::arm_neon_vqshiftu:
7047      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
7048        break;
7049      return SDValue();
7050
7051    case Intrinsic::arm_neon_vqshiftsu:
7052      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
7053        break;
7054      llvm_unreachable("invalid shift count for vqshlu intrinsic");
7055
7056    case Intrinsic::arm_neon_vshiftn:
7057    case Intrinsic::arm_neon_vrshiftn:
7058    case Intrinsic::arm_neon_vqshiftns:
7059    case Intrinsic::arm_neon_vqshiftnu:
7060    case Intrinsic::arm_neon_vqshiftnsu:
7061    case Intrinsic::arm_neon_vqrshiftns:
7062    case Intrinsic::arm_neon_vqrshiftnu:
7063    case Intrinsic::arm_neon_vqrshiftnsu:
7064      // Narrowing shifts require an immediate right shift.
7065      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
7066        break;
7067      llvm_unreachable("invalid shift count for narrowing vector shift "
7068                       "intrinsic");
7069
7070    default:
7071      llvm_unreachable("unhandled vector shift");
7072    }
7073
7074    switch (IntNo) {
7075    case Intrinsic::arm_neon_vshifts:
7076    case Intrinsic::arm_neon_vshiftu:
7077      // Opcode already set above.
7078      break;
7079    case Intrinsic::arm_neon_vshiftls:
7080    case Intrinsic::arm_neon_vshiftlu:
7081      if (Cnt == VT.getVectorElementType().getSizeInBits())
7082        VShiftOpc = ARMISD::VSHLLi;
7083      else
7084        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
7085                     ARMISD::VSHLLs : ARMISD::VSHLLu);
7086      break;
7087    case Intrinsic::arm_neon_vshiftn:
7088      VShiftOpc = ARMISD::VSHRN; break;
7089    case Intrinsic::arm_neon_vrshifts:
7090      VShiftOpc = ARMISD::VRSHRs; break;
7091    case Intrinsic::arm_neon_vrshiftu:
7092      VShiftOpc = ARMISD::VRSHRu; break;
7093    case Intrinsic::arm_neon_vrshiftn:
7094      VShiftOpc = ARMISD::VRSHRN; break;
7095    case Intrinsic::arm_neon_vqshifts:
7096      VShiftOpc = ARMISD::VQSHLs; break;
7097    case Intrinsic::arm_neon_vqshiftu:
7098      VShiftOpc = ARMISD::VQSHLu; break;
7099    case Intrinsic::arm_neon_vqshiftsu:
7100      VShiftOpc = ARMISD::VQSHLsu; break;
7101    case Intrinsic::arm_neon_vqshiftns:
7102      VShiftOpc = ARMISD::VQSHRNs; break;
7103    case Intrinsic::arm_neon_vqshiftnu:
7104      VShiftOpc = ARMISD::VQSHRNu; break;
7105    case Intrinsic::arm_neon_vqshiftnsu:
7106      VShiftOpc = ARMISD::VQSHRNsu; break;
7107    case Intrinsic::arm_neon_vqrshiftns:
7108      VShiftOpc = ARMISD::VQRSHRNs; break;
7109    case Intrinsic::arm_neon_vqrshiftnu:
7110      VShiftOpc = ARMISD::VQRSHRNu; break;
7111    case Intrinsic::arm_neon_vqrshiftnsu:
7112      VShiftOpc = ARMISD::VQRSHRNsu; break;
7113    }
7114
7115    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
7116                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
7117  }
7118
7119  case Intrinsic::arm_neon_vshiftins: {
7120    EVT VT = N->getOperand(1).getValueType();
7121    int64_t Cnt;
7122    unsigned VShiftOpc = 0;
7123
7124    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
7125      VShiftOpc = ARMISD::VSLI;
7126    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
7127      VShiftOpc = ARMISD::VSRI;
7128    else {
7129      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
7130    }
7131
7132    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
7133                       N->getOperand(1), N->getOperand(2),
7134                       DAG.getConstant(Cnt, MVT::i32));
7135  }
7136
7137  case Intrinsic::arm_neon_vqrshifts:
7138  case Intrinsic::arm_neon_vqrshiftu:
7139    // No immediate versions of these to check for.
7140    break;
7141  }
7142
7143  return SDValue();
7144}
7145
7146/// PerformShiftCombine - Checks for immediate versions of vector shifts and
7147/// lowers them.  As with the vector shift intrinsics, this is done during DAG
7148/// combining instead of DAG legalizing because the build_vectors for 64-bit
7149/// vector element shift counts are generally not legal, and it is hard to see
7150/// their values after they get legalized to loads from a constant pool.
7151static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
7152                                   const ARMSubtarget *ST) {
7153  EVT VT = N->getValueType(0);
7154
7155  // Nothing to be done for scalar shifts.
7156  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7157  if (!VT.isVector() || !TLI.isTypeLegal(VT))
7158    return SDValue();
7159
7160  assert(ST->hasNEON() && "unexpected vector shift");
7161  int64_t Cnt;
7162
7163  switch (N->getOpcode()) {
7164  default: llvm_unreachable("unexpected shift opcode");
7165
7166  case ISD::SHL:
7167    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
7168      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
7169                         DAG.getConstant(Cnt, MVT::i32));
7170    break;
7171
7172  case ISD::SRA:
7173  case ISD::SRL:
7174    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
7175      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
7176                            ARMISD::VSHRs : ARMISD::VSHRu);
7177      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
7178                         DAG.getConstant(Cnt, MVT::i32));
7179    }
7180  }
7181  return SDValue();
7182}
7183
7184/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
7185/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
7186static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
7187                                    const ARMSubtarget *ST) {
7188  SDValue N0 = N->getOperand(0);
7189
7190  // Check for sign- and zero-extensions of vector extract operations of 8-
7191  // and 16-bit vector elements.  NEON supports these directly.  They are
7192  // handled during DAG combining because type legalization will promote them
7193  // to 32-bit types and it is messy to recognize the operations after that.
7194  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7195    SDValue Vec = N0.getOperand(0);
7196    SDValue Lane = N0.getOperand(1);
7197    EVT VT = N->getValueType(0);
7198    EVT EltVT = N0.getValueType();
7199    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7200
7201    if (VT == MVT::i32 &&
7202        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
7203        TLI.isTypeLegal(Vec.getValueType()) &&
7204        isa<ConstantSDNode>(Lane)) {
7205
7206      unsigned Opc = 0;
7207      switch (N->getOpcode()) {
7208      default: llvm_unreachable("unexpected opcode");
7209      case ISD::SIGN_EXTEND:
7210        Opc = ARMISD::VGETLANEs;
7211        break;
7212      case ISD::ZERO_EXTEND:
7213      case ISD::ANY_EXTEND:
7214        Opc = ARMISD::VGETLANEu;
7215        break;
7216      }
7217      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
7218    }
7219  }
7220
7221  return SDValue();
7222}
7223
7224/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
7225/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
7226static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
7227                                       const ARMSubtarget *ST) {
7228  // If the target supports NEON, try to use vmax/vmin instructions for f32
7229  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
7230  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
7231  // a NaN; only do the transformation when it matches that behavior.
7232
7233  // For now only do this when using NEON for FP operations; if using VFP, it
7234  // is not obvious that the benefit outweighs the cost of switching to the
7235  // NEON pipeline.
7236  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
7237      N->getValueType(0) != MVT::f32)
7238    return SDValue();
7239
7240  SDValue CondLHS = N->getOperand(0);
7241  SDValue CondRHS = N->getOperand(1);
7242  SDValue LHS = N->getOperand(2);
7243  SDValue RHS = N->getOperand(3);
7244  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
7245
7246  unsigned Opcode = 0;
7247  bool IsReversed;
7248  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
7249    IsReversed = false; // x CC y ? x : y
7250  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
7251    IsReversed = true ; // x CC y ? y : x
7252  } else {
7253    return SDValue();
7254  }
7255
7256  bool IsUnordered;
7257  switch (CC) {
7258  default: break;
7259  case ISD::SETOLT:
7260  case ISD::SETOLE:
7261  case ISD::SETLT:
7262  case ISD::SETLE:
7263  case ISD::SETULT:
7264  case ISD::SETULE:
7265    // If LHS is NaN, an ordered comparison will be false and the result will
7266    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
7267    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
7268    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
7269    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
7270      break;
7271    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
7272    // will return -0, so vmin can only be used for unsafe math or if one of
7273    // the operands is known to be nonzero.
7274    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
7275        !UnsafeFPMath &&
7276        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
7277      break;
7278    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
7279    break;
7280
7281  case ISD::SETOGT:
7282  case ISD::SETOGE:
7283  case ISD::SETGT:
7284  case ISD::SETGE:
7285  case ISD::SETUGT:
7286  case ISD::SETUGE:
7287    // If LHS is NaN, an ordered comparison will be false and the result will
7288    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
7289    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
7290    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
7291    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
7292      break;
7293    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
7294    // will return +0, so vmax can only be used for unsafe math or if one of
7295    // the operands is known to be nonzero.
7296    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
7297        !UnsafeFPMath &&
7298        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
7299      break;
7300    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
7301    break;
7302  }
7303
7304  if (!Opcode)
7305    return SDValue();
7306  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
7307}
7308
7309/// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
7310SDValue
7311ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
7312  SDValue Cmp = N->getOperand(4);
7313  if (Cmp.getOpcode() != ARMISD::CMPZ)
7314    // Only looking at EQ and NE cases.
7315    return SDValue();
7316
7317  EVT VT = N->getValueType(0);
7318  DebugLoc dl = N->getDebugLoc();
7319  SDValue LHS = Cmp.getOperand(0);
7320  SDValue RHS = Cmp.getOperand(1);
7321  SDValue FalseVal = N->getOperand(0);
7322  SDValue TrueVal = N->getOperand(1);
7323  SDValue ARMcc = N->getOperand(2);
7324  ARMCC::CondCodes CC =
7325    (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
7326
7327  // Simplify
7328  //   mov     r1, r0
7329  //   cmp     r1, x
7330  //   mov     r0, y
7331  //   moveq   r0, x
7332  // to
7333  //   cmp     r0, x
7334  //   movne   r0, y
7335  //
7336  //   mov     r1, r0
7337  //   cmp     r1, x
7338  //   mov     r0, x
7339  //   movne   r0, y
7340  // to
7341  //   cmp     r0, x
7342  //   movne   r0, y
7343  /// FIXME: Turn this into a target neutral optimization?
7344  SDValue Res;
7345  if (CC == ARMCC::NE && FalseVal == RHS) {
7346    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
7347                      N->getOperand(3), Cmp);
7348  } else if (CC == ARMCC::EQ && TrueVal == RHS) {
7349    SDValue ARMcc;
7350    SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
7351    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
7352                      N->getOperand(3), NewCmp);
7353  }
7354
7355  if (Res.getNode()) {
7356    APInt KnownZero, KnownOne;
7357    APInt Mask = APInt::getAllOnesValue(VT.getScalarType().getSizeInBits());
7358    DAG.ComputeMaskedBits(SDValue(N,0), Mask, KnownZero, KnownOne);
7359    // Capture demanded bits information that would be otherwise lost.
7360    if (KnownZero == 0xfffffffe)
7361      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
7362                        DAG.getValueType(MVT::i1));
7363    else if (KnownZero == 0xffffff00)
7364      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
7365                        DAG.getValueType(MVT::i8));
7366    else if (KnownZero == 0xffff0000)
7367      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
7368                        DAG.getValueType(MVT::i16));
7369  }
7370
7371  return Res;
7372}
7373
7374SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
7375                                             DAGCombinerInfo &DCI) const {
7376  switch (N->getOpcode()) {
7377  default: break;
7378  case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
7379  case ISD::SUB:        return PerformSUBCombine(N, DCI);
7380  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
7381  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
7382  case ISD::AND:        return PerformANDCombine(N, DCI);
7383  case ARMISD::BFI:     return PerformBFICombine(N, DCI);
7384  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
7385  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
7386  case ISD::STORE:      return PerformSTORECombine(N, DCI);
7387  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
7388  case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
7389  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
7390  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
7391  case ISD::FP_TO_SINT:
7392  case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
7393  case ISD::FDIV:       return PerformVDIVCombine(N, DCI, Subtarget);
7394  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
7395  case ISD::SHL:
7396  case ISD::SRA:
7397  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
7398  case ISD::SIGN_EXTEND:
7399  case ISD::ZERO_EXTEND:
7400  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
7401  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
7402  case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
7403  case ARMISD::VLD2DUP:
7404  case ARMISD::VLD3DUP:
7405  case ARMISD::VLD4DUP:
7406    return CombineBaseUpdate(N, DCI);
7407  case ISD::INTRINSIC_VOID:
7408  case ISD::INTRINSIC_W_CHAIN:
7409    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
7410    case Intrinsic::arm_neon_vld1:
7411    case Intrinsic::arm_neon_vld2:
7412    case Intrinsic::arm_neon_vld3:
7413    case Intrinsic::arm_neon_vld4:
7414    case Intrinsic::arm_neon_vld2lane:
7415    case Intrinsic::arm_neon_vld3lane:
7416    case Intrinsic::arm_neon_vld4lane:
7417    case Intrinsic::arm_neon_vst1:
7418    case Intrinsic::arm_neon_vst2:
7419    case Intrinsic::arm_neon_vst3:
7420    case Intrinsic::arm_neon_vst4:
7421    case Intrinsic::arm_neon_vst2lane:
7422    case Intrinsic::arm_neon_vst3lane:
7423    case Intrinsic::arm_neon_vst4lane:
7424      return CombineBaseUpdate(N, DCI);
7425    default: break;
7426    }
7427    break;
7428  }
7429  return SDValue();
7430}
7431
7432bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
7433                                                          EVT VT) const {
7434  return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
7435}
7436
7437bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
7438  if (!Subtarget->allowsUnalignedMem())
7439    return false;
7440
7441  switch (VT.getSimpleVT().SimpleTy) {
7442  default:
7443    return false;
7444  case MVT::i8:
7445  case MVT::i16:
7446  case MVT::i32:
7447    return true;
7448  // FIXME: VLD1 etc with standard alignment is legal.
7449  }
7450}
7451
7452static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
7453  if (V < 0)
7454    return false;
7455
7456  unsigned Scale = 1;
7457  switch (VT.getSimpleVT().SimpleTy) {
7458  default: return false;
7459  case MVT::i1:
7460  case MVT::i8:
7461    // Scale == 1;
7462    break;
7463  case MVT::i16:
7464    // Scale == 2;
7465    Scale = 2;
7466    break;
7467  case MVT::i32:
7468    // Scale == 4;
7469    Scale = 4;
7470    break;
7471  }
7472
7473  if ((V & (Scale - 1)) != 0)
7474    return false;
7475  V /= Scale;
7476  return V == (V & ((1LL << 5) - 1));
7477}
7478
7479static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
7480                                      const ARMSubtarget *Subtarget) {
7481  bool isNeg = false;
7482  if (V < 0) {
7483    isNeg = true;
7484    V = - V;
7485  }
7486
7487  switch (VT.getSimpleVT().SimpleTy) {
7488  default: return false;
7489  case MVT::i1:
7490  case MVT::i8:
7491  case MVT::i16:
7492  case MVT::i32:
7493    // + imm12 or - imm8
7494    if (isNeg)
7495      return V == (V & ((1LL << 8) - 1));
7496    return V == (V & ((1LL << 12) - 1));
7497  case MVT::f32:
7498  case MVT::f64:
7499    // Same as ARM mode. FIXME: NEON?
7500    if (!Subtarget->hasVFP2())
7501      return false;
7502    if ((V & 3) != 0)
7503      return false;
7504    V >>= 2;
7505    return V == (V & ((1LL << 8) - 1));
7506  }
7507}
7508
7509/// isLegalAddressImmediate - Return true if the integer value can be used
7510/// as the offset of the target addressing mode for load / store of the
7511/// given type.
7512static bool isLegalAddressImmediate(int64_t V, EVT VT,
7513                                    const ARMSubtarget *Subtarget) {
7514  if (V == 0)
7515    return true;
7516
7517  if (!VT.isSimple())
7518    return false;
7519
7520  if (Subtarget->isThumb1Only())
7521    return isLegalT1AddressImmediate(V, VT);
7522  else if (Subtarget->isThumb2())
7523    return isLegalT2AddressImmediate(V, VT, Subtarget);
7524
7525  // ARM mode.
7526  if (V < 0)
7527    V = - V;
7528  switch (VT.getSimpleVT().SimpleTy) {
7529  default: return false;
7530  case MVT::i1:
7531  case MVT::i8:
7532  case MVT::i32:
7533    // +- imm12
7534    return V == (V & ((1LL << 12) - 1));
7535  case MVT::i16:
7536    // +- imm8
7537    return V == (V & ((1LL << 8) - 1));
7538  case MVT::f32:
7539  case MVT::f64:
7540    if (!Subtarget->hasVFP2()) // FIXME: NEON?
7541      return false;
7542    if ((V & 3) != 0)
7543      return false;
7544    V >>= 2;
7545    return V == (V & ((1LL << 8) - 1));
7546  }
7547}
7548
7549bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
7550                                                      EVT VT) const {
7551  int Scale = AM.Scale;
7552  if (Scale < 0)
7553    return false;
7554
7555  switch (VT.getSimpleVT().SimpleTy) {
7556  default: return false;
7557  case MVT::i1:
7558  case MVT::i8:
7559  case MVT::i16:
7560  case MVT::i32:
7561    if (Scale == 1)
7562      return true;
7563    // r + r << imm
7564    Scale = Scale & ~1;
7565    return Scale == 2 || Scale == 4 || Scale == 8;
7566  case MVT::i64:
7567    // r + r
7568    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
7569      return true;
7570    return false;
7571  case MVT::isVoid:
7572    // Note, we allow "void" uses (basically, uses that aren't loads or
7573    // stores), because arm allows folding a scale into many arithmetic
7574    // operations.  This should be made more precise and revisited later.
7575
7576    // Allow r << imm, but the imm has to be a multiple of two.
7577    if (Scale & 1) return false;
7578    return isPowerOf2_32(Scale);
7579  }
7580}
7581
7582/// isLegalAddressingMode - Return true if the addressing mode represented
7583/// by AM is legal for this target, for a load/store of the specified type.
7584bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
7585                                              Type *Ty) const {
7586  EVT VT = getValueType(Ty, true);
7587  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
7588    return false;
7589
7590  // Can never fold addr of global into load/store.
7591  if (AM.BaseGV)
7592    return false;
7593
7594  switch (AM.Scale) {
7595  case 0:  // no scale reg, must be "r+i" or "r", or "i".
7596    break;
7597  case 1:
7598    if (Subtarget->isThumb1Only())
7599      return false;
7600    // FALL THROUGH.
7601  default:
7602    // ARM doesn't support any R+R*scale+imm addr modes.
7603    if (AM.BaseOffs)
7604      return false;
7605
7606    if (!VT.isSimple())
7607      return false;
7608
7609    if (Subtarget->isThumb2())
7610      return isLegalT2ScaledAddressingMode(AM, VT);
7611
7612    int Scale = AM.Scale;
7613    switch (VT.getSimpleVT().SimpleTy) {
7614    default: return false;
7615    case MVT::i1:
7616    case MVT::i8:
7617    case MVT::i32:
7618      if (Scale < 0) Scale = -Scale;
7619      if (Scale == 1)
7620        return true;
7621      // r + r << imm
7622      return isPowerOf2_32(Scale & ~1);
7623    case MVT::i16:
7624    case MVT::i64:
7625      // r + r
7626      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
7627        return true;
7628      return false;
7629
7630    case MVT::isVoid:
7631      // Note, we allow "void" uses (basically, uses that aren't loads or
7632      // stores), because arm allows folding a scale into many arithmetic
7633      // operations.  This should be made more precise and revisited later.
7634
7635      // Allow r << imm, but the imm has to be a multiple of two.
7636      if (Scale & 1) return false;
7637      return isPowerOf2_32(Scale);
7638    }
7639    break;
7640  }
7641  return true;
7642}
7643
7644/// isLegalICmpImmediate - Return true if the specified immediate is legal
7645/// icmp immediate, that is the target has icmp instructions which can compare
7646/// a register against the immediate without having to materialize the
7647/// immediate into a register.
7648bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
7649  if (!Subtarget->isThumb())
7650    return ARM_AM::getSOImmVal(Imm) != -1;
7651  if (Subtarget->isThumb2())
7652    return ARM_AM::getT2SOImmVal(Imm) != -1;
7653  return Imm >= 0 && Imm <= 255;
7654}
7655
7656/// isLegalAddImmediate - Return true if the specified immediate is legal
7657/// add immediate, that is the target has add instructions which can add
7658/// a register with the immediate without having to materialize the
7659/// immediate into a register.
7660bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
7661  return ARM_AM::getSOImmVal(Imm) != -1;
7662}
7663
7664static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
7665                                      bool isSEXTLoad, SDValue &Base,
7666                                      SDValue &Offset, bool &isInc,
7667                                      SelectionDAG &DAG) {
7668  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
7669    return false;
7670
7671  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
7672    // AddressingMode 3
7673    Base = Ptr->getOperand(0);
7674    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
7675      int RHSC = (int)RHS->getZExtValue();
7676      if (RHSC < 0 && RHSC > -256) {
7677        assert(Ptr->getOpcode() == ISD::ADD);
7678        isInc = false;
7679        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
7680        return true;
7681      }
7682    }
7683    isInc = (Ptr->getOpcode() == ISD::ADD);
7684    Offset = Ptr->getOperand(1);
7685    return true;
7686  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
7687    // AddressingMode 2
7688    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
7689      int RHSC = (int)RHS->getZExtValue();
7690      if (RHSC < 0 && RHSC > -0x1000) {
7691        assert(Ptr->getOpcode() == ISD::ADD);
7692        isInc = false;
7693        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
7694        Base = Ptr->getOperand(0);
7695        return true;
7696      }
7697    }
7698
7699    if (Ptr->getOpcode() == ISD::ADD) {
7700      isInc = true;
7701      ARM_AM::ShiftOpc ShOpcVal=
7702        ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
7703      if (ShOpcVal != ARM_AM::no_shift) {
7704        Base = Ptr->getOperand(1);
7705        Offset = Ptr->getOperand(0);
7706      } else {
7707        Base = Ptr->getOperand(0);
7708        Offset = Ptr->getOperand(1);
7709      }
7710      return true;
7711    }
7712
7713    isInc = (Ptr->getOpcode() == ISD::ADD);
7714    Base = Ptr->getOperand(0);
7715    Offset = Ptr->getOperand(1);
7716    return true;
7717  }
7718
7719  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
7720  return false;
7721}
7722
7723static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
7724                                     bool isSEXTLoad, SDValue &Base,
7725                                     SDValue &Offset, bool &isInc,
7726                                     SelectionDAG &DAG) {
7727  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
7728    return false;
7729
7730  Base = Ptr->getOperand(0);
7731  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
7732    int RHSC = (int)RHS->getZExtValue();
7733    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
7734      assert(Ptr->getOpcode() == ISD::ADD);
7735      isInc = false;
7736      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
7737      return true;
7738    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
7739      isInc = Ptr->getOpcode() == ISD::ADD;
7740      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
7741      return true;
7742    }
7743  }
7744
7745  return false;
7746}
7747
7748/// getPreIndexedAddressParts - returns true by value, base pointer and
7749/// offset pointer and addressing mode by reference if the node's address
7750/// can be legally represented as pre-indexed load / store address.
7751bool
7752ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
7753                                             SDValue &Offset,
7754                                             ISD::MemIndexedMode &AM,
7755                                             SelectionDAG &DAG) const {
7756  if (Subtarget->isThumb1Only())
7757    return false;
7758
7759  EVT VT;
7760  SDValue Ptr;
7761  bool isSEXTLoad = false;
7762  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
7763    Ptr = LD->getBasePtr();
7764    VT  = LD->getMemoryVT();
7765    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
7766  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
7767    Ptr = ST->getBasePtr();
7768    VT  = ST->getMemoryVT();
7769  } else
7770    return false;
7771
7772  bool isInc;
7773  bool isLegal = false;
7774  if (Subtarget->isThumb2())
7775    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
7776                                       Offset, isInc, DAG);
7777  else
7778    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
7779                                        Offset, isInc, DAG);
7780  if (!isLegal)
7781    return false;
7782
7783  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
7784  return true;
7785}
7786
7787/// getPostIndexedAddressParts - returns true by value, base pointer and
7788/// offset pointer and addressing mode by reference if this node can be
7789/// combined with a load / store to form a post-indexed load / store.
7790bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
7791                                                   SDValue &Base,
7792                                                   SDValue &Offset,
7793                                                   ISD::MemIndexedMode &AM,
7794                                                   SelectionDAG &DAG) const {
7795  if (Subtarget->isThumb1Only())
7796    return false;
7797
7798  EVT VT;
7799  SDValue Ptr;
7800  bool isSEXTLoad = false;
7801  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
7802    VT  = LD->getMemoryVT();
7803    Ptr = LD->getBasePtr();
7804    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
7805  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
7806    VT  = ST->getMemoryVT();
7807    Ptr = ST->getBasePtr();
7808  } else
7809    return false;
7810
7811  bool isInc;
7812  bool isLegal = false;
7813  if (Subtarget->isThumb2())
7814    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
7815                                       isInc, DAG);
7816  else
7817    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
7818                                        isInc, DAG);
7819  if (!isLegal)
7820    return false;
7821
7822  if (Ptr != Base) {
7823    // Swap base ptr and offset to catch more post-index load / store when
7824    // it's legal. In Thumb2 mode, offset must be an immediate.
7825    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
7826        !Subtarget->isThumb2())
7827      std::swap(Base, Offset);
7828
7829    // Post-indexed load / store update the base pointer.
7830    if (Ptr != Base)
7831      return false;
7832  }
7833
7834  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
7835  return true;
7836}
7837
7838void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
7839                                                       const APInt &Mask,
7840                                                       APInt &KnownZero,
7841                                                       APInt &KnownOne,
7842                                                       const SelectionDAG &DAG,
7843                                                       unsigned Depth) const {
7844  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
7845  switch (Op.getOpcode()) {
7846  default: break;
7847  case ARMISD::CMOV: {
7848    // Bits are known zero/one if known on the LHS and RHS.
7849    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
7850    if (KnownZero == 0 && KnownOne == 0) return;
7851
7852    APInt KnownZeroRHS, KnownOneRHS;
7853    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
7854                          KnownZeroRHS, KnownOneRHS, Depth+1);
7855    KnownZero &= KnownZeroRHS;
7856    KnownOne  &= KnownOneRHS;
7857    return;
7858  }
7859  }
7860}
7861
7862//===----------------------------------------------------------------------===//
7863//                           ARM Inline Assembly Support
7864//===----------------------------------------------------------------------===//
7865
7866bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
7867  // Looking for "rev" which is V6+.
7868  if (!Subtarget->hasV6Ops())
7869    return false;
7870
7871  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
7872  std::string AsmStr = IA->getAsmString();
7873  SmallVector<StringRef, 4> AsmPieces;
7874  SplitString(AsmStr, AsmPieces, ";\n");
7875
7876  switch (AsmPieces.size()) {
7877  default: return false;
7878  case 1:
7879    AsmStr = AsmPieces[0];
7880    AsmPieces.clear();
7881    SplitString(AsmStr, AsmPieces, " \t,");
7882
7883    // rev $0, $1
7884    if (AsmPieces.size() == 3 &&
7885        AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
7886        IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
7887      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
7888      if (Ty && Ty->getBitWidth() == 32)
7889        return IntrinsicLowering::LowerToByteSwap(CI);
7890    }
7891    break;
7892  }
7893
7894  return false;
7895}
7896
7897/// getConstraintType - Given a constraint letter, return the type of
7898/// constraint it is for this target.
7899ARMTargetLowering::ConstraintType
7900ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
7901  if (Constraint.size() == 1) {
7902    switch (Constraint[0]) {
7903    default:  break;
7904    case 'l': return C_RegisterClass;
7905    case 'w': return C_RegisterClass;
7906    case 'h': return C_RegisterClass;
7907    case 'x': return C_RegisterClass;
7908    case 't': return C_RegisterClass;
7909    case 'j': return C_Other; // Constant for movw.
7910      // An address with a single base register. Due to the way we
7911      // currently handle addresses it is the same as an 'r' memory constraint.
7912    case 'Q': return C_Memory;
7913    }
7914  } else if (Constraint.size() == 2) {
7915    switch (Constraint[0]) {
7916    default: break;
7917    // All 'U+' constraints are addresses.
7918    case 'U': return C_Memory;
7919    }
7920  }
7921  return TargetLowering::getConstraintType(Constraint);
7922}
7923
7924/// Examine constraint type and operand type and determine a weight value.
7925/// This object must already have been set up with the operand type
7926/// and the current alternative constraint selected.
7927TargetLowering::ConstraintWeight
7928ARMTargetLowering::getSingleConstraintMatchWeight(
7929    AsmOperandInfo &info, const char *constraint) const {
7930  ConstraintWeight weight = CW_Invalid;
7931  Value *CallOperandVal = info.CallOperandVal;
7932    // If we don't have a value, we can't do a match,
7933    // but allow it at the lowest weight.
7934  if (CallOperandVal == NULL)
7935    return CW_Default;
7936  Type *type = CallOperandVal->getType();
7937  // Look at the constraint type.
7938  switch (*constraint) {
7939  default:
7940    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
7941    break;
7942  case 'l':
7943    if (type->isIntegerTy()) {
7944      if (Subtarget->isThumb())
7945        weight = CW_SpecificReg;
7946      else
7947        weight = CW_Register;
7948    }
7949    break;
7950  case 'w':
7951    if (type->isFloatingPointTy())
7952      weight = CW_Register;
7953    break;
7954  }
7955  return weight;
7956}
7957
7958typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
7959RCPair
7960ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
7961                                                EVT VT) const {
7962  if (Constraint.size() == 1) {
7963    // GCC ARM Constraint Letters
7964    switch (Constraint[0]) {
7965    case 'l': // Low regs or general regs.
7966      if (Subtarget->isThumb())
7967        return RCPair(0U, ARM::tGPRRegisterClass);
7968      else
7969        return RCPair(0U, ARM::GPRRegisterClass);
7970    case 'h': // High regs or no regs.
7971      if (Subtarget->isThumb())
7972        return RCPair(0U, ARM::hGPRRegisterClass);
7973      break;
7974    case 'r':
7975      return RCPair(0U, ARM::GPRRegisterClass);
7976    case 'w':
7977      if (VT == MVT::f32)
7978        return RCPair(0U, ARM::SPRRegisterClass);
7979      if (VT.getSizeInBits() == 64)
7980        return RCPair(0U, ARM::DPRRegisterClass);
7981      if (VT.getSizeInBits() == 128)
7982        return RCPair(0U, ARM::QPRRegisterClass);
7983      break;
7984    case 'x':
7985      if (VT == MVT::f32)
7986        return RCPair(0U, ARM::SPR_8RegisterClass);
7987      if (VT.getSizeInBits() == 64)
7988        return RCPair(0U, ARM::DPR_8RegisterClass);
7989      if (VT.getSizeInBits() == 128)
7990        return RCPair(0U, ARM::QPR_8RegisterClass);
7991      break;
7992    case 't':
7993      if (VT == MVT::f32)
7994        return RCPair(0U, ARM::SPRRegisterClass);
7995      break;
7996    }
7997  }
7998  if (StringRef("{cc}").equals_lower(Constraint))
7999    return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
8000
8001  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
8002}
8003
8004/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
8005/// vector.  If it is invalid, don't add anything to Ops.
8006void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
8007                                                     std::string &Constraint,
8008                                                     std::vector<SDValue>&Ops,
8009                                                     SelectionDAG &DAG) const {
8010  SDValue Result(0, 0);
8011
8012  // Currently only support length 1 constraints.
8013  if (Constraint.length() != 1) return;
8014
8015  char ConstraintLetter = Constraint[0];
8016  switch (ConstraintLetter) {
8017  default: break;
8018  case 'j':
8019  case 'I': case 'J': case 'K': case 'L':
8020  case 'M': case 'N': case 'O':
8021    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
8022    if (!C)
8023      return;
8024
8025    int64_t CVal64 = C->getSExtValue();
8026    int CVal = (int) CVal64;
8027    // None of these constraints allow values larger than 32 bits.  Check
8028    // that the value fits in an int.
8029    if (CVal != CVal64)
8030      return;
8031
8032    switch (ConstraintLetter) {
8033      case 'j':
8034        // Constant suitable for movw, must be between 0 and
8035        // 65535.
8036        if (Subtarget->hasV6T2Ops())
8037          if (CVal >= 0 && CVal <= 65535)
8038            break;
8039        return;
8040      case 'I':
8041        if (Subtarget->isThumb1Only()) {
8042          // This must be a constant between 0 and 255, for ADD
8043          // immediates.
8044          if (CVal >= 0 && CVal <= 255)
8045            break;
8046        } else if (Subtarget->isThumb2()) {
8047          // A constant that can be used as an immediate value in a
8048          // data-processing instruction.
8049          if (ARM_AM::getT2SOImmVal(CVal) != -1)
8050            break;
8051        } else {
8052          // A constant that can be used as an immediate value in a
8053          // data-processing instruction.
8054          if (ARM_AM::getSOImmVal(CVal) != -1)
8055            break;
8056        }
8057        return;
8058
8059      case 'J':
8060        if (Subtarget->isThumb()) {  // FIXME thumb2
8061          // This must be a constant between -255 and -1, for negated ADD
8062          // immediates. This can be used in GCC with an "n" modifier that
8063          // prints the negated value, for use with SUB instructions. It is
8064          // not useful otherwise but is implemented for compatibility.
8065          if (CVal >= -255 && CVal <= -1)
8066            break;
8067        } else {
8068          // This must be a constant between -4095 and 4095. It is not clear
8069          // what this constraint is intended for. Implemented for
8070          // compatibility with GCC.
8071          if (CVal >= -4095 && CVal <= 4095)
8072            break;
8073        }
8074        return;
8075
8076      case 'K':
8077        if (Subtarget->isThumb1Only()) {
8078          // A 32-bit value where only one byte has a nonzero value. Exclude
8079          // zero to match GCC. This constraint is used by GCC internally for
8080          // constants that can be loaded with a move/shift combination.
8081          // It is not useful otherwise but is implemented for compatibility.
8082          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
8083            break;
8084        } else if (Subtarget->isThumb2()) {
8085          // A constant whose bitwise inverse can be used as an immediate
8086          // value in a data-processing instruction. This can be used in GCC
8087          // with a "B" modifier that prints the inverted value, for use with
8088          // BIC and MVN instructions. It is not useful otherwise but is
8089          // implemented for compatibility.
8090          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
8091            break;
8092        } else {
8093          // A constant whose bitwise inverse can be used as an immediate
8094          // value in a data-processing instruction. This can be used in GCC
8095          // with a "B" modifier that prints the inverted value, for use with
8096          // BIC and MVN instructions. It is not useful otherwise but is
8097          // implemented for compatibility.
8098          if (ARM_AM::getSOImmVal(~CVal) != -1)
8099            break;
8100        }
8101        return;
8102
8103      case 'L':
8104        if (Subtarget->isThumb1Only()) {
8105          // This must be a constant between -7 and 7,
8106          // for 3-operand ADD/SUB immediate instructions.
8107          if (CVal >= -7 && CVal < 7)
8108            break;
8109        } else if (Subtarget->isThumb2()) {
8110          // A constant whose negation can be used as an immediate value in a
8111          // data-processing instruction. This can be used in GCC with an "n"
8112          // modifier that prints the negated value, for use with SUB
8113          // instructions. It is not useful otherwise but is implemented for
8114          // compatibility.
8115          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
8116            break;
8117        } else {
8118          // A constant whose negation can be used as an immediate value in a
8119          // data-processing instruction. This can be used in GCC with an "n"
8120          // modifier that prints the negated value, for use with SUB
8121          // instructions. It is not useful otherwise but is implemented for
8122          // compatibility.
8123          if (ARM_AM::getSOImmVal(-CVal) != -1)
8124            break;
8125        }
8126        return;
8127
8128      case 'M':
8129        if (Subtarget->isThumb()) { // FIXME thumb2
8130          // This must be a multiple of 4 between 0 and 1020, for
8131          // ADD sp + immediate.
8132          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
8133            break;
8134        } else {
8135          // A power of two or a constant between 0 and 32.  This is used in
8136          // GCC for the shift amount on shifted register operands, but it is
8137          // useful in general for any shift amounts.
8138          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
8139            break;
8140        }
8141        return;
8142
8143      case 'N':
8144        if (Subtarget->isThumb()) {  // FIXME thumb2
8145          // This must be a constant between 0 and 31, for shift amounts.
8146          if (CVal >= 0 && CVal <= 31)
8147            break;
8148        }
8149        return;
8150
8151      case 'O':
8152        if (Subtarget->isThumb()) {  // FIXME thumb2
8153          // This must be a multiple of 4 between -508 and 508, for
8154          // ADD/SUB sp = sp + immediate.
8155          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
8156            break;
8157        }
8158        return;
8159    }
8160    Result = DAG.getTargetConstant(CVal, Op.getValueType());
8161    break;
8162  }
8163
8164  if (Result.getNode()) {
8165    Ops.push_back(Result);
8166    return;
8167  }
8168  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
8169}
8170
8171bool
8172ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
8173  // The ARM target isn't yet aware of offsets.
8174  return false;
8175}
8176
8177int ARM::getVFPf32Imm(const APFloat &FPImm) {
8178  APInt Imm = FPImm.bitcastToAPInt();
8179  uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
8180  int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
8181  int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
8182
8183  // We can handle 4 bits of mantissa.
8184  // mantissa = (16+UInt(e:f:g:h))/16.
8185  if (Mantissa & 0x7ffff)
8186    return -1;
8187  Mantissa >>= 19;
8188  if ((Mantissa & 0xf) != Mantissa)
8189    return -1;
8190
8191  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
8192  if (Exp < -3 || Exp > 4)
8193    return -1;
8194  Exp = ((Exp+3) & 0x7) ^ 4;
8195
8196  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
8197}
8198
8199int ARM::getVFPf64Imm(const APFloat &FPImm) {
8200  APInt Imm = FPImm.bitcastToAPInt();
8201  uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
8202  int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
8203  uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffLL;
8204
8205  // We can handle 4 bits of mantissa.
8206  // mantissa = (16+UInt(e:f:g:h))/16.
8207  if (Mantissa & 0xffffffffffffLL)
8208    return -1;
8209  Mantissa >>= 48;
8210  if ((Mantissa & 0xf) != Mantissa)
8211    return -1;
8212
8213  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
8214  if (Exp < -3 || Exp > 4)
8215    return -1;
8216  Exp = ((Exp+3) & 0x7) ^ 4;
8217
8218  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
8219}
8220
8221bool ARM::isBitFieldInvertedMask(unsigned v) {
8222  if (v == 0xffffffff)
8223    return 0;
8224  // there can be 1's on either or both "outsides", all the "inside"
8225  // bits must be 0's
8226  unsigned int lsb = 0, msb = 31;
8227  while (v & (1 << msb)) --msb;
8228  while (v & (1 << lsb)) ++lsb;
8229  for (unsigned int i = lsb; i <= msb; ++i) {
8230    if (v & (1 << i))
8231      return 0;
8232  }
8233  return 1;
8234}
8235
8236/// isFPImmLegal - Returns true if the target can instruction select the
8237/// specified FP immediate natively. If false, the legalizer will
8238/// materialize the FP immediate as a load from a constant pool.
8239bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
8240  if (!Subtarget->hasVFP3())
8241    return false;
8242  if (VT == MVT::f32)
8243    return ARM::getVFPf32Imm(Imm) != -1;
8244  if (VT == MVT::f64)
8245    return ARM::getVFPf64Imm(Imm) != -1;
8246  return false;
8247}
8248
8249/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
8250/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
8251/// specified in the intrinsic calls.
8252bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
8253                                           const CallInst &I,
8254                                           unsigned Intrinsic) const {
8255  switch (Intrinsic) {
8256  case Intrinsic::arm_neon_vld1:
8257  case Intrinsic::arm_neon_vld2:
8258  case Intrinsic::arm_neon_vld3:
8259  case Intrinsic::arm_neon_vld4:
8260  case Intrinsic::arm_neon_vld2lane:
8261  case Intrinsic::arm_neon_vld3lane:
8262  case Intrinsic::arm_neon_vld4lane: {
8263    Info.opc = ISD::INTRINSIC_W_CHAIN;
8264    // Conservatively set memVT to the entire set of vectors loaded.
8265    uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
8266    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
8267    Info.ptrVal = I.getArgOperand(0);
8268    Info.offset = 0;
8269    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
8270    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
8271    Info.vol = false; // volatile loads with NEON intrinsics not supported
8272    Info.readMem = true;
8273    Info.writeMem = false;
8274    return true;
8275  }
8276  case Intrinsic::arm_neon_vst1:
8277  case Intrinsic::arm_neon_vst2:
8278  case Intrinsic::arm_neon_vst3:
8279  case Intrinsic::arm_neon_vst4:
8280  case Intrinsic::arm_neon_vst2lane:
8281  case Intrinsic::arm_neon_vst3lane:
8282  case Intrinsic::arm_neon_vst4lane: {
8283    Info.opc = ISD::INTRINSIC_VOID;
8284    // Conservatively set memVT to the entire set of vectors stored.
8285    unsigned NumElts = 0;
8286    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
8287      Type *ArgTy = I.getArgOperand(ArgI)->getType();
8288      if (!ArgTy->isVectorTy())
8289        break;
8290      NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
8291    }
8292    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
8293    Info.ptrVal = I.getArgOperand(0);
8294    Info.offset = 0;
8295    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
8296    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
8297    Info.vol = false; // volatile stores with NEON intrinsics not supported
8298    Info.readMem = false;
8299    Info.writeMem = true;
8300    return true;
8301  }
8302  case Intrinsic::arm_strexd: {
8303    Info.opc = ISD::INTRINSIC_W_CHAIN;
8304    Info.memVT = MVT::i64;
8305    Info.ptrVal = I.getArgOperand(2);
8306    Info.offset = 0;
8307    Info.align = 8;
8308    Info.vol = true;
8309    Info.readMem = false;
8310    Info.writeMem = true;
8311    return true;
8312  }
8313  case Intrinsic::arm_ldrexd: {
8314    Info.opc = ISD::INTRINSIC_W_CHAIN;
8315    Info.memVT = MVT::i64;
8316    Info.ptrVal = I.getArgOperand(0);
8317    Info.offset = 0;
8318    Info.align = 8;
8319    Info.vol = true;
8320    Info.readMem = true;
8321    Info.writeMem = false;
8322    return true;
8323  }
8324  default:
8325    break;
8326  }
8327
8328  return false;
8329}
8330