ARMISelLowering.cpp revision 90cfc130d618ecb0539e475c343ed805ee124f8d
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "ARM.h"
16#include "ARMAddressingModes.h"
17#include "ARMConstantPoolValue.h"
18#include "ARMISelLowering.h"
19#include "ARMMachineFunctionInfo.h"
20#include "ARMPerfectShuffle.h"
21#include "ARMRegisterInfo.h"
22#include "ARMSubtarget.h"
23#include "ARMTargetMachine.h"
24#include "ARMTargetObjectFile.h"
25#include "llvm/CallingConv.h"
26#include "llvm/Constants.h"
27#include "llvm/Function.h"
28#include "llvm/GlobalValue.h"
29#include "llvm/Instruction.h"
30#include "llvm/Intrinsics.h"
31#include "llvm/Type.h"
32#include "llvm/CodeGen/CallingConvLower.h"
33#include "llvm/CodeGen/MachineBasicBlock.h"
34#include "llvm/CodeGen/MachineFrameInfo.h"
35#include "llvm/CodeGen/MachineFunction.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/CodeGen/SelectionDAG.h"
40#include "llvm/Target/TargetOptions.h"
41#include "llvm/ADT/VectorExtras.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/raw_ostream.h"
46#include <sstream>
47using namespace llvm;
48
49static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
50                                   CCValAssign::LocInfo &LocInfo,
51                                   ISD::ArgFlagsTy &ArgFlags,
52                                   CCState &State);
53static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
54                                    CCValAssign::LocInfo &LocInfo,
55                                    ISD::ArgFlagsTy &ArgFlags,
56                                    CCState &State);
57static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
58                                      CCValAssign::LocInfo &LocInfo,
59                                      ISD::ArgFlagsTy &ArgFlags,
60                                      CCState &State);
61static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
62                                       CCValAssign::LocInfo &LocInfo,
63                                       ISD::ArgFlagsTy &ArgFlags,
64                                       CCState &State);
65
66void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
67                                       EVT PromotedBitwiseVT) {
68  if (VT != PromotedLdStVT) {
69    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
70    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
71                       PromotedLdStVT.getSimpleVT());
72
73    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
74    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
75                       PromotedLdStVT.getSimpleVT());
76  }
77
78  EVT ElemTy = VT.getVectorElementType();
79  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
80    setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom);
81  if (ElemTy == MVT::i8 || ElemTy == MVT::i16)
82    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
83  if (ElemTy != MVT::i32) {
84    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
85    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
86    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
87    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
88  }
89  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
90  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
91  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Custom);
92  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Expand);
93  if (VT.isInteger()) {
94    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
95    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
96    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
97  }
98
99  // Promote all bit-wise operations.
100  if (VT.isInteger() && VT != PromotedBitwiseVT) {
101    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
102    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
103                       PromotedBitwiseVT.getSimpleVT());
104    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
105    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
106                       PromotedBitwiseVT.getSimpleVT());
107    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
108    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
109                       PromotedBitwiseVT.getSimpleVT());
110  }
111
112  // Neon does not support vector divide/remainder operations.
113  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
114  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
115  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
116  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
117  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
118  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
119}
120
121void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
122  addRegisterClass(VT, ARM::DPRRegisterClass);
123  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
124}
125
126void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
127  addRegisterClass(VT, ARM::QPRRegisterClass);
128  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
129}
130
131static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
132  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
133    return new TargetLoweringObjectFileMachO();
134  return new ARMElfTargetObjectFile();
135}
136
137ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
138    : TargetLowering(TM, createTLOF(TM)) {
139  Subtarget = &TM.getSubtarget<ARMSubtarget>();
140
141  if (Subtarget->isTargetDarwin()) {
142    // Uses VFP for Thumb libfuncs if available.
143    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
144      // Single-precision floating-point arithmetic.
145      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
146      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
147      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
148      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
149
150      // Double-precision floating-point arithmetic.
151      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
152      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
153      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
154      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
155
156      // Single-precision comparisons.
157      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
158      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
159      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
160      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
161      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
162      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
163      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
164      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
165
166      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
167      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
168      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
169      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
170      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
171      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
172      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
173      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
174
175      // Double-precision comparisons.
176      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
177      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
178      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
179      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
180      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
181      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
182      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
183      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
184
185      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
186      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
187      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
188      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
189      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
190      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
191      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
192      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
193
194      // Floating-point to integer conversions.
195      // i64 conversions are done via library routines even when generating VFP
196      // instructions, so use the same ones.
197      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
198      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
199      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
200      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
201
202      // Conversions between floating types.
203      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
204      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
205
206      // Integer to floating-point conversions.
207      // i64 conversions are done via library routines even when generating VFP
208      // instructions, so use the same ones.
209      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
210      // e.g., __floatunsidf vs. __floatunssidfvfp.
211      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
212      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
213      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
214      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
215    }
216  }
217
218  // These libcalls are not available in 32-bit.
219  setLibcallName(RTLIB::SHL_I128, 0);
220  setLibcallName(RTLIB::SRL_I128, 0);
221  setLibcallName(RTLIB::SRA_I128, 0);
222
223  // Libcalls should use the AAPCS base standard ABI, even if hard float
224  // is in effect, as per the ARM RTABI specification, section 4.1.2.
225  if (Subtarget->isAAPCS_ABI()) {
226    for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
227      setLibcallCallingConv(static_cast<RTLIB::Libcall>(i),
228                            CallingConv::ARM_AAPCS);
229    }
230  }
231
232  if (Subtarget->isThumb1Only())
233    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
234  else
235    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
236  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
237    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
238    addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
239
240    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
241  }
242
243  if (Subtarget->hasNEON()) {
244    addDRTypeForNEON(MVT::v2f32);
245    addDRTypeForNEON(MVT::v8i8);
246    addDRTypeForNEON(MVT::v4i16);
247    addDRTypeForNEON(MVT::v2i32);
248    addDRTypeForNEON(MVT::v1i64);
249
250    addQRTypeForNEON(MVT::v4f32);
251    addQRTypeForNEON(MVT::v2f64);
252    addQRTypeForNEON(MVT::v16i8);
253    addQRTypeForNEON(MVT::v8i16);
254    addQRTypeForNEON(MVT::v4i32);
255    addQRTypeForNEON(MVT::v2i64);
256
257    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
258    // neither Neon nor VFP support any arithmetic operations on it.
259    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
260    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
261    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
262    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
263    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
264    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
265    setOperationAction(ISD::VSETCC, MVT::v2f64, Expand);
266    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
267    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
268    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
269    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
270    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
271    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
272    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
273    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
274    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
275    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
276    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
277    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
278    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
279    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
280    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
281    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
282    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
283
284    // Neon does not support some operations on v1i64 and v2i64 types.
285    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
286    setOperationAction(ISD::MUL, MVT::v2i64, Expand);
287    setOperationAction(ISD::VSETCC, MVT::v1i64, Expand);
288    setOperationAction(ISD::VSETCC, MVT::v2i64, Expand);
289
290    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
291    setTargetDAGCombine(ISD::SHL);
292    setTargetDAGCombine(ISD::SRL);
293    setTargetDAGCombine(ISD::SRA);
294    setTargetDAGCombine(ISD::SIGN_EXTEND);
295    setTargetDAGCombine(ISD::ZERO_EXTEND);
296    setTargetDAGCombine(ISD::ANY_EXTEND);
297  }
298
299  computeRegisterProperties();
300
301  // ARM does not have f32 extending load.
302  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
303
304  // ARM does not have i1 sign extending load.
305  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
306
307  // ARM supports all 4 flavors of integer indexed load / store.
308  if (!Subtarget->isThumb1Only()) {
309    for (unsigned im = (unsigned)ISD::PRE_INC;
310         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
311      setIndexedLoadAction(im,  MVT::i1,  Legal);
312      setIndexedLoadAction(im,  MVT::i8,  Legal);
313      setIndexedLoadAction(im,  MVT::i16, Legal);
314      setIndexedLoadAction(im,  MVT::i32, Legal);
315      setIndexedStoreAction(im, MVT::i1,  Legal);
316      setIndexedStoreAction(im, MVT::i8,  Legal);
317      setIndexedStoreAction(im, MVT::i16, Legal);
318      setIndexedStoreAction(im, MVT::i32, Legal);
319    }
320  }
321
322  // i64 operation support.
323  if (Subtarget->isThumb1Only()) {
324    setOperationAction(ISD::MUL,     MVT::i64, Expand);
325    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
326    setOperationAction(ISD::MULHS,   MVT::i32, Expand);
327    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
328    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
329  } else {
330    setOperationAction(ISD::MUL,     MVT::i64, Expand);
331    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
332    if (!Subtarget->hasV6Ops())
333      setOperationAction(ISD::MULHS, MVT::i32, Expand);
334  }
335  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
336  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
337  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
338  setOperationAction(ISD::SRL,       MVT::i64, Custom);
339  setOperationAction(ISD::SRA,       MVT::i64, Custom);
340
341  // ARM does not have ROTL.
342  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
343  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
344  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
345  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
346    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
347
348  // Only ARMv6 has BSWAP.
349  if (!Subtarget->hasV6Ops())
350    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
351
352  // These are expanded into libcalls.
353  setOperationAction(ISD::SDIV,  MVT::i32, Expand);
354  setOperationAction(ISD::UDIV,  MVT::i32, Expand);
355  setOperationAction(ISD::SREM,  MVT::i32, Expand);
356  setOperationAction(ISD::UREM,  MVT::i32, Expand);
357  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
358  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
359
360  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
361  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
362  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
363  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
364  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
365
366  // Use the default implementation.
367  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
368  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
369  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
370  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
371  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
372  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
373  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
374  // FIXME: Shouldn't need this, since no register is used, but the legalizer
375  // doesn't yet know how to not do that for SjLj.
376  setExceptionSelectorRegister(ARM::R0);
377  if (Subtarget->isThumb())
378    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
379  else
380    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
381  setOperationAction(ISD::MEMBARRIER,         MVT::Other, Custom);
382
383  if (!Subtarget->hasV6Ops() && !Subtarget->isThumb2()) {
384    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
385    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
386  }
387  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
388
389  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only())
390    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
391    // iff target supports vfp2.
392    setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom);
393
394  // We want to custom lower some of our intrinsics.
395  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
396
397  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
398  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
399  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
400  setOperationAction(ISD::SELECT,    MVT::i32, Expand);
401  setOperationAction(ISD::SELECT,    MVT::f32, Expand);
402  setOperationAction(ISD::SELECT,    MVT::f64, Expand);
403  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
404  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
405  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
406
407  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
408  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
409  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
410  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
411  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
412
413  // We don't support sin/cos/fmod/copysign/pow
414  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
415  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
416  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
417  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
418  setOperationAction(ISD::FREM,      MVT::f64, Expand);
419  setOperationAction(ISD::FREM,      MVT::f32, Expand);
420  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
421    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
422    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
423  }
424  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
425  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
426
427  // int <-> fp are custom expanded into bit_convert + ARMISD ops.
428  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
429    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
430    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
431    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
432    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
433  }
434
435  // We have target-specific dag combine patterns for the following nodes:
436  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
437  setTargetDAGCombine(ISD::ADD);
438  setTargetDAGCombine(ISD::SUB);
439
440  setStackPointerRegisterToSaveRestore(ARM::SP);
441  setSchedulingPreference(SchedulingForRegPressure);
442
443  // FIXME: If-converter should use instruction latency to determine
444  // profitability rather than relying on fixed limits.
445  if (Subtarget->getCPUString() == "generic") {
446    // Generic (and overly aggressive) if-conversion limits.
447    setIfCvtBlockSizeLimit(10);
448    setIfCvtDupBlockSizeLimit(2);
449  } else if (Subtarget->hasV6Ops()) {
450    setIfCvtBlockSizeLimit(2);
451    setIfCvtDupBlockSizeLimit(1);
452  } else {
453    setIfCvtBlockSizeLimit(3);
454    setIfCvtDupBlockSizeLimit(2);
455  }
456
457  maxStoresPerMemcpy = 1;   //// temporary - rewrite interface to use type
458  // Do not enable CodePlacementOpt for now: it currently runs after the
459  // ARMConstantIslandPass and messes up branch relaxation and placement
460  // of constant islands.
461  // benefitFromCodePlacementOpt = true;
462}
463
464const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
465  switch (Opcode) {
466  default: return 0;
467  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
468  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
469  case ARMISD::CALL:          return "ARMISD::CALL";
470  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
471  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
472  case ARMISD::tCALL:         return "ARMISD::tCALL";
473  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
474  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
475  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
476  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
477  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
478  case ARMISD::CMP:           return "ARMISD::CMP";
479  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
480  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
481  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
482  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
483  case ARMISD::CMOV:          return "ARMISD::CMOV";
484  case ARMISD::CNEG:          return "ARMISD::CNEG";
485
486  case ARMISD::RBIT:          return "ARMISD::RBIT";
487
488  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
489  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
490  case ARMISD::SITOF:         return "ARMISD::SITOF";
491  case ARMISD::UITOF:         return "ARMISD::UITOF";
492
493  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
494  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
495  case ARMISD::RRX:           return "ARMISD::RRX";
496
497  case ARMISD::VMOVRRD:         return "ARMISD::VMOVRRD";
498  case ARMISD::VMOVDRR:         return "ARMISD::VMOVDRR";
499
500  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
501  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
502
503  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
504
505  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
506
507  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
508  case ARMISD::SYNCBARRIER:   return "ARMISD::SYNCBARRIER";
509
510  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
511  case ARMISD::VCGE:          return "ARMISD::VCGE";
512  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
513  case ARMISD::VCGT:          return "ARMISD::VCGT";
514  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
515  case ARMISD::VTST:          return "ARMISD::VTST";
516
517  case ARMISD::VSHL:          return "ARMISD::VSHL";
518  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
519  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
520  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
521  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
522  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
523  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
524  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
525  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
526  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
527  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
528  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
529  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
530  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
531  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
532  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
533  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
534  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
535  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
536  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
537  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
538  case ARMISD::VDUP:          return "ARMISD::VDUP";
539  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
540  case ARMISD::VEXT:          return "ARMISD::VEXT";
541  case ARMISD::VREV64:        return "ARMISD::VREV64";
542  case ARMISD::VREV32:        return "ARMISD::VREV32";
543  case ARMISD::VREV16:        return "ARMISD::VREV16";
544  case ARMISD::VZIP:          return "ARMISD::VZIP";
545  case ARMISD::VUZP:          return "ARMISD::VUZP";
546  case ARMISD::VTRN:          return "ARMISD::VTRN";
547  }
548}
549
550/// getFunctionAlignment - Return the Log2 alignment of this function.
551unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const {
552  return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 0 : 1;
553}
554
555//===----------------------------------------------------------------------===//
556// Lowering Code
557//===----------------------------------------------------------------------===//
558
559/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
560static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
561  switch (CC) {
562  default: llvm_unreachable("Unknown condition code!");
563  case ISD::SETNE:  return ARMCC::NE;
564  case ISD::SETEQ:  return ARMCC::EQ;
565  case ISD::SETGT:  return ARMCC::GT;
566  case ISD::SETGE:  return ARMCC::GE;
567  case ISD::SETLT:  return ARMCC::LT;
568  case ISD::SETLE:  return ARMCC::LE;
569  case ISD::SETUGT: return ARMCC::HI;
570  case ISD::SETUGE: return ARMCC::HS;
571  case ISD::SETULT: return ARMCC::LO;
572  case ISD::SETULE: return ARMCC::LS;
573  }
574}
575
576/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
577static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
578                        ARMCC::CondCodes &CondCode2) {
579  CondCode2 = ARMCC::AL;
580  switch (CC) {
581  default: llvm_unreachable("Unknown FP condition!");
582  case ISD::SETEQ:
583  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
584  case ISD::SETGT:
585  case ISD::SETOGT: CondCode = ARMCC::GT; break;
586  case ISD::SETGE:
587  case ISD::SETOGE: CondCode = ARMCC::GE; break;
588  case ISD::SETOLT: CondCode = ARMCC::MI; break;
589  case ISD::SETOLE: CondCode = ARMCC::LS; break;
590  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
591  case ISD::SETO:   CondCode = ARMCC::VC; break;
592  case ISD::SETUO:  CondCode = ARMCC::VS; break;
593  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
594  case ISD::SETUGT: CondCode = ARMCC::HI; break;
595  case ISD::SETUGE: CondCode = ARMCC::PL; break;
596  case ISD::SETLT:
597  case ISD::SETULT: CondCode = ARMCC::LT; break;
598  case ISD::SETLE:
599  case ISD::SETULE: CondCode = ARMCC::LE; break;
600  case ISD::SETNE:
601  case ISD::SETUNE: CondCode = ARMCC::NE; break;
602  }
603}
604
605//===----------------------------------------------------------------------===//
606//                      Calling Convention Implementation
607//===----------------------------------------------------------------------===//
608
609#include "ARMGenCallingConv.inc"
610
611// APCS f64 is in register pairs, possibly split to stack
612static bool f64AssignAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
613                          CCValAssign::LocInfo &LocInfo,
614                          CCState &State, bool CanFail) {
615  static const unsigned RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
616
617  // Try to get the first register.
618  if (unsigned Reg = State.AllocateReg(RegList, 4))
619    State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
620  else {
621    // For the 2nd half of a v2f64, do not fail.
622    if (CanFail)
623      return false;
624
625    // Put the whole thing on the stack.
626    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
627                                           State.AllocateStack(8, 4),
628                                           LocVT, LocInfo));
629    return true;
630  }
631
632  // Try to get the second register.
633  if (unsigned Reg = State.AllocateReg(RegList, 4))
634    State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
635  else
636    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
637                                           State.AllocateStack(4, 4),
638                                           LocVT, LocInfo));
639  return true;
640}
641
642static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
643                                   CCValAssign::LocInfo &LocInfo,
644                                   ISD::ArgFlagsTy &ArgFlags,
645                                   CCState &State) {
646  if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
647    return false;
648  if (LocVT == MVT::v2f64 &&
649      !f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
650    return false;
651  return true;  // we handled it
652}
653
654// AAPCS f64 is in aligned register pairs
655static bool f64AssignAAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
656                           CCValAssign::LocInfo &LocInfo,
657                           CCState &State, bool CanFail) {
658  static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
659  static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
660
661  unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
662  if (Reg == 0) {
663    // For the 2nd half of a v2f64, do not just fail.
664    if (CanFail)
665      return false;
666
667    // Put the whole thing on the stack.
668    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
669                                           State.AllocateStack(8, 8),
670                                           LocVT, LocInfo));
671    return true;
672  }
673
674  unsigned i;
675  for (i = 0; i < 2; ++i)
676    if (HiRegList[i] == Reg)
677      break;
678
679  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
680  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
681                                         LocVT, LocInfo));
682  return true;
683}
684
685static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
686                                    CCValAssign::LocInfo &LocInfo,
687                                    ISD::ArgFlagsTy &ArgFlags,
688                                    CCState &State) {
689  if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
690    return false;
691  if (LocVT == MVT::v2f64 &&
692      !f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
693    return false;
694  return true;  // we handled it
695}
696
697static bool f64RetAssign(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
698                         CCValAssign::LocInfo &LocInfo, CCState &State) {
699  static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
700  static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
701
702  unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
703  if (Reg == 0)
704    return false; // we didn't handle it
705
706  unsigned i;
707  for (i = 0; i < 2; ++i)
708    if (HiRegList[i] == Reg)
709      break;
710
711  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
712  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
713                                         LocVT, LocInfo));
714  return true;
715}
716
717static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
718                                      CCValAssign::LocInfo &LocInfo,
719                                      ISD::ArgFlagsTy &ArgFlags,
720                                      CCState &State) {
721  if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
722    return false;
723  if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
724    return false;
725  return true;  // we handled it
726}
727
728static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
729                                       CCValAssign::LocInfo &LocInfo,
730                                       ISD::ArgFlagsTy &ArgFlags,
731                                       CCState &State) {
732  return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags,
733                                   State);
734}
735
736/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
737/// given CallingConvention value.
738CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
739                                                 bool Return,
740                                                 bool isVarArg) const {
741  switch (CC) {
742  default:
743    llvm_unreachable("Unsupported calling convention");
744  case CallingConv::C:
745  case CallingConv::Fast:
746    // Use target triple & subtarget features to do actual dispatch.
747    if (Subtarget->isAAPCS_ABI()) {
748      if (Subtarget->hasVFP2() &&
749          FloatABIType == FloatABI::Hard && !isVarArg)
750        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
751      else
752        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
753    } else
754        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
755  case CallingConv::ARM_AAPCS_VFP:
756    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
757  case CallingConv::ARM_AAPCS:
758    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
759  case CallingConv::ARM_APCS:
760    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
761  }
762}
763
764/// LowerCallResult - Lower the result values of a call into the
765/// appropriate copies out of appropriate physical registers.
766SDValue
767ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
768                                   CallingConv::ID CallConv, bool isVarArg,
769                                   const SmallVectorImpl<ISD::InputArg> &Ins,
770                                   DebugLoc dl, SelectionDAG &DAG,
771                                   SmallVectorImpl<SDValue> &InVals) {
772
773  // Assign locations to each value returned by this call.
774  SmallVector<CCValAssign, 16> RVLocs;
775  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
776                 RVLocs, *DAG.getContext());
777  CCInfo.AnalyzeCallResult(Ins,
778                           CCAssignFnForNode(CallConv, /* Return*/ true,
779                                             isVarArg));
780
781  // Copy all of the result registers out of their specified physreg.
782  for (unsigned i = 0; i != RVLocs.size(); ++i) {
783    CCValAssign VA = RVLocs[i];
784
785    SDValue Val;
786    if (VA.needsCustom()) {
787      // Handle f64 or half of a v2f64.
788      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
789                                      InFlag);
790      Chain = Lo.getValue(1);
791      InFlag = Lo.getValue(2);
792      VA = RVLocs[++i]; // skip ahead to next loc
793      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
794                                      InFlag);
795      Chain = Hi.getValue(1);
796      InFlag = Hi.getValue(2);
797      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
798
799      if (VA.getLocVT() == MVT::v2f64) {
800        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
801        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
802                          DAG.getConstant(0, MVT::i32));
803
804        VA = RVLocs[++i]; // skip ahead to next loc
805        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
806        Chain = Lo.getValue(1);
807        InFlag = Lo.getValue(2);
808        VA = RVLocs[++i]; // skip ahead to next loc
809        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
810        Chain = Hi.getValue(1);
811        InFlag = Hi.getValue(2);
812        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
813        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
814                          DAG.getConstant(1, MVT::i32));
815      }
816    } else {
817      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
818                               InFlag);
819      Chain = Val.getValue(1);
820      InFlag = Val.getValue(2);
821    }
822
823    switch (VA.getLocInfo()) {
824    default: llvm_unreachable("Unknown loc info!");
825    case CCValAssign::Full: break;
826    case CCValAssign::BCvt:
827      Val = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), Val);
828      break;
829    }
830
831    InVals.push_back(Val);
832  }
833
834  return Chain;
835}
836
837/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
838/// by "Src" to address "Dst" of size "Size".  Alignment information is
839/// specified by the specific parameter attribute.  The copy will be passed as
840/// a byval function parameter.
841/// Sometimes what we are copying is the end of a larger object, the part that
842/// does not fit in registers.
843static SDValue
844CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
845                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
846                          DebugLoc dl) {
847  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
848  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
849                       /*AlwaysInline=*/false, NULL, 0, NULL, 0);
850}
851
852/// LowerMemOpCallTo - Store the argument to the stack.
853SDValue
854ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
855                                    SDValue StackPtr, SDValue Arg,
856                                    DebugLoc dl, SelectionDAG &DAG,
857                                    const CCValAssign &VA,
858                                    ISD::ArgFlagsTy Flags) {
859  unsigned LocMemOffset = VA.getLocMemOffset();
860  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
861  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
862  if (Flags.isByVal()) {
863    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
864  }
865  return DAG.getStore(Chain, dl, Arg, PtrOff,
866                      PseudoSourceValue::getStack(), LocMemOffset);
867}
868
869void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
870                                         SDValue Chain, SDValue &Arg,
871                                         RegsToPassVector &RegsToPass,
872                                         CCValAssign &VA, CCValAssign &NextVA,
873                                         SDValue &StackPtr,
874                                         SmallVector<SDValue, 8> &MemOpChains,
875                                         ISD::ArgFlagsTy Flags) {
876
877  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
878                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
879  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
880
881  if (NextVA.isRegLoc())
882    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
883  else {
884    assert(NextVA.isMemLoc());
885    if (StackPtr.getNode() == 0)
886      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
887
888    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
889                                           dl, DAG, NextVA,
890                                           Flags));
891  }
892}
893
894/// LowerCall - Lowering a call into a callseq_start <-
895/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
896/// nodes.
897SDValue
898ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
899                             CallingConv::ID CallConv, bool isVarArg,
900                             bool &isTailCall,
901                             const SmallVectorImpl<ISD::OutputArg> &Outs,
902                             const SmallVectorImpl<ISD::InputArg> &Ins,
903                             DebugLoc dl, SelectionDAG &DAG,
904                             SmallVectorImpl<SDValue> &InVals) {
905  // ARM target does not yet support tail call optimization.
906  isTailCall = false;
907
908  // Analyze operands of the call, assigning locations to each operand.
909  SmallVector<CCValAssign, 16> ArgLocs;
910  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
911                 *DAG.getContext());
912  CCInfo.AnalyzeCallOperands(Outs,
913                             CCAssignFnForNode(CallConv, /* Return*/ false,
914                                               isVarArg));
915
916  // Get a count of how many bytes are to be pushed on the stack.
917  unsigned NumBytes = CCInfo.getNextStackOffset();
918
919  // Adjust the stack pointer for the new arguments...
920  // These operations are automatically eliminated by the prolog/epilog pass
921  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
922
923  SDValue StackPtr = DAG.getRegister(ARM::SP, MVT::i32);
924
925  RegsToPassVector RegsToPass;
926  SmallVector<SDValue, 8> MemOpChains;
927
928  // Walk the register/memloc assignments, inserting copies/loads.  In the case
929  // of tail call optimization, arguments are handled later.
930  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
931       i != e;
932       ++i, ++realArgIdx) {
933    CCValAssign &VA = ArgLocs[i];
934    SDValue Arg = Outs[realArgIdx].Val;
935    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
936
937    // Promote the value if needed.
938    switch (VA.getLocInfo()) {
939    default: llvm_unreachable("Unknown loc info!");
940    case CCValAssign::Full: break;
941    case CCValAssign::SExt:
942      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
943      break;
944    case CCValAssign::ZExt:
945      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
946      break;
947    case CCValAssign::AExt:
948      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
949      break;
950    case CCValAssign::BCvt:
951      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
952      break;
953    }
954
955    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
956    if (VA.needsCustom()) {
957      if (VA.getLocVT() == MVT::v2f64) {
958        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
959                                  DAG.getConstant(0, MVT::i32));
960        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
961                                  DAG.getConstant(1, MVT::i32));
962
963        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
964                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
965
966        VA = ArgLocs[++i]; // skip ahead to next loc
967        if (VA.isRegLoc()) {
968          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
969                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
970        } else {
971          assert(VA.isMemLoc());
972          if (StackPtr.getNode() == 0)
973            StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
974
975          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
976                                                 dl, DAG, VA, Flags));
977        }
978      } else {
979        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
980                         StackPtr, MemOpChains, Flags);
981      }
982    } else if (VA.isRegLoc()) {
983      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
984    } else {
985      assert(VA.isMemLoc());
986      if (StackPtr.getNode() == 0)
987        StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
988
989      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
990                                             dl, DAG, VA, Flags));
991    }
992  }
993
994  if (!MemOpChains.empty())
995    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
996                        &MemOpChains[0], MemOpChains.size());
997
998  // Build a sequence of copy-to-reg nodes chained together with token chain
999  // and flag operands which copy the outgoing args into the appropriate regs.
1000  SDValue InFlag;
1001  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1002    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1003                             RegsToPass[i].second, InFlag);
1004    InFlag = Chain.getValue(1);
1005  }
1006
1007  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1008  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1009  // node so that legalize doesn't hack it.
1010  bool isDirect = false;
1011  bool isARMFunc = false;
1012  bool isLocalARMFunc = false;
1013  MachineFunction &MF = DAG.getMachineFunction();
1014  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1015  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1016    GlobalValue *GV = G->getGlobal();
1017    isDirect = true;
1018    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1019    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1020                   getTargetMachine().getRelocationModel() != Reloc::Static;
1021    isARMFunc = !Subtarget->isThumb() || isStub;
1022    // ARM call to a local ARM function is predicable.
1023    isLocalARMFunc = !Subtarget->isThumb() && !isExt;
1024    // tBX takes a register source operand.
1025    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1026      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1027      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1028                                                           ARMPCLabelIndex,
1029                                                           ARMCP::CPValue, 4);
1030      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1031      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1032      Callee = DAG.getLoad(getPointerTy(), dl,
1033                           DAG.getEntryNode(), CPAddr,
1034                           PseudoSourceValue::getConstantPool(), 0);
1035      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1036      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1037                           getPointerTy(), Callee, PICLabel);
1038   } else
1039      Callee = DAG.getTargetGlobalAddress(GV, getPointerTy());
1040  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1041    isDirect = true;
1042    bool isStub = Subtarget->isTargetDarwin() &&
1043                  getTargetMachine().getRelocationModel() != Reloc::Static;
1044    isARMFunc = !Subtarget->isThumb() || isStub;
1045    // tBX takes a register source operand.
1046    const char *Sym = S->getSymbol();
1047    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1048      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1049      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1050                                                       Sym, ARMPCLabelIndex, 4);
1051      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1052      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1053      Callee = DAG.getLoad(getPointerTy(), dl,
1054                           DAG.getEntryNode(), CPAddr,
1055                           PseudoSourceValue::getConstantPool(), 0);
1056      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1057      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1058                           getPointerTy(), Callee, PICLabel);
1059    } else
1060      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
1061  }
1062
1063  // FIXME: handle tail calls differently.
1064  unsigned CallOpc;
1065  if (Subtarget->isThumb()) {
1066    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1067      CallOpc = ARMISD::CALL_NOLINK;
1068    else
1069      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1070  } else {
1071    CallOpc = (isDirect || Subtarget->hasV5TOps())
1072      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1073      : ARMISD::CALL_NOLINK;
1074  }
1075  if (CallOpc == ARMISD::CALL_NOLINK && !Subtarget->isThumb1Only()) {
1076    // implicit def LR - LR mustn't be allocated as GRP:$dst of CALL_NOLINK
1077    Chain = DAG.getCopyToReg(Chain, dl, ARM::LR, DAG.getUNDEF(MVT::i32),InFlag);
1078    InFlag = Chain.getValue(1);
1079  }
1080
1081  std::vector<SDValue> Ops;
1082  Ops.push_back(Chain);
1083  Ops.push_back(Callee);
1084
1085  // Add argument registers to the end of the list so that they are known live
1086  // into the call.
1087  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1088    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1089                                  RegsToPass[i].second.getValueType()));
1090
1091  if (InFlag.getNode())
1092    Ops.push_back(InFlag);
1093  // Returns a chain and a flag for retval copy to use.
1094  Chain = DAG.getNode(CallOpc, dl, DAG.getVTList(MVT::Other, MVT::Flag),
1095                      &Ops[0], Ops.size());
1096  InFlag = Chain.getValue(1);
1097
1098  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1099                             DAG.getIntPtrConstant(0, true), InFlag);
1100  if (!Ins.empty())
1101    InFlag = Chain.getValue(1);
1102
1103  // Handle result values, copying them out of physregs into vregs that we
1104  // return.
1105  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1106                         dl, DAG, InVals);
1107}
1108
1109SDValue
1110ARMTargetLowering::LowerReturn(SDValue Chain,
1111                               CallingConv::ID CallConv, bool isVarArg,
1112                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1113                               DebugLoc dl, SelectionDAG &DAG) {
1114
1115  // CCValAssign - represent the assignment of the return value to a location.
1116  SmallVector<CCValAssign, 16> RVLocs;
1117
1118  // CCState - Info about the registers and stack slots.
1119  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
1120                 *DAG.getContext());
1121
1122  // Analyze outgoing return values.
1123  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1124                                               isVarArg));
1125
1126  // If this is the first return lowered for this function, add
1127  // the regs to the liveout set for the function.
1128  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1129    for (unsigned i = 0; i != RVLocs.size(); ++i)
1130      if (RVLocs[i].isRegLoc())
1131        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1132  }
1133
1134  SDValue Flag;
1135
1136  // Copy the result values into the output registers.
1137  for (unsigned i = 0, realRVLocIdx = 0;
1138       i != RVLocs.size();
1139       ++i, ++realRVLocIdx) {
1140    CCValAssign &VA = RVLocs[i];
1141    assert(VA.isRegLoc() && "Can only return in registers!");
1142
1143    SDValue Arg = Outs[realRVLocIdx].Val;
1144
1145    switch (VA.getLocInfo()) {
1146    default: llvm_unreachable("Unknown loc info!");
1147    case CCValAssign::Full: break;
1148    case CCValAssign::BCvt:
1149      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
1150      break;
1151    }
1152
1153    if (VA.needsCustom()) {
1154      if (VA.getLocVT() == MVT::v2f64) {
1155        // Extract the first half and return it in two registers.
1156        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1157                                   DAG.getConstant(0, MVT::i32));
1158        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1159                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1160
1161        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1162        Flag = Chain.getValue(1);
1163        VA = RVLocs[++i]; // skip ahead to next loc
1164        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1165                                 HalfGPRs.getValue(1), Flag);
1166        Flag = Chain.getValue(1);
1167        VA = RVLocs[++i]; // skip ahead to next loc
1168
1169        // Extract the 2nd half and fall through to handle it as an f64 value.
1170        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1171                          DAG.getConstant(1, MVT::i32));
1172      }
1173      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1174      // available.
1175      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1176                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1177      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1178      Flag = Chain.getValue(1);
1179      VA = RVLocs[++i]; // skip ahead to next loc
1180      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1181                               Flag);
1182    } else
1183      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1184
1185    // Guarantee that all emitted copies are
1186    // stuck together, avoiding something bad.
1187    Flag = Chain.getValue(1);
1188  }
1189
1190  SDValue result;
1191  if (Flag.getNode())
1192    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1193  else // Return Void
1194    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1195
1196  return result;
1197}
1198
1199// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1200// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1201// one of the above mentioned nodes. It has to be wrapped because otherwise
1202// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1203// be used to form addressing mode. These wrapped nodes will be selected
1204// into MOVi.
1205static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1206  EVT PtrVT = Op.getValueType();
1207  // FIXME there is no actual debug info here
1208  DebugLoc dl = Op.getDebugLoc();
1209  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1210  SDValue Res;
1211  if (CP->isMachineConstantPoolEntry())
1212    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1213                                    CP->getAlignment());
1214  else
1215    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1216                                    CP->getAlignment());
1217  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1218}
1219
1220SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) {
1221  MachineFunction &MF = DAG.getMachineFunction();
1222  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1223  unsigned ARMPCLabelIndex = 0;
1224  DebugLoc DL = Op.getDebugLoc();
1225  EVT PtrVT = getPointerTy();
1226  BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1227  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1228  SDValue CPAddr;
1229  if (RelocM == Reloc::Static) {
1230    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
1231  } else {
1232    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1233    ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1234    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex,
1235                                                         ARMCP::CPBlockAddress,
1236                                                         PCAdj);
1237    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1238  }
1239  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
1240  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
1241                               PseudoSourceValue::getConstantPool(), 0);
1242  if (RelocM == Reloc::Static)
1243    return Result;
1244  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1245  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
1246}
1247
1248// Lower ISD::GlobalTLSAddress using the "general dynamic" model
1249SDValue
1250ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1251                                                 SelectionDAG &DAG) {
1252  DebugLoc dl = GA->getDebugLoc();
1253  EVT PtrVT = getPointerTy();
1254  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1255  MachineFunction &MF = DAG.getMachineFunction();
1256  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1257  unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1258  ARMConstantPoolValue *CPV =
1259    new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1260                             ARMCP::CPValue, PCAdj, "tlsgd", true);
1261  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1262  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1263  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
1264                         PseudoSourceValue::getConstantPool(), 0);
1265  SDValue Chain = Argument.getValue(1);
1266
1267  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1268  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1269
1270  // call __tls_get_addr.
1271  ArgListTy Args;
1272  ArgListEntry Entry;
1273  Entry.Node = Argument;
1274  Entry.Ty = (const Type *) Type::getInt32Ty(*DAG.getContext());
1275  Args.push_back(Entry);
1276  // FIXME: is there useful debug info available here?
1277  std::pair<SDValue, SDValue> CallResult =
1278    LowerCallTo(Chain, (const Type *) Type::getInt32Ty(*DAG.getContext()),
1279                false, false, false, false,
1280                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
1281                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl,
1282                DAG.GetOrdering(Chain.getNode()));
1283  return CallResult.first;
1284}
1285
1286// Lower ISD::GlobalTLSAddress using the "initial exec" or
1287// "local exec" model.
1288SDValue
1289ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
1290                                        SelectionDAG &DAG) {
1291  GlobalValue *GV = GA->getGlobal();
1292  DebugLoc dl = GA->getDebugLoc();
1293  SDValue Offset;
1294  SDValue Chain = DAG.getEntryNode();
1295  EVT PtrVT = getPointerTy();
1296  // Get the Thread Pointer
1297  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1298
1299  if (GV->isDeclaration()) {
1300    MachineFunction &MF = DAG.getMachineFunction();
1301    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1302    unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1303    // Initial exec model.
1304    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1305    ARMConstantPoolValue *CPV =
1306      new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1307                               ARMCP::CPValue, PCAdj, "gottpoff", true);
1308    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1309    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1310    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1311                         PseudoSourceValue::getConstantPool(), 0);
1312    Chain = Offset.getValue(1);
1313
1314    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1315    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
1316
1317    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1318                         PseudoSourceValue::getConstantPool(), 0);
1319  } else {
1320    // local exec model
1321    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, "tpoff");
1322    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1323    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1324    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1325                         PseudoSourceValue::getConstantPool(), 0);
1326  }
1327
1328  // The address of the thread local variable is the add of the thread
1329  // pointer with the offset of the variable.
1330  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1331}
1332
1333SDValue
1334ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
1335  // TODO: implement the "local dynamic" model
1336  assert(Subtarget->isTargetELF() &&
1337         "TLS not implemented for non-ELF targets");
1338  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1339  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
1340  // otherwise use the "Local Exec" TLS Model
1341  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
1342    return LowerToTLSGeneralDynamicModel(GA, DAG);
1343  else
1344    return LowerToTLSExecModels(GA, DAG);
1345}
1346
1347SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
1348                                                 SelectionDAG &DAG) {
1349  EVT PtrVT = getPointerTy();
1350  DebugLoc dl = Op.getDebugLoc();
1351  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1352  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1353  if (RelocM == Reloc::PIC_) {
1354    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
1355    ARMConstantPoolValue *CPV =
1356      new ARMConstantPoolValue(GV, UseGOTOFF ? "GOTOFF" : "GOT");
1357    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1358    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1359    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
1360                                 CPAddr,
1361                                 PseudoSourceValue::getConstantPool(), 0);
1362    SDValue Chain = Result.getValue(1);
1363    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1364    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
1365    if (!UseGOTOFF)
1366      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
1367                           PseudoSourceValue::getGOT(), 0);
1368    return Result;
1369  } else {
1370    // If we have T2 ops, we can materialize the address directly via movt/movw
1371    // pair. This is always cheaper.
1372    if (Subtarget->useMovt()) {
1373      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
1374                         DAG.getTargetGlobalAddress(GV, PtrVT));
1375    } else {
1376      SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1377      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1378      return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1379                         PseudoSourceValue::getConstantPool(), 0);
1380    }
1381  }
1382}
1383
1384SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
1385                                                    SelectionDAG &DAG) {
1386  MachineFunction &MF = DAG.getMachineFunction();
1387  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1388  unsigned ARMPCLabelIndex = 0;
1389  EVT PtrVT = getPointerTy();
1390  DebugLoc dl = Op.getDebugLoc();
1391  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1392  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1393  SDValue CPAddr;
1394  if (RelocM == Reloc::Static)
1395    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1396  else {
1397    ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1398    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
1399    ARMConstantPoolValue *CPV =
1400      new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj);
1401    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1402  }
1403  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1404
1405  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1406                               PseudoSourceValue::getConstantPool(), 0);
1407  SDValue Chain = Result.getValue(1);
1408
1409  if (RelocM == Reloc::PIC_) {
1410    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1411    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1412  }
1413
1414  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
1415    Result = DAG.getLoad(PtrVT, dl, Chain, Result,
1416                         PseudoSourceValue::getGOT(), 0);
1417
1418  return Result;
1419}
1420
1421SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
1422                                                    SelectionDAG &DAG){
1423  assert(Subtarget->isTargetELF() &&
1424         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
1425  MachineFunction &MF = DAG.getMachineFunction();
1426  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1427  unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1428  EVT PtrVT = getPointerTy();
1429  DebugLoc dl = Op.getDebugLoc();
1430  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1431  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1432                                                       "_GLOBAL_OFFSET_TABLE_",
1433                                                       ARMPCLabelIndex, PCAdj);
1434  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1435  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1436  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1437                               PseudoSourceValue::getConstantPool(), 0);
1438  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1439  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1440}
1441
1442SDValue
1443ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
1444  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1445  DebugLoc dl = Op.getDebugLoc();
1446  switch (IntNo) {
1447  default: return SDValue();    // Don't custom lower most intrinsics.
1448  case Intrinsic::arm_thread_pointer: {
1449    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1450    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1451  }
1452  case Intrinsic::eh_sjlj_lsda: {
1453    MachineFunction &MF = DAG.getMachineFunction();
1454    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1455    unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1456    EVT PtrVT = getPointerTy();
1457    DebugLoc dl = Op.getDebugLoc();
1458    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1459    SDValue CPAddr;
1460    unsigned PCAdj = (RelocM != Reloc::PIC_)
1461      ? 0 : (Subtarget->isThumb() ? 4 : 8);
1462    ARMConstantPoolValue *CPV =
1463      new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex,
1464                               ARMCP::CPLSDA, PCAdj);
1465    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1466    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1467    SDValue Result =
1468      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1469                  PseudoSourceValue::getConstantPool(), 0);
1470    SDValue Chain = Result.getValue(1);
1471
1472    if (RelocM == Reloc::PIC_) {
1473      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1474      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1475    }
1476    return Result;
1477  }
1478  case Intrinsic::eh_sjlj_setjmp:
1479    return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(1));
1480  }
1481}
1482
1483static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
1484                          const ARMSubtarget *Subtarget) {
1485  DebugLoc dl = Op.getDebugLoc();
1486  SDValue Op5 = Op.getOperand(5);
1487  SDValue Res;
1488  unsigned isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue();
1489  if (isDeviceBarrier) {
1490    if (Subtarget->hasV7Ops())
1491      Res = DAG.getNode(ARMISD::SYNCBARRIER, dl, MVT::Other, Op.getOperand(0));
1492    else
1493      Res = DAG.getNode(ARMISD::SYNCBARRIER, dl, MVT::Other, Op.getOperand(0),
1494                        DAG.getConstant(0, MVT::i32));
1495  } else {
1496    if (Subtarget->hasV7Ops())
1497      Res = DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
1498    else
1499      Res = DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
1500                        DAG.getConstant(0, MVT::i32));
1501  }
1502  return Res;
1503}
1504
1505static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
1506                            unsigned VarArgsFrameIndex) {
1507  // vastart just stores the address of the VarArgsFrameIndex slot into the
1508  // memory location argument.
1509  DebugLoc dl = Op.getDebugLoc();
1510  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1511  SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1512  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1513  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
1514}
1515
1516SDValue
1517ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) {
1518  SDNode *Node = Op.getNode();
1519  DebugLoc dl = Node->getDebugLoc();
1520  EVT VT = Node->getValueType(0);
1521  SDValue Chain = Op.getOperand(0);
1522  SDValue Size  = Op.getOperand(1);
1523  SDValue Align = Op.getOperand(2);
1524
1525  // Chain the dynamic stack allocation so that it doesn't modify the stack
1526  // pointer when other instructions are using the stack.
1527  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1528
1529  unsigned AlignVal = cast<ConstantSDNode>(Align)->getZExtValue();
1530  unsigned StackAlign = getTargetMachine().getFrameInfo()->getStackAlignment();
1531  if (AlignVal > StackAlign)
1532    // Do this now since selection pass cannot introduce new target
1533    // independent node.
1534    Align = DAG.getConstant(-(uint64_t)AlignVal, VT);
1535
1536  // In Thumb1 mode, there isn't a "sub r, sp, r" instruction, we will end up
1537  // using a "add r, sp, r" instead. Negate the size now so we don't have to
1538  // do even more horrible hack later.
1539  MachineFunction &MF = DAG.getMachineFunction();
1540  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1541  if (AFI->isThumb1OnlyFunction()) {
1542    bool Negate = true;
1543    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Size);
1544    if (C) {
1545      uint32_t Val = C->getZExtValue();
1546      if (Val <= 508 && ((Val & 3) == 0))
1547        Negate = false;
1548    }
1549    if (Negate)
1550      Size = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, VT), Size);
1551  }
1552
1553  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
1554  SDValue Ops1[] = { Chain, Size, Align };
1555  SDValue Res = DAG.getNode(ARMISD::DYN_ALLOC, dl, VTList, Ops1, 3);
1556  Chain = Res.getValue(1);
1557  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
1558                             DAG.getIntPtrConstant(0, true), SDValue());
1559  SDValue Ops2[] = { Res, Chain };
1560  return DAG.getMergeValues(Ops2, 2, dl);
1561}
1562
1563SDValue
1564ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
1565                                        SDValue &Root, SelectionDAG &DAG,
1566                                        DebugLoc dl) {
1567  MachineFunction &MF = DAG.getMachineFunction();
1568  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1569
1570  TargetRegisterClass *RC;
1571  if (AFI->isThumb1OnlyFunction())
1572    RC = ARM::tGPRRegisterClass;
1573  else
1574    RC = ARM::GPRRegisterClass;
1575
1576  // Transform the arguments stored in physical registers into virtual ones.
1577  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1578  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
1579
1580  SDValue ArgValue2;
1581  if (NextVA.isMemLoc()) {
1582    unsigned ArgSize = NextVA.getLocVT().getSizeInBits()/8;
1583    MachineFrameInfo *MFI = MF.getFrameInfo();
1584    int FI = MFI->CreateFixedObject(ArgSize, NextVA.getLocMemOffset(),
1585                                    true, false);
1586
1587    // Create load node to retrieve arguments from the stack.
1588    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1589    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
1590                            PseudoSourceValue::getFixedStack(FI), 0);
1591  } else {
1592    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
1593    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
1594  }
1595
1596  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
1597}
1598
1599SDValue
1600ARMTargetLowering::LowerFormalArguments(SDValue Chain,
1601                                        CallingConv::ID CallConv, bool isVarArg,
1602                                        const SmallVectorImpl<ISD::InputArg>
1603                                          &Ins,
1604                                        DebugLoc dl, SelectionDAG &DAG,
1605                                        SmallVectorImpl<SDValue> &InVals) {
1606
1607  MachineFunction &MF = DAG.getMachineFunction();
1608  MachineFrameInfo *MFI = MF.getFrameInfo();
1609
1610  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1611
1612  // Assign locations to all of the incoming arguments.
1613  SmallVector<CCValAssign, 16> ArgLocs;
1614  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1615                 *DAG.getContext());
1616  CCInfo.AnalyzeFormalArguments(Ins,
1617                                CCAssignFnForNode(CallConv, /* Return*/ false,
1618                                                  isVarArg));
1619
1620  SmallVector<SDValue, 16> ArgValues;
1621
1622  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1623    CCValAssign &VA = ArgLocs[i];
1624
1625    // Arguments stored in registers.
1626    if (VA.isRegLoc()) {
1627      EVT RegVT = VA.getLocVT();
1628
1629      SDValue ArgValue;
1630      if (VA.needsCustom()) {
1631        // f64 and vector types are split up into multiple registers or
1632        // combinations of registers and stack slots.
1633        RegVT = MVT::i32;
1634
1635        if (VA.getLocVT() == MVT::v2f64) {
1636          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
1637                                                   Chain, DAG, dl);
1638          VA = ArgLocs[++i]; // skip ahead to next loc
1639          SDValue ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
1640                                                   Chain, DAG, dl);
1641          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1642          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
1643                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
1644          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
1645                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
1646        } else
1647          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
1648
1649      } else {
1650        TargetRegisterClass *RC;
1651
1652        if (RegVT == MVT::f32)
1653          RC = ARM::SPRRegisterClass;
1654        else if (RegVT == MVT::f64)
1655          RC = ARM::DPRRegisterClass;
1656        else if (RegVT == MVT::v2f64)
1657          RC = ARM::QPRRegisterClass;
1658        else if (RegVT == MVT::i32)
1659          RC = (AFI->isThumb1OnlyFunction() ?
1660                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
1661        else
1662          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
1663
1664        // Transform the arguments in physical registers into virtual ones.
1665        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1666        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1667      }
1668
1669      // If this is an 8 or 16-bit value, it is really passed promoted
1670      // to 32 bits.  Insert an assert[sz]ext to capture this, then
1671      // truncate to the right size.
1672      switch (VA.getLocInfo()) {
1673      default: llvm_unreachable("Unknown loc info!");
1674      case CCValAssign::Full: break;
1675      case CCValAssign::BCvt:
1676        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1677        break;
1678      case CCValAssign::SExt:
1679        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1680                               DAG.getValueType(VA.getValVT()));
1681        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1682        break;
1683      case CCValAssign::ZExt:
1684        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1685                               DAG.getValueType(VA.getValVT()));
1686        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1687        break;
1688      }
1689
1690      InVals.push_back(ArgValue);
1691
1692    } else { // VA.isRegLoc()
1693
1694      // sanity check
1695      assert(VA.isMemLoc());
1696      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
1697
1698      unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
1699      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1700                                      true, false);
1701
1702      // Create load nodes to retrieve arguments from the stack.
1703      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1704      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
1705                                   PseudoSourceValue::getFixedStack(FI), 0));
1706    }
1707  }
1708
1709  // varargs
1710  if (isVarArg) {
1711    static const unsigned GPRArgRegs[] = {
1712      ARM::R0, ARM::R1, ARM::R2, ARM::R3
1713    };
1714
1715    unsigned NumGPRs = CCInfo.getFirstUnallocated
1716      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
1717
1718    unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
1719    unsigned VARegSize = (4 - NumGPRs) * 4;
1720    unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
1721    unsigned ArgOffset = CCInfo.getNextStackOffset();
1722    if (VARegSaveSize) {
1723      // If this function is vararg, store any remaining integer argument regs
1724      // to their spots on the stack so that they may be loaded by deferencing
1725      // the result of va_next.
1726      AFI->setVarArgsRegSaveSize(VARegSaveSize);
1727      VarArgsFrameIndex = MFI->CreateFixedObject(VARegSaveSize, ArgOffset +
1728                                                 VARegSaveSize - VARegSize,
1729                                                 true, false);
1730      SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
1731
1732      SmallVector<SDValue, 4> MemOps;
1733      for (; NumGPRs < 4; ++NumGPRs) {
1734        TargetRegisterClass *RC;
1735        if (AFI->isThumb1OnlyFunction())
1736          RC = ARM::tGPRRegisterClass;
1737        else
1738          RC = ARM::GPRRegisterClass;
1739
1740        unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
1741        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1742        SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1743                        PseudoSourceValue::getFixedStack(VarArgsFrameIndex), 0);
1744        MemOps.push_back(Store);
1745        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
1746                          DAG.getConstant(4, getPointerTy()));
1747      }
1748      if (!MemOps.empty())
1749        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1750                            &MemOps[0], MemOps.size());
1751    } else
1752      // This will point to the next argument passed via stack.
1753      VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset, true, false);
1754  }
1755
1756  return Chain;
1757}
1758
1759/// isFloatingPointZero - Return true if this is +0.0.
1760static bool isFloatingPointZero(SDValue Op) {
1761  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1762    return CFP->getValueAPF().isPosZero();
1763  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1764    // Maybe this has already been legalized into the constant pool?
1765    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
1766      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
1767      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
1768        if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1769          return CFP->getValueAPF().isPosZero();
1770    }
1771  }
1772  return false;
1773}
1774
1775/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
1776/// the given operands.
1777SDValue
1778ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1779                             SDValue &ARMCC, SelectionDAG &DAG, DebugLoc dl) {
1780  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1781    unsigned C = RHSC->getZExtValue();
1782    if (!isLegalICmpImmediate(C)) {
1783      // Constant does not fit, try adjusting it by one?
1784      switch (CC) {
1785      default: break;
1786      case ISD::SETLT:
1787      case ISD::SETGE:
1788        if (isLegalICmpImmediate(C-1)) {
1789          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1790          RHS = DAG.getConstant(C-1, MVT::i32);
1791        }
1792        break;
1793      case ISD::SETULT:
1794      case ISD::SETUGE:
1795        if (C > 0 && isLegalICmpImmediate(C-1)) {
1796          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1797          RHS = DAG.getConstant(C-1, MVT::i32);
1798        }
1799        break;
1800      case ISD::SETLE:
1801      case ISD::SETGT:
1802        if (isLegalICmpImmediate(C+1)) {
1803          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1804          RHS = DAG.getConstant(C+1, MVT::i32);
1805        }
1806        break;
1807      case ISD::SETULE:
1808      case ISD::SETUGT:
1809        if (C < 0xffffffff && isLegalICmpImmediate(C+1)) {
1810          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1811          RHS = DAG.getConstant(C+1, MVT::i32);
1812        }
1813        break;
1814      }
1815    }
1816  }
1817
1818  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
1819  ARMISD::NodeType CompareType;
1820  switch (CondCode) {
1821  default:
1822    CompareType = ARMISD::CMP;
1823    break;
1824  case ARMCC::EQ:
1825  case ARMCC::NE:
1826    // Uses only Z Flag
1827    CompareType = ARMISD::CMPZ;
1828    break;
1829  }
1830  ARMCC = DAG.getConstant(CondCode, MVT::i32);
1831  return DAG.getNode(CompareType, dl, MVT::Flag, LHS, RHS);
1832}
1833
1834/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
1835static SDValue getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
1836                         DebugLoc dl) {
1837  SDValue Cmp;
1838  if (!isFloatingPointZero(RHS))
1839    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Flag, LHS, RHS);
1840  else
1841    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Flag, LHS);
1842  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Flag, Cmp);
1843}
1844
1845SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
1846  EVT VT = Op.getValueType();
1847  SDValue LHS = Op.getOperand(0);
1848  SDValue RHS = Op.getOperand(1);
1849  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1850  SDValue TrueVal = Op.getOperand(2);
1851  SDValue FalseVal = Op.getOperand(3);
1852  DebugLoc dl = Op.getDebugLoc();
1853
1854  if (LHS.getValueType() == MVT::i32) {
1855    SDValue ARMCC;
1856    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1857    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, dl);
1858    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMCC, CCR,Cmp);
1859  }
1860
1861  ARMCC::CondCodes CondCode, CondCode2;
1862  FPCCToARMCC(CC, CondCode, CondCode2);
1863
1864  SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
1865  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1866  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
1867  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
1868                                 ARMCC, CCR, Cmp);
1869  if (CondCode2 != ARMCC::AL) {
1870    SDValue ARMCC2 = DAG.getConstant(CondCode2, MVT::i32);
1871    // FIXME: Needs another CMP because flag can have but one use.
1872    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
1873    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
1874                         Result, TrueVal, ARMCC2, CCR, Cmp2);
1875  }
1876  return Result;
1877}
1878
1879SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) {
1880  SDValue  Chain = Op.getOperand(0);
1881  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1882  SDValue    LHS = Op.getOperand(2);
1883  SDValue    RHS = Op.getOperand(3);
1884  SDValue   Dest = Op.getOperand(4);
1885  DebugLoc dl = Op.getDebugLoc();
1886
1887  if (LHS.getValueType() == MVT::i32) {
1888    SDValue ARMCC;
1889    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1890    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, dl);
1891    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
1892                       Chain, Dest, ARMCC, CCR,Cmp);
1893  }
1894
1895  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
1896  ARMCC::CondCodes CondCode, CondCode2;
1897  FPCCToARMCC(CC, CondCode, CondCode2);
1898
1899  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
1900  SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
1901  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1902  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
1903  SDValue Ops[] = { Chain, Dest, ARMCC, CCR, Cmp };
1904  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
1905  if (CondCode2 != ARMCC::AL) {
1906    ARMCC = DAG.getConstant(CondCode2, MVT::i32);
1907    SDValue Ops[] = { Res, Dest, ARMCC, CCR, Res.getValue(1) };
1908    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
1909  }
1910  return Res;
1911}
1912
1913SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) {
1914  SDValue Chain = Op.getOperand(0);
1915  SDValue Table = Op.getOperand(1);
1916  SDValue Index = Op.getOperand(2);
1917  DebugLoc dl = Op.getDebugLoc();
1918
1919  EVT PTy = getPointerTy();
1920  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
1921  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
1922  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
1923  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
1924  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
1925  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
1926  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
1927  if (Subtarget->isThumb2()) {
1928    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
1929    // which does another jump to the destination. This also makes it easier
1930    // to translate it to TBB / TBH later.
1931    // FIXME: This might not work if the function is extremely large.
1932    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
1933                       Addr, Op.getOperand(2), JTI, UId);
1934  }
1935  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
1936    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
1937                       PseudoSourceValue::getJumpTable(), 0);
1938    Chain = Addr.getValue(1);
1939    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
1940    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
1941  } else {
1942    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
1943                       PseudoSourceValue::getJumpTable(), 0);
1944    Chain = Addr.getValue(1);
1945    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
1946  }
1947}
1948
1949static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1950  DebugLoc dl = Op.getDebugLoc();
1951  unsigned Opc =
1952    Op.getOpcode() == ISD::FP_TO_SINT ? ARMISD::FTOSI : ARMISD::FTOUI;
1953  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
1954  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
1955}
1956
1957static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1958  EVT VT = Op.getValueType();
1959  DebugLoc dl = Op.getDebugLoc();
1960  unsigned Opc =
1961    Op.getOpcode() == ISD::SINT_TO_FP ? ARMISD::SITOF : ARMISD::UITOF;
1962
1963  Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Op.getOperand(0));
1964  return DAG.getNode(Opc, dl, VT, Op);
1965}
1966
1967static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
1968  // Implement fcopysign with a fabs and a conditional fneg.
1969  SDValue Tmp0 = Op.getOperand(0);
1970  SDValue Tmp1 = Op.getOperand(1);
1971  DebugLoc dl = Op.getDebugLoc();
1972  EVT VT = Op.getValueType();
1973  EVT SrcVT = Tmp1.getValueType();
1974  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0);
1975  SDValue Cmp = getVFPCmp(Tmp1, DAG.getConstantFP(0.0, SrcVT), DAG, dl);
1976  SDValue ARMCC = DAG.getConstant(ARMCC::LT, MVT::i32);
1977  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1978  return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMCC, CCR, Cmp);
1979}
1980
1981SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
1982  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1983  MFI->setFrameAddressIsTaken(true);
1984  EVT VT = Op.getValueType();
1985  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
1986  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1987  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
1988    ? ARM::R7 : ARM::R11;
1989  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
1990  while (Depth--)
1991    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0);
1992  return FrameAddr;
1993}
1994
1995SDValue
1996ARMTargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
1997                                           SDValue Chain,
1998                                           SDValue Dst, SDValue Src,
1999                                           SDValue Size, unsigned Align,
2000                                           bool AlwaysInline,
2001                                         const Value *DstSV, uint64_t DstSVOff,
2002                                         const Value *SrcSV, uint64_t SrcSVOff){
2003  // Do repeated 4-byte loads and stores. To be improved.
2004  // This requires 4-byte alignment.
2005  if ((Align & 3) != 0)
2006    return SDValue();
2007  // This requires the copy size to be a constant, preferrably
2008  // within a subtarget-specific limit.
2009  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2010  if (!ConstantSize)
2011    return SDValue();
2012  uint64_t SizeVal = ConstantSize->getZExtValue();
2013  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
2014    return SDValue();
2015
2016  unsigned BytesLeft = SizeVal & 3;
2017  unsigned NumMemOps = SizeVal >> 2;
2018  unsigned EmittedNumMemOps = 0;
2019  EVT VT = MVT::i32;
2020  unsigned VTSize = 4;
2021  unsigned i = 0;
2022  const unsigned MAX_LOADS_IN_LDM = 6;
2023  SDValue TFOps[MAX_LOADS_IN_LDM];
2024  SDValue Loads[MAX_LOADS_IN_LDM];
2025  uint64_t SrcOff = 0, DstOff = 0;
2026
2027  // Emit up to MAX_LOADS_IN_LDM loads, then a TokenFactor barrier, then the
2028  // same number of stores.  The loads and stores will get combined into
2029  // ldm/stm later on.
2030  while (EmittedNumMemOps < NumMemOps) {
2031    for (i = 0;
2032         i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
2033      Loads[i] = DAG.getLoad(VT, dl, Chain,
2034                             DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
2035                                         DAG.getConstant(SrcOff, MVT::i32)),
2036                             SrcSV, SrcSVOff + SrcOff);
2037      TFOps[i] = Loads[i].getValue(1);
2038      SrcOff += VTSize;
2039    }
2040    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
2041
2042    for (i = 0;
2043         i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
2044      TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
2045                           DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
2046                                       DAG.getConstant(DstOff, MVT::i32)),
2047                           DstSV, DstSVOff + DstOff);
2048      DstOff += VTSize;
2049    }
2050    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
2051
2052    EmittedNumMemOps += i;
2053  }
2054
2055  if (BytesLeft == 0)
2056    return Chain;
2057
2058  // Issue loads / stores for the trailing (1 - 3) bytes.
2059  unsigned BytesLeftSave = BytesLeft;
2060  i = 0;
2061  while (BytesLeft) {
2062    if (BytesLeft >= 2) {
2063      VT = MVT::i16;
2064      VTSize = 2;
2065    } else {
2066      VT = MVT::i8;
2067      VTSize = 1;
2068    }
2069
2070    Loads[i] = DAG.getLoad(VT, dl, Chain,
2071                           DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
2072                                       DAG.getConstant(SrcOff, MVT::i32)),
2073                           SrcSV, SrcSVOff + SrcOff);
2074    TFOps[i] = Loads[i].getValue(1);
2075    ++i;
2076    SrcOff += VTSize;
2077    BytesLeft -= VTSize;
2078  }
2079  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
2080
2081  i = 0;
2082  BytesLeft = BytesLeftSave;
2083  while (BytesLeft) {
2084    if (BytesLeft >= 2) {
2085      VT = MVT::i16;
2086      VTSize = 2;
2087    } else {
2088      VT = MVT::i8;
2089      VTSize = 1;
2090    }
2091
2092    TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
2093                            DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
2094                                        DAG.getConstant(DstOff, MVT::i32)),
2095                            DstSV, DstSVOff + DstOff);
2096    ++i;
2097    DstOff += VTSize;
2098    BytesLeft -= VTSize;
2099  }
2100  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
2101}
2102
2103static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) {
2104  SDValue Op = N->getOperand(0);
2105  DebugLoc dl = N->getDebugLoc();
2106  if (N->getValueType(0) == MVT::f64) {
2107    // Turn i64->f64 into VMOVDRR.
2108    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2109                             DAG.getConstant(0, MVT::i32));
2110    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2111                             DAG.getConstant(1, MVT::i32));
2112    return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
2113  }
2114
2115  // Turn f64->i64 into VMOVRRD.
2116  SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
2117                            DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
2118
2119  // Merge the pieces into a single i64 value.
2120  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
2121}
2122
2123/// getZeroVector - Returns a vector of specified type with all zero elements.
2124///
2125static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2126  assert(VT.isVector() && "Expected a vector type");
2127
2128  // Zero vectors are used to represent vector negation and in those cases
2129  // will be implemented with the NEON VNEG instruction.  However, VNEG does
2130  // not support i64 elements, so sometimes the zero vectors will need to be
2131  // explicitly constructed.  For those cases, and potentially other uses in
2132  // the future, always build zero vectors as <16 x i8> or <8 x i8> bitcasted
2133  // to their dest type.  This ensures they get CSE'd.
2134  SDValue Vec;
2135  SDValue Cst = DAG.getTargetConstant(0, MVT::i8);
2136  SmallVector<SDValue, 8> Ops;
2137  MVT TVT;
2138
2139  if (VT.getSizeInBits() == 64) {
2140    Ops.assign(8, Cst); TVT = MVT::v8i8;
2141  } else {
2142    Ops.assign(16, Cst); TVT = MVT::v16i8;
2143  }
2144  Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, TVT, &Ops[0], Ops.size());
2145
2146  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2147}
2148
2149/// getOnesVector - Returns a vector of specified type with all bits set.
2150///
2151static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2152  assert(VT.isVector() && "Expected a vector type");
2153
2154  // Always build ones vectors as <16 x i8> or <8 x i8> bitcasted to their
2155  // dest type. This ensures they get CSE'd.
2156  SDValue Vec;
2157  SDValue Cst = DAG.getTargetConstant(0xFF, MVT::i8);
2158  SmallVector<SDValue, 8> Ops;
2159  MVT TVT;
2160
2161  if (VT.getSizeInBits() == 64) {
2162    Ops.assign(8, Cst); TVT = MVT::v8i8;
2163  } else {
2164    Ops.assign(16, Cst); TVT = MVT::v16i8;
2165  }
2166  Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, TVT, &Ops[0], Ops.size());
2167
2168  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2169}
2170
2171/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
2172/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2173SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op, SelectionDAG &DAG) {
2174  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2175  EVT VT = Op.getValueType();
2176  unsigned VTBits = VT.getSizeInBits();
2177  DebugLoc dl = Op.getDebugLoc();
2178  SDValue ShOpLo = Op.getOperand(0);
2179  SDValue ShOpHi = Op.getOperand(1);
2180  SDValue ShAmt  = Op.getOperand(2);
2181  SDValue ARMCC;
2182  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
2183
2184  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
2185
2186  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2187                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2188  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
2189  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2190                                   DAG.getConstant(VTBits, MVT::i32));
2191  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
2192  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2193  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
2194
2195  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2196  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2197                          ARMCC, DAG, dl);
2198  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2199  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMCC,
2200                           CCR, Cmp);
2201
2202  SDValue Ops[2] = { Lo, Hi };
2203  return DAG.getMergeValues(Ops, 2, dl);
2204}
2205
2206/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
2207/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2208SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op, SelectionDAG &DAG) {
2209  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2210  EVT VT = Op.getValueType();
2211  unsigned VTBits = VT.getSizeInBits();
2212  DebugLoc dl = Op.getDebugLoc();
2213  SDValue ShOpLo = Op.getOperand(0);
2214  SDValue ShOpHi = Op.getOperand(1);
2215  SDValue ShAmt  = Op.getOperand(2);
2216  SDValue ARMCC;
2217
2218  assert(Op.getOpcode() == ISD::SHL_PARTS);
2219  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2220                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2221  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
2222  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2223                                   DAG.getConstant(VTBits, MVT::i32));
2224  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
2225  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
2226
2227  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2228  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2229  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2230                          ARMCC, DAG, dl);
2231  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2232  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMCC,
2233                           CCR, Cmp);
2234
2235  SDValue Ops[2] = { Lo, Hi };
2236  return DAG.getMergeValues(Ops, 2, dl);
2237}
2238
2239static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
2240                         const ARMSubtarget *ST) {
2241  EVT VT = N->getValueType(0);
2242  DebugLoc dl = N->getDebugLoc();
2243
2244  if (!ST->hasV6T2Ops())
2245    return SDValue();
2246
2247  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
2248  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
2249}
2250
2251static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
2252                          const ARMSubtarget *ST) {
2253  EVT VT = N->getValueType(0);
2254  DebugLoc dl = N->getDebugLoc();
2255
2256  // Lower vector shifts on NEON to use VSHL.
2257  if (VT.isVector()) {
2258    assert(ST->hasNEON() && "unexpected vector shift");
2259
2260    // Left shifts translate directly to the vshiftu intrinsic.
2261    if (N->getOpcode() == ISD::SHL)
2262      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2263                         DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
2264                         N->getOperand(0), N->getOperand(1));
2265
2266    assert((N->getOpcode() == ISD::SRA ||
2267            N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
2268
2269    // NEON uses the same intrinsics for both left and right shifts.  For
2270    // right shifts, the shift amounts are negative, so negate the vector of
2271    // shift amounts.
2272    EVT ShiftVT = N->getOperand(1).getValueType();
2273    SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
2274                                       getZeroVector(ShiftVT, DAG, dl),
2275                                       N->getOperand(1));
2276    Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
2277                               Intrinsic::arm_neon_vshifts :
2278                               Intrinsic::arm_neon_vshiftu);
2279    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2280                       DAG.getConstant(vshiftInt, MVT::i32),
2281                       N->getOperand(0), NegatedCount);
2282  }
2283
2284  // We can get here for a node like i32 = ISD::SHL i32, i64
2285  if (VT != MVT::i64)
2286    return SDValue();
2287
2288  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
2289         "Unknown shift to lower!");
2290
2291  // We only lower SRA, SRL of 1 here, all others use generic lowering.
2292  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
2293      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
2294    return SDValue();
2295
2296  // If we are in thumb mode, we don't have RRX.
2297  if (ST->isThumb1Only()) return SDValue();
2298
2299  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
2300  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2301                             DAG.getConstant(0, MVT::i32));
2302  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2303                             DAG.getConstant(1, MVT::i32));
2304
2305  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
2306  // captures the result into a carry flag.
2307  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
2308  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1);
2309
2310  // The low part is an ARMISD::RRX operand, which shifts the carry in.
2311  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
2312
2313  // Merge the pieces into a single i64 value.
2314 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
2315}
2316
2317static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
2318  SDValue TmpOp0, TmpOp1;
2319  bool Invert = false;
2320  bool Swap = false;
2321  unsigned Opc = 0;
2322
2323  SDValue Op0 = Op.getOperand(0);
2324  SDValue Op1 = Op.getOperand(1);
2325  SDValue CC = Op.getOperand(2);
2326  EVT VT = Op.getValueType();
2327  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
2328  DebugLoc dl = Op.getDebugLoc();
2329
2330  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
2331    switch (SetCCOpcode) {
2332    default: llvm_unreachable("Illegal FP comparison"); break;
2333    case ISD::SETUNE:
2334    case ISD::SETNE:  Invert = true; // Fallthrough
2335    case ISD::SETOEQ:
2336    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2337    case ISD::SETOLT:
2338    case ISD::SETLT: Swap = true; // Fallthrough
2339    case ISD::SETOGT:
2340    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2341    case ISD::SETOLE:
2342    case ISD::SETLE:  Swap = true; // Fallthrough
2343    case ISD::SETOGE:
2344    case ISD::SETGE: Opc = ARMISD::VCGE; break;
2345    case ISD::SETUGE: Swap = true; // Fallthrough
2346    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
2347    case ISD::SETUGT: Swap = true; // Fallthrough
2348    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
2349    case ISD::SETUEQ: Invert = true; // Fallthrough
2350    case ISD::SETONE:
2351      // Expand this to (OLT | OGT).
2352      TmpOp0 = Op0;
2353      TmpOp1 = Op1;
2354      Opc = ISD::OR;
2355      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2356      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
2357      break;
2358    case ISD::SETUO: Invert = true; // Fallthrough
2359    case ISD::SETO:
2360      // Expand this to (OLT | OGE).
2361      TmpOp0 = Op0;
2362      TmpOp1 = Op1;
2363      Opc = ISD::OR;
2364      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2365      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
2366      break;
2367    }
2368  } else {
2369    // Integer comparisons.
2370    switch (SetCCOpcode) {
2371    default: llvm_unreachable("Illegal integer comparison"); break;
2372    case ISD::SETNE:  Invert = true;
2373    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2374    case ISD::SETLT:  Swap = true;
2375    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2376    case ISD::SETLE:  Swap = true;
2377    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
2378    case ISD::SETULT: Swap = true;
2379    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
2380    case ISD::SETULE: Swap = true;
2381    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
2382    }
2383
2384    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
2385    if (Opc == ARMISD::VCEQ) {
2386
2387      SDValue AndOp;
2388      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
2389        AndOp = Op0;
2390      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
2391        AndOp = Op1;
2392
2393      // Ignore bitconvert.
2394      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BIT_CONVERT)
2395        AndOp = AndOp.getOperand(0);
2396
2397      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
2398        Opc = ARMISD::VTST;
2399        Op0 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(0));
2400        Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(1));
2401        Invert = !Invert;
2402      }
2403    }
2404  }
2405
2406  if (Swap)
2407    std::swap(Op0, Op1);
2408
2409  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
2410
2411  if (Invert)
2412    Result = DAG.getNOT(dl, Result, VT);
2413
2414  return Result;
2415}
2416
2417/// isVMOVSplat - Check if the specified splat value corresponds to an immediate
2418/// VMOV instruction, and if so, return the constant being splatted.
2419static SDValue isVMOVSplat(uint64_t SplatBits, uint64_t SplatUndef,
2420                           unsigned SplatBitSize, SelectionDAG &DAG) {
2421  switch (SplatBitSize) {
2422  case 8:
2423    // Any 1-byte value is OK.
2424    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
2425    return DAG.getTargetConstant(SplatBits, MVT::i8);
2426
2427  case 16:
2428    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
2429    if ((SplatBits & ~0xff) == 0 ||
2430        (SplatBits & ~0xff00) == 0)
2431      return DAG.getTargetConstant(SplatBits, MVT::i16);
2432    break;
2433
2434  case 32:
2435    // NEON's 32-bit VMOV supports splat values where:
2436    // * only one byte is nonzero, or
2437    // * the least significant byte is 0xff and the second byte is nonzero, or
2438    // * the least significant 2 bytes are 0xff and the third is nonzero.
2439    if ((SplatBits & ~0xff) == 0 ||
2440        (SplatBits & ~0xff00) == 0 ||
2441        (SplatBits & ~0xff0000) == 0 ||
2442        (SplatBits & ~0xff000000) == 0)
2443      return DAG.getTargetConstant(SplatBits, MVT::i32);
2444
2445    if ((SplatBits & ~0xffff) == 0 &&
2446        ((SplatBits | SplatUndef) & 0xff) == 0xff)
2447      return DAG.getTargetConstant(SplatBits | 0xff, MVT::i32);
2448
2449    if ((SplatBits & ~0xffffff) == 0 &&
2450        ((SplatBits | SplatUndef) & 0xffff) == 0xffff)
2451      return DAG.getTargetConstant(SplatBits | 0xffff, MVT::i32);
2452
2453    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
2454    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
2455    // VMOV.I32.  A (very) minor optimization would be to replicate the value
2456    // and fall through here to test for a valid 64-bit splat.  But, then the
2457    // caller would also need to check and handle the change in size.
2458    break;
2459
2460  case 64: {
2461    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
2462    uint64_t BitMask = 0xff;
2463    uint64_t Val = 0;
2464    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
2465      if (((SplatBits | SplatUndef) & BitMask) == BitMask)
2466        Val |= BitMask;
2467      else if ((SplatBits & BitMask) != 0)
2468        return SDValue();
2469      BitMask <<= 8;
2470    }
2471    return DAG.getTargetConstant(Val, MVT::i64);
2472  }
2473
2474  default:
2475    llvm_unreachable("unexpected size for isVMOVSplat");
2476    break;
2477  }
2478
2479  return SDValue();
2480}
2481
2482/// getVMOVImm - If this is a build_vector of constants which can be
2483/// formed by using a VMOV instruction of the specified element size,
2484/// return the constant being splatted.  The ByteSize field indicates the
2485/// number of bytes of each element [1248].
2486SDValue ARM::getVMOVImm(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2487  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
2488  APInt SplatBits, SplatUndef;
2489  unsigned SplatBitSize;
2490  bool HasAnyUndefs;
2491  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
2492                                      HasAnyUndefs, ByteSize * 8))
2493    return SDValue();
2494
2495  if (SplatBitSize > ByteSize * 8)
2496    return SDValue();
2497
2498  return isVMOVSplat(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
2499                     SplatBitSize, DAG);
2500}
2501
2502static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
2503                       bool &ReverseVEXT, unsigned &Imm) {
2504  unsigned NumElts = VT.getVectorNumElements();
2505  ReverseVEXT = false;
2506  Imm = M[0];
2507
2508  // If this is a VEXT shuffle, the immediate value is the index of the first
2509  // element.  The other shuffle indices must be the successive elements after
2510  // the first one.
2511  unsigned ExpectedElt = Imm;
2512  for (unsigned i = 1; i < NumElts; ++i) {
2513    // Increment the expected index.  If it wraps around, it may still be
2514    // a VEXT but the source vectors must be swapped.
2515    ExpectedElt += 1;
2516    if (ExpectedElt == NumElts * 2) {
2517      ExpectedElt = 0;
2518      ReverseVEXT = true;
2519    }
2520
2521    if (ExpectedElt != static_cast<unsigned>(M[i]))
2522      return false;
2523  }
2524
2525  // Adjust the index value if the source operands will be swapped.
2526  if (ReverseVEXT)
2527    Imm -= NumElts;
2528
2529  return true;
2530}
2531
2532/// isVREVMask - Check if a vector shuffle corresponds to a VREV
2533/// instruction with the specified blocksize.  (The order of the elements
2534/// within each block of the vector is reversed.)
2535static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
2536                       unsigned BlockSize) {
2537  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
2538         "Only possible block sizes for VREV are: 16, 32, 64");
2539
2540  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2541  if (EltSz == 64)
2542    return false;
2543
2544  unsigned NumElts = VT.getVectorNumElements();
2545  unsigned BlockElts = M[0] + 1;
2546
2547  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
2548    return false;
2549
2550  for (unsigned i = 0; i < NumElts; ++i) {
2551    if ((unsigned) M[i] !=
2552        (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
2553      return false;
2554  }
2555
2556  return true;
2557}
2558
2559static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
2560                       unsigned &WhichResult) {
2561  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2562  if (EltSz == 64)
2563    return false;
2564
2565  unsigned NumElts = VT.getVectorNumElements();
2566  WhichResult = (M[0] == 0 ? 0 : 1);
2567  for (unsigned i = 0; i < NumElts; i += 2) {
2568    if ((unsigned) M[i] != i + WhichResult ||
2569        (unsigned) M[i+1] != i + NumElts + WhichResult)
2570      return false;
2571  }
2572  return true;
2573}
2574
2575/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
2576/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
2577/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
2578static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
2579                                unsigned &WhichResult) {
2580  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2581  if (EltSz == 64)
2582    return false;
2583
2584  unsigned NumElts = VT.getVectorNumElements();
2585  WhichResult = (M[0] == 0 ? 0 : 1);
2586  for (unsigned i = 0; i < NumElts; i += 2) {
2587    if ((unsigned) M[i] != i + WhichResult ||
2588        (unsigned) M[i+1] != i + WhichResult)
2589      return false;
2590  }
2591  return true;
2592}
2593
2594static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
2595                       unsigned &WhichResult) {
2596  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2597  if (EltSz == 64)
2598    return false;
2599
2600  unsigned NumElts = VT.getVectorNumElements();
2601  WhichResult = (M[0] == 0 ? 0 : 1);
2602  for (unsigned i = 0; i != NumElts; ++i) {
2603    if ((unsigned) M[i] != 2 * i + WhichResult)
2604      return false;
2605  }
2606
2607  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
2608  if (VT.is64BitVector() && EltSz == 32)
2609    return false;
2610
2611  return true;
2612}
2613
2614/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
2615/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
2616/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
2617static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
2618                                unsigned &WhichResult) {
2619  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2620  if (EltSz == 64)
2621    return false;
2622
2623  unsigned Half = VT.getVectorNumElements() / 2;
2624  WhichResult = (M[0] == 0 ? 0 : 1);
2625  for (unsigned j = 0; j != 2; ++j) {
2626    unsigned Idx = WhichResult;
2627    for (unsigned i = 0; i != Half; ++i) {
2628      if ((unsigned) M[i + j * Half] != Idx)
2629        return false;
2630      Idx += 2;
2631    }
2632  }
2633
2634  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
2635  if (VT.is64BitVector() && EltSz == 32)
2636    return false;
2637
2638  return true;
2639}
2640
2641static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
2642                       unsigned &WhichResult) {
2643  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2644  if (EltSz == 64)
2645    return false;
2646
2647  unsigned NumElts = VT.getVectorNumElements();
2648  WhichResult = (M[0] == 0 ? 0 : 1);
2649  unsigned Idx = WhichResult * NumElts / 2;
2650  for (unsigned i = 0; i != NumElts; i += 2) {
2651    if ((unsigned) M[i] != Idx ||
2652        (unsigned) M[i+1] != Idx + NumElts)
2653      return false;
2654    Idx += 1;
2655  }
2656
2657  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
2658  if (VT.is64BitVector() && EltSz == 32)
2659    return false;
2660
2661  return true;
2662}
2663
2664/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
2665/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
2666/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
2667static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
2668                                unsigned &WhichResult) {
2669  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2670  if (EltSz == 64)
2671    return false;
2672
2673  unsigned NumElts = VT.getVectorNumElements();
2674  WhichResult = (M[0] == 0 ? 0 : 1);
2675  unsigned Idx = WhichResult * NumElts / 2;
2676  for (unsigned i = 0; i != NumElts; i += 2) {
2677    if ((unsigned) M[i] != Idx ||
2678        (unsigned) M[i+1] != Idx)
2679      return false;
2680    Idx += 1;
2681  }
2682
2683  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
2684  if (VT.is64BitVector() && EltSz == 32)
2685    return false;
2686
2687  return true;
2688}
2689
2690
2691static SDValue BuildSplat(SDValue Val, EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2692  // Canonicalize all-zeros and all-ones vectors.
2693  ConstantSDNode *ConstVal = cast<ConstantSDNode>(Val.getNode());
2694  if (ConstVal->isNullValue())
2695    return getZeroVector(VT, DAG, dl);
2696  if (ConstVal->isAllOnesValue())
2697    return getOnesVector(VT, DAG, dl);
2698
2699  EVT CanonicalVT;
2700  if (VT.is64BitVector()) {
2701    switch (Val.getValueType().getSizeInBits()) {
2702    case 8:  CanonicalVT = MVT::v8i8; break;
2703    case 16: CanonicalVT = MVT::v4i16; break;
2704    case 32: CanonicalVT = MVT::v2i32; break;
2705    case 64: CanonicalVT = MVT::v1i64; break;
2706    default: llvm_unreachable("unexpected splat element type"); break;
2707    }
2708  } else {
2709    assert(VT.is128BitVector() && "unknown splat vector size");
2710    switch (Val.getValueType().getSizeInBits()) {
2711    case 8:  CanonicalVT = MVT::v16i8; break;
2712    case 16: CanonicalVT = MVT::v8i16; break;
2713    case 32: CanonicalVT = MVT::v4i32; break;
2714    case 64: CanonicalVT = MVT::v2i64; break;
2715    default: llvm_unreachable("unexpected splat element type"); break;
2716    }
2717  }
2718
2719  // Build a canonical splat for this value.
2720  SmallVector<SDValue, 8> Ops;
2721  Ops.assign(CanonicalVT.getVectorNumElements(), Val);
2722  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, &Ops[0],
2723                            Ops.size());
2724  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Res);
2725}
2726
2727// If this is a case we can't handle, return null and let the default
2728// expansion code take care of it.
2729static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
2730  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
2731  DebugLoc dl = Op.getDebugLoc();
2732  EVT VT = Op.getValueType();
2733
2734  APInt SplatBits, SplatUndef;
2735  unsigned SplatBitSize;
2736  bool HasAnyUndefs;
2737  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
2738    if (SplatBitSize <= 64) {
2739      SDValue Val = isVMOVSplat(SplatBits.getZExtValue(),
2740                                SplatUndef.getZExtValue(), SplatBitSize, DAG);
2741      if (Val.getNode())
2742        return BuildSplat(Val, VT, DAG, dl);
2743    }
2744  }
2745
2746  // If there are only 2 elements in a 128-bit vector, insert them into an
2747  // undef vector.  This handles the common case for 128-bit vector argument
2748  // passing, where the insertions should be translated to subreg accesses
2749  // with no real instructions.
2750  if (VT.is128BitVector() && Op.getNumOperands() == 2) {
2751    SDValue Val = DAG.getUNDEF(VT);
2752    SDValue Op0 = Op.getOperand(0);
2753    SDValue Op1 = Op.getOperand(1);
2754    if (Op0.getOpcode() != ISD::UNDEF)
2755      Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, Op0,
2756                        DAG.getIntPtrConstant(0));
2757    if (Op1.getOpcode() != ISD::UNDEF)
2758      Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, Op1,
2759                        DAG.getIntPtrConstant(1));
2760    return Val;
2761  }
2762
2763  return SDValue();
2764}
2765
2766/// isShuffleMaskLegal - Targets can use this to indicate that they only
2767/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
2768/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
2769/// are assumed to be legal.
2770bool
2771ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
2772                                      EVT VT) const {
2773  if (VT.getVectorNumElements() == 4 &&
2774      (VT.is128BitVector() || VT.is64BitVector())) {
2775    unsigned PFIndexes[4];
2776    for (unsigned i = 0; i != 4; ++i) {
2777      if (M[i] < 0)
2778        PFIndexes[i] = 8;
2779      else
2780        PFIndexes[i] = M[i];
2781    }
2782
2783    // Compute the index in the perfect shuffle table.
2784    unsigned PFTableIndex =
2785      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
2786    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
2787    unsigned Cost = (PFEntry >> 30);
2788
2789    if (Cost <= 4)
2790      return true;
2791  }
2792
2793  bool ReverseVEXT;
2794  unsigned Imm, WhichResult;
2795
2796  return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
2797          isVREVMask(M, VT, 64) ||
2798          isVREVMask(M, VT, 32) ||
2799          isVREVMask(M, VT, 16) ||
2800          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
2801          isVTRNMask(M, VT, WhichResult) ||
2802          isVUZPMask(M, VT, WhichResult) ||
2803          isVZIPMask(M, VT, WhichResult) ||
2804          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
2805          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
2806          isVZIP_v_undef_Mask(M, VT, WhichResult));
2807}
2808
2809/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2810/// the specified operations to build the shuffle.
2811static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
2812                                      SDValue RHS, SelectionDAG &DAG,
2813                                      DebugLoc dl) {
2814  unsigned OpNum = (PFEntry >> 26) & 0x0F;
2815  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
2816  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
2817
2818  enum {
2819    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
2820    OP_VREV,
2821    OP_VDUP0,
2822    OP_VDUP1,
2823    OP_VDUP2,
2824    OP_VDUP3,
2825    OP_VEXT1,
2826    OP_VEXT2,
2827    OP_VEXT3,
2828    OP_VUZPL, // VUZP, left result
2829    OP_VUZPR, // VUZP, right result
2830    OP_VZIPL, // VZIP, left result
2831    OP_VZIPR, // VZIP, right result
2832    OP_VTRNL, // VTRN, left result
2833    OP_VTRNR  // VTRN, right result
2834  };
2835
2836  if (OpNum == OP_COPY) {
2837    if (LHSID == (1*9+2)*9+3) return LHS;
2838    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
2839    return RHS;
2840  }
2841
2842  SDValue OpLHS, OpRHS;
2843  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
2844  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
2845  EVT VT = OpLHS.getValueType();
2846
2847  switch (OpNum) {
2848  default: llvm_unreachable("Unknown shuffle opcode!");
2849  case OP_VREV:
2850    return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
2851  case OP_VDUP0:
2852  case OP_VDUP1:
2853  case OP_VDUP2:
2854  case OP_VDUP3:
2855    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
2856                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
2857  case OP_VEXT1:
2858  case OP_VEXT2:
2859  case OP_VEXT3:
2860    return DAG.getNode(ARMISD::VEXT, dl, VT,
2861                       OpLHS, OpRHS,
2862                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
2863  case OP_VUZPL:
2864  case OP_VUZPR:
2865    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
2866                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
2867  case OP_VZIPL:
2868  case OP_VZIPR:
2869    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
2870                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
2871  case OP_VTRNL:
2872  case OP_VTRNR:
2873    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
2874                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
2875  }
2876}
2877
2878static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
2879  SDValue V1 = Op.getOperand(0);
2880  SDValue V2 = Op.getOperand(1);
2881  DebugLoc dl = Op.getDebugLoc();
2882  EVT VT = Op.getValueType();
2883  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2884  SmallVector<int, 8> ShuffleMask;
2885
2886  // Convert shuffles that are directly supported on NEON to target-specific
2887  // DAG nodes, instead of keeping them as shuffles and matching them again
2888  // during code selection.  This is more efficient and avoids the possibility
2889  // of inconsistencies between legalization and selection.
2890  // FIXME: floating-point vectors should be canonicalized to integer vectors
2891  // of the same time so that they get CSEd properly.
2892  SVN->getMask(ShuffleMask);
2893
2894  if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
2895    int Lane = SVN->getSplatIndex();
2896    // If this is undef splat, generate it via "just" vdup, if possible.
2897    if (Lane == -1) Lane = 0;
2898
2899    if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
2900      return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
2901    }
2902    return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
2903                       DAG.getConstant(Lane, MVT::i32));
2904  }
2905
2906  bool ReverseVEXT;
2907  unsigned Imm;
2908  if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
2909    if (ReverseVEXT)
2910      std::swap(V1, V2);
2911    return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
2912                       DAG.getConstant(Imm, MVT::i32));
2913  }
2914
2915  if (isVREVMask(ShuffleMask, VT, 64))
2916    return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
2917  if (isVREVMask(ShuffleMask, VT, 32))
2918    return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
2919  if (isVREVMask(ShuffleMask, VT, 16))
2920    return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
2921
2922  // Check for Neon shuffles that modify both input vectors in place.
2923  // If both results are used, i.e., if there are two shuffles with the same
2924  // source operands and with masks corresponding to both results of one of
2925  // these operations, DAG memoization will ensure that a single node is
2926  // used for both shuffles.
2927  unsigned WhichResult;
2928  if (isVTRNMask(ShuffleMask, VT, WhichResult))
2929    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
2930                       V1, V2).getValue(WhichResult);
2931  if (isVUZPMask(ShuffleMask, VT, WhichResult))
2932    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
2933                       V1, V2).getValue(WhichResult);
2934  if (isVZIPMask(ShuffleMask, VT, WhichResult))
2935    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
2936                       V1, V2).getValue(WhichResult);
2937
2938  if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
2939    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
2940                       V1, V1).getValue(WhichResult);
2941  if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
2942    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
2943                       V1, V1).getValue(WhichResult);
2944  if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
2945    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
2946                       V1, V1).getValue(WhichResult);
2947
2948  // If the shuffle is not directly supported and it has 4 elements, use
2949  // the PerfectShuffle-generated table to synthesize it from other shuffles.
2950  if (VT.getVectorNumElements() == 4 &&
2951      (VT.is128BitVector() || VT.is64BitVector())) {
2952    unsigned PFIndexes[4];
2953    for (unsigned i = 0; i != 4; ++i) {
2954      if (ShuffleMask[i] < 0)
2955        PFIndexes[i] = 8;
2956      else
2957        PFIndexes[i] = ShuffleMask[i];
2958    }
2959
2960    // Compute the index in the perfect shuffle table.
2961    unsigned PFTableIndex =
2962      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
2963
2964    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
2965    unsigned Cost = (PFEntry >> 30);
2966
2967    if (Cost <= 4)
2968      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
2969  }
2970
2971  return SDValue();
2972}
2973
2974static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
2975  EVT VT = Op.getValueType();
2976  DebugLoc dl = Op.getDebugLoc();
2977  SDValue Vec = Op.getOperand(0);
2978  SDValue Lane = Op.getOperand(1);
2979  assert(VT == MVT::i32 &&
2980         Vec.getValueType().getVectorElementType().getSizeInBits() < 32 &&
2981         "unexpected type for custom-lowering vector extract");
2982  return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
2983}
2984
2985static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
2986  // The only time a CONCAT_VECTORS operation can have legal types is when
2987  // two 64-bit vectors are concatenated to a 128-bit vector.
2988  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
2989         "unexpected CONCAT_VECTORS");
2990  DebugLoc dl = Op.getDebugLoc();
2991  SDValue Val = DAG.getUNDEF(MVT::v2f64);
2992  SDValue Op0 = Op.getOperand(0);
2993  SDValue Op1 = Op.getOperand(1);
2994  if (Op0.getOpcode() != ISD::UNDEF)
2995    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
2996                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op0),
2997                      DAG.getIntPtrConstant(0));
2998  if (Op1.getOpcode() != ISD::UNDEF)
2999    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
3000                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op1),
3001                      DAG.getIntPtrConstant(1));
3002  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Val);
3003}
3004
3005SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
3006  switch (Op.getOpcode()) {
3007  default: llvm_unreachable("Don't know how to custom lower this!");
3008  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
3009  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
3010  case ISD::GlobalAddress:
3011    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
3012      LowerGlobalAddressELF(Op, DAG);
3013  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3014  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
3015  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
3016  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
3017  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
3018  case ISD::VASTART:       return LowerVASTART(Op, DAG, VarArgsFrameIndex);
3019  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
3020  case ISD::SINT_TO_FP:
3021  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
3022  case ISD::FP_TO_SINT:
3023  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
3024  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
3025  case ISD::RETURNADDR:    break;
3026  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
3027  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
3028  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3029  case ISD::BIT_CONVERT:   return ExpandBIT_CONVERT(Op.getNode(), DAG);
3030  case ISD::SHL:
3031  case ISD::SRL:
3032  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
3033  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
3034  case ISD::SRL_PARTS:
3035  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
3036  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
3037  case ISD::VSETCC:        return LowerVSETCC(Op, DAG);
3038  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG);
3039  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
3040  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
3041  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
3042  }
3043  return SDValue();
3044}
3045
3046/// ReplaceNodeResults - Replace the results of node with an illegal result
3047/// type with new values built out of custom code.
3048void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
3049                                           SmallVectorImpl<SDValue>&Results,
3050                                           SelectionDAG &DAG) {
3051  switch (N->getOpcode()) {
3052  default:
3053    llvm_unreachable("Don't know how to custom expand this!");
3054    return;
3055  case ISD::BIT_CONVERT:
3056    Results.push_back(ExpandBIT_CONVERT(N, DAG));
3057    return;
3058  case ISD::SRL:
3059  case ISD::SRA: {
3060    SDValue Res = LowerShift(N, DAG, Subtarget);
3061    if (Res.getNode())
3062      Results.push_back(Res);
3063    return;
3064  }
3065  }
3066}
3067
3068//===----------------------------------------------------------------------===//
3069//                           ARM Scheduler Hooks
3070//===----------------------------------------------------------------------===//
3071
3072MachineBasicBlock *
3073ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
3074                                     MachineBasicBlock *BB,
3075                                     unsigned Size) const {
3076  unsigned dest    = MI->getOperand(0).getReg();
3077  unsigned ptr     = MI->getOperand(1).getReg();
3078  unsigned oldval  = MI->getOperand(2).getReg();
3079  unsigned newval  = MI->getOperand(3).getReg();
3080  unsigned scratch = BB->getParent()->getRegInfo()
3081    .createVirtualRegister(ARM::GPRRegisterClass);
3082  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3083  DebugLoc dl = MI->getDebugLoc();
3084  bool isThumb2 = Subtarget->isThumb2();
3085
3086  unsigned ldrOpc, strOpc;
3087  switch (Size) {
3088  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
3089  case 1:
3090    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
3091    strOpc = isThumb2 ? ARM::t2LDREXB : ARM::STREXB;
3092    break;
3093  case 2:
3094    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
3095    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
3096    break;
3097  case 4:
3098    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
3099    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
3100    break;
3101  }
3102
3103  MachineFunction *MF = BB->getParent();
3104  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3105  MachineFunction::iterator It = BB;
3106  ++It; // insert the new blocks after the current block
3107
3108  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
3109  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
3110  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
3111  MF->insert(It, loop1MBB);
3112  MF->insert(It, loop2MBB);
3113  MF->insert(It, exitMBB);
3114  exitMBB->transferSuccessors(BB);
3115
3116  //  thisMBB:
3117  //   ...
3118  //   fallthrough --> loop1MBB
3119  BB->addSuccessor(loop1MBB);
3120
3121  // loop1MBB:
3122  //   ldrex dest, [ptr]
3123  //   cmp dest, oldval
3124  //   bne exitMBB
3125  BB = loop1MBB;
3126  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
3127  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
3128                 .addReg(dest).addReg(oldval));
3129  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
3130    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
3131  BB->addSuccessor(loop2MBB);
3132  BB->addSuccessor(exitMBB);
3133
3134  // loop2MBB:
3135  //   strex scratch, newval, [ptr]
3136  //   cmp scratch, #0
3137  //   bne loop1MBB
3138  BB = loop2MBB;
3139  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval)
3140                 .addReg(ptr));
3141  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
3142                 .addReg(scratch).addImm(0));
3143  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
3144    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
3145  BB->addSuccessor(loop1MBB);
3146  BB->addSuccessor(exitMBB);
3147
3148  //  exitMBB:
3149  //   ...
3150  BB = exitMBB;
3151
3152  MF->DeleteMachineInstr(MI);   // The instruction is gone now.
3153
3154  return BB;
3155}
3156
3157MachineBasicBlock *
3158ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
3159                                    unsigned Size, unsigned BinOpcode) const {
3160  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
3161  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3162
3163  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3164  MachineFunction *MF = BB->getParent();
3165  MachineFunction::iterator It = BB;
3166  ++It;
3167
3168  unsigned dest = MI->getOperand(0).getReg();
3169  unsigned ptr = MI->getOperand(1).getReg();
3170  unsigned incr = MI->getOperand(2).getReg();
3171  DebugLoc dl = MI->getDebugLoc();
3172
3173  bool isThumb2 = Subtarget->isThumb2();
3174  unsigned ldrOpc, strOpc;
3175  switch (Size) {
3176  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
3177  case 1:
3178    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
3179    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
3180    break;
3181  case 2:
3182    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
3183    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
3184    break;
3185  case 4:
3186    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
3187    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
3188    break;
3189  }
3190
3191  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
3192  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
3193  MF->insert(It, loopMBB);
3194  MF->insert(It, exitMBB);
3195  exitMBB->transferSuccessors(BB);
3196
3197  MachineRegisterInfo &RegInfo = MF->getRegInfo();
3198  unsigned scratch = RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
3199  unsigned scratch2 = (!BinOpcode) ? incr :
3200    RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
3201
3202  //  thisMBB:
3203  //   ...
3204  //   fallthrough --> loopMBB
3205  BB->addSuccessor(loopMBB);
3206
3207  //  loopMBB:
3208  //   ldrex dest, ptr
3209  //   <binop> scratch2, dest, incr
3210  //   strex scratch, scratch2, ptr
3211  //   cmp scratch, #0
3212  //   bne- loopMBB
3213  //   fallthrough --> exitMBB
3214  BB = loopMBB;
3215  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
3216  if (BinOpcode) {
3217    // operand order needs to go the other way for NAND
3218    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
3219      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
3220                     addReg(incr).addReg(dest)).addReg(0);
3221    else
3222      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
3223                     addReg(dest).addReg(incr)).addReg(0);
3224  }
3225
3226  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2)
3227                 .addReg(ptr));
3228  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
3229                 .addReg(scratch).addImm(0));
3230  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
3231    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
3232
3233  BB->addSuccessor(loopMBB);
3234  BB->addSuccessor(exitMBB);
3235
3236  //  exitMBB:
3237  //   ...
3238  BB = exitMBB;
3239
3240  MF->DeleteMachineInstr(MI);   // The instruction is gone now.
3241
3242  return BB;
3243}
3244
3245MachineBasicBlock *
3246ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
3247                                               MachineBasicBlock *BB,
3248                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
3249  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3250  DebugLoc dl = MI->getDebugLoc();
3251  bool isThumb2 = Subtarget->isThumb2();
3252  switch (MI->getOpcode()) {
3253  default:
3254    MI->dump();
3255    llvm_unreachable("Unexpected instr type to insert");
3256
3257  case ARM::ATOMIC_LOAD_ADD_I8:
3258     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
3259  case ARM::ATOMIC_LOAD_ADD_I16:
3260     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
3261  case ARM::ATOMIC_LOAD_ADD_I32:
3262     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
3263
3264  case ARM::ATOMIC_LOAD_AND_I8:
3265     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
3266  case ARM::ATOMIC_LOAD_AND_I16:
3267     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
3268  case ARM::ATOMIC_LOAD_AND_I32:
3269     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
3270
3271  case ARM::ATOMIC_LOAD_OR_I8:
3272     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
3273  case ARM::ATOMIC_LOAD_OR_I16:
3274     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
3275  case ARM::ATOMIC_LOAD_OR_I32:
3276     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
3277
3278  case ARM::ATOMIC_LOAD_XOR_I8:
3279     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
3280  case ARM::ATOMIC_LOAD_XOR_I16:
3281     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
3282  case ARM::ATOMIC_LOAD_XOR_I32:
3283     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
3284
3285  case ARM::ATOMIC_LOAD_NAND_I8:
3286     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
3287  case ARM::ATOMIC_LOAD_NAND_I16:
3288     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
3289  case ARM::ATOMIC_LOAD_NAND_I32:
3290     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
3291
3292  case ARM::ATOMIC_LOAD_SUB_I8:
3293     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
3294  case ARM::ATOMIC_LOAD_SUB_I16:
3295     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
3296  case ARM::ATOMIC_LOAD_SUB_I32:
3297     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
3298
3299  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
3300  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
3301  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
3302
3303  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
3304  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
3305  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
3306
3307  case ARM::tMOVCCr_pseudo: {
3308    // To "insert" a SELECT_CC instruction, we actually have to insert the
3309    // diamond control-flow pattern.  The incoming instruction knows the
3310    // destination vreg to set, the condition code register to branch on, the
3311    // true/false values to select between, and a branch opcode to use.
3312    const BasicBlock *LLVM_BB = BB->getBasicBlock();
3313    MachineFunction::iterator It = BB;
3314    ++It;
3315
3316    //  thisMBB:
3317    //  ...
3318    //   TrueVal = ...
3319    //   cmpTY ccX, r1, r2
3320    //   bCC copy1MBB
3321    //   fallthrough --> copy0MBB
3322    MachineBasicBlock *thisMBB  = BB;
3323    MachineFunction *F = BB->getParent();
3324    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
3325    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
3326    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
3327      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
3328    F->insert(It, copy0MBB);
3329    F->insert(It, sinkMBB);
3330    // Update machine-CFG edges by first adding all successors of the current
3331    // block to the new block which will contain the Phi node for the select.
3332    // Also inform sdisel of the edge changes.
3333    for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
3334           E = BB->succ_end(); I != E; ++I) {
3335      EM->insert(std::make_pair(*I, sinkMBB));
3336      sinkMBB->addSuccessor(*I);
3337    }
3338    // Next, remove all successors of the current block, and add the true
3339    // and fallthrough blocks as its successors.
3340    while (!BB->succ_empty())
3341      BB->removeSuccessor(BB->succ_begin());
3342    BB->addSuccessor(copy0MBB);
3343    BB->addSuccessor(sinkMBB);
3344
3345    //  copy0MBB:
3346    //   %FalseValue = ...
3347    //   # fallthrough to sinkMBB
3348    BB = copy0MBB;
3349
3350    // Update machine-CFG edges
3351    BB->addSuccessor(sinkMBB);
3352
3353    //  sinkMBB:
3354    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
3355    //  ...
3356    BB = sinkMBB;
3357    BuildMI(BB, dl, TII->get(ARM::PHI), MI->getOperand(0).getReg())
3358      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
3359      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
3360
3361    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
3362    return BB;
3363  }
3364
3365  case ARM::tANDsp:
3366  case ARM::tADDspr_:
3367  case ARM::tSUBspi_:
3368  case ARM::t2SUBrSPi_:
3369  case ARM::t2SUBrSPi12_:
3370  case ARM::t2SUBrSPs_: {
3371    MachineFunction *MF = BB->getParent();
3372    unsigned DstReg = MI->getOperand(0).getReg();
3373    unsigned SrcReg = MI->getOperand(1).getReg();
3374    bool DstIsDead = MI->getOperand(0).isDead();
3375    bool SrcIsKill = MI->getOperand(1).isKill();
3376
3377    if (SrcReg != ARM::SP) {
3378      // Copy the source to SP from virtual register.
3379      const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(SrcReg);
3380      unsigned CopyOpc = (RC == ARM::tGPRRegisterClass)
3381        ? ARM::tMOVtgpr2gpr : ARM::tMOVgpr2gpr;
3382      BuildMI(BB, dl, TII->get(CopyOpc), ARM::SP)
3383        .addReg(SrcReg, getKillRegState(SrcIsKill));
3384    }
3385
3386    unsigned OpOpc = 0;
3387    bool NeedPred = false, NeedCC = false, NeedOp3 = false;
3388    switch (MI->getOpcode()) {
3389    default:
3390      llvm_unreachable("Unexpected pseudo instruction!");
3391    case ARM::tANDsp:
3392      OpOpc = ARM::tAND;
3393      NeedPred = true;
3394      break;
3395    case ARM::tADDspr_:
3396      OpOpc = ARM::tADDspr;
3397      break;
3398    case ARM::tSUBspi_:
3399      OpOpc = ARM::tSUBspi;
3400      break;
3401    case ARM::t2SUBrSPi_:
3402      OpOpc = ARM::t2SUBrSPi;
3403      NeedPred = true; NeedCC = true;
3404      break;
3405    case ARM::t2SUBrSPi12_:
3406      OpOpc = ARM::t2SUBrSPi12;
3407      NeedPred = true;
3408      break;
3409    case ARM::t2SUBrSPs_:
3410      OpOpc = ARM::t2SUBrSPs;
3411      NeedPred = true; NeedCC = true; NeedOp3 = true;
3412      break;
3413    }
3414    MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(OpOpc), ARM::SP);
3415    if (OpOpc == ARM::tAND)
3416      AddDefaultT1CC(MIB);
3417    MIB.addReg(ARM::SP);
3418    MIB.addOperand(MI->getOperand(2));
3419    if (NeedOp3)
3420      MIB.addOperand(MI->getOperand(3));
3421    if (NeedPred)
3422      AddDefaultPred(MIB);
3423    if (NeedCC)
3424      AddDefaultCC(MIB);
3425
3426    // Copy the result from SP to virtual register.
3427    const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(DstReg);
3428    unsigned CopyOpc = (RC == ARM::tGPRRegisterClass)
3429      ? ARM::tMOVgpr2tgpr : ARM::tMOVgpr2gpr;
3430    BuildMI(BB, dl, TII->get(CopyOpc))
3431      .addReg(DstReg, getDefRegState(true) | getDeadRegState(DstIsDead))
3432      .addReg(ARM::SP);
3433    MF->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
3434    return BB;
3435  }
3436  }
3437}
3438
3439//===----------------------------------------------------------------------===//
3440//                           ARM Optimization Hooks
3441//===----------------------------------------------------------------------===//
3442
3443static
3444SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
3445                            TargetLowering::DAGCombinerInfo &DCI) {
3446  SelectionDAG &DAG = DCI.DAG;
3447  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3448  EVT VT = N->getValueType(0);
3449  unsigned Opc = N->getOpcode();
3450  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
3451  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
3452  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
3453  ISD::CondCode CC = ISD::SETCC_INVALID;
3454
3455  if (isSlctCC) {
3456    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
3457  } else {
3458    SDValue CCOp = Slct.getOperand(0);
3459    if (CCOp.getOpcode() == ISD::SETCC)
3460      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
3461  }
3462
3463  bool DoXform = false;
3464  bool InvCC = false;
3465  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
3466          "Bad input!");
3467
3468  if (LHS.getOpcode() == ISD::Constant &&
3469      cast<ConstantSDNode>(LHS)->isNullValue()) {
3470    DoXform = true;
3471  } else if (CC != ISD::SETCC_INVALID &&
3472             RHS.getOpcode() == ISD::Constant &&
3473             cast<ConstantSDNode>(RHS)->isNullValue()) {
3474    std::swap(LHS, RHS);
3475    SDValue Op0 = Slct.getOperand(0);
3476    EVT OpVT = isSlctCC ? Op0.getValueType() :
3477                          Op0.getOperand(0).getValueType();
3478    bool isInt = OpVT.isInteger();
3479    CC = ISD::getSetCCInverse(CC, isInt);
3480
3481    if (!TLI.isCondCodeLegal(CC, OpVT))
3482      return SDValue();         // Inverse operator isn't legal.
3483
3484    DoXform = true;
3485    InvCC = true;
3486  }
3487
3488  if (DoXform) {
3489    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
3490    if (isSlctCC)
3491      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
3492                             Slct.getOperand(0), Slct.getOperand(1), CC);
3493    SDValue CCOp = Slct.getOperand(0);
3494    if (InvCC)
3495      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
3496                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
3497    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
3498                       CCOp, OtherOp, Result);
3499  }
3500  return SDValue();
3501}
3502
3503/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
3504static SDValue PerformADDCombine(SDNode *N,
3505                                 TargetLowering::DAGCombinerInfo &DCI) {
3506  // added by evan in r37685 with no testcase.
3507  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
3508
3509  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
3510  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
3511    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
3512    if (Result.getNode()) return Result;
3513  }
3514  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
3515    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
3516    if (Result.getNode()) return Result;
3517  }
3518
3519  return SDValue();
3520}
3521
3522/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
3523static SDValue PerformSUBCombine(SDNode *N,
3524                                 TargetLowering::DAGCombinerInfo &DCI) {
3525  // added by evan in r37685 with no testcase.
3526  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
3527
3528  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
3529  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
3530    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
3531    if (Result.getNode()) return Result;
3532  }
3533
3534  return SDValue();
3535}
3536
3537/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
3538/// ARMISD::VMOVRRD.
3539static SDValue PerformVMOVRRDCombine(SDNode *N,
3540                                   TargetLowering::DAGCombinerInfo &DCI) {
3541  // fmrrd(fmdrr x, y) -> x,y
3542  SDValue InDouble = N->getOperand(0);
3543  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
3544    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
3545  return SDValue();
3546}
3547
3548/// getVShiftImm - Check if this is a valid build_vector for the immediate
3549/// operand of a vector shift operation, where all the elements of the
3550/// build_vector must have the same constant integer value.
3551static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
3552  // Ignore bit_converts.
3553  while (Op.getOpcode() == ISD::BIT_CONVERT)
3554    Op = Op.getOperand(0);
3555  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3556  APInt SplatBits, SplatUndef;
3557  unsigned SplatBitSize;
3558  bool HasAnyUndefs;
3559  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
3560                                      HasAnyUndefs, ElementBits) ||
3561      SplatBitSize > ElementBits)
3562    return false;
3563  Cnt = SplatBits.getSExtValue();
3564  return true;
3565}
3566
3567/// isVShiftLImm - Check if this is a valid build_vector for the immediate
3568/// operand of a vector shift left operation.  That value must be in the range:
3569///   0 <= Value < ElementBits for a left shift; or
3570///   0 <= Value <= ElementBits for a long left shift.
3571static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
3572  assert(VT.isVector() && "vector shift count is not a vector type");
3573  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
3574  if (! getVShiftImm(Op, ElementBits, Cnt))
3575    return false;
3576  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
3577}
3578
3579/// isVShiftRImm - Check if this is a valid build_vector for the immediate
3580/// operand of a vector shift right operation.  For a shift opcode, the value
3581/// is positive, but for an intrinsic the value count must be negative. The
3582/// absolute value must be in the range:
3583///   1 <= |Value| <= ElementBits for a right shift; or
3584///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
3585static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
3586                         int64_t &Cnt) {
3587  assert(VT.isVector() && "vector shift count is not a vector type");
3588  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
3589  if (! getVShiftImm(Op, ElementBits, Cnt))
3590    return false;
3591  if (isIntrinsic)
3592    Cnt = -Cnt;
3593  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
3594}
3595
3596/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
3597static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
3598  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3599  switch (IntNo) {
3600  default:
3601    // Don't do anything for most intrinsics.
3602    break;
3603
3604  // Vector shifts: check for immediate versions and lower them.
3605  // Note: This is done during DAG combining instead of DAG legalizing because
3606  // the build_vectors for 64-bit vector element shift counts are generally
3607  // not legal, and it is hard to see their values after they get legalized to
3608  // loads from a constant pool.
3609  case Intrinsic::arm_neon_vshifts:
3610  case Intrinsic::arm_neon_vshiftu:
3611  case Intrinsic::arm_neon_vshiftls:
3612  case Intrinsic::arm_neon_vshiftlu:
3613  case Intrinsic::arm_neon_vshiftn:
3614  case Intrinsic::arm_neon_vrshifts:
3615  case Intrinsic::arm_neon_vrshiftu:
3616  case Intrinsic::arm_neon_vrshiftn:
3617  case Intrinsic::arm_neon_vqshifts:
3618  case Intrinsic::arm_neon_vqshiftu:
3619  case Intrinsic::arm_neon_vqshiftsu:
3620  case Intrinsic::arm_neon_vqshiftns:
3621  case Intrinsic::arm_neon_vqshiftnu:
3622  case Intrinsic::arm_neon_vqshiftnsu:
3623  case Intrinsic::arm_neon_vqrshiftns:
3624  case Intrinsic::arm_neon_vqrshiftnu:
3625  case Intrinsic::arm_neon_vqrshiftnsu: {
3626    EVT VT = N->getOperand(1).getValueType();
3627    int64_t Cnt;
3628    unsigned VShiftOpc = 0;
3629
3630    switch (IntNo) {
3631    case Intrinsic::arm_neon_vshifts:
3632    case Intrinsic::arm_neon_vshiftu:
3633      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
3634        VShiftOpc = ARMISD::VSHL;
3635        break;
3636      }
3637      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
3638        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
3639                     ARMISD::VSHRs : ARMISD::VSHRu);
3640        break;
3641      }
3642      return SDValue();
3643
3644    case Intrinsic::arm_neon_vshiftls:
3645    case Intrinsic::arm_neon_vshiftlu:
3646      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
3647        break;
3648      llvm_unreachable("invalid shift count for vshll intrinsic");
3649
3650    case Intrinsic::arm_neon_vrshifts:
3651    case Intrinsic::arm_neon_vrshiftu:
3652      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
3653        break;
3654      return SDValue();
3655
3656    case Intrinsic::arm_neon_vqshifts:
3657    case Intrinsic::arm_neon_vqshiftu:
3658      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
3659        break;
3660      return SDValue();
3661
3662    case Intrinsic::arm_neon_vqshiftsu:
3663      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
3664        break;
3665      llvm_unreachable("invalid shift count for vqshlu intrinsic");
3666
3667    case Intrinsic::arm_neon_vshiftn:
3668    case Intrinsic::arm_neon_vrshiftn:
3669    case Intrinsic::arm_neon_vqshiftns:
3670    case Intrinsic::arm_neon_vqshiftnu:
3671    case Intrinsic::arm_neon_vqshiftnsu:
3672    case Intrinsic::arm_neon_vqrshiftns:
3673    case Intrinsic::arm_neon_vqrshiftnu:
3674    case Intrinsic::arm_neon_vqrshiftnsu:
3675      // Narrowing shifts require an immediate right shift.
3676      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
3677        break;
3678      llvm_unreachable("invalid shift count for narrowing vector shift intrinsic");
3679
3680    default:
3681      llvm_unreachable("unhandled vector shift");
3682    }
3683
3684    switch (IntNo) {
3685    case Intrinsic::arm_neon_vshifts:
3686    case Intrinsic::arm_neon_vshiftu:
3687      // Opcode already set above.
3688      break;
3689    case Intrinsic::arm_neon_vshiftls:
3690    case Intrinsic::arm_neon_vshiftlu:
3691      if (Cnt == VT.getVectorElementType().getSizeInBits())
3692        VShiftOpc = ARMISD::VSHLLi;
3693      else
3694        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
3695                     ARMISD::VSHLLs : ARMISD::VSHLLu);
3696      break;
3697    case Intrinsic::arm_neon_vshiftn:
3698      VShiftOpc = ARMISD::VSHRN; break;
3699    case Intrinsic::arm_neon_vrshifts:
3700      VShiftOpc = ARMISD::VRSHRs; break;
3701    case Intrinsic::arm_neon_vrshiftu:
3702      VShiftOpc = ARMISD::VRSHRu; break;
3703    case Intrinsic::arm_neon_vrshiftn:
3704      VShiftOpc = ARMISD::VRSHRN; break;
3705    case Intrinsic::arm_neon_vqshifts:
3706      VShiftOpc = ARMISD::VQSHLs; break;
3707    case Intrinsic::arm_neon_vqshiftu:
3708      VShiftOpc = ARMISD::VQSHLu; break;
3709    case Intrinsic::arm_neon_vqshiftsu:
3710      VShiftOpc = ARMISD::VQSHLsu; break;
3711    case Intrinsic::arm_neon_vqshiftns:
3712      VShiftOpc = ARMISD::VQSHRNs; break;
3713    case Intrinsic::arm_neon_vqshiftnu:
3714      VShiftOpc = ARMISD::VQSHRNu; break;
3715    case Intrinsic::arm_neon_vqshiftnsu:
3716      VShiftOpc = ARMISD::VQSHRNsu; break;
3717    case Intrinsic::arm_neon_vqrshiftns:
3718      VShiftOpc = ARMISD::VQRSHRNs; break;
3719    case Intrinsic::arm_neon_vqrshiftnu:
3720      VShiftOpc = ARMISD::VQRSHRNu; break;
3721    case Intrinsic::arm_neon_vqrshiftnsu:
3722      VShiftOpc = ARMISD::VQRSHRNsu; break;
3723    }
3724
3725    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
3726                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
3727  }
3728
3729  case Intrinsic::arm_neon_vshiftins: {
3730    EVT VT = N->getOperand(1).getValueType();
3731    int64_t Cnt;
3732    unsigned VShiftOpc = 0;
3733
3734    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
3735      VShiftOpc = ARMISD::VSLI;
3736    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
3737      VShiftOpc = ARMISD::VSRI;
3738    else {
3739      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
3740    }
3741
3742    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
3743                       N->getOperand(1), N->getOperand(2),
3744                       DAG.getConstant(Cnt, MVT::i32));
3745  }
3746
3747  case Intrinsic::arm_neon_vqrshifts:
3748  case Intrinsic::arm_neon_vqrshiftu:
3749    // No immediate versions of these to check for.
3750    break;
3751  }
3752
3753  return SDValue();
3754}
3755
3756/// PerformShiftCombine - Checks for immediate versions of vector shifts and
3757/// lowers them.  As with the vector shift intrinsics, this is done during DAG
3758/// combining instead of DAG legalizing because the build_vectors for 64-bit
3759/// vector element shift counts are generally not legal, and it is hard to see
3760/// their values after they get legalized to loads from a constant pool.
3761static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
3762                                   const ARMSubtarget *ST) {
3763  EVT VT = N->getValueType(0);
3764
3765  // Nothing to be done for scalar shifts.
3766  if (! VT.isVector())
3767    return SDValue();
3768
3769  assert(ST->hasNEON() && "unexpected vector shift");
3770  int64_t Cnt;
3771
3772  switch (N->getOpcode()) {
3773  default: llvm_unreachable("unexpected shift opcode");
3774
3775  case ISD::SHL:
3776    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
3777      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
3778                         DAG.getConstant(Cnt, MVT::i32));
3779    break;
3780
3781  case ISD::SRA:
3782  case ISD::SRL:
3783    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
3784      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
3785                            ARMISD::VSHRs : ARMISD::VSHRu);
3786      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
3787                         DAG.getConstant(Cnt, MVT::i32));
3788    }
3789  }
3790  return SDValue();
3791}
3792
3793/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
3794/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
3795static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
3796                                    const ARMSubtarget *ST) {
3797  SDValue N0 = N->getOperand(0);
3798
3799  // Check for sign- and zero-extensions of vector extract operations of 8-
3800  // and 16-bit vector elements.  NEON supports these directly.  They are
3801  // handled during DAG combining because type legalization will promote them
3802  // to 32-bit types and it is messy to recognize the operations after that.
3803  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
3804    SDValue Vec = N0.getOperand(0);
3805    SDValue Lane = N0.getOperand(1);
3806    EVT VT = N->getValueType(0);
3807    EVT EltVT = N0.getValueType();
3808    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3809
3810    if (VT == MVT::i32 &&
3811        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
3812        TLI.isTypeLegal(Vec.getValueType())) {
3813
3814      unsigned Opc = 0;
3815      switch (N->getOpcode()) {
3816      default: llvm_unreachable("unexpected opcode");
3817      case ISD::SIGN_EXTEND:
3818        Opc = ARMISD::VGETLANEs;
3819        break;
3820      case ISD::ZERO_EXTEND:
3821      case ISD::ANY_EXTEND:
3822        Opc = ARMISD::VGETLANEu;
3823        break;
3824      }
3825      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
3826    }
3827  }
3828
3829  return SDValue();
3830}
3831
3832SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
3833                                             DAGCombinerInfo &DCI) const {
3834  switch (N->getOpcode()) {
3835  default: break;
3836  case ISD::ADD:      return PerformADDCombine(N, DCI);
3837  case ISD::SUB:      return PerformSUBCombine(N, DCI);
3838  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
3839  case ISD::INTRINSIC_WO_CHAIN:
3840    return PerformIntrinsicCombine(N, DCI.DAG);
3841  case ISD::SHL:
3842  case ISD::SRA:
3843  case ISD::SRL:
3844    return PerformShiftCombine(N, DCI.DAG, Subtarget);
3845  case ISD::SIGN_EXTEND:
3846  case ISD::ZERO_EXTEND:
3847  case ISD::ANY_EXTEND:
3848    return PerformExtendCombine(N, DCI.DAG, Subtarget);
3849  }
3850  return SDValue();
3851}
3852
3853bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
3854  if (!Subtarget->hasV6Ops())
3855    // Pre-v6 does not support unaligned mem access.
3856    return false;
3857  else {
3858    // v6+ may or may not support unaligned mem access depending on the system
3859    // configuration.
3860    // FIXME: This is pretty conservative. Should we provide cmdline option to
3861    // control the behaviour?
3862    if (!Subtarget->isTargetDarwin())
3863      return false;
3864  }
3865
3866  switch (VT.getSimpleVT().SimpleTy) {
3867  default:
3868    return false;
3869  case MVT::i8:
3870  case MVT::i16:
3871  case MVT::i32:
3872    return true;
3873  // FIXME: VLD1 etc with standard alignment is legal.
3874  }
3875}
3876
3877static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
3878  if (V < 0)
3879    return false;
3880
3881  unsigned Scale = 1;
3882  switch (VT.getSimpleVT().SimpleTy) {
3883  default: return false;
3884  case MVT::i1:
3885  case MVT::i8:
3886    // Scale == 1;
3887    break;
3888  case MVT::i16:
3889    // Scale == 2;
3890    Scale = 2;
3891    break;
3892  case MVT::i32:
3893    // Scale == 4;
3894    Scale = 4;
3895    break;
3896  }
3897
3898  if ((V & (Scale - 1)) != 0)
3899    return false;
3900  V /= Scale;
3901  return V == (V & ((1LL << 5) - 1));
3902}
3903
3904static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
3905                                      const ARMSubtarget *Subtarget) {
3906  bool isNeg = false;
3907  if (V < 0) {
3908    isNeg = true;
3909    V = - V;
3910  }
3911
3912  switch (VT.getSimpleVT().SimpleTy) {
3913  default: return false;
3914  case MVT::i1:
3915  case MVT::i8:
3916  case MVT::i16:
3917  case MVT::i32:
3918    // + imm12 or - imm8
3919    if (isNeg)
3920      return V == (V & ((1LL << 8) - 1));
3921    return V == (V & ((1LL << 12) - 1));
3922  case MVT::f32:
3923  case MVT::f64:
3924    // Same as ARM mode. FIXME: NEON?
3925    if (!Subtarget->hasVFP2())
3926      return false;
3927    if ((V & 3) != 0)
3928      return false;
3929    V >>= 2;
3930    return V == (V & ((1LL << 8) - 1));
3931  }
3932}
3933
3934/// isLegalAddressImmediate - Return true if the integer value can be used
3935/// as the offset of the target addressing mode for load / store of the
3936/// given type.
3937static bool isLegalAddressImmediate(int64_t V, EVT VT,
3938                                    const ARMSubtarget *Subtarget) {
3939  if (V == 0)
3940    return true;
3941
3942  if (!VT.isSimple())
3943    return false;
3944
3945  if (Subtarget->isThumb1Only())
3946    return isLegalT1AddressImmediate(V, VT);
3947  else if (Subtarget->isThumb2())
3948    return isLegalT2AddressImmediate(V, VT, Subtarget);
3949
3950  // ARM mode.
3951  if (V < 0)
3952    V = - V;
3953  switch (VT.getSimpleVT().SimpleTy) {
3954  default: return false;
3955  case MVT::i1:
3956  case MVT::i8:
3957  case MVT::i32:
3958    // +- imm12
3959    return V == (V & ((1LL << 12) - 1));
3960  case MVT::i16:
3961    // +- imm8
3962    return V == (V & ((1LL << 8) - 1));
3963  case MVT::f32:
3964  case MVT::f64:
3965    if (!Subtarget->hasVFP2()) // FIXME: NEON?
3966      return false;
3967    if ((V & 3) != 0)
3968      return false;
3969    V >>= 2;
3970    return V == (V & ((1LL << 8) - 1));
3971  }
3972}
3973
3974bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
3975                                                      EVT VT) const {
3976  int Scale = AM.Scale;
3977  if (Scale < 0)
3978    return false;
3979
3980  switch (VT.getSimpleVT().SimpleTy) {
3981  default: return false;
3982  case MVT::i1:
3983  case MVT::i8:
3984  case MVT::i16:
3985  case MVT::i32:
3986    if (Scale == 1)
3987      return true;
3988    // r + r << imm
3989    Scale = Scale & ~1;
3990    return Scale == 2 || Scale == 4 || Scale == 8;
3991  case MVT::i64:
3992    // r + r
3993    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
3994      return true;
3995    return false;
3996  case MVT::isVoid:
3997    // Note, we allow "void" uses (basically, uses that aren't loads or
3998    // stores), because arm allows folding a scale into many arithmetic
3999    // operations.  This should be made more precise and revisited later.
4000
4001    // Allow r << imm, but the imm has to be a multiple of two.
4002    if (Scale & 1) return false;
4003    return isPowerOf2_32(Scale);
4004  }
4005}
4006
4007/// isLegalAddressingMode - Return true if the addressing mode represented
4008/// by AM is legal for this target, for a load/store of the specified type.
4009bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
4010                                              const Type *Ty) const {
4011  EVT VT = getValueType(Ty, true);
4012  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
4013    return false;
4014
4015  // Can never fold addr of global into load/store.
4016  if (AM.BaseGV)
4017    return false;
4018
4019  switch (AM.Scale) {
4020  case 0:  // no scale reg, must be "r+i" or "r", or "i".
4021    break;
4022  case 1:
4023    if (Subtarget->isThumb1Only())
4024      return false;
4025    // FALL THROUGH.
4026  default:
4027    // ARM doesn't support any R+R*scale+imm addr modes.
4028    if (AM.BaseOffs)
4029      return false;
4030
4031    if (!VT.isSimple())
4032      return false;
4033
4034    if (Subtarget->isThumb2())
4035      return isLegalT2ScaledAddressingMode(AM, VT);
4036
4037    int Scale = AM.Scale;
4038    switch (VT.getSimpleVT().SimpleTy) {
4039    default: return false;
4040    case MVT::i1:
4041    case MVT::i8:
4042    case MVT::i32:
4043      if (Scale < 0) Scale = -Scale;
4044      if (Scale == 1)
4045        return true;
4046      // r + r << imm
4047      return isPowerOf2_32(Scale & ~1);
4048    case MVT::i16:
4049    case MVT::i64:
4050      // r + r
4051      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
4052        return true;
4053      return false;
4054
4055    case MVT::isVoid:
4056      // Note, we allow "void" uses (basically, uses that aren't loads or
4057      // stores), because arm allows folding a scale into many arithmetic
4058      // operations.  This should be made more precise and revisited later.
4059
4060      // Allow r << imm, but the imm has to be a multiple of two.
4061      if (Scale & 1) return false;
4062      return isPowerOf2_32(Scale);
4063    }
4064    break;
4065  }
4066  return true;
4067}
4068
4069/// isLegalICmpImmediate - Return true if the specified immediate is legal
4070/// icmp immediate, that is the target has icmp instructions which can compare
4071/// a register against the immediate without having to materialize the
4072/// immediate into a register.
4073bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
4074  if (!Subtarget->isThumb())
4075    return ARM_AM::getSOImmVal(Imm) != -1;
4076  if (Subtarget->isThumb2())
4077    return ARM_AM::getT2SOImmVal(Imm) != -1;
4078  return Imm >= 0 && Imm <= 255;
4079}
4080
4081static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
4082                                      bool isSEXTLoad, SDValue &Base,
4083                                      SDValue &Offset, bool &isInc,
4084                                      SelectionDAG &DAG) {
4085  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
4086    return false;
4087
4088  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
4089    // AddressingMode 3
4090    Base = Ptr->getOperand(0);
4091    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
4092      int RHSC = (int)RHS->getZExtValue();
4093      if (RHSC < 0 && RHSC > -256) {
4094        assert(Ptr->getOpcode() == ISD::ADD);
4095        isInc = false;
4096        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
4097        return true;
4098      }
4099    }
4100    isInc = (Ptr->getOpcode() == ISD::ADD);
4101    Offset = Ptr->getOperand(1);
4102    return true;
4103  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
4104    // AddressingMode 2
4105    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
4106      int RHSC = (int)RHS->getZExtValue();
4107      if (RHSC < 0 && RHSC > -0x1000) {
4108        assert(Ptr->getOpcode() == ISD::ADD);
4109        isInc = false;
4110        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
4111        Base = Ptr->getOperand(0);
4112        return true;
4113      }
4114    }
4115
4116    if (Ptr->getOpcode() == ISD::ADD) {
4117      isInc = true;
4118      ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
4119      if (ShOpcVal != ARM_AM::no_shift) {
4120        Base = Ptr->getOperand(1);
4121        Offset = Ptr->getOperand(0);
4122      } else {
4123        Base = Ptr->getOperand(0);
4124        Offset = Ptr->getOperand(1);
4125      }
4126      return true;
4127    }
4128
4129    isInc = (Ptr->getOpcode() == ISD::ADD);
4130    Base = Ptr->getOperand(0);
4131    Offset = Ptr->getOperand(1);
4132    return true;
4133  }
4134
4135  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
4136  return false;
4137}
4138
4139static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
4140                                     bool isSEXTLoad, SDValue &Base,
4141                                     SDValue &Offset, bool &isInc,
4142                                     SelectionDAG &DAG) {
4143  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
4144    return false;
4145
4146  Base = Ptr->getOperand(0);
4147  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
4148    int RHSC = (int)RHS->getZExtValue();
4149    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
4150      assert(Ptr->getOpcode() == ISD::ADD);
4151      isInc = false;
4152      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
4153      return true;
4154    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
4155      isInc = Ptr->getOpcode() == ISD::ADD;
4156      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
4157      return true;
4158    }
4159  }
4160
4161  return false;
4162}
4163
4164/// getPreIndexedAddressParts - returns true by value, base pointer and
4165/// offset pointer and addressing mode by reference if the node's address
4166/// can be legally represented as pre-indexed load / store address.
4167bool
4168ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
4169                                             SDValue &Offset,
4170                                             ISD::MemIndexedMode &AM,
4171                                             SelectionDAG &DAG) const {
4172  if (Subtarget->isThumb1Only())
4173    return false;
4174
4175  EVT VT;
4176  SDValue Ptr;
4177  bool isSEXTLoad = false;
4178  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
4179    Ptr = LD->getBasePtr();
4180    VT  = LD->getMemoryVT();
4181    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
4182  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
4183    Ptr = ST->getBasePtr();
4184    VT  = ST->getMemoryVT();
4185  } else
4186    return false;
4187
4188  bool isInc;
4189  bool isLegal = false;
4190  if (Subtarget->isThumb2())
4191    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
4192                                       Offset, isInc, DAG);
4193  else
4194    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
4195                                        Offset, isInc, DAG);
4196  if (!isLegal)
4197    return false;
4198
4199  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
4200  return true;
4201}
4202
4203/// getPostIndexedAddressParts - returns true by value, base pointer and
4204/// offset pointer and addressing mode by reference if this node can be
4205/// combined with a load / store to form a post-indexed load / store.
4206bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
4207                                                   SDValue &Base,
4208                                                   SDValue &Offset,
4209                                                   ISD::MemIndexedMode &AM,
4210                                                   SelectionDAG &DAG) const {
4211  if (Subtarget->isThumb1Only())
4212    return false;
4213
4214  EVT VT;
4215  SDValue Ptr;
4216  bool isSEXTLoad = false;
4217  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
4218    VT  = LD->getMemoryVT();
4219    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
4220  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
4221    VT  = ST->getMemoryVT();
4222  } else
4223    return false;
4224
4225  bool isInc;
4226  bool isLegal = false;
4227  if (Subtarget->isThumb2())
4228    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
4229                                        isInc, DAG);
4230  else
4231    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
4232                                        isInc, DAG);
4233  if (!isLegal)
4234    return false;
4235
4236  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
4237  return true;
4238}
4239
4240void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
4241                                                       const APInt &Mask,
4242                                                       APInt &KnownZero,
4243                                                       APInt &KnownOne,
4244                                                       const SelectionDAG &DAG,
4245                                                       unsigned Depth) const {
4246  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
4247  switch (Op.getOpcode()) {
4248  default: break;
4249  case ARMISD::CMOV: {
4250    // Bits are known zero/one if known on the LHS and RHS.
4251    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
4252    if (KnownZero == 0 && KnownOne == 0) return;
4253
4254    APInt KnownZeroRHS, KnownOneRHS;
4255    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
4256                          KnownZeroRHS, KnownOneRHS, Depth+1);
4257    KnownZero &= KnownZeroRHS;
4258    KnownOne  &= KnownOneRHS;
4259    return;
4260  }
4261  }
4262}
4263
4264//===----------------------------------------------------------------------===//
4265//                           ARM Inline Assembly Support
4266//===----------------------------------------------------------------------===//
4267
4268/// getConstraintType - Given a constraint letter, return the type of
4269/// constraint it is for this target.
4270ARMTargetLowering::ConstraintType
4271ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
4272  if (Constraint.size() == 1) {
4273    switch (Constraint[0]) {
4274    default:  break;
4275    case 'l': return C_RegisterClass;
4276    case 'w': return C_RegisterClass;
4277    }
4278  }
4279  return TargetLowering::getConstraintType(Constraint);
4280}
4281
4282std::pair<unsigned, const TargetRegisterClass*>
4283ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
4284                                                EVT VT) const {
4285  if (Constraint.size() == 1) {
4286    // GCC ARM Constraint Letters
4287    switch (Constraint[0]) {
4288    case 'l':
4289      if (Subtarget->isThumb())
4290        return std::make_pair(0U, ARM::tGPRRegisterClass);
4291      else
4292        return std::make_pair(0U, ARM::GPRRegisterClass);
4293    case 'r':
4294      return std::make_pair(0U, ARM::GPRRegisterClass);
4295    case 'w':
4296      if (VT == MVT::f32)
4297        return std::make_pair(0U, ARM::SPRRegisterClass);
4298      if (VT.getSizeInBits() == 64)
4299        return std::make_pair(0U, ARM::DPRRegisterClass);
4300      if (VT.getSizeInBits() == 128)
4301        return std::make_pair(0U, ARM::QPRRegisterClass);
4302      break;
4303    }
4304  }
4305  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4306}
4307
4308std::vector<unsigned> ARMTargetLowering::
4309getRegClassForInlineAsmConstraint(const std::string &Constraint,
4310                                  EVT VT) const {
4311  if (Constraint.size() != 1)
4312    return std::vector<unsigned>();
4313
4314  switch (Constraint[0]) {      // GCC ARM Constraint Letters
4315  default: break;
4316  case 'l':
4317    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
4318                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
4319                                 0);
4320  case 'r':
4321    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
4322                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
4323                                 ARM::R8, ARM::R9, ARM::R10, ARM::R11,
4324                                 ARM::R12, ARM::LR, 0);
4325  case 'w':
4326    if (VT == MVT::f32)
4327      return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
4328                                   ARM::S4, ARM::S5, ARM::S6, ARM::S7,
4329                                   ARM::S8, ARM::S9, ARM::S10, ARM::S11,
4330                                   ARM::S12,ARM::S13,ARM::S14,ARM::S15,
4331                                   ARM::S16,ARM::S17,ARM::S18,ARM::S19,
4332                                   ARM::S20,ARM::S21,ARM::S22,ARM::S23,
4333                                   ARM::S24,ARM::S25,ARM::S26,ARM::S27,
4334                                   ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
4335    if (VT.getSizeInBits() == 64)
4336      return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
4337                                   ARM::D4, ARM::D5, ARM::D6, ARM::D7,
4338                                   ARM::D8, ARM::D9, ARM::D10,ARM::D11,
4339                                   ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
4340    if (VT.getSizeInBits() == 128)
4341      return make_vector<unsigned>(ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3,
4342                                   ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7, 0);
4343      break;
4344  }
4345
4346  return std::vector<unsigned>();
4347}
4348
4349/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4350/// vector.  If it is invalid, don't add anything to Ops.
4351void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4352                                                     char Constraint,
4353                                                     bool hasMemory,
4354                                                     std::vector<SDValue>&Ops,
4355                                                     SelectionDAG &DAG) const {
4356  SDValue Result(0, 0);
4357
4358  switch (Constraint) {
4359  default: break;
4360  case 'I': case 'J': case 'K': case 'L':
4361  case 'M': case 'N': case 'O':
4362    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4363    if (!C)
4364      return;
4365
4366    int64_t CVal64 = C->getSExtValue();
4367    int CVal = (int) CVal64;
4368    // None of these constraints allow values larger than 32 bits.  Check
4369    // that the value fits in an int.
4370    if (CVal != CVal64)
4371      return;
4372
4373    switch (Constraint) {
4374      case 'I':
4375        if (Subtarget->isThumb1Only()) {
4376          // This must be a constant between 0 and 255, for ADD
4377          // immediates.
4378          if (CVal >= 0 && CVal <= 255)
4379            break;
4380        } else if (Subtarget->isThumb2()) {
4381          // A constant that can be used as an immediate value in a
4382          // data-processing instruction.
4383          if (ARM_AM::getT2SOImmVal(CVal) != -1)
4384            break;
4385        } else {
4386          // A constant that can be used as an immediate value in a
4387          // data-processing instruction.
4388          if (ARM_AM::getSOImmVal(CVal) != -1)
4389            break;
4390        }
4391        return;
4392
4393      case 'J':
4394        if (Subtarget->isThumb()) {  // FIXME thumb2
4395          // This must be a constant between -255 and -1, for negated ADD
4396          // immediates. This can be used in GCC with an "n" modifier that
4397          // prints the negated value, for use with SUB instructions. It is
4398          // not useful otherwise but is implemented for compatibility.
4399          if (CVal >= -255 && CVal <= -1)
4400            break;
4401        } else {
4402          // This must be a constant between -4095 and 4095. It is not clear
4403          // what this constraint is intended for. Implemented for
4404          // compatibility with GCC.
4405          if (CVal >= -4095 && CVal <= 4095)
4406            break;
4407        }
4408        return;
4409
4410      case 'K':
4411        if (Subtarget->isThumb1Only()) {
4412          // A 32-bit value where only one byte has a nonzero value. Exclude
4413          // zero to match GCC. This constraint is used by GCC internally for
4414          // constants that can be loaded with a move/shift combination.
4415          // It is not useful otherwise but is implemented for compatibility.
4416          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
4417            break;
4418        } else if (Subtarget->isThumb2()) {
4419          // A constant whose bitwise inverse can be used as an immediate
4420          // value in a data-processing instruction. This can be used in GCC
4421          // with a "B" modifier that prints the inverted value, for use with
4422          // BIC and MVN instructions. It is not useful otherwise but is
4423          // implemented for compatibility.
4424          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
4425            break;
4426        } else {
4427          // A constant whose bitwise inverse can be used as an immediate
4428          // value in a data-processing instruction. This can be used in GCC
4429          // with a "B" modifier that prints the inverted value, for use with
4430          // BIC and MVN instructions. It is not useful otherwise but is
4431          // implemented for compatibility.
4432          if (ARM_AM::getSOImmVal(~CVal) != -1)
4433            break;
4434        }
4435        return;
4436
4437      case 'L':
4438        if (Subtarget->isThumb1Only()) {
4439          // This must be a constant between -7 and 7,
4440          // for 3-operand ADD/SUB immediate instructions.
4441          if (CVal >= -7 && CVal < 7)
4442            break;
4443        } else if (Subtarget->isThumb2()) {
4444          // A constant whose negation can be used as an immediate value in a
4445          // data-processing instruction. This can be used in GCC with an "n"
4446          // modifier that prints the negated value, for use with SUB
4447          // instructions. It is not useful otherwise but is implemented for
4448          // compatibility.
4449          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
4450            break;
4451        } else {
4452          // A constant whose negation can be used as an immediate value in a
4453          // data-processing instruction. This can be used in GCC with an "n"
4454          // modifier that prints the negated value, for use with SUB
4455          // instructions. It is not useful otherwise but is implemented for
4456          // compatibility.
4457          if (ARM_AM::getSOImmVal(-CVal) != -1)
4458            break;
4459        }
4460        return;
4461
4462      case 'M':
4463        if (Subtarget->isThumb()) { // FIXME thumb2
4464          // This must be a multiple of 4 between 0 and 1020, for
4465          // ADD sp + immediate.
4466          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
4467            break;
4468        } else {
4469          // A power of two or a constant between 0 and 32.  This is used in
4470          // GCC for the shift amount on shifted register operands, but it is
4471          // useful in general for any shift amounts.
4472          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
4473            break;
4474        }
4475        return;
4476
4477      case 'N':
4478        if (Subtarget->isThumb()) {  // FIXME thumb2
4479          // This must be a constant between 0 and 31, for shift amounts.
4480          if (CVal >= 0 && CVal <= 31)
4481            break;
4482        }
4483        return;
4484
4485      case 'O':
4486        if (Subtarget->isThumb()) {  // FIXME thumb2
4487          // This must be a multiple of 4 between -508 and 508, for
4488          // ADD/SUB sp = sp + immediate.
4489          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
4490            break;
4491        }
4492        return;
4493    }
4494    Result = DAG.getTargetConstant(CVal, Op.getValueType());
4495    break;
4496  }
4497
4498  if (Result.getNode()) {
4499    Ops.push_back(Result);
4500    return;
4501  }
4502  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
4503                                                      Ops, DAG);
4504}
4505
4506bool
4507ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
4508  // The ARM target isn't yet aware of offsets.
4509  return false;
4510}
4511
4512int ARM::getVFPf32Imm(const APFloat &FPImm) {
4513  APInt Imm = FPImm.bitcastToAPInt();
4514  uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
4515  int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
4516  int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
4517
4518  // We can handle 4 bits of mantissa.
4519  // mantissa = (16+UInt(e:f:g:h))/16.
4520  if (Mantissa & 0x7ffff)
4521    return -1;
4522  Mantissa >>= 19;
4523  if ((Mantissa & 0xf) != Mantissa)
4524    return -1;
4525
4526  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
4527  if (Exp < -3 || Exp > 4)
4528    return -1;
4529  Exp = ((Exp+3) & 0x7) ^ 4;
4530
4531  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
4532}
4533
4534int ARM::getVFPf64Imm(const APFloat &FPImm) {
4535  APInt Imm = FPImm.bitcastToAPInt();
4536  uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
4537  int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
4538  uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffLL;
4539
4540  // We can handle 4 bits of mantissa.
4541  // mantissa = (16+UInt(e:f:g:h))/16.
4542  if (Mantissa & 0xffffffffffffLL)
4543    return -1;
4544  Mantissa >>= 48;
4545  if ((Mantissa & 0xf) != Mantissa)
4546    return -1;
4547
4548  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
4549  if (Exp < -3 || Exp > 4)
4550    return -1;
4551  Exp = ((Exp+3) & 0x7) ^ 4;
4552
4553  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
4554}
4555
4556/// isFPImmLegal - Returns true if the target can instruction select the
4557/// specified FP immediate natively. If false, the legalizer will
4558/// materialize the FP immediate as a load from a constant pool.
4559bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
4560  if (!Subtarget->hasVFP3())
4561    return false;
4562  if (VT == MVT::f32)
4563    return ARM::getVFPf32Imm(Imm) != -1;
4564  if (VT == MVT::f64)
4565    return ARM::getVFPf64Imm(Imm) != -1;
4566  return false;
4567}
4568