ARMISelLowering.cpp revision bc2198133a1836598b54b943420748e75d5dea94
1ec3ed6a5ebf6f2c406d7bcf94b6bc34fcaeb976eepoger@google.com//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
28a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com//
3ec3ed6a5ebf6f2c406d7bcf94b6bc34fcaeb976eepoger@google.com//                     The LLVM Compiler Infrastructure
48a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com//
5ec3ed6a5ebf6f2c406d7bcf94b6bc34fcaeb976eepoger@google.com// This file is distributed under the University of Illinois Open Source
6ec3ed6a5ebf6f2c406d7bcf94b6bc34fcaeb976eepoger@google.com// License. See LICENSE.TXT for details.
78a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com//
88a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com//===----------------------------------------------------------------------===//
9ec3ed6a5ebf6f2c406d7bcf94b6bc34fcaeb976eepoger@google.com//
108a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com// This file defines the interfaces that ARM uses to lower LLVM code into a
118a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com// selection DAG.
128a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com//
1365a87cc13d6babcf12844cca244ca7cc5258cadcbsalomon@google.com//===----------------------------------------------------------------------===//
148a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
158a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com#define DEBUG_TYPE "arm-isel"
161dfe88e00aeddf20690fd2469fd17e43f670ee3absalomon@google.com#include "ARM.h"
178a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com#include "ARMCallingConv.h"
1856c69773aea56c6c6bd47bc7e7970dd081205184djsollen@google.com#include "ARMConstantPoolValue.h"
19f5dbe2f00f853c6a1719924bdd0c33335a53423adjsollen@google.com#include "ARMISelLowering.h"
20f5dbe2f00f853c6a1719924bdd0c33335a53423adjsollen@google.com#include "ARMMachineFunctionInfo.h"
21f5dbe2f00f853c6a1719924bdd0c33335a53423adjsollen@google.com#include "ARMPerfectShuffle.h"
22f5dbe2f00f853c6a1719924bdd0c33335a53423adjsollen@google.com#include "ARMRegisterInfo.h"
23f5dbe2f00f853c6a1719924bdd0c33335a53423adjsollen@google.com#include "ARMSubtarget.h"
24f5dbe2f00f853c6a1719924bdd0c33335a53423adjsollen@google.com#include "ARMTargetMachine.h"
25f5dbe2f00f853c6a1719924bdd0c33335a53423adjsollen@google.com#include "ARMTargetObjectFile.h"
26739456585a0cc52b335cd1c0a9fc6b01782a7f89reed@google.com#include "MCTargetDesc/ARMAddressingModes.h"
27739456585a0cc52b335cd1c0a9fc6b01782a7f89reed@google.com#include "llvm/CallingConv.h"
288a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com#include "llvm/Constants.h"
298a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com#include "llvm/Function.h"
301dfe88e00aeddf20690fd2469fd17e43f670ee3absalomon@google.com#include "llvm/GlobalValue.h"
318a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com#include "llvm/Instruction.h"
32ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.com#include "llvm/Instructions.h"
33ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.com#include "llvm/Intrinsics.h"
34ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.com#include "llvm/Type.h"
35ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.com#include "llvm/CodeGen/CallingConvLower.h"
36ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.com#include "llvm/CodeGen/IntrinsicLowering.h"
37ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.com#include "llvm/CodeGen/MachineBasicBlock.h"
38ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.com#include "llvm/CodeGen/MachineFrameInfo.h"
39ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.com#include "llvm/CodeGen/MachineFunction.h"
408a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com#include "llvm/CodeGen/MachineInstrBuilder.h"
418a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com#include "llvm/CodeGen/MachineModuleInfo.h"
428a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com#include "llvm/CodeGen/MachineRegisterInfo.h"
438a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com#include "llvm/CodeGen/SelectionDAG.h"
448a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com#include "llvm/MC/MCSectionMachO.h"
457ffb1b21abcc7bbed5a0fc711f6dd7b9dbb4f577ctguil@chromium.org#include "llvm/Target/TargetOptions.h"
468a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com#include "llvm/ADT/StringExtras.h"
4765a87cc13d6babcf12844cca244ca7cc5258cadcbsalomon@google.com#include "llvm/ADT/Statistic.h"
4865a87cc13d6babcf12844cca244ca7cc5258cadcbsalomon@google.com#include "llvm/Support/CommandLine.h"
498a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com#include "llvm/Support/ErrorHandling.h"
508a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com#include "llvm/Support/MathExtras.h"
518a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com#include "llvm/Support/raw_ostream.h"
528a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com#include <sstream>
538a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.comusing namespace llvm;
54b0af6dad94f3c51ea0d5d6426a9509354338c6b2schenney@chromium.org
555e728450247c677343e072f37150967b36892573bsalomon@google.comSTATISTIC(NumTailCalls, "Number of tail calls");
563abec1d7c38e9bd786fc6057f9608f3eeec98c86reed@android.comSTATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
573abec1d7c38e9bd786fc6057f9608f3eeec98c86reed@android.com
583abec1d7c38e9bd786fc6057f9608f3eeec98c86reed@android.com// This option should go away when tail calls fully work.
598a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.comstatic cl::opt<bool>
608a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.comEnableARMTailCalls("arm-tail-calls", cl::Hidden,
618a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
628a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  cl::init(false));
638a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
648a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.comcl::opt<bool>
658a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.comEnableARMLongCalls("arm-long-calls", cl::Hidden,
668a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  cl::desc("Generate calls via indirect call instructions"),
678a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  cl::init(false));
688a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
698a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.comstatic cl::opt<bool>
708a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.comARMInterworking("arm-interworking", cl::Hidden,
718a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  cl::desc("Enable / disable ARM interworking (for debugging only)"),
728a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  cl::init(true));
738a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
748a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.comnamespace {
758a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  class ARMCCState : public CCState {
768a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  public:
778a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
788a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com               const TargetMachine &TM, SmallVector<CCValAssign, 16> &locs,
798a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com               LLVMContext &C, ParmContext PC)
808a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com        : CCState(CC, isVarArg, MF, TM, locs, C) {
818a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      assert(((PC == Call) || (PC == Prologue)) &&
828a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com             "ARMCCState users must specify whether their context is call"
838a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com             "or prologue generation.");
848a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      CallOrPrologue = PC;
858a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    }
86b0af6dad94f3c51ea0d5d6426a9509354338c6b2schenney@chromium.org  };
878a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com}
888a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
89f5dbe2f00f853c6a1719924bdd0c33335a53423adjsollen@google.com// The APCS parameter registers.
90f5dbe2f00f853c6a1719924bdd0c33335a53423adjsollen@google.comstatic const unsigned GPRArgRegs[] = {
91f5dbe2f00f853c6a1719924bdd0c33335a53423adjsollen@google.com  ARM::R0, ARM::R1, ARM::R2, ARM::R3
92f5dbe2f00f853c6a1719924bdd0c33335a53423adjsollen@google.com};
938a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
948a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.comvoid ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
958a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com                                       EVT PromotedBitwiseVT) {
968a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  if (VT != PromotedLdStVT) {
97b54455e440e66e0b1c30954d226226f49aac26d6reed@google.com    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
98b54455e440e66e0b1c30954d226226f49aac26d6reed@google.com    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
99b54455e440e66e0b1c30954d226226f49aac26d6reed@google.com                       PromotedLdStVT.getSimpleVT());
100b54455e440e66e0b1c30954d226226f49aac26d6reed@google.com
101f5dbe2f00f853c6a1719924bdd0c33335a53423adjsollen@google.com    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
102f5dbe2f00f853c6a1719924bdd0c33335a53423adjsollen@google.com    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
103f5dbe2f00f853c6a1719924bdd0c33335a53423adjsollen@google.com                       PromotedLdStVT.getSimpleVT());
104f5dbe2f00f853c6a1719924bdd0c33335a53423adjsollen@google.com  }
1058a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
10604863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com  EVT ElemTy = VT.getVectorElementType();
10704863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
10804863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com    setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
10904863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com  setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
11004863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
11104863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com  if (ElemTy == MVT::i32) {
11204863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Custom);
113b54455e440e66e0b1c30954d226226f49aac26d6reed@google.com    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Custom);
114b54455e440e66e0b1c30954d226226f49aac26d6reed@google.com    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
115b54455e440e66e0b1c30954d226226f49aac26d6reed@google.com    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
116b54455e440e66e0b1c30954d226226f49aac26d6reed@google.com  } else {
117b54455e440e66e0b1c30954d226226f49aac26d6reed@google.com    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
118b54455e440e66e0b1c30954d226226f49aac26d6reed@google.com    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
119b54455e440e66e0b1c30954d226226f49aac26d6reed@google.com    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
120b54455e440e66e0b1c30954d226226f49aac26d6reed@google.com    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
121b54455e440e66e0b1c30954d226226f49aac26d6reed@google.com  }
122b54455e440e66e0b1c30954d226226f49aac26d6reed@google.com  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
123b54455e440e66e0b1c30954d226226f49aac26d6reed@google.com  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
124b54455e440e66e0b1c30954d226226f49aac26d6reed@google.com  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
125b54455e440e66e0b1c30954d226226f49aac26d6reed@google.com  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Legal);
126b54455e440e66e0b1c30954d226226f49aac26d6reed@google.com  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
127b54455e440e66e0b1c30954d226226f49aac26d6reed@google.com  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
128b54455e440e66e0b1c30954d226226f49aac26d6reed@google.com  setOperationAction(ISD::SIGN_EXTEND_INREG, VT.getSimpleVT(), Expand);
12904863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com  if (VT.isInteger()) {
130b54455e440e66e0b1c30954d226226f49aac26d6reed@google.com    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
13104863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
13204863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
13304863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com  }
13404863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com
13504863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com  // Promote all bit-wise operations.
136b54455e440e66e0b1c30954d226226f49aac26d6reed@google.com  if (VT.isInteger() && VT != PromotedBitwiseVT) {
137b54455e440e66e0b1c30954d226226f49aac26d6reed@google.com    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
138b54455e440e66e0b1c30954d226226f49aac26d6reed@google.com    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
139b54455e440e66e0b1c30954d226226f49aac26d6reed@google.com                       PromotedBitwiseVT.getSimpleVT());
14004863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
14104863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
14204863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com                       PromotedBitwiseVT.getSimpleVT());
14304863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
14404863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
14504863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com                       PromotedBitwiseVT.getSimpleVT());
14604863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com  }
147b54455e440e66e0b1c30954d226226f49aac26d6reed@google.com
148b54455e440e66e0b1c30954d226226f49aac26d6reed@google.com  // Neon does not support vector divide/remainder operations.
14904863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
150b54455e440e66e0b1c30954d226226f49aac26d6reed@google.com  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
151b54455e440e66e0b1c30954d226226f49aac26d6reed@google.com  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
15204863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
15304863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
1546b82d1adc6a4726e36674e468ff1157e0b75373freed@android.com  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
15504863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com}
1566b82d1adc6a4726e36674e468ff1157e0b75373freed@android.com
15704863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.comvoid ARMTargetLowering::addDRTypeForNEON(EVT VT) {
15804863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com  addRegisterClass(VT, ARM::DPRRegisterClass);
15904863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
16004863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com}
16104863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com
16204863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.comvoid ARMTargetLowering::addQRTypeForNEON(EVT VT) {
16304863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com  addRegisterClass(VT, ARM::QPRRegisterClass);
16404863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
16504863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com}
16604863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com
16704863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.comstatic TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
16804863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
16904863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com    return new TargetLoweringObjectFileMachO();
17004863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com
17104863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.com  return new ARMElfTargetObjectFile();
1726b82d1adc6a4726e36674e468ff1157e0b75373freed@android.com}
173f5dbe2f00f853c6a1719924bdd0c33335a53423adjsollen@google.com
17404863fa14a44ddf85acbc6268690ebc3f0d1d6dbreed@google.comARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
175f5dbe2f00f853c6a1719924bdd0c33335a53423adjsollen@google.com    : TargetLowering(TM, createTLOF(TM)) {
1766b82d1adc6a4726e36674e468ff1157e0b75373freed@android.com  Subtarget = &TM.getSubtarget<ARMSubtarget>();
1776aa2965ca814dd3329b65398b5c5af980e54b101bsalomon@google.com  RegInfo = TM.getRegisterInfo();
1786aa2965ca814dd3329b65398b5c5af980e54b101bsalomon@google.com  Itins = TM.getInstrItineraryData();
1796aa2965ca814dd3329b65398b5c5af980e54b101bsalomon@google.com
1806aa2965ca814dd3329b65398b5c5af980e54b101bsalomon@google.com  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1816aa2965ca814dd3329b65398b5c5af980e54b101bsalomon@google.com
1826aa2965ca814dd3329b65398b5c5af980e54b101bsalomon@google.com  if (Subtarget->isTargetDarwin()) {
1836aa2965ca814dd3329b65398b5c5af980e54b101bsalomon@google.com    // Uses VFP for Thumb libfuncs if available.
1846aa2965ca814dd3329b65398b5c5af980e54b101bsalomon@google.com    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
1856aa2965ca814dd3329b65398b5c5af980e54b101bsalomon@google.com      // Single-precision floating-point arithmetic.
1866aa2965ca814dd3329b65398b5c5af980e54b101bsalomon@google.com      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
1876aa2965ca814dd3329b65398b5c5af980e54b101bsalomon@google.com      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
1886aa2965ca814dd3329b65398b5c5af980e54b101bsalomon@google.com      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
1898a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
1908a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
1916b82d1adc6a4726e36674e468ff1157e0b75373freed@android.com      // Double-precision floating-point arithmetic.
1928a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
1938a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
194fbfcd5602128ec010c82cb733c9cdc0a3254f9f3rmistry@google.com      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
1958a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
1968a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
1978a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      // Single-precision comparisons.
1986b82d1adc6a4726e36674e468ff1157e0b75373freed@android.com      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
1998a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
2008a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
2018a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
2028a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
2038a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
2048a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
2058a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
2068a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
2078a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
2080bb18bb264b26afca45452910437c09445e23a3creed@google.com      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
2090bb18bb264b26afca45452910437c09445e23a3creed@google.com      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
2100bb18bb264b26afca45452910437c09445e23a3creed@google.com      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
2110bb18bb264b26afca45452910437c09445e23a3creed@google.com      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
2120bb18bb264b26afca45452910437c09445e23a3creed@google.com      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
2130bb18bb264b26afca45452910437c09445e23a3creed@google.com      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
2140bb18bb264b26afca45452910437c09445e23a3creed@google.com      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
2150bb18bb264b26afca45452910437c09445e23a3creed@google.com
216fc91dc70042dcb6d2868e8822fbab15aa4402375robertphillips@google.com      // Double-precision comparisons.
2170bb18bb264b26afca45452910437c09445e23a3creed@google.com      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
2180bb18bb264b26afca45452910437c09445e23a3creed@google.com      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
2194da06ab3351f2a96f9216d96106db33a77b19644schenney@chromium.org      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
2204da06ab3351f2a96f9216d96106db33a77b19644schenney@chromium.org      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
2214da06ab3351f2a96f9216d96106db33a77b19644schenney@chromium.org      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
2224da06ab3351f2a96f9216d96106db33a77b19644schenney@chromium.org      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
2234da06ab3351f2a96f9216d96106db33a77b19644schenney@chromium.org      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
22494fa43c6255906660c2ff001fb462b6492cbdc07epoger@google.com      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
2254da06ab3351f2a96f9216d96106db33a77b19644schenney@chromium.org
2264da06ab3351f2a96f9216d96106db33a77b19644schenney@chromium.org      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
2274da06ab3351f2a96f9216d96106db33a77b19644schenney@chromium.org      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
2284da06ab3351f2a96f9216d96106db33a77b19644schenney@chromium.org      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
2294da06ab3351f2a96f9216d96106db33a77b19644schenney@chromium.org      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
2304da06ab3351f2a96f9216d96106db33a77b19644schenney@chromium.org      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
2314da06ab3351f2a96f9216d96106db33a77b19644schenney@chromium.org      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
2324da06ab3351f2a96f9216d96106db33a77b19644schenney@chromium.org      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
23394fa43c6255906660c2ff001fb462b6492cbdc07epoger@google.com      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
23494fa43c6255906660c2ff001fb462b6492cbdc07epoger@google.com
2354da06ab3351f2a96f9216d96106db33a77b19644schenney@chromium.org      // Floating-point to integer conversions.
2364da06ab3351f2a96f9216d96106db33a77b19644schenney@chromium.org      // i64 conversions are done via library routines even when generating VFP
2374da06ab3351f2a96f9216d96106db33a77b19644schenney@chromium.org      // instructions, so use the same ones.
2384da06ab3351f2a96f9216d96106db33a77b19644schenney@chromium.org      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
2394da06ab3351f2a96f9216d96106db33a77b19644schenney@chromium.org      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
2404da06ab3351f2a96f9216d96106db33a77b19644schenney@chromium.org      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
2414da06ab3351f2a96f9216d96106db33a77b19644schenney@chromium.org      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
2424da06ab3351f2a96f9216d96106db33a77b19644schenney@chromium.org
24394fa43c6255906660c2ff001fb462b6492cbdc07epoger@google.com      // Conversions between floating types.
24494fa43c6255906660c2ff001fb462b6492cbdc07epoger@google.com      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
24594fa43c6255906660c2ff001fb462b6492cbdc07epoger@google.com      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
2464da06ab3351f2a96f9216d96106db33a77b19644schenney@chromium.org
2474da06ab3351f2a96f9216d96106db33a77b19644schenney@chromium.org      // Integer to floating-point conversions.
2487e6c4d16010550ee148f1c79cf088c0320fed5c1reed@google.com      // i64 conversions are done via library routines even when generating VFP
2497e6c4d16010550ee148f1c79cf088c0320fed5c1reed@google.com      // instructions, so use the same ones.
2507e6c4d16010550ee148f1c79cf088c0320fed5c1reed@google.com      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
2517e6c4d16010550ee148f1c79cf088c0320fed5c1reed@google.com      // e.g., __floatunsidf vs. __floatunssidfvfp.
2527e6c4d16010550ee148f1c79cf088c0320fed5c1reed@google.com      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
2537e6c4d16010550ee148f1c79cf088c0320fed5c1reed@google.com      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
2547e6c4d16010550ee148f1c79cf088c0320fed5c1reed@google.com      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
2557e6c4d16010550ee148f1c79cf088c0320fed5c1reed@google.com      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
2568a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    }
2578a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  }
2588a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
259fbfcd5602128ec010c82cb733c9cdc0a3254f9f3rmistry@google.com  // These libcalls are not available in 32-bit.
2608a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setLibcallName(RTLIB::SHL_I128, 0);
2618a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setLibcallName(RTLIB::SRL_I128, 0);
2628a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setLibcallName(RTLIB::SRA_I128, 0);
2638a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
2648a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  if (Subtarget->isAAPCS_ABI()) {
2658a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // Double-precision floating-point arithmetic helper functions
266d3aa4ff7a564953dff9a15ff03fd42eebf64569freed@android.com    // RTABI chapter 4.1.2, Table 2
267d3aa4ff7a564953dff9a15ff03fd42eebf64569freed@android.com    setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
2681dfe88e00aeddf20690fd2469fd17e43f670ee3absalomon@google.com    setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
269d3aa4ff7a564953dff9a15ff03fd42eebf64569freed@android.com    setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
270d3aa4ff7a564953dff9a15ff03fd42eebf64569freed@android.com    setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
271d3aa4ff7a564953dff9a15ff03fd42eebf64569freed@android.com    setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
272d3aa4ff7a564953dff9a15ff03fd42eebf64569freed@android.com    setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
273d3aa4ff7a564953dff9a15ff03fd42eebf64569freed@android.com    setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
274d3aa4ff7a564953dff9a15ff03fd42eebf64569freed@android.com    setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
275d3aa4ff7a564953dff9a15ff03fd42eebf64569freed@android.com
2768a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // Double-precision floating-point comparison helper functions
277fbfcd5602128ec010c82cb733c9cdc0a3254f9f3rmistry@google.com    // RTABI chapter 4.1.2, Table 3
2788a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
2798a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
2808a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
2818a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
2828a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
2838a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
284df9d656c352928f995abce0a62c4ec3255232a45bsalomon@google.com    setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
285df9d656c352928f995abce0a62c4ec3255232a45bsalomon@google.com    setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
2861dfe88e00aeddf20690fd2469fd17e43f670ee3absalomon@google.com    setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
287df9d656c352928f995abce0a62c4ec3255232a45bsalomon@google.com    setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
288df9d656c352928f995abce0a62c4ec3255232a45bsalomon@google.com    setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
289df9d656c352928f995abce0a62c4ec3255232a45bsalomon@google.com    setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
290fbfcd5602128ec010c82cb733c9cdc0a3254f9f3rmistry@google.com    setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
291df9d656c352928f995abce0a62c4ec3255232a45bsalomon@google.com    setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
292df9d656c352928f995abce0a62c4ec3255232a45bsalomon@google.com    setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
293df9d656c352928f995abce0a62c4ec3255232a45bsalomon@google.com    setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
294df9d656c352928f995abce0a62c4ec3255232a45bsalomon@google.com    setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
295df9d656c352928f995abce0a62c4ec3255232a45bsalomon@google.com    setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
296df9d656c352928f995abce0a62c4ec3255232a45bsalomon@google.com    setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
2978a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
2988a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
2998a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
300d252db03d9650013b545ef9781fe993c07f8f314reed@android.com    setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
301d252db03d9650013b545ef9781fe993c07f8f314reed@android.com    setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
302d252db03d9650013b545ef9781fe993c07f8f314reed@android.com
303d252db03d9650013b545ef9781fe993c07f8f314reed@android.com    // Single-precision floating-point arithmetic helper functions
304d252db03d9650013b545ef9781fe993c07f8f314reed@android.com    // RTABI chapter 4.1.2, Table 4
305d252db03d9650013b545ef9781fe993c07f8f314reed@android.com    setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
306d252db03d9650013b545ef9781fe993c07f8f314reed@android.com    setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
307d252db03d9650013b545ef9781fe993c07f8f314reed@android.com    setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
308d252db03d9650013b545ef9781fe993c07f8f314reed@android.com    setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
309d252db03d9650013b545ef9781fe993c07f8f314reed@android.com    setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
310d252db03d9650013b545ef9781fe993c07f8f314reed@android.com    setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
3118a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
3128a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
313d252db03d9650013b545ef9781fe993c07f8f314reed@android.com
3148a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // Single-precision floating-point comparison helper functions
3158a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // RTABI chapter 4.1.2, Table 5
316d252db03d9650013b545ef9781fe993c07f8f314reed@android.com    setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
317d252db03d9650013b545ef9781fe993c07f8f314reed@android.com    setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
318d252db03d9650013b545ef9781fe993c07f8f314reed@android.com    setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
319d252db03d9650013b545ef9781fe993c07f8f314reed@android.com    setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
320d252db03d9650013b545ef9781fe993c07f8f314reed@android.com    setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
3218a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
3228a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
3238a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
3248a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
3258a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
326fbfcd5602128ec010c82cb733c9cdc0a3254f9f3rmistry@google.com    setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
3278a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
3288a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
3298a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
3308a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
3318a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
3328a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
333fbfcd5602128ec010c82cb733c9cdc0a3254f9f3rmistry@google.com    setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
3348a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
3358a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
3368a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
3378a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
3388a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
3398a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
340fbfcd5602128ec010c82cb733c9cdc0a3254f9f3rmistry@google.com
3418a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // Floating-point to integer conversions.
3428a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // RTABI chapter 4.1.2, Table 6
3438a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
3448a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
3458a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
3468a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
3478a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
3488a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
3498a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
350fbfcd5602128ec010c82cb733c9cdc0a3254f9f3rmistry@google.com    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
3518a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
3528a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
3538a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
3548a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
3558a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
3568a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
3578a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
3588a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
3598a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
3608a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // Conversions between floating types.
3618a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // RTABI chapter 4.1.2, Table 7
3628a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
3638a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
3648a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
3658a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
3668a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
3678a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // Integer to floating-point conversions.
3688a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // RTABI chapter 4.1.2, Table 8
3698a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
3708a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
3718a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
3728a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
3738a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
3748a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
3758a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
3768a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
3778a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
3788a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
3798a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
380fbfcd5602128ec010c82cb733c9cdc0a3254f9f3rmistry@google.com    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
3818a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
3828a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
3838a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
3848a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
3858a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
3868a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // Long long helper functions
3878a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // RTABI chapter 4.2, Table 9
3888a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
3898a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
3908a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
391fbfcd5602128ec010c82cb733c9cdc0a3254f9f3rmistry@google.com    setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
3928a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
3938a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
3948a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
3958a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
3968a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
3978a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
3988a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
3998a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // Integer division functions
4008a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // RTABI chapter 4.3.1
4018a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
402fbfcd5602128ec010c82cb733c9cdc0a3254f9f3rmistry@google.com    setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
4038a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
4048a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
4058a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
4068a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
4078a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
4088a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
4098a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
4108a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
4118a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
4128a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
4138a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
4148a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
4158a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
4168a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
4178a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
4188a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // Memory operations
4198a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // RTABI chapter 4.3.4
4208a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::MEMCPY,  "__aeabi_memcpy");
4218a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove");
4228a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::MEMSET,  "__aeabi_memset");
4238a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::MEMCPY, CallingConv::ARM_AAPCS);
4248a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::MEMMOVE, CallingConv::ARM_AAPCS);
4258a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallCallingConv(RTLIB::MEMSET, CallingConv::ARM_AAPCS);
4268a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  }
4278a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
428fbfcd5602128ec010c82cb733c9cdc0a3254f9f3rmistry@google.com  // Use divmod compiler-rt calls for iOS 5.0 and later.
4298a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  if (Subtarget->getTargetTriple().getOS() == Triple::IOS &&
4308a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
4318a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
4328a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
4338a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  }
4348a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
4358a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  if (Subtarget->isThumb1Only())
4368a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
4378a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  else
4388a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
4398a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
4408a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      !Subtarget->isThumb1Only()) {
4418a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
442fbfcd5602128ec010c82cb733c9cdc0a3254f9f3rmistry@google.com    if (!Subtarget->isFPOnlySP())
4438a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
4448a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
4458a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
4468a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  }
4478a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
4488a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
4498a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
4508a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
4518a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
4528a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      setTruncStoreAction((MVT::SimpleValueType)VT,
4538a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com                          (MVT::SimpleValueType)InnerVT, Expand);
454fbfcd5602128ec010c82cb733c9cdc0a3254f9f3rmistry@google.com    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
4558a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
4568a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
4578a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  }
4588a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
4598a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  if (Subtarget->hasNEON()) {
4608a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    addDRTypeForNEON(MVT::v2f32);
4618a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    addDRTypeForNEON(MVT::v8i8);
4628a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    addDRTypeForNEON(MVT::v4i16);
4638a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    addDRTypeForNEON(MVT::v2i32);
4648a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    addDRTypeForNEON(MVT::v1i64);
4658a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
4668a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    addQRTypeForNEON(MVT::v4f32);
4678a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    addQRTypeForNEON(MVT::v2f64);
4688a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    addQRTypeForNEON(MVT::v16i8);
4698a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    addQRTypeForNEON(MVT::v8i16);
4708a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    addQRTypeForNEON(MVT::v4i32);
4718a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    addQRTypeForNEON(MVT::v2i64);
4728a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
4738a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
4748a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // neither Neon nor VFP support any arithmetic operations on it.
4758a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
476fbfcd5602128ec010c82cb733c9cdc0a3254f9f3rmistry@google.com    // supported for v4f32.
4778a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
4788a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
4798a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
4808a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // FIXME: Code duplication: FDIV and FREM are expanded always, see
4818a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // ARMTargetLowering::addTypeForNEON method for details.
4828a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
4838a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
4848a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // FIXME: Create unittest.
4858a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // In another words, find a way when "copysign" appears in DAG with vector
4868a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // operands.
4878a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
4888a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // FIXME: Code duplication: SETCC has custom operation action, see
4898a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // ARMTargetLowering::addTypeForNEON method for details.
4908a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
4918a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // FIXME: Create unittest for FNEG and for FABS.
4928a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
4938a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
4948a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
4958a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
4968a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
4978a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
4988a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
4998a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
5008a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
5018a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
5028a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
5038a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
5048a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
5058a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
5068a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
5078a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
5088a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
5098a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
5108a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
51169a9943b67cc52c24beac853c6f8865dcb197b85reed@google.com    setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
51269a9943b67cc52c24beac853c6f8865dcb197b85reed@google.com    setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
51369a9943b67cc52c24beac853c6f8865dcb197b85reed@google.com    setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
51469a9943b67cc52c24beac853c6f8865dcb197b85reed@google.com    setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
51569a9943b67cc52c24beac853c6f8865dcb197b85reed@google.com    setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
51669a9943b67cc52c24beac853c6f8865dcb197b85reed@google.com    setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
51769a9943b67cc52c24beac853c6f8865dcb197b85reed@google.com    setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
51869a9943b67cc52c24beac853c6f8865dcb197b85reed@google.com    setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
51969a9943b67cc52c24beac853c6f8865dcb197b85reed@google.com    setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
52069a9943b67cc52c24beac853c6f8865dcb197b85reed@google.com    setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
52169a9943b67cc52c24beac853c6f8865dcb197b85reed@google.com
52269a9943b67cc52c24beac853c6f8865dcb197b85reed@google.com    // Neon does not support some operations on v1i64 and v2i64 types.
52369a9943b67cc52c24beac853c6f8865dcb197b85reed@google.com    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
52469a9943b67cc52c24beac853c6f8865dcb197b85reed@google.com    // Custom handling for some quad-vector types to detect VMULL.
52569a9943b67cc52c24beac853c6f8865dcb197b85reed@google.com    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
52669a9943b67cc52c24beac853c6f8865dcb197b85reed@google.com    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
52769a9943b67cc52c24beac853c6f8865dcb197b85reed@google.com    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
52869a9943b67cc52c24beac853c6f8865dcb197b85reed@google.com    // Custom handling for some vector types to avoid expensive expansions
5298a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
5308a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
5318a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
5328a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
5338a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
5348a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
5358a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
5368a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // a destination type that is wider than the source.
5378a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
5388a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
5398a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
5408a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setTargetDAGCombine(ISD::INTRINSIC_VOID);
5418a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
5428a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
5438a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setTargetDAGCombine(ISD::SHL);
5448a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setTargetDAGCombine(ISD::SRL);
5458a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setTargetDAGCombine(ISD::SRA);
5468a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setTargetDAGCombine(ISD::SIGN_EXTEND);
5478a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setTargetDAGCombine(ISD::ZERO_EXTEND);
5488a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setTargetDAGCombine(ISD::ANY_EXTEND);
5498a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setTargetDAGCombine(ISD::SELECT_CC);
5508a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setTargetDAGCombine(ISD::BUILD_VECTOR);
5518a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
5528a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
5538a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setTargetDAGCombine(ISD::STORE);
5548a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setTargetDAGCombine(ISD::FP_TO_SINT);
5558a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setTargetDAGCombine(ISD::FP_TO_UINT);
5568a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setTargetDAGCombine(ISD::FDIV);
5578a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
5588a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setLoadExtAction(ISD::EXTLOAD, MVT::v4i8, Expand);
5598a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  }
5608a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
5618a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  computeRegisterProperties();
5628a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
5638a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  // ARM does not have f32 extending load.
5648a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
5658a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
5668a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  // ARM does not have i1 sign extending load.
5678a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
5688a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
5698a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  // ARM supports all 4 flavors of integer indexed load / store.
5708a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  if (!Subtarget->isThumb1Only()) {
571fbfcd5602128ec010c82cb733c9cdc0a3254f9f3rmistry@google.com    for (unsigned im = (unsigned)ISD::PRE_INC;
5728a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
5738a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      setIndexedLoadAction(im,  MVT::i1,  Legal);
5748a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      setIndexedLoadAction(im,  MVT::i8,  Legal);
5758a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      setIndexedLoadAction(im,  MVT::i16, Legal);
5768a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      setIndexedLoadAction(im,  MVT::i32, Legal);
5778a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      setIndexedStoreAction(im, MVT::i1,  Legal);
5788a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      setIndexedStoreAction(im, MVT::i8,  Legal);
5798a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      setIndexedStoreAction(im, MVT::i16, Legal);
5808a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      setIndexedStoreAction(im, MVT::i32, Legal);
5818a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    }
5828a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  }
5838a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
5848a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  // i64 operation support.
5858a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::MUL,     MVT::i64, Expand);
5868a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::MULHU,   MVT::i32, Expand);
5878a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  if (Subtarget->isThumb1Only()) {
5888a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
5898a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
5908a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  }
5918a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
5928a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
5938a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::MULHS, MVT::i32, Expand);
5948a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
5958a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
5968a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
597744fabad474e3e111e7cbd8609cf7e209df17f32reed@google.com  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
598744fabad474e3e111e7cbd8609cf7e209df17f32reed@google.com  setOperationAction(ISD::SRL,       MVT::i64, Custom);
599744fabad474e3e111e7cbd8609cf7e209df17f32reed@google.com  setOperationAction(ISD::SRA,       MVT::i64, Custom);
600744fabad474e3e111e7cbd8609cf7e209df17f32reed@google.com
601744fabad474e3e111e7cbd8609cf7e209df17f32reed@google.com  if (!Subtarget->isThumb1Only()) {
602744fabad474e3e111e7cbd8609cf7e209df17f32reed@google.com    // FIXME: We should do this for Thumb1 as well.
603744fabad474e3e111e7cbd8609cf7e209df17f32reed@google.com    setOperationAction(ISD::ADDC,    MVT::i32, Custom);
604744fabad474e3e111e7cbd8609cf7e209df17f32reed@google.com    setOperationAction(ISD::ADDE,    MVT::i32, Custom);
605744fabad474e3e111e7cbd8609cf7e209df17f32reed@google.com    setOperationAction(ISD::SUBC,    MVT::i32, Custom);
606744fabad474e3e111e7cbd8609cf7e209df17f32reed@google.com    setOperationAction(ISD::SUBE,    MVT::i32, Custom);
607744fabad474e3e111e7cbd8609cf7e209df17f32reed@google.com  }
608744fabad474e3e111e7cbd8609cf7e209df17f32reed@google.com
609744fabad474e3e111e7cbd8609cf7e209df17f32reed@google.com  // ARM does not have ROTL.
6108a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
6118a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
6128a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
6138a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
6148a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
61563d73749fbe36491403ea521005fd298dc70a94creed@google.com
6168a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  // These just redirect to CTTZ and CTLZ on ARM.
6178a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i32  , Expand);
6188a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::CTLZ_ZERO_UNDEF  , MVT::i32  , Expand);
6198a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
6208a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  // Only ARMv6 has BSWAP.
6218a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  if (!Subtarget->hasV6Ops())
6228a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
6238a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
6248a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  // These are expanded into libcalls.
6258a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  if (!Subtarget->hasDivide() || !Subtarget->isThumb2()) {
6268a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // v7M has a hardware divider
6278a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
6288a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
6298a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  }
63063d73749fbe36491403ea521005fd298dc70a94creed@google.com  setOperationAction(ISD::SREM,  MVT::i32, Expand);
63163d73749fbe36491403ea521005fd298dc70a94creed@google.com  setOperationAction(ISD::UREM,  MVT::i32, Expand);
63263d73749fbe36491403ea521005fd298dc70a94creed@google.com  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
63363d73749fbe36491403ea521005fd298dc70a94creed@google.com  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
63463d73749fbe36491403ea521005fd298dc70a94creed@google.com
6358a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
636fbfcd5602128ec010c82cb733c9cdc0a3254f9f3rmistry@google.com  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
637fbfcd5602128ec010c82cb733c9cdc0a3254f9f3rmistry@google.com  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
638fbfcd5602128ec010c82cb733c9cdc0a3254f9f3rmistry@google.com  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
6398a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
6408a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
6418a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::TRAP, MVT::Other, Legal);
6428a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
6438a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  // Use the default implementation.
644fbfcd5602128ec010c82cb733c9cdc0a3254f9f3rmistry@google.com  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
645fbfcd5602128ec010c82cb733c9cdc0a3254f9f3rmistry@google.com  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
646fbfcd5602128ec010c82cb733c9cdc0a3254f9f3rmistry@google.com  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
6478a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
6488a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
6498a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
6508a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
6518a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::EXCEPTIONADDR,      MVT::i32,   Expand);
6528a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setExceptionPointerRegister(ARM::R0);
6538a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setExceptionSelectorRegister(ARM::R1);
654fbfcd5602128ec010c82cb733c9cdc0a3254f9f3rmistry@google.com
6558a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
6568a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
6578a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  // the default expansion.
6588a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  // FIXME: This should be checking for v6k, not just v6.
6598a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  if (Subtarget->hasDataBarrier() ||
6608a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
6618a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // membarrier needs custom lowering; the rest are legal and handled
6628a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // normally.
6638a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
6648a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
6658a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // Custom lowering for 64-bit ops
6668a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Custom);
6678a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Custom);
6688a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Custom);
669294dd7b3d7b55ba38881cd4cabb6636abda23eb9reed@google.com    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Custom);
670294dd7b3d7b55ba38881cd4cabb6636abda23eb9reed@google.com    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Custom);
671fbfcd5602128ec010c82cb733c9cdc0a3254f9f3rmistry@google.com    setOperationAction(ISD::ATOMIC_SWAP,  MVT::i64, Custom);
6728a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
6738a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc.
674294dd7b3d7b55ba38881cd4cabb6636abda23eb9reed@google.com    setInsertFencesForAtomic(true);
6758a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  } else {
6768a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // Set them all for expansion, which will force libcalls.
6778a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
678fbfcd5602128ec010c82cb733c9cdc0a3254f9f3rmistry@google.com    setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other, Expand);
6798a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
6808a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
6818a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
6828a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
6838a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
6848a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
6858a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
6868a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
6878a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
6888a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
6898a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
6908a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
6918a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
6928a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // Unordered/Monotonic case.
69310296ccb6a63c65b2e60733a929bf15d8bf94309reed@google.com    setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
69410296ccb6a63c65b2e60733a929bf15d8bf94309reed@google.com    setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
69510296ccb6a63c65b2e60733a929bf15d8bf94309reed@google.com    // Since the libcalls include locking, fold in the fences
69610296ccb6a63c65b2e60733a929bf15d8bf94309reed@google.com    setShouldFoldAtomicFences(true);
69710296ccb6a63c65b2e60733a929bf15d8bf94309reed@google.com  }
69810296ccb6a63c65b2e60733a929bf15d8bf94309reed@google.com
69910296ccb6a63c65b2e60733a929bf15d8bf94309reed@google.com  setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
70010296ccb6a63c65b2e60733a929bf15d8bf94309reed@google.com
70110296ccb6a63c65b2e60733a929bf15d8bf94309reed@google.com  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
70210296ccb6a63c65b2e60733a929bf15d8bf94309reed@google.com  if (!Subtarget->hasV6Ops()) {
70310296ccb6a63c65b2e60733a929bf15d8bf94309reed@google.com    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
70410296ccb6a63c65b2e60733a929bf15d8bf94309reed@google.com    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
70510296ccb6a63c65b2e60733a929bf15d8bf94309reed@google.com  }
7068a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
7078a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
7088a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
7098a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      !Subtarget->isThumb1Only()) {
7108a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
711b3b8dfa31326c51dab8b5ed569e19ee715582d1bbsalomon@google.com    // iff target supports vfp2.
7128a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::BITCAST, MVT::i64, Custom);
7138a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
7148a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  }
7158a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
7168a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  // We want to custom lower some of our intrinsics.
71772785c4c8928a8b0fc5bbdb48929f9356554daceschenney@chromium.org  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
71872785c4c8928a8b0fc5bbdb48929f9356554daceschenney@chromium.org  if (Subtarget->isTargetDarwin()) {
71972785c4c8928a8b0fc5bbdb48929f9356554daceschenney@chromium.org    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
72072785c4c8928a8b0fc5bbdb48929f9356554daceschenney@chromium.org    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
72172785c4c8928a8b0fc5bbdb48929f9356554daceschenney@chromium.org    setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
72272785c4c8928a8b0fc5bbdb48929f9356554daceschenney@chromium.org  }
7238a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
7247ffb1b21abcc7bbed5a0fc711f6dd7b9dbb4f577ctguil@chromium.org  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
7258a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
72672785c4c8928a8b0fc5bbdb48929f9356554daceschenney@chromium.org  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
72772785c4c8928a8b0fc5bbdb48929f9356554daceschenney@chromium.org  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
7288a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
7298a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
7308a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
7318a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
7328a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
733b0af6dad94f3c51ea0d5d6426a9509354338c6b2schenney@chromium.org
7348a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
7354a3b714d73e585a3985d614600c6b79d5c8b1f1ereed@google.com  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
7364a3b714d73e585a3985d614600c6b79d5c8b1f1ereed@google.com  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
7378a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
7388a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
7394a3b714d73e585a3985d614600c6b79d5c8b1f1ereed@google.com
7404a3b714d73e585a3985d614600c6b79d5c8b1f1ereed@google.com  // We don't support sin/cos/fmod/copysign/pow
7414a3b714d73e585a3985d614600c6b79d5c8b1f1ereed@google.com  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
7424a3b714d73e585a3985d614600c6b79d5c8b1f1ereed@google.com  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
7434a3b714d73e585a3985d614600c6b79d5c8b1f1ereed@google.com  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
7444a3b714d73e585a3985d614600c6b79d5c8b1f1ereed@google.com  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
7458a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::FREM,      MVT::f64, Expand);
7468a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::FREM,      MVT::f32, Expand);
7478a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
7488a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      !Subtarget->isThumb1Only()) {
7498a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
750b0af6dad94f3c51ea0d5d6426a9509354338c6b2schenney@chromium.org    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
7518a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  }
7528a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
7538a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
7548a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
755b0af6dad94f3c51ea0d5d6426a9509354338c6b2schenney@chromium.org  setOperationAction(ISD::FMA, MVT::f64, Expand);
7568a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setOperationAction(ISD::FMA, MVT::f32, Expand);
7578a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
7588a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  // Various VFP goodness
7598a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  if (!TM.Options.UseSoftFloat && !Subtarget->isThumb1Only()) {
7608a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
7618a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    if (Subtarget->hasVFP2()) {
7628a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
7638a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
7648a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
7658a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
7668a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    }
7678a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // Special handling for half-precision FP.
7688a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    if (!Subtarget->hasFP16()) {
7698a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
770b0af6dad94f3c51ea0d5d6426a9509354338c6b2schenney@chromium.org      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
7718a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    }
7729e25dbf589539dd44244bc2581590bd7591e17a2reed@google.com  }
7738a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
7744da06ab3351f2a96f9216d96106db33a77b19644schenney@chromium.org  // We have target-specific dag combine patterns for the following nodes:
7754a3b714d73e585a3985d614600c6b79d5c8b1f1ereed@google.com  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
7768a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setTargetDAGCombine(ISD::ADD);
7778a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  setTargetDAGCombine(ISD::SUB);
7786630d8d8ea7a897a18e3d950bab9fa40f065804aschenney@chromium.org  setTargetDAGCombine(ISD::MUL);
7796630d8d8ea7a897a18e3d950bab9fa40f065804aschenney@chromium.org
7806630d8d8ea7a897a18e3d950bab9fa40f065804aschenney@chromium.org  if (Subtarget->hasV6T2Ops() || Subtarget->hasNEON())
7816630d8d8ea7a897a18e3d950bab9fa40f065804aschenney@chromium.org    setTargetDAGCombine(ISD::OR);
7826630d8d8ea7a897a18e3d950bab9fa40f065804aschenney@chromium.org  if (Subtarget->hasNEON())
7836630d8d8ea7a897a18e3d950bab9fa40f065804aschenney@chromium.org    setTargetDAGCombine(ISD::AND);
7846630d8d8ea7a897a18e3d950bab9fa40f065804aschenney@chromium.org
7856630d8d8ea7a897a18e3d950bab9fa40f065804aschenney@chromium.org  setStackPointerRegisterToSaveRestore(ARM::SP);
7866630d8d8ea7a897a18e3d950bab9fa40f065804aschenney@chromium.org
7876630d8d8ea7a897a18e3d950bab9fa40f065804aschenney@chromium.org  if (TM.Options.UseSoftFloat || Subtarget->isThumb1Only() ||
7886630d8d8ea7a897a18e3d950bab9fa40f065804aschenney@chromium.org      !Subtarget->hasVFP2())
789fbfcd5602128ec010c82cb733c9cdc0a3254f9f3rmistry@google.com    setSchedulingPreference(Sched::RegPressure);
7906630d8d8ea7a897a18e3d950bab9fa40f065804aschenney@chromium.org  else
791f6d3c5aa5f93e4c3cc7a7aebf014e960cf837783bsalomon@google.com    setSchedulingPreference(Sched::Hybrid);
7926630d8d8ea7a897a18e3d950bab9fa40f065804aschenney@chromium.org
7936630d8d8ea7a897a18e3d950bab9fa40f065804aschenney@chromium.org  //// temporary - rewrite interface to use type
7946630d8d8ea7a897a18e3d950bab9fa40f065804aschenney@chromium.org  maxStoresPerMemcpy = maxStoresPerMemcpyOptSize = 1;
7956630d8d8ea7a897a18e3d950bab9fa40f065804aschenney@chromium.org  maxStoresPerMemset = 16;
7966630d8d8ea7a897a18e3d950bab9fa40f065804aschenney@chromium.org  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
7976630d8d8ea7a897a18e3d950bab9fa40f065804aschenney@chromium.org
7986630d8d8ea7a897a18e3d950bab9fa40f065804aschenney@chromium.org  // On ARM arguments smaller than 4 bytes are extended, so all arguments
7996630d8d8ea7a897a18e3d950bab9fa40f065804aschenney@chromium.org  // are at least 4 bytes aligned.
8006630d8d8ea7a897a18e3d950bab9fa40f065804aschenney@chromium.org  setMinStackArgumentAlignment(4);
8016630d8d8ea7a897a18e3d950bab9fa40f065804aschenney@chromium.org
8026630d8d8ea7a897a18e3d950bab9fa40f065804aschenney@chromium.org  benefitFromCodePlacementOpt = true;
8036630d8d8ea7a897a18e3d950bab9fa40f065804aschenney@chromium.org
804bad1b2ff1d34ff86693b776f89d7b46995746127mike@reedtribe.org  setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
805bad1b2ff1d34ff86693b776f89d7b46995746127mike@reedtribe.org}
806bad1b2ff1d34ff86693b776f89d7b46995746127mike@reedtribe.org
807bad1b2ff1d34ff86693b776f89d7b46995746127mike@reedtribe.org// FIXME: It might make sense to define the representative register class as the
808bad1b2ff1d34ff86693b776f89d7b46995746127mike@reedtribe.org// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
809bad1b2ff1d34ff86693b776f89d7b46995746127mike@reedtribe.org// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
8108a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com// SPR's representative would be DPR_VFP2. This should work well if register
811e522ca5d5f249bd51a00cb68bb051f811d0a9e85reed@android.com// pressure tracking were modified such that a register use would increment the
8128a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com// pressure of the register class's representative and all of it's super
81394e75ee46a569cbcdf61fb7f04ee3a69d3ca0896djsollen@google.com// classes' representatives transitively. We have not implemented this because
81494e75ee46a569cbcdf61fb7f04ee3a69d3ca0896djsollen@google.com// of the difficulty prior to coalescing of modeling operand register classes
81594e75ee46a569cbcdf61fb7f04ee3a69d3ca0896djsollen@google.com// due to the common occurrence of cross class copies and subregister insertions
81694e75ee46a569cbcdf61fb7f04ee3a69d3ca0896djsollen@google.com// and extractions.
81794e75ee46a569cbcdf61fb7f04ee3a69d3ca0896djsollen@google.comstd::pair<const TargetRegisterClass*, uint8_t>
81894e75ee46a569cbcdf61fb7f04ee3a69d3ca0896djsollen@google.comARMTargetLowering::findRepresentativeClass(EVT VT) const{
81994e75ee46a569cbcdf61fb7f04ee3a69d3ca0896djsollen@google.com  const TargetRegisterClass *RRC = 0;
82094e75ee46a569cbcdf61fb7f04ee3a69d3ca0896djsollen@google.com  uint8_t Cost = 1;
82194e75ee46a569cbcdf61fb7f04ee3a69d3ca0896djsollen@google.com  switch (VT.getSimpleVT().SimpleTy) {
82294e75ee46a569cbcdf61fb7f04ee3a69d3ca0896djsollen@google.com  default:
8238a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    return TargetLowering::findRepresentativeClass(VT);
82456c69773aea56c6c6bd47bc7e7970dd081205184djsollen@google.com  // Use DPR as representative register class for all floating point
825f5dbe2f00f853c6a1719924bdd0c33335a53423adjsollen@google.com  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
826e63793a2c8d2871bf7d95195be7b93ff669688d7djsollen@google.com  // the cost is 1 for both f32 and f64.
827e63793a2c8d2871bf7d95195be7b93ff669688d7djsollen@google.com  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
828f5dbe2f00f853c6a1719924bdd0c33335a53423adjsollen@google.com  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
829f5dbe2f00f853c6a1719924bdd0c33335a53423adjsollen@google.com    RRC = ARM::DPRRegisterClass;
8308a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // When NEON is used for SP, only half of the register file is available
8318a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // because operations that define both SP and DP results will be constrained
8328a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com    // to the VFP2 class (D0-D15). We currently model this constraint prior to
83301ec2eb42e9c64f8d06afd51f80c055710147141robertphillips@google.com    // coalescing by double-counting the SP regs. See the FIXME above.
83401ec2eb42e9c64f8d06afd51f80c055710147141robertphillips@google.com    if (Subtarget->useNEONForSinglePrecisionFP())
83501ec2eb42e9c64f8d06afd51f80c055710147141robertphillips@google.com      Cost = 2;
836607d08b7db477ae11dbafff0bbebaa91f5c9fd7absalomon@google.com    break;
837607d08b7db477ae11dbafff0bbebaa91f5c9fd7absalomon@google.com  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
83801ec2eb42e9c64f8d06afd51f80c055710147141robertphillips@google.com  case MVT::v4f32: case MVT::v2f64:
83901ec2eb42e9c64f8d06afd51f80c055710147141robertphillips@google.com    RRC = ARM::DPRRegisterClass;
84001ec2eb42e9c64f8d06afd51f80c055710147141robertphillips@google.com    Cost = 2;
841ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.com    break;
842ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.com  case MVT::v4i64:
843ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.com    RRC = ARM::DPRRegisterClass;
844ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.com    Cost = 4;
845ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.com    break;
846ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.com  case MVT::v8i64:
847ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.com    RRC = ARM::DPRRegisterClass;
848ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.com    Cost = 8;
849ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.com    break;
850ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.com  }
851ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.com  return std::make_pair(RRC, Cost);
852ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.com}
853ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.com
854ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.comconst char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
855ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.com  switch (Opcode) {
856ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.com  default: return 0;
857ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.com  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
858ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.com  case ARMISD::WrapperDYN:    return "ARMISD::WrapperDYN";
859ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.com  case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
860ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.com  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
861ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.com  case ARMISD::CALL:          return "ARMISD::CALL";
862ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.com  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
863ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.com  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
864ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.com  case ARMISD::tCALL:         return "ARMISD::tCALL";
865ae09f2dc3fb1e8a8db99b214c8a71d0b9613a856bsalomon@google.com  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
866d252db03d9650013b545ef9781fe993c07f8f314reed@android.com  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
867d335d1d784167f8b9a4bf8a35e04d8e82d0a9507reed@google.com  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
8688a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
86910296ccb6a63c65b2e60733a929bf15d8bf94309reed@google.com  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
87010296ccb6a63c65b2e60733a929bf15d8bf94309reed@google.com  case ARMISD::CMP:           return "ARMISD::CMP";
871b54455e440e66e0b1c30954d226226f49aac26d6reed@google.com  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
8720bb18bb264b26afca45452910437c09445e23a3creed@google.com  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
8736aa2965ca814dd3329b65398b5c5af980e54b101bsalomon@google.com  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
87456c69773aea56c6c6bd47bc7e7970dd081205184djsollen@google.com  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
875f5dbe2f00f853c6a1719924bdd0c33335a53423adjsollen@google.com  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
876e63793a2c8d2871bf7d95195be7b93ff669688d7djsollen@google.com  case ARMISD::CMOV:          return "ARMISD::CMOV";
877f5dbe2f00f853c6a1719924bdd0c33335a53423adjsollen@google.com
8788a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  case ARMISD::RBIT:          return "ARMISD::RBIT";
879d252db03d9650013b545ef9781fe993c07f8f314reed@android.com
880d252db03d9650013b545ef9781fe993c07f8f314reed@android.com  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
881d252db03d9650013b545ef9781fe993c07f8f314reed@android.com  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
8828a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  case ARMISD::SITOF:         return "ARMISD::SITOF";
8838a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  case ARMISD::UITOF:         return "ARMISD::UITOF";
8848a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
8858a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
8868a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
8878a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  case ARMISD::RRX:           return "ARMISD::RRX";
8888a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
8898a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  case ARMISD::ADDC:          return "ARMISD::ADDC";
8908a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  case ARMISD::ADDE:          return "ARMISD::ADDE";
8918a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  case ARMISD::SUBC:          return "ARMISD::SUBC";
8928a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  case ARMISD::SUBE:          return "ARMISD::SUBE";
8938a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
8948a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
8958a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
8968a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
897d335d1d784167f8b9a4bf8a35e04d8e82d0a9507reed@google.com  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
898d335d1d784167f8b9a4bf8a35e04d8e82d0a9507reed@google.com  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
899d335d1d784167f8b9a4bf8a35e04d8e82d0a9507reed@google.com
900d335d1d784167f8b9a4bf8a35e04d8e82d0a9507reed@google.com  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
901d335d1d784167f8b9a4bf8a35e04d8e82d0a9507reed@google.com
902d335d1d784167f8b9a4bf8a35e04d8e82d0a9507reed@google.com  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
903d335d1d784167f8b9a4bf8a35e04d8e82d0a9507reed@google.com
904d335d1d784167f8b9a4bf8a35e04d8e82d0a9507reed@google.com  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
9056aa2965ca814dd3329b65398b5c5af980e54b101bsalomon@google.com
9066aa2965ca814dd3329b65398b5c5af980e54b101bsalomon@google.com  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
9078a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
9086aa2965ca814dd3329b65398b5c5af980e54b101bsalomon@google.com
90930e6d2c2054c15f1cb6c0637bee6756261291751bsalomon@google.com  case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
9108a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com
9118a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
9128a1c16ff38322f0210116fa7293eb8817c7e477ereed@android.com  case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
913  case ARMISD::VCGE:          return "ARMISD::VCGE";
914  case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
915  case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
916  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
917  case ARMISD::VCGT:          return "ARMISD::VCGT";
918  case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
919  case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
920  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
921  case ARMISD::VTST:          return "ARMISD::VTST";
922
923  case ARMISD::VSHL:          return "ARMISD::VSHL";
924  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
925  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
926  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
927  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
928  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
929  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
930  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
931  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
932  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
933  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
934  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
935  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
936  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
937  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
938  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
939  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
940  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
941  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
942  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
943  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
944  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
945  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
946  case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
947  case ARMISD::VDUP:          return "ARMISD::VDUP";
948  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
949  case ARMISD::VEXT:          return "ARMISD::VEXT";
950  case ARMISD::VREV64:        return "ARMISD::VREV64";
951  case ARMISD::VREV32:        return "ARMISD::VREV32";
952  case ARMISD::VREV16:        return "ARMISD::VREV16";
953  case ARMISD::VZIP:          return "ARMISD::VZIP";
954  case ARMISD::VUZP:          return "ARMISD::VUZP";
955  case ARMISD::VTRN:          return "ARMISD::VTRN";
956  case ARMISD::VTBL1:         return "ARMISD::VTBL1";
957  case ARMISD::VTBL2:         return "ARMISD::VTBL2";
958  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
959  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
960  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
961  case ARMISD::FMAX:          return "ARMISD::FMAX";
962  case ARMISD::FMIN:          return "ARMISD::FMIN";
963  case ARMISD::BFI:           return "ARMISD::BFI";
964  case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
965  case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
966  case ARMISD::VBSL:          return "ARMISD::VBSL";
967  case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
968  case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
969  case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
970  case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
971  case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
972  case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
973  case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
974  case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
975  case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
976  case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
977  case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
978  case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
979  case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
980  case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
981  case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
982  case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
983  case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
984  case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
985  case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
986  case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
987  }
988}
989
990EVT ARMTargetLowering::getSetCCResultType(EVT VT) const {
991  if (!VT.isVector()) return getPointerTy();
992  return VT.changeVectorElementTypeToInteger();
993}
994
995/// getRegClassFor - Return the register class that should be used for the
996/// specified value type.
997TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
998  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
999  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1000  // load / store 4 to 8 consecutive D registers.
1001  if (Subtarget->hasNEON()) {
1002    if (VT == MVT::v4i64)
1003      return ARM::QQPRRegisterClass;
1004    else if (VT == MVT::v8i64)
1005      return ARM::QQQQPRRegisterClass;
1006  }
1007  return TargetLowering::getRegClassFor(VT);
1008}
1009
1010// Create a fast isel object.
1011FastISel *
1012ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
1013  return ARM::createFastISel(funcInfo);
1014}
1015
1016/// getMaximalGlobalOffset - Returns the maximal possible offset which can
1017/// be used for loads / stores from the global.
1018unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
1019  return (Subtarget->isThumb1Only() ? 127 : 4095);
1020}
1021
1022Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1023  unsigned NumVals = N->getNumValues();
1024  if (!NumVals)
1025    return Sched::RegPressure;
1026
1027  for (unsigned i = 0; i != NumVals; ++i) {
1028    EVT VT = N->getValueType(i);
1029    if (VT == MVT::Glue || VT == MVT::Other)
1030      continue;
1031    if (VT.isFloatingPoint() || VT.isVector())
1032      return Sched::ILP;
1033  }
1034
1035  if (!N->isMachineOpcode())
1036    return Sched::RegPressure;
1037
1038  // Load are scheduled for latency even if there instruction itinerary
1039  // is not available.
1040  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1041  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1042
1043  if (MCID.getNumDefs() == 0)
1044    return Sched::RegPressure;
1045  if (!Itins->isEmpty() &&
1046      Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1047    return Sched::ILP;
1048
1049  return Sched::RegPressure;
1050}
1051
1052//===----------------------------------------------------------------------===//
1053// Lowering Code
1054//===----------------------------------------------------------------------===//
1055
1056/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1057static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1058  switch (CC) {
1059  default: llvm_unreachable("Unknown condition code!");
1060  case ISD::SETNE:  return ARMCC::NE;
1061  case ISD::SETEQ:  return ARMCC::EQ;
1062  case ISD::SETGT:  return ARMCC::GT;
1063  case ISD::SETGE:  return ARMCC::GE;
1064  case ISD::SETLT:  return ARMCC::LT;
1065  case ISD::SETLE:  return ARMCC::LE;
1066  case ISD::SETUGT: return ARMCC::HI;
1067  case ISD::SETUGE: return ARMCC::HS;
1068  case ISD::SETULT: return ARMCC::LO;
1069  case ISD::SETULE: return ARMCC::LS;
1070  }
1071}
1072
1073/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1074static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1075                        ARMCC::CondCodes &CondCode2) {
1076  CondCode2 = ARMCC::AL;
1077  switch (CC) {
1078  default: llvm_unreachable("Unknown FP condition!");
1079  case ISD::SETEQ:
1080  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1081  case ISD::SETGT:
1082  case ISD::SETOGT: CondCode = ARMCC::GT; break;
1083  case ISD::SETGE:
1084  case ISD::SETOGE: CondCode = ARMCC::GE; break;
1085  case ISD::SETOLT: CondCode = ARMCC::MI; break;
1086  case ISD::SETOLE: CondCode = ARMCC::LS; break;
1087  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1088  case ISD::SETO:   CondCode = ARMCC::VC; break;
1089  case ISD::SETUO:  CondCode = ARMCC::VS; break;
1090  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1091  case ISD::SETUGT: CondCode = ARMCC::HI; break;
1092  case ISD::SETUGE: CondCode = ARMCC::PL; break;
1093  case ISD::SETLT:
1094  case ISD::SETULT: CondCode = ARMCC::LT; break;
1095  case ISD::SETLE:
1096  case ISD::SETULE: CondCode = ARMCC::LE; break;
1097  case ISD::SETNE:
1098  case ISD::SETUNE: CondCode = ARMCC::NE; break;
1099  }
1100}
1101
1102//===----------------------------------------------------------------------===//
1103//                      Calling Convention Implementation
1104//===----------------------------------------------------------------------===//
1105
1106#include "ARMGenCallingConv.inc"
1107
1108/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1109/// given CallingConvention value.
1110CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1111                                                 bool Return,
1112                                                 bool isVarArg) const {
1113  switch (CC) {
1114  default:
1115    llvm_unreachable("Unsupported calling convention");
1116  case CallingConv::Fast:
1117    if (Subtarget->hasVFP2() && !isVarArg) {
1118      if (!Subtarget->isAAPCS_ABI())
1119        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1120      // For AAPCS ABI targets, just use VFP variant of the calling convention.
1121      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1122    }
1123    // Fallthrough
1124  case CallingConv::C: {
1125    // Use target triple & subtarget features to do actual dispatch.
1126    if (!Subtarget->isAAPCS_ABI())
1127      return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1128    else if (Subtarget->hasVFP2() &&
1129             getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1130             !isVarArg)
1131      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1132    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1133  }
1134  case CallingConv::ARM_AAPCS_VFP:
1135    if (!isVarArg)
1136      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1137    // Fallthrough
1138  case CallingConv::ARM_AAPCS:
1139    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1140  case CallingConv::ARM_APCS:
1141    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1142  }
1143}
1144
1145/// LowerCallResult - Lower the result values of a call into the
1146/// appropriate copies out of appropriate physical registers.
1147SDValue
1148ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1149                                   CallingConv::ID CallConv, bool isVarArg,
1150                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1151                                   DebugLoc dl, SelectionDAG &DAG,
1152                                   SmallVectorImpl<SDValue> &InVals) const {
1153
1154  // Assign locations to each value returned by this call.
1155  SmallVector<CCValAssign, 16> RVLocs;
1156  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1157                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1158  CCInfo.AnalyzeCallResult(Ins,
1159                           CCAssignFnForNode(CallConv, /* Return*/ true,
1160                                             isVarArg));
1161
1162  // Copy all of the result registers out of their specified physreg.
1163  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1164    CCValAssign VA = RVLocs[i];
1165
1166    SDValue Val;
1167    if (VA.needsCustom()) {
1168      // Handle f64 or half of a v2f64.
1169      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1170                                      InFlag);
1171      Chain = Lo.getValue(1);
1172      InFlag = Lo.getValue(2);
1173      VA = RVLocs[++i]; // skip ahead to next loc
1174      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1175                                      InFlag);
1176      Chain = Hi.getValue(1);
1177      InFlag = Hi.getValue(2);
1178      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1179
1180      if (VA.getLocVT() == MVT::v2f64) {
1181        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1182        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1183                          DAG.getConstant(0, MVT::i32));
1184
1185        VA = RVLocs[++i]; // skip ahead to next loc
1186        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1187        Chain = Lo.getValue(1);
1188        InFlag = Lo.getValue(2);
1189        VA = RVLocs[++i]; // skip ahead to next loc
1190        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1191        Chain = Hi.getValue(1);
1192        InFlag = Hi.getValue(2);
1193        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1194        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1195                          DAG.getConstant(1, MVT::i32));
1196      }
1197    } else {
1198      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1199                               InFlag);
1200      Chain = Val.getValue(1);
1201      InFlag = Val.getValue(2);
1202    }
1203
1204    switch (VA.getLocInfo()) {
1205    default: llvm_unreachable("Unknown loc info!");
1206    case CCValAssign::Full: break;
1207    case CCValAssign::BCvt:
1208      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1209      break;
1210    }
1211
1212    InVals.push_back(Val);
1213  }
1214
1215  return Chain;
1216}
1217
1218/// LowerMemOpCallTo - Store the argument to the stack.
1219SDValue
1220ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1221                                    SDValue StackPtr, SDValue Arg,
1222                                    DebugLoc dl, SelectionDAG &DAG,
1223                                    const CCValAssign &VA,
1224                                    ISD::ArgFlagsTy Flags) const {
1225  unsigned LocMemOffset = VA.getLocMemOffset();
1226  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1227  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1228  return DAG.getStore(Chain, dl, Arg, PtrOff,
1229                      MachinePointerInfo::getStack(LocMemOffset),
1230                      false, false, 0);
1231}
1232
1233void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1234                                         SDValue Chain, SDValue &Arg,
1235                                         RegsToPassVector &RegsToPass,
1236                                         CCValAssign &VA, CCValAssign &NextVA,
1237                                         SDValue &StackPtr,
1238                                         SmallVector<SDValue, 8> &MemOpChains,
1239                                         ISD::ArgFlagsTy Flags) const {
1240
1241  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1242                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1243  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1244
1245  if (NextVA.isRegLoc())
1246    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1247  else {
1248    assert(NextVA.isMemLoc());
1249    if (StackPtr.getNode() == 0)
1250      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1251
1252    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1253                                           dl, DAG, NextVA,
1254                                           Flags));
1255  }
1256}
1257
1258/// LowerCall - Lowering a call into a callseq_start <-
1259/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1260/// nodes.
1261SDValue
1262ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1263                             CallingConv::ID CallConv, bool isVarArg,
1264                             bool &isTailCall,
1265                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1266                             const SmallVectorImpl<SDValue> &OutVals,
1267                             const SmallVectorImpl<ISD::InputArg> &Ins,
1268                             DebugLoc dl, SelectionDAG &DAG,
1269                             SmallVectorImpl<SDValue> &InVals) const {
1270  MachineFunction &MF = DAG.getMachineFunction();
1271  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1272  bool IsSibCall = false;
1273  // Disable tail calls if they're not supported.
1274  if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
1275    isTailCall = false;
1276  if (isTailCall) {
1277    // Check if it's really possible to do a tail call.
1278    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1279                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1280                                                   Outs, OutVals, Ins, DAG);
1281    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1282    // detected sibcalls.
1283    if (isTailCall) {
1284      ++NumTailCalls;
1285      IsSibCall = true;
1286    }
1287  }
1288
1289  // Analyze operands of the call, assigning locations to each operand.
1290  SmallVector<CCValAssign, 16> ArgLocs;
1291  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1292                 getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1293  CCInfo.AnalyzeCallOperands(Outs,
1294                             CCAssignFnForNode(CallConv, /* Return*/ false,
1295                                               isVarArg));
1296
1297  // Get a count of how many bytes are to be pushed on the stack.
1298  unsigned NumBytes = CCInfo.getNextStackOffset();
1299
1300  // For tail calls, memory operands are available in our caller's stack.
1301  if (IsSibCall)
1302    NumBytes = 0;
1303
1304  // Adjust the stack pointer for the new arguments...
1305  // These operations are automatically eliminated by the prolog/epilog pass
1306  if (!IsSibCall)
1307    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1308
1309  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1310
1311  RegsToPassVector RegsToPass;
1312  SmallVector<SDValue, 8> MemOpChains;
1313
1314  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1315  // of tail call optimization, arguments are handled later.
1316  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1317       i != e;
1318       ++i, ++realArgIdx) {
1319    CCValAssign &VA = ArgLocs[i];
1320    SDValue Arg = OutVals[realArgIdx];
1321    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1322    bool isByVal = Flags.isByVal();
1323
1324    // Promote the value if needed.
1325    switch (VA.getLocInfo()) {
1326    default: llvm_unreachable("Unknown loc info!");
1327    case CCValAssign::Full: break;
1328    case CCValAssign::SExt:
1329      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1330      break;
1331    case CCValAssign::ZExt:
1332      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1333      break;
1334    case CCValAssign::AExt:
1335      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1336      break;
1337    case CCValAssign::BCvt:
1338      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1339      break;
1340    }
1341
1342    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1343    if (VA.needsCustom()) {
1344      if (VA.getLocVT() == MVT::v2f64) {
1345        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1346                                  DAG.getConstant(0, MVT::i32));
1347        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1348                                  DAG.getConstant(1, MVT::i32));
1349
1350        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1351                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1352
1353        VA = ArgLocs[++i]; // skip ahead to next loc
1354        if (VA.isRegLoc()) {
1355          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1356                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1357        } else {
1358          assert(VA.isMemLoc());
1359
1360          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1361                                                 dl, DAG, VA, Flags));
1362        }
1363      } else {
1364        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1365                         StackPtr, MemOpChains, Flags);
1366      }
1367    } else if (VA.isRegLoc()) {
1368      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1369    } else if (isByVal) {
1370      assert(VA.isMemLoc());
1371      unsigned offset = 0;
1372
1373      // True if this byval aggregate will be split between registers
1374      // and memory.
1375      if (CCInfo.isFirstByValRegValid()) {
1376        EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1377        unsigned int i, j;
1378        for (i = 0, j = CCInfo.getFirstByValReg(); j < ARM::R4; i++, j++) {
1379          SDValue Const = DAG.getConstant(4*i, MVT::i32);
1380          SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1381          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1382                                     MachinePointerInfo(),
1383                                     false, false, false, 0);
1384          MemOpChains.push_back(Load.getValue(1));
1385          RegsToPass.push_back(std::make_pair(j, Load));
1386        }
1387        offset = ARM::R4 - CCInfo.getFirstByValReg();
1388        CCInfo.clearFirstByValReg();
1389      }
1390
1391      unsigned LocMemOffset = VA.getLocMemOffset();
1392      SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
1393      SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
1394                                StkPtrOff);
1395      SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
1396      SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
1397      SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
1398                                         MVT::i32);
1399      MemOpChains.push_back(DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
1400                                          Flags.getByValAlign(),
1401                                          /*isVolatile=*/false,
1402                                          /*AlwaysInline=*/false,
1403                                          MachinePointerInfo(0),
1404                                          MachinePointerInfo(0)));
1405
1406    } else if (!IsSibCall) {
1407      assert(VA.isMemLoc());
1408
1409      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1410                                             dl, DAG, VA, Flags));
1411    }
1412  }
1413
1414  if (!MemOpChains.empty())
1415    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1416                        &MemOpChains[0], MemOpChains.size());
1417
1418  // Build a sequence of copy-to-reg nodes chained together with token chain
1419  // and flag operands which copy the outgoing args into the appropriate regs.
1420  SDValue InFlag;
1421  // Tail call byval lowering might overwrite argument registers so in case of
1422  // tail call optimization the copies to registers are lowered later.
1423  if (!isTailCall)
1424    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1425      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1426                               RegsToPass[i].second, InFlag);
1427      InFlag = Chain.getValue(1);
1428    }
1429
1430  // For tail calls lower the arguments to the 'real' stack slot.
1431  if (isTailCall) {
1432    // Force all the incoming stack arguments to be loaded from the stack
1433    // before any new outgoing arguments are stored to the stack, because the
1434    // outgoing stack slots may alias the incoming argument stack slots, and
1435    // the alias isn't otherwise explicit. This is slightly more conservative
1436    // than necessary, because it means that each store effectively depends
1437    // on every argument instead of just those arguments it would clobber.
1438
1439    // Do not flag preceding copytoreg stuff together with the following stuff.
1440    InFlag = SDValue();
1441    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1442      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1443                               RegsToPass[i].second, InFlag);
1444      InFlag = Chain.getValue(1);
1445    }
1446    InFlag =SDValue();
1447  }
1448
1449  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1450  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1451  // node so that legalize doesn't hack it.
1452  bool isDirect = false;
1453  bool isARMFunc = false;
1454  bool isLocalARMFunc = false;
1455  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1456
1457  if (EnableARMLongCalls) {
1458    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1459            && "long-calls with non-static relocation model!");
1460    // Handle a global address or an external symbol. If it's not one of
1461    // those, the target's already in a register, so we don't need to do
1462    // anything extra.
1463    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1464      const GlobalValue *GV = G->getGlobal();
1465      // Create a constant pool entry for the callee address
1466      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1467      ARMConstantPoolValue *CPV =
1468        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
1469
1470      // Get the address of the callee into a register
1471      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1472      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1473      Callee = DAG.getLoad(getPointerTy(), dl,
1474                           DAG.getEntryNode(), CPAddr,
1475                           MachinePointerInfo::getConstantPool(),
1476                           false, false, false, 0);
1477    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1478      const char *Sym = S->getSymbol();
1479
1480      // Create a constant pool entry for the callee address
1481      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1482      ARMConstantPoolValue *CPV =
1483        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1484                                      ARMPCLabelIndex, 0);
1485      // Get the address of the callee into a register
1486      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1487      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1488      Callee = DAG.getLoad(getPointerTy(), dl,
1489                           DAG.getEntryNode(), CPAddr,
1490                           MachinePointerInfo::getConstantPool(),
1491                           false, false, false, 0);
1492    }
1493  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1494    const GlobalValue *GV = G->getGlobal();
1495    isDirect = true;
1496    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1497    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1498                   getTargetMachine().getRelocationModel() != Reloc::Static;
1499    isARMFunc = !Subtarget->isThumb() || isStub;
1500    // ARM call to a local ARM function is predicable.
1501    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1502    // tBX takes a register source operand.
1503    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1504      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1505      ARMConstantPoolValue *CPV =
1506        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 4);
1507      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1508      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1509      Callee = DAG.getLoad(getPointerTy(), dl,
1510                           DAG.getEntryNode(), CPAddr,
1511                           MachinePointerInfo::getConstantPool(),
1512                           false, false, false, 0);
1513      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1514      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1515                           getPointerTy(), Callee, PICLabel);
1516    } else {
1517      // On ELF targets for PIC code, direct calls should go through the PLT
1518      unsigned OpFlags = 0;
1519      if (Subtarget->isTargetELF() &&
1520                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1521        OpFlags = ARMII::MO_PLT;
1522      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1523    }
1524  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1525    isDirect = true;
1526    bool isStub = Subtarget->isTargetDarwin() &&
1527                  getTargetMachine().getRelocationModel() != Reloc::Static;
1528    isARMFunc = !Subtarget->isThumb() || isStub;
1529    // tBX takes a register source operand.
1530    const char *Sym = S->getSymbol();
1531    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1532      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1533      ARMConstantPoolValue *CPV =
1534        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1535                                      ARMPCLabelIndex, 4);
1536      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1537      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1538      Callee = DAG.getLoad(getPointerTy(), dl,
1539                           DAG.getEntryNode(), CPAddr,
1540                           MachinePointerInfo::getConstantPool(),
1541                           false, false, false, 0);
1542      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1543      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1544                           getPointerTy(), Callee, PICLabel);
1545    } else {
1546      unsigned OpFlags = 0;
1547      // On ELF targets for PIC code, direct calls should go through the PLT
1548      if (Subtarget->isTargetELF() &&
1549                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1550        OpFlags = ARMII::MO_PLT;
1551      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1552    }
1553  }
1554
1555  // FIXME: handle tail calls differently.
1556  unsigned CallOpc;
1557  if (Subtarget->isThumb()) {
1558    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1559      CallOpc = ARMISD::CALL_NOLINK;
1560    else
1561      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1562  } else {
1563    CallOpc = (isDirect || Subtarget->hasV5TOps())
1564      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1565      : ARMISD::CALL_NOLINK;
1566  }
1567
1568  std::vector<SDValue> Ops;
1569  Ops.push_back(Chain);
1570  Ops.push_back(Callee);
1571
1572  // Add argument registers to the end of the list so that they are known live
1573  // into the call.
1574  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1575    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1576                                  RegsToPass[i].second.getValueType()));
1577
1578  if (InFlag.getNode())
1579    Ops.push_back(InFlag);
1580
1581  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1582  if (isTailCall)
1583    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1584
1585  // Returns a chain and a flag for retval copy to use.
1586  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1587  InFlag = Chain.getValue(1);
1588
1589  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1590                             DAG.getIntPtrConstant(0, true), InFlag);
1591  if (!Ins.empty())
1592    InFlag = Chain.getValue(1);
1593
1594  // Handle result values, copying them out of physregs into vregs that we
1595  // return.
1596  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1597                         dl, DAG, InVals);
1598}
1599
1600/// HandleByVal - Every parameter *after* a byval parameter is passed
1601/// on the stack.  Remember the next parameter register to allocate,
1602/// and then confiscate the rest of the parameter registers to insure
1603/// this.
1604void
1605llvm::ARMTargetLowering::HandleByVal(CCState *State, unsigned &size) const {
1606  unsigned reg = State->AllocateReg(GPRArgRegs, 4);
1607  assert((State->getCallOrPrologue() == Prologue ||
1608          State->getCallOrPrologue() == Call) &&
1609         "unhandled ParmContext");
1610  if ((!State->isFirstByValRegValid()) &&
1611      (ARM::R0 <= reg) && (reg <= ARM::R3)) {
1612    State->setFirstByValReg(reg);
1613    // At a call site, a byval parameter that is split between
1614    // registers and memory needs its size truncated here.  In a
1615    // function prologue, such byval parameters are reassembled in
1616    // memory, and are not truncated.
1617    if (State->getCallOrPrologue() == Call) {
1618      unsigned excess = 4 * (ARM::R4 - reg);
1619      assert(size >= excess && "expected larger existing stack allocation");
1620      size -= excess;
1621    }
1622  }
1623  // Confiscate any remaining parameter registers to preclude their
1624  // assignment to subsequent parameters.
1625  while (State->AllocateReg(GPRArgRegs, 4))
1626    ;
1627}
1628
1629/// MatchingStackOffset - Return true if the given stack call argument is
1630/// already available in the same position (relatively) of the caller's
1631/// incoming argument stack.
1632static
1633bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1634                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1635                         const ARMInstrInfo *TII) {
1636  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1637  int FI = INT_MAX;
1638  if (Arg.getOpcode() == ISD::CopyFromReg) {
1639    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1640    if (!TargetRegisterInfo::isVirtualRegister(VR))
1641      return false;
1642    MachineInstr *Def = MRI->getVRegDef(VR);
1643    if (!Def)
1644      return false;
1645    if (!Flags.isByVal()) {
1646      if (!TII->isLoadFromStackSlot(Def, FI))
1647        return false;
1648    } else {
1649      return false;
1650    }
1651  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1652    if (Flags.isByVal())
1653      // ByVal argument is passed in as a pointer but it's now being
1654      // dereferenced. e.g.
1655      // define @foo(%struct.X* %A) {
1656      //   tail call @bar(%struct.X* byval %A)
1657      // }
1658      return false;
1659    SDValue Ptr = Ld->getBasePtr();
1660    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1661    if (!FINode)
1662      return false;
1663    FI = FINode->getIndex();
1664  } else
1665    return false;
1666
1667  assert(FI != INT_MAX);
1668  if (!MFI->isFixedObjectIndex(FI))
1669    return false;
1670  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1671}
1672
1673/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1674/// for tail call optimization. Targets which want to do tail call
1675/// optimization should implement this function.
1676bool
1677ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1678                                                     CallingConv::ID CalleeCC,
1679                                                     bool isVarArg,
1680                                                     bool isCalleeStructRet,
1681                                                     bool isCallerStructRet,
1682                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1683                                    const SmallVectorImpl<SDValue> &OutVals,
1684                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1685                                                     SelectionDAG& DAG) const {
1686  const Function *CallerF = DAG.getMachineFunction().getFunction();
1687  CallingConv::ID CallerCC = CallerF->getCallingConv();
1688  bool CCMatch = CallerCC == CalleeCC;
1689
1690  // Look for obvious safe cases to perform tail call optimization that do not
1691  // require ABI changes. This is what gcc calls sibcall.
1692
1693  // Do not sibcall optimize vararg calls unless the call site is not passing
1694  // any arguments.
1695  if (isVarArg && !Outs.empty())
1696    return false;
1697
1698  // Also avoid sibcall optimization if either caller or callee uses struct
1699  // return semantics.
1700  if (isCalleeStructRet || isCallerStructRet)
1701    return false;
1702
1703  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1704  // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
1705  // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
1706  // support in the assembler and linker to be used. This would need to be
1707  // fixed to fully support tail calls in Thumb1.
1708  //
1709  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1710  // LR.  This means if we need to reload LR, it takes an extra instructions,
1711  // which outweighs the value of the tail call; but here we don't know yet
1712  // whether LR is going to be used.  Probably the right approach is to
1713  // generate the tail call here and turn it back into CALL/RET in
1714  // emitEpilogue if LR is used.
1715
1716  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1717  // but we need to make sure there are enough registers; the only valid
1718  // registers are the 4 used for parameters.  We don't currently do this
1719  // case.
1720  if (Subtarget->isThumb1Only())
1721    return false;
1722
1723  // If the calling conventions do not match, then we'd better make sure the
1724  // results are returned in the same way as what the caller expects.
1725  if (!CCMatch) {
1726    SmallVector<CCValAssign, 16> RVLocs1;
1727    ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1728                       getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
1729    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1730
1731    SmallVector<CCValAssign, 16> RVLocs2;
1732    ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1733                       getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
1734    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1735
1736    if (RVLocs1.size() != RVLocs2.size())
1737      return false;
1738    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1739      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1740        return false;
1741      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1742        return false;
1743      if (RVLocs1[i].isRegLoc()) {
1744        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1745          return false;
1746      } else {
1747        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1748          return false;
1749      }
1750    }
1751  }
1752
1753  // If the callee takes no arguments then go on to check the results of the
1754  // call.
1755  if (!Outs.empty()) {
1756    // Check if stack adjustment is needed. For now, do not do this if any
1757    // argument is passed on the stack.
1758    SmallVector<CCValAssign, 16> ArgLocs;
1759    ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
1760                      getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1761    CCInfo.AnalyzeCallOperands(Outs,
1762                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1763    if (CCInfo.getNextStackOffset()) {
1764      MachineFunction &MF = DAG.getMachineFunction();
1765
1766      // Check if the arguments are already laid out in the right way as
1767      // the caller's fixed stack objects.
1768      MachineFrameInfo *MFI = MF.getFrameInfo();
1769      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1770      const ARMInstrInfo *TII =
1771        ((ARMTargetMachine&)getTargetMachine()).getInstrInfo();
1772      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1773           i != e;
1774           ++i, ++realArgIdx) {
1775        CCValAssign &VA = ArgLocs[i];
1776        EVT RegVT = VA.getLocVT();
1777        SDValue Arg = OutVals[realArgIdx];
1778        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1779        if (VA.getLocInfo() == CCValAssign::Indirect)
1780          return false;
1781        if (VA.needsCustom()) {
1782          // f64 and vector types are split into multiple registers or
1783          // register/stack-slot combinations.  The types will not match
1784          // the registers; give up on memory f64 refs until we figure
1785          // out what to do about this.
1786          if (!VA.isRegLoc())
1787            return false;
1788          if (!ArgLocs[++i].isRegLoc())
1789            return false;
1790          if (RegVT == MVT::v2f64) {
1791            if (!ArgLocs[++i].isRegLoc())
1792              return false;
1793            if (!ArgLocs[++i].isRegLoc())
1794              return false;
1795          }
1796        } else if (!VA.isRegLoc()) {
1797          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1798                                   MFI, MRI, TII))
1799            return false;
1800        }
1801      }
1802    }
1803  }
1804
1805  return true;
1806}
1807
1808SDValue
1809ARMTargetLowering::LowerReturn(SDValue Chain,
1810                               CallingConv::ID CallConv, bool isVarArg,
1811                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1812                               const SmallVectorImpl<SDValue> &OutVals,
1813                               DebugLoc dl, SelectionDAG &DAG) const {
1814
1815  // CCValAssign - represent the assignment of the return value to a location.
1816  SmallVector<CCValAssign, 16> RVLocs;
1817
1818  // CCState - Info about the registers and stack slots.
1819  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1820                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1821
1822  // Analyze outgoing return values.
1823  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1824                                               isVarArg));
1825
1826  // If this is the first return lowered for this function, add
1827  // the regs to the liveout set for the function.
1828  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1829    for (unsigned i = 0; i != RVLocs.size(); ++i)
1830      if (RVLocs[i].isRegLoc())
1831        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1832  }
1833
1834  SDValue Flag;
1835
1836  // Copy the result values into the output registers.
1837  for (unsigned i = 0, realRVLocIdx = 0;
1838       i != RVLocs.size();
1839       ++i, ++realRVLocIdx) {
1840    CCValAssign &VA = RVLocs[i];
1841    assert(VA.isRegLoc() && "Can only return in registers!");
1842
1843    SDValue Arg = OutVals[realRVLocIdx];
1844
1845    switch (VA.getLocInfo()) {
1846    default: llvm_unreachable("Unknown loc info!");
1847    case CCValAssign::Full: break;
1848    case CCValAssign::BCvt:
1849      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1850      break;
1851    }
1852
1853    if (VA.needsCustom()) {
1854      if (VA.getLocVT() == MVT::v2f64) {
1855        // Extract the first half and return it in two registers.
1856        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1857                                   DAG.getConstant(0, MVT::i32));
1858        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1859                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1860
1861        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1862        Flag = Chain.getValue(1);
1863        VA = RVLocs[++i]; // skip ahead to next loc
1864        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1865                                 HalfGPRs.getValue(1), Flag);
1866        Flag = Chain.getValue(1);
1867        VA = RVLocs[++i]; // skip ahead to next loc
1868
1869        // Extract the 2nd half and fall through to handle it as an f64 value.
1870        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1871                          DAG.getConstant(1, MVT::i32));
1872      }
1873      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1874      // available.
1875      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1876                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1877      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1878      Flag = Chain.getValue(1);
1879      VA = RVLocs[++i]; // skip ahead to next loc
1880      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1881                               Flag);
1882    } else
1883      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1884
1885    // Guarantee that all emitted copies are
1886    // stuck together, avoiding something bad.
1887    Flag = Chain.getValue(1);
1888  }
1889
1890  SDValue result;
1891  if (Flag.getNode())
1892    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1893  else // Return Void
1894    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1895
1896  return result;
1897}
1898
1899bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N) const {
1900  if (N->getNumValues() != 1)
1901    return false;
1902  if (!N->hasNUsesOfValue(1, 0))
1903    return false;
1904
1905  unsigned NumCopies = 0;
1906  SDNode* Copies[2];
1907  SDNode *Use = *N->use_begin();
1908  if (Use->getOpcode() == ISD::CopyToReg) {
1909    Copies[NumCopies++] = Use;
1910  } else if (Use->getOpcode() == ARMISD::VMOVRRD) {
1911    // f64 returned in a pair of GPRs.
1912    for (SDNode::use_iterator UI = Use->use_begin(), UE = Use->use_end();
1913         UI != UE; ++UI) {
1914      if (UI->getOpcode() != ISD::CopyToReg)
1915        return false;
1916      Copies[UI.getUse().getResNo()] = *UI;
1917      ++NumCopies;
1918    }
1919  } else if (Use->getOpcode() == ISD::BITCAST) {
1920    // f32 returned in a single GPR.
1921    if (!Use->hasNUsesOfValue(1, 0))
1922      return false;
1923    Use = *Use->use_begin();
1924    if (Use->getOpcode() != ISD::CopyToReg || !Use->hasNUsesOfValue(1, 0))
1925      return false;
1926    Copies[NumCopies++] = Use;
1927  } else {
1928    return false;
1929  }
1930
1931  if (NumCopies != 1 && NumCopies != 2)
1932    return false;
1933
1934  bool HasRet = false;
1935  for (unsigned i = 0; i < NumCopies; ++i) {
1936    SDNode *Copy = Copies[i];
1937    for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1938         UI != UE; ++UI) {
1939      if (UI->getOpcode() == ISD::CopyToReg) {
1940        SDNode *Use = *UI;
1941        if (Use == Copies[0] || Use == Copies[1])
1942          continue;
1943        return false;
1944      }
1945      if (UI->getOpcode() != ARMISD::RET_FLAG)
1946        return false;
1947      HasRet = true;
1948    }
1949  }
1950
1951  return HasRet;
1952}
1953
1954bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1955  if (!EnableARMTailCalls)
1956    return false;
1957
1958  if (!CI->isTailCall())
1959    return false;
1960
1961  return !Subtarget->isThumb1Only();
1962}
1963
1964// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1965// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1966// one of the above mentioned nodes. It has to be wrapped because otherwise
1967// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1968// be used to form addressing mode. These wrapped nodes will be selected
1969// into MOVi.
1970static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1971  EVT PtrVT = Op.getValueType();
1972  // FIXME there is no actual debug info here
1973  DebugLoc dl = Op.getDebugLoc();
1974  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1975  SDValue Res;
1976  if (CP->isMachineConstantPoolEntry())
1977    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1978                                    CP->getAlignment());
1979  else
1980    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1981                                    CP->getAlignment());
1982  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1983}
1984
1985unsigned ARMTargetLowering::getJumpTableEncoding() const {
1986  return MachineJumpTableInfo::EK_Inline;
1987}
1988
1989SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
1990                                             SelectionDAG &DAG) const {
1991  MachineFunction &MF = DAG.getMachineFunction();
1992  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1993  unsigned ARMPCLabelIndex = 0;
1994  DebugLoc DL = Op.getDebugLoc();
1995  EVT PtrVT = getPointerTy();
1996  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1997  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1998  SDValue CPAddr;
1999  if (RelocM == Reloc::Static) {
2000    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
2001  } else {
2002    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2003    ARMPCLabelIndex = AFI->createPICLabelUId();
2004    ARMConstantPoolValue *CPV =
2005      ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
2006                                      ARMCP::CPBlockAddress, PCAdj);
2007    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2008  }
2009  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2010  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
2011                               MachinePointerInfo::getConstantPool(),
2012                               false, false, false, 0);
2013  if (RelocM == Reloc::Static)
2014    return Result;
2015  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2016  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2017}
2018
2019// Lower ISD::GlobalTLSAddress using the "general dynamic" model
2020SDValue
2021ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
2022                                                 SelectionDAG &DAG) const {
2023  DebugLoc dl = GA->getDebugLoc();
2024  EVT PtrVT = getPointerTy();
2025  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2026  MachineFunction &MF = DAG.getMachineFunction();
2027  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2028  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2029  ARMConstantPoolValue *CPV =
2030    ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2031                                    ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
2032  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2033  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
2034  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
2035                         MachinePointerInfo::getConstantPool(),
2036                         false, false, false, 0);
2037  SDValue Chain = Argument.getValue(1);
2038
2039  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2040  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
2041
2042  // call __tls_get_addr.
2043  ArgListTy Args;
2044  ArgListEntry Entry;
2045  Entry.Node = Argument;
2046  Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2047  Args.push_back(Entry);
2048  // FIXME: is there useful debug info available here?
2049  std::pair<SDValue, SDValue> CallResult =
2050    LowerCallTo(Chain, (Type *) Type::getInt32Ty(*DAG.getContext()),
2051                false, false, false, false,
2052                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
2053                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
2054  return CallResult.first;
2055}
2056
2057// Lower ISD::GlobalTLSAddress using the "initial exec" or
2058// "local exec" model.
2059SDValue
2060ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2061                                        SelectionDAG &DAG) const {
2062  const GlobalValue *GV = GA->getGlobal();
2063  DebugLoc dl = GA->getDebugLoc();
2064  SDValue Offset;
2065  SDValue Chain = DAG.getEntryNode();
2066  EVT PtrVT = getPointerTy();
2067  // Get the Thread Pointer
2068  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2069
2070  if (GV->isDeclaration()) {
2071    MachineFunction &MF = DAG.getMachineFunction();
2072    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2073    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2074    // Initial exec model.
2075    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2076    ARMConstantPoolValue *CPV =
2077      ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2078                                      ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2079                                      true);
2080    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2081    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2082    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2083                         MachinePointerInfo::getConstantPool(),
2084                         false, false, false, 0);
2085    Chain = Offset.getValue(1);
2086
2087    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2088    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2089
2090    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2091                         MachinePointerInfo::getConstantPool(),
2092                         false, false, false, 0);
2093  } else {
2094    // local exec model
2095    ARMConstantPoolValue *CPV =
2096      ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
2097    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2098    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2099    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2100                         MachinePointerInfo::getConstantPool(),
2101                         false, false, false, 0);
2102  }
2103
2104  // The address of the thread local variable is the add of the thread
2105  // pointer with the offset of the variable.
2106  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2107}
2108
2109SDValue
2110ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2111  // TODO: implement the "local dynamic" model
2112  assert(Subtarget->isTargetELF() &&
2113         "TLS not implemented for non-ELF targets");
2114  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2115  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
2116  // otherwise use the "Local Exec" TLS Model
2117  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
2118    return LowerToTLSGeneralDynamicModel(GA, DAG);
2119  else
2120    return LowerToTLSExecModels(GA, DAG);
2121}
2122
2123SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2124                                                 SelectionDAG &DAG) const {
2125  EVT PtrVT = getPointerTy();
2126  DebugLoc dl = Op.getDebugLoc();
2127  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2128  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2129  if (RelocM == Reloc::PIC_) {
2130    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2131    ARMConstantPoolValue *CPV =
2132      ARMConstantPoolConstant::Create(GV,
2133                                      UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2134    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2135    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2136    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
2137                                 CPAddr,
2138                                 MachinePointerInfo::getConstantPool(),
2139                                 false, false, false, 0);
2140    SDValue Chain = Result.getValue(1);
2141    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2142    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
2143    if (!UseGOTOFF)
2144      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2145                           MachinePointerInfo::getGOT(),
2146                           false, false, false, 0);
2147    return Result;
2148  }
2149
2150  // If we have T2 ops, we can materialize the address directly via movt/movw
2151  // pair. This is always cheaper.
2152  if (Subtarget->useMovt()) {
2153    ++NumMovwMovt;
2154    // FIXME: Once remat is capable of dealing with instructions with register
2155    // operands, expand this into two nodes.
2156    return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2157                       DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2158  } else {
2159    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2160    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2161    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2162                       MachinePointerInfo::getConstantPool(),
2163                       false, false, false, 0);
2164  }
2165}
2166
2167SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2168                                                    SelectionDAG &DAG) const {
2169  EVT PtrVT = getPointerTy();
2170  DebugLoc dl = Op.getDebugLoc();
2171  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2172  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2173  MachineFunction &MF = DAG.getMachineFunction();
2174  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2175
2176  // FIXME: Enable this for static codegen when tool issues are fixed.  Also
2177  // update ARMFastISel::ARMMaterializeGV.
2178  if (Subtarget->useMovt() && RelocM != Reloc::Static) {
2179    ++NumMovwMovt;
2180    // FIXME: Once remat is capable of dealing with instructions with register
2181    // operands, expand this into two nodes.
2182    if (RelocM == Reloc::Static)
2183      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2184                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2185
2186    unsigned Wrapper = (RelocM == Reloc::PIC_)
2187      ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
2188    SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
2189                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2190    if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2191      Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2192                           MachinePointerInfo::getGOT(),
2193                           false, false, false, 0);
2194    return Result;
2195  }
2196
2197  unsigned ARMPCLabelIndex = 0;
2198  SDValue CPAddr;
2199  if (RelocM == Reloc::Static) {
2200    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2201  } else {
2202    ARMPCLabelIndex = AFI->createPICLabelUId();
2203    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
2204    ARMConstantPoolValue *CPV =
2205      ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue,
2206                                      PCAdj);
2207    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2208  }
2209  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2210
2211  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2212                               MachinePointerInfo::getConstantPool(),
2213                               false, false, false, 0);
2214  SDValue Chain = Result.getValue(1);
2215
2216  if (RelocM == Reloc::PIC_) {
2217    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2218    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2219  }
2220
2221  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2222    Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
2223                         false, false, false, 0);
2224
2225  return Result;
2226}
2227
2228SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
2229                                                    SelectionDAG &DAG) const {
2230  assert(Subtarget->isTargetELF() &&
2231         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
2232  MachineFunction &MF = DAG.getMachineFunction();
2233  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2234  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2235  EVT PtrVT = getPointerTy();
2236  DebugLoc dl = Op.getDebugLoc();
2237  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2238  ARMConstantPoolValue *CPV =
2239    ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
2240                                  ARMPCLabelIndex, PCAdj);
2241  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2242  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2243  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2244                               MachinePointerInfo::getConstantPool(),
2245                               false, false, false, 0);
2246  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2247  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2248}
2249
2250SDValue
2251ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2252  DebugLoc dl = Op.getDebugLoc();
2253  SDValue Val = DAG.getConstant(0, MVT::i32);
2254  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
2255                     DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
2256                     Op.getOperand(1), Val);
2257}
2258
2259SDValue
2260ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2261  DebugLoc dl = Op.getDebugLoc();
2262  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2263                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2264}
2265
2266SDValue
2267ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2268                                          const ARMSubtarget *Subtarget) const {
2269  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2270  DebugLoc dl = Op.getDebugLoc();
2271  switch (IntNo) {
2272  default: return SDValue();    // Don't custom lower most intrinsics.
2273  case Intrinsic::arm_thread_pointer: {
2274    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2275    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2276  }
2277  case Intrinsic::eh_sjlj_lsda: {
2278    MachineFunction &MF = DAG.getMachineFunction();
2279    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2280    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2281    EVT PtrVT = getPointerTy();
2282    DebugLoc dl = Op.getDebugLoc();
2283    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2284    SDValue CPAddr;
2285    unsigned PCAdj = (RelocM != Reloc::PIC_)
2286      ? 0 : (Subtarget->isThumb() ? 4 : 8);
2287    ARMConstantPoolValue *CPV =
2288      ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
2289                                      ARMCP::CPLSDA, PCAdj);
2290    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2291    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2292    SDValue Result =
2293      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2294                  MachinePointerInfo::getConstantPool(),
2295                  false, false, false, 0);
2296
2297    if (RelocM == Reloc::PIC_) {
2298      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2299      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2300    }
2301    return Result;
2302  }
2303  case Intrinsic::arm_neon_vmulls:
2304  case Intrinsic::arm_neon_vmullu: {
2305    unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2306      ? ARMISD::VMULLs : ARMISD::VMULLu;
2307    return DAG.getNode(NewOpc, Op.getDebugLoc(), Op.getValueType(),
2308                       Op.getOperand(1), Op.getOperand(2));
2309  }
2310  }
2311}
2312
2313static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
2314                               const ARMSubtarget *Subtarget) {
2315  DebugLoc dl = Op.getDebugLoc();
2316  if (!Subtarget->hasDataBarrier()) {
2317    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2318    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2319    // here.
2320    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2321           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2322    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2323                       DAG.getConstant(0, MVT::i32));
2324  }
2325
2326  SDValue Op5 = Op.getOperand(5);
2327  bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
2328  unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2329  unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2330  bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
2331
2332  ARM_MB::MemBOpt DMBOpt;
2333  if (isDeviceBarrier)
2334    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
2335  else
2336    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
2337  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2338                     DAG.getConstant(DMBOpt, MVT::i32));
2339}
2340
2341
2342static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
2343                                 const ARMSubtarget *Subtarget) {
2344  // FIXME: handle "fence singlethread" more efficiently.
2345  DebugLoc dl = Op.getDebugLoc();
2346  if (!Subtarget->hasDataBarrier()) {
2347    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2348    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2349    // here.
2350    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2351           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2352    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2353                       DAG.getConstant(0, MVT::i32));
2354  }
2355
2356  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2357                     DAG.getConstant(ARM_MB::ISH, MVT::i32));
2358}
2359
2360static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2361                             const ARMSubtarget *Subtarget) {
2362  // ARM pre v5TE and Thumb1 does not have preload instructions.
2363  if (!(Subtarget->isThumb2() ||
2364        (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2365    // Just preserve the chain.
2366    return Op.getOperand(0);
2367
2368  DebugLoc dl = Op.getDebugLoc();
2369  unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2370  if (!isRead &&
2371      (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2372    // ARMv7 with MP extension has PLDW.
2373    return Op.getOperand(0);
2374
2375  unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2376  if (Subtarget->isThumb()) {
2377    // Invert the bits.
2378    isRead = ~isRead & 1;
2379    isData = ~isData & 1;
2380  }
2381
2382  return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2383                     Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2384                     DAG.getConstant(isData, MVT::i32));
2385}
2386
2387static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2388  MachineFunction &MF = DAG.getMachineFunction();
2389  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2390
2391  // vastart just stores the address of the VarArgsFrameIndex slot into the
2392  // memory location argument.
2393  DebugLoc dl = Op.getDebugLoc();
2394  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2395  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2396  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2397  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2398                      MachinePointerInfo(SV), false, false, 0);
2399}
2400
2401SDValue
2402ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2403                                        SDValue &Root, SelectionDAG &DAG,
2404                                        DebugLoc dl) const {
2405  MachineFunction &MF = DAG.getMachineFunction();
2406  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2407
2408  TargetRegisterClass *RC;
2409  if (AFI->isThumb1OnlyFunction())
2410    RC = ARM::tGPRRegisterClass;
2411  else
2412    RC = ARM::GPRRegisterClass;
2413
2414  // Transform the arguments stored in physical registers into virtual ones.
2415  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2416  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2417
2418  SDValue ArgValue2;
2419  if (NextVA.isMemLoc()) {
2420    MachineFrameInfo *MFI = MF.getFrameInfo();
2421    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2422
2423    // Create load node to retrieve arguments from the stack.
2424    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2425    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2426                            MachinePointerInfo::getFixedStack(FI),
2427                            false, false, false, 0);
2428  } else {
2429    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2430    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2431  }
2432
2433  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2434}
2435
2436void
2437ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
2438                                  unsigned &VARegSize, unsigned &VARegSaveSize)
2439  const {
2440  unsigned NumGPRs;
2441  if (CCInfo.isFirstByValRegValid())
2442    NumGPRs = ARM::R4 - CCInfo.getFirstByValReg();
2443  else {
2444    unsigned int firstUnalloced;
2445    firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
2446                                                sizeof(GPRArgRegs) /
2447                                                sizeof(GPRArgRegs[0]));
2448    NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
2449  }
2450
2451  unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
2452  VARegSize = NumGPRs * 4;
2453  VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2454}
2455
2456// The remaining GPRs hold either the beginning of variable-argument
2457// data, or the beginning of an aggregate passed by value (usuall
2458// byval).  Either way, we allocate stack slots adjacent to the data
2459// provided by our caller, and store the unallocated registers there.
2460// If this is a variadic function, the va_list pointer will begin with
2461// these values; otherwise, this reassembles a (byval) structure that
2462// was split between registers and memory.
2463void
2464ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
2465                                        DebugLoc dl, SDValue &Chain,
2466                                        unsigned ArgOffset) const {
2467  MachineFunction &MF = DAG.getMachineFunction();
2468  MachineFrameInfo *MFI = MF.getFrameInfo();
2469  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2470  unsigned firstRegToSaveIndex;
2471  if (CCInfo.isFirstByValRegValid())
2472    firstRegToSaveIndex = CCInfo.getFirstByValReg() - ARM::R0;
2473  else {
2474    firstRegToSaveIndex = CCInfo.getFirstUnallocated
2475      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2476  }
2477
2478  unsigned VARegSize, VARegSaveSize;
2479  computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2480  if (VARegSaveSize) {
2481    // If this function is vararg, store any remaining integer argument regs
2482    // to their spots on the stack so that they may be loaded by deferencing
2483    // the result of va_next.
2484    AFI->setVarArgsRegSaveSize(VARegSaveSize);
2485    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(VARegSaveSize,
2486                                                     ArgOffset + VARegSaveSize
2487                                                     - VARegSize,
2488                                                     false));
2489    SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2490                                    getPointerTy());
2491
2492    SmallVector<SDValue, 4> MemOps;
2493    for (; firstRegToSaveIndex < 4; ++firstRegToSaveIndex) {
2494      TargetRegisterClass *RC;
2495      if (AFI->isThumb1OnlyFunction())
2496        RC = ARM::tGPRRegisterClass;
2497      else
2498        RC = ARM::GPRRegisterClass;
2499
2500      unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
2501      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2502      SDValue Store =
2503        DAG.getStore(Val.getValue(1), dl, Val, FIN,
2504                 MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
2505                     false, false, 0);
2506      MemOps.push_back(Store);
2507      FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2508                        DAG.getConstant(4, getPointerTy()));
2509    }
2510    if (!MemOps.empty())
2511      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2512                          &MemOps[0], MemOps.size());
2513  } else
2514    // This will point to the next argument passed via stack.
2515    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
2516}
2517
2518SDValue
2519ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2520                                        CallingConv::ID CallConv, bool isVarArg,
2521                                        const SmallVectorImpl<ISD::InputArg>
2522                                          &Ins,
2523                                        DebugLoc dl, SelectionDAG &DAG,
2524                                        SmallVectorImpl<SDValue> &InVals)
2525                                          const {
2526  MachineFunction &MF = DAG.getMachineFunction();
2527  MachineFrameInfo *MFI = MF.getFrameInfo();
2528
2529  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2530
2531  // Assign locations to all of the incoming arguments.
2532  SmallVector<CCValAssign, 16> ArgLocs;
2533  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2534                    getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
2535  CCInfo.AnalyzeFormalArguments(Ins,
2536                                CCAssignFnForNode(CallConv, /* Return*/ false,
2537                                                  isVarArg));
2538
2539  SmallVector<SDValue, 16> ArgValues;
2540  int lastInsIndex = -1;
2541
2542  SDValue ArgValue;
2543  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2544    CCValAssign &VA = ArgLocs[i];
2545
2546    // Arguments stored in registers.
2547    if (VA.isRegLoc()) {
2548      EVT RegVT = VA.getLocVT();
2549
2550      if (VA.needsCustom()) {
2551        // f64 and vector types are split up into multiple registers or
2552        // combinations of registers and stack slots.
2553        if (VA.getLocVT() == MVT::v2f64) {
2554          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2555                                                   Chain, DAG, dl);
2556          VA = ArgLocs[++i]; // skip ahead to next loc
2557          SDValue ArgValue2;
2558          if (VA.isMemLoc()) {
2559            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2560            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2561            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2562                                    MachinePointerInfo::getFixedStack(FI),
2563                                    false, false, false, 0);
2564          } else {
2565            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2566                                             Chain, DAG, dl);
2567          }
2568          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2569          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2570                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2571          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2572                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2573        } else
2574          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2575
2576      } else {
2577        TargetRegisterClass *RC;
2578
2579        if (RegVT == MVT::f32)
2580          RC = ARM::SPRRegisterClass;
2581        else if (RegVT == MVT::f64)
2582          RC = ARM::DPRRegisterClass;
2583        else if (RegVT == MVT::v2f64)
2584          RC = ARM::QPRRegisterClass;
2585        else if (RegVT == MVT::i32)
2586          RC = (AFI->isThumb1OnlyFunction() ?
2587                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
2588        else
2589          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2590
2591        // Transform the arguments in physical registers into virtual ones.
2592        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2593        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2594      }
2595
2596      // If this is an 8 or 16-bit value, it is really passed promoted
2597      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2598      // truncate to the right size.
2599      switch (VA.getLocInfo()) {
2600      default: llvm_unreachable("Unknown loc info!");
2601      case CCValAssign::Full: break;
2602      case CCValAssign::BCvt:
2603        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2604        break;
2605      case CCValAssign::SExt:
2606        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2607                               DAG.getValueType(VA.getValVT()));
2608        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2609        break;
2610      case CCValAssign::ZExt:
2611        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2612                               DAG.getValueType(VA.getValVT()));
2613        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2614        break;
2615      }
2616
2617      InVals.push_back(ArgValue);
2618
2619    } else { // VA.isRegLoc()
2620
2621      // sanity check
2622      assert(VA.isMemLoc());
2623      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2624
2625      int index = ArgLocs[i].getValNo();
2626
2627      // Some Ins[] entries become multiple ArgLoc[] entries.
2628      // Process them only once.
2629      if (index != lastInsIndex)
2630        {
2631          ISD::ArgFlagsTy Flags = Ins[index].Flags;
2632          // FIXME: For now, all byval parameter objects are marked mutable.
2633          // This can be changed with more analysis.
2634          // In case of tail call optimization mark all arguments mutable.
2635          // Since they could be overwritten by lowering of arguments in case of
2636          // a tail call.
2637          if (Flags.isByVal()) {
2638            unsigned VARegSize, VARegSaveSize;
2639            computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2640            VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 0);
2641            unsigned Bytes = Flags.getByValSize() - VARegSize;
2642            if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
2643            int FI = MFI->CreateFixedObject(Bytes,
2644                                            VA.getLocMemOffset(), false);
2645            InVals.push_back(DAG.getFrameIndex(FI, getPointerTy()));
2646          } else {
2647            int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
2648                                            VA.getLocMemOffset(), true);
2649
2650            // Create load nodes to retrieve arguments from the stack.
2651            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2652            InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2653                                         MachinePointerInfo::getFixedStack(FI),
2654                                         false, false, false, 0));
2655          }
2656          lastInsIndex = index;
2657        }
2658    }
2659  }
2660
2661  // varargs
2662  if (isVarArg)
2663    VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getNextStackOffset());
2664
2665  return Chain;
2666}
2667
2668/// isFloatingPointZero - Return true if this is +0.0.
2669static bool isFloatingPointZero(SDValue Op) {
2670  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2671    return CFP->getValueAPF().isPosZero();
2672  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2673    // Maybe this has already been legalized into the constant pool?
2674    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2675      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2676      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2677        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2678          return CFP->getValueAPF().isPosZero();
2679    }
2680  }
2681  return false;
2682}
2683
2684/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2685/// the given operands.
2686SDValue
2687ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2688                             SDValue &ARMcc, SelectionDAG &DAG,
2689                             DebugLoc dl) const {
2690  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2691    unsigned C = RHSC->getZExtValue();
2692    if (!isLegalICmpImmediate(C)) {
2693      // Constant does not fit, try adjusting it by one?
2694      switch (CC) {
2695      default: break;
2696      case ISD::SETLT:
2697      case ISD::SETGE:
2698        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
2699          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2700          RHS = DAG.getConstant(C-1, MVT::i32);
2701        }
2702        break;
2703      case ISD::SETULT:
2704      case ISD::SETUGE:
2705        if (C != 0 && isLegalICmpImmediate(C-1)) {
2706          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2707          RHS = DAG.getConstant(C-1, MVT::i32);
2708        }
2709        break;
2710      case ISD::SETLE:
2711      case ISD::SETGT:
2712        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
2713          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2714          RHS = DAG.getConstant(C+1, MVT::i32);
2715        }
2716        break;
2717      case ISD::SETULE:
2718      case ISD::SETUGT:
2719        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
2720          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2721          RHS = DAG.getConstant(C+1, MVT::i32);
2722        }
2723        break;
2724      }
2725    }
2726  }
2727
2728  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2729  ARMISD::NodeType CompareType;
2730  switch (CondCode) {
2731  default:
2732    CompareType = ARMISD::CMP;
2733    break;
2734  case ARMCC::EQ:
2735  case ARMCC::NE:
2736    // Uses only Z Flag
2737    CompareType = ARMISD::CMPZ;
2738    break;
2739  }
2740  ARMcc = DAG.getConstant(CondCode, MVT::i32);
2741  return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
2742}
2743
2744/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2745SDValue
2746ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2747                             DebugLoc dl) const {
2748  SDValue Cmp;
2749  if (!isFloatingPointZero(RHS))
2750    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
2751  else
2752    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
2753  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
2754}
2755
2756/// duplicateCmp - Glue values can have only one use, so this function
2757/// duplicates a comparison node.
2758SDValue
2759ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
2760  unsigned Opc = Cmp.getOpcode();
2761  DebugLoc DL = Cmp.getDebugLoc();
2762  if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
2763    return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2764
2765  assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
2766  Cmp = Cmp.getOperand(0);
2767  Opc = Cmp.getOpcode();
2768  if (Opc == ARMISD::CMPFP)
2769    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2770  else {
2771    assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
2772    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
2773  }
2774  return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
2775}
2776
2777SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2778  SDValue Cond = Op.getOperand(0);
2779  SDValue SelectTrue = Op.getOperand(1);
2780  SDValue SelectFalse = Op.getOperand(2);
2781  DebugLoc dl = Op.getDebugLoc();
2782
2783  // Convert:
2784  //
2785  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2786  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2787  //
2788  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2789    const ConstantSDNode *CMOVTrue =
2790      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2791    const ConstantSDNode *CMOVFalse =
2792      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2793
2794    if (CMOVTrue && CMOVFalse) {
2795      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2796      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2797
2798      SDValue True;
2799      SDValue False;
2800      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2801        True = SelectTrue;
2802        False = SelectFalse;
2803      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2804        True = SelectFalse;
2805        False = SelectTrue;
2806      }
2807
2808      if (True.getNode() && False.getNode()) {
2809        EVT VT = Op.getValueType();
2810        SDValue ARMcc = Cond.getOperand(2);
2811        SDValue CCR = Cond.getOperand(3);
2812        SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
2813        assert(True.getValueType() == VT);
2814        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2815      }
2816    }
2817  }
2818
2819  return DAG.getSelectCC(dl, Cond,
2820                         DAG.getConstant(0, Cond.getValueType()),
2821                         SelectTrue, SelectFalse, ISD::SETNE);
2822}
2823
2824SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2825  EVT VT = Op.getValueType();
2826  SDValue LHS = Op.getOperand(0);
2827  SDValue RHS = Op.getOperand(1);
2828  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2829  SDValue TrueVal = Op.getOperand(2);
2830  SDValue FalseVal = Op.getOperand(3);
2831  DebugLoc dl = Op.getDebugLoc();
2832
2833  if (LHS.getValueType() == MVT::i32) {
2834    SDValue ARMcc;
2835    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2836    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2837    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2838  }
2839
2840  ARMCC::CondCodes CondCode, CondCode2;
2841  FPCCToARMCC(CC, CondCode, CondCode2);
2842
2843  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2844  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2845  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2846  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2847                               ARMcc, CCR, Cmp);
2848  if (CondCode2 != ARMCC::AL) {
2849    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2850    // FIXME: Needs another CMP because flag can have but one use.
2851    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2852    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2853                         Result, TrueVal, ARMcc2, CCR, Cmp2);
2854  }
2855  return Result;
2856}
2857
2858/// canChangeToInt - Given the fp compare operand, return true if it is suitable
2859/// to morph to an integer compare sequence.
2860static bool canChangeToInt(SDValue Op, bool &SeenZero,
2861                           const ARMSubtarget *Subtarget) {
2862  SDNode *N = Op.getNode();
2863  if (!N->hasOneUse())
2864    // Otherwise it requires moving the value from fp to integer registers.
2865    return false;
2866  if (!N->getNumValues())
2867    return false;
2868  EVT VT = Op.getValueType();
2869  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
2870    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
2871    // vmrs are very slow, e.g. cortex-a8.
2872    return false;
2873
2874  if (isFloatingPointZero(Op)) {
2875    SeenZero = true;
2876    return true;
2877  }
2878  return ISD::isNormalLoad(N);
2879}
2880
2881static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
2882  if (isFloatingPointZero(Op))
2883    return DAG.getConstant(0, MVT::i32);
2884
2885  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
2886    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2887                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
2888                       Ld->isVolatile(), Ld->isNonTemporal(),
2889                       Ld->isInvariant(), Ld->getAlignment());
2890
2891  llvm_unreachable("Unknown VFP cmp argument!");
2892}
2893
2894static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
2895                           SDValue &RetVal1, SDValue &RetVal2) {
2896  if (isFloatingPointZero(Op)) {
2897    RetVal1 = DAG.getConstant(0, MVT::i32);
2898    RetVal2 = DAG.getConstant(0, MVT::i32);
2899    return;
2900  }
2901
2902  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
2903    SDValue Ptr = Ld->getBasePtr();
2904    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2905                          Ld->getChain(), Ptr,
2906                          Ld->getPointerInfo(),
2907                          Ld->isVolatile(), Ld->isNonTemporal(),
2908                          Ld->isInvariant(), Ld->getAlignment());
2909
2910    EVT PtrType = Ptr.getValueType();
2911    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
2912    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
2913                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
2914    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2915                          Ld->getChain(), NewPtr,
2916                          Ld->getPointerInfo().getWithOffset(4),
2917                          Ld->isVolatile(), Ld->isNonTemporal(),
2918                          Ld->isInvariant(), NewAlign);
2919    return;
2920  }
2921
2922  llvm_unreachable("Unknown VFP cmp argument!");
2923}
2924
2925/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
2926/// f32 and even f64 comparisons to integer ones.
2927SDValue
2928ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
2929  SDValue Chain = Op.getOperand(0);
2930  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2931  SDValue LHS = Op.getOperand(2);
2932  SDValue RHS = Op.getOperand(3);
2933  SDValue Dest = Op.getOperand(4);
2934  DebugLoc dl = Op.getDebugLoc();
2935
2936  bool SeenZero = false;
2937  if (canChangeToInt(LHS, SeenZero, Subtarget) &&
2938      canChangeToInt(RHS, SeenZero, Subtarget) &&
2939      // If one of the operand is zero, it's safe to ignore the NaN case since
2940      // we only care about equality comparisons.
2941      (SeenZero || (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS)))) {
2942    // If unsafe fp math optimization is enabled and there are no other uses of
2943    // the CMP operands, and the condition code is EQ or NE, we can optimize it
2944    // to an integer comparison.
2945    if (CC == ISD::SETOEQ)
2946      CC = ISD::SETEQ;
2947    else if (CC == ISD::SETUNE)
2948      CC = ISD::SETNE;
2949
2950    SDValue ARMcc;
2951    if (LHS.getValueType() == MVT::f32) {
2952      LHS = bitcastf32Toi32(LHS, DAG);
2953      RHS = bitcastf32Toi32(RHS, DAG);
2954      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2955      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2956      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2957                         Chain, Dest, ARMcc, CCR, Cmp);
2958    }
2959
2960    SDValue LHS1, LHS2;
2961    SDValue RHS1, RHS2;
2962    expandf64Toi32(LHS, DAG, LHS1, LHS2);
2963    expandf64Toi32(RHS, DAG, RHS1, RHS2);
2964    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2965    ARMcc = DAG.getConstant(CondCode, MVT::i32);
2966    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
2967    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
2968    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
2969  }
2970
2971  return SDValue();
2972}
2973
2974SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2975  SDValue Chain = Op.getOperand(0);
2976  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2977  SDValue LHS = Op.getOperand(2);
2978  SDValue RHS = Op.getOperand(3);
2979  SDValue Dest = Op.getOperand(4);
2980  DebugLoc dl = Op.getDebugLoc();
2981
2982  if (LHS.getValueType() == MVT::i32) {
2983    SDValue ARMcc;
2984    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2985    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2986    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2987                       Chain, Dest, ARMcc, CCR, Cmp);
2988  }
2989
2990  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
2991
2992  if (getTargetMachine().Options.UnsafeFPMath &&
2993      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
2994       CC == ISD::SETNE || CC == ISD::SETUNE)) {
2995    SDValue Result = OptimizeVFPBrcond(Op, DAG);
2996    if (Result.getNode())
2997      return Result;
2998  }
2999
3000  ARMCC::CondCodes CondCode, CondCode2;
3001  FPCCToARMCC(CC, CondCode, CondCode2);
3002
3003  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
3004  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
3005  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3006  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3007  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
3008  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3009  if (CondCode2 != ARMCC::AL) {
3010    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
3011    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
3012    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3013  }
3014  return Res;
3015}
3016
3017SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
3018  SDValue Chain = Op.getOperand(0);
3019  SDValue Table = Op.getOperand(1);
3020  SDValue Index = Op.getOperand(2);
3021  DebugLoc dl = Op.getDebugLoc();
3022
3023  EVT PTy = getPointerTy();
3024  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
3025  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
3026  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
3027  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
3028  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
3029  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
3030  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3031  if (Subtarget->isThumb2()) {
3032    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
3033    // which does another jump to the destination. This also makes it easier
3034    // to translate it to TBB / TBH later.
3035    // FIXME: This might not work if the function is extremely large.
3036    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
3037                       Addr, Op.getOperand(2), JTI, UId);
3038  }
3039  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
3040    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
3041                       MachinePointerInfo::getJumpTable(),
3042                       false, false, false, 0);
3043    Chain = Addr.getValue(1);
3044    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
3045    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3046  } else {
3047    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
3048                       MachinePointerInfo::getJumpTable(),
3049                       false, false, false, 0);
3050    Chain = Addr.getValue(1);
3051    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3052  }
3053}
3054
3055static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3056  assert(Op.getValueType().getVectorElementType() == MVT::i32
3057         && "Unexpected custom lowering");
3058
3059  if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
3060    return Op;
3061  return DAG.UnrollVectorOp(Op.getNode());
3062}
3063
3064static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3065  EVT VT = Op.getValueType();
3066  if (VT.isVector())
3067    return LowerVectorFP_TO_INT(Op, DAG);
3068
3069  DebugLoc dl = Op.getDebugLoc();
3070  unsigned Opc;
3071
3072  switch (Op.getOpcode()) {
3073  default: llvm_unreachable("Invalid opcode!");
3074  case ISD::FP_TO_SINT:
3075    Opc = ARMISD::FTOSI;
3076    break;
3077  case ISD::FP_TO_UINT:
3078    Opc = ARMISD::FTOUI;
3079    break;
3080  }
3081  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
3082  return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3083}
3084
3085static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3086  EVT VT = Op.getValueType();
3087  DebugLoc dl = Op.getDebugLoc();
3088
3089  if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
3090    if (VT.getVectorElementType() == MVT::f32)
3091      return Op;
3092    return DAG.UnrollVectorOp(Op.getNode());
3093  }
3094
3095  assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
3096         "Invalid type for custom lowering!");
3097  if (VT != MVT::v4f32)
3098    return DAG.UnrollVectorOp(Op.getNode());
3099
3100  unsigned CastOpc;
3101  unsigned Opc;
3102  switch (Op.getOpcode()) {
3103  default: llvm_unreachable("Invalid opcode!");
3104  case ISD::SINT_TO_FP:
3105    CastOpc = ISD::SIGN_EXTEND;
3106    Opc = ISD::SINT_TO_FP;
3107    break;
3108  case ISD::UINT_TO_FP:
3109    CastOpc = ISD::ZERO_EXTEND;
3110    Opc = ISD::UINT_TO_FP;
3111    break;
3112  }
3113
3114  Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
3115  return DAG.getNode(Opc, dl, VT, Op);
3116}
3117
3118static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3119  EVT VT = Op.getValueType();
3120  if (VT.isVector())
3121    return LowerVectorINT_TO_FP(Op, DAG);
3122
3123  DebugLoc dl = Op.getDebugLoc();
3124  unsigned Opc;
3125
3126  switch (Op.getOpcode()) {
3127  default: llvm_unreachable("Invalid opcode!");
3128  case ISD::SINT_TO_FP:
3129    Opc = ARMISD::SITOF;
3130    break;
3131  case ISD::UINT_TO_FP:
3132    Opc = ARMISD::UITOF;
3133    break;
3134  }
3135
3136  Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
3137  return DAG.getNode(Opc, dl, VT, Op);
3138}
3139
3140SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
3141  // Implement fcopysign with a fabs and a conditional fneg.
3142  SDValue Tmp0 = Op.getOperand(0);
3143  SDValue Tmp1 = Op.getOperand(1);
3144  DebugLoc dl = Op.getDebugLoc();
3145  EVT VT = Op.getValueType();
3146  EVT SrcVT = Tmp1.getValueType();
3147  bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
3148    Tmp0.getOpcode() == ARMISD::VMOVDRR;
3149  bool UseNEON = !InGPR && Subtarget->hasNEON();
3150
3151  if (UseNEON) {
3152    // Use VBSL to copy the sign bit.
3153    unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
3154    SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
3155                               DAG.getTargetConstant(EncodedVal, MVT::i32));
3156    EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
3157    if (VT == MVT::f64)
3158      Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3159                         DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
3160                         DAG.getConstant(32, MVT::i32));
3161    else /*if (VT == MVT::f32)*/
3162      Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
3163    if (SrcVT == MVT::f32) {
3164      Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
3165      if (VT == MVT::f64)
3166        Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3167                           DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
3168                           DAG.getConstant(32, MVT::i32));
3169    } else if (VT == MVT::f32)
3170      Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
3171                         DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
3172                         DAG.getConstant(32, MVT::i32));
3173    Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
3174    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
3175
3176    SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
3177                                            MVT::i32);
3178    AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
3179    SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
3180                                  DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
3181
3182    SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
3183                              DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
3184                              DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
3185    if (VT == MVT::f32) {
3186      Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
3187      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
3188                        DAG.getConstant(0, MVT::i32));
3189    } else {
3190      Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
3191    }
3192
3193    return Res;
3194  }
3195
3196  // Bitcast operand 1 to i32.
3197  if (SrcVT == MVT::f64)
3198    Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3199                       &Tmp1, 1).getValue(1);
3200  Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
3201
3202  // Or in the signbit with integer operations.
3203  SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
3204  SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
3205  Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
3206  if (VT == MVT::f32) {
3207    Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
3208                       DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
3209    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3210                       DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
3211  }
3212
3213  // f64: Or the high part with signbit and then combine two parts.
3214  Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3215                     &Tmp0, 1);
3216  SDValue Lo = Tmp0.getValue(0);
3217  SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
3218  Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
3219  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
3220}
3221
3222SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
3223  MachineFunction &MF = DAG.getMachineFunction();
3224  MachineFrameInfo *MFI = MF.getFrameInfo();
3225  MFI->setReturnAddressIsTaken(true);
3226
3227  EVT VT = Op.getValueType();
3228  DebugLoc dl = Op.getDebugLoc();
3229  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3230  if (Depth) {
3231    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3232    SDValue Offset = DAG.getConstant(4, MVT::i32);
3233    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
3234                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
3235                       MachinePointerInfo(), false, false, false, 0);
3236  }
3237
3238  // Return LR, which contains the return address. Mark it an implicit live-in.
3239  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3240  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
3241}
3242
3243SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
3244  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3245  MFI->setFrameAddressIsTaken(true);
3246
3247  EVT VT = Op.getValueType();
3248  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
3249  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3250  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
3251    ? ARM::R7 : ARM::R11;
3252  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
3253  while (Depth--)
3254    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
3255                            MachinePointerInfo(),
3256                            false, false, false, 0);
3257  return FrameAddr;
3258}
3259
3260/// ExpandBITCAST - If the target supports VFP, this function is called to
3261/// expand a bit convert where either the source or destination type is i64 to
3262/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
3263/// operand type is illegal (e.g., v2f32 for a target that doesn't support
3264/// vectors), since the legalizer won't know what to do with that.
3265static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
3266  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3267  DebugLoc dl = N->getDebugLoc();
3268  SDValue Op = N->getOperand(0);
3269
3270  // This function is only supposed to be called for i64 types, either as the
3271  // source or destination of the bit convert.
3272  EVT SrcVT = Op.getValueType();
3273  EVT DstVT = N->getValueType(0);
3274  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
3275         "ExpandBITCAST called for non-i64 type");
3276
3277  // Turn i64->f64 into VMOVDRR.
3278  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
3279    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3280                             DAG.getConstant(0, MVT::i32));
3281    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3282                             DAG.getConstant(1, MVT::i32));
3283    return DAG.getNode(ISD::BITCAST, dl, DstVT,
3284                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
3285  }
3286
3287  // Turn f64->i64 into VMOVRRD.
3288  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
3289    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
3290                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
3291    // Merge the pieces into a single i64 value.
3292    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
3293  }
3294
3295  return SDValue();
3296}
3297
3298/// getZeroVector - Returns a vector of specified type with all zero elements.
3299/// Zero vectors are used to represent vector negation and in those cases
3300/// will be implemented with the NEON VNEG instruction.  However, VNEG does
3301/// not support i64 elements, so sometimes the zero vectors will need to be
3302/// explicitly constructed.  Regardless, use a canonical VMOV to create the
3303/// zero vector.
3304static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3305  assert(VT.isVector() && "Expected a vector type");
3306  // The canonical modified immediate encoding of a zero vector is....0!
3307  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
3308  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
3309  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
3310  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3311}
3312
3313/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3314/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3315SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
3316                                                SelectionDAG &DAG) const {
3317  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3318  EVT VT = Op.getValueType();
3319  unsigned VTBits = VT.getSizeInBits();
3320  DebugLoc dl = Op.getDebugLoc();
3321  SDValue ShOpLo = Op.getOperand(0);
3322  SDValue ShOpHi = Op.getOperand(1);
3323  SDValue ShAmt  = Op.getOperand(2);
3324  SDValue ARMcc;
3325  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3326
3327  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3328
3329  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3330                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3331  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3332  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3333                                   DAG.getConstant(VTBits, MVT::i32));
3334  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3335  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3336  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3337
3338  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3339  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3340                          ARMcc, DAG, dl);
3341  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3342  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
3343                           CCR, Cmp);
3344
3345  SDValue Ops[2] = { Lo, Hi };
3346  return DAG.getMergeValues(Ops, 2, dl);
3347}
3348
3349/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
3350/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3351SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
3352                                               SelectionDAG &DAG) const {
3353  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3354  EVT VT = Op.getValueType();
3355  unsigned VTBits = VT.getSizeInBits();
3356  DebugLoc dl = Op.getDebugLoc();
3357  SDValue ShOpLo = Op.getOperand(0);
3358  SDValue ShOpHi = Op.getOperand(1);
3359  SDValue ShAmt  = Op.getOperand(2);
3360  SDValue ARMcc;
3361
3362  assert(Op.getOpcode() == ISD::SHL_PARTS);
3363  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3364                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3365  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
3366  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3367                                   DAG.getConstant(VTBits, MVT::i32));
3368  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
3369  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
3370
3371  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3372  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3373  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3374                          ARMcc, DAG, dl);
3375  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
3376  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
3377                           CCR, Cmp);
3378
3379  SDValue Ops[2] = { Lo, Hi };
3380  return DAG.getMergeValues(Ops, 2, dl);
3381}
3382
3383SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3384                                            SelectionDAG &DAG) const {
3385  // The rounding mode is in bits 23:22 of the FPSCR.
3386  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
3387  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
3388  // so that the shift + and get folded into a bitfield extract.
3389  DebugLoc dl = Op.getDebugLoc();
3390  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
3391                              DAG.getConstant(Intrinsic::arm_get_fpscr,
3392                                              MVT::i32));
3393  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
3394                                  DAG.getConstant(1U << 22, MVT::i32));
3395  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
3396                              DAG.getConstant(22, MVT::i32));
3397  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
3398                     DAG.getConstant(3, MVT::i32));
3399}
3400
3401static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
3402                         const ARMSubtarget *ST) {
3403  EVT VT = N->getValueType(0);
3404  DebugLoc dl = N->getDebugLoc();
3405
3406  if (!ST->hasV6T2Ops())
3407    return SDValue();
3408
3409  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
3410  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
3411}
3412
3413static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
3414                          const ARMSubtarget *ST) {
3415  EVT VT = N->getValueType(0);
3416  DebugLoc dl = N->getDebugLoc();
3417
3418  if (!VT.isVector())
3419    return SDValue();
3420
3421  // Lower vector shifts on NEON to use VSHL.
3422  assert(ST->hasNEON() && "unexpected vector shift");
3423
3424  // Left shifts translate directly to the vshiftu intrinsic.
3425  if (N->getOpcode() == ISD::SHL)
3426    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3427                       DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
3428                       N->getOperand(0), N->getOperand(1));
3429
3430  assert((N->getOpcode() == ISD::SRA ||
3431          N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
3432
3433  // NEON uses the same intrinsics for both left and right shifts.  For
3434  // right shifts, the shift amounts are negative, so negate the vector of
3435  // shift amounts.
3436  EVT ShiftVT = N->getOperand(1).getValueType();
3437  SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
3438                                     getZeroVector(ShiftVT, DAG, dl),
3439                                     N->getOperand(1));
3440  Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
3441                             Intrinsic::arm_neon_vshifts :
3442                             Intrinsic::arm_neon_vshiftu);
3443  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3444                     DAG.getConstant(vshiftInt, MVT::i32),
3445                     N->getOperand(0), NegatedCount);
3446}
3447
3448static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
3449                                const ARMSubtarget *ST) {
3450  EVT VT = N->getValueType(0);
3451  DebugLoc dl = N->getDebugLoc();
3452
3453  // We can get here for a node like i32 = ISD::SHL i32, i64
3454  if (VT != MVT::i64)
3455    return SDValue();
3456
3457  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
3458         "Unknown shift to lower!");
3459
3460  // We only lower SRA, SRL of 1 here, all others use generic lowering.
3461  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
3462      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
3463    return SDValue();
3464
3465  // If we are in thumb mode, we don't have RRX.
3466  if (ST->isThumb1Only()) return SDValue();
3467
3468  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
3469  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3470                           DAG.getConstant(0, MVT::i32));
3471  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3472                           DAG.getConstant(1, MVT::i32));
3473
3474  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
3475  // captures the result into a carry flag.
3476  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
3477  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
3478
3479  // The low part is an ARMISD::RRX operand, which shifts the carry in.
3480  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
3481
3482  // Merge the pieces into a single i64 value.
3483 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
3484}
3485
3486static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
3487  SDValue TmpOp0, TmpOp1;
3488  bool Invert = false;
3489  bool Swap = false;
3490  unsigned Opc = 0;
3491
3492  SDValue Op0 = Op.getOperand(0);
3493  SDValue Op1 = Op.getOperand(1);
3494  SDValue CC = Op.getOperand(2);
3495  EVT VT = Op.getValueType();
3496  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3497  DebugLoc dl = Op.getDebugLoc();
3498
3499  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
3500    switch (SetCCOpcode) {
3501    default: llvm_unreachable("Illegal FP comparison");
3502    case ISD::SETUNE:
3503    case ISD::SETNE:  Invert = true; // Fallthrough
3504    case ISD::SETOEQ:
3505    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3506    case ISD::SETOLT:
3507    case ISD::SETLT: Swap = true; // Fallthrough
3508    case ISD::SETOGT:
3509    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3510    case ISD::SETOLE:
3511    case ISD::SETLE:  Swap = true; // Fallthrough
3512    case ISD::SETOGE:
3513    case ISD::SETGE: Opc = ARMISD::VCGE; break;
3514    case ISD::SETUGE: Swap = true; // Fallthrough
3515    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
3516    case ISD::SETUGT: Swap = true; // Fallthrough
3517    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
3518    case ISD::SETUEQ: Invert = true; // Fallthrough
3519    case ISD::SETONE:
3520      // Expand this to (OLT | OGT).
3521      TmpOp0 = Op0;
3522      TmpOp1 = Op1;
3523      Opc = ISD::OR;
3524      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3525      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
3526      break;
3527    case ISD::SETUO: Invert = true; // Fallthrough
3528    case ISD::SETO:
3529      // Expand this to (OLT | OGE).
3530      TmpOp0 = Op0;
3531      TmpOp1 = Op1;
3532      Opc = ISD::OR;
3533      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3534      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
3535      break;
3536    }
3537  } else {
3538    // Integer comparisons.
3539    switch (SetCCOpcode) {
3540    default: llvm_unreachable("Illegal integer comparison");
3541    case ISD::SETNE:  Invert = true;
3542    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3543    case ISD::SETLT:  Swap = true;
3544    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3545    case ISD::SETLE:  Swap = true;
3546    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
3547    case ISD::SETULT: Swap = true;
3548    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
3549    case ISD::SETULE: Swap = true;
3550    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
3551    }
3552
3553    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
3554    if (Opc == ARMISD::VCEQ) {
3555
3556      SDValue AndOp;
3557      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3558        AndOp = Op0;
3559      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
3560        AndOp = Op1;
3561
3562      // Ignore bitconvert.
3563      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
3564        AndOp = AndOp.getOperand(0);
3565
3566      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
3567        Opc = ARMISD::VTST;
3568        Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
3569        Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
3570        Invert = !Invert;
3571      }
3572    }
3573  }
3574
3575  if (Swap)
3576    std::swap(Op0, Op1);
3577
3578  // If one of the operands is a constant vector zero, attempt to fold the
3579  // comparison to a specialized compare-against-zero form.
3580  SDValue SingleOp;
3581  if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3582    SingleOp = Op0;
3583  else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
3584    if (Opc == ARMISD::VCGE)
3585      Opc = ARMISD::VCLEZ;
3586    else if (Opc == ARMISD::VCGT)
3587      Opc = ARMISD::VCLTZ;
3588    SingleOp = Op1;
3589  }
3590
3591  SDValue Result;
3592  if (SingleOp.getNode()) {
3593    switch (Opc) {
3594    case ARMISD::VCEQ:
3595      Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
3596    case ARMISD::VCGE:
3597      Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
3598    case ARMISD::VCLEZ:
3599      Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
3600    case ARMISD::VCGT:
3601      Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
3602    case ARMISD::VCLTZ:
3603      Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
3604    default:
3605      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3606    }
3607  } else {
3608     Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3609  }
3610
3611  if (Invert)
3612    Result = DAG.getNOT(dl, Result, VT);
3613
3614  return Result;
3615}
3616
3617/// isNEONModifiedImm - Check if the specified splat value corresponds to a
3618/// valid vector constant for a NEON instruction with a "modified immediate"
3619/// operand (e.g., VMOV).  If so, return the encoded value.
3620static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3621                                 unsigned SplatBitSize, SelectionDAG &DAG,
3622                                 EVT &VT, bool is128Bits, NEONModImmType type) {
3623  unsigned OpCmode, Imm;
3624
3625  // SplatBitSize is set to the smallest size that splats the vector, so a
3626  // zero vector will always have SplatBitSize == 8.  However, NEON modified
3627  // immediate instructions others than VMOV do not support the 8-bit encoding
3628  // of a zero vector, and the default encoding of zero is supposed to be the
3629  // 32-bit version.
3630  if (SplatBits == 0)
3631    SplatBitSize = 32;
3632
3633  switch (SplatBitSize) {
3634  case 8:
3635    if (type != VMOVModImm)
3636      return SDValue();
3637    // Any 1-byte value is OK.  Op=0, Cmode=1110.
3638    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3639    OpCmode = 0xe;
3640    Imm = SplatBits;
3641    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3642    break;
3643
3644  case 16:
3645    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3646    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3647    if ((SplatBits & ~0xff) == 0) {
3648      // Value = 0x00nn: Op=x, Cmode=100x.
3649      OpCmode = 0x8;
3650      Imm = SplatBits;
3651      break;
3652    }
3653    if ((SplatBits & ~0xff00) == 0) {
3654      // Value = 0xnn00: Op=x, Cmode=101x.
3655      OpCmode = 0xa;
3656      Imm = SplatBits >> 8;
3657      break;
3658    }
3659    return SDValue();
3660
3661  case 32:
3662    // NEON's 32-bit VMOV supports splat values where:
3663    // * only one byte is nonzero, or
3664    // * the least significant byte is 0xff and the second byte is nonzero, or
3665    // * the least significant 2 bytes are 0xff and the third is nonzero.
3666    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3667    if ((SplatBits & ~0xff) == 0) {
3668      // Value = 0x000000nn: Op=x, Cmode=000x.
3669      OpCmode = 0;
3670      Imm = SplatBits;
3671      break;
3672    }
3673    if ((SplatBits & ~0xff00) == 0) {
3674      // Value = 0x0000nn00: Op=x, Cmode=001x.
3675      OpCmode = 0x2;
3676      Imm = SplatBits >> 8;
3677      break;
3678    }
3679    if ((SplatBits & ~0xff0000) == 0) {
3680      // Value = 0x00nn0000: Op=x, Cmode=010x.
3681      OpCmode = 0x4;
3682      Imm = SplatBits >> 16;
3683      break;
3684    }
3685    if ((SplatBits & ~0xff000000) == 0) {
3686      // Value = 0xnn000000: Op=x, Cmode=011x.
3687      OpCmode = 0x6;
3688      Imm = SplatBits >> 24;
3689      break;
3690    }
3691
3692    // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
3693    if (type == OtherModImm) return SDValue();
3694
3695    if ((SplatBits & ~0xffff) == 0 &&
3696        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3697      // Value = 0x0000nnff: Op=x, Cmode=1100.
3698      OpCmode = 0xc;
3699      Imm = SplatBits >> 8;
3700      SplatBits |= 0xff;
3701      break;
3702    }
3703
3704    if ((SplatBits & ~0xffffff) == 0 &&
3705        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3706      // Value = 0x00nnffff: Op=x, Cmode=1101.
3707      OpCmode = 0xd;
3708      Imm = SplatBits >> 16;
3709      SplatBits |= 0xffff;
3710      break;
3711    }
3712
3713    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3714    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3715    // VMOV.I32.  A (very) minor optimization would be to replicate the value
3716    // and fall through here to test for a valid 64-bit splat.  But, then the
3717    // caller would also need to check and handle the change in size.
3718    return SDValue();
3719
3720  case 64: {
3721    if (type != VMOVModImm)
3722      return SDValue();
3723    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3724    uint64_t BitMask = 0xff;
3725    uint64_t Val = 0;
3726    unsigned ImmMask = 1;
3727    Imm = 0;
3728    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3729      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3730        Val |= BitMask;
3731        Imm |= ImmMask;
3732      } else if ((SplatBits & BitMask) != 0) {
3733        return SDValue();
3734      }
3735      BitMask <<= 8;
3736      ImmMask <<= 1;
3737    }
3738    // Op=1, Cmode=1110.
3739    OpCmode = 0x1e;
3740    SplatBits = Val;
3741    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3742    break;
3743  }
3744
3745  default:
3746    llvm_unreachable("unexpected size for isNEONModifiedImm");
3747  }
3748
3749  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3750  return DAG.getTargetConstant(EncodedVal, MVT::i32);
3751}
3752
3753static bool isVEXTMask(ArrayRef<int> M, EVT VT,
3754                       bool &ReverseVEXT, unsigned &Imm) {
3755  unsigned NumElts = VT.getVectorNumElements();
3756  ReverseVEXT = false;
3757
3758  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
3759  if (M[0] < 0)
3760    return false;
3761
3762  Imm = M[0];
3763
3764  // If this is a VEXT shuffle, the immediate value is the index of the first
3765  // element.  The other shuffle indices must be the successive elements after
3766  // the first one.
3767  unsigned ExpectedElt = Imm;
3768  for (unsigned i = 1; i < NumElts; ++i) {
3769    // Increment the expected index.  If it wraps around, it may still be
3770    // a VEXT but the source vectors must be swapped.
3771    ExpectedElt += 1;
3772    if (ExpectedElt == NumElts * 2) {
3773      ExpectedElt = 0;
3774      ReverseVEXT = true;
3775    }
3776
3777    if (M[i] < 0) continue; // ignore UNDEF indices
3778    if (ExpectedElt != static_cast<unsigned>(M[i]))
3779      return false;
3780  }
3781
3782  // Adjust the index value if the source operands will be swapped.
3783  if (ReverseVEXT)
3784    Imm -= NumElts;
3785
3786  return true;
3787}
3788
3789/// isVREVMask - Check if a vector shuffle corresponds to a VREV
3790/// instruction with the specified blocksize.  (The order of the elements
3791/// within each block of the vector is reversed.)
3792static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
3793  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
3794         "Only possible block sizes for VREV are: 16, 32, 64");
3795
3796  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3797  if (EltSz == 64)
3798    return false;
3799
3800  unsigned NumElts = VT.getVectorNumElements();
3801  unsigned BlockElts = M[0] + 1;
3802  // If the first shuffle index is UNDEF, be optimistic.
3803  if (M[0] < 0)
3804    BlockElts = BlockSize / EltSz;
3805
3806  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3807    return false;
3808
3809  for (unsigned i = 0; i < NumElts; ++i) {
3810    if (M[i] < 0) continue; // ignore UNDEF indices
3811    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3812      return false;
3813  }
3814
3815  return true;
3816}
3817
3818static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
3819  // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
3820  // range, then 0 is placed into the resulting vector. So pretty much any mask
3821  // of 8 elements can work here.
3822  return VT == MVT::v8i8 && M.size() == 8;
3823}
3824
3825static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
3826  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3827  if (EltSz == 64)
3828    return false;
3829
3830  unsigned NumElts = VT.getVectorNumElements();
3831  WhichResult = (M[0] == 0 ? 0 : 1);
3832  for (unsigned i = 0; i < NumElts; i += 2) {
3833    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3834        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
3835      return false;
3836  }
3837  return true;
3838}
3839
3840/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
3841/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3842/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
3843static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
3844  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3845  if (EltSz == 64)
3846    return false;
3847
3848  unsigned NumElts = VT.getVectorNumElements();
3849  WhichResult = (M[0] == 0 ? 0 : 1);
3850  for (unsigned i = 0; i < NumElts; i += 2) {
3851    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3852        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
3853      return false;
3854  }
3855  return true;
3856}
3857
3858static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
3859  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3860  if (EltSz == 64)
3861    return false;
3862
3863  unsigned NumElts = VT.getVectorNumElements();
3864  WhichResult = (M[0] == 0 ? 0 : 1);
3865  for (unsigned i = 0; i != NumElts; ++i) {
3866    if (M[i] < 0) continue; // ignore UNDEF indices
3867    if ((unsigned) M[i] != 2 * i + WhichResult)
3868      return false;
3869  }
3870
3871  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3872  if (VT.is64BitVector() && EltSz == 32)
3873    return false;
3874
3875  return true;
3876}
3877
3878/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
3879/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3880/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
3881static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
3882  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3883  if (EltSz == 64)
3884    return false;
3885
3886  unsigned Half = VT.getVectorNumElements() / 2;
3887  WhichResult = (M[0] == 0 ? 0 : 1);
3888  for (unsigned j = 0; j != 2; ++j) {
3889    unsigned Idx = WhichResult;
3890    for (unsigned i = 0; i != Half; ++i) {
3891      int MIdx = M[i + j * Half];
3892      if (MIdx >= 0 && (unsigned) MIdx != Idx)
3893        return false;
3894      Idx += 2;
3895    }
3896  }
3897
3898  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3899  if (VT.is64BitVector() && EltSz == 32)
3900    return false;
3901
3902  return true;
3903}
3904
3905static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
3906  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3907  if (EltSz == 64)
3908    return false;
3909
3910  unsigned NumElts = VT.getVectorNumElements();
3911  WhichResult = (M[0] == 0 ? 0 : 1);
3912  unsigned Idx = WhichResult * NumElts / 2;
3913  for (unsigned i = 0; i != NumElts; i += 2) {
3914    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3915        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
3916      return false;
3917    Idx += 1;
3918  }
3919
3920  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3921  if (VT.is64BitVector() && EltSz == 32)
3922    return false;
3923
3924  return true;
3925}
3926
3927/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
3928/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3929/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
3930static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
3931  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3932  if (EltSz == 64)
3933    return false;
3934
3935  unsigned NumElts = VT.getVectorNumElements();
3936  WhichResult = (M[0] == 0 ? 0 : 1);
3937  unsigned Idx = WhichResult * NumElts / 2;
3938  for (unsigned i = 0; i != NumElts; i += 2) {
3939    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3940        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
3941      return false;
3942    Idx += 1;
3943  }
3944
3945  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3946  if (VT.is64BitVector() && EltSz == 32)
3947    return false;
3948
3949  return true;
3950}
3951
3952// If N is an integer constant that can be moved into a register in one
3953// instruction, return an SDValue of such a constant (will become a MOV
3954// instruction).  Otherwise return null.
3955static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
3956                                     const ARMSubtarget *ST, DebugLoc dl) {
3957  uint64_t Val;
3958  if (!isa<ConstantSDNode>(N))
3959    return SDValue();
3960  Val = cast<ConstantSDNode>(N)->getZExtValue();
3961
3962  if (ST->isThumb1Only()) {
3963    if (Val <= 255 || ~Val <= 255)
3964      return DAG.getConstant(Val, MVT::i32);
3965  } else {
3966    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
3967      return DAG.getConstant(Val, MVT::i32);
3968  }
3969  return SDValue();
3970}
3971
3972// If this is a case we can't handle, return null and let the default
3973// expansion code take care of it.
3974SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
3975                                             const ARMSubtarget *ST) const {
3976  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
3977  DebugLoc dl = Op.getDebugLoc();
3978  EVT VT = Op.getValueType();
3979
3980  APInt SplatBits, SplatUndef;
3981  unsigned SplatBitSize;
3982  bool HasAnyUndefs;
3983  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
3984    if (SplatBitSize <= 64) {
3985      // Check if an immediate VMOV works.
3986      EVT VmovVT;
3987      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
3988                                      SplatUndef.getZExtValue(), SplatBitSize,
3989                                      DAG, VmovVT, VT.is128BitVector(),
3990                                      VMOVModImm);
3991      if (Val.getNode()) {
3992        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
3993        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3994      }
3995
3996      // Try an immediate VMVN.
3997      uint64_t NegatedImm = (~SplatBits).getZExtValue();
3998      Val = isNEONModifiedImm(NegatedImm,
3999                                      SplatUndef.getZExtValue(), SplatBitSize,
4000                                      DAG, VmovVT, VT.is128BitVector(),
4001                                      VMVNModImm);
4002      if (Val.getNode()) {
4003        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
4004        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4005      }
4006
4007      // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
4008      if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
4009        int ImmVal = ARM_AM::getFP32Imm(SplatBits);
4010        if (ImmVal != -1) {
4011          SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
4012          return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
4013        }
4014      }
4015    }
4016  }
4017
4018  // Scan through the operands to see if only one value is used.
4019  unsigned NumElts = VT.getVectorNumElements();
4020  bool isOnlyLowElement = true;
4021  bool usesOnlyOneValue = true;
4022  bool isConstant = true;
4023  SDValue Value;
4024  for (unsigned i = 0; i < NumElts; ++i) {
4025    SDValue V = Op.getOperand(i);
4026    if (V.getOpcode() == ISD::UNDEF)
4027      continue;
4028    if (i > 0)
4029      isOnlyLowElement = false;
4030    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
4031      isConstant = false;
4032
4033    if (!Value.getNode())
4034      Value = V;
4035    else if (V != Value)
4036      usesOnlyOneValue = false;
4037  }
4038
4039  if (!Value.getNode())
4040    return DAG.getUNDEF(VT);
4041
4042  if (isOnlyLowElement)
4043    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
4044
4045  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4046
4047  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
4048  // i32 and try again.
4049  if (usesOnlyOneValue && EltSize <= 32) {
4050    if (!isConstant)
4051      return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
4052    if (VT.getVectorElementType().isFloatingPoint()) {
4053      SmallVector<SDValue, 8> Ops;
4054      for (unsigned i = 0; i < NumElts; ++i)
4055        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4056                                  Op.getOperand(i)));
4057      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
4058      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
4059      Val = LowerBUILD_VECTOR(Val, DAG, ST);
4060      if (Val.getNode())
4061        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4062    }
4063    SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
4064    if (Val.getNode())
4065      return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
4066  }
4067
4068  // If all elements are constants and the case above didn't get hit, fall back
4069  // to the default expansion, which will generate a load from the constant
4070  // pool.
4071  if (isConstant)
4072    return SDValue();
4073
4074  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
4075  if (NumElts >= 4) {
4076    SDValue shuffle = ReconstructShuffle(Op, DAG);
4077    if (shuffle != SDValue())
4078      return shuffle;
4079  }
4080
4081  // Vectors with 32- or 64-bit elements can be built by directly assigning
4082  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
4083  // will be legalized.
4084  if (EltSize >= 32) {
4085    // Do the expansion with floating-point types, since that is what the VFP
4086    // registers are defined to use, and since i64 is not legal.
4087    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4088    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4089    SmallVector<SDValue, 8> Ops;
4090    for (unsigned i = 0; i < NumElts; ++i)
4091      Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
4092    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4093    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4094  }
4095
4096  return SDValue();
4097}
4098
4099// Gather data to see if the operation can be modelled as a
4100// shuffle in combination with VEXTs.
4101SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
4102                                              SelectionDAG &DAG) const {
4103  DebugLoc dl = Op.getDebugLoc();
4104  EVT VT = Op.getValueType();
4105  unsigned NumElts = VT.getVectorNumElements();
4106
4107  SmallVector<SDValue, 2> SourceVecs;
4108  SmallVector<unsigned, 2> MinElts;
4109  SmallVector<unsigned, 2> MaxElts;
4110
4111  for (unsigned i = 0; i < NumElts; ++i) {
4112    SDValue V = Op.getOperand(i);
4113    if (V.getOpcode() == ISD::UNDEF)
4114      continue;
4115    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4116      // A shuffle can only come from building a vector from various
4117      // elements of other vectors.
4118      return SDValue();
4119    } else if (V.getOperand(0).getValueType().getVectorElementType() !=
4120               VT.getVectorElementType()) {
4121      // This code doesn't know how to handle shuffles where the vector
4122      // element types do not match (this happens because type legalization
4123      // promotes the return type of EXTRACT_VECTOR_ELT).
4124      // FIXME: It might be appropriate to extend this code to handle
4125      // mismatched types.
4126      return SDValue();
4127    }
4128
4129    // Record this extraction against the appropriate vector if possible...
4130    SDValue SourceVec = V.getOperand(0);
4131    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4132    bool FoundSource = false;
4133    for (unsigned j = 0; j < SourceVecs.size(); ++j) {
4134      if (SourceVecs[j] == SourceVec) {
4135        if (MinElts[j] > EltNo)
4136          MinElts[j] = EltNo;
4137        if (MaxElts[j] < EltNo)
4138          MaxElts[j] = EltNo;
4139        FoundSource = true;
4140        break;
4141      }
4142    }
4143
4144    // Or record a new source if not...
4145    if (!FoundSource) {
4146      SourceVecs.push_back(SourceVec);
4147      MinElts.push_back(EltNo);
4148      MaxElts.push_back(EltNo);
4149    }
4150  }
4151
4152  // Currently only do something sane when at most two source vectors
4153  // involved.
4154  if (SourceVecs.size() > 2)
4155    return SDValue();
4156
4157  SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
4158  int VEXTOffsets[2] = {0, 0};
4159
4160  // This loop extracts the usage patterns of the source vectors
4161  // and prepares appropriate SDValues for a shuffle if possible.
4162  for (unsigned i = 0; i < SourceVecs.size(); ++i) {
4163    if (SourceVecs[i].getValueType() == VT) {
4164      // No VEXT necessary
4165      ShuffleSrcs[i] = SourceVecs[i];
4166      VEXTOffsets[i] = 0;
4167      continue;
4168    } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
4169      // It probably isn't worth padding out a smaller vector just to
4170      // break it down again in a shuffle.
4171      return SDValue();
4172    }
4173
4174    // Since only 64-bit and 128-bit vectors are legal on ARM and
4175    // we've eliminated the other cases...
4176    assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
4177           "unexpected vector sizes in ReconstructShuffle");
4178
4179    if (MaxElts[i] - MinElts[i] >= NumElts) {
4180      // Span too large for a VEXT to cope
4181      return SDValue();
4182    }
4183
4184    if (MinElts[i] >= NumElts) {
4185      // The extraction can just take the second half
4186      VEXTOffsets[i] = NumElts;
4187      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4188                                   SourceVecs[i],
4189                                   DAG.getIntPtrConstant(NumElts));
4190    } else if (MaxElts[i] < NumElts) {
4191      // The extraction can just take the first half
4192      VEXTOffsets[i] = 0;
4193      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4194                                   SourceVecs[i],
4195                                   DAG.getIntPtrConstant(0));
4196    } else {
4197      // An actual VEXT is needed
4198      VEXTOffsets[i] = MinElts[i];
4199      SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4200                                     SourceVecs[i],
4201                                     DAG.getIntPtrConstant(0));
4202      SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4203                                     SourceVecs[i],
4204                                     DAG.getIntPtrConstant(NumElts));
4205      ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
4206                                   DAG.getConstant(VEXTOffsets[i], MVT::i32));
4207    }
4208  }
4209
4210  SmallVector<int, 8> Mask;
4211
4212  for (unsigned i = 0; i < NumElts; ++i) {
4213    SDValue Entry = Op.getOperand(i);
4214    if (Entry.getOpcode() == ISD::UNDEF) {
4215      Mask.push_back(-1);
4216      continue;
4217    }
4218
4219    SDValue ExtractVec = Entry.getOperand(0);
4220    int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
4221                                          .getOperand(1))->getSExtValue();
4222    if (ExtractVec == SourceVecs[0]) {
4223      Mask.push_back(ExtractElt - VEXTOffsets[0]);
4224    } else {
4225      Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
4226    }
4227  }
4228
4229  // Final check before we try to produce nonsense...
4230  if (isShuffleMaskLegal(Mask, VT))
4231    return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
4232                                &Mask[0]);
4233
4234  return SDValue();
4235}
4236
4237/// isShuffleMaskLegal - Targets can use this to indicate that they only
4238/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4239/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4240/// are assumed to be legal.
4241bool
4242ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
4243                                      EVT VT) const {
4244  if (VT.getVectorNumElements() == 4 &&
4245      (VT.is128BitVector() || VT.is64BitVector())) {
4246    unsigned PFIndexes[4];
4247    for (unsigned i = 0; i != 4; ++i) {
4248      if (M[i] < 0)
4249        PFIndexes[i] = 8;
4250      else
4251        PFIndexes[i] = M[i];
4252    }
4253
4254    // Compute the index in the perfect shuffle table.
4255    unsigned PFTableIndex =
4256      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4257    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4258    unsigned Cost = (PFEntry >> 30);
4259
4260    if (Cost <= 4)
4261      return true;
4262  }
4263
4264  bool ReverseVEXT;
4265  unsigned Imm, WhichResult;
4266
4267  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4268  return (EltSize >= 32 ||
4269          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
4270          isVREVMask(M, VT, 64) ||
4271          isVREVMask(M, VT, 32) ||
4272          isVREVMask(M, VT, 16) ||
4273          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
4274          isVTBLMask(M, VT) ||
4275          isVTRNMask(M, VT, WhichResult) ||
4276          isVUZPMask(M, VT, WhichResult) ||
4277          isVZIPMask(M, VT, WhichResult) ||
4278          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
4279          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
4280          isVZIP_v_undef_Mask(M, VT, WhichResult));
4281}
4282
4283/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4284/// the specified operations to build the shuffle.
4285static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4286                                      SDValue RHS, SelectionDAG &DAG,
4287                                      DebugLoc dl) {
4288  unsigned OpNum = (PFEntry >> 26) & 0x0F;
4289  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4290  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4291
4292  enum {
4293    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4294    OP_VREV,
4295    OP_VDUP0,
4296    OP_VDUP1,
4297    OP_VDUP2,
4298    OP_VDUP3,
4299    OP_VEXT1,
4300    OP_VEXT2,
4301    OP_VEXT3,
4302    OP_VUZPL, // VUZP, left result
4303    OP_VUZPR, // VUZP, right result
4304    OP_VZIPL, // VZIP, left result
4305    OP_VZIPR, // VZIP, right result
4306    OP_VTRNL, // VTRN, left result
4307    OP_VTRNR  // VTRN, right result
4308  };
4309
4310  if (OpNum == OP_COPY) {
4311    if (LHSID == (1*9+2)*9+3) return LHS;
4312    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4313    return RHS;
4314  }
4315
4316  SDValue OpLHS, OpRHS;
4317  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4318  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4319  EVT VT = OpLHS.getValueType();
4320
4321  switch (OpNum) {
4322  default: llvm_unreachable("Unknown shuffle opcode!");
4323  case OP_VREV:
4324    // VREV divides the vector in half and swaps within the half.
4325    if (VT.getVectorElementType() == MVT::i32 ||
4326        VT.getVectorElementType() == MVT::f32)
4327      return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
4328    // vrev <4 x i16> -> VREV32
4329    if (VT.getVectorElementType() == MVT::i16)
4330      return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
4331    // vrev <4 x i8> -> VREV16
4332    assert(VT.getVectorElementType() == MVT::i8);
4333    return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
4334  case OP_VDUP0:
4335  case OP_VDUP1:
4336  case OP_VDUP2:
4337  case OP_VDUP3:
4338    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4339                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
4340  case OP_VEXT1:
4341  case OP_VEXT2:
4342  case OP_VEXT3:
4343    return DAG.getNode(ARMISD::VEXT, dl, VT,
4344                       OpLHS, OpRHS,
4345                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
4346  case OP_VUZPL:
4347  case OP_VUZPR:
4348    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4349                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
4350  case OP_VZIPL:
4351  case OP_VZIPR:
4352    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4353                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
4354  case OP_VTRNL:
4355  case OP_VTRNR:
4356    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4357                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
4358  }
4359}
4360
4361static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
4362                                       ArrayRef<int> ShuffleMask,
4363                                       SelectionDAG &DAG) {
4364  // Check to see if we can use the VTBL instruction.
4365  SDValue V1 = Op.getOperand(0);
4366  SDValue V2 = Op.getOperand(1);
4367  DebugLoc DL = Op.getDebugLoc();
4368
4369  SmallVector<SDValue, 8> VTBLMask;
4370  for (ArrayRef<int>::iterator
4371         I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
4372    VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
4373
4374  if (V2.getNode()->getOpcode() == ISD::UNDEF)
4375    return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
4376                       DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4377                                   &VTBLMask[0], 8));
4378
4379  return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
4380                     DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4381                                 &VTBLMask[0], 8));
4382}
4383
4384static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4385  SDValue V1 = Op.getOperand(0);
4386  SDValue V2 = Op.getOperand(1);
4387  DebugLoc dl = Op.getDebugLoc();
4388  EVT VT = Op.getValueType();
4389  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
4390
4391  // Convert shuffles that are directly supported on NEON to target-specific
4392  // DAG nodes, instead of keeping them as shuffles and matching them again
4393  // during code selection.  This is more efficient and avoids the possibility
4394  // of inconsistencies between legalization and selection.
4395  // FIXME: floating-point vectors should be canonicalized to integer vectors
4396  // of the same time so that they get CSEd properly.
4397  ArrayRef<int> ShuffleMask = SVN->getMask();
4398
4399  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4400  if (EltSize <= 32) {
4401    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
4402      int Lane = SVN->getSplatIndex();
4403      // If this is undef splat, generate it via "just" vdup, if possible.
4404      if (Lane == -1) Lane = 0;
4405
4406      // Test if V1 is a SCALAR_TO_VECTOR.
4407      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4408        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4409      }
4410      // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
4411      // (and probably will turn into a SCALAR_TO_VECTOR once legalization
4412      // reaches it).
4413      if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
4414          !isa<ConstantSDNode>(V1.getOperand(0))) {
4415        bool IsScalarToVector = true;
4416        for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
4417          if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
4418            IsScalarToVector = false;
4419            break;
4420          }
4421        if (IsScalarToVector)
4422          return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4423      }
4424      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
4425                         DAG.getConstant(Lane, MVT::i32));
4426    }
4427
4428    bool ReverseVEXT;
4429    unsigned Imm;
4430    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
4431      if (ReverseVEXT)
4432        std::swap(V1, V2);
4433      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
4434                         DAG.getConstant(Imm, MVT::i32));
4435    }
4436
4437    if (isVREVMask(ShuffleMask, VT, 64))
4438      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
4439    if (isVREVMask(ShuffleMask, VT, 32))
4440      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
4441    if (isVREVMask(ShuffleMask, VT, 16))
4442      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
4443
4444    // Check for Neon shuffles that modify both input vectors in place.
4445    // If both results are used, i.e., if there are two shuffles with the same
4446    // source operands and with masks corresponding to both results of one of
4447    // these operations, DAG memoization will ensure that a single node is
4448    // used for both shuffles.
4449    unsigned WhichResult;
4450    if (isVTRNMask(ShuffleMask, VT, WhichResult))
4451      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4452                         V1, V2).getValue(WhichResult);
4453    if (isVUZPMask(ShuffleMask, VT, WhichResult))
4454      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4455                         V1, V2).getValue(WhichResult);
4456    if (isVZIPMask(ShuffleMask, VT, WhichResult))
4457      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4458                         V1, V2).getValue(WhichResult);
4459
4460    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
4461      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4462                         V1, V1).getValue(WhichResult);
4463    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4464      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4465                         V1, V1).getValue(WhichResult);
4466    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4467      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4468                         V1, V1).getValue(WhichResult);
4469  }
4470
4471  // If the shuffle is not directly supported and it has 4 elements, use
4472  // the PerfectShuffle-generated table to synthesize it from other shuffles.
4473  unsigned NumElts = VT.getVectorNumElements();
4474  if (NumElts == 4) {
4475    unsigned PFIndexes[4];
4476    for (unsigned i = 0; i != 4; ++i) {
4477      if (ShuffleMask[i] < 0)
4478        PFIndexes[i] = 8;
4479      else
4480        PFIndexes[i] = ShuffleMask[i];
4481    }
4482
4483    // Compute the index in the perfect shuffle table.
4484    unsigned PFTableIndex =
4485      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4486    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4487    unsigned Cost = (PFEntry >> 30);
4488
4489    if (Cost <= 4)
4490      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4491  }
4492
4493  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
4494  if (EltSize >= 32) {
4495    // Do the expansion with floating-point types, since that is what the VFP
4496    // registers are defined to use, and since i64 is not legal.
4497    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4498    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4499    V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
4500    V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
4501    SmallVector<SDValue, 8> Ops;
4502    for (unsigned i = 0; i < NumElts; ++i) {
4503      if (ShuffleMask[i] < 0)
4504        Ops.push_back(DAG.getUNDEF(EltVT));
4505      else
4506        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
4507                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
4508                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
4509                                                  MVT::i32)));
4510    }
4511    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4512    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4513  }
4514
4515  if (VT == MVT::v8i8) {
4516    SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
4517    if (NewOp.getNode())
4518      return NewOp;
4519  }
4520
4521  return SDValue();
4522}
4523
4524static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4525  // INSERT_VECTOR_ELT is legal only for immediate indexes.
4526  SDValue Lane = Op.getOperand(2);
4527  if (!isa<ConstantSDNode>(Lane))
4528    return SDValue();
4529
4530  return Op;
4531}
4532
4533static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4534  // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
4535  SDValue Lane = Op.getOperand(1);
4536  if (!isa<ConstantSDNode>(Lane))
4537    return SDValue();
4538
4539  SDValue Vec = Op.getOperand(0);
4540  if (Op.getValueType() == MVT::i32 &&
4541      Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
4542    DebugLoc dl = Op.getDebugLoc();
4543    return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
4544  }
4545
4546  return Op;
4547}
4548
4549static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
4550  // The only time a CONCAT_VECTORS operation can have legal types is when
4551  // two 64-bit vectors are concatenated to a 128-bit vector.
4552  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
4553         "unexpected CONCAT_VECTORS");
4554  DebugLoc dl = Op.getDebugLoc();
4555  SDValue Val = DAG.getUNDEF(MVT::v2f64);
4556  SDValue Op0 = Op.getOperand(0);
4557  SDValue Op1 = Op.getOperand(1);
4558  if (Op0.getOpcode() != ISD::UNDEF)
4559    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4560                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
4561                      DAG.getIntPtrConstant(0));
4562  if (Op1.getOpcode() != ISD::UNDEF)
4563    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4564                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
4565                      DAG.getIntPtrConstant(1));
4566  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
4567}
4568
4569/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
4570/// element has been zero/sign-extended, depending on the isSigned parameter,
4571/// from an integer type half its size.
4572static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
4573                                   bool isSigned) {
4574  // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
4575  EVT VT = N->getValueType(0);
4576  if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
4577    SDNode *BVN = N->getOperand(0).getNode();
4578    if (BVN->getValueType(0) != MVT::v4i32 ||
4579        BVN->getOpcode() != ISD::BUILD_VECTOR)
4580      return false;
4581    unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4582    unsigned HiElt = 1 - LoElt;
4583    ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
4584    ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
4585    ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
4586    ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
4587    if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
4588      return false;
4589    if (isSigned) {
4590      if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
4591          Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
4592        return true;
4593    } else {
4594      if (Hi0->isNullValue() && Hi1->isNullValue())
4595        return true;
4596    }
4597    return false;
4598  }
4599
4600  if (N->getOpcode() != ISD::BUILD_VECTOR)
4601    return false;
4602
4603  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
4604    SDNode *Elt = N->getOperand(i).getNode();
4605    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
4606      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4607      unsigned HalfSize = EltSize / 2;
4608      if (isSigned) {
4609        if (!isIntN(HalfSize, C->getSExtValue()))
4610          return false;
4611      } else {
4612        if (!isUIntN(HalfSize, C->getZExtValue()))
4613          return false;
4614      }
4615      continue;
4616    }
4617    return false;
4618  }
4619
4620  return true;
4621}
4622
4623/// isSignExtended - Check if a node is a vector value that is sign-extended
4624/// or a constant BUILD_VECTOR with sign-extended elements.
4625static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
4626  if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
4627    return true;
4628  if (isExtendedBUILD_VECTOR(N, DAG, true))
4629    return true;
4630  return false;
4631}
4632
4633/// isZeroExtended - Check if a node is a vector value that is zero-extended
4634/// or a constant BUILD_VECTOR with zero-extended elements.
4635static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
4636  if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
4637    return true;
4638  if (isExtendedBUILD_VECTOR(N, DAG, false))
4639    return true;
4640  return false;
4641}
4642
4643/// SkipExtension - For a node that is a SIGN_EXTEND, ZERO_EXTEND, extending
4644/// load, or BUILD_VECTOR with extended elements, return the unextended value.
4645static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
4646  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
4647    return N->getOperand(0);
4648  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
4649    return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
4650                       LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
4651                       LD->isNonTemporal(), LD->isInvariant(),
4652                       LD->getAlignment());
4653  // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
4654  // have been legalized as a BITCAST from v4i32.
4655  if (N->getOpcode() == ISD::BITCAST) {
4656    SDNode *BVN = N->getOperand(0).getNode();
4657    assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
4658           BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
4659    unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4660    return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
4661                       BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
4662  }
4663  // Construct a new BUILD_VECTOR with elements truncated to half the size.
4664  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
4665  EVT VT = N->getValueType(0);
4666  unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
4667  unsigned NumElts = VT.getVectorNumElements();
4668  MVT TruncVT = MVT::getIntegerVT(EltSize);
4669  SmallVector<SDValue, 8> Ops;
4670  for (unsigned i = 0; i != NumElts; ++i) {
4671    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
4672    const APInt &CInt = C->getAPIntValue();
4673    Ops.push_back(DAG.getConstant(CInt.trunc(EltSize), TruncVT));
4674  }
4675  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
4676                     MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
4677}
4678
4679static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
4680  unsigned Opcode = N->getOpcode();
4681  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4682    SDNode *N0 = N->getOperand(0).getNode();
4683    SDNode *N1 = N->getOperand(1).getNode();
4684    return N0->hasOneUse() && N1->hasOneUse() &&
4685      isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
4686  }
4687  return false;
4688}
4689
4690static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
4691  unsigned Opcode = N->getOpcode();
4692  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4693    SDNode *N0 = N->getOperand(0).getNode();
4694    SDNode *N1 = N->getOperand(1).getNode();
4695    return N0->hasOneUse() && N1->hasOneUse() &&
4696      isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
4697  }
4698  return false;
4699}
4700
4701static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
4702  // Multiplications are only custom-lowered for 128-bit vectors so that
4703  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
4704  EVT VT = Op.getValueType();
4705  assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
4706  SDNode *N0 = Op.getOperand(0).getNode();
4707  SDNode *N1 = Op.getOperand(1).getNode();
4708  unsigned NewOpc = 0;
4709  bool isMLA = false;
4710  bool isN0SExt = isSignExtended(N0, DAG);
4711  bool isN1SExt = isSignExtended(N1, DAG);
4712  if (isN0SExt && isN1SExt)
4713    NewOpc = ARMISD::VMULLs;
4714  else {
4715    bool isN0ZExt = isZeroExtended(N0, DAG);
4716    bool isN1ZExt = isZeroExtended(N1, DAG);
4717    if (isN0ZExt && isN1ZExt)
4718      NewOpc = ARMISD::VMULLu;
4719    else if (isN1SExt || isN1ZExt) {
4720      // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
4721      // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
4722      if (isN1SExt && isAddSubSExt(N0, DAG)) {
4723        NewOpc = ARMISD::VMULLs;
4724        isMLA = true;
4725      } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
4726        NewOpc = ARMISD::VMULLu;
4727        isMLA = true;
4728      } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
4729        std::swap(N0, N1);
4730        NewOpc = ARMISD::VMULLu;
4731        isMLA = true;
4732      }
4733    }
4734
4735    if (!NewOpc) {
4736      if (VT == MVT::v2i64)
4737        // Fall through to expand this.  It is not legal.
4738        return SDValue();
4739      else
4740        // Other vector multiplications are legal.
4741        return Op;
4742    }
4743  }
4744
4745  // Legalize to a VMULL instruction.
4746  DebugLoc DL = Op.getDebugLoc();
4747  SDValue Op0;
4748  SDValue Op1 = SkipExtension(N1, DAG);
4749  if (!isMLA) {
4750    Op0 = SkipExtension(N0, DAG);
4751    assert(Op0.getValueType().is64BitVector() &&
4752           Op1.getValueType().is64BitVector() &&
4753           "unexpected types for extended operands to VMULL");
4754    return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
4755  }
4756
4757  // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
4758  // isel lowering to take advantage of no-stall back to back vmul + vmla.
4759  //   vmull q0, d4, d6
4760  //   vmlal q0, d5, d6
4761  // is faster than
4762  //   vaddl q0, d4, d5
4763  //   vmovl q1, d6
4764  //   vmul  q0, q0, q1
4765  SDValue N00 = SkipExtension(N0->getOperand(0).getNode(), DAG);
4766  SDValue N01 = SkipExtension(N0->getOperand(1).getNode(), DAG);
4767  EVT Op1VT = Op1.getValueType();
4768  return DAG.getNode(N0->getOpcode(), DL, VT,
4769                     DAG.getNode(NewOpc, DL, VT,
4770                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
4771                     DAG.getNode(NewOpc, DL, VT,
4772                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
4773}
4774
4775static SDValue
4776LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) {
4777  // Convert to float
4778  // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
4779  // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
4780  X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
4781  Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
4782  X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
4783  Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
4784  // Get reciprocal estimate.
4785  // float4 recip = vrecpeq_f32(yf);
4786  Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4787                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
4788  // Because char has a smaller range than uchar, we can actually get away
4789  // without any newton steps.  This requires that we use a weird bias
4790  // of 0xb000, however (again, this has been exhaustively tested).
4791  // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
4792  X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
4793  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
4794  Y = DAG.getConstant(0xb000, MVT::i32);
4795  Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
4796  X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
4797  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
4798  // Convert back to short.
4799  X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
4800  X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
4801  return X;
4802}
4803
4804static SDValue
4805LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) {
4806  SDValue N2;
4807  // Convert to float.
4808  // float4 yf = vcvt_f32_s32(vmovl_s16(y));
4809  // float4 xf = vcvt_f32_s32(vmovl_s16(x));
4810  N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
4811  N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
4812  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4813  N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4814
4815  // Use reciprocal estimate and one refinement step.
4816  // float4 recip = vrecpeq_f32(yf);
4817  // recip *= vrecpsq_f32(yf, recip);
4818  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4819                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
4820  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4821                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4822                   N1, N2);
4823  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4824  // Because short has a smaller range than ushort, we can actually get away
4825  // with only a single newton step.  This requires that we use a weird bias
4826  // of 89, however (again, this has been exhaustively tested).
4827  // float4 result = as_float4(as_int4(xf*recip) + 0x89);
4828  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4829  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4830  N1 = DAG.getConstant(0x89, MVT::i32);
4831  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4832  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4833  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4834  // Convert back to integer and return.
4835  // return vmovn_s32(vcvt_s32_f32(result));
4836  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4837  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4838  return N0;
4839}
4840
4841static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
4842  EVT VT = Op.getValueType();
4843  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4844         "unexpected type for custom-lowering ISD::SDIV");
4845
4846  DebugLoc dl = Op.getDebugLoc();
4847  SDValue N0 = Op.getOperand(0);
4848  SDValue N1 = Op.getOperand(1);
4849  SDValue N2, N3;
4850
4851  if (VT == MVT::v8i8) {
4852    N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
4853    N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
4854
4855    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4856                     DAG.getIntPtrConstant(4));
4857    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4858                     DAG.getIntPtrConstant(4));
4859    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4860                     DAG.getIntPtrConstant(0));
4861    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4862                     DAG.getIntPtrConstant(0));
4863
4864    N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
4865    N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
4866
4867    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
4868    N0 = LowerCONCAT_VECTORS(N0, DAG);
4869
4870    N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
4871    return N0;
4872  }
4873  return LowerSDIV_v4i16(N0, N1, dl, DAG);
4874}
4875
4876static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
4877  EVT VT = Op.getValueType();
4878  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4879         "unexpected type for custom-lowering ISD::UDIV");
4880
4881  DebugLoc dl = Op.getDebugLoc();
4882  SDValue N0 = Op.getOperand(0);
4883  SDValue N1 = Op.getOperand(1);
4884  SDValue N2, N3;
4885
4886  if (VT == MVT::v8i8) {
4887    N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
4888    N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
4889
4890    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4891                     DAG.getIntPtrConstant(4));
4892    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4893                     DAG.getIntPtrConstant(4));
4894    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4895                     DAG.getIntPtrConstant(0));
4896    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4897                     DAG.getIntPtrConstant(0));
4898
4899    N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
4900    N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
4901
4902    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
4903    N0 = LowerCONCAT_VECTORS(N0, DAG);
4904
4905    N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
4906                     DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
4907                     N0);
4908    return N0;
4909  }
4910
4911  // v4i16 sdiv ... Convert to float.
4912  // float4 yf = vcvt_f32_s32(vmovl_u16(y));
4913  // float4 xf = vcvt_f32_s32(vmovl_u16(x));
4914  N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
4915  N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
4916  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4917  SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4918
4919  // Use reciprocal estimate and two refinement steps.
4920  // float4 recip = vrecpeq_f32(yf);
4921  // recip *= vrecpsq_f32(yf, recip);
4922  // recip *= vrecpsq_f32(yf, recip);
4923  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4924                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
4925  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4926                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4927                   BN1, N2);
4928  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4929  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4930                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4931                   BN1, N2);
4932  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4933  // Simply multiplying by the reciprocal estimate can leave us a few ulps
4934  // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
4935  // and that it will never cause us to return an answer too large).
4936  // float4 result = as_float4(as_int4(xf*recip) + 2);
4937  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4938  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4939  N1 = DAG.getConstant(2, MVT::i32);
4940  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4941  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4942  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4943  // Convert back to integer and return.
4944  // return vmovn_u32(vcvt_s32_f32(result));
4945  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4946  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4947  return N0;
4948}
4949
4950static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
4951  EVT VT = Op.getNode()->getValueType(0);
4952  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4953
4954  unsigned Opc;
4955  bool ExtraOp = false;
4956  switch (Op.getOpcode()) {
4957  default: llvm_unreachable("Invalid code");
4958  case ISD::ADDC: Opc = ARMISD::ADDC; break;
4959  case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
4960  case ISD::SUBC: Opc = ARMISD::SUBC; break;
4961  case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
4962  }
4963
4964  if (!ExtraOp)
4965    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
4966                       Op.getOperand(1));
4967  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
4968                     Op.getOperand(1), Op.getOperand(2));
4969}
4970
4971static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
4972  // Monotonic load/store is legal for all targets
4973  if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
4974    return Op;
4975
4976  // Aquire/Release load/store is not legal for targets without a
4977  // dmb or equivalent available.
4978  return SDValue();
4979}
4980
4981
4982static void
4983ReplaceATOMIC_OP_64(SDNode *Node, SmallVectorImpl<SDValue>& Results,
4984                    SelectionDAG &DAG, unsigned NewOp) {
4985  DebugLoc dl = Node->getDebugLoc();
4986  assert (Node->getValueType(0) == MVT::i64 &&
4987          "Only know how to expand i64 atomics");
4988
4989  SmallVector<SDValue, 6> Ops;
4990  Ops.push_back(Node->getOperand(0)); // Chain
4991  Ops.push_back(Node->getOperand(1)); // Ptr
4992  // Low part of Val1
4993  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4994                            Node->getOperand(2), DAG.getIntPtrConstant(0)));
4995  // High part of Val1
4996  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4997                            Node->getOperand(2), DAG.getIntPtrConstant(1)));
4998  if (NewOp == ARMISD::ATOMCMPXCHG64_DAG) {
4999    // High part of Val1
5000    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5001                              Node->getOperand(3), DAG.getIntPtrConstant(0)));
5002    // High part of Val2
5003    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5004                              Node->getOperand(3), DAG.getIntPtrConstant(1)));
5005  }
5006  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
5007  SDValue Result =
5008    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops.data(), Ops.size(), MVT::i64,
5009                            cast<MemSDNode>(Node)->getMemOperand());
5010  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1) };
5011  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
5012  Results.push_back(Result.getValue(2));
5013}
5014
5015SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5016  switch (Op.getOpcode()) {
5017  default: llvm_unreachable("Don't know how to custom lower this!");
5018  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
5019  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
5020  case ISD::GlobalAddress:
5021    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
5022      LowerGlobalAddressELF(Op, DAG);
5023  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
5024  case ISD::SELECT:        return LowerSELECT(Op, DAG);
5025  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
5026  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
5027  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
5028  case ISD::VASTART:       return LowerVASTART(Op, DAG);
5029  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
5030  case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
5031  case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
5032  case ISD::SINT_TO_FP:
5033  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
5034  case ISD::FP_TO_SINT:
5035  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
5036  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
5037  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
5038  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
5039  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
5040  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
5041  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
5042  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
5043                                                               Subtarget);
5044  case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
5045  case ISD::SHL:
5046  case ISD::SRL:
5047  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
5048  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
5049  case ISD::SRL_PARTS:
5050  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
5051  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
5052  case ISD::SETCC:         return LowerVSETCC(Op, DAG);
5053  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
5054  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
5055  case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
5056  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5057  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
5058  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
5059  case ISD::MUL:           return LowerMUL(Op, DAG);
5060  case ISD::SDIV:          return LowerSDIV(Op, DAG);
5061  case ISD::UDIV:          return LowerUDIV(Op, DAG);
5062  case ISD::ADDC:
5063  case ISD::ADDE:
5064  case ISD::SUBC:
5065  case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
5066  case ISD::ATOMIC_LOAD:
5067  case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
5068  }
5069}
5070
5071/// ReplaceNodeResults - Replace the results of node with an illegal result
5072/// type with new values built out of custom code.
5073void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
5074                                           SmallVectorImpl<SDValue>&Results,
5075                                           SelectionDAG &DAG) const {
5076  SDValue Res;
5077  switch (N->getOpcode()) {
5078  default:
5079    llvm_unreachable("Don't know how to custom expand this!");
5080  case ISD::BITCAST:
5081    Res = ExpandBITCAST(N, DAG);
5082    break;
5083  case ISD::SRL:
5084  case ISD::SRA:
5085    Res = Expand64BitShift(N, DAG, Subtarget);
5086    break;
5087  case ISD::ATOMIC_LOAD_ADD:
5088    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMADD64_DAG);
5089    return;
5090  case ISD::ATOMIC_LOAD_AND:
5091    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMAND64_DAG);
5092    return;
5093  case ISD::ATOMIC_LOAD_NAND:
5094    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMNAND64_DAG);
5095    return;
5096  case ISD::ATOMIC_LOAD_OR:
5097    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMOR64_DAG);
5098    return;
5099  case ISD::ATOMIC_LOAD_SUB:
5100    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSUB64_DAG);
5101    return;
5102  case ISD::ATOMIC_LOAD_XOR:
5103    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMXOR64_DAG);
5104    return;
5105  case ISD::ATOMIC_SWAP:
5106    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSWAP64_DAG);
5107    return;
5108  case ISD::ATOMIC_CMP_SWAP:
5109    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMCMPXCHG64_DAG);
5110    return;
5111  }
5112  if (Res.getNode())
5113    Results.push_back(Res);
5114}
5115
5116//===----------------------------------------------------------------------===//
5117//                           ARM Scheduler Hooks
5118//===----------------------------------------------------------------------===//
5119
5120MachineBasicBlock *
5121ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
5122                                     MachineBasicBlock *BB,
5123                                     unsigned Size) const {
5124  unsigned dest    = MI->getOperand(0).getReg();
5125  unsigned ptr     = MI->getOperand(1).getReg();
5126  unsigned oldval  = MI->getOperand(2).getReg();
5127  unsigned newval  = MI->getOperand(3).getReg();
5128  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5129  DebugLoc dl = MI->getDebugLoc();
5130  bool isThumb2 = Subtarget->isThumb2();
5131
5132  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5133  unsigned scratch =
5134    MRI.createVirtualRegister(isThumb2 ? ARM::rGPRRegisterClass
5135                                       : ARM::GPRRegisterClass);
5136
5137  if (isThumb2) {
5138    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5139    MRI.constrainRegClass(oldval, ARM::rGPRRegisterClass);
5140    MRI.constrainRegClass(newval, ARM::rGPRRegisterClass);
5141  }
5142
5143  unsigned ldrOpc, strOpc;
5144  switch (Size) {
5145  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5146  case 1:
5147    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5148    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5149    break;
5150  case 2:
5151    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5152    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5153    break;
5154  case 4:
5155    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5156    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5157    break;
5158  }
5159
5160  MachineFunction *MF = BB->getParent();
5161  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5162  MachineFunction::iterator It = BB;
5163  ++It; // insert the new blocks after the current block
5164
5165  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5166  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5167  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5168  MF->insert(It, loop1MBB);
5169  MF->insert(It, loop2MBB);
5170  MF->insert(It, exitMBB);
5171
5172  // Transfer the remainder of BB and its successor edges to exitMBB.
5173  exitMBB->splice(exitMBB->begin(), BB,
5174                  llvm::next(MachineBasicBlock::iterator(MI)),
5175                  BB->end());
5176  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5177
5178  //  thisMBB:
5179  //   ...
5180  //   fallthrough --> loop1MBB
5181  BB->addSuccessor(loop1MBB);
5182
5183  // loop1MBB:
5184  //   ldrex dest, [ptr]
5185  //   cmp dest, oldval
5186  //   bne exitMBB
5187  BB = loop1MBB;
5188  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5189  if (ldrOpc == ARM::t2LDREX)
5190    MIB.addImm(0);
5191  AddDefaultPred(MIB);
5192  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5193                 .addReg(dest).addReg(oldval));
5194  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5195    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5196  BB->addSuccessor(loop2MBB);
5197  BB->addSuccessor(exitMBB);
5198
5199  // loop2MBB:
5200  //   strex scratch, newval, [ptr]
5201  //   cmp scratch, #0
5202  //   bne loop1MBB
5203  BB = loop2MBB;
5204  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval).addReg(ptr);
5205  if (strOpc == ARM::t2STREX)
5206    MIB.addImm(0);
5207  AddDefaultPred(MIB);
5208  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5209                 .addReg(scratch).addImm(0));
5210  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5211    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5212  BB->addSuccessor(loop1MBB);
5213  BB->addSuccessor(exitMBB);
5214
5215  //  exitMBB:
5216  //   ...
5217  BB = exitMBB;
5218
5219  MI->eraseFromParent();   // The instruction is gone now.
5220
5221  return BB;
5222}
5223
5224MachineBasicBlock *
5225ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
5226                                    unsigned Size, unsigned BinOpcode) const {
5227  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5228  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5229
5230  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5231  MachineFunction *MF = BB->getParent();
5232  MachineFunction::iterator It = BB;
5233  ++It;
5234
5235  unsigned dest = MI->getOperand(0).getReg();
5236  unsigned ptr = MI->getOperand(1).getReg();
5237  unsigned incr = MI->getOperand(2).getReg();
5238  DebugLoc dl = MI->getDebugLoc();
5239  bool isThumb2 = Subtarget->isThumb2();
5240
5241  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5242  if (isThumb2) {
5243    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5244    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5245  }
5246
5247  unsigned ldrOpc, strOpc;
5248  switch (Size) {
5249  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5250  case 1:
5251    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5252    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5253    break;
5254  case 2:
5255    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5256    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5257    break;
5258  case 4:
5259    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5260    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5261    break;
5262  }
5263
5264  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5265  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5266  MF->insert(It, loopMBB);
5267  MF->insert(It, exitMBB);
5268
5269  // Transfer the remainder of BB and its successor edges to exitMBB.
5270  exitMBB->splice(exitMBB->begin(), BB,
5271                  llvm::next(MachineBasicBlock::iterator(MI)),
5272                  BB->end());
5273  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5274
5275  TargetRegisterClass *TRC =
5276    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5277  unsigned scratch = MRI.createVirtualRegister(TRC);
5278  unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
5279
5280  //  thisMBB:
5281  //   ...
5282  //   fallthrough --> loopMBB
5283  BB->addSuccessor(loopMBB);
5284
5285  //  loopMBB:
5286  //   ldrex dest, ptr
5287  //   <binop> scratch2, dest, incr
5288  //   strex scratch, scratch2, ptr
5289  //   cmp scratch, #0
5290  //   bne- loopMBB
5291  //   fallthrough --> exitMBB
5292  BB = loopMBB;
5293  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5294  if (ldrOpc == ARM::t2LDREX)
5295    MIB.addImm(0);
5296  AddDefaultPred(MIB);
5297  if (BinOpcode) {
5298    // operand order needs to go the other way for NAND
5299    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
5300      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5301                     addReg(incr).addReg(dest)).addReg(0);
5302    else
5303      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5304                     addReg(dest).addReg(incr)).addReg(0);
5305  }
5306
5307  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5308  if (strOpc == ARM::t2STREX)
5309    MIB.addImm(0);
5310  AddDefaultPred(MIB);
5311  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5312                 .addReg(scratch).addImm(0));
5313  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5314    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5315
5316  BB->addSuccessor(loopMBB);
5317  BB->addSuccessor(exitMBB);
5318
5319  //  exitMBB:
5320  //   ...
5321  BB = exitMBB;
5322
5323  MI->eraseFromParent();   // The instruction is gone now.
5324
5325  return BB;
5326}
5327
5328MachineBasicBlock *
5329ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI,
5330                                          MachineBasicBlock *BB,
5331                                          unsigned Size,
5332                                          bool signExtend,
5333                                          ARMCC::CondCodes Cond) const {
5334  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5335
5336  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5337  MachineFunction *MF = BB->getParent();
5338  MachineFunction::iterator It = BB;
5339  ++It;
5340
5341  unsigned dest = MI->getOperand(0).getReg();
5342  unsigned ptr = MI->getOperand(1).getReg();
5343  unsigned incr = MI->getOperand(2).getReg();
5344  unsigned oldval = dest;
5345  DebugLoc dl = MI->getDebugLoc();
5346  bool isThumb2 = Subtarget->isThumb2();
5347
5348  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5349  if (isThumb2) {
5350    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5351    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5352  }
5353
5354  unsigned ldrOpc, strOpc, extendOpc;
5355  switch (Size) {
5356  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5357  case 1:
5358    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5359    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5360    extendOpc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
5361    break;
5362  case 2:
5363    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5364    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5365    extendOpc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
5366    break;
5367  case 4:
5368    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5369    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5370    extendOpc = 0;
5371    break;
5372  }
5373
5374  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5375  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5376  MF->insert(It, loopMBB);
5377  MF->insert(It, exitMBB);
5378
5379  // Transfer the remainder of BB and its successor edges to exitMBB.
5380  exitMBB->splice(exitMBB->begin(), BB,
5381                  llvm::next(MachineBasicBlock::iterator(MI)),
5382                  BB->end());
5383  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5384
5385  TargetRegisterClass *TRC =
5386    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5387  unsigned scratch = MRI.createVirtualRegister(TRC);
5388  unsigned scratch2 = MRI.createVirtualRegister(TRC);
5389
5390  //  thisMBB:
5391  //   ...
5392  //   fallthrough --> loopMBB
5393  BB->addSuccessor(loopMBB);
5394
5395  //  loopMBB:
5396  //   ldrex dest, ptr
5397  //   (sign extend dest, if required)
5398  //   cmp dest, incr
5399  //   cmov.cond scratch2, dest, incr
5400  //   strex scratch, scratch2, ptr
5401  //   cmp scratch, #0
5402  //   bne- loopMBB
5403  //   fallthrough --> exitMBB
5404  BB = loopMBB;
5405  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5406  if (ldrOpc == ARM::t2LDREX)
5407    MIB.addImm(0);
5408  AddDefaultPred(MIB);
5409
5410  // Sign extend the value, if necessary.
5411  if (signExtend && extendOpc) {
5412    oldval = MRI.createVirtualRegister(ARM::GPRRegisterClass);
5413    AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval)
5414                     .addReg(dest)
5415                     .addImm(0));
5416  }
5417
5418  // Build compare and cmov instructions.
5419  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5420                 .addReg(oldval).addReg(incr));
5421  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2)
5422         .addReg(oldval).addReg(incr).addImm(Cond).addReg(ARM::CPSR);
5423
5424  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5425  if (strOpc == ARM::t2STREX)
5426    MIB.addImm(0);
5427  AddDefaultPred(MIB);
5428  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5429                 .addReg(scratch).addImm(0));
5430  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5431    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5432
5433  BB->addSuccessor(loopMBB);
5434  BB->addSuccessor(exitMBB);
5435
5436  //  exitMBB:
5437  //   ...
5438  BB = exitMBB;
5439
5440  MI->eraseFromParent();   // The instruction is gone now.
5441
5442  return BB;
5443}
5444
5445MachineBasicBlock *
5446ARMTargetLowering::EmitAtomicBinary64(MachineInstr *MI, MachineBasicBlock *BB,
5447                                      unsigned Op1, unsigned Op2,
5448                                      bool NeedsCarry, bool IsCmpxchg) const {
5449  // This also handles ATOMIC_SWAP, indicated by Op1==0.
5450  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5451
5452  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5453  MachineFunction *MF = BB->getParent();
5454  MachineFunction::iterator It = BB;
5455  ++It;
5456
5457  unsigned destlo = MI->getOperand(0).getReg();
5458  unsigned desthi = MI->getOperand(1).getReg();
5459  unsigned ptr = MI->getOperand(2).getReg();
5460  unsigned vallo = MI->getOperand(3).getReg();
5461  unsigned valhi = MI->getOperand(4).getReg();
5462  DebugLoc dl = MI->getDebugLoc();
5463  bool isThumb2 = Subtarget->isThumb2();
5464
5465  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5466  if (isThumb2) {
5467    MRI.constrainRegClass(destlo, ARM::rGPRRegisterClass);
5468    MRI.constrainRegClass(desthi, ARM::rGPRRegisterClass);
5469    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5470  }
5471
5472  unsigned ldrOpc = isThumb2 ? ARM::t2LDREXD : ARM::LDREXD;
5473  unsigned strOpc = isThumb2 ? ARM::t2STREXD : ARM::STREXD;
5474
5475  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5476  MachineBasicBlock *contBB = 0, *cont2BB = 0;
5477  if (IsCmpxchg) {
5478    contBB = MF->CreateMachineBasicBlock(LLVM_BB);
5479    cont2BB = MF->CreateMachineBasicBlock(LLVM_BB);
5480  }
5481  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5482  MF->insert(It, loopMBB);
5483  if (IsCmpxchg) {
5484    MF->insert(It, contBB);
5485    MF->insert(It, cont2BB);
5486  }
5487  MF->insert(It, exitMBB);
5488
5489  // Transfer the remainder of BB and its successor edges to exitMBB.
5490  exitMBB->splice(exitMBB->begin(), BB,
5491                  llvm::next(MachineBasicBlock::iterator(MI)),
5492                  BB->end());
5493  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5494
5495  TargetRegisterClass *TRC =
5496    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5497  unsigned storesuccess = MRI.createVirtualRegister(TRC);
5498
5499  //  thisMBB:
5500  //   ...
5501  //   fallthrough --> loopMBB
5502  BB->addSuccessor(loopMBB);
5503
5504  //  loopMBB:
5505  //   ldrexd r2, r3, ptr
5506  //   <binopa> r0, r2, incr
5507  //   <binopb> r1, r3, incr
5508  //   strexd storesuccess, r0, r1, ptr
5509  //   cmp storesuccess, #0
5510  //   bne- loopMBB
5511  //   fallthrough --> exitMBB
5512  //
5513  // Note that the registers are explicitly specified because there is not any
5514  // way to force the register allocator to allocate a register pair.
5515  //
5516  // FIXME: The hardcoded registers are not necessary for Thumb2, but we
5517  // need to properly enforce the restriction that the two output registers
5518  // for ldrexd must be different.
5519  BB = loopMBB;
5520  // Load
5521  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc))
5522                 .addReg(ARM::R2, RegState::Define)
5523                 .addReg(ARM::R3, RegState::Define).addReg(ptr));
5524  // Copy r2/r3 into dest.  (This copy will normally be coalesced.)
5525  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), destlo).addReg(ARM::R2);
5526  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), desthi).addReg(ARM::R3);
5527
5528  if (IsCmpxchg) {
5529    // Add early exit
5530    for (unsigned i = 0; i < 2; i++) {
5531      AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr :
5532                                                         ARM::CMPrr))
5533                     .addReg(i == 0 ? destlo : desthi)
5534                     .addReg(i == 0 ? vallo : valhi));
5535      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5536        .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5537      BB->addSuccessor(exitMBB);
5538      BB->addSuccessor(i == 0 ? contBB : cont2BB);
5539      BB = (i == 0 ? contBB : cont2BB);
5540    }
5541
5542    // Copy to physregs for strexd
5543    unsigned setlo = MI->getOperand(5).getReg();
5544    unsigned sethi = MI->getOperand(6).getReg();
5545    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(setlo);
5546    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(sethi);
5547  } else if (Op1) {
5548    // Perform binary operation
5549    AddDefaultPred(BuildMI(BB, dl, TII->get(Op1), ARM::R0)
5550                   .addReg(destlo).addReg(vallo))
5551        .addReg(NeedsCarry ? ARM::CPSR : 0, getDefRegState(NeedsCarry));
5552    AddDefaultPred(BuildMI(BB, dl, TII->get(Op2), ARM::R1)
5553                   .addReg(desthi).addReg(valhi)).addReg(0);
5554  } else {
5555    // Copy to physregs for strexd
5556    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(vallo);
5557    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(valhi);
5558  }
5559
5560  // Store
5561  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), storesuccess)
5562                 .addReg(ARM::R0).addReg(ARM::R1).addReg(ptr));
5563  // Cmp+jump
5564  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5565                 .addReg(storesuccess).addImm(0));
5566  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5567    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5568
5569  BB->addSuccessor(loopMBB);
5570  BB->addSuccessor(exitMBB);
5571
5572  //  exitMBB:
5573  //   ...
5574  BB = exitMBB;
5575
5576  MI->eraseFromParent();   // The instruction is gone now.
5577
5578  return BB;
5579}
5580
5581/// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
5582/// registers the function context.
5583void ARMTargetLowering::
5584SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
5585                       MachineBasicBlock *DispatchBB, int FI) const {
5586  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5587  DebugLoc dl = MI->getDebugLoc();
5588  MachineFunction *MF = MBB->getParent();
5589  MachineRegisterInfo *MRI = &MF->getRegInfo();
5590  MachineConstantPool *MCP = MF->getConstantPool();
5591  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
5592  const Function *F = MF->getFunction();
5593
5594  bool isThumb = Subtarget->isThumb();
5595  bool isThumb2 = Subtarget->isThumb2();
5596
5597  unsigned PCLabelId = AFI->createPICLabelUId();
5598  unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
5599  ARMConstantPoolValue *CPV =
5600    ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
5601  unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
5602
5603  const TargetRegisterClass *TRC =
5604    isThumb ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5605
5606  // Grab constant pool and fixed stack memory operands.
5607  MachineMemOperand *CPMMO =
5608    MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(),
5609                             MachineMemOperand::MOLoad, 4, 4);
5610
5611  MachineMemOperand *FIMMOSt =
5612    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
5613                             MachineMemOperand::MOStore, 4, 4);
5614
5615  // Load the address of the dispatch MBB into the jump buffer.
5616  if (isThumb2) {
5617    // Incoming value: jbuf
5618    //   ldr.n  r5, LCPI1_1
5619    //   orr    r5, r5, #1
5620    //   add    r5, pc
5621    //   str    r5, [$jbuf, #+4] ; &jbuf[1]
5622    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5623    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
5624                   .addConstantPoolIndex(CPI)
5625                   .addMemOperand(CPMMO));
5626    // Set the low bit because of thumb mode.
5627    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5628    AddDefaultCC(
5629      AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
5630                     .addReg(NewVReg1, RegState::Kill)
5631                     .addImm(0x01)));
5632    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5633    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
5634      .addReg(NewVReg2, RegState::Kill)
5635      .addImm(PCLabelId);
5636    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
5637                   .addReg(NewVReg3, RegState::Kill)
5638                   .addFrameIndex(FI)
5639                   .addImm(36)  // &jbuf[1] :: pc
5640                   .addMemOperand(FIMMOSt));
5641  } else if (isThumb) {
5642    // Incoming value: jbuf
5643    //   ldr.n  r1, LCPI1_4
5644    //   add    r1, pc
5645    //   mov    r2, #1
5646    //   orrs   r1, r2
5647    //   add    r2, $jbuf, #+4 ; &jbuf[1]
5648    //   str    r1, [r2]
5649    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5650    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
5651                   .addConstantPoolIndex(CPI)
5652                   .addMemOperand(CPMMO));
5653    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5654    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
5655      .addReg(NewVReg1, RegState::Kill)
5656      .addImm(PCLabelId);
5657    // Set the low bit because of thumb mode.
5658    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5659    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
5660                   .addReg(ARM::CPSR, RegState::Define)
5661                   .addImm(1));
5662    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5663    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
5664                   .addReg(ARM::CPSR, RegState::Define)
5665                   .addReg(NewVReg2, RegState::Kill)
5666                   .addReg(NewVReg3, RegState::Kill));
5667    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
5668    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5)
5669                   .addFrameIndex(FI)
5670                   .addImm(36)); // &jbuf[1] :: pc
5671    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
5672                   .addReg(NewVReg4, RegState::Kill)
5673                   .addReg(NewVReg5, RegState::Kill)
5674                   .addImm(0)
5675                   .addMemOperand(FIMMOSt));
5676  } else {
5677    // Incoming value: jbuf
5678    //   ldr  r1, LCPI1_1
5679    //   add  r1, pc, r1
5680    //   str  r1, [$jbuf, #+4] ; &jbuf[1]
5681    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5682    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12),  NewVReg1)
5683                   .addConstantPoolIndex(CPI)
5684                   .addImm(0)
5685                   .addMemOperand(CPMMO));
5686    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5687    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
5688                   .addReg(NewVReg1, RegState::Kill)
5689                   .addImm(PCLabelId));
5690    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
5691                   .addReg(NewVReg2, RegState::Kill)
5692                   .addFrameIndex(FI)
5693                   .addImm(36)  // &jbuf[1] :: pc
5694                   .addMemOperand(FIMMOSt));
5695  }
5696}
5697
5698MachineBasicBlock *ARMTargetLowering::
5699EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
5700  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5701  DebugLoc dl = MI->getDebugLoc();
5702  MachineFunction *MF = MBB->getParent();
5703  MachineRegisterInfo *MRI = &MF->getRegInfo();
5704  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
5705  MachineFrameInfo *MFI = MF->getFrameInfo();
5706  int FI = MFI->getFunctionContextIndex();
5707
5708  const TargetRegisterClass *TRC =
5709    Subtarget->isThumb() ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5710
5711  // Get a mapping of the call site numbers to all of the landing pads they're
5712  // associated with.
5713  DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
5714  unsigned MaxCSNum = 0;
5715  MachineModuleInfo &MMI = MF->getMMI();
5716  for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E; ++BB) {
5717    if (!BB->isLandingPad()) continue;
5718
5719    // FIXME: We should assert that the EH_LABEL is the first MI in the landing
5720    // pad.
5721    for (MachineBasicBlock::iterator
5722           II = BB->begin(), IE = BB->end(); II != IE; ++II) {
5723      if (!II->isEHLabel()) continue;
5724
5725      MCSymbol *Sym = II->getOperand(0).getMCSymbol();
5726      if (!MMI.hasCallSiteLandingPad(Sym)) continue;
5727
5728      SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
5729      for (SmallVectorImpl<unsigned>::iterator
5730             CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
5731           CSI != CSE; ++CSI) {
5732        CallSiteNumToLPad[*CSI].push_back(BB);
5733        MaxCSNum = std::max(MaxCSNum, *CSI);
5734      }
5735      break;
5736    }
5737  }
5738
5739  // Get an ordered list of the machine basic blocks for the jump table.
5740  std::vector<MachineBasicBlock*> LPadList;
5741  SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
5742  LPadList.reserve(CallSiteNumToLPad.size());
5743  for (unsigned I = 1; I <= MaxCSNum; ++I) {
5744    SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
5745    for (SmallVectorImpl<MachineBasicBlock*>::iterator
5746           II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
5747      LPadList.push_back(*II);
5748      InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
5749    }
5750  }
5751
5752  assert(!LPadList.empty() &&
5753         "No landing pad destinations for the dispatch jump table!");
5754
5755  // Create the jump table and associated information.
5756  MachineJumpTableInfo *JTI =
5757    MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
5758  unsigned MJTI = JTI->createJumpTableIndex(LPadList);
5759  unsigned UId = AFI->createJumpTableUId();
5760
5761  // Create the MBBs for the dispatch code.
5762
5763  // Shove the dispatch's address into the return slot in the function context.
5764  MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
5765  DispatchBB->setIsLandingPad();
5766
5767  MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
5768  BuildMI(TrapBB, dl, TII->get(Subtarget->isThumb() ? ARM::tTRAP : ARM::TRAP));
5769  DispatchBB->addSuccessor(TrapBB);
5770
5771  MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
5772  DispatchBB->addSuccessor(DispContBB);
5773
5774  // Insert and MBBs.
5775  MF->insert(MF->end(), DispatchBB);
5776  MF->insert(MF->end(), DispContBB);
5777  MF->insert(MF->end(), TrapBB);
5778
5779  // Insert code into the entry block that creates and registers the function
5780  // context.
5781  SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
5782
5783  MachineMemOperand *FIMMOLd =
5784    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
5785                             MachineMemOperand::MOLoad |
5786                             MachineMemOperand::MOVolatile, 4, 4);
5787
5788  if (AFI->isThumb1OnlyFunction())
5789    BuildMI(DispatchBB, dl, TII->get(ARM::tInt_eh_sjlj_dispatchsetup));
5790  else if (!Subtarget->hasVFP2())
5791    BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup_nofp));
5792  else
5793    BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
5794
5795  unsigned NumLPads = LPadList.size();
5796  if (Subtarget->isThumb2()) {
5797    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5798    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
5799                   .addFrameIndex(FI)
5800                   .addImm(4)
5801                   .addMemOperand(FIMMOLd));
5802
5803    if (NumLPads < 256) {
5804      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
5805                     .addReg(NewVReg1)
5806                     .addImm(LPadList.size()));
5807    } else {
5808      unsigned VReg1 = MRI->createVirtualRegister(TRC);
5809      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
5810                     .addImm(NumLPads & 0xFFFF));
5811
5812      unsigned VReg2 = VReg1;
5813      if ((NumLPads & 0xFFFF0000) != 0) {
5814        VReg2 = MRI->createVirtualRegister(TRC);
5815        AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
5816                       .addReg(VReg1)
5817                       .addImm(NumLPads >> 16));
5818      }
5819
5820      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
5821                     .addReg(NewVReg1)
5822                     .addReg(VReg2));
5823    }
5824
5825    BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
5826      .addMBB(TrapBB)
5827      .addImm(ARMCC::HI)
5828      .addReg(ARM::CPSR);
5829
5830    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5831    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
5832                   .addJumpTableIndex(MJTI)
5833                   .addImm(UId));
5834
5835    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5836    AddDefaultCC(
5837      AddDefaultPred(
5838        BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
5839        .addReg(NewVReg3, RegState::Kill)
5840        .addReg(NewVReg1)
5841        .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
5842
5843    BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
5844      .addReg(NewVReg4, RegState::Kill)
5845      .addReg(NewVReg1)
5846      .addJumpTableIndex(MJTI)
5847      .addImm(UId);
5848  } else if (Subtarget->isThumb()) {
5849    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5850    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
5851                   .addFrameIndex(FI)
5852                   .addImm(1)
5853                   .addMemOperand(FIMMOLd));
5854
5855    if (NumLPads < 256) {
5856      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
5857                     .addReg(NewVReg1)
5858                     .addImm(NumLPads));
5859    } else {
5860      MachineConstantPool *ConstantPool = MF->getConstantPool();
5861      Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
5862      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
5863
5864      // MachineConstantPool wants an explicit alignment.
5865      unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
5866      if (Align == 0)
5867        Align = getTargetData()->getTypeAllocSize(C->getType());
5868      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
5869
5870      unsigned VReg1 = MRI->createVirtualRegister(TRC);
5871      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
5872                     .addReg(VReg1, RegState::Define)
5873                     .addConstantPoolIndex(Idx));
5874      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
5875                     .addReg(NewVReg1)
5876                     .addReg(VReg1));
5877    }
5878
5879    BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
5880      .addMBB(TrapBB)
5881      .addImm(ARMCC::HI)
5882      .addReg(ARM::CPSR);
5883
5884    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5885    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
5886                   .addReg(ARM::CPSR, RegState::Define)
5887                   .addReg(NewVReg1)
5888                   .addImm(2));
5889
5890    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5891    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
5892                   .addJumpTableIndex(MJTI)
5893                   .addImm(UId));
5894
5895    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5896    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
5897                   .addReg(ARM::CPSR, RegState::Define)
5898                   .addReg(NewVReg2, RegState::Kill)
5899                   .addReg(NewVReg3));
5900
5901    MachineMemOperand *JTMMOLd =
5902      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
5903                               MachineMemOperand::MOLoad, 4, 4);
5904
5905    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
5906    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
5907                   .addReg(NewVReg4, RegState::Kill)
5908                   .addImm(0)
5909                   .addMemOperand(JTMMOLd));
5910
5911    unsigned NewVReg6 = MRI->createVirtualRegister(TRC);
5912    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
5913                   .addReg(ARM::CPSR, RegState::Define)
5914                   .addReg(NewVReg5, RegState::Kill)
5915                   .addReg(NewVReg3));
5916
5917    BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
5918      .addReg(NewVReg6, RegState::Kill)
5919      .addJumpTableIndex(MJTI)
5920      .addImm(UId);
5921  } else {
5922    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5923    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
5924                   .addFrameIndex(FI)
5925                   .addImm(4)
5926                   .addMemOperand(FIMMOLd));
5927
5928    if (NumLPads < 256) {
5929      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
5930                     .addReg(NewVReg1)
5931                     .addImm(NumLPads));
5932    } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
5933      unsigned VReg1 = MRI->createVirtualRegister(TRC);
5934      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
5935                     .addImm(NumLPads & 0xFFFF));
5936
5937      unsigned VReg2 = VReg1;
5938      if ((NumLPads & 0xFFFF0000) != 0) {
5939        VReg2 = MRI->createVirtualRegister(TRC);
5940        AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
5941                       .addReg(VReg1)
5942                       .addImm(NumLPads >> 16));
5943      }
5944
5945      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
5946                     .addReg(NewVReg1)
5947                     .addReg(VReg2));
5948    } else {
5949      MachineConstantPool *ConstantPool = MF->getConstantPool();
5950      Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
5951      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
5952
5953      // MachineConstantPool wants an explicit alignment.
5954      unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
5955      if (Align == 0)
5956        Align = getTargetData()->getTypeAllocSize(C->getType());
5957      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
5958
5959      unsigned VReg1 = MRI->createVirtualRegister(TRC);
5960      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
5961                     .addReg(VReg1, RegState::Define)
5962                     .addConstantPoolIndex(Idx)
5963                     .addImm(0));
5964      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
5965                     .addReg(NewVReg1)
5966                     .addReg(VReg1, RegState::Kill));
5967    }
5968
5969    BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
5970      .addMBB(TrapBB)
5971      .addImm(ARMCC::HI)
5972      .addReg(ARM::CPSR);
5973
5974    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5975    AddDefaultCC(
5976      AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
5977                     .addReg(NewVReg1)
5978                     .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
5979    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5980    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
5981                   .addJumpTableIndex(MJTI)
5982                   .addImm(UId));
5983
5984    MachineMemOperand *JTMMOLd =
5985      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
5986                               MachineMemOperand::MOLoad, 4, 4);
5987    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
5988    AddDefaultPred(
5989      BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
5990      .addReg(NewVReg3, RegState::Kill)
5991      .addReg(NewVReg4)
5992      .addImm(0)
5993      .addMemOperand(JTMMOLd));
5994
5995    BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
5996      .addReg(NewVReg5, RegState::Kill)
5997      .addReg(NewVReg4)
5998      .addJumpTableIndex(MJTI)
5999      .addImm(UId);
6000  }
6001
6002  // Add the jump table entries as successors to the MBB.
6003  MachineBasicBlock *PrevMBB = 0;
6004  for (std::vector<MachineBasicBlock*>::iterator
6005         I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
6006    MachineBasicBlock *CurMBB = *I;
6007    if (PrevMBB != CurMBB)
6008      DispContBB->addSuccessor(CurMBB);
6009    PrevMBB = CurMBB;
6010  }
6011
6012  // N.B. the order the invoke BBs are processed in doesn't matter here.
6013  const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
6014  const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
6015  const unsigned *SavedRegs = RI.getCalleeSavedRegs(MF);
6016  SmallVector<MachineBasicBlock*, 64> MBBLPads;
6017  for (SmallPtrSet<MachineBasicBlock*, 64>::iterator
6018         I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) {
6019    MachineBasicBlock *BB = *I;
6020
6021    // Remove the landing pad successor from the invoke block and replace it
6022    // with the new dispatch block.
6023    SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
6024                                                  BB->succ_end());
6025    while (!Successors.empty()) {
6026      MachineBasicBlock *SMBB = Successors.pop_back_val();
6027      if (SMBB->isLandingPad()) {
6028        BB->removeSuccessor(SMBB);
6029        MBBLPads.push_back(SMBB);
6030      }
6031    }
6032
6033    BB->addSuccessor(DispatchBB);
6034
6035    // Find the invoke call and mark all of the callee-saved registers as
6036    // 'implicit defined' so that they're spilled. This prevents code from
6037    // moving instructions to before the EH block, where they will never be
6038    // executed.
6039    for (MachineBasicBlock::reverse_iterator
6040           II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
6041      if (!II->isCall()) continue;
6042
6043      DenseMap<unsigned, bool> DefRegs;
6044      for (MachineInstr::mop_iterator
6045             OI = II->operands_begin(), OE = II->operands_end();
6046           OI != OE; ++OI) {
6047        if (!OI->isReg()) continue;
6048        DefRegs[OI->getReg()] = true;
6049      }
6050
6051      MachineInstrBuilder MIB(&*II);
6052
6053      for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
6054        unsigned Reg = SavedRegs[i];
6055        if (Subtarget->isThumb2() &&
6056            !ARM::tGPRRegisterClass->contains(Reg) &&
6057            !ARM::hGPRRegisterClass->contains(Reg))
6058          continue;
6059        else if (Subtarget->isThumb1Only() &&
6060                 !ARM::tGPRRegisterClass->contains(Reg))
6061          continue;
6062        else if (!Subtarget->isThumb() &&
6063                 !ARM::GPRRegisterClass->contains(Reg))
6064          continue;
6065        if (!DefRegs[Reg])
6066          MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
6067      }
6068
6069      break;
6070    }
6071  }
6072
6073  // Mark all former landing pads as non-landing pads. The dispatch is the only
6074  // landing pad now.
6075  for (SmallVectorImpl<MachineBasicBlock*>::iterator
6076         I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
6077    (*I)->setIsLandingPad(false);
6078
6079  // The instruction is gone now.
6080  MI->eraseFromParent();
6081
6082  return MBB;
6083}
6084
6085static
6086MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
6087  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
6088       E = MBB->succ_end(); I != E; ++I)
6089    if (*I != Succ)
6090      return *I;
6091  llvm_unreachable("Expecting a BB with two successors!");
6092}
6093
6094MachineBasicBlock *
6095ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6096                                               MachineBasicBlock *BB) const {
6097  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6098  DebugLoc dl = MI->getDebugLoc();
6099  bool isThumb2 = Subtarget->isThumb2();
6100  switch (MI->getOpcode()) {
6101  default: {
6102    MI->dump();
6103    llvm_unreachable("Unexpected instr type to insert");
6104  }
6105  // The Thumb2 pre-indexed stores have the same MI operands, they just
6106  // define them differently in the .td files from the isel patterns, so
6107  // they need pseudos.
6108  case ARM::t2STR_preidx:
6109    MI->setDesc(TII->get(ARM::t2STR_PRE));
6110    return BB;
6111  case ARM::t2STRB_preidx:
6112    MI->setDesc(TII->get(ARM::t2STRB_PRE));
6113    return BB;
6114  case ARM::t2STRH_preidx:
6115    MI->setDesc(TII->get(ARM::t2STRH_PRE));
6116    return BB;
6117
6118  case ARM::STRi_preidx:
6119  case ARM::STRBi_preidx: {
6120    unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
6121      ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
6122    // Decode the offset.
6123    unsigned Offset = MI->getOperand(4).getImm();
6124    bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
6125    Offset = ARM_AM::getAM2Offset(Offset);
6126    if (isSub)
6127      Offset = -Offset;
6128
6129    MachineMemOperand *MMO = *MI->memoperands_begin();
6130    BuildMI(*BB, MI, dl, TII->get(NewOpc))
6131      .addOperand(MI->getOperand(0))  // Rn_wb
6132      .addOperand(MI->getOperand(1))  // Rt
6133      .addOperand(MI->getOperand(2))  // Rn
6134      .addImm(Offset)                 // offset (skip GPR==zero_reg)
6135      .addOperand(MI->getOperand(5))  // pred
6136      .addOperand(MI->getOperand(6))
6137      .addMemOperand(MMO);
6138    MI->eraseFromParent();
6139    return BB;
6140  }
6141  case ARM::STRr_preidx:
6142  case ARM::STRBr_preidx:
6143  case ARM::STRH_preidx: {
6144    unsigned NewOpc;
6145    switch (MI->getOpcode()) {
6146    default: llvm_unreachable("unexpected opcode!");
6147    case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
6148    case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
6149    case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
6150    }
6151    MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
6152    for (unsigned i = 0; i < MI->getNumOperands(); ++i)
6153      MIB.addOperand(MI->getOperand(i));
6154    MI->eraseFromParent();
6155    return BB;
6156  }
6157  case ARM::ATOMIC_LOAD_ADD_I8:
6158     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6159  case ARM::ATOMIC_LOAD_ADD_I16:
6160     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6161  case ARM::ATOMIC_LOAD_ADD_I32:
6162     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6163
6164  case ARM::ATOMIC_LOAD_AND_I8:
6165     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6166  case ARM::ATOMIC_LOAD_AND_I16:
6167     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6168  case ARM::ATOMIC_LOAD_AND_I32:
6169     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6170
6171  case ARM::ATOMIC_LOAD_OR_I8:
6172     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6173  case ARM::ATOMIC_LOAD_OR_I16:
6174     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6175  case ARM::ATOMIC_LOAD_OR_I32:
6176     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6177
6178  case ARM::ATOMIC_LOAD_XOR_I8:
6179     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6180  case ARM::ATOMIC_LOAD_XOR_I16:
6181     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6182  case ARM::ATOMIC_LOAD_XOR_I32:
6183     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6184
6185  case ARM::ATOMIC_LOAD_NAND_I8:
6186     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6187  case ARM::ATOMIC_LOAD_NAND_I16:
6188     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6189  case ARM::ATOMIC_LOAD_NAND_I32:
6190     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6191
6192  case ARM::ATOMIC_LOAD_SUB_I8:
6193     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6194  case ARM::ATOMIC_LOAD_SUB_I16:
6195     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6196  case ARM::ATOMIC_LOAD_SUB_I32:
6197     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6198
6199  case ARM::ATOMIC_LOAD_MIN_I8:
6200     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT);
6201  case ARM::ATOMIC_LOAD_MIN_I16:
6202     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT);
6203  case ARM::ATOMIC_LOAD_MIN_I32:
6204     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT);
6205
6206  case ARM::ATOMIC_LOAD_MAX_I8:
6207     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT);
6208  case ARM::ATOMIC_LOAD_MAX_I16:
6209     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT);
6210  case ARM::ATOMIC_LOAD_MAX_I32:
6211     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT);
6212
6213  case ARM::ATOMIC_LOAD_UMIN_I8:
6214     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO);
6215  case ARM::ATOMIC_LOAD_UMIN_I16:
6216     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO);
6217  case ARM::ATOMIC_LOAD_UMIN_I32:
6218     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO);
6219
6220  case ARM::ATOMIC_LOAD_UMAX_I8:
6221     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI);
6222  case ARM::ATOMIC_LOAD_UMAX_I16:
6223     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI);
6224  case ARM::ATOMIC_LOAD_UMAX_I32:
6225     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI);
6226
6227  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
6228  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
6229  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
6230
6231  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
6232  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
6233  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
6234
6235
6236  case ARM::ATOMADD6432:
6237    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr,
6238                              isThumb2 ? ARM::t2ADCrr : ARM::ADCrr,
6239                              /*NeedsCarry*/ true);
6240  case ARM::ATOMSUB6432:
6241    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6242                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6243                              /*NeedsCarry*/ true);
6244  case ARM::ATOMOR6432:
6245    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr,
6246                              isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6247  case ARM::ATOMXOR6432:
6248    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2EORrr : ARM::EORrr,
6249                              isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6250  case ARM::ATOMAND6432:
6251    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr,
6252                              isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6253  case ARM::ATOMSWAP6432:
6254    return EmitAtomicBinary64(MI, BB, 0, 0, false);
6255  case ARM::ATOMCMPXCHG6432:
6256    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6257                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6258                              /*NeedsCarry*/ false, /*IsCmpxchg*/true);
6259
6260  case ARM::tMOVCCr_pseudo: {
6261    // To "insert" a SELECT_CC instruction, we actually have to insert the
6262    // diamond control-flow pattern.  The incoming instruction knows the
6263    // destination vreg to set, the condition code register to branch on, the
6264    // true/false values to select between, and a branch opcode to use.
6265    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6266    MachineFunction::iterator It = BB;
6267    ++It;
6268
6269    //  thisMBB:
6270    //  ...
6271    //   TrueVal = ...
6272    //   cmpTY ccX, r1, r2
6273    //   bCC copy1MBB
6274    //   fallthrough --> copy0MBB
6275    MachineBasicBlock *thisMBB  = BB;
6276    MachineFunction *F = BB->getParent();
6277    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6278    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
6279    F->insert(It, copy0MBB);
6280    F->insert(It, sinkMBB);
6281
6282    // Transfer the remainder of BB and its successor edges to sinkMBB.
6283    sinkMBB->splice(sinkMBB->begin(), BB,
6284                    llvm::next(MachineBasicBlock::iterator(MI)),
6285                    BB->end());
6286    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
6287
6288    BB->addSuccessor(copy0MBB);
6289    BB->addSuccessor(sinkMBB);
6290
6291    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
6292      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
6293
6294    //  copy0MBB:
6295    //   %FalseValue = ...
6296    //   # fallthrough to sinkMBB
6297    BB = copy0MBB;
6298
6299    // Update machine-CFG edges
6300    BB->addSuccessor(sinkMBB);
6301
6302    //  sinkMBB:
6303    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6304    //  ...
6305    BB = sinkMBB;
6306    BuildMI(*BB, BB->begin(), dl,
6307            TII->get(ARM::PHI), MI->getOperand(0).getReg())
6308      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
6309      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6310
6311    MI->eraseFromParent();   // The pseudo instruction is gone now.
6312    return BB;
6313  }
6314
6315  case ARM::BCCi64:
6316  case ARM::BCCZi64: {
6317    // If there is an unconditional branch to the other successor, remove it.
6318    BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
6319
6320    // Compare both parts that make up the double comparison separately for
6321    // equality.
6322    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
6323
6324    unsigned LHS1 = MI->getOperand(1).getReg();
6325    unsigned LHS2 = MI->getOperand(2).getReg();
6326    if (RHSisZero) {
6327      AddDefaultPred(BuildMI(BB, dl,
6328                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6329                     .addReg(LHS1).addImm(0));
6330      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6331        .addReg(LHS2).addImm(0)
6332        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
6333    } else {
6334      unsigned RHS1 = MI->getOperand(3).getReg();
6335      unsigned RHS2 = MI->getOperand(4).getReg();
6336      AddDefaultPred(BuildMI(BB, dl,
6337                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6338                     .addReg(LHS1).addReg(RHS1));
6339      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6340        .addReg(LHS2).addReg(RHS2)
6341        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
6342    }
6343
6344    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
6345    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
6346    if (MI->getOperand(0).getImm() == ARMCC::NE)
6347      std::swap(destMBB, exitMBB);
6348
6349    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6350      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
6351    if (isThumb2)
6352      AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
6353    else
6354      BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
6355
6356    MI->eraseFromParent();   // The pseudo instruction is gone now.
6357    return BB;
6358  }
6359
6360  case ARM::Int_eh_sjlj_setjmp:
6361  case ARM::Int_eh_sjlj_setjmp_nofp:
6362  case ARM::tInt_eh_sjlj_setjmp:
6363  case ARM::t2Int_eh_sjlj_setjmp:
6364  case ARM::t2Int_eh_sjlj_setjmp_nofp:
6365    EmitSjLjDispatchBlock(MI, BB);
6366    return BB;
6367
6368  case ARM::ABS:
6369  case ARM::t2ABS: {
6370    // To insert an ABS instruction, we have to insert the
6371    // diamond control-flow pattern.  The incoming instruction knows the
6372    // source vreg to test against 0, the destination vreg to set,
6373    // the condition code register to branch on, the
6374    // true/false values to select between, and a branch opcode to use.
6375    // It transforms
6376    //     V1 = ABS V0
6377    // into
6378    //     V2 = MOVS V0
6379    //     BCC                      (branch to SinkBB if V0 >= 0)
6380    //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
6381    //     SinkBB: V1 = PHI(V2, V3)
6382    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6383    MachineFunction::iterator BBI = BB;
6384    ++BBI;
6385    MachineFunction *Fn = BB->getParent();
6386    MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
6387    MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
6388    Fn->insert(BBI, RSBBB);
6389    Fn->insert(BBI, SinkBB);
6390
6391    unsigned int ABSSrcReg = MI->getOperand(1).getReg();
6392    unsigned int ABSDstReg = MI->getOperand(0).getReg();
6393    bool isThumb2 = Subtarget->isThumb2();
6394    MachineRegisterInfo &MRI = Fn->getRegInfo();
6395    // In Thumb mode S must not be specified if source register is the SP or
6396    // PC and if destination register is the SP, so restrict register class
6397    unsigned NewMovDstReg = MRI.createVirtualRegister(
6398      isThumb2 ? ARM::rGPRRegisterClass : ARM::GPRRegisterClass);
6399    unsigned NewRsbDstReg = MRI.createVirtualRegister(
6400      isThumb2 ? ARM::rGPRRegisterClass : ARM::GPRRegisterClass);
6401
6402    // Transfer the remainder of BB and its successor edges to sinkMBB.
6403    SinkBB->splice(SinkBB->begin(), BB,
6404      llvm::next(MachineBasicBlock::iterator(MI)),
6405      BB->end());
6406    SinkBB->transferSuccessorsAndUpdatePHIs(BB);
6407
6408    BB->addSuccessor(RSBBB);
6409    BB->addSuccessor(SinkBB);
6410
6411    // fall through to SinkMBB
6412    RSBBB->addSuccessor(SinkBB);
6413
6414    // insert a movs at the end of BB
6415    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVr : ARM::MOVr),
6416      NewMovDstReg)
6417      .addReg(ABSSrcReg, RegState::Kill)
6418      .addImm((unsigned)ARMCC::AL).addReg(0)
6419      .addReg(ARM::CPSR, RegState::Define);
6420
6421    // insert a bcc with opposite CC to ARMCC::MI at the end of BB
6422    BuildMI(BB, dl,
6423      TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
6424      .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
6425
6426    // insert rsbri in RSBBB
6427    // Note: BCC and rsbri will be converted into predicated rsbmi
6428    // by if-conversion pass
6429    BuildMI(*RSBBB, RSBBB->begin(), dl,
6430      TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
6431      .addReg(NewMovDstReg, RegState::Kill)
6432      .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
6433
6434    // insert PHI in SinkBB,
6435    // reuse ABSDstReg to not change uses of ABS instruction
6436    BuildMI(*SinkBB, SinkBB->begin(), dl,
6437      TII->get(ARM::PHI), ABSDstReg)
6438      .addReg(NewRsbDstReg).addMBB(RSBBB)
6439      .addReg(NewMovDstReg).addMBB(BB);
6440
6441    // remove ABS instruction
6442    MI->eraseFromParent();
6443
6444    // return last added BB
6445    return SinkBB;
6446  }
6447  }
6448}
6449
6450void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
6451                                                      SDNode *Node) const {
6452  if (!MI->hasPostISelHook()) {
6453    assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
6454           "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'");
6455    return;
6456  }
6457
6458  const MCInstrDesc *MCID = &MI->getDesc();
6459  // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
6460  // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
6461  // operand is still set to noreg. If needed, set the optional operand's
6462  // register to CPSR, and remove the redundant implicit def.
6463  //
6464  // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
6465
6466  // Rename pseudo opcodes.
6467  unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
6468  if (NewOpc) {
6469    const ARMBaseInstrInfo *TII =
6470      static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo());
6471    MCID = &TII->get(NewOpc);
6472
6473    assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
6474           "converted opcode should be the same except for cc_out");
6475
6476    MI->setDesc(*MCID);
6477
6478    // Add the optional cc_out operand
6479    MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
6480  }
6481  unsigned ccOutIdx = MCID->getNumOperands() - 1;
6482
6483  // Any ARM instruction that sets the 's' bit should specify an optional
6484  // "cc_out" operand in the last operand position.
6485  if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
6486    assert(!NewOpc && "Optional cc_out operand required");
6487    return;
6488  }
6489  // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
6490  // since we already have an optional CPSR def.
6491  bool definesCPSR = false;
6492  bool deadCPSR = false;
6493  for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
6494       i != e; ++i) {
6495    const MachineOperand &MO = MI->getOperand(i);
6496    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
6497      definesCPSR = true;
6498      if (MO.isDead())
6499        deadCPSR = true;
6500      MI->RemoveOperand(i);
6501      break;
6502    }
6503  }
6504  if (!definesCPSR) {
6505    assert(!NewOpc && "Optional cc_out operand required");
6506    return;
6507  }
6508  assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
6509  if (deadCPSR) {
6510    assert(!MI->getOperand(ccOutIdx).getReg() &&
6511           "expect uninitialized optional cc_out operand");
6512    return;
6513  }
6514
6515  // If this instruction was defined with an optional CPSR def and its dag node
6516  // had a live implicit CPSR def, then activate the optional CPSR def.
6517  MachineOperand &MO = MI->getOperand(ccOutIdx);
6518  MO.setReg(ARM::CPSR);
6519  MO.setIsDef(true);
6520}
6521
6522//===----------------------------------------------------------------------===//
6523//                           ARM Optimization Hooks
6524//===----------------------------------------------------------------------===//
6525
6526static
6527SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
6528                            TargetLowering::DAGCombinerInfo &DCI) {
6529  SelectionDAG &DAG = DCI.DAG;
6530  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6531  EVT VT = N->getValueType(0);
6532  unsigned Opc = N->getOpcode();
6533  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
6534  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
6535  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
6536  ISD::CondCode CC = ISD::SETCC_INVALID;
6537
6538  if (isSlctCC) {
6539    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
6540  } else {
6541    SDValue CCOp = Slct.getOperand(0);
6542    if (CCOp.getOpcode() == ISD::SETCC)
6543      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
6544  }
6545
6546  bool DoXform = false;
6547  bool InvCC = false;
6548  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
6549          "Bad input!");
6550
6551  if (LHS.getOpcode() == ISD::Constant &&
6552      cast<ConstantSDNode>(LHS)->isNullValue()) {
6553    DoXform = true;
6554  } else if (CC != ISD::SETCC_INVALID &&
6555             RHS.getOpcode() == ISD::Constant &&
6556             cast<ConstantSDNode>(RHS)->isNullValue()) {
6557    std::swap(LHS, RHS);
6558    SDValue Op0 = Slct.getOperand(0);
6559    EVT OpVT = isSlctCC ? Op0.getValueType() :
6560                          Op0.getOperand(0).getValueType();
6561    bool isInt = OpVT.isInteger();
6562    CC = ISD::getSetCCInverse(CC, isInt);
6563
6564    if (!TLI.isCondCodeLegal(CC, OpVT))
6565      return SDValue();         // Inverse operator isn't legal.
6566
6567    DoXform = true;
6568    InvCC = true;
6569  }
6570
6571  if (DoXform) {
6572    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
6573    if (isSlctCC)
6574      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
6575                             Slct.getOperand(0), Slct.getOperand(1), CC);
6576    SDValue CCOp = Slct.getOperand(0);
6577    if (InvCC)
6578      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
6579                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
6580    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
6581                       CCOp, OtherOp, Result);
6582  }
6583  return SDValue();
6584}
6585
6586// AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
6587// (only after legalization).
6588static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
6589                                 TargetLowering::DAGCombinerInfo &DCI,
6590                                 const ARMSubtarget *Subtarget) {
6591
6592  // Only perform optimization if after legalize, and if NEON is available. We
6593  // also expected both operands to be BUILD_VECTORs.
6594  if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
6595      || N0.getOpcode() != ISD::BUILD_VECTOR
6596      || N1.getOpcode() != ISD::BUILD_VECTOR)
6597    return SDValue();
6598
6599  // Check output type since VPADDL operand elements can only be 8, 16, or 32.
6600  EVT VT = N->getValueType(0);
6601  if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
6602    return SDValue();
6603
6604  // Check that the vector operands are of the right form.
6605  // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
6606  // operands, where N is the size of the formed vector.
6607  // Each EXTRACT_VECTOR should have the same input vector and odd or even
6608  // index such that we have a pair wise add pattern.
6609
6610  // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
6611  if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6612    return SDValue();
6613  SDValue Vec = N0->getOperand(0)->getOperand(0);
6614  SDNode *V = Vec.getNode();
6615  unsigned nextIndex = 0;
6616
6617  // For each operands to the ADD which are BUILD_VECTORs,
6618  // check to see if each of their operands are an EXTRACT_VECTOR with
6619  // the same vector and appropriate index.
6620  for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
6621    if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
6622        && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
6623
6624      SDValue ExtVec0 = N0->getOperand(i);
6625      SDValue ExtVec1 = N1->getOperand(i);
6626
6627      // First operand is the vector, verify its the same.
6628      if (V != ExtVec0->getOperand(0).getNode() ||
6629          V != ExtVec1->getOperand(0).getNode())
6630        return SDValue();
6631
6632      // Second is the constant, verify its correct.
6633      ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
6634      ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
6635
6636      // For the constant, we want to see all the even or all the odd.
6637      if (!C0 || !C1 || C0->getZExtValue() != nextIndex
6638          || C1->getZExtValue() != nextIndex+1)
6639        return SDValue();
6640
6641      // Increment index.
6642      nextIndex+=2;
6643    } else
6644      return SDValue();
6645  }
6646
6647  // Create VPADDL node.
6648  SelectionDAG &DAG = DCI.DAG;
6649  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6650
6651  // Build operand list.
6652  SmallVector<SDValue, 8> Ops;
6653  Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
6654                                TLI.getPointerTy()));
6655
6656  // Input is the vector.
6657  Ops.push_back(Vec);
6658
6659  // Get widened type and narrowed type.
6660  MVT widenType;
6661  unsigned numElem = VT.getVectorNumElements();
6662  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
6663    case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
6664    case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
6665    case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
6666    default:
6667      llvm_unreachable("Invalid vector element type for padd optimization.");
6668  }
6669
6670  SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
6671                            widenType, &Ops[0], Ops.size());
6672  return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, tmp);
6673}
6674
6675/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
6676/// operands N0 and N1.  This is a helper for PerformADDCombine that is
6677/// called with the default operands, and if that fails, with commuted
6678/// operands.
6679static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
6680                                          TargetLowering::DAGCombinerInfo &DCI,
6681                                          const ARMSubtarget *Subtarget){
6682
6683  // Attempt to create vpaddl for this add.
6684  SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
6685  if (Result.getNode())
6686    return Result;
6687
6688  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
6689  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
6690    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
6691    if (Result.getNode()) return Result;
6692  }
6693  return SDValue();
6694}
6695
6696/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
6697///
6698static SDValue PerformADDCombine(SDNode *N,
6699                                 TargetLowering::DAGCombinerInfo &DCI,
6700                                 const ARMSubtarget *Subtarget) {
6701  SDValue N0 = N->getOperand(0);
6702  SDValue N1 = N->getOperand(1);
6703
6704  // First try with the default operand order.
6705  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
6706  if (Result.getNode())
6707    return Result;
6708
6709  // If that didn't work, try again with the operands commuted.
6710  return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
6711}
6712
6713/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
6714///
6715static SDValue PerformSUBCombine(SDNode *N,
6716                                 TargetLowering::DAGCombinerInfo &DCI) {
6717  SDValue N0 = N->getOperand(0);
6718  SDValue N1 = N->getOperand(1);
6719
6720  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
6721  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
6722    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
6723    if (Result.getNode()) return Result;
6724  }
6725
6726  return SDValue();
6727}
6728
6729/// PerformVMULCombine
6730/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
6731/// special multiplier accumulator forwarding.
6732///   vmul d3, d0, d2
6733///   vmla d3, d1, d2
6734/// is faster than
6735///   vadd d3, d0, d1
6736///   vmul d3, d3, d2
6737static SDValue PerformVMULCombine(SDNode *N,
6738                                  TargetLowering::DAGCombinerInfo &DCI,
6739                                  const ARMSubtarget *Subtarget) {
6740  if (!Subtarget->hasVMLxForwarding())
6741    return SDValue();
6742
6743  SelectionDAG &DAG = DCI.DAG;
6744  SDValue N0 = N->getOperand(0);
6745  SDValue N1 = N->getOperand(1);
6746  unsigned Opcode = N0.getOpcode();
6747  if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
6748      Opcode != ISD::FADD && Opcode != ISD::FSUB) {
6749    Opcode = N1.getOpcode();
6750    if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
6751        Opcode != ISD::FADD && Opcode != ISD::FSUB)
6752      return SDValue();
6753    std::swap(N0, N1);
6754  }
6755
6756  EVT VT = N->getValueType(0);
6757  DebugLoc DL = N->getDebugLoc();
6758  SDValue N00 = N0->getOperand(0);
6759  SDValue N01 = N0->getOperand(1);
6760  return DAG.getNode(Opcode, DL, VT,
6761                     DAG.getNode(ISD::MUL, DL, VT, N00, N1),
6762                     DAG.getNode(ISD::MUL, DL, VT, N01, N1));
6763}
6764
6765static SDValue PerformMULCombine(SDNode *N,
6766                                 TargetLowering::DAGCombinerInfo &DCI,
6767                                 const ARMSubtarget *Subtarget) {
6768  SelectionDAG &DAG = DCI.DAG;
6769
6770  if (Subtarget->isThumb1Only())
6771    return SDValue();
6772
6773  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
6774    return SDValue();
6775
6776  EVT VT = N->getValueType(0);
6777  if (VT.is64BitVector() || VT.is128BitVector())
6778    return PerformVMULCombine(N, DCI, Subtarget);
6779  if (VT != MVT::i32)
6780    return SDValue();
6781
6782  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
6783  if (!C)
6784    return SDValue();
6785
6786  uint64_t MulAmt = C->getZExtValue();
6787  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
6788  ShiftAmt = ShiftAmt & (32 - 1);
6789  SDValue V = N->getOperand(0);
6790  DebugLoc DL = N->getDebugLoc();
6791
6792  SDValue Res;
6793  MulAmt >>= ShiftAmt;
6794  if (isPowerOf2_32(MulAmt - 1)) {
6795    // (mul x, 2^N + 1) => (add (shl x, N), x)
6796    Res = DAG.getNode(ISD::ADD, DL, VT,
6797                      V, DAG.getNode(ISD::SHL, DL, VT,
6798                                     V, DAG.getConstant(Log2_32(MulAmt-1),
6799                                                        MVT::i32)));
6800  } else if (isPowerOf2_32(MulAmt + 1)) {
6801    // (mul x, 2^N - 1) => (sub (shl x, N), x)
6802    Res = DAG.getNode(ISD::SUB, DL, VT,
6803                      DAG.getNode(ISD::SHL, DL, VT,
6804                                  V, DAG.getConstant(Log2_32(MulAmt+1),
6805                                                     MVT::i32)),
6806                                                     V);
6807  } else
6808    return SDValue();
6809
6810  if (ShiftAmt != 0)
6811    Res = DAG.getNode(ISD::SHL, DL, VT, Res,
6812                      DAG.getConstant(ShiftAmt, MVT::i32));
6813
6814  // Do not add new nodes to DAG combiner worklist.
6815  DCI.CombineTo(N, Res, false);
6816  return SDValue();
6817}
6818
6819static SDValue PerformANDCombine(SDNode *N,
6820                                TargetLowering::DAGCombinerInfo &DCI) {
6821
6822  // Attempt to use immediate-form VBIC
6823  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
6824  DebugLoc dl = N->getDebugLoc();
6825  EVT VT = N->getValueType(0);
6826  SelectionDAG &DAG = DCI.DAG;
6827
6828  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
6829    return SDValue();
6830
6831  APInt SplatBits, SplatUndef;
6832  unsigned SplatBitSize;
6833  bool HasAnyUndefs;
6834  if (BVN &&
6835      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6836    if (SplatBitSize <= 64) {
6837      EVT VbicVT;
6838      SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
6839                                      SplatUndef.getZExtValue(), SplatBitSize,
6840                                      DAG, VbicVT, VT.is128BitVector(),
6841                                      OtherModImm);
6842      if (Val.getNode()) {
6843        SDValue Input =
6844          DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
6845        SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
6846        return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
6847      }
6848    }
6849  }
6850
6851  return SDValue();
6852}
6853
6854/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
6855static SDValue PerformORCombine(SDNode *N,
6856                                TargetLowering::DAGCombinerInfo &DCI,
6857                                const ARMSubtarget *Subtarget) {
6858  // Attempt to use immediate-form VORR
6859  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
6860  DebugLoc dl = N->getDebugLoc();
6861  EVT VT = N->getValueType(0);
6862  SelectionDAG &DAG = DCI.DAG;
6863
6864  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
6865    return SDValue();
6866
6867  APInt SplatBits, SplatUndef;
6868  unsigned SplatBitSize;
6869  bool HasAnyUndefs;
6870  if (BVN && Subtarget->hasNEON() &&
6871      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6872    if (SplatBitSize <= 64) {
6873      EVT VorrVT;
6874      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
6875                                      SplatUndef.getZExtValue(), SplatBitSize,
6876                                      DAG, VorrVT, VT.is128BitVector(),
6877                                      OtherModImm);
6878      if (Val.getNode()) {
6879        SDValue Input =
6880          DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
6881        SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
6882        return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
6883      }
6884    }
6885  }
6886
6887  SDValue N0 = N->getOperand(0);
6888  if (N0.getOpcode() != ISD::AND)
6889    return SDValue();
6890  SDValue N1 = N->getOperand(1);
6891
6892  // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
6893  if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
6894      DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
6895    APInt SplatUndef;
6896    unsigned SplatBitSize;
6897    bool HasAnyUndefs;
6898
6899    BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
6900    APInt SplatBits0;
6901    if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
6902                                  HasAnyUndefs) && !HasAnyUndefs) {
6903      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
6904      APInt SplatBits1;
6905      if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
6906                                    HasAnyUndefs) && !HasAnyUndefs &&
6907          SplatBits0 == ~SplatBits1) {
6908        // Canonicalize the vector type to make instruction selection simpler.
6909        EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
6910        SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
6911                                     N0->getOperand(1), N0->getOperand(0),
6912                                     N1->getOperand(0));
6913        return DAG.getNode(ISD::BITCAST, dl, VT, Result);
6914      }
6915    }
6916  }
6917
6918  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
6919  // reasonable.
6920
6921  // BFI is only available on V6T2+
6922  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
6923    return SDValue();
6924
6925  DebugLoc DL = N->getDebugLoc();
6926  // 1) or (and A, mask), val => ARMbfi A, val, mask
6927  //      iff (val & mask) == val
6928  //
6929  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
6930  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
6931  //          && mask == ~mask2
6932  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
6933  //          && ~mask == mask2
6934  //  (i.e., copy a bitfield value into another bitfield of the same width)
6935
6936  if (VT != MVT::i32)
6937    return SDValue();
6938
6939  SDValue N00 = N0.getOperand(0);
6940
6941  // The value and the mask need to be constants so we can verify this is
6942  // actually a bitfield set. If the mask is 0xffff, we can do better
6943  // via a movt instruction, so don't use BFI in that case.
6944  SDValue MaskOp = N0.getOperand(1);
6945  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
6946  if (!MaskC)
6947    return SDValue();
6948  unsigned Mask = MaskC->getZExtValue();
6949  if (Mask == 0xffff)
6950    return SDValue();
6951  SDValue Res;
6952  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
6953  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
6954  if (N1C) {
6955    unsigned Val = N1C->getZExtValue();
6956    if ((Val & ~Mask) != Val)
6957      return SDValue();
6958
6959    if (ARM::isBitFieldInvertedMask(Mask)) {
6960      Val >>= CountTrailingZeros_32(~Mask);
6961
6962      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
6963                        DAG.getConstant(Val, MVT::i32),
6964                        DAG.getConstant(Mask, MVT::i32));
6965
6966      // Do not add new nodes to DAG combiner worklist.
6967      DCI.CombineTo(N, Res, false);
6968      return SDValue();
6969    }
6970  } else if (N1.getOpcode() == ISD::AND) {
6971    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
6972    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
6973    if (!N11C)
6974      return SDValue();
6975    unsigned Mask2 = N11C->getZExtValue();
6976
6977    // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
6978    // as is to match.
6979    if (ARM::isBitFieldInvertedMask(Mask) &&
6980        (Mask == ~Mask2)) {
6981      // The pack halfword instruction works better for masks that fit it,
6982      // so use that when it's available.
6983      if (Subtarget->hasT2ExtractPack() &&
6984          (Mask == 0xffff || Mask == 0xffff0000))
6985        return SDValue();
6986      // 2a
6987      unsigned amt = CountTrailingZeros_32(Mask2);
6988      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
6989                        DAG.getConstant(amt, MVT::i32));
6990      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
6991                        DAG.getConstant(Mask, MVT::i32));
6992      // Do not add new nodes to DAG combiner worklist.
6993      DCI.CombineTo(N, Res, false);
6994      return SDValue();
6995    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
6996               (~Mask == Mask2)) {
6997      // The pack halfword instruction works better for masks that fit it,
6998      // so use that when it's available.
6999      if (Subtarget->hasT2ExtractPack() &&
7000          (Mask2 == 0xffff || Mask2 == 0xffff0000))
7001        return SDValue();
7002      // 2b
7003      unsigned lsb = CountTrailingZeros_32(Mask);
7004      Res = DAG.getNode(ISD::SRL, DL, VT, N00,
7005                        DAG.getConstant(lsb, MVT::i32));
7006      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
7007                        DAG.getConstant(Mask2, MVT::i32));
7008      // Do not add new nodes to DAG combiner worklist.
7009      DCI.CombineTo(N, Res, false);
7010      return SDValue();
7011    }
7012  }
7013
7014  if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
7015      N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
7016      ARM::isBitFieldInvertedMask(~Mask)) {
7017    // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
7018    // where lsb(mask) == #shamt and masked bits of B are known zero.
7019    SDValue ShAmt = N00.getOperand(1);
7020    unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
7021    unsigned LSB = CountTrailingZeros_32(Mask);
7022    if (ShAmtC != LSB)
7023      return SDValue();
7024
7025    Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
7026                      DAG.getConstant(~Mask, MVT::i32));
7027
7028    // Do not add new nodes to DAG combiner worklist.
7029    DCI.CombineTo(N, Res, false);
7030  }
7031
7032  return SDValue();
7033}
7034
7035/// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
7036/// the bits being cleared by the AND are not demanded by the BFI.
7037static SDValue PerformBFICombine(SDNode *N,
7038                                 TargetLowering::DAGCombinerInfo &DCI) {
7039  SDValue N1 = N->getOperand(1);
7040  if (N1.getOpcode() == ISD::AND) {
7041    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
7042    if (!N11C)
7043      return SDValue();
7044    unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
7045    unsigned LSB = CountTrailingZeros_32(~InvMask);
7046    unsigned Width = (32 - CountLeadingZeros_32(~InvMask)) - LSB;
7047    unsigned Mask = (1 << Width)-1;
7048    unsigned Mask2 = N11C->getZExtValue();
7049    if ((Mask & (~Mask2)) == 0)
7050      return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
7051                             N->getOperand(0), N1.getOperand(0),
7052                             N->getOperand(2));
7053  }
7054  return SDValue();
7055}
7056
7057/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
7058/// ARMISD::VMOVRRD.
7059static SDValue PerformVMOVRRDCombine(SDNode *N,
7060                                     TargetLowering::DAGCombinerInfo &DCI) {
7061  // vmovrrd(vmovdrr x, y) -> x,y
7062  SDValue InDouble = N->getOperand(0);
7063  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
7064    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
7065
7066  // vmovrrd(load f64) -> (load i32), (load i32)
7067  SDNode *InNode = InDouble.getNode();
7068  if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
7069      InNode->getValueType(0) == MVT::f64 &&
7070      InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
7071      !cast<LoadSDNode>(InNode)->isVolatile()) {
7072    // TODO: Should this be done for non-FrameIndex operands?
7073    LoadSDNode *LD = cast<LoadSDNode>(InNode);
7074
7075    SelectionDAG &DAG = DCI.DAG;
7076    DebugLoc DL = LD->getDebugLoc();
7077    SDValue BasePtr = LD->getBasePtr();
7078    SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
7079                                 LD->getPointerInfo(), LD->isVolatile(),
7080                                 LD->isNonTemporal(), LD->isInvariant(),
7081                                 LD->getAlignment());
7082
7083    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
7084                                    DAG.getConstant(4, MVT::i32));
7085    SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
7086                                 LD->getPointerInfo(), LD->isVolatile(),
7087                                 LD->isNonTemporal(), LD->isInvariant(),
7088                                 std::min(4U, LD->getAlignment() / 2));
7089
7090    DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
7091    SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
7092    DCI.RemoveFromWorklist(LD);
7093    DAG.DeleteNode(LD);
7094    return Result;
7095  }
7096
7097  return SDValue();
7098}
7099
7100/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
7101/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
7102static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
7103  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
7104  SDValue Op0 = N->getOperand(0);
7105  SDValue Op1 = N->getOperand(1);
7106  if (Op0.getOpcode() == ISD::BITCAST)
7107    Op0 = Op0.getOperand(0);
7108  if (Op1.getOpcode() == ISD::BITCAST)
7109    Op1 = Op1.getOperand(0);
7110  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
7111      Op0.getNode() == Op1.getNode() &&
7112      Op0.getResNo() == 0 && Op1.getResNo() == 1)
7113    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
7114                       N->getValueType(0), Op0.getOperand(0));
7115  return SDValue();
7116}
7117
7118/// PerformSTORECombine - Target-specific dag combine xforms for
7119/// ISD::STORE.
7120static SDValue PerformSTORECombine(SDNode *N,
7121                                   TargetLowering::DAGCombinerInfo &DCI) {
7122  // Bitcast an i64 store extracted from a vector to f64.
7123  // Otherwise, the i64 value will be legalized to a pair of i32 values.
7124  StoreSDNode *St = cast<StoreSDNode>(N);
7125  SDValue StVal = St->getValue();
7126  if (!ISD::isNormalStore(St) || St->isVolatile())
7127    return SDValue();
7128
7129  if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
7130      StVal.getNode()->hasOneUse() && !St->isVolatile()) {
7131    SelectionDAG  &DAG = DCI.DAG;
7132    DebugLoc DL = St->getDebugLoc();
7133    SDValue BasePtr = St->getBasePtr();
7134    SDValue NewST1 = DAG.getStore(St->getChain(), DL,
7135                                  StVal.getNode()->getOperand(0), BasePtr,
7136                                  St->getPointerInfo(), St->isVolatile(),
7137                                  St->isNonTemporal(), St->getAlignment());
7138
7139    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
7140                                    DAG.getConstant(4, MVT::i32));
7141    return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1),
7142                        OffsetPtr, St->getPointerInfo(), St->isVolatile(),
7143                        St->isNonTemporal(),
7144                        std::min(4U, St->getAlignment() / 2));
7145  }
7146
7147  if (StVal.getValueType() != MVT::i64 ||
7148      StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7149    return SDValue();
7150
7151  SelectionDAG &DAG = DCI.DAG;
7152  DebugLoc dl = StVal.getDebugLoc();
7153  SDValue IntVec = StVal.getOperand(0);
7154  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
7155                                 IntVec.getValueType().getVectorNumElements());
7156  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
7157  SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7158                               Vec, StVal.getOperand(1));
7159  dl = N->getDebugLoc();
7160  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
7161  // Make the DAGCombiner fold the bitcasts.
7162  DCI.AddToWorklist(Vec.getNode());
7163  DCI.AddToWorklist(ExtElt.getNode());
7164  DCI.AddToWorklist(V.getNode());
7165  return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
7166                      St->getPointerInfo(), St->isVolatile(),
7167                      St->isNonTemporal(), St->getAlignment(),
7168                      St->getTBAAInfo());
7169}
7170
7171/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
7172/// are normal, non-volatile loads.  If so, it is profitable to bitcast an
7173/// i64 vector to have f64 elements, since the value can then be loaded
7174/// directly into a VFP register.
7175static bool hasNormalLoadOperand(SDNode *N) {
7176  unsigned NumElts = N->getValueType(0).getVectorNumElements();
7177  for (unsigned i = 0; i < NumElts; ++i) {
7178    SDNode *Elt = N->getOperand(i).getNode();
7179    if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
7180      return true;
7181  }
7182  return false;
7183}
7184
7185/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
7186/// ISD::BUILD_VECTOR.
7187static SDValue PerformBUILD_VECTORCombine(SDNode *N,
7188                                          TargetLowering::DAGCombinerInfo &DCI){
7189  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
7190  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
7191  // into a pair of GPRs, which is fine when the value is used as a scalar,
7192  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
7193  SelectionDAG &DAG = DCI.DAG;
7194  if (N->getNumOperands() == 2) {
7195    SDValue RV = PerformVMOVDRRCombine(N, DAG);
7196    if (RV.getNode())
7197      return RV;
7198  }
7199
7200  // Load i64 elements as f64 values so that type legalization does not split
7201  // them up into i32 values.
7202  EVT VT = N->getValueType(0);
7203  if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
7204    return SDValue();
7205  DebugLoc dl = N->getDebugLoc();
7206  SmallVector<SDValue, 8> Ops;
7207  unsigned NumElts = VT.getVectorNumElements();
7208  for (unsigned i = 0; i < NumElts; ++i) {
7209    SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
7210    Ops.push_back(V);
7211    // Make the DAGCombiner fold the bitcast.
7212    DCI.AddToWorklist(V.getNode());
7213  }
7214  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
7215  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
7216  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
7217}
7218
7219/// PerformInsertEltCombine - Target-specific dag combine xforms for
7220/// ISD::INSERT_VECTOR_ELT.
7221static SDValue PerformInsertEltCombine(SDNode *N,
7222                                       TargetLowering::DAGCombinerInfo &DCI) {
7223  // Bitcast an i64 load inserted into a vector to f64.
7224  // Otherwise, the i64 value will be legalized to a pair of i32 values.
7225  EVT VT = N->getValueType(0);
7226  SDNode *Elt = N->getOperand(1).getNode();
7227  if (VT.getVectorElementType() != MVT::i64 ||
7228      !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
7229    return SDValue();
7230
7231  SelectionDAG &DAG = DCI.DAG;
7232  DebugLoc dl = N->getDebugLoc();
7233  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
7234                                 VT.getVectorNumElements());
7235  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
7236  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
7237  // Make the DAGCombiner fold the bitcasts.
7238  DCI.AddToWorklist(Vec.getNode());
7239  DCI.AddToWorklist(V.getNode());
7240  SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
7241                               Vec, V, N->getOperand(2));
7242  return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
7243}
7244
7245/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
7246/// ISD::VECTOR_SHUFFLE.
7247static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
7248  // The LLVM shufflevector instruction does not require the shuffle mask
7249  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
7250  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
7251  // operands do not match the mask length, they are extended by concatenating
7252  // them with undef vectors.  That is probably the right thing for other
7253  // targets, but for NEON it is better to concatenate two double-register
7254  // size vector operands into a single quad-register size vector.  Do that
7255  // transformation here:
7256  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
7257  //   shuffle(concat(v1, v2), undef)
7258  SDValue Op0 = N->getOperand(0);
7259  SDValue Op1 = N->getOperand(1);
7260  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
7261      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
7262      Op0.getNumOperands() != 2 ||
7263      Op1.getNumOperands() != 2)
7264    return SDValue();
7265  SDValue Concat0Op1 = Op0.getOperand(1);
7266  SDValue Concat1Op1 = Op1.getOperand(1);
7267  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
7268      Concat1Op1.getOpcode() != ISD::UNDEF)
7269    return SDValue();
7270  // Skip the transformation if any of the types are illegal.
7271  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7272  EVT VT = N->getValueType(0);
7273  if (!TLI.isTypeLegal(VT) ||
7274      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
7275      !TLI.isTypeLegal(Concat1Op1.getValueType()))
7276    return SDValue();
7277
7278  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
7279                                  Op0.getOperand(0), Op1.getOperand(0));
7280  // Translate the shuffle mask.
7281  SmallVector<int, 16> NewMask;
7282  unsigned NumElts = VT.getVectorNumElements();
7283  unsigned HalfElts = NumElts/2;
7284  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
7285  for (unsigned n = 0; n < NumElts; ++n) {
7286    int MaskElt = SVN->getMaskElt(n);
7287    int NewElt = -1;
7288    if (MaskElt < (int)HalfElts)
7289      NewElt = MaskElt;
7290    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
7291      NewElt = HalfElts + MaskElt - NumElts;
7292    NewMask.push_back(NewElt);
7293  }
7294  return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
7295                              DAG.getUNDEF(VT), NewMask.data());
7296}
7297
7298/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
7299/// NEON load/store intrinsics to merge base address updates.
7300static SDValue CombineBaseUpdate(SDNode *N,
7301                                 TargetLowering::DAGCombinerInfo &DCI) {
7302  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
7303    return SDValue();
7304
7305  SelectionDAG &DAG = DCI.DAG;
7306  bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
7307                      N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
7308  unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
7309  SDValue Addr = N->getOperand(AddrOpIdx);
7310
7311  // Search for a use of the address operand that is an increment.
7312  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
7313         UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
7314    SDNode *User = *UI;
7315    if (User->getOpcode() != ISD::ADD ||
7316        UI.getUse().getResNo() != Addr.getResNo())
7317      continue;
7318
7319    // Check that the add is independent of the load/store.  Otherwise, folding
7320    // it would create a cycle.
7321    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
7322      continue;
7323
7324    // Find the new opcode for the updating load/store.
7325    bool isLoad = true;
7326    bool isLaneOp = false;
7327    unsigned NewOpc = 0;
7328    unsigned NumVecs = 0;
7329    if (isIntrinsic) {
7330      unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
7331      switch (IntNo) {
7332      default: llvm_unreachable("unexpected intrinsic for Neon base update");
7333      case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
7334        NumVecs = 1; break;
7335      case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
7336        NumVecs = 2; break;
7337      case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
7338        NumVecs = 3; break;
7339      case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
7340        NumVecs = 4; break;
7341      case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
7342        NumVecs = 2; isLaneOp = true; break;
7343      case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
7344        NumVecs = 3; isLaneOp = true; break;
7345      case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
7346        NumVecs = 4; isLaneOp = true; break;
7347      case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
7348        NumVecs = 1; isLoad = false; break;
7349      case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
7350        NumVecs = 2; isLoad = false; break;
7351      case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
7352        NumVecs = 3; isLoad = false; break;
7353      case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
7354        NumVecs = 4; isLoad = false; break;
7355      case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
7356        NumVecs = 2; isLoad = false; isLaneOp = true; break;
7357      case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
7358        NumVecs = 3; isLoad = false; isLaneOp = true; break;
7359      case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
7360        NumVecs = 4; isLoad = false; isLaneOp = true; break;
7361      }
7362    } else {
7363      isLaneOp = true;
7364      switch (N->getOpcode()) {
7365      default: llvm_unreachable("unexpected opcode for Neon base update");
7366      case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
7367      case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
7368      case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
7369      }
7370    }
7371
7372    // Find the size of memory referenced by the load/store.
7373    EVT VecTy;
7374    if (isLoad)
7375      VecTy = N->getValueType(0);
7376    else
7377      VecTy = N->getOperand(AddrOpIdx+1).getValueType();
7378    unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
7379    if (isLaneOp)
7380      NumBytes /= VecTy.getVectorNumElements();
7381
7382    // If the increment is a constant, it must match the memory ref size.
7383    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
7384    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
7385      uint64_t IncVal = CInc->getZExtValue();
7386      if (IncVal != NumBytes)
7387        continue;
7388    } else if (NumBytes >= 3 * 16) {
7389      // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
7390      // separate instructions that make it harder to use a non-constant update.
7391      continue;
7392    }
7393
7394    // Create the new updating load/store node.
7395    EVT Tys[6];
7396    unsigned NumResultVecs = (isLoad ? NumVecs : 0);
7397    unsigned n;
7398    for (n = 0; n < NumResultVecs; ++n)
7399      Tys[n] = VecTy;
7400    Tys[n++] = MVT::i32;
7401    Tys[n] = MVT::Other;
7402    SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
7403    SmallVector<SDValue, 8> Ops;
7404    Ops.push_back(N->getOperand(0)); // incoming chain
7405    Ops.push_back(N->getOperand(AddrOpIdx));
7406    Ops.push_back(Inc);
7407    for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
7408      Ops.push_back(N->getOperand(i));
7409    }
7410    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
7411    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys,
7412                                           Ops.data(), Ops.size(),
7413                                           MemInt->getMemoryVT(),
7414                                           MemInt->getMemOperand());
7415
7416    // Update the uses.
7417    std::vector<SDValue> NewResults;
7418    for (unsigned i = 0; i < NumResultVecs; ++i) {
7419      NewResults.push_back(SDValue(UpdN.getNode(), i));
7420    }
7421    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
7422    DCI.CombineTo(N, NewResults);
7423    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
7424
7425    break;
7426  }
7427  return SDValue();
7428}
7429
7430/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
7431/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
7432/// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
7433/// return true.
7434static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
7435  SelectionDAG &DAG = DCI.DAG;
7436  EVT VT = N->getValueType(0);
7437  // vldN-dup instructions only support 64-bit vectors for N > 1.
7438  if (!VT.is64BitVector())
7439    return false;
7440
7441  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
7442  SDNode *VLD = N->getOperand(0).getNode();
7443  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
7444    return false;
7445  unsigned NumVecs = 0;
7446  unsigned NewOpc = 0;
7447  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
7448  if (IntNo == Intrinsic::arm_neon_vld2lane) {
7449    NumVecs = 2;
7450    NewOpc = ARMISD::VLD2DUP;
7451  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
7452    NumVecs = 3;
7453    NewOpc = ARMISD::VLD3DUP;
7454  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
7455    NumVecs = 4;
7456    NewOpc = ARMISD::VLD4DUP;
7457  } else {
7458    return false;
7459  }
7460
7461  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
7462  // numbers match the load.
7463  unsigned VLDLaneNo =
7464    cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
7465  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
7466       UI != UE; ++UI) {
7467    // Ignore uses of the chain result.
7468    if (UI.getUse().getResNo() == NumVecs)
7469      continue;
7470    SDNode *User = *UI;
7471    if (User->getOpcode() != ARMISD::VDUPLANE ||
7472        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
7473      return false;
7474  }
7475
7476  // Create the vldN-dup node.
7477  EVT Tys[5];
7478  unsigned n;
7479  for (n = 0; n < NumVecs; ++n)
7480    Tys[n] = VT;
7481  Tys[n] = MVT::Other;
7482  SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
7483  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
7484  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
7485  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
7486                                           Ops, 2, VLDMemInt->getMemoryVT(),
7487                                           VLDMemInt->getMemOperand());
7488
7489  // Update the uses.
7490  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
7491       UI != UE; ++UI) {
7492    unsigned ResNo = UI.getUse().getResNo();
7493    // Ignore uses of the chain result.
7494    if (ResNo == NumVecs)
7495      continue;
7496    SDNode *User = *UI;
7497    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
7498  }
7499
7500  // Now the vldN-lane intrinsic is dead except for its chain result.
7501  // Update uses of the chain.
7502  std::vector<SDValue> VLDDupResults;
7503  for (unsigned n = 0; n < NumVecs; ++n)
7504    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
7505  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
7506  DCI.CombineTo(VLD, VLDDupResults);
7507
7508  return true;
7509}
7510
7511/// PerformVDUPLANECombine - Target-specific dag combine xforms for
7512/// ARMISD::VDUPLANE.
7513static SDValue PerformVDUPLANECombine(SDNode *N,
7514                                      TargetLowering::DAGCombinerInfo &DCI) {
7515  SDValue Op = N->getOperand(0);
7516
7517  // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
7518  // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
7519  if (CombineVLDDUP(N, DCI))
7520    return SDValue(N, 0);
7521
7522  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
7523  // redundant.  Ignore bit_converts for now; element sizes are checked below.
7524  while (Op.getOpcode() == ISD::BITCAST)
7525    Op = Op.getOperand(0);
7526  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
7527    return SDValue();
7528
7529  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
7530  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
7531  // The canonical VMOV for a zero vector uses a 32-bit element size.
7532  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7533  unsigned EltBits;
7534  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
7535    EltSize = 8;
7536  EVT VT = N->getValueType(0);
7537  if (EltSize > VT.getVectorElementType().getSizeInBits())
7538    return SDValue();
7539
7540  return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
7541}
7542
7543// isConstVecPow2 - Return true if each vector element is a power of 2, all
7544// elements are the same constant, C, and Log2(C) ranges from 1 to 32.
7545static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
7546{
7547  integerPart cN;
7548  integerPart c0 = 0;
7549  for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
7550       I != E; I++) {
7551    ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
7552    if (!C)
7553      return false;
7554
7555    bool isExact;
7556    APFloat APF = C->getValueAPF();
7557    if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
7558        != APFloat::opOK || !isExact)
7559      return false;
7560
7561    c0 = (I == 0) ? cN : c0;
7562    if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
7563      return false;
7564  }
7565  C = c0;
7566  return true;
7567}
7568
7569/// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
7570/// can replace combinations of VMUL and VCVT (floating-point to integer)
7571/// when the VMUL has a constant operand that is a power of 2.
7572///
7573/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
7574///  vmul.f32        d16, d17, d16
7575///  vcvt.s32.f32    d16, d16
7576/// becomes:
7577///  vcvt.s32.f32    d16, d16, #3
7578static SDValue PerformVCVTCombine(SDNode *N,
7579                                  TargetLowering::DAGCombinerInfo &DCI,
7580                                  const ARMSubtarget *Subtarget) {
7581  SelectionDAG &DAG = DCI.DAG;
7582  SDValue Op = N->getOperand(0);
7583
7584  if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
7585      Op.getOpcode() != ISD::FMUL)
7586    return SDValue();
7587
7588  uint64_t C;
7589  SDValue N0 = Op->getOperand(0);
7590  SDValue ConstVec = Op->getOperand(1);
7591  bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
7592
7593  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
7594      !isConstVecPow2(ConstVec, isSigned, C))
7595    return SDValue();
7596
7597  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
7598    Intrinsic::arm_neon_vcvtfp2fxu;
7599  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
7600                     N->getValueType(0),
7601                     DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
7602                     DAG.getConstant(Log2_64(C), MVT::i32));
7603}
7604
7605/// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
7606/// can replace combinations of VCVT (integer to floating-point) and VDIV
7607/// when the VDIV has a constant operand that is a power of 2.
7608///
7609/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
7610///  vcvt.f32.s32    d16, d16
7611///  vdiv.f32        d16, d17, d16
7612/// becomes:
7613///  vcvt.f32.s32    d16, d16, #3
7614static SDValue PerformVDIVCombine(SDNode *N,
7615                                  TargetLowering::DAGCombinerInfo &DCI,
7616                                  const ARMSubtarget *Subtarget) {
7617  SelectionDAG &DAG = DCI.DAG;
7618  SDValue Op = N->getOperand(0);
7619  unsigned OpOpcode = Op.getNode()->getOpcode();
7620
7621  if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
7622      (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
7623    return SDValue();
7624
7625  uint64_t C;
7626  SDValue ConstVec = N->getOperand(1);
7627  bool isSigned = OpOpcode == ISD::SINT_TO_FP;
7628
7629  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
7630      !isConstVecPow2(ConstVec, isSigned, C))
7631    return SDValue();
7632
7633  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
7634    Intrinsic::arm_neon_vcvtfxu2fp;
7635  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
7636                     Op.getValueType(),
7637                     DAG.getConstant(IntrinsicOpcode, MVT::i32),
7638                     Op.getOperand(0), DAG.getConstant(Log2_64(C), MVT::i32));
7639}
7640
7641/// Getvshiftimm - Check if this is a valid build_vector for the immediate
7642/// operand of a vector shift operation, where all the elements of the
7643/// build_vector must have the same constant integer value.
7644static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
7645  // Ignore bit_converts.
7646  while (Op.getOpcode() == ISD::BITCAST)
7647    Op = Op.getOperand(0);
7648  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7649  APInt SplatBits, SplatUndef;
7650  unsigned SplatBitSize;
7651  bool HasAnyUndefs;
7652  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
7653                                      HasAnyUndefs, ElementBits) ||
7654      SplatBitSize > ElementBits)
7655    return false;
7656  Cnt = SplatBits.getSExtValue();
7657  return true;
7658}
7659
7660/// isVShiftLImm - Check if this is a valid build_vector for the immediate
7661/// operand of a vector shift left operation.  That value must be in the range:
7662///   0 <= Value < ElementBits for a left shift; or
7663///   0 <= Value <= ElementBits for a long left shift.
7664static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
7665  assert(VT.isVector() && "vector shift count is not a vector type");
7666  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
7667  if (! getVShiftImm(Op, ElementBits, Cnt))
7668    return false;
7669  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
7670}
7671
7672/// isVShiftRImm - Check if this is a valid build_vector for the immediate
7673/// operand of a vector shift right operation.  For a shift opcode, the value
7674/// is positive, but for an intrinsic the value count must be negative. The
7675/// absolute value must be in the range:
7676///   1 <= |Value| <= ElementBits for a right shift; or
7677///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
7678static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
7679                         int64_t &Cnt) {
7680  assert(VT.isVector() && "vector shift count is not a vector type");
7681  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
7682  if (! getVShiftImm(Op, ElementBits, Cnt))
7683    return false;
7684  if (isIntrinsic)
7685    Cnt = -Cnt;
7686  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
7687}
7688
7689/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
7690static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
7691  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
7692  switch (IntNo) {
7693  default:
7694    // Don't do anything for most intrinsics.
7695    break;
7696
7697  // Vector shifts: check for immediate versions and lower them.
7698  // Note: This is done during DAG combining instead of DAG legalizing because
7699  // the build_vectors for 64-bit vector element shift counts are generally
7700  // not legal, and it is hard to see their values after they get legalized to
7701  // loads from a constant pool.
7702  case Intrinsic::arm_neon_vshifts:
7703  case Intrinsic::arm_neon_vshiftu:
7704  case Intrinsic::arm_neon_vshiftls:
7705  case Intrinsic::arm_neon_vshiftlu:
7706  case Intrinsic::arm_neon_vshiftn:
7707  case Intrinsic::arm_neon_vrshifts:
7708  case Intrinsic::arm_neon_vrshiftu:
7709  case Intrinsic::arm_neon_vrshiftn:
7710  case Intrinsic::arm_neon_vqshifts:
7711  case Intrinsic::arm_neon_vqshiftu:
7712  case Intrinsic::arm_neon_vqshiftsu:
7713  case Intrinsic::arm_neon_vqshiftns:
7714  case Intrinsic::arm_neon_vqshiftnu:
7715  case Intrinsic::arm_neon_vqshiftnsu:
7716  case Intrinsic::arm_neon_vqrshiftns:
7717  case Intrinsic::arm_neon_vqrshiftnu:
7718  case Intrinsic::arm_neon_vqrshiftnsu: {
7719    EVT VT = N->getOperand(1).getValueType();
7720    int64_t Cnt;
7721    unsigned VShiftOpc = 0;
7722
7723    switch (IntNo) {
7724    case Intrinsic::arm_neon_vshifts:
7725    case Intrinsic::arm_neon_vshiftu:
7726      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
7727        VShiftOpc = ARMISD::VSHL;
7728        break;
7729      }
7730      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
7731        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
7732                     ARMISD::VSHRs : ARMISD::VSHRu);
7733        break;
7734      }
7735      return SDValue();
7736
7737    case Intrinsic::arm_neon_vshiftls:
7738    case Intrinsic::arm_neon_vshiftlu:
7739      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
7740        break;
7741      llvm_unreachable("invalid shift count for vshll intrinsic");
7742
7743    case Intrinsic::arm_neon_vrshifts:
7744    case Intrinsic::arm_neon_vrshiftu:
7745      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
7746        break;
7747      return SDValue();
7748
7749    case Intrinsic::arm_neon_vqshifts:
7750    case Intrinsic::arm_neon_vqshiftu:
7751      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
7752        break;
7753      return SDValue();
7754
7755    case Intrinsic::arm_neon_vqshiftsu:
7756      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
7757        break;
7758      llvm_unreachable("invalid shift count for vqshlu intrinsic");
7759
7760    case Intrinsic::arm_neon_vshiftn:
7761    case Intrinsic::arm_neon_vrshiftn:
7762    case Intrinsic::arm_neon_vqshiftns:
7763    case Intrinsic::arm_neon_vqshiftnu:
7764    case Intrinsic::arm_neon_vqshiftnsu:
7765    case Intrinsic::arm_neon_vqrshiftns:
7766    case Intrinsic::arm_neon_vqrshiftnu:
7767    case Intrinsic::arm_neon_vqrshiftnsu:
7768      // Narrowing shifts require an immediate right shift.
7769      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
7770        break;
7771      llvm_unreachable("invalid shift count for narrowing vector shift "
7772                       "intrinsic");
7773
7774    default:
7775      llvm_unreachable("unhandled vector shift");
7776    }
7777
7778    switch (IntNo) {
7779    case Intrinsic::arm_neon_vshifts:
7780    case Intrinsic::arm_neon_vshiftu:
7781      // Opcode already set above.
7782      break;
7783    case Intrinsic::arm_neon_vshiftls:
7784    case Intrinsic::arm_neon_vshiftlu:
7785      if (Cnt == VT.getVectorElementType().getSizeInBits())
7786        VShiftOpc = ARMISD::VSHLLi;
7787      else
7788        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
7789                     ARMISD::VSHLLs : ARMISD::VSHLLu);
7790      break;
7791    case Intrinsic::arm_neon_vshiftn:
7792      VShiftOpc = ARMISD::VSHRN; break;
7793    case Intrinsic::arm_neon_vrshifts:
7794      VShiftOpc = ARMISD::VRSHRs; break;
7795    case Intrinsic::arm_neon_vrshiftu:
7796      VShiftOpc = ARMISD::VRSHRu; break;
7797    case Intrinsic::arm_neon_vrshiftn:
7798      VShiftOpc = ARMISD::VRSHRN; break;
7799    case Intrinsic::arm_neon_vqshifts:
7800      VShiftOpc = ARMISD::VQSHLs; break;
7801    case Intrinsic::arm_neon_vqshiftu:
7802      VShiftOpc = ARMISD::VQSHLu; break;
7803    case Intrinsic::arm_neon_vqshiftsu:
7804      VShiftOpc = ARMISD::VQSHLsu; break;
7805    case Intrinsic::arm_neon_vqshiftns:
7806      VShiftOpc = ARMISD::VQSHRNs; break;
7807    case Intrinsic::arm_neon_vqshiftnu:
7808      VShiftOpc = ARMISD::VQSHRNu; break;
7809    case Intrinsic::arm_neon_vqshiftnsu:
7810      VShiftOpc = ARMISD::VQSHRNsu; break;
7811    case Intrinsic::arm_neon_vqrshiftns:
7812      VShiftOpc = ARMISD::VQRSHRNs; break;
7813    case Intrinsic::arm_neon_vqrshiftnu:
7814      VShiftOpc = ARMISD::VQRSHRNu; break;
7815    case Intrinsic::arm_neon_vqrshiftnsu:
7816      VShiftOpc = ARMISD::VQRSHRNsu; break;
7817    }
7818
7819    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
7820                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
7821  }
7822
7823  case Intrinsic::arm_neon_vshiftins: {
7824    EVT VT = N->getOperand(1).getValueType();
7825    int64_t Cnt;
7826    unsigned VShiftOpc = 0;
7827
7828    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
7829      VShiftOpc = ARMISD::VSLI;
7830    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
7831      VShiftOpc = ARMISD::VSRI;
7832    else {
7833      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
7834    }
7835
7836    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
7837                       N->getOperand(1), N->getOperand(2),
7838                       DAG.getConstant(Cnt, MVT::i32));
7839  }
7840
7841  case Intrinsic::arm_neon_vqrshifts:
7842  case Intrinsic::arm_neon_vqrshiftu:
7843    // No immediate versions of these to check for.
7844    break;
7845  }
7846
7847  return SDValue();
7848}
7849
7850/// PerformShiftCombine - Checks for immediate versions of vector shifts and
7851/// lowers them.  As with the vector shift intrinsics, this is done during DAG
7852/// combining instead of DAG legalizing because the build_vectors for 64-bit
7853/// vector element shift counts are generally not legal, and it is hard to see
7854/// their values after they get legalized to loads from a constant pool.
7855static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
7856                                   const ARMSubtarget *ST) {
7857  EVT VT = N->getValueType(0);
7858
7859  // Nothing to be done for scalar shifts.
7860  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7861  if (!VT.isVector() || !TLI.isTypeLegal(VT))
7862    return SDValue();
7863
7864  assert(ST->hasNEON() && "unexpected vector shift");
7865  int64_t Cnt;
7866
7867  switch (N->getOpcode()) {
7868  default: llvm_unreachable("unexpected shift opcode");
7869
7870  case ISD::SHL:
7871    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
7872      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
7873                         DAG.getConstant(Cnt, MVT::i32));
7874    break;
7875
7876  case ISD::SRA:
7877  case ISD::SRL:
7878    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
7879      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
7880                            ARMISD::VSHRs : ARMISD::VSHRu);
7881      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
7882                         DAG.getConstant(Cnt, MVT::i32));
7883    }
7884  }
7885  return SDValue();
7886}
7887
7888/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
7889/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
7890static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
7891                                    const ARMSubtarget *ST) {
7892  SDValue N0 = N->getOperand(0);
7893
7894  // Check for sign- and zero-extensions of vector extract operations of 8-
7895  // and 16-bit vector elements.  NEON supports these directly.  They are
7896  // handled during DAG combining because type legalization will promote them
7897  // to 32-bit types and it is messy to recognize the operations after that.
7898  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7899    SDValue Vec = N0.getOperand(0);
7900    SDValue Lane = N0.getOperand(1);
7901    EVT VT = N->getValueType(0);
7902    EVT EltVT = N0.getValueType();
7903    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7904
7905    if (VT == MVT::i32 &&
7906        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
7907        TLI.isTypeLegal(Vec.getValueType()) &&
7908        isa<ConstantSDNode>(Lane)) {
7909
7910      unsigned Opc = 0;
7911      switch (N->getOpcode()) {
7912      default: llvm_unreachable("unexpected opcode");
7913      case ISD::SIGN_EXTEND:
7914        Opc = ARMISD::VGETLANEs;
7915        break;
7916      case ISD::ZERO_EXTEND:
7917      case ISD::ANY_EXTEND:
7918        Opc = ARMISD::VGETLANEu;
7919        break;
7920      }
7921      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
7922    }
7923  }
7924
7925  return SDValue();
7926}
7927
7928/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
7929/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
7930static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
7931                                       const ARMSubtarget *ST) {
7932  // If the target supports NEON, try to use vmax/vmin instructions for f32
7933  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
7934  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
7935  // a NaN; only do the transformation when it matches that behavior.
7936
7937  // For now only do this when using NEON for FP operations; if using VFP, it
7938  // is not obvious that the benefit outweighs the cost of switching to the
7939  // NEON pipeline.
7940  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
7941      N->getValueType(0) != MVT::f32)
7942    return SDValue();
7943
7944  SDValue CondLHS = N->getOperand(0);
7945  SDValue CondRHS = N->getOperand(1);
7946  SDValue LHS = N->getOperand(2);
7947  SDValue RHS = N->getOperand(3);
7948  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
7949
7950  unsigned Opcode = 0;
7951  bool IsReversed;
7952  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
7953    IsReversed = false; // x CC y ? x : y
7954  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
7955    IsReversed = true ; // x CC y ? y : x
7956  } else {
7957    return SDValue();
7958  }
7959
7960  bool IsUnordered;
7961  switch (CC) {
7962  default: break;
7963  case ISD::SETOLT:
7964  case ISD::SETOLE:
7965  case ISD::SETLT:
7966  case ISD::SETLE:
7967  case ISD::SETULT:
7968  case ISD::SETULE:
7969    // If LHS is NaN, an ordered comparison will be false and the result will
7970    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
7971    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
7972    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
7973    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
7974      break;
7975    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
7976    // will return -0, so vmin can only be used for unsafe math or if one of
7977    // the operands is known to be nonzero.
7978    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
7979        !DAG.getTarget().Options.UnsafeFPMath &&
7980        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
7981      break;
7982    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
7983    break;
7984
7985  case ISD::SETOGT:
7986  case ISD::SETOGE:
7987  case ISD::SETGT:
7988  case ISD::SETGE:
7989  case ISD::SETUGT:
7990  case ISD::SETUGE:
7991    // If LHS is NaN, an ordered comparison will be false and the result will
7992    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
7993    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
7994    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
7995    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
7996      break;
7997    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
7998    // will return +0, so vmax can only be used for unsafe math or if one of
7999    // the operands is known to be nonzero.
8000    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
8001        !DAG.getTarget().Options.UnsafeFPMath &&
8002        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
8003      break;
8004    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
8005    break;
8006  }
8007
8008  if (!Opcode)
8009    return SDValue();
8010  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
8011}
8012
8013/// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
8014SDValue
8015ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
8016  SDValue Cmp = N->getOperand(4);
8017  if (Cmp.getOpcode() != ARMISD::CMPZ)
8018    // Only looking at EQ and NE cases.
8019    return SDValue();
8020
8021  EVT VT = N->getValueType(0);
8022  DebugLoc dl = N->getDebugLoc();
8023  SDValue LHS = Cmp.getOperand(0);
8024  SDValue RHS = Cmp.getOperand(1);
8025  SDValue FalseVal = N->getOperand(0);
8026  SDValue TrueVal = N->getOperand(1);
8027  SDValue ARMcc = N->getOperand(2);
8028  ARMCC::CondCodes CC =
8029    (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
8030
8031  // Simplify
8032  //   mov     r1, r0
8033  //   cmp     r1, x
8034  //   mov     r0, y
8035  //   moveq   r0, x
8036  // to
8037  //   cmp     r0, x
8038  //   movne   r0, y
8039  //
8040  //   mov     r1, r0
8041  //   cmp     r1, x
8042  //   mov     r0, x
8043  //   movne   r0, y
8044  // to
8045  //   cmp     r0, x
8046  //   movne   r0, y
8047  /// FIXME: Turn this into a target neutral optimization?
8048  SDValue Res;
8049  if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
8050    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
8051                      N->getOperand(3), Cmp);
8052  } else if (CC == ARMCC::EQ && TrueVal == RHS) {
8053    SDValue ARMcc;
8054    SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
8055    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
8056                      N->getOperand(3), NewCmp);
8057  }
8058
8059  if (Res.getNode()) {
8060    APInt KnownZero, KnownOne;
8061    APInt Mask = APInt::getAllOnesValue(VT.getScalarType().getSizeInBits());
8062    DAG.ComputeMaskedBits(SDValue(N,0), Mask, KnownZero, KnownOne);
8063    // Capture demanded bits information that would be otherwise lost.
8064    if (KnownZero == 0xfffffffe)
8065      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8066                        DAG.getValueType(MVT::i1));
8067    else if (KnownZero == 0xffffff00)
8068      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8069                        DAG.getValueType(MVT::i8));
8070    else if (KnownZero == 0xffff0000)
8071      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8072                        DAG.getValueType(MVT::i16));
8073  }
8074
8075  return Res;
8076}
8077
8078SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
8079                                             DAGCombinerInfo &DCI) const {
8080  switch (N->getOpcode()) {
8081  default: break;
8082  case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
8083  case ISD::SUB:        return PerformSUBCombine(N, DCI);
8084  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
8085  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
8086  case ISD::AND:        return PerformANDCombine(N, DCI);
8087  case ARMISD::BFI:     return PerformBFICombine(N, DCI);
8088  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
8089  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
8090  case ISD::STORE:      return PerformSTORECombine(N, DCI);
8091  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
8092  case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
8093  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
8094  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
8095  case ISD::FP_TO_SINT:
8096  case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
8097  case ISD::FDIV:       return PerformVDIVCombine(N, DCI, Subtarget);
8098  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
8099  case ISD::SHL:
8100  case ISD::SRA:
8101  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
8102  case ISD::SIGN_EXTEND:
8103  case ISD::ZERO_EXTEND:
8104  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
8105  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
8106  case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
8107  case ARMISD::VLD2DUP:
8108  case ARMISD::VLD3DUP:
8109  case ARMISD::VLD4DUP:
8110    return CombineBaseUpdate(N, DCI);
8111  case ISD::INTRINSIC_VOID:
8112  case ISD::INTRINSIC_W_CHAIN:
8113    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
8114    case Intrinsic::arm_neon_vld1:
8115    case Intrinsic::arm_neon_vld2:
8116    case Intrinsic::arm_neon_vld3:
8117    case Intrinsic::arm_neon_vld4:
8118    case Intrinsic::arm_neon_vld2lane:
8119    case Intrinsic::arm_neon_vld3lane:
8120    case Intrinsic::arm_neon_vld4lane:
8121    case Intrinsic::arm_neon_vst1:
8122    case Intrinsic::arm_neon_vst2:
8123    case Intrinsic::arm_neon_vst3:
8124    case Intrinsic::arm_neon_vst4:
8125    case Intrinsic::arm_neon_vst2lane:
8126    case Intrinsic::arm_neon_vst3lane:
8127    case Intrinsic::arm_neon_vst4lane:
8128      return CombineBaseUpdate(N, DCI);
8129    default: break;
8130    }
8131    break;
8132  }
8133  return SDValue();
8134}
8135
8136bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
8137                                                          EVT VT) const {
8138  return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
8139}
8140
8141bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
8142  if (!Subtarget->allowsUnalignedMem())
8143    return false;
8144
8145  switch (VT.getSimpleVT().SimpleTy) {
8146  default:
8147    return false;
8148  case MVT::i8:
8149  case MVT::i16:
8150  case MVT::i32:
8151    return true;
8152  // FIXME: VLD1 etc with standard alignment is legal.
8153  }
8154}
8155
8156static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
8157                       unsigned AlignCheck) {
8158  return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
8159          (DstAlign == 0 || DstAlign % AlignCheck == 0));
8160}
8161
8162EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
8163                                           unsigned DstAlign, unsigned SrcAlign,
8164                                           bool IsZeroVal,
8165                                           bool MemcpyStrSrc,
8166                                           MachineFunction &MF) const {
8167  const Function *F = MF.getFunction();
8168
8169  // See if we can use NEON instructions for this...
8170  if (IsZeroVal &&
8171      !F->hasFnAttr(Attribute::NoImplicitFloat) &&
8172      Subtarget->hasNEON()) {
8173    if (memOpAlign(SrcAlign, DstAlign, 16) && Size >= 16) {
8174      return MVT::v4i32;
8175    } else if (memOpAlign(SrcAlign, DstAlign, 8) && Size >= 8) {
8176      return MVT::v2i32;
8177    }
8178  }
8179
8180  // Lowering to i32/i16 if the size permits.
8181  if (Size >= 4) {
8182    return MVT::i32;
8183  } else if (Size >= 2) {
8184    return MVT::i16;
8185  }
8186
8187  // Let the target-independent logic figure it out.
8188  return MVT::Other;
8189}
8190
8191static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
8192  if (V < 0)
8193    return false;
8194
8195  unsigned Scale = 1;
8196  switch (VT.getSimpleVT().SimpleTy) {
8197  default: return false;
8198  case MVT::i1:
8199  case MVT::i8:
8200    // Scale == 1;
8201    break;
8202  case MVT::i16:
8203    // Scale == 2;
8204    Scale = 2;
8205    break;
8206  case MVT::i32:
8207    // Scale == 4;
8208    Scale = 4;
8209    break;
8210  }
8211
8212  if ((V & (Scale - 1)) != 0)
8213    return false;
8214  V /= Scale;
8215  return V == (V & ((1LL << 5) - 1));
8216}
8217
8218static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
8219                                      const ARMSubtarget *Subtarget) {
8220  bool isNeg = false;
8221  if (V < 0) {
8222    isNeg = true;
8223    V = - V;
8224  }
8225
8226  switch (VT.getSimpleVT().SimpleTy) {
8227  default: return false;
8228  case MVT::i1:
8229  case MVT::i8:
8230  case MVT::i16:
8231  case MVT::i32:
8232    // + imm12 or - imm8
8233    if (isNeg)
8234      return V == (V & ((1LL << 8) - 1));
8235    return V == (V & ((1LL << 12) - 1));
8236  case MVT::f32:
8237  case MVT::f64:
8238    // Same as ARM mode. FIXME: NEON?
8239    if (!Subtarget->hasVFP2())
8240      return false;
8241    if ((V & 3) != 0)
8242      return false;
8243    V >>= 2;
8244    return V == (V & ((1LL << 8) - 1));
8245  }
8246}
8247
8248/// isLegalAddressImmediate - Return true if the integer value can be used
8249/// as the offset of the target addressing mode for load / store of the
8250/// given type.
8251static bool isLegalAddressImmediate(int64_t V, EVT VT,
8252                                    const ARMSubtarget *Subtarget) {
8253  if (V == 0)
8254    return true;
8255
8256  if (!VT.isSimple())
8257    return false;
8258
8259  if (Subtarget->isThumb1Only())
8260    return isLegalT1AddressImmediate(V, VT);
8261  else if (Subtarget->isThumb2())
8262    return isLegalT2AddressImmediate(V, VT, Subtarget);
8263
8264  // ARM mode.
8265  if (V < 0)
8266    V = - V;
8267  switch (VT.getSimpleVT().SimpleTy) {
8268  default: return false;
8269  case MVT::i1:
8270  case MVT::i8:
8271  case MVT::i32:
8272    // +- imm12
8273    return V == (V & ((1LL << 12) - 1));
8274  case MVT::i16:
8275    // +- imm8
8276    return V == (V & ((1LL << 8) - 1));
8277  case MVT::f32:
8278  case MVT::f64:
8279    if (!Subtarget->hasVFP2()) // FIXME: NEON?
8280      return false;
8281    if ((V & 3) != 0)
8282      return false;
8283    V >>= 2;
8284    return V == (V & ((1LL << 8) - 1));
8285  }
8286}
8287
8288bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
8289                                                      EVT VT) const {
8290  int Scale = AM.Scale;
8291  if (Scale < 0)
8292    return false;
8293
8294  switch (VT.getSimpleVT().SimpleTy) {
8295  default: return false;
8296  case MVT::i1:
8297  case MVT::i8:
8298  case MVT::i16:
8299  case MVT::i32:
8300    if (Scale == 1)
8301      return true;
8302    // r + r << imm
8303    Scale = Scale & ~1;
8304    return Scale == 2 || Scale == 4 || Scale == 8;
8305  case MVT::i64:
8306    // r + r
8307    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
8308      return true;
8309    return false;
8310  case MVT::isVoid:
8311    // Note, we allow "void" uses (basically, uses that aren't loads or
8312    // stores), because arm allows folding a scale into many arithmetic
8313    // operations.  This should be made more precise and revisited later.
8314
8315    // Allow r << imm, but the imm has to be a multiple of two.
8316    if (Scale & 1) return false;
8317    return isPowerOf2_32(Scale);
8318  }
8319}
8320
8321/// isLegalAddressingMode - Return true if the addressing mode represented
8322/// by AM is legal for this target, for a load/store of the specified type.
8323bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
8324                                              Type *Ty) const {
8325  EVT VT = getValueType(Ty, true);
8326  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
8327    return false;
8328
8329  // Can never fold addr of global into load/store.
8330  if (AM.BaseGV)
8331    return false;
8332
8333  switch (AM.Scale) {
8334  case 0:  // no scale reg, must be "r+i" or "r", or "i".
8335    break;
8336  case 1:
8337    if (Subtarget->isThumb1Only())
8338      return false;
8339    // FALL THROUGH.
8340  default:
8341    // ARM doesn't support any R+R*scale+imm addr modes.
8342    if (AM.BaseOffs)
8343      return false;
8344
8345    if (!VT.isSimple())
8346      return false;
8347
8348    if (Subtarget->isThumb2())
8349      return isLegalT2ScaledAddressingMode(AM, VT);
8350
8351    int Scale = AM.Scale;
8352    switch (VT.getSimpleVT().SimpleTy) {
8353    default: return false;
8354    case MVT::i1:
8355    case MVT::i8:
8356    case MVT::i32:
8357      if (Scale < 0) Scale = -Scale;
8358      if (Scale == 1)
8359        return true;
8360      // r + r << imm
8361      return isPowerOf2_32(Scale & ~1);
8362    case MVT::i16:
8363    case MVT::i64:
8364      // r + r
8365      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
8366        return true;
8367      return false;
8368
8369    case MVT::isVoid:
8370      // Note, we allow "void" uses (basically, uses that aren't loads or
8371      // stores), because arm allows folding a scale into many arithmetic
8372      // operations.  This should be made more precise and revisited later.
8373
8374      // Allow r << imm, but the imm has to be a multiple of two.
8375      if (Scale & 1) return false;
8376      return isPowerOf2_32(Scale);
8377    }
8378  }
8379  return true;
8380}
8381
8382/// isLegalICmpImmediate - Return true if the specified immediate is legal
8383/// icmp immediate, that is the target has icmp instructions which can compare
8384/// a register against the immediate without having to materialize the
8385/// immediate into a register.
8386bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
8387  if (!Subtarget->isThumb())
8388    return ARM_AM::getSOImmVal(Imm) != -1;
8389  if (Subtarget->isThumb2())
8390    return ARM_AM::getT2SOImmVal(Imm) != -1;
8391  return Imm >= 0 && Imm <= 255;
8392}
8393
8394/// isLegalAddImmediate - Return true if the specified immediate is legal
8395/// add immediate, that is the target has add instructions which can add
8396/// a register with the immediate without having to materialize the
8397/// immediate into a register.
8398bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
8399  return ARM_AM::getSOImmVal(Imm) != -1;
8400}
8401
8402static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
8403                                      bool isSEXTLoad, SDValue &Base,
8404                                      SDValue &Offset, bool &isInc,
8405                                      SelectionDAG &DAG) {
8406  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
8407    return false;
8408
8409  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
8410    // AddressingMode 3
8411    Base = Ptr->getOperand(0);
8412    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8413      int RHSC = (int)RHS->getZExtValue();
8414      if (RHSC < 0 && RHSC > -256) {
8415        assert(Ptr->getOpcode() == ISD::ADD);
8416        isInc = false;
8417        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8418        return true;
8419      }
8420    }
8421    isInc = (Ptr->getOpcode() == ISD::ADD);
8422    Offset = Ptr->getOperand(1);
8423    return true;
8424  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
8425    // AddressingMode 2
8426    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8427      int RHSC = (int)RHS->getZExtValue();
8428      if (RHSC < 0 && RHSC > -0x1000) {
8429        assert(Ptr->getOpcode() == ISD::ADD);
8430        isInc = false;
8431        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8432        Base = Ptr->getOperand(0);
8433        return true;
8434      }
8435    }
8436
8437    if (Ptr->getOpcode() == ISD::ADD) {
8438      isInc = true;
8439      ARM_AM::ShiftOpc ShOpcVal=
8440        ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
8441      if (ShOpcVal != ARM_AM::no_shift) {
8442        Base = Ptr->getOperand(1);
8443        Offset = Ptr->getOperand(0);
8444      } else {
8445        Base = Ptr->getOperand(0);
8446        Offset = Ptr->getOperand(1);
8447      }
8448      return true;
8449    }
8450
8451    isInc = (Ptr->getOpcode() == ISD::ADD);
8452    Base = Ptr->getOperand(0);
8453    Offset = Ptr->getOperand(1);
8454    return true;
8455  }
8456
8457  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
8458  return false;
8459}
8460
8461static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
8462                                     bool isSEXTLoad, SDValue &Base,
8463                                     SDValue &Offset, bool &isInc,
8464                                     SelectionDAG &DAG) {
8465  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
8466    return false;
8467
8468  Base = Ptr->getOperand(0);
8469  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8470    int RHSC = (int)RHS->getZExtValue();
8471    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
8472      assert(Ptr->getOpcode() == ISD::ADD);
8473      isInc = false;
8474      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8475      return true;
8476    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
8477      isInc = Ptr->getOpcode() == ISD::ADD;
8478      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
8479      return true;
8480    }
8481  }
8482
8483  return false;
8484}
8485
8486/// getPreIndexedAddressParts - returns true by value, base pointer and
8487/// offset pointer and addressing mode by reference if the node's address
8488/// can be legally represented as pre-indexed load / store address.
8489bool
8490ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
8491                                             SDValue &Offset,
8492                                             ISD::MemIndexedMode &AM,
8493                                             SelectionDAG &DAG) const {
8494  if (Subtarget->isThumb1Only())
8495    return false;
8496
8497  EVT VT;
8498  SDValue Ptr;
8499  bool isSEXTLoad = false;
8500  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8501    Ptr = LD->getBasePtr();
8502    VT  = LD->getMemoryVT();
8503    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
8504  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8505    Ptr = ST->getBasePtr();
8506    VT  = ST->getMemoryVT();
8507  } else
8508    return false;
8509
8510  bool isInc;
8511  bool isLegal = false;
8512  if (Subtarget->isThumb2())
8513    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
8514                                       Offset, isInc, DAG);
8515  else
8516    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
8517                                        Offset, isInc, DAG);
8518  if (!isLegal)
8519    return false;
8520
8521  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
8522  return true;
8523}
8524
8525/// getPostIndexedAddressParts - returns true by value, base pointer and
8526/// offset pointer and addressing mode by reference if this node can be
8527/// combined with a load / store to form a post-indexed load / store.
8528bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
8529                                                   SDValue &Base,
8530                                                   SDValue &Offset,
8531                                                   ISD::MemIndexedMode &AM,
8532                                                   SelectionDAG &DAG) const {
8533  if (Subtarget->isThumb1Only())
8534    return false;
8535
8536  EVT VT;
8537  SDValue Ptr;
8538  bool isSEXTLoad = false;
8539  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8540    VT  = LD->getMemoryVT();
8541    Ptr = LD->getBasePtr();
8542    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
8543  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8544    VT  = ST->getMemoryVT();
8545    Ptr = ST->getBasePtr();
8546  } else
8547    return false;
8548
8549  bool isInc;
8550  bool isLegal = false;
8551  if (Subtarget->isThumb2())
8552    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
8553                                       isInc, DAG);
8554  else
8555    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
8556                                        isInc, DAG);
8557  if (!isLegal)
8558    return false;
8559
8560  if (Ptr != Base) {
8561    // Swap base ptr and offset to catch more post-index load / store when
8562    // it's legal. In Thumb2 mode, offset must be an immediate.
8563    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
8564        !Subtarget->isThumb2())
8565      std::swap(Base, Offset);
8566
8567    // Post-indexed load / store update the base pointer.
8568    if (Ptr != Base)
8569      return false;
8570  }
8571
8572  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
8573  return true;
8574}
8575
8576void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8577                                                       const APInt &Mask,
8578                                                       APInt &KnownZero,
8579                                                       APInt &KnownOne,
8580                                                       const SelectionDAG &DAG,
8581                                                       unsigned Depth) const {
8582  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
8583  switch (Op.getOpcode()) {
8584  default: break;
8585  case ARMISD::CMOV: {
8586    // Bits are known zero/one if known on the LHS and RHS.
8587    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
8588    if (KnownZero == 0 && KnownOne == 0) return;
8589
8590    APInt KnownZeroRHS, KnownOneRHS;
8591    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
8592                          KnownZeroRHS, KnownOneRHS, Depth+1);
8593    KnownZero &= KnownZeroRHS;
8594    KnownOne  &= KnownOneRHS;
8595    return;
8596  }
8597  }
8598}
8599
8600//===----------------------------------------------------------------------===//
8601//                           ARM Inline Assembly Support
8602//===----------------------------------------------------------------------===//
8603
8604bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
8605  // Looking for "rev" which is V6+.
8606  if (!Subtarget->hasV6Ops())
8607    return false;
8608
8609  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
8610  std::string AsmStr = IA->getAsmString();
8611  SmallVector<StringRef, 4> AsmPieces;
8612  SplitString(AsmStr, AsmPieces, ";\n");
8613
8614  switch (AsmPieces.size()) {
8615  default: return false;
8616  case 1:
8617    AsmStr = AsmPieces[0];
8618    AsmPieces.clear();
8619    SplitString(AsmStr, AsmPieces, " \t,");
8620
8621    // rev $0, $1
8622    if (AsmPieces.size() == 3 &&
8623        AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
8624        IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
8625      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
8626      if (Ty && Ty->getBitWidth() == 32)
8627        return IntrinsicLowering::LowerToByteSwap(CI);
8628    }
8629    break;
8630  }
8631
8632  return false;
8633}
8634
8635/// getConstraintType - Given a constraint letter, return the type of
8636/// constraint it is for this target.
8637ARMTargetLowering::ConstraintType
8638ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
8639  if (Constraint.size() == 1) {
8640    switch (Constraint[0]) {
8641    default:  break;
8642    case 'l': return C_RegisterClass;
8643    case 'w': return C_RegisterClass;
8644    case 'h': return C_RegisterClass;
8645    case 'x': return C_RegisterClass;
8646    case 't': return C_RegisterClass;
8647    case 'j': return C_Other; // Constant for movw.
8648      // An address with a single base register. Due to the way we
8649      // currently handle addresses it is the same as an 'r' memory constraint.
8650    case 'Q': return C_Memory;
8651    }
8652  } else if (Constraint.size() == 2) {
8653    switch (Constraint[0]) {
8654    default: break;
8655    // All 'U+' constraints are addresses.
8656    case 'U': return C_Memory;
8657    }
8658  }
8659  return TargetLowering::getConstraintType(Constraint);
8660}
8661
8662/// Examine constraint type and operand type and determine a weight value.
8663/// This object must already have been set up with the operand type
8664/// and the current alternative constraint selected.
8665TargetLowering::ConstraintWeight
8666ARMTargetLowering::getSingleConstraintMatchWeight(
8667    AsmOperandInfo &info, const char *constraint) const {
8668  ConstraintWeight weight = CW_Invalid;
8669  Value *CallOperandVal = info.CallOperandVal;
8670    // If we don't have a value, we can't do a match,
8671    // but allow it at the lowest weight.
8672  if (CallOperandVal == NULL)
8673    return CW_Default;
8674  Type *type = CallOperandVal->getType();
8675  // Look at the constraint type.
8676  switch (*constraint) {
8677  default:
8678    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
8679    break;
8680  case 'l':
8681    if (type->isIntegerTy()) {
8682      if (Subtarget->isThumb())
8683        weight = CW_SpecificReg;
8684      else
8685        weight = CW_Register;
8686    }
8687    break;
8688  case 'w':
8689    if (type->isFloatingPointTy())
8690      weight = CW_Register;
8691    break;
8692  }
8693  return weight;
8694}
8695
8696typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
8697RCPair
8698ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
8699                                                EVT VT) const {
8700  if (Constraint.size() == 1) {
8701    // GCC ARM Constraint Letters
8702    switch (Constraint[0]) {
8703    case 'l': // Low regs or general regs.
8704      if (Subtarget->isThumb())
8705        return RCPair(0U, ARM::tGPRRegisterClass);
8706      else
8707        return RCPair(0U, ARM::GPRRegisterClass);
8708    case 'h': // High regs or no regs.
8709      if (Subtarget->isThumb())
8710        return RCPair(0U, ARM::hGPRRegisterClass);
8711      break;
8712    case 'r':
8713      return RCPair(0U, ARM::GPRRegisterClass);
8714    case 'w':
8715      if (VT == MVT::f32)
8716        return RCPair(0U, ARM::SPRRegisterClass);
8717      if (VT.getSizeInBits() == 64)
8718        return RCPair(0U, ARM::DPRRegisterClass);
8719      if (VT.getSizeInBits() == 128)
8720        return RCPair(0U, ARM::QPRRegisterClass);
8721      break;
8722    case 'x':
8723      if (VT == MVT::f32)
8724        return RCPair(0U, ARM::SPR_8RegisterClass);
8725      if (VT.getSizeInBits() == 64)
8726        return RCPair(0U, ARM::DPR_8RegisterClass);
8727      if (VT.getSizeInBits() == 128)
8728        return RCPair(0U, ARM::QPR_8RegisterClass);
8729      break;
8730    case 't':
8731      if (VT == MVT::f32)
8732        return RCPair(0U, ARM::SPRRegisterClass);
8733      break;
8734    }
8735  }
8736  if (StringRef("{cc}").equals_lower(Constraint))
8737    return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
8738
8739  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
8740}
8741
8742/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
8743/// vector.  If it is invalid, don't add anything to Ops.
8744void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
8745                                                     std::string &Constraint,
8746                                                     std::vector<SDValue>&Ops,
8747                                                     SelectionDAG &DAG) const {
8748  SDValue Result(0, 0);
8749
8750  // Currently only support length 1 constraints.
8751  if (Constraint.length() != 1) return;
8752
8753  char ConstraintLetter = Constraint[0];
8754  switch (ConstraintLetter) {
8755  default: break;
8756  case 'j':
8757  case 'I': case 'J': case 'K': case 'L':
8758  case 'M': case 'N': case 'O':
8759    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
8760    if (!C)
8761      return;
8762
8763    int64_t CVal64 = C->getSExtValue();
8764    int CVal = (int) CVal64;
8765    // None of these constraints allow values larger than 32 bits.  Check
8766    // that the value fits in an int.
8767    if (CVal != CVal64)
8768      return;
8769
8770    switch (ConstraintLetter) {
8771      case 'j':
8772        // Constant suitable for movw, must be between 0 and
8773        // 65535.
8774        if (Subtarget->hasV6T2Ops())
8775          if (CVal >= 0 && CVal <= 65535)
8776            break;
8777        return;
8778      case 'I':
8779        if (Subtarget->isThumb1Only()) {
8780          // This must be a constant between 0 and 255, for ADD
8781          // immediates.
8782          if (CVal >= 0 && CVal <= 255)
8783            break;
8784        } else if (Subtarget->isThumb2()) {
8785          // A constant that can be used as an immediate value in a
8786          // data-processing instruction.
8787          if (ARM_AM::getT2SOImmVal(CVal) != -1)
8788            break;
8789        } else {
8790          // A constant that can be used as an immediate value in a
8791          // data-processing instruction.
8792          if (ARM_AM::getSOImmVal(CVal) != -1)
8793            break;
8794        }
8795        return;
8796
8797      case 'J':
8798        if (Subtarget->isThumb()) {  // FIXME thumb2
8799          // This must be a constant between -255 and -1, for negated ADD
8800          // immediates. This can be used in GCC with an "n" modifier that
8801          // prints the negated value, for use with SUB instructions. It is
8802          // not useful otherwise but is implemented for compatibility.
8803          if (CVal >= -255 && CVal <= -1)
8804            break;
8805        } else {
8806          // This must be a constant between -4095 and 4095. It is not clear
8807          // what this constraint is intended for. Implemented for
8808          // compatibility with GCC.
8809          if (CVal >= -4095 && CVal <= 4095)
8810            break;
8811        }
8812        return;
8813
8814      case 'K':
8815        if (Subtarget->isThumb1Only()) {
8816          // A 32-bit value where only one byte has a nonzero value. Exclude
8817          // zero to match GCC. This constraint is used by GCC internally for
8818          // constants that can be loaded with a move/shift combination.
8819          // It is not useful otherwise but is implemented for compatibility.
8820          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
8821            break;
8822        } else if (Subtarget->isThumb2()) {
8823          // A constant whose bitwise inverse can be used as an immediate
8824          // value in a data-processing instruction. This can be used in GCC
8825          // with a "B" modifier that prints the inverted value, for use with
8826          // BIC and MVN instructions. It is not useful otherwise but is
8827          // implemented for compatibility.
8828          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
8829            break;
8830        } else {
8831          // A constant whose bitwise inverse can be used as an immediate
8832          // value in a data-processing instruction. This can be used in GCC
8833          // with a "B" modifier that prints the inverted value, for use with
8834          // BIC and MVN instructions. It is not useful otherwise but is
8835          // implemented for compatibility.
8836          if (ARM_AM::getSOImmVal(~CVal) != -1)
8837            break;
8838        }
8839        return;
8840
8841      case 'L':
8842        if (Subtarget->isThumb1Only()) {
8843          // This must be a constant between -7 and 7,
8844          // for 3-operand ADD/SUB immediate instructions.
8845          if (CVal >= -7 && CVal < 7)
8846            break;
8847        } else if (Subtarget->isThumb2()) {
8848          // A constant whose negation can be used as an immediate value in a
8849          // data-processing instruction. This can be used in GCC with an "n"
8850          // modifier that prints the negated value, for use with SUB
8851          // instructions. It is not useful otherwise but is implemented for
8852          // compatibility.
8853          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
8854            break;
8855        } else {
8856          // A constant whose negation can be used as an immediate value in a
8857          // data-processing instruction. This can be used in GCC with an "n"
8858          // modifier that prints the negated value, for use with SUB
8859          // instructions. It is not useful otherwise but is implemented for
8860          // compatibility.
8861          if (ARM_AM::getSOImmVal(-CVal) != -1)
8862            break;
8863        }
8864        return;
8865
8866      case 'M':
8867        if (Subtarget->isThumb()) { // FIXME thumb2
8868          // This must be a multiple of 4 between 0 and 1020, for
8869          // ADD sp + immediate.
8870          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
8871            break;
8872        } else {
8873          // A power of two or a constant between 0 and 32.  This is used in
8874          // GCC for the shift amount on shifted register operands, but it is
8875          // useful in general for any shift amounts.
8876          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
8877            break;
8878        }
8879        return;
8880
8881      case 'N':
8882        if (Subtarget->isThumb()) {  // FIXME thumb2
8883          // This must be a constant between 0 and 31, for shift amounts.
8884          if (CVal >= 0 && CVal <= 31)
8885            break;
8886        }
8887        return;
8888
8889      case 'O':
8890        if (Subtarget->isThumb()) {  // FIXME thumb2
8891          // This must be a multiple of 4 between -508 and 508, for
8892          // ADD/SUB sp = sp + immediate.
8893          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
8894            break;
8895        }
8896        return;
8897    }
8898    Result = DAG.getTargetConstant(CVal, Op.getValueType());
8899    break;
8900  }
8901
8902  if (Result.getNode()) {
8903    Ops.push_back(Result);
8904    return;
8905  }
8906  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
8907}
8908
8909bool
8910ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
8911  // The ARM target isn't yet aware of offsets.
8912  return false;
8913}
8914
8915bool ARM::isBitFieldInvertedMask(unsigned v) {
8916  if (v == 0xffffffff)
8917    return 0;
8918  // there can be 1's on either or both "outsides", all the "inside"
8919  // bits must be 0's
8920  unsigned int lsb = 0, msb = 31;
8921  while (v & (1 << msb)) --msb;
8922  while (v & (1 << lsb)) ++lsb;
8923  for (unsigned int i = lsb; i <= msb; ++i) {
8924    if (v & (1 << i))
8925      return 0;
8926  }
8927  return 1;
8928}
8929
8930/// isFPImmLegal - Returns true if the target can instruction select the
8931/// specified FP immediate natively. If false, the legalizer will
8932/// materialize the FP immediate as a load from a constant pool.
8933bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
8934  if (!Subtarget->hasVFP3())
8935    return false;
8936  if (VT == MVT::f32)
8937    return ARM_AM::getFP32Imm(Imm) != -1;
8938  if (VT == MVT::f64)
8939    return ARM_AM::getFP64Imm(Imm) != -1;
8940  return false;
8941}
8942
8943/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
8944/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
8945/// specified in the intrinsic calls.
8946bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
8947                                           const CallInst &I,
8948                                           unsigned Intrinsic) const {
8949  switch (Intrinsic) {
8950  case Intrinsic::arm_neon_vld1:
8951  case Intrinsic::arm_neon_vld2:
8952  case Intrinsic::arm_neon_vld3:
8953  case Intrinsic::arm_neon_vld4:
8954  case Intrinsic::arm_neon_vld2lane:
8955  case Intrinsic::arm_neon_vld3lane:
8956  case Intrinsic::arm_neon_vld4lane: {
8957    Info.opc = ISD::INTRINSIC_W_CHAIN;
8958    // Conservatively set memVT to the entire set of vectors loaded.
8959    uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
8960    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
8961    Info.ptrVal = I.getArgOperand(0);
8962    Info.offset = 0;
8963    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
8964    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
8965    Info.vol = false; // volatile loads with NEON intrinsics not supported
8966    Info.readMem = true;
8967    Info.writeMem = false;
8968    return true;
8969  }
8970  case Intrinsic::arm_neon_vst1:
8971  case Intrinsic::arm_neon_vst2:
8972  case Intrinsic::arm_neon_vst3:
8973  case Intrinsic::arm_neon_vst4:
8974  case Intrinsic::arm_neon_vst2lane:
8975  case Intrinsic::arm_neon_vst3lane:
8976  case Intrinsic::arm_neon_vst4lane: {
8977    Info.opc = ISD::INTRINSIC_VOID;
8978    // Conservatively set memVT to the entire set of vectors stored.
8979    unsigned NumElts = 0;
8980    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
8981      Type *ArgTy = I.getArgOperand(ArgI)->getType();
8982      if (!ArgTy->isVectorTy())
8983        break;
8984      NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
8985    }
8986    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
8987    Info.ptrVal = I.getArgOperand(0);
8988    Info.offset = 0;
8989    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
8990    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
8991    Info.vol = false; // volatile stores with NEON intrinsics not supported
8992    Info.readMem = false;
8993    Info.writeMem = true;
8994    return true;
8995  }
8996  case Intrinsic::arm_strexd: {
8997    Info.opc = ISD::INTRINSIC_W_CHAIN;
8998    Info.memVT = MVT::i64;
8999    Info.ptrVal = I.getArgOperand(2);
9000    Info.offset = 0;
9001    Info.align = 8;
9002    Info.vol = true;
9003    Info.readMem = false;
9004    Info.writeMem = true;
9005    return true;
9006  }
9007  case Intrinsic::arm_ldrexd: {
9008    Info.opc = ISD::INTRINSIC_W_CHAIN;
9009    Info.memVT = MVT::i64;
9010    Info.ptrVal = I.getArgOperand(0);
9011    Info.offset = 0;
9012    Info.align = 8;
9013    Info.vol = true;
9014    Info.readMem = true;
9015    Info.writeMem = false;
9016    return true;
9017  }
9018  default:
9019    break;
9020  }
9021
9022  return false;
9023}
9024