ARMISelLowering.cpp revision c2723a57f35dd69bd261faaa71ee7aa05f40a87d
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-isel"
16#include "ARM.h"
17#include "ARMAddressingModes.h"
18#include "ARMConstantPoolValue.h"
19#include "ARMISelLowering.h"
20#include "ARMMachineFunctionInfo.h"
21#include "ARMPerfectShuffle.h"
22#include "ARMRegisterInfo.h"
23#include "ARMSubtarget.h"
24#include "ARMTargetMachine.h"
25#include "ARMTargetObjectFile.h"
26#include "llvm/CallingConv.h"
27#include "llvm/Constants.h"
28#include "llvm/Function.h"
29#include "llvm/GlobalValue.h"
30#include "llvm/Instruction.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Type.h"
33#include "llvm/CodeGen/CallingConvLower.h"
34#include "llvm/CodeGen/MachineBasicBlock.h"
35#include "llvm/CodeGen/MachineFrameInfo.h"
36#include "llvm/CodeGen/MachineFunction.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineRegisterInfo.h"
39#include "llvm/CodeGen/PseudoSourceValue.h"
40#include "llvm/CodeGen/SelectionDAG.h"
41#include "llvm/MC/MCSectionMachO.h"
42#include "llvm/Target/TargetOptions.h"
43#include "llvm/ADT/VectorExtras.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/Support/CommandLine.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/MathExtras.h"
48#include "llvm/Support/raw_ostream.h"
49#include <sstream>
50using namespace llvm;
51
52STATISTIC(NumTailCalls, "Number of tail calls");
53
54// This option should go away when tail calls fully work.
55static cl::opt<bool>
56EnableARMTailCalls("arm-tail-calls", cl::Hidden,
57  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
58  cl::init(true));
59
60static cl::opt<bool>
61EnableARMLongCalls("arm-long-calls", cl::Hidden,
62  cl::desc("Generate calls via indirect call instructions"),
63  cl::init(false));
64
65static cl::opt<bool>
66ARMInterworking("arm-interworking", cl::Hidden,
67  cl::desc("Enable / disable ARM interworking (for debugging only)"),
68  cl::init(true));
69
70static cl::opt<bool>
71EnableARMCodePlacement("arm-code-placement", cl::Hidden,
72  cl::desc("Enable code placement pass for ARM"),
73  cl::init(false));
74
75static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
76                                   CCValAssign::LocInfo &LocInfo,
77                                   ISD::ArgFlagsTy &ArgFlags,
78                                   CCState &State);
79static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
80                                    CCValAssign::LocInfo &LocInfo,
81                                    ISD::ArgFlagsTy &ArgFlags,
82                                    CCState &State);
83static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
84                                      CCValAssign::LocInfo &LocInfo,
85                                      ISD::ArgFlagsTy &ArgFlags,
86                                      CCState &State);
87static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
88                                       CCValAssign::LocInfo &LocInfo,
89                                       ISD::ArgFlagsTy &ArgFlags,
90                                       CCState &State);
91
92void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
93                                       EVT PromotedBitwiseVT) {
94  if (VT != PromotedLdStVT) {
95    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
96    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
97                       PromotedLdStVT.getSimpleVT());
98
99    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
100    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
101                       PromotedLdStVT.getSimpleVT());
102  }
103
104  EVT ElemTy = VT.getVectorElementType();
105  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
106    setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom);
107  if (ElemTy == MVT::i8 || ElemTy == MVT::i16)
108    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
109  if (ElemTy != MVT::i32) {
110    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
111    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
112    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
113    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
114  }
115  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
116  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
117  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
118  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Expand);
119  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
120  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
121  if (VT.isInteger()) {
122    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
123    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
124    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
125  }
126
127  // Promote all bit-wise operations.
128  if (VT.isInteger() && VT != PromotedBitwiseVT) {
129    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
130    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
131                       PromotedBitwiseVT.getSimpleVT());
132    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
133    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
134                       PromotedBitwiseVT.getSimpleVT());
135    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
136    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
137                       PromotedBitwiseVT.getSimpleVT());
138  }
139
140  // Neon does not support vector divide/remainder operations.
141  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
142  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
143  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
144  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
145  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
146  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
147}
148
149void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
150  addRegisterClass(VT, ARM::DPRRegisterClass);
151  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
152}
153
154void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
155  addRegisterClass(VT, ARM::QPRRegisterClass);
156  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
157}
158
159static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
160  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
161    return new TargetLoweringObjectFileMachO();
162
163  return new ARMElfTargetObjectFile();
164}
165
166ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
167    : TargetLowering(TM, createTLOF(TM)) {
168  Subtarget = &TM.getSubtarget<ARMSubtarget>();
169  RegInfo = TM.getRegisterInfo();
170
171  if (Subtarget->isTargetDarwin()) {
172    // Uses VFP for Thumb libfuncs if available.
173    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
174      // Single-precision floating-point arithmetic.
175      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
176      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
177      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
178      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
179
180      // Double-precision floating-point arithmetic.
181      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
182      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
183      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
184      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
185
186      // Single-precision comparisons.
187      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
188      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
189      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
190      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
191      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
192      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
193      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
194      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
195
196      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
197      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
198      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
199      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
200      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
201      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
202      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
203      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
204
205      // Double-precision comparisons.
206      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
207      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
208      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
209      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
210      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
211      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
212      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
213      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
214
215      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
216      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
217      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
218      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
219      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
220      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
221      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
222      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
223
224      // Floating-point to integer conversions.
225      // i64 conversions are done via library routines even when generating VFP
226      // instructions, so use the same ones.
227      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
228      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
229      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
230      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
231
232      // Conversions between floating types.
233      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
234      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
235
236      // Integer to floating-point conversions.
237      // i64 conversions are done via library routines even when generating VFP
238      // instructions, so use the same ones.
239      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
240      // e.g., __floatunsidf vs. __floatunssidfvfp.
241      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
242      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
243      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
244      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
245    }
246  }
247
248  // These libcalls are not available in 32-bit.
249  setLibcallName(RTLIB::SHL_I128, 0);
250  setLibcallName(RTLIB::SRL_I128, 0);
251  setLibcallName(RTLIB::SRA_I128, 0);
252
253  // Libcalls should use the AAPCS base standard ABI, even if hard float
254  // is in effect, as per the ARM RTABI specification, section 4.1.2.
255  if (Subtarget->isAAPCS_ABI()) {
256    for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
257      setLibcallCallingConv(static_cast<RTLIB::Libcall>(i),
258                            CallingConv::ARM_AAPCS);
259    }
260  }
261
262  if (Subtarget->isThumb1Only())
263    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
264  else
265    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
266  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
267    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
268    addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
269
270    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
271  }
272
273  if (Subtarget->hasNEON()) {
274    addDRTypeForNEON(MVT::v2f32);
275    addDRTypeForNEON(MVT::v8i8);
276    addDRTypeForNEON(MVT::v4i16);
277    addDRTypeForNEON(MVT::v2i32);
278    addDRTypeForNEON(MVT::v1i64);
279
280    addQRTypeForNEON(MVT::v4f32);
281    addQRTypeForNEON(MVT::v2f64);
282    addQRTypeForNEON(MVT::v16i8);
283    addQRTypeForNEON(MVT::v8i16);
284    addQRTypeForNEON(MVT::v4i32);
285    addQRTypeForNEON(MVT::v2i64);
286
287    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
288    // neither Neon nor VFP support any arithmetic operations on it.
289    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
290    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
291    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
292    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
293    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
294    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
295    setOperationAction(ISD::VSETCC, MVT::v2f64, Expand);
296    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
297    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
298    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
299    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
300    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
301    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
302    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
303    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
304    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
305    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
306    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
307    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
308    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
309    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
310    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
311    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
312    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
313
314    // Neon does not support some operations on v1i64 and v2i64 types.
315    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
316    setOperationAction(ISD::MUL, MVT::v2i64, Expand);
317    setOperationAction(ISD::VSETCC, MVT::v1i64, Expand);
318    setOperationAction(ISD::VSETCC, MVT::v2i64, Expand);
319
320    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
321    setTargetDAGCombine(ISD::SHL);
322    setTargetDAGCombine(ISD::SRL);
323    setTargetDAGCombine(ISD::SRA);
324    setTargetDAGCombine(ISD::SIGN_EXTEND);
325    setTargetDAGCombine(ISD::ZERO_EXTEND);
326    setTargetDAGCombine(ISD::ANY_EXTEND);
327    setTargetDAGCombine(ISD::SELECT_CC);
328  }
329
330  computeRegisterProperties();
331
332  // ARM does not have f32 extending load.
333  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
334
335  // ARM does not have i1 sign extending load.
336  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
337
338  // ARM supports all 4 flavors of integer indexed load / store.
339  if (!Subtarget->isThumb1Only()) {
340    for (unsigned im = (unsigned)ISD::PRE_INC;
341         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
342      setIndexedLoadAction(im,  MVT::i1,  Legal);
343      setIndexedLoadAction(im,  MVT::i8,  Legal);
344      setIndexedLoadAction(im,  MVT::i16, Legal);
345      setIndexedLoadAction(im,  MVT::i32, Legal);
346      setIndexedStoreAction(im, MVT::i1,  Legal);
347      setIndexedStoreAction(im, MVT::i8,  Legal);
348      setIndexedStoreAction(im, MVT::i16, Legal);
349      setIndexedStoreAction(im, MVT::i32, Legal);
350    }
351  }
352
353  // i64 operation support.
354  if (Subtarget->isThumb1Only()) {
355    setOperationAction(ISD::MUL,     MVT::i64, Expand);
356    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
357    setOperationAction(ISD::MULHS,   MVT::i32, Expand);
358    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
359    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
360  } else {
361    setOperationAction(ISD::MUL,     MVT::i64, Expand);
362    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
363    if (!Subtarget->hasV6Ops())
364      setOperationAction(ISD::MULHS, MVT::i32, Expand);
365  }
366  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
367  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
368  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
369  setOperationAction(ISD::SRL,       MVT::i64, Custom);
370  setOperationAction(ISD::SRA,       MVT::i64, Custom);
371
372  // ARM does not have ROTL.
373  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
374  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
375  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
376  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
377    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
378
379  // Only ARMv6 has BSWAP.
380  if (!Subtarget->hasV6Ops())
381    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
382
383  // These are expanded into libcalls.
384  if (!Subtarget->hasDivide()) {
385    // v7M has a hardware divider
386    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
387    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
388  }
389  setOperationAction(ISD::SREM,  MVT::i32, Expand);
390  setOperationAction(ISD::UREM,  MVT::i32, Expand);
391  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
392  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
393
394  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
395  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
396  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
397  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
398  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
399
400  setOperationAction(ISD::TRAP, MVT::Other, Legal);
401
402  // Use the default implementation.
403  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
404  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
405  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
406  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
407  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
408  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
409  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
410  // FIXME: Shouldn't need this, since no register is used, but the legalizer
411  // doesn't yet know how to not do that for SjLj.
412  setExceptionSelectorRegister(ARM::R0);
413  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
414  // Handle atomics directly for ARMv[67] (except for Thumb1), otherwise
415  // use the default expansion.
416  bool canHandleAtomics =
417    (Subtarget->hasV7Ops() ||
418      (Subtarget->hasV6Ops() && !Subtarget->isThumb1Only()));
419  if (canHandleAtomics) {
420    // membarrier needs custom lowering; the rest are legal and handled
421    // normally.
422    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
423  } else {
424    // Set them all for expansion, which will force libcalls.
425    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
426    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i8,  Expand);
427    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i16, Expand);
428    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
429    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i8,  Expand);
430    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i16, Expand);
431    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
432    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i8,  Expand);
433    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i16, Expand);
434    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
435    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i8,  Expand);
436    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i16, Expand);
437    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
438    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i8,  Expand);
439    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i16, Expand);
440    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
441    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i8,  Expand);
442    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i16, Expand);
443    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
444    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i8,  Expand);
445    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i16, Expand);
446    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
447    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i8,  Expand);
448    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i16, Expand);
449    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
450    // Since the libcalls include locking, fold in the fences
451    setShouldFoldAtomicFences(true);
452  }
453  // 64-bit versions are always libcalls (for now)
454  setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Expand);
455  setOperationAction(ISD::ATOMIC_SWAP,      MVT::i64, Expand);
456  setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Expand);
457  setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Expand);
458  setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Expand);
459  setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Expand);
460  setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Expand);
461  setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Expand);
462
463  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
464  if (!Subtarget->hasV6Ops()) {
465    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
466    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
467  }
468  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
469
470  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only())
471    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
472    // iff target supports vfp2.
473    setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom);
474
475  // We want to custom lower some of our intrinsics.
476  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
477  if (Subtarget->isTargetDarwin()) {
478    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
479    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
480  }
481
482  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
483  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
484  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
485  setOperationAction(ISD::SELECT,    MVT::i32, Expand);
486  setOperationAction(ISD::SELECT,    MVT::f32, Expand);
487  setOperationAction(ISD::SELECT,    MVT::f64, Expand);
488  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
489  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
490  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
491
492  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
493  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
494  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
495  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
496  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
497
498  // We don't support sin/cos/fmod/copysign/pow
499  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
500  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
501  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
502  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
503  setOperationAction(ISD::FREM,      MVT::f64, Expand);
504  setOperationAction(ISD::FREM,      MVT::f32, Expand);
505  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
506    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
507    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
508  }
509  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
510  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
511
512  // Various VFP goodness
513  if (!UseSoftFloat && !Subtarget->isThumb1Only()) {
514    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
515    if (Subtarget->hasVFP2()) {
516      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
517      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
518      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
519      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
520    }
521    // Special handling for half-precision FP.
522    if (!Subtarget->hasFP16()) {
523      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
524      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
525    }
526  }
527
528  // We have target-specific dag combine patterns for the following nodes:
529  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
530  setTargetDAGCombine(ISD::ADD);
531  setTargetDAGCombine(ISD::SUB);
532  setTargetDAGCombine(ISD::MUL);
533
534  if (Subtarget->hasV6T2Ops())
535    setTargetDAGCombine(ISD::OR);
536
537  setStackPointerRegisterToSaveRestore(ARM::SP);
538
539  if (UseSoftFloat || Subtarget->isThumb1Only() || !Subtarget->hasVFP2())
540    setSchedulingPreference(Sched::RegPressure);
541  else
542    setSchedulingPreference(Sched::Hybrid);
543
544  maxStoresPerMemcpy = 1;   //// temporary - rewrite interface to use type
545
546  // On ARM arguments smaller than 4 bytes are extended, so all arguments
547  // are at least 4 bytes aligned.
548  setMinStackArgumentAlignment(4);
549
550  if (EnableARMCodePlacement)
551    benefitFromCodePlacementOpt = true;
552}
553
554std::pair<const TargetRegisterClass*, uint8_t>
555ARMTargetLowering::findRepresentativeClass(EVT VT) const{
556  const TargetRegisterClass *RRC = 0;
557  uint8_t Cost = 1;
558  switch (VT.getSimpleVT().SimpleTy) {
559  default:
560    return TargetLowering::findRepresentativeClass(VT);
561  // Use DPR as representative register class for all floating point
562  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
563  // the cost is 1 for both f32 and f64.
564  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
565  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
566    RRC = ARM::DPRRegisterClass;
567    break;
568  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
569  case MVT::v4f32: case MVT::v2f64:
570    RRC = ARM::DPRRegisterClass;
571    Cost = 2;
572    break;
573  case MVT::v4i64:
574    RRC = ARM::DPRRegisterClass;
575    Cost = 4;
576    break;
577  case MVT::v8i64:
578    RRC = ARM::DPRRegisterClass;
579    Cost = 8;
580    break;
581  }
582  return std::make_pair(RRC, Cost);
583}
584
585const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
586  switch (Opcode) {
587  default: return 0;
588  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
589  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
590  case ARMISD::CALL:          return "ARMISD::CALL";
591  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
592  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
593  case ARMISD::tCALL:         return "ARMISD::tCALL";
594  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
595  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
596  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
597  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
598  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
599  case ARMISD::CMP:           return "ARMISD::CMP";
600  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
601  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
602  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
603  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
604  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
605  case ARMISD::CMOV:          return "ARMISD::CMOV";
606  case ARMISD::CNEG:          return "ARMISD::CNEG";
607
608  case ARMISD::RBIT:          return "ARMISD::RBIT";
609
610  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
611  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
612  case ARMISD::SITOF:         return "ARMISD::SITOF";
613  case ARMISD::UITOF:         return "ARMISD::UITOF";
614
615  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
616  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
617  case ARMISD::RRX:           return "ARMISD::RRX";
618
619  case ARMISD::VMOVRRD:         return "ARMISD::VMOVRRD";
620  case ARMISD::VMOVDRR:         return "ARMISD::VMOVDRR";
621
622  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
623  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
624
625  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
626
627  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
628
629  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
630
631  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
632  case ARMISD::SYNCBARRIER:   return "ARMISD::SYNCBARRIER";
633
634  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
635  case ARMISD::VCGE:          return "ARMISD::VCGE";
636  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
637  case ARMISD::VCGT:          return "ARMISD::VCGT";
638  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
639  case ARMISD::VTST:          return "ARMISD::VTST";
640
641  case ARMISD::VSHL:          return "ARMISD::VSHL";
642  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
643  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
644  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
645  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
646  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
647  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
648  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
649  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
650  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
651  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
652  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
653  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
654  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
655  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
656  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
657  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
658  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
659  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
660  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
661  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
662  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
663  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
664  case ARMISD::VDUP:          return "ARMISD::VDUP";
665  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
666  case ARMISD::VEXT:          return "ARMISD::VEXT";
667  case ARMISD::VREV64:        return "ARMISD::VREV64";
668  case ARMISD::VREV32:        return "ARMISD::VREV32";
669  case ARMISD::VREV16:        return "ARMISD::VREV16";
670  case ARMISD::VZIP:          return "ARMISD::VZIP";
671  case ARMISD::VUZP:          return "ARMISD::VUZP";
672  case ARMISD::VTRN:          return "ARMISD::VTRN";
673  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
674  case ARMISD::FMAX:          return "ARMISD::FMAX";
675  case ARMISD::FMIN:          return "ARMISD::FMIN";
676  case ARMISD::BFI:           return "ARMISD::BFI";
677  }
678}
679
680/// getRegClassFor - Return the register class that should be used for the
681/// specified value type.
682TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
683  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
684  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
685  // load / store 4 to 8 consecutive D registers.
686  if (Subtarget->hasNEON()) {
687    if (VT == MVT::v4i64)
688      return ARM::QQPRRegisterClass;
689    else if (VT == MVT::v8i64)
690      return ARM::QQQQPRRegisterClass;
691  }
692  return TargetLowering::getRegClassFor(VT);
693}
694
695// Create a fast isel object.
696FastISel *
697ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
698  return ARM::createFastISel(funcInfo);
699}
700
701/// getFunctionAlignment - Return the Log2 alignment of this function.
702unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const {
703  return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 1 : 2;
704}
705
706Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
707  unsigned NumVals = N->getNumValues();
708  if (!NumVals)
709    return Sched::RegPressure;
710
711  for (unsigned i = 0; i != NumVals; ++i) {
712    EVT VT = N->getValueType(i);
713    if (VT.isFloatingPoint() || VT.isVector())
714      return Sched::Latency;
715  }
716
717  if (!N->isMachineOpcode())
718    return Sched::RegPressure;
719
720  // Load are scheduled for latency even if there instruction itinerary
721  // is not available.
722  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
723  const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
724  if (TID.mayLoad())
725    return Sched::Latency;
726
727  const InstrItineraryData &Itins = getTargetMachine().getInstrItineraryData();
728  if (!Itins.isEmpty() && Itins.getStageLatency(TID.getSchedClass()) > 2)
729    return Sched::Latency;
730  return Sched::RegPressure;
731}
732
733unsigned
734ARMTargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
735                                       MachineFunction &MF) const {
736  unsigned FPDiff = RegInfo->hasFP(MF) ? 1 : 0;
737  switch (RC->getID()) {
738  default:
739    return 0;
740  case ARM::tGPRRegClassID:
741    return 5 - FPDiff;
742  case ARM::GPRRegClassID:
743    return 10 - FPDiff - (Subtarget->isR9Reserved() ? 1 : 0);
744  case ARM::SPRRegClassID:  // Currently not used as 'rep' register class.
745  case ARM::DPRRegClassID:
746    return 32 - 10;
747  }
748}
749
750//===----------------------------------------------------------------------===//
751// Lowering Code
752//===----------------------------------------------------------------------===//
753
754/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
755static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
756  switch (CC) {
757  default: llvm_unreachable("Unknown condition code!");
758  case ISD::SETNE:  return ARMCC::NE;
759  case ISD::SETEQ:  return ARMCC::EQ;
760  case ISD::SETGT:  return ARMCC::GT;
761  case ISD::SETGE:  return ARMCC::GE;
762  case ISD::SETLT:  return ARMCC::LT;
763  case ISD::SETLE:  return ARMCC::LE;
764  case ISD::SETUGT: return ARMCC::HI;
765  case ISD::SETUGE: return ARMCC::HS;
766  case ISD::SETULT: return ARMCC::LO;
767  case ISD::SETULE: return ARMCC::LS;
768  }
769}
770
771/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
772static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
773                        ARMCC::CondCodes &CondCode2) {
774  CondCode2 = ARMCC::AL;
775  switch (CC) {
776  default: llvm_unreachable("Unknown FP condition!");
777  case ISD::SETEQ:
778  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
779  case ISD::SETGT:
780  case ISD::SETOGT: CondCode = ARMCC::GT; break;
781  case ISD::SETGE:
782  case ISD::SETOGE: CondCode = ARMCC::GE; break;
783  case ISD::SETOLT: CondCode = ARMCC::MI; break;
784  case ISD::SETOLE: CondCode = ARMCC::LS; break;
785  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
786  case ISD::SETO:   CondCode = ARMCC::VC; break;
787  case ISD::SETUO:  CondCode = ARMCC::VS; break;
788  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
789  case ISD::SETUGT: CondCode = ARMCC::HI; break;
790  case ISD::SETUGE: CondCode = ARMCC::PL; break;
791  case ISD::SETLT:
792  case ISD::SETULT: CondCode = ARMCC::LT; break;
793  case ISD::SETLE:
794  case ISD::SETULE: CondCode = ARMCC::LE; break;
795  case ISD::SETNE:
796  case ISD::SETUNE: CondCode = ARMCC::NE; break;
797  }
798}
799
800//===----------------------------------------------------------------------===//
801//                      Calling Convention Implementation
802//===----------------------------------------------------------------------===//
803
804#include "ARMGenCallingConv.inc"
805
806// APCS f64 is in register pairs, possibly split to stack
807static bool f64AssignAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
808                          CCValAssign::LocInfo &LocInfo,
809                          CCState &State, bool CanFail) {
810  static const unsigned RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
811
812  // Try to get the first register.
813  if (unsigned Reg = State.AllocateReg(RegList, 4))
814    State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
815  else {
816    // For the 2nd half of a v2f64, do not fail.
817    if (CanFail)
818      return false;
819
820    // Put the whole thing on the stack.
821    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
822                                           State.AllocateStack(8, 4),
823                                           LocVT, LocInfo));
824    return true;
825  }
826
827  // Try to get the second register.
828  if (unsigned Reg = State.AllocateReg(RegList, 4))
829    State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
830  else
831    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
832                                           State.AllocateStack(4, 4),
833                                           LocVT, LocInfo));
834  return true;
835}
836
837static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
838                                   CCValAssign::LocInfo &LocInfo,
839                                   ISD::ArgFlagsTy &ArgFlags,
840                                   CCState &State) {
841  if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
842    return false;
843  if (LocVT == MVT::v2f64 &&
844      !f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
845    return false;
846  return true;  // we handled it
847}
848
849// AAPCS f64 is in aligned register pairs
850static bool f64AssignAAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
851                           CCValAssign::LocInfo &LocInfo,
852                           CCState &State, bool CanFail) {
853  static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
854  static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
855  static const unsigned ShadowRegList[] = { ARM::R0, ARM::R1 };
856
857  unsigned Reg = State.AllocateReg(HiRegList, ShadowRegList, 2);
858  if (Reg == 0) {
859    // For the 2nd half of a v2f64, do not just fail.
860    if (CanFail)
861      return false;
862
863    // Put the whole thing on the stack.
864    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
865                                           State.AllocateStack(8, 8),
866                                           LocVT, LocInfo));
867    return true;
868  }
869
870  unsigned i;
871  for (i = 0; i < 2; ++i)
872    if (HiRegList[i] == Reg)
873      break;
874
875  unsigned T = State.AllocateReg(LoRegList[i]);
876  (void)T;
877  assert(T == LoRegList[i] && "Could not allocate register");
878
879  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
880  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
881                                         LocVT, LocInfo));
882  return true;
883}
884
885static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
886                                    CCValAssign::LocInfo &LocInfo,
887                                    ISD::ArgFlagsTy &ArgFlags,
888                                    CCState &State) {
889  if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
890    return false;
891  if (LocVT == MVT::v2f64 &&
892      !f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
893    return false;
894  return true;  // we handled it
895}
896
897static bool f64RetAssign(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
898                         CCValAssign::LocInfo &LocInfo, CCState &State) {
899  static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
900  static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
901
902  unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
903  if (Reg == 0)
904    return false; // we didn't handle it
905
906  unsigned i;
907  for (i = 0; i < 2; ++i)
908    if (HiRegList[i] == Reg)
909      break;
910
911  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
912  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
913                                         LocVT, LocInfo));
914  return true;
915}
916
917static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
918                                      CCValAssign::LocInfo &LocInfo,
919                                      ISD::ArgFlagsTy &ArgFlags,
920                                      CCState &State) {
921  if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
922    return false;
923  if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
924    return false;
925  return true;  // we handled it
926}
927
928static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
929                                       CCValAssign::LocInfo &LocInfo,
930                                       ISD::ArgFlagsTy &ArgFlags,
931                                       CCState &State) {
932  return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags,
933                                   State);
934}
935
936/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
937/// given CallingConvention value.
938CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
939                                                 bool Return,
940                                                 bool isVarArg) const {
941  switch (CC) {
942  default:
943    llvm_unreachable("Unsupported calling convention");
944  case CallingConv::C:
945  case CallingConv::Fast:
946    // Use target triple & subtarget features to do actual dispatch.
947    if (Subtarget->isAAPCS_ABI()) {
948      if (Subtarget->hasVFP2() &&
949          FloatABIType == FloatABI::Hard && !isVarArg)
950        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
951      else
952        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
953    } else
954        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
955  case CallingConv::ARM_AAPCS_VFP:
956    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
957  case CallingConv::ARM_AAPCS:
958    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
959  case CallingConv::ARM_APCS:
960    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
961  }
962}
963
964/// LowerCallResult - Lower the result values of a call into the
965/// appropriate copies out of appropriate physical registers.
966SDValue
967ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
968                                   CallingConv::ID CallConv, bool isVarArg,
969                                   const SmallVectorImpl<ISD::InputArg> &Ins,
970                                   DebugLoc dl, SelectionDAG &DAG,
971                                   SmallVectorImpl<SDValue> &InVals) const {
972
973  // Assign locations to each value returned by this call.
974  SmallVector<CCValAssign, 16> RVLocs;
975  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
976                 RVLocs, *DAG.getContext());
977  CCInfo.AnalyzeCallResult(Ins,
978                           CCAssignFnForNode(CallConv, /* Return*/ true,
979                                             isVarArg));
980
981  // Copy all of the result registers out of their specified physreg.
982  for (unsigned i = 0; i != RVLocs.size(); ++i) {
983    CCValAssign VA = RVLocs[i];
984
985    SDValue Val;
986    if (VA.needsCustom()) {
987      // Handle f64 or half of a v2f64.
988      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
989                                      InFlag);
990      Chain = Lo.getValue(1);
991      InFlag = Lo.getValue(2);
992      VA = RVLocs[++i]; // skip ahead to next loc
993      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
994                                      InFlag);
995      Chain = Hi.getValue(1);
996      InFlag = Hi.getValue(2);
997      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
998
999      if (VA.getLocVT() == MVT::v2f64) {
1000        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1001        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1002                          DAG.getConstant(0, MVT::i32));
1003
1004        VA = RVLocs[++i]; // skip ahead to next loc
1005        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1006        Chain = Lo.getValue(1);
1007        InFlag = Lo.getValue(2);
1008        VA = RVLocs[++i]; // skip ahead to next loc
1009        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1010        Chain = Hi.getValue(1);
1011        InFlag = Hi.getValue(2);
1012        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1013        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1014                          DAG.getConstant(1, MVT::i32));
1015      }
1016    } else {
1017      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1018                               InFlag);
1019      Chain = Val.getValue(1);
1020      InFlag = Val.getValue(2);
1021    }
1022
1023    switch (VA.getLocInfo()) {
1024    default: llvm_unreachable("Unknown loc info!");
1025    case CCValAssign::Full: break;
1026    case CCValAssign::BCvt:
1027      Val = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), Val);
1028      break;
1029    }
1030
1031    InVals.push_back(Val);
1032  }
1033
1034  return Chain;
1035}
1036
1037/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1038/// by "Src" to address "Dst" of size "Size".  Alignment information is
1039/// specified by the specific parameter attribute.  The copy will be passed as
1040/// a byval function parameter.
1041/// Sometimes what we are copying is the end of a larger object, the part that
1042/// does not fit in registers.
1043static SDValue
1044CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1045                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1046                          DebugLoc dl) {
1047  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1048  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1049                       /*isVolatile=*/false, /*AlwaysInline=*/false,
1050                       NULL, 0, NULL, 0);
1051}
1052
1053/// LowerMemOpCallTo - Store the argument to the stack.
1054SDValue
1055ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1056                                    SDValue StackPtr, SDValue Arg,
1057                                    DebugLoc dl, SelectionDAG &DAG,
1058                                    const CCValAssign &VA,
1059                                    ISD::ArgFlagsTy Flags) const {
1060  unsigned LocMemOffset = VA.getLocMemOffset();
1061  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1062  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1063  if (Flags.isByVal()) {
1064    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1065  }
1066  return DAG.getStore(Chain, dl, Arg, PtrOff,
1067                      PseudoSourceValue::getStack(), LocMemOffset,
1068                      false, false, 0);
1069}
1070
1071void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1072                                         SDValue Chain, SDValue &Arg,
1073                                         RegsToPassVector &RegsToPass,
1074                                         CCValAssign &VA, CCValAssign &NextVA,
1075                                         SDValue &StackPtr,
1076                                         SmallVector<SDValue, 8> &MemOpChains,
1077                                         ISD::ArgFlagsTy Flags) const {
1078
1079  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1080                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1081  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1082
1083  if (NextVA.isRegLoc())
1084    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1085  else {
1086    assert(NextVA.isMemLoc());
1087    if (StackPtr.getNode() == 0)
1088      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1089
1090    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1091                                           dl, DAG, NextVA,
1092                                           Flags));
1093  }
1094}
1095
1096/// LowerCall - Lowering a call into a callseq_start <-
1097/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1098/// nodes.
1099SDValue
1100ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1101                             CallingConv::ID CallConv, bool isVarArg,
1102                             bool &isTailCall,
1103                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1104                             const SmallVectorImpl<SDValue> &OutVals,
1105                             const SmallVectorImpl<ISD::InputArg> &Ins,
1106                             DebugLoc dl, SelectionDAG &DAG,
1107                             SmallVectorImpl<SDValue> &InVals) const {
1108  MachineFunction &MF = DAG.getMachineFunction();
1109  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1110  bool IsSibCall = false;
1111  // Temporarily disable tail calls so things don't break.
1112  if (!EnableARMTailCalls)
1113    isTailCall = false;
1114  if (isTailCall) {
1115    // Check if it's really possible to do a tail call.
1116    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1117                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1118                                                   Outs, OutVals, Ins, DAG);
1119    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1120    // detected sibcalls.
1121    if (isTailCall) {
1122      ++NumTailCalls;
1123      IsSibCall = true;
1124    }
1125  }
1126
1127  // Analyze operands of the call, assigning locations to each operand.
1128  SmallVector<CCValAssign, 16> ArgLocs;
1129  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1130                 *DAG.getContext());
1131  CCInfo.AnalyzeCallOperands(Outs,
1132                             CCAssignFnForNode(CallConv, /* Return*/ false,
1133                                               isVarArg));
1134
1135  // Get a count of how many bytes are to be pushed on the stack.
1136  unsigned NumBytes = CCInfo.getNextStackOffset();
1137
1138  // For tail calls, memory operands are available in our caller's stack.
1139  if (IsSibCall)
1140    NumBytes = 0;
1141
1142  // Adjust the stack pointer for the new arguments...
1143  // These operations are automatically eliminated by the prolog/epilog pass
1144  if (!IsSibCall)
1145    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1146
1147  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1148
1149  RegsToPassVector RegsToPass;
1150  SmallVector<SDValue, 8> MemOpChains;
1151
1152  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1153  // of tail call optimization, arguments are handled later.
1154  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1155       i != e;
1156       ++i, ++realArgIdx) {
1157    CCValAssign &VA = ArgLocs[i];
1158    SDValue Arg = OutVals[realArgIdx];
1159    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1160
1161    // Promote the value if needed.
1162    switch (VA.getLocInfo()) {
1163    default: llvm_unreachable("Unknown loc info!");
1164    case CCValAssign::Full: break;
1165    case CCValAssign::SExt:
1166      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1167      break;
1168    case CCValAssign::ZExt:
1169      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1170      break;
1171    case CCValAssign::AExt:
1172      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1173      break;
1174    case CCValAssign::BCvt:
1175      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
1176      break;
1177    }
1178
1179    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1180    if (VA.needsCustom()) {
1181      if (VA.getLocVT() == MVT::v2f64) {
1182        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1183                                  DAG.getConstant(0, MVT::i32));
1184        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1185                                  DAG.getConstant(1, MVT::i32));
1186
1187        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1188                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1189
1190        VA = ArgLocs[++i]; // skip ahead to next loc
1191        if (VA.isRegLoc()) {
1192          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1193                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1194        } else {
1195          assert(VA.isMemLoc());
1196
1197          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1198                                                 dl, DAG, VA, Flags));
1199        }
1200      } else {
1201        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1202                         StackPtr, MemOpChains, Flags);
1203      }
1204    } else if (VA.isRegLoc()) {
1205      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1206    } else if (!IsSibCall) {
1207      assert(VA.isMemLoc());
1208
1209      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1210                                             dl, DAG, VA, Flags));
1211    }
1212  }
1213
1214  if (!MemOpChains.empty())
1215    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1216                        &MemOpChains[0], MemOpChains.size());
1217
1218  // Build a sequence of copy-to-reg nodes chained together with token chain
1219  // and flag operands which copy the outgoing args into the appropriate regs.
1220  SDValue InFlag;
1221  // Tail call byval lowering might overwrite argument registers so in case of
1222  // tail call optimization the copies to registers are lowered later.
1223  if (!isTailCall)
1224    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1225      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1226                               RegsToPass[i].second, InFlag);
1227      InFlag = Chain.getValue(1);
1228    }
1229
1230  // For tail calls lower the arguments to the 'real' stack slot.
1231  if (isTailCall) {
1232    // Force all the incoming stack arguments to be loaded from the stack
1233    // before any new outgoing arguments are stored to the stack, because the
1234    // outgoing stack slots may alias the incoming argument stack slots, and
1235    // the alias isn't otherwise explicit. This is slightly more conservative
1236    // than necessary, because it means that each store effectively depends
1237    // on every argument instead of just those arguments it would clobber.
1238
1239    // Do not flag preceeding copytoreg stuff together with the following stuff.
1240    InFlag = SDValue();
1241    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1242      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1243                               RegsToPass[i].second, InFlag);
1244      InFlag = Chain.getValue(1);
1245    }
1246    InFlag =SDValue();
1247  }
1248
1249  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1250  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1251  // node so that legalize doesn't hack it.
1252  bool isDirect = false;
1253  bool isARMFunc = false;
1254  bool isLocalARMFunc = false;
1255  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1256
1257  if (EnableARMLongCalls) {
1258    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1259            && "long-calls with non-static relocation model!");
1260    // Handle a global address or an external symbol. If it's not one of
1261    // those, the target's already in a register, so we don't need to do
1262    // anything extra.
1263    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1264      const GlobalValue *GV = G->getGlobal();
1265      // Create a constant pool entry for the callee address
1266      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1267      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1268                                                           ARMPCLabelIndex,
1269                                                           ARMCP::CPValue, 0);
1270      // Get the address of the callee into a register
1271      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1272      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1273      Callee = DAG.getLoad(getPointerTy(), dl,
1274                           DAG.getEntryNode(), CPAddr,
1275                           PseudoSourceValue::getConstantPool(), 0,
1276                           false, false, 0);
1277    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1278      const char *Sym = S->getSymbol();
1279
1280      // Create a constant pool entry for the callee address
1281      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1282      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1283                                                       Sym, ARMPCLabelIndex, 0);
1284      // Get the address of the callee into a register
1285      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1286      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1287      Callee = DAG.getLoad(getPointerTy(), dl,
1288                           DAG.getEntryNode(), CPAddr,
1289                           PseudoSourceValue::getConstantPool(), 0,
1290                           false, false, 0);
1291    }
1292  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1293    const GlobalValue *GV = G->getGlobal();
1294    isDirect = true;
1295    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1296    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1297                   getTargetMachine().getRelocationModel() != Reloc::Static;
1298    isARMFunc = !Subtarget->isThumb() || isStub;
1299    // ARM call to a local ARM function is predicable.
1300    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1301    // tBX takes a register source operand.
1302    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1303      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1304      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1305                                                           ARMPCLabelIndex,
1306                                                           ARMCP::CPValue, 4);
1307      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1308      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1309      Callee = DAG.getLoad(getPointerTy(), dl,
1310                           DAG.getEntryNode(), CPAddr,
1311                           PseudoSourceValue::getConstantPool(), 0,
1312                           false, false, 0);
1313      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1314      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1315                           getPointerTy(), Callee, PICLabel);
1316    } else
1317      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy());
1318  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1319    isDirect = true;
1320    bool isStub = Subtarget->isTargetDarwin() &&
1321                  getTargetMachine().getRelocationModel() != Reloc::Static;
1322    isARMFunc = !Subtarget->isThumb() || isStub;
1323    // tBX takes a register source operand.
1324    const char *Sym = S->getSymbol();
1325    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1326      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1327      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1328                                                       Sym, ARMPCLabelIndex, 4);
1329      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1330      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1331      Callee = DAG.getLoad(getPointerTy(), dl,
1332                           DAG.getEntryNode(), CPAddr,
1333                           PseudoSourceValue::getConstantPool(), 0,
1334                           false, false, 0);
1335      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1336      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1337                           getPointerTy(), Callee, PICLabel);
1338    } else
1339      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
1340  }
1341
1342  // FIXME: handle tail calls differently.
1343  unsigned CallOpc;
1344  if (Subtarget->isThumb()) {
1345    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1346      CallOpc = ARMISD::CALL_NOLINK;
1347    else
1348      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1349  } else {
1350    CallOpc = (isDirect || Subtarget->hasV5TOps())
1351      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1352      : ARMISD::CALL_NOLINK;
1353  }
1354
1355  std::vector<SDValue> Ops;
1356  Ops.push_back(Chain);
1357  Ops.push_back(Callee);
1358
1359  // Add argument registers to the end of the list so that they are known live
1360  // into the call.
1361  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1362    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1363                                  RegsToPass[i].second.getValueType()));
1364
1365  if (InFlag.getNode())
1366    Ops.push_back(InFlag);
1367
1368  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1369  if (isTailCall)
1370    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1371
1372  // Returns a chain and a flag for retval copy to use.
1373  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1374  InFlag = Chain.getValue(1);
1375
1376  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1377                             DAG.getIntPtrConstant(0, true), InFlag);
1378  if (!Ins.empty())
1379    InFlag = Chain.getValue(1);
1380
1381  // Handle result values, copying them out of physregs into vregs that we
1382  // return.
1383  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1384                         dl, DAG, InVals);
1385}
1386
1387/// MatchingStackOffset - Return true if the given stack call argument is
1388/// already available in the same position (relatively) of the caller's
1389/// incoming argument stack.
1390static
1391bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1392                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1393                         const ARMInstrInfo *TII) {
1394  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1395  int FI = INT_MAX;
1396  if (Arg.getOpcode() == ISD::CopyFromReg) {
1397    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1398    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
1399      return false;
1400    MachineInstr *Def = MRI->getVRegDef(VR);
1401    if (!Def)
1402      return false;
1403    if (!Flags.isByVal()) {
1404      if (!TII->isLoadFromStackSlot(Def, FI))
1405        return false;
1406    } else {
1407      return false;
1408    }
1409  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1410    if (Flags.isByVal())
1411      // ByVal argument is passed in as a pointer but it's now being
1412      // dereferenced. e.g.
1413      // define @foo(%struct.X* %A) {
1414      //   tail call @bar(%struct.X* byval %A)
1415      // }
1416      return false;
1417    SDValue Ptr = Ld->getBasePtr();
1418    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1419    if (!FINode)
1420      return false;
1421    FI = FINode->getIndex();
1422  } else
1423    return false;
1424
1425  assert(FI != INT_MAX);
1426  if (!MFI->isFixedObjectIndex(FI))
1427    return false;
1428  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1429}
1430
1431/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1432/// for tail call optimization. Targets which want to do tail call
1433/// optimization should implement this function.
1434bool
1435ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1436                                                     CallingConv::ID CalleeCC,
1437                                                     bool isVarArg,
1438                                                     bool isCalleeStructRet,
1439                                                     bool isCallerStructRet,
1440                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1441                                    const SmallVectorImpl<SDValue> &OutVals,
1442                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1443                                                     SelectionDAG& DAG) const {
1444  const Function *CallerF = DAG.getMachineFunction().getFunction();
1445  CallingConv::ID CallerCC = CallerF->getCallingConv();
1446  bool CCMatch = CallerCC == CalleeCC;
1447
1448  // Look for obvious safe cases to perform tail call optimization that do not
1449  // require ABI changes. This is what gcc calls sibcall.
1450
1451  // Do not sibcall optimize vararg calls unless the call site is not passing
1452  // any arguments.
1453  if (isVarArg && !Outs.empty())
1454    return false;
1455
1456  // Also avoid sibcall optimization if either caller or callee uses struct
1457  // return semantics.
1458  if (isCalleeStructRet || isCallerStructRet)
1459    return false;
1460
1461  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1462  // emitEpilogue is not ready for them.
1463  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1464  // LR.  This means if we need to reload LR, it takes an extra instructions,
1465  // which outweighs the value of the tail call; but here we don't know yet
1466  // whether LR is going to be used.  Probably the right approach is to
1467  // generate the tail call here and turn it back into CALL/RET in
1468  // emitEpilogue if LR is used.
1469  if (Subtarget->isThumb1Only())
1470    return false;
1471
1472  // For the moment, we can only do this to functions defined in this
1473  // compilation, or to indirect calls.  A Thumb B to an ARM function,
1474  // or vice versa, is not easily fixed up in the linker unlike BL.
1475  // (We could do this by loading the address of the callee into a register;
1476  // that is an extra instruction over the direct call and burns a register
1477  // as well, so is not likely to be a win.)
1478
1479  // It might be safe to remove this restriction on non-Darwin.
1480
1481  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1482  // but we need to make sure there are enough registers; the only valid
1483  // registers are the 4 used for parameters.  We don't currently do this
1484  // case.
1485  if (isa<ExternalSymbolSDNode>(Callee))
1486      return false;
1487
1488  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1489    const GlobalValue *GV = G->getGlobal();
1490    if (GV->isDeclaration() || GV->isWeakForLinker())
1491      return false;
1492  }
1493
1494  // If the calling conventions do not match, then we'd better make sure the
1495  // results are returned in the same way as what the caller expects.
1496  if (!CCMatch) {
1497    SmallVector<CCValAssign, 16> RVLocs1;
1498    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
1499                    RVLocs1, *DAG.getContext());
1500    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1501
1502    SmallVector<CCValAssign, 16> RVLocs2;
1503    CCState CCInfo2(CallerCC, false, getTargetMachine(),
1504                    RVLocs2, *DAG.getContext());
1505    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1506
1507    if (RVLocs1.size() != RVLocs2.size())
1508      return false;
1509    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1510      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1511        return false;
1512      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1513        return false;
1514      if (RVLocs1[i].isRegLoc()) {
1515        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1516          return false;
1517      } else {
1518        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1519          return false;
1520      }
1521    }
1522  }
1523
1524  // If the callee takes no arguments then go on to check the results of the
1525  // call.
1526  if (!Outs.empty()) {
1527    // Check if stack adjustment is needed. For now, do not do this if any
1528    // argument is passed on the stack.
1529    SmallVector<CCValAssign, 16> ArgLocs;
1530    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
1531                   ArgLocs, *DAG.getContext());
1532    CCInfo.AnalyzeCallOperands(Outs,
1533                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1534    if (CCInfo.getNextStackOffset()) {
1535      MachineFunction &MF = DAG.getMachineFunction();
1536
1537      // Check if the arguments are already laid out in the right way as
1538      // the caller's fixed stack objects.
1539      MachineFrameInfo *MFI = MF.getFrameInfo();
1540      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1541      const ARMInstrInfo *TII =
1542        ((ARMTargetMachine&)getTargetMachine()).getInstrInfo();
1543      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1544           i != e;
1545           ++i, ++realArgIdx) {
1546        CCValAssign &VA = ArgLocs[i];
1547        EVT RegVT = VA.getLocVT();
1548        SDValue Arg = OutVals[realArgIdx];
1549        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1550        if (VA.getLocInfo() == CCValAssign::Indirect)
1551          return false;
1552        if (VA.needsCustom()) {
1553          // f64 and vector types are split into multiple registers or
1554          // register/stack-slot combinations.  The types will not match
1555          // the registers; give up on memory f64 refs until we figure
1556          // out what to do about this.
1557          if (!VA.isRegLoc())
1558            return false;
1559          if (!ArgLocs[++i].isRegLoc())
1560            return false;
1561          if (RegVT == MVT::v2f64) {
1562            if (!ArgLocs[++i].isRegLoc())
1563              return false;
1564            if (!ArgLocs[++i].isRegLoc())
1565              return false;
1566          }
1567        } else if (!VA.isRegLoc()) {
1568          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1569                                   MFI, MRI, TII))
1570            return false;
1571        }
1572      }
1573    }
1574  }
1575
1576  return true;
1577}
1578
1579SDValue
1580ARMTargetLowering::LowerReturn(SDValue Chain,
1581                               CallingConv::ID CallConv, bool isVarArg,
1582                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1583                               const SmallVectorImpl<SDValue> &OutVals,
1584                               DebugLoc dl, SelectionDAG &DAG) const {
1585
1586  // CCValAssign - represent the assignment of the return value to a location.
1587  SmallVector<CCValAssign, 16> RVLocs;
1588
1589  // CCState - Info about the registers and stack slots.
1590  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
1591                 *DAG.getContext());
1592
1593  // Analyze outgoing return values.
1594  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1595                                               isVarArg));
1596
1597  // If this is the first return lowered for this function, add
1598  // the regs to the liveout set for the function.
1599  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1600    for (unsigned i = 0; i != RVLocs.size(); ++i)
1601      if (RVLocs[i].isRegLoc())
1602        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1603  }
1604
1605  SDValue Flag;
1606
1607  // Copy the result values into the output registers.
1608  for (unsigned i = 0, realRVLocIdx = 0;
1609       i != RVLocs.size();
1610       ++i, ++realRVLocIdx) {
1611    CCValAssign &VA = RVLocs[i];
1612    assert(VA.isRegLoc() && "Can only return in registers!");
1613
1614    SDValue Arg = OutVals[realRVLocIdx];
1615
1616    switch (VA.getLocInfo()) {
1617    default: llvm_unreachable("Unknown loc info!");
1618    case CCValAssign::Full: break;
1619    case CCValAssign::BCvt:
1620      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
1621      break;
1622    }
1623
1624    if (VA.needsCustom()) {
1625      if (VA.getLocVT() == MVT::v2f64) {
1626        // Extract the first half and return it in two registers.
1627        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1628                                   DAG.getConstant(0, MVT::i32));
1629        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1630                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1631
1632        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1633        Flag = Chain.getValue(1);
1634        VA = RVLocs[++i]; // skip ahead to next loc
1635        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1636                                 HalfGPRs.getValue(1), Flag);
1637        Flag = Chain.getValue(1);
1638        VA = RVLocs[++i]; // skip ahead to next loc
1639
1640        // Extract the 2nd half and fall through to handle it as an f64 value.
1641        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1642                          DAG.getConstant(1, MVT::i32));
1643      }
1644      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1645      // available.
1646      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1647                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1648      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1649      Flag = Chain.getValue(1);
1650      VA = RVLocs[++i]; // skip ahead to next loc
1651      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1652                               Flag);
1653    } else
1654      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1655
1656    // Guarantee that all emitted copies are
1657    // stuck together, avoiding something bad.
1658    Flag = Chain.getValue(1);
1659  }
1660
1661  SDValue result;
1662  if (Flag.getNode())
1663    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1664  else // Return Void
1665    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1666
1667  return result;
1668}
1669
1670// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1671// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1672// one of the above mentioned nodes. It has to be wrapped because otherwise
1673// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1674// be used to form addressing mode. These wrapped nodes will be selected
1675// into MOVi.
1676static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1677  EVT PtrVT = Op.getValueType();
1678  // FIXME there is no actual debug info here
1679  DebugLoc dl = Op.getDebugLoc();
1680  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1681  SDValue Res;
1682  if (CP->isMachineConstantPoolEntry())
1683    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1684                                    CP->getAlignment());
1685  else
1686    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1687                                    CP->getAlignment());
1688  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1689}
1690
1691unsigned ARMTargetLowering::getJumpTableEncoding() const {
1692  return MachineJumpTableInfo::EK_Inline;
1693}
1694
1695SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
1696                                             SelectionDAG &DAG) const {
1697  MachineFunction &MF = DAG.getMachineFunction();
1698  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1699  unsigned ARMPCLabelIndex = 0;
1700  DebugLoc DL = Op.getDebugLoc();
1701  EVT PtrVT = getPointerTy();
1702  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1703  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1704  SDValue CPAddr;
1705  if (RelocM == Reloc::Static) {
1706    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
1707  } else {
1708    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1709    ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1710    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex,
1711                                                         ARMCP::CPBlockAddress,
1712                                                         PCAdj);
1713    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1714  }
1715  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
1716  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
1717                               PseudoSourceValue::getConstantPool(), 0,
1718                               false, false, 0);
1719  if (RelocM == Reloc::Static)
1720    return Result;
1721  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1722  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
1723}
1724
1725// Lower ISD::GlobalTLSAddress using the "general dynamic" model
1726SDValue
1727ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1728                                                 SelectionDAG &DAG) const {
1729  DebugLoc dl = GA->getDebugLoc();
1730  EVT PtrVT = getPointerTy();
1731  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1732  MachineFunction &MF = DAG.getMachineFunction();
1733  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1734  unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1735  ARMConstantPoolValue *CPV =
1736    new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1737                             ARMCP::CPValue, PCAdj, "tlsgd", true);
1738  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1739  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1740  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
1741                         PseudoSourceValue::getConstantPool(), 0,
1742                         false, false, 0);
1743  SDValue Chain = Argument.getValue(1);
1744
1745  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1746  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1747
1748  // call __tls_get_addr.
1749  ArgListTy Args;
1750  ArgListEntry Entry;
1751  Entry.Node = Argument;
1752  Entry.Ty = (const Type *) Type::getInt32Ty(*DAG.getContext());
1753  Args.push_back(Entry);
1754  // FIXME: is there useful debug info available here?
1755  std::pair<SDValue, SDValue> CallResult =
1756    LowerCallTo(Chain, (const Type *) Type::getInt32Ty(*DAG.getContext()),
1757                false, false, false, false,
1758                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
1759                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
1760  return CallResult.first;
1761}
1762
1763// Lower ISD::GlobalTLSAddress using the "initial exec" or
1764// "local exec" model.
1765SDValue
1766ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
1767                                        SelectionDAG &DAG) const {
1768  const GlobalValue *GV = GA->getGlobal();
1769  DebugLoc dl = GA->getDebugLoc();
1770  SDValue Offset;
1771  SDValue Chain = DAG.getEntryNode();
1772  EVT PtrVT = getPointerTy();
1773  // Get the Thread Pointer
1774  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1775
1776  if (GV->isDeclaration()) {
1777    MachineFunction &MF = DAG.getMachineFunction();
1778    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1779    unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1780    // Initial exec model.
1781    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1782    ARMConstantPoolValue *CPV =
1783      new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1784                               ARMCP::CPValue, PCAdj, "gottpoff", true);
1785    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1786    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1787    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1788                         PseudoSourceValue::getConstantPool(), 0,
1789                         false, false, 0);
1790    Chain = Offset.getValue(1);
1791
1792    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1793    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
1794
1795    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1796                         PseudoSourceValue::getConstantPool(), 0,
1797                         false, false, 0);
1798  } else {
1799    // local exec model
1800    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, "tpoff");
1801    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1802    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1803    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1804                         PseudoSourceValue::getConstantPool(), 0,
1805                         false, false, 0);
1806  }
1807
1808  // The address of the thread local variable is the add of the thread
1809  // pointer with the offset of the variable.
1810  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1811}
1812
1813SDValue
1814ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
1815  // TODO: implement the "local dynamic" model
1816  assert(Subtarget->isTargetELF() &&
1817         "TLS not implemented for non-ELF targets");
1818  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1819  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
1820  // otherwise use the "Local Exec" TLS Model
1821  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
1822    return LowerToTLSGeneralDynamicModel(GA, DAG);
1823  else
1824    return LowerToTLSExecModels(GA, DAG);
1825}
1826
1827SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
1828                                                 SelectionDAG &DAG) const {
1829  EVT PtrVT = getPointerTy();
1830  DebugLoc dl = Op.getDebugLoc();
1831  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1832  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1833  if (RelocM == Reloc::PIC_) {
1834    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
1835    ARMConstantPoolValue *CPV =
1836      new ARMConstantPoolValue(GV, UseGOTOFF ? "GOTOFF" : "GOT");
1837    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1838    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1839    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
1840                                 CPAddr,
1841                                 PseudoSourceValue::getConstantPool(), 0,
1842                                 false, false, 0);
1843    SDValue Chain = Result.getValue(1);
1844    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1845    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
1846    if (!UseGOTOFF)
1847      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
1848                           PseudoSourceValue::getGOT(), 0,
1849                           false, false, 0);
1850    return Result;
1851  } else {
1852    // If we have T2 ops, we can materialize the address directly via movt/movw
1853    // pair. This is always cheaper.
1854    if (Subtarget->useMovt()) {
1855      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
1856                         DAG.getTargetGlobalAddress(GV, dl, PtrVT));
1857    } else {
1858      SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1859      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1860      return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1861                         PseudoSourceValue::getConstantPool(), 0,
1862                         false, false, 0);
1863    }
1864  }
1865}
1866
1867SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
1868                                                    SelectionDAG &DAG) const {
1869  MachineFunction &MF = DAG.getMachineFunction();
1870  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1871  unsigned ARMPCLabelIndex = 0;
1872  EVT PtrVT = getPointerTy();
1873  DebugLoc dl = Op.getDebugLoc();
1874  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1875  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1876  SDValue CPAddr;
1877  if (RelocM == Reloc::Static)
1878    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1879  else {
1880    ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1881    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
1882    ARMConstantPoolValue *CPV =
1883      new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj);
1884    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1885  }
1886  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1887
1888  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1889                               PseudoSourceValue::getConstantPool(), 0,
1890                               false, false, 0);
1891  SDValue Chain = Result.getValue(1);
1892
1893  if (RelocM == Reloc::PIC_) {
1894    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1895    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1896  }
1897
1898  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
1899    Result = DAG.getLoad(PtrVT, dl, Chain, Result,
1900                         PseudoSourceValue::getGOT(), 0,
1901                         false, false, 0);
1902
1903  return Result;
1904}
1905
1906SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
1907                                                    SelectionDAG &DAG) const {
1908  assert(Subtarget->isTargetELF() &&
1909         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
1910  MachineFunction &MF = DAG.getMachineFunction();
1911  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1912  unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1913  EVT PtrVT = getPointerTy();
1914  DebugLoc dl = Op.getDebugLoc();
1915  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1916  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1917                                                       "_GLOBAL_OFFSET_TABLE_",
1918                                                       ARMPCLabelIndex, PCAdj);
1919  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1920  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1921  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1922                               PseudoSourceValue::getConstantPool(), 0,
1923                               false, false, 0);
1924  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1925  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1926}
1927
1928SDValue
1929ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
1930  DebugLoc dl = Op.getDebugLoc();
1931  SDValue Val = DAG.getConstant(0, MVT::i32);
1932  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(0),
1933                     Op.getOperand(1), Val);
1934}
1935
1936SDValue
1937ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
1938  DebugLoc dl = Op.getDebugLoc();
1939  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
1940                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
1941}
1942
1943SDValue
1944ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
1945                                          const ARMSubtarget *Subtarget) const {
1946  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1947  DebugLoc dl = Op.getDebugLoc();
1948  switch (IntNo) {
1949  default: return SDValue();    // Don't custom lower most intrinsics.
1950  case Intrinsic::arm_thread_pointer: {
1951    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1952    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1953  }
1954  case Intrinsic::eh_sjlj_lsda: {
1955    MachineFunction &MF = DAG.getMachineFunction();
1956    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1957    unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1958    EVT PtrVT = getPointerTy();
1959    DebugLoc dl = Op.getDebugLoc();
1960    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1961    SDValue CPAddr;
1962    unsigned PCAdj = (RelocM != Reloc::PIC_)
1963      ? 0 : (Subtarget->isThumb() ? 4 : 8);
1964    ARMConstantPoolValue *CPV =
1965      new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex,
1966                               ARMCP::CPLSDA, PCAdj);
1967    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1968    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1969    SDValue Result =
1970      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1971                  PseudoSourceValue::getConstantPool(), 0,
1972                  false, false, 0);
1973
1974    if (RelocM == Reloc::PIC_) {
1975      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1976      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1977    }
1978    return Result;
1979  }
1980  }
1981}
1982
1983static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
1984                               const ARMSubtarget *Subtarget) {
1985  DebugLoc dl = Op.getDebugLoc();
1986  SDValue Op5 = Op.getOperand(5);
1987  unsigned isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue();
1988  // v6 and v7 can both handle barriers directly, but need handled a bit
1989  // differently. Thumb1 and pre-v6 ARM mode use a libcall instead and should
1990  // never get here.
1991  unsigned Opc = isDeviceBarrier ? ARMISD::SYNCBARRIER : ARMISD::MEMBARRIER;
1992  if (Subtarget->hasV7Ops())
1993    return DAG.getNode(Opc, dl, MVT::Other, Op.getOperand(0));
1994  else if (Subtarget->hasV6Ops() && !Subtarget->isThumb1Only())
1995    return DAG.getNode(Opc, dl, MVT::Other, Op.getOperand(0),
1996                       DAG.getConstant(0, MVT::i32));
1997  assert(0 && "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
1998  return SDValue();
1999}
2000
2001static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2002  MachineFunction &MF = DAG.getMachineFunction();
2003  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2004
2005  // vastart just stores the address of the VarArgsFrameIndex slot into the
2006  // memory location argument.
2007  DebugLoc dl = Op.getDebugLoc();
2008  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2009  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2010  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2011  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
2012                      false, false, 0);
2013}
2014
2015SDValue
2016ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2017                                        SDValue &Root, SelectionDAG &DAG,
2018                                        DebugLoc dl) const {
2019  MachineFunction &MF = DAG.getMachineFunction();
2020  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2021
2022  TargetRegisterClass *RC;
2023  if (AFI->isThumb1OnlyFunction())
2024    RC = ARM::tGPRRegisterClass;
2025  else
2026    RC = ARM::GPRRegisterClass;
2027
2028  // Transform the arguments stored in physical registers into virtual ones.
2029  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2030  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2031
2032  SDValue ArgValue2;
2033  if (NextVA.isMemLoc()) {
2034    MachineFrameInfo *MFI = MF.getFrameInfo();
2035    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2036
2037    // Create load node to retrieve arguments from the stack.
2038    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2039    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2040                            PseudoSourceValue::getFixedStack(FI), 0,
2041                            false, false, 0);
2042  } else {
2043    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2044    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2045  }
2046
2047  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2048}
2049
2050SDValue
2051ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2052                                        CallingConv::ID CallConv, bool isVarArg,
2053                                        const SmallVectorImpl<ISD::InputArg>
2054                                          &Ins,
2055                                        DebugLoc dl, SelectionDAG &DAG,
2056                                        SmallVectorImpl<SDValue> &InVals)
2057                                          const {
2058
2059  MachineFunction &MF = DAG.getMachineFunction();
2060  MachineFrameInfo *MFI = MF.getFrameInfo();
2061
2062  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2063
2064  // Assign locations to all of the incoming arguments.
2065  SmallVector<CCValAssign, 16> ArgLocs;
2066  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
2067                 *DAG.getContext());
2068  CCInfo.AnalyzeFormalArguments(Ins,
2069                                CCAssignFnForNode(CallConv, /* Return*/ false,
2070                                                  isVarArg));
2071
2072  SmallVector<SDValue, 16> ArgValues;
2073
2074  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2075    CCValAssign &VA = ArgLocs[i];
2076
2077    // Arguments stored in registers.
2078    if (VA.isRegLoc()) {
2079      EVT RegVT = VA.getLocVT();
2080
2081      SDValue ArgValue;
2082      if (VA.needsCustom()) {
2083        // f64 and vector types are split up into multiple registers or
2084        // combinations of registers and stack slots.
2085        if (VA.getLocVT() == MVT::v2f64) {
2086          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2087                                                   Chain, DAG, dl);
2088          VA = ArgLocs[++i]; // skip ahead to next loc
2089          SDValue ArgValue2;
2090          if (VA.isMemLoc()) {
2091            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2092            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2093            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2094                                    PseudoSourceValue::getFixedStack(FI), 0,
2095                                    false, false, 0);
2096          } else {
2097            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2098                                             Chain, DAG, dl);
2099          }
2100          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2101          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2102                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2103          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2104                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2105        } else
2106          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2107
2108      } else {
2109        TargetRegisterClass *RC;
2110
2111        if (RegVT == MVT::f32)
2112          RC = ARM::SPRRegisterClass;
2113        else if (RegVT == MVT::f64)
2114          RC = ARM::DPRRegisterClass;
2115        else if (RegVT == MVT::v2f64)
2116          RC = ARM::QPRRegisterClass;
2117        else if (RegVT == MVT::i32)
2118          RC = (AFI->isThumb1OnlyFunction() ?
2119                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
2120        else
2121          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2122
2123        // Transform the arguments in physical registers into virtual ones.
2124        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2125        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2126      }
2127
2128      // If this is an 8 or 16-bit value, it is really passed promoted
2129      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2130      // truncate to the right size.
2131      switch (VA.getLocInfo()) {
2132      default: llvm_unreachable("Unknown loc info!");
2133      case CCValAssign::Full: break;
2134      case CCValAssign::BCvt:
2135        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
2136        break;
2137      case CCValAssign::SExt:
2138        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2139                               DAG.getValueType(VA.getValVT()));
2140        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2141        break;
2142      case CCValAssign::ZExt:
2143        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2144                               DAG.getValueType(VA.getValVT()));
2145        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2146        break;
2147      }
2148
2149      InVals.push_back(ArgValue);
2150
2151    } else { // VA.isRegLoc()
2152
2153      // sanity check
2154      assert(VA.isMemLoc());
2155      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2156
2157      unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
2158      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), true);
2159
2160      // Create load nodes to retrieve arguments from the stack.
2161      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2162      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2163                                   PseudoSourceValue::getFixedStack(FI), 0,
2164                                   false, false, 0));
2165    }
2166  }
2167
2168  // varargs
2169  if (isVarArg) {
2170    static const unsigned GPRArgRegs[] = {
2171      ARM::R0, ARM::R1, ARM::R2, ARM::R3
2172    };
2173
2174    unsigned NumGPRs = CCInfo.getFirstUnallocated
2175      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2176
2177    unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
2178    unsigned VARegSize = (4 - NumGPRs) * 4;
2179    unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2180    unsigned ArgOffset = CCInfo.getNextStackOffset();
2181    if (VARegSaveSize) {
2182      // If this function is vararg, store any remaining integer argument regs
2183      // to their spots on the stack so that they may be loaded by deferencing
2184      // the result of va_next.
2185      AFI->setVarArgsRegSaveSize(VARegSaveSize);
2186      AFI->setVarArgsFrameIndex(
2187        MFI->CreateFixedObject(VARegSaveSize,
2188                               ArgOffset + VARegSaveSize - VARegSize,
2189                               true));
2190      SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2191                                      getPointerTy());
2192
2193      SmallVector<SDValue, 4> MemOps;
2194      for (; NumGPRs < 4; ++NumGPRs) {
2195        TargetRegisterClass *RC;
2196        if (AFI->isThumb1OnlyFunction())
2197          RC = ARM::tGPRRegisterClass;
2198        else
2199          RC = ARM::GPRRegisterClass;
2200
2201        unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
2202        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2203        SDValue Store =
2204          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2205               PseudoSourceValue::getFixedStack(AFI->getVarArgsFrameIndex()),
2206               0, false, false, 0);
2207        MemOps.push_back(Store);
2208        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2209                          DAG.getConstant(4, getPointerTy()));
2210      }
2211      if (!MemOps.empty())
2212        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2213                            &MemOps[0], MemOps.size());
2214    } else
2215      // This will point to the next argument passed via stack.
2216      AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
2217  }
2218
2219  return Chain;
2220}
2221
2222/// isFloatingPointZero - Return true if this is +0.0.
2223static bool isFloatingPointZero(SDValue Op) {
2224  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2225    return CFP->getValueAPF().isPosZero();
2226  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2227    // Maybe this has already been legalized into the constant pool?
2228    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2229      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2230      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2231        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2232          return CFP->getValueAPF().isPosZero();
2233    }
2234  }
2235  return false;
2236}
2237
2238/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2239/// the given operands.
2240SDValue
2241ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2242                             SDValue &ARMcc, SelectionDAG &DAG,
2243                             DebugLoc dl) const {
2244  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2245    unsigned C = RHSC->getZExtValue();
2246    if (!isLegalICmpImmediate(C)) {
2247      // Constant does not fit, try adjusting it by one?
2248      switch (CC) {
2249      default: break;
2250      case ISD::SETLT:
2251      case ISD::SETGE:
2252        if (isLegalICmpImmediate(C-1)) {
2253          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2254          RHS = DAG.getConstant(C-1, MVT::i32);
2255        }
2256        break;
2257      case ISD::SETULT:
2258      case ISD::SETUGE:
2259        if (C > 0 && isLegalICmpImmediate(C-1)) {
2260          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2261          RHS = DAG.getConstant(C-1, MVT::i32);
2262        }
2263        break;
2264      case ISD::SETLE:
2265      case ISD::SETGT:
2266        if (isLegalICmpImmediate(C+1)) {
2267          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2268          RHS = DAG.getConstant(C+1, MVT::i32);
2269        }
2270        break;
2271      case ISD::SETULE:
2272      case ISD::SETUGT:
2273        if (C < 0xffffffff && isLegalICmpImmediate(C+1)) {
2274          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2275          RHS = DAG.getConstant(C+1, MVT::i32);
2276        }
2277        break;
2278      }
2279    }
2280  }
2281
2282  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2283  ARMISD::NodeType CompareType;
2284  switch (CondCode) {
2285  default:
2286    CompareType = ARMISD::CMP;
2287    break;
2288  case ARMCC::EQ:
2289  case ARMCC::NE:
2290    // Uses only Z Flag
2291    CompareType = ARMISD::CMPZ;
2292    break;
2293  }
2294  ARMcc = DAG.getConstant(CondCode, MVT::i32);
2295  return DAG.getNode(CompareType, dl, MVT::Flag, LHS, RHS);
2296}
2297
2298/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2299SDValue
2300ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2301                             DebugLoc dl) const {
2302  SDValue Cmp;
2303  if (!isFloatingPointZero(RHS))
2304    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Flag, LHS, RHS);
2305  else
2306    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Flag, LHS);
2307  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Flag, Cmp);
2308}
2309
2310SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2311  EVT VT = Op.getValueType();
2312  SDValue LHS = Op.getOperand(0);
2313  SDValue RHS = Op.getOperand(1);
2314  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2315  SDValue TrueVal = Op.getOperand(2);
2316  SDValue FalseVal = Op.getOperand(3);
2317  DebugLoc dl = Op.getDebugLoc();
2318
2319  if (LHS.getValueType() == MVT::i32) {
2320    SDValue ARMcc;
2321    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2322    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2323    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2324  }
2325
2326  ARMCC::CondCodes CondCode, CondCode2;
2327  FPCCToARMCC(CC, CondCode, CondCode2);
2328
2329  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2330  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2331  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2332  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2333                               ARMcc, CCR, Cmp);
2334  if (CondCode2 != ARMCC::AL) {
2335    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2336    // FIXME: Needs another CMP because flag can have but one use.
2337    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2338    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2339                         Result, TrueVal, ARMcc2, CCR, Cmp2);
2340  }
2341  return Result;
2342}
2343
2344/// canChangeToInt - Given the fp compare operand, return true if it is suitable
2345/// to morph to an integer compare sequence.
2346static bool canChangeToInt(SDValue Op, bool &SeenZero,
2347                           const ARMSubtarget *Subtarget) {
2348  SDNode *N = Op.getNode();
2349  if (!N->hasOneUse())
2350    // Otherwise it requires moving the value from fp to integer registers.
2351    return false;
2352  if (!N->getNumValues())
2353    return false;
2354  EVT VT = Op.getValueType();
2355  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
2356    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
2357    // vmrs are very slow, e.g. cortex-a8.
2358    return false;
2359
2360  if (isFloatingPointZero(Op)) {
2361    SeenZero = true;
2362    return true;
2363  }
2364  return ISD::isNormalLoad(N);
2365}
2366
2367static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
2368  if (isFloatingPointZero(Op))
2369    return DAG.getConstant(0, MVT::i32);
2370
2371  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
2372    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2373                       Ld->getChain(), Ld->getBasePtr(),
2374                       Ld->getSrcValue(), Ld->getSrcValueOffset(),
2375                       Ld->isVolatile(), Ld->isNonTemporal(),
2376                       Ld->getAlignment());
2377
2378  llvm_unreachable("Unknown VFP cmp argument!");
2379}
2380
2381static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
2382                           SDValue &RetVal1, SDValue &RetVal2) {
2383  if (isFloatingPointZero(Op)) {
2384    RetVal1 = DAG.getConstant(0, MVT::i32);
2385    RetVal2 = DAG.getConstant(0, MVT::i32);
2386    return;
2387  }
2388
2389  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
2390    SDValue Ptr = Ld->getBasePtr();
2391    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2392                          Ld->getChain(), Ptr,
2393                          Ld->getSrcValue(), Ld->getSrcValueOffset(),
2394                          Ld->isVolatile(), Ld->isNonTemporal(),
2395                          Ld->getAlignment());
2396
2397    EVT PtrType = Ptr.getValueType();
2398    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
2399    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
2400                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
2401    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2402                          Ld->getChain(), NewPtr,
2403                          Ld->getSrcValue(), Ld->getSrcValueOffset() + 4,
2404                          Ld->isVolatile(), Ld->isNonTemporal(),
2405                          NewAlign);
2406    return;
2407  }
2408
2409  llvm_unreachable("Unknown VFP cmp argument!");
2410}
2411
2412/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
2413/// f32 and even f64 comparisons to integer ones.
2414SDValue
2415ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
2416  SDValue Chain = Op.getOperand(0);
2417  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2418  SDValue LHS = Op.getOperand(2);
2419  SDValue RHS = Op.getOperand(3);
2420  SDValue Dest = Op.getOperand(4);
2421  DebugLoc dl = Op.getDebugLoc();
2422
2423  bool SeenZero = false;
2424  if (canChangeToInt(LHS, SeenZero, Subtarget) &&
2425      canChangeToInt(RHS, SeenZero, Subtarget) &&
2426      // If one of the operand is zero, it's safe to ignore the NaN case since
2427      // we only care about equality comparisons.
2428      (SeenZero || (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS)))) {
2429    // If unsafe fp math optimization is enabled and there are no othter uses of
2430    // the CMP operands, and the condition code is EQ oe NE, we can optimize it
2431    // to an integer comparison.
2432    if (CC == ISD::SETOEQ)
2433      CC = ISD::SETEQ;
2434    else if (CC == ISD::SETUNE)
2435      CC = ISD::SETNE;
2436
2437    SDValue ARMcc;
2438    if (LHS.getValueType() == MVT::f32) {
2439      LHS = bitcastf32Toi32(LHS, DAG);
2440      RHS = bitcastf32Toi32(RHS, DAG);
2441      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2442      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2443      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2444                         Chain, Dest, ARMcc, CCR, Cmp);
2445    }
2446
2447    SDValue LHS1, LHS2;
2448    SDValue RHS1, RHS2;
2449    expandf64Toi32(LHS, DAG, LHS1, LHS2);
2450    expandf64Toi32(RHS, DAG, RHS1, RHS2);
2451    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2452    ARMcc = DAG.getConstant(CondCode, MVT::i32);
2453    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
2454    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
2455    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
2456  }
2457
2458  return SDValue();
2459}
2460
2461SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2462  SDValue Chain = Op.getOperand(0);
2463  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2464  SDValue LHS = Op.getOperand(2);
2465  SDValue RHS = Op.getOperand(3);
2466  SDValue Dest = Op.getOperand(4);
2467  DebugLoc dl = Op.getDebugLoc();
2468
2469  if (LHS.getValueType() == MVT::i32) {
2470    SDValue ARMcc;
2471    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2472    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2473    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2474                       Chain, Dest, ARMcc, CCR, Cmp);
2475  }
2476
2477  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
2478
2479  if (UnsafeFPMath &&
2480      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
2481       CC == ISD::SETNE || CC == ISD::SETUNE)) {
2482    SDValue Result = OptimizeVFPBrcond(Op, DAG);
2483    if (Result.getNode())
2484      return Result;
2485  }
2486
2487  ARMCC::CondCodes CondCode, CondCode2;
2488  FPCCToARMCC(CC, CondCode, CondCode2);
2489
2490  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2491  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2492  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2493  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
2494  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
2495  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2496  if (CondCode2 != ARMCC::AL) {
2497    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
2498    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
2499    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2500  }
2501  return Res;
2502}
2503
2504SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
2505  SDValue Chain = Op.getOperand(0);
2506  SDValue Table = Op.getOperand(1);
2507  SDValue Index = Op.getOperand(2);
2508  DebugLoc dl = Op.getDebugLoc();
2509
2510  EVT PTy = getPointerTy();
2511  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
2512  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2513  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
2514  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
2515  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
2516  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
2517  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2518  if (Subtarget->isThumb2()) {
2519    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
2520    // which does another jump to the destination. This also makes it easier
2521    // to translate it to TBB / TBH later.
2522    // FIXME: This might not work if the function is extremely large.
2523    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
2524                       Addr, Op.getOperand(2), JTI, UId);
2525  }
2526  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2527    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
2528                       PseudoSourceValue::getJumpTable(), 0,
2529                       false, false, 0);
2530    Chain = Addr.getValue(1);
2531    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
2532    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2533  } else {
2534    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
2535                       PseudoSourceValue::getJumpTable(), 0, false, false, 0);
2536    Chain = Addr.getValue(1);
2537    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2538  }
2539}
2540
2541static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
2542  DebugLoc dl = Op.getDebugLoc();
2543  unsigned Opc;
2544
2545  switch (Op.getOpcode()) {
2546  default:
2547    assert(0 && "Invalid opcode!");
2548  case ISD::FP_TO_SINT:
2549    Opc = ARMISD::FTOSI;
2550    break;
2551  case ISD::FP_TO_UINT:
2552    Opc = ARMISD::FTOUI;
2553    break;
2554  }
2555  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
2556  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
2557}
2558
2559static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2560  EVT VT = Op.getValueType();
2561  DebugLoc dl = Op.getDebugLoc();
2562  unsigned Opc;
2563
2564  switch (Op.getOpcode()) {
2565  default:
2566    assert(0 && "Invalid opcode!");
2567  case ISD::SINT_TO_FP:
2568    Opc = ARMISD::SITOF;
2569    break;
2570  case ISD::UINT_TO_FP:
2571    Opc = ARMISD::UITOF;
2572    break;
2573  }
2574
2575  Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Op.getOperand(0));
2576  return DAG.getNode(Opc, dl, VT, Op);
2577}
2578
2579SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
2580  // Implement fcopysign with a fabs and a conditional fneg.
2581  SDValue Tmp0 = Op.getOperand(0);
2582  SDValue Tmp1 = Op.getOperand(1);
2583  DebugLoc dl = Op.getDebugLoc();
2584  EVT VT = Op.getValueType();
2585  EVT SrcVT = Tmp1.getValueType();
2586  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0);
2587  SDValue ARMcc = DAG.getConstant(ARMCC::LT, MVT::i32);
2588  SDValue FP0 = DAG.getConstantFP(0.0, SrcVT);
2589  SDValue Cmp = getVFPCmp(Tmp1, FP0, DAG, dl);
2590  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2591  return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMcc, CCR, Cmp);
2592}
2593
2594SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
2595  MachineFunction &MF = DAG.getMachineFunction();
2596  MachineFrameInfo *MFI = MF.getFrameInfo();
2597  MFI->setReturnAddressIsTaken(true);
2598
2599  EVT VT = Op.getValueType();
2600  DebugLoc dl = Op.getDebugLoc();
2601  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2602  if (Depth) {
2603    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
2604    SDValue Offset = DAG.getConstant(4, MVT::i32);
2605    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
2606                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
2607                       NULL, 0, false, false, 0);
2608  }
2609
2610  // Return LR, which contains the return address. Mark it an implicit live-in.
2611  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
2612  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
2613}
2614
2615SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2616  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2617  MFI->setFrameAddressIsTaken(true);
2618
2619  EVT VT = Op.getValueType();
2620  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
2621  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2622  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
2623    ? ARM::R7 : ARM::R11;
2624  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
2625  while (Depth--)
2626    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
2627                            false, false, 0);
2628  return FrameAddr;
2629}
2630
2631/// ExpandBIT_CONVERT - If the target supports VFP, this function is called to
2632/// expand a bit convert where either the source or destination type is i64 to
2633/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
2634/// operand type is illegal (e.g., v2f32 for a target that doesn't support
2635/// vectors), since the legalizer won't know what to do with that.
2636static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) {
2637  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2638  DebugLoc dl = N->getDebugLoc();
2639  SDValue Op = N->getOperand(0);
2640
2641  // This function is only supposed to be called for i64 types, either as the
2642  // source or destination of the bit convert.
2643  EVT SrcVT = Op.getValueType();
2644  EVT DstVT = N->getValueType(0);
2645  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
2646         "ExpandBIT_CONVERT called for non-i64 type");
2647
2648  // Turn i64->f64 into VMOVDRR.
2649  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
2650    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2651                             DAG.getConstant(0, MVT::i32));
2652    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2653                             DAG.getConstant(1, MVT::i32));
2654    return DAG.getNode(ISD::BIT_CONVERT, dl, DstVT,
2655                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
2656  }
2657
2658  // Turn f64->i64 into VMOVRRD.
2659  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
2660    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
2661                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
2662    // Merge the pieces into a single i64 value.
2663    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
2664  }
2665
2666  return SDValue();
2667}
2668
2669/// getZeroVector - Returns a vector of specified type with all zero elements.
2670/// Zero vectors are used to represent vector negation and in those cases
2671/// will be implemented with the NEON VNEG instruction.  However, VNEG does
2672/// not support i64 elements, so sometimes the zero vectors will need to be
2673/// explicitly constructed.  Regardless, use a canonical VMOV to create the
2674/// zero vector.
2675static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2676  assert(VT.isVector() && "Expected a vector type");
2677  // The canonical modified immediate encoding of a zero vector is....0!
2678  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
2679  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
2680  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
2681  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
2682}
2683
2684/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
2685/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2686SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
2687                                                SelectionDAG &DAG) const {
2688  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2689  EVT VT = Op.getValueType();
2690  unsigned VTBits = VT.getSizeInBits();
2691  DebugLoc dl = Op.getDebugLoc();
2692  SDValue ShOpLo = Op.getOperand(0);
2693  SDValue ShOpHi = Op.getOperand(1);
2694  SDValue ShAmt  = Op.getOperand(2);
2695  SDValue ARMcc;
2696  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
2697
2698  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
2699
2700  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2701                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2702  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
2703  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2704                                   DAG.getConstant(VTBits, MVT::i32));
2705  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
2706  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2707  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
2708
2709  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2710  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2711                          ARMcc, DAG, dl);
2712  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2713  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
2714                           CCR, Cmp);
2715
2716  SDValue Ops[2] = { Lo, Hi };
2717  return DAG.getMergeValues(Ops, 2, dl);
2718}
2719
2720/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
2721/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2722SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
2723                                               SelectionDAG &DAG) const {
2724  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2725  EVT VT = Op.getValueType();
2726  unsigned VTBits = VT.getSizeInBits();
2727  DebugLoc dl = Op.getDebugLoc();
2728  SDValue ShOpLo = Op.getOperand(0);
2729  SDValue ShOpHi = Op.getOperand(1);
2730  SDValue ShAmt  = Op.getOperand(2);
2731  SDValue ARMcc;
2732
2733  assert(Op.getOpcode() == ISD::SHL_PARTS);
2734  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2735                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2736  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
2737  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2738                                   DAG.getConstant(VTBits, MVT::i32));
2739  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
2740  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
2741
2742  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2743  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2744  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2745                          ARMcc, DAG, dl);
2746  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2747  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
2748                           CCR, Cmp);
2749
2750  SDValue Ops[2] = { Lo, Hi };
2751  return DAG.getMergeValues(Ops, 2, dl);
2752}
2753
2754static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
2755                         const ARMSubtarget *ST) {
2756  EVT VT = N->getValueType(0);
2757  DebugLoc dl = N->getDebugLoc();
2758
2759  if (!ST->hasV6T2Ops())
2760    return SDValue();
2761
2762  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
2763  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
2764}
2765
2766static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
2767                          const ARMSubtarget *ST) {
2768  EVT VT = N->getValueType(0);
2769  DebugLoc dl = N->getDebugLoc();
2770
2771  // Lower vector shifts on NEON to use VSHL.
2772  if (VT.isVector()) {
2773    assert(ST->hasNEON() && "unexpected vector shift");
2774
2775    // Left shifts translate directly to the vshiftu intrinsic.
2776    if (N->getOpcode() == ISD::SHL)
2777      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2778                         DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
2779                         N->getOperand(0), N->getOperand(1));
2780
2781    assert((N->getOpcode() == ISD::SRA ||
2782            N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
2783
2784    // NEON uses the same intrinsics for both left and right shifts.  For
2785    // right shifts, the shift amounts are negative, so negate the vector of
2786    // shift amounts.
2787    EVT ShiftVT = N->getOperand(1).getValueType();
2788    SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
2789                                       getZeroVector(ShiftVT, DAG, dl),
2790                                       N->getOperand(1));
2791    Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
2792                               Intrinsic::arm_neon_vshifts :
2793                               Intrinsic::arm_neon_vshiftu);
2794    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2795                       DAG.getConstant(vshiftInt, MVT::i32),
2796                       N->getOperand(0), NegatedCount);
2797  }
2798
2799  // We can get here for a node like i32 = ISD::SHL i32, i64
2800  if (VT != MVT::i64)
2801    return SDValue();
2802
2803  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
2804         "Unknown shift to lower!");
2805
2806  // We only lower SRA, SRL of 1 here, all others use generic lowering.
2807  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
2808      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
2809    return SDValue();
2810
2811  // If we are in thumb mode, we don't have RRX.
2812  if (ST->isThumb1Only()) return SDValue();
2813
2814  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
2815  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2816                           DAG.getConstant(0, MVT::i32));
2817  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2818                           DAG.getConstant(1, MVT::i32));
2819
2820  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
2821  // captures the result into a carry flag.
2822  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
2823  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1);
2824
2825  // The low part is an ARMISD::RRX operand, which shifts the carry in.
2826  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
2827
2828  // Merge the pieces into a single i64 value.
2829 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
2830}
2831
2832static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
2833  SDValue TmpOp0, TmpOp1;
2834  bool Invert = false;
2835  bool Swap = false;
2836  unsigned Opc = 0;
2837
2838  SDValue Op0 = Op.getOperand(0);
2839  SDValue Op1 = Op.getOperand(1);
2840  SDValue CC = Op.getOperand(2);
2841  EVT VT = Op.getValueType();
2842  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
2843  DebugLoc dl = Op.getDebugLoc();
2844
2845  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
2846    switch (SetCCOpcode) {
2847    default: llvm_unreachable("Illegal FP comparison"); break;
2848    case ISD::SETUNE:
2849    case ISD::SETNE:  Invert = true; // Fallthrough
2850    case ISD::SETOEQ:
2851    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2852    case ISD::SETOLT:
2853    case ISD::SETLT: Swap = true; // Fallthrough
2854    case ISD::SETOGT:
2855    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2856    case ISD::SETOLE:
2857    case ISD::SETLE:  Swap = true; // Fallthrough
2858    case ISD::SETOGE:
2859    case ISD::SETGE: Opc = ARMISD::VCGE; break;
2860    case ISD::SETUGE: Swap = true; // Fallthrough
2861    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
2862    case ISD::SETUGT: Swap = true; // Fallthrough
2863    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
2864    case ISD::SETUEQ: Invert = true; // Fallthrough
2865    case ISD::SETONE:
2866      // Expand this to (OLT | OGT).
2867      TmpOp0 = Op0;
2868      TmpOp1 = Op1;
2869      Opc = ISD::OR;
2870      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2871      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
2872      break;
2873    case ISD::SETUO: Invert = true; // Fallthrough
2874    case ISD::SETO:
2875      // Expand this to (OLT | OGE).
2876      TmpOp0 = Op0;
2877      TmpOp1 = Op1;
2878      Opc = ISD::OR;
2879      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2880      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
2881      break;
2882    }
2883  } else {
2884    // Integer comparisons.
2885    switch (SetCCOpcode) {
2886    default: llvm_unreachable("Illegal integer comparison"); break;
2887    case ISD::SETNE:  Invert = true;
2888    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2889    case ISD::SETLT:  Swap = true;
2890    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2891    case ISD::SETLE:  Swap = true;
2892    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
2893    case ISD::SETULT: Swap = true;
2894    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
2895    case ISD::SETULE: Swap = true;
2896    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
2897    }
2898
2899    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
2900    if (Opc == ARMISD::VCEQ) {
2901
2902      SDValue AndOp;
2903      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
2904        AndOp = Op0;
2905      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
2906        AndOp = Op1;
2907
2908      // Ignore bitconvert.
2909      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BIT_CONVERT)
2910        AndOp = AndOp.getOperand(0);
2911
2912      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
2913        Opc = ARMISD::VTST;
2914        Op0 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(0));
2915        Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(1));
2916        Invert = !Invert;
2917      }
2918    }
2919  }
2920
2921  if (Swap)
2922    std::swap(Op0, Op1);
2923
2924  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
2925
2926  if (Invert)
2927    Result = DAG.getNOT(dl, Result, VT);
2928
2929  return Result;
2930}
2931
2932/// isNEONModifiedImm - Check if the specified splat value corresponds to a
2933/// valid vector constant for a NEON instruction with a "modified immediate"
2934/// operand (e.g., VMOV).  If so, return the encoded value.
2935static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
2936                                 unsigned SplatBitSize, SelectionDAG &DAG,
2937                                 EVT &VT, bool is128Bits, bool isVMOV) {
2938  unsigned OpCmode, Imm;
2939
2940  // SplatBitSize is set to the smallest size that splats the vector, so a
2941  // zero vector will always have SplatBitSize == 8.  However, NEON modified
2942  // immediate instructions others than VMOV do not support the 8-bit encoding
2943  // of a zero vector, and the default encoding of zero is supposed to be the
2944  // 32-bit version.
2945  if (SplatBits == 0)
2946    SplatBitSize = 32;
2947
2948  switch (SplatBitSize) {
2949  case 8:
2950    if (!isVMOV)
2951      return SDValue();
2952    // Any 1-byte value is OK.  Op=0, Cmode=1110.
2953    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
2954    OpCmode = 0xe;
2955    Imm = SplatBits;
2956    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
2957    break;
2958
2959  case 16:
2960    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
2961    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
2962    if ((SplatBits & ~0xff) == 0) {
2963      // Value = 0x00nn: Op=x, Cmode=100x.
2964      OpCmode = 0x8;
2965      Imm = SplatBits;
2966      break;
2967    }
2968    if ((SplatBits & ~0xff00) == 0) {
2969      // Value = 0xnn00: Op=x, Cmode=101x.
2970      OpCmode = 0xa;
2971      Imm = SplatBits >> 8;
2972      break;
2973    }
2974    return SDValue();
2975
2976  case 32:
2977    // NEON's 32-bit VMOV supports splat values where:
2978    // * only one byte is nonzero, or
2979    // * the least significant byte is 0xff and the second byte is nonzero, or
2980    // * the least significant 2 bytes are 0xff and the third is nonzero.
2981    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
2982    if ((SplatBits & ~0xff) == 0) {
2983      // Value = 0x000000nn: Op=x, Cmode=000x.
2984      OpCmode = 0;
2985      Imm = SplatBits;
2986      break;
2987    }
2988    if ((SplatBits & ~0xff00) == 0) {
2989      // Value = 0x0000nn00: Op=x, Cmode=001x.
2990      OpCmode = 0x2;
2991      Imm = SplatBits >> 8;
2992      break;
2993    }
2994    if ((SplatBits & ~0xff0000) == 0) {
2995      // Value = 0x00nn0000: Op=x, Cmode=010x.
2996      OpCmode = 0x4;
2997      Imm = SplatBits >> 16;
2998      break;
2999    }
3000    if ((SplatBits & ~0xff000000) == 0) {
3001      // Value = 0xnn000000: Op=x, Cmode=011x.
3002      OpCmode = 0x6;
3003      Imm = SplatBits >> 24;
3004      break;
3005    }
3006
3007    if ((SplatBits & ~0xffff) == 0 &&
3008        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3009      // Value = 0x0000nnff: Op=x, Cmode=1100.
3010      OpCmode = 0xc;
3011      Imm = SplatBits >> 8;
3012      SplatBits |= 0xff;
3013      break;
3014    }
3015
3016    if ((SplatBits & ~0xffffff) == 0 &&
3017        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3018      // Value = 0x00nnffff: Op=x, Cmode=1101.
3019      OpCmode = 0xd;
3020      Imm = SplatBits >> 16;
3021      SplatBits |= 0xffff;
3022      break;
3023    }
3024
3025    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3026    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3027    // VMOV.I32.  A (very) minor optimization would be to replicate the value
3028    // and fall through here to test for a valid 64-bit splat.  But, then the
3029    // caller would also need to check and handle the change in size.
3030    return SDValue();
3031
3032  case 64: {
3033    if (!isVMOV)
3034      return SDValue();
3035    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3036    uint64_t BitMask = 0xff;
3037    uint64_t Val = 0;
3038    unsigned ImmMask = 1;
3039    Imm = 0;
3040    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3041      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3042        Val |= BitMask;
3043        Imm |= ImmMask;
3044      } else if ((SplatBits & BitMask) != 0) {
3045        return SDValue();
3046      }
3047      BitMask <<= 8;
3048      ImmMask <<= 1;
3049    }
3050    // Op=1, Cmode=1110.
3051    OpCmode = 0x1e;
3052    SplatBits = Val;
3053    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3054    break;
3055  }
3056
3057  default:
3058    llvm_unreachable("unexpected size for isNEONModifiedImm");
3059    return SDValue();
3060  }
3061
3062  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3063  return DAG.getTargetConstant(EncodedVal, MVT::i32);
3064}
3065
3066static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
3067                       bool &ReverseVEXT, unsigned &Imm) {
3068  unsigned NumElts = VT.getVectorNumElements();
3069  ReverseVEXT = false;
3070  Imm = M[0];
3071
3072  // If this is a VEXT shuffle, the immediate value is the index of the first
3073  // element.  The other shuffle indices must be the successive elements after
3074  // the first one.
3075  unsigned ExpectedElt = Imm;
3076  for (unsigned i = 1; i < NumElts; ++i) {
3077    // Increment the expected index.  If it wraps around, it may still be
3078    // a VEXT but the source vectors must be swapped.
3079    ExpectedElt += 1;
3080    if (ExpectedElt == NumElts * 2) {
3081      ExpectedElt = 0;
3082      ReverseVEXT = true;
3083    }
3084
3085    if (ExpectedElt != static_cast<unsigned>(M[i]))
3086      return false;
3087  }
3088
3089  // Adjust the index value if the source operands will be swapped.
3090  if (ReverseVEXT)
3091    Imm -= NumElts;
3092
3093  return true;
3094}
3095
3096/// isVREVMask - Check if a vector shuffle corresponds to a VREV
3097/// instruction with the specified blocksize.  (The order of the elements
3098/// within each block of the vector is reversed.)
3099static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
3100                       unsigned BlockSize) {
3101  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
3102         "Only possible block sizes for VREV are: 16, 32, 64");
3103
3104  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3105  if (EltSz == 64)
3106    return false;
3107
3108  unsigned NumElts = VT.getVectorNumElements();
3109  unsigned BlockElts = M[0] + 1;
3110
3111  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3112    return false;
3113
3114  for (unsigned i = 0; i < NumElts; ++i) {
3115    if ((unsigned) M[i] !=
3116        (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3117      return false;
3118  }
3119
3120  return true;
3121}
3122
3123static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
3124                       unsigned &WhichResult) {
3125  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3126  if (EltSz == 64)
3127    return false;
3128
3129  unsigned NumElts = VT.getVectorNumElements();
3130  WhichResult = (M[0] == 0 ? 0 : 1);
3131  for (unsigned i = 0; i < NumElts; i += 2) {
3132    if ((unsigned) M[i] != i + WhichResult ||
3133        (unsigned) M[i+1] != i + NumElts + WhichResult)
3134      return false;
3135  }
3136  return true;
3137}
3138
3139/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
3140/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3141/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
3142static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3143                                unsigned &WhichResult) {
3144  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3145  if (EltSz == 64)
3146    return false;
3147
3148  unsigned NumElts = VT.getVectorNumElements();
3149  WhichResult = (M[0] == 0 ? 0 : 1);
3150  for (unsigned i = 0; i < NumElts; i += 2) {
3151    if ((unsigned) M[i] != i + WhichResult ||
3152        (unsigned) M[i+1] != i + WhichResult)
3153      return false;
3154  }
3155  return true;
3156}
3157
3158static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
3159                       unsigned &WhichResult) {
3160  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3161  if (EltSz == 64)
3162    return false;
3163
3164  unsigned NumElts = VT.getVectorNumElements();
3165  WhichResult = (M[0] == 0 ? 0 : 1);
3166  for (unsigned i = 0; i != NumElts; ++i) {
3167    if ((unsigned) M[i] != 2 * i + WhichResult)
3168      return false;
3169  }
3170
3171  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3172  if (VT.is64BitVector() && EltSz == 32)
3173    return false;
3174
3175  return true;
3176}
3177
3178/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
3179/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3180/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
3181static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3182                                unsigned &WhichResult) {
3183  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3184  if (EltSz == 64)
3185    return false;
3186
3187  unsigned Half = VT.getVectorNumElements() / 2;
3188  WhichResult = (M[0] == 0 ? 0 : 1);
3189  for (unsigned j = 0; j != 2; ++j) {
3190    unsigned Idx = WhichResult;
3191    for (unsigned i = 0; i != Half; ++i) {
3192      if ((unsigned) M[i + j * Half] != Idx)
3193        return false;
3194      Idx += 2;
3195    }
3196  }
3197
3198  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3199  if (VT.is64BitVector() && EltSz == 32)
3200    return false;
3201
3202  return true;
3203}
3204
3205static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
3206                       unsigned &WhichResult) {
3207  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3208  if (EltSz == 64)
3209    return false;
3210
3211  unsigned NumElts = VT.getVectorNumElements();
3212  WhichResult = (M[0] == 0 ? 0 : 1);
3213  unsigned Idx = WhichResult * NumElts / 2;
3214  for (unsigned i = 0; i != NumElts; i += 2) {
3215    if ((unsigned) M[i] != Idx ||
3216        (unsigned) M[i+1] != Idx + NumElts)
3217      return false;
3218    Idx += 1;
3219  }
3220
3221  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3222  if (VT.is64BitVector() && EltSz == 32)
3223    return false;
3224
3225  return true;
3226}
3227
3228/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
3229/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3230/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
3231static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3232                                unsigned &WhichResult) {
3233  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3234  if (EltSz == 64)
3235    return false;
3236
3237  unsigned NumElts = VT.getVectorNumElements();
3238  WhichResult = (M[0] == 0 ? 0 : 1);
3239  unsigned Idx = WhichResult * NumElts / 2;
3240  for (unsigned i = 0; i != NumElts; i += 2) {
3241    if ((unsigned) M[i] != Idx ||
3242        (unsigned) M[i+1] != Idx)
3243      return false;
3244    Idx += 1;
3245  }
3246
3247  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3248  if (VT.is64BitVector() && EltSz == 32)
3249    return false;
3250
3251  return true;
3252}
3253
3254// If this is a case we can't handle, return null and let the default
3255// expansion code take care of it.
3256static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3257  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
3258  DebugLoc dl = Op.getDebugLoc();
3259  EVT VT = Op.getValueType();
3260
3261  APInt SplatBits, SplatUndef;
3262  unsigned SplatBitSize;
3263  bool HasAnyUndefs;
3264  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
3265    if (SplatBitSize <= 64) {
3266      // Check if an immediate VMOV works.
3267      EVT VmovVT;
3268      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
3269                                      SplatUndef.getZExtValue(), SplatBitSize,
3270                                      DAG, VmovVT, VT.is128BitVector(), true);
3271      if (Val.getNode()) {
3272        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
3273        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
3274      }
3275
3276      // Try an immediate VMVN.
3277      uint64_t NegatedImm = (SplatBits.getZExtValue() ^
3278                             ((1LL << SplatBitSize) - 1));
3279      Val = isNEONModifiedImm(NegatedImm,
3280                                      SplatUndef.getZExtValue(), SplatBitSize,
3281                                      DAG, VmovVT, VT.is128BitVector(), false);
3282      if (Val.getNode()) {
3283        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
3284        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
3285      }
3286    }
3287  }
3288
3289  // Scan through the operands to see if only one value is used.
3290  unsigned NumElts = VT.getVectorNumElements();
3291  bool isOnlyLowElement = true;
3292  bool usesOnlyOneValue = true;
3293  bool isConstant = true;
3294  SDValue Value;
3295  for (unsigned i = 0; i < NumElts; ++i) {
3296    SDValue V = Op.getOperand(i);
3297    if (V.getOpcode() == ISD::UNDEF)
3298      continue;
3299    if (i > 0)
3300      isOnlyLowElement = false;
3301    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
3302      isConstant = false;
3303
3304    if (!Value.getNode())
3305      Value = V;
3306    else if (V != Value)
3307      usesOnlyOneValue = false;
3308  }
3309
3310  if (!Value.getNode())
3311    return DAG.getUNDEF(VT);
3312
3313  if (isOnlyLowElement)
3314    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
3315
3316  // If all elements are constants, fall back to the default expansion, which
3317  // will generate a load from the constant pool.
3318  if (isConstant)
3319    return SDValue();
3320
3321  // Use VDUP for non-constant splats.
3322  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3323  if (usesOnlyOneValue && EltSize <= 32)
3324    return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
3325
3326  // Vectors with 32- or 64-bit elements can be built by directly assigning
3327  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
3328  // will be legalized.
3329  if (EltSize >= 32) {
3330    // Do the expansion with floating-point types, since that is what the VFP
3331    // registers are defined to use, and since i64 is not legal.
3332    EVT EltVT = EVT::getFloatingPointVT(EltSize);
3333    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
3334    SmallVector<SDValue, 8> Ops;
3335    for (unsigned i = 0; i < NumElts; ++i)
3336      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, dl, EltVT, Op.getOperand(i)));
3337    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
3338    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val);
3339  }
3340
3341  return SDValue();
3342}
3343
3344/// isShuffleMaskLegal - Targets can use this to indicate that they only
3345/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
3346/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
3347/// are assumed to be legal.
3348bool
3349ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
3350                                      EVT VT) const {
3351  if (VT.getVectorNumElements() == 4 &&
3352      (VT.is128BitVector() || VT.is64BitVector())) {
3353    unsigned PFIndexes[4];
3354    for (unsigned i = 0; i != 4; ++i) {
3355      if (M[i] < 0)
3356        PFIndexes[i] = 8;
3357      else
3358        PFIndexes[i] = M[i];
3359    }
3360
3361    // Compute the index in the perfect shuffle table.
3362    unsigned PFTableIndex =
3363      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3364    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3365    unsigned Cost = (PFEntry >> 30);
3366
3367    if (Cost <= 4)
3368      return true;
3369  }
3370
3371  bool ReverseVEXT;
3372  unsigned Imm, WhichResult;
3373
3374  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3375  return (EltSize >= 32 ||
3376          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
3377          isVREVMask(M, VT, 64) ||
3378          isVREVMask(M, VT, 32) ||
3379          isVREVMask(M, VT, 16) ||
3380          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
3381          isVTRNMask(M, VT, WhichResult) ||
3382          isVUZPMask(M, VT, WhichResult) ||
3383          isVZIPMask(M, VT, WhichResult) ||
3384          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
3385          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
3386          isVZIP_v_undef_Mask(M, VT, WhichResult));
3387}
3388
3389/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3390/// the specified operations to build the shuffle.
3391static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3392                                      SDValue RHS, SelectionDAG &DAG,
3393                                      DebugLoc dl) {
3394  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3395  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3396  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3397
3398  enum {
3399    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3400    OP_VREV,
3401    OP_VDUP0,
3402    OP_VDUP1,
3403    OP_VDUP2,
3404    OP_VDUP3,
3405    OP_VEXT1,
3406    OP_VEXT2,
3407    OP_VEXT3,
3408    OP_VUZPL, // VUZP, left result
3409    OP_VUZPR, // VUZP, right result
3410    OP_VZIPL, // VZIP, left result
3411    OP_VZIPR, // VZIP, right result
3412    OP_VTRNL, // VTRN, left result
3413    OP_VTRNR  // VTRN, right result
3414  };
3415
3416  if (OpNum == OP_COPY) {
3417    if (LHSID == (1*9+2)*9+3) return LHS;
3418    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3419    return RHS;
3420  }
3421
3422  SDValue OpLHS, OpRHS;
3423  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
3424  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
3425  EVT VT = OpLHS.getValueType();
3426
3427  switch (OpNum) {
3428  default: llvm_unreachable("Unknown shuffle opcode!");
3429  case OP_VREV:
3430    return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
3431  case OP_VDUP0:
3432  case OP_VDUP1:
3433  case OP_VDUP2:
3434  case OP_VDUP3:
3435    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
3436                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
3437  case OP_VEXT1:
3438  case OP_VEXT2:
3439  case OP_VEXT3:
3440    return DAG.getNode(ARMISD::VEXT, dl, VT,
3441                       OpLHS, OpRHS,
3442                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
3443  case OP_VUZPL:
3444  case OP_VUZPR:
3445    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3446                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
3447  case OP_VZIPL:
3448  case OP_VZIPR:
3449    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3450                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
3451  case OP_VTRNL:
3452  case OP_VTRNR:
3453    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3454                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
3455  }
3456}
3457
3458static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
3459  SDValue V1 = Op.getOperand(0);
3460  SDValue V2 = Op.getOperand(1);
3461  DebugLoc dl = Op.getDebugLoc();
3462  EVT VT = Op.getValueType();
3463  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
3464  SmallVector<int, 8> ShuffleMask;
3465
3466  // Convert shuffles that are directly supported on NEON to target-specific
3467  // DAG nodes, instead of keeping them as shuffles and matching them again
3468  // during code selection.  This is more efficient and avoids the possibility
3469  // of inconsistencies between legalization and selection.
3470  // FIXME: floating-point vectors should be canonicalized to integer vectors
3471  // of the same time so that they get CSEd properly.
3472  SVN->getMask(ShuffleMask);
3473
3474  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3475  if (EltSize <= 32) {
3476    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
3477      int Lane = SVN->getSplatIndex();
3478      // If this is undef splat, generate it via "just" vdup, if possible.
3479      if (Lane == -1) Lane = 0;
3480
3481      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
3482        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
3483      }
3484      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
3485                         DAG.getConstant(Lane, MVT::i32));
3486    }
3487
3488    bool ReverseVEXT;
3489    unsigned Imm;
3490    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
3491      if (ReverseVEXT)
3492        std::swap(V1, V2);
3493      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
3494                         DAG.getConstant(Imm, MVT::i32));
3495    }
3496
3497    if (isVREVMask(ShuffleMask, VT, 64))
3498      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
3499    if (isVREVMask(ShuffleMask, VT, 32))
3500      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
3501    if (isVREVMask(ShuffleMask, VT, 16))
3502      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
3503
3504    // Check for Neon shuffles that modify both input vectors in place.
3505    // If both results are used, i.e., if there are two shuffles with the same
3506    // source operands and with masks corresponding to both results of one of
3507    // these operations, DAG memoization will ensure that a single node is
3508    // used for both shuffles.
3509    unsigned WhichResult;
3510    if (isVTRNMask(ShuffleMask, VT, WhichResult))
3511      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3512                         V1, V2).getValue(WhichResult);
3513    if (isVUZPMask(ShuffleMask, VT, WhichResult))
3514      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3515                         V1, V2).getValue(WhichResult);
3516    if (isVZIPMask(ShuffleMask, VT, WhichResult))
3517      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3518                         V1, V2).getValue(WhichResult);
3519
3520    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
3521      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3522                         V1, V1).getValue(WhichResult);
3523    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
3524      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3525                         V1, V1).getValue(WhichResult);
3526    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
3527      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3528                         V1, V1).getValue(WhichResult);
3529  }
3530
3531  // If the shuffle is not directly supported and it has 4 elements, use
3532  // the PerfectShuffle-generated table to synthesize it from other shuffles.
3533  unsigned NumElts = VT.getVectorNumElements();
3534  if (NumElts == 4) {
3535    unsigned PFIndexes[4];
3536    for (unsigned i = 0; i != 4; ++i) {
3537      if (ShuffleMask[i] < 0)
3538        PFIndexes[i] = 8;
3539      else
3540        PFIndexes[i] = ShuffleMask[i];
3541    }
3542
3543    // Compute the index in the perfect shuffle table.
3544    unsigned PFTableIndex =
3545      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3546    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3547    unsigned Cost = (PFEntry >> 30);
3548
3549    if (Cost <= 4)
3550      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
3551  }
3552
3553  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
3554  if (EltSize >= 32) {
3555    // Do the expansion with floating-point types, since that is what the VFP
3556    // registers are defined to use, and since i64 is not legal.
3557    EVT EltVT = EVT::getFloatingPointVT(EltSize);
3558    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
3559    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, V1);
3560    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, V2);
3561    SmallVector<SDValue, 8> Ops;
3562    for (unsigned i = 0; i < NumElts; ++i) {
3563      if (ShuffleMask[i] < 0)
3564        Ops.push_back(DAG.getUNDEF(EltVT));
3565      else
3566        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3567                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
3568                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
3569                                                  MVT::i32)));
3570    }
3571    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
3572    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val);
3573  }
3574
3575  return SDValue();
3576}
3577
3578static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
3579  EVT VT = Op.getValueType();
3580  DebugLoc dl = Op.getDebugLoc();
3581  SDValue Vec = Op.getOperand(0);
3582  SDValue Lane = Op.getOperand(1);
3583  assert(VT == MVT::i32 &&
3584         Vec.getValueType().getVectorElementType().getSizeInBits() < 32 &&
3585         "unexpected type for custom-lowering vector extract");
3586  return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
3587}
3588
3589static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
3590  // The only time a CONCAT_VECTORS operation can have legal types is when
3591  // two 64-bit vectors are concatenated to a 128-bit vector.
3592  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
3593         "unexpected CONCAT_VECTORS");
3594  DebugLoc dl = Op.getDebugLoc();
3595  SDValue Val = DAG.getUNDEF(MVT::v2f64);
3596  SDValue Op0 = Op.getOperand(0);
3597  SDValue Op1 = Op.getOperand(1);
3598  if (Op0.getOpcode() != ISD::UNDEF)
3599    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
3600                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op0),
3601                      DAG.getIntPtrConstant(0));
3602  if (Op1.getOpcode() != ISD::UNDEF)
3603    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
3604                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op1),
3605                      DAG.getIntPtrConstant(1));
3606  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Val);
3607}
3608
3609SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
3610  switch (Op.getOpcode()) {
3611  default: llvm_unreachable("Don't know how to custom lower this!");
3612  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
3613  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
3614  case ISD::GlobalAddress:
3615    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
3616      LowerGlobalAddressELF(Op, DAG);
3617  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3618  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
3619  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
3620  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
3621  case ISD::VASTART:       return LowerVASTART(Op, DAG);
3622  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
3623  case ISD::SINT_TO_FP:
3624  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
3625  case ISD::FP_TO_SINT:
3626  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
3627  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
3628  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
3629  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
3630  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
3631  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
3632  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
3633  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
3634                                                               Subtarget);
3635  case ISD::BIT_CONVERT:   return ExpandBIT_CONVERT(Op.getNode(), DAG);
3636  case ISD::SHL:
3637  case ISD::SRL:
3638  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
3639  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
3640  case ISD::SRL_PARTS:
3641  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
3642  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
3643  case ISD::VSETCC:        return LowerVSETCC(Op, DAG);
3644  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG);
3645  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
3646  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
3647  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
3648  }
3649  return SDValue();
3650}
3651
3652/// ReplaceNodeResults - Replace the results of node with an illegal result
3653/// type with new values built out of custom code.
3654void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
3655                                           SmallVectorImpl<SDValue>&Results,
3656                                           SelectionDAG &DAG) const {
3657  SDValue Res;
3658  switch (N->getOpcode()) {
3659  default:
3660    llvm_unreachable("Don't know how to custom expand this!");
3661    break;
3662  case ISD::BIT_CONVERT:
3663    Res = ExpandBIT_CONVERT(N, DAG);
3664    break;
3665  case ISD::SRL:
3666  case ISD::SRA:
3667    Res = LowerShift(N, DAG, Subtarget);
3668    break;
3669  }
3670  if (Res.getNode())
3671    Results.push_back(Res);
3672}
3673
3674//===----------------------------------------------------------------------===//
3675//                           ARM Scheduler Hooks
3676//===----------------------------------------------------------------------===//
3677
3678MachineBasicBlock *
3679ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
3680                                     MachineBasicBlock *BB,
3681                                     unsigned Size) const {
3682  unsigned dest    = MI->getOperand(0).getReg();
3683  unsigned ptr     = MI->getOperand(1).getReg();
3684  unsigned oldval  = MI->getOperand(2).getReg();
3685  unsigned newval  = MI->getOperand(3).getReg();
3686  unsigned scratch = BB->getParent()->getRegInfo()
3687    .createVirtualRegister(ARM::GPRRegisterClass);
3688  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3689  DebugLoc dl = MI->getDebugLoc();
3690  bool isThumb2 = Subtarget->isThumb2();
3691
3692  unsigned ldrOpc, strOpc;
3693  switch (Size) {
3694  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
3695  case 1:
3696    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
3697    strOpc = isThumb2 ? ARM::t2LDREXB : ARM::STREXB;
3698    break;
3699  case 2:
3700    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
3701    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
3702    break;
3703  case 4:
3704    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
3705    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
3706    break;
3707  }
3708
3709  MachineFunction *MF = BB->getParent();
3710  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3711  MachineFunction::iterator It = BB;
3712  ++It; // insert the new blocks after the current block
3713
3714  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
3715  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
3716  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
3717  MF->insert(It, loop1MBB);
3718  MF->insert(It, loop2MBB);
3719  MF->insert(It, exitMBB);
3720
3721  // Transfer the remainder of BB and its successor edges to exitMBB.
3722  exitMBB->splice(exitMBB->begin(), BB,
3723                  llvm::next(MachineBasicBlock::iterator(MI)),
3724                  BB->end());
3725  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
3726
3727  //  thisMBB:
3728  //   ...
3729  //   fallthrough --> loop1MBB
3730  BB->addSuccessor(loop1MBB);
3731
3732  // loop1MBB:
3733  //   ldrex dest, [ptr]
3734  //   cmp dest, oldval
3735  //   bne exitMBB
3736  BB = loop1MBB;
3737  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
3738  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
3739                 .addReg(dest).addReg(oldval));
3740  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
3741    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
3742  BB->addSuccessor(loop2MBB);
3743  BB->addSuccessor(exitMBB);
3744
3745  // loop2MBB:
3746  //   strex scratch, newval, [ptr]
3747  //   cmp scratch, #0
3748  //   bne loop1MBB
3749  BB = loop2MBB;
3750  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval)
3751                 .addReg(ptr));
3752  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
3753                 .addReg(scratch).addImm(0));
3754  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
3755    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
3756  BB->addSuccessor(loop1MBB);
3757  BB->addSuccessor(exitMBB);
3758
3759  //  exitMBB:
3760  //   ...
3761  BB = exitMBB;
3762
3763  MI->eraseFromParent();   // The instruction is gone now.
3764
3765  return BB;
3766}
3767
3768MachineBasicBlock *
3769ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
3770                                    unsigned Size, unsigned BinOpcode) const {
3771  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
3772  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3773
3774  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3775  MachineFunction *MF = BB->getParent();
3776  MachineFunction::iterator It = BB;
3777  ++It;
3778
3779  unsigned dest = MI->getOperand(0).getReg();
3780  unsigned ptr = MI->getOperand(1).getReg();
3781  unsigned incr = MI->getOperand(2).getReg();
3782  DebugLoc dl = MI->getDebugLoc();
3783
3784  bool isThumb2 = Subtarget->isThumb2();
3785  unsigned ldrOpc, strOpc;
3786  switch (Size) {
3787  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
3788  case 1:
3789    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
3790    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
3791    break;
3792  case 2:
3793    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
3794    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
3795    break;
3796  case 4:
3797    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
3798    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
3799    break;
3800  }
3801
3802  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
3803  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
3804  MF->insert(It, loopMBB);
3805  MF->insert(It, exitMBB);
3806
3807  // Transfer the remainder of BB and its successor edges to exitMBB.
3808  exitMBB->splice(exitMBB->begin(), BB,
3809                  llvm::next(MachineBasicBlock::iterator(MI)),
3810                  BB->end());
3811  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
3812
3813  MachineRegisterInfo &RegInfo = MF->getRegInfo();
3814  unsigned scratch = RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
3815  unsigned scratch2 = (!BinOpcode) ? incr :
3816    RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
3817
3818  //  thisMBB:
3819  //   ...
3820  //   fallthrough --> loopMBB
3821  BB->addSuccessor(loopMBB);
3822
3823  //  loopMBB:
3824  //   ldrex dest, ptr
3825  //   <binop> scratch2, dest, incr
3826  //   strex scratch, scratch2, ptr
3827  //   cmp scratch, #0
3828  //   bne- loopMBB
3829  //   fallthrough --> exitMBB
3830  BB = loopMBB;
3831  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
3832  if (BinOpcode) {
3833    // operand order needs to go the other way for NAND
3834    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
3835      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
3836                     addReg(incr).addReg(dest)).addReg(0);
3837    else
3838      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
3839                     addReg(dest).addReg(incr)).addReg(0);
3840  }
3841
3842  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2)
3843                 .addReg(ptr));
3844  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
3845                 .addReg(scratch).addImm(0));
3846  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
3847    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
3848
3849  BB->addSuccessor(loopMBB);
3850  BB->addSuccessor(exitMBB);
3851
3852  //  exitMBB:
3853  //   ...
3854  BB = exitMBB;
3855
3856  MI->eraseFromParent();   // The instruction is gone now.
3857
3858  return BB;
3859}
3860
3861static
3862MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
3863  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
3864       E = MBB->succ_end(); I != E; ++I)
3865    if (*I != Succ)
3866      return *I;
3867  llvm_unreachable("Expecting a BB with two successors!");
3868}
3869
3870MachineBasicBlock *
3871ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
3872                                               MachineBasicBlock *BB) const {
3873  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3874  DebugLoc dl = MI->getDebugLoc();
3875  bool isThumb2 = Subtarget->isThumb2();
3876  switch (MI->getOpcode()) {
3877  default:
3878    MI->dump();
3879    llvm_unreachable("Unexpected instr type to insert");
3880
3881  case ARM::ATOMIC_LOAD_ADD_I8:
3882     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
3883  case ARM::ATOMIC_LOAD_ADD_I16:
3884     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
3885  case ARM::ATOMIC_LOAD_ADD_I32:
3886     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
3887
3888  case ARM::ATOMIC_LOAD_AND_I8:
3889     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
3890  case ARM::ATOMIC_LOAD_AND_I16:
3891     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
3892  case ARM::ATOMIC_LOAD_AND_I32:
3893     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
3894
3895  case ARM::ATOMIC_LOAD_OR_I8:
3896     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
3897  case ARM::ATOMIC_LOAD_OR_I16:
3898     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
3899  case ARM::ATOMIC_LOAD_OR_I32:
3900     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
3901
3902  case ARM::ATOMIC_LOAD_XOR_I8:
3903     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
3904  case ARM::ATOMIC_LOAD_XOR_I16:
3905     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
3906  case ARM::ATOMIC_LOAD_XOR_I32:
3907     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
3908
3909  case ARM::ATOMIC_LOAD_NAND_I8:
3910     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
3911  case ARM::ATOMIC_LOAD_NAND_I16:
3912     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
3913  case ARM::ATOMIC_LOAD_NAND_I32:
3914     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
3915
3916  case ARM::ATOMIC_LOAD_SUB_I8:
3917     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
3918  case ARM::ATOMIC_LOAD_SUB_I16:
3919     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
3920  case ARM::ATOMIC_LOAD_SUB_I32:
3921     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
3922
3923  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
3924  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
3925  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
3926
3927  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
3928  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
3929  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
3930
3931  case ARM::tMOVCCr_pseudo: {
3932    // To "insert" a SELECT_CC instruction, we actually have to insert the
3933    // diamond control-flow pattern.  The incoming instruction knows the
3934    // destination vreg to set, the condition code register to branch on, the
3935    // true/false values to select between, and a branch opcode to use.
3936    const BasicBlock *LLVM_BB = BB->getBasicBlock();
3937    MachineFunction::iterator It = BB;
3938    ++It;
3939
3940    //  thisMBB:
3941    //  ...
3942    //   TrueVal = ...
3943    //   cmpTY ccX, r1, r2
3944    //   bCC copy1MBB
3945    //   fallthrough --> copy0MBB
3946    MachineBasicBlock *thisMBB  = BB;
3947    MachineFunction *F = BB->getParent();
3948    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
3949    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
3950    F->insert(It, copy0MBB);
3951    F->insert(It, sinkMBB);
3952
3953    // Transfer the remainder of BB and its successor edges to sinkMBB.
3954    sinkMBB->splice(sinkMBB->begin(), BB,
3955                    llvm::next(MachineBasicBlock::iterator(MI)),
3956                    BB->end());
3957    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
3958
3959    BB->addSuccessor(copy0MBB);
3960    BB->addSuccessor(sinkMBB);
3961
3962    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
3963      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
3964
3965    //  copy0MBB:
3966    //   %FalseValue = ...
3967    //   # fallthrough to sinkMBB
3968    BB = copy0MBB;
3969
3970    // Update machine-CFG edges
3971    BB->addSuccessor(sinkMBB);
3972
3973    //  sinkMBB:
3974    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
3975    //  ...
3976    BB = sinkMBB;
3977    BuildMI(*BB, BB->begin(), dl,
3978            TII->get(ARM::PHI), MI->getOperand(0).getReg())
3979      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
3980      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
3981
3982    MI->eraseFromParent();   // The pseudo instruction is gone now.
3983    return BB;
3984  }
3985
3986  case ARM::BCCi64:
3987  case ARM::BCCZi64: {
3988    // Compare both parts that make up the double comparison separately for
3989    // equality.
3990    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
3991
3992    unsigned LHS1 = MI->getOperand(1).getReg();
3993    unsigned LHS2 = MI->getOperand(2).getReg();
3994    if (RHSisZero) {
3995      AddDefaultPred(BuildMI(BB, dl,
3996                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
3997                     .addReg(LHS1).addImm(0));
3998      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
3999        .addReg(LHS2).addImm(0)
4000        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
4001    } else {
4002      unsigned RHS1 = MI->getOperand(3).getReg();
4003      unsigned RHS2 = MI->getOperand(4).getReg();
4004      AddDefaultPred(BuildMI(BB, dl,
4005                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
4006                     .addReg(LHS1).addReg(RHS1));
4007      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
4008        .addReg(LHS2).addReg(RHS2)
4009        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
4010    }
4011
4012    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
4013    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
4014    if (MI->getOperand(0).getImm() == ARMCC::NE)
4015      std::swap(destMBB, exitMBB);
4016
4017    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4018      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
4019    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2B : ARM::B))
4020      .addMBB(exitMBB);
4021
4022    MI->eraseFromParent();   // The pseudo instruction is gone now.
4023    return BB;
4024  }
4025
4026  case ARM::tANDsp:
4027  case ARM::tADDspr_:
4028  case ARM::tSUBspi_:
4029  case ARM::t2SUBrSPi_:
4030  case ARM::t2SUBrSPi12_:
4031  case ARM::t2SUBrSPs_: {
4032    MachineFunction *MF = BB->getParent();
4033    unsigned DstReg = MI->getOperand(0).getReg();
4034    unsigned SrcReg = MI->getOperand(1).getReg();
4035    bool DstIsDead = MI->getOperand(0).isDead();
4036    bool SrcIsKill = MI->getOperand(1).isKill();
4037
4038    if (SrcReg != ARM::SP) {
4039      // Copy the source to SP from virtual register.
4040      const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(SrcReg);
4041      unsigned CopyOpc = (RC == ARM::tGPRRegisterClass)
4042        ? ARM::tMOVtgpr2gpr : ARM::tMOVgpr2gpr;
4043      BuildMI(*BB, MI, dl, TII->get(CopyOpc), ARM::SP)
4044        .addReg(SrcReg, getKillRegState(SrcIsKill));
4045    }
4046
4047    unsigned OpOpc = 0;
4048    bool NeedPred = false, NeedCC = false, NeedOp3 = false;
4049    switch (MI->getOpcode()) {
4050    default:
4051      llvm_unreachable("Unexpected pseudo instruction!");
4052    case ARM::tANDsp:
4053      OpOpc = ARM::tAND;
4054      NeedPred = true;
4055      break;
4056    case ARM::tADDspr_:
4057      OpOpc = ARM::tADDspr;
4058      break;
4059    case ARM::tSUBspi_:
4060      OpOpc = ARM::tSUBspi;
4061      break;
4062    case ARM::t2SUBrSPi_:
4063      OpOpc = ARM::t2SUBrSPi;
4064      NeedPred = true; NeedCC = true;
4065      break;
4066    case ARM::t2SUBrSPi12_:
4067      OpOpc = ARM::t2SUBrSPi12;
4068      NeedPred = true;
4069      break;
4070    case ARM::t2SUBrSPs_:
4071      OpOpc = ARM::t2SUBrSPs;
4072      NeedPred = true; NeedCC = true; NeedOp3 = true;
4073      break;
4074    }
4075    MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(OpOpc), ARM::SP);
4076    if (OpOpc == ARM::tAND)
4077      AddDefaultT1CC(MIB);
4078    MIB.addReg(ARM::SP);
4079    MIB.addOperand(MI->getOperand(2));
4080    if (NeedOp3)
4081      MIB.addOperand(MI->getOperand(3));
4082    if (NeedPred)
4083      AddDefaultPred(MIB);
4084    if (NeedCC)
4085      AddDefaultCC(MIB);
4086
4087    // Copy the result from SP to virtual register.
4088    const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(DstReg);
4089    unsigned CopyOpc = (RC == ARM::tGPRRegisterClass)
4090      ? ARM::tMOVgpr2tgpr : ARM::tMOVgpr2gpr;
4091    BuildMI(*BB, MI, dl, TII->get(CopyOpc))
4092      .addReg(DstReg, getDefRegState(true) | getDeadRegState(DstIsDead))
4093      .addReg(ARM::SP);
4094    MI->eraseFromParent();   // The pseudo instruction is gone now.
4095    return BB;
4096  }
4097  }
4098}
4099
4100//===----------------------------------------------------------------------===//
4101//                           ARM Optimization Hooks
4102//===----------------------------------------------------------------------===//
4103
4104static
4105SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
4106                            TargetLowering::DAGCombinerInfo &DCI) {
4107  SelectionDAG &DAG = DCI.DAG;
4108  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4109  EVT VT = N->getValueType(0);
4110  unsigned Opc = N->getOpcode();
4111  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
4112  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
4113  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
4114  ISD::CondCode CC = ISD::SETCC_INVALID;
4115
4116  if (isSlctCC) {
4117    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
4118  } else {
4119    SDValue CCOp = Slct.getOperand(0);
4120    if (CCOp.getOpcode() == ISD::SETCC)
4121      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
4122  }
4123
4124  bool DoXform = false;
4125  bool InvCC = false;
4126  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
4127          "Bad input!");
4128
4129  if (LHS.getOpcode() == ISD::Constant &&
4130      cast<ConstantSDNode>(LHS)->isNullValue()) {
4131    DoXform = true;
4132  } else if (CC != ISD::SETCC_INVALID &&
4133             RHS.getOpcode() == ISD::Constant &&
4134             cast<ConstantSDNode>(RHS)->isNullValue()) {
4135    std::swap(LHS, RHS);
4136    SDValue Op0 = Slct.getOperand(0);
4137    EVT OpVT = isSlctCC ? Op0.getValueType() :
4138                          Op0.getOperand(0).getValueType();
4139    bool isInt = OpVT.isInteger();
4140    CC = ISD::getSetCCInverse(CC, isInt);
4141
4142    if (!TLI.isCondCodeLegal(CC, OpVT))
4143      return SDValue();         // Inverse operator isn't legal.
4144
4145    DoXform = true;
4146    InvCC = true;
4147  }
4148
4149  if (DoXform) {
4150    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
4151    if (isSlctCC)
4152      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
4153                             Slct.getOperand(0), Slct.getOperand(1), CC);
4154    SDValue CCOp = Slct.getOperand(0);
4155    if (InvCC)
4156      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
4157                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
4158    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
4159                       CCOp, OtherOp, Result);
4160  }
4161  return SDValue();
4162}
4163
4164/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
4165static SDValue PerformADDCombine(SDNode *N,
4166                                 TargetLowering::DAGCombinerInfo &DCI) {
4167  // added by evan in r37685 with no testcase.
4168  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
4169
4170  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
4171  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
4172    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
4173    if (Result.getNode()) return Result;
4174  }
4175  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
4176    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
4177    if (Result.getNode()) return Result;
4178  }
4179
4180  return SDValue();
4181}
4182
4183/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
4184static SDValue PerformSUBCombine(SDNode *N,
4185                                 TargetLowering::DAGCombinerInfo &DCI) {
4186  // added by evan in r37685 with no testcase.
4187  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
4188
4189  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
4190  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
4191    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
4192    if (Result.getNode()) return Result;
4193  }
4194
4195  return SDValue();
4196}
4197
4198static SDValue PerformMULCombine(SDNode *N,
4199                                 TargetLowering::DAGCombinerInfo &DCI,
4200                                 const ARMSubtarget *Subtarget) {
4201  SelectionDAG &DAG = DCI.DAG;
4202
4203  if (Subtarget->isThumb1Only())
4204    return SDValue();
4205
4206  if (DAG.getMachineFunction().
4207      getFunction()->hasFnAttr(Attribute::OptimizeForSize))
4208    return SDValue();
4209
4210  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
4211    return SDValue();
4212
4213  EVT VT = N->getValueType(0);
4214  if (VT != MVT::i32)
4215    return SDValue();
4216
4217  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
4218  if (!C)
4219    return SDValue();
4220
4221  uint64_t MulAmt = C->getZExtValue();
4222  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
4223  ShiftAmt = ShiftAmt & (32 - 1);
4224  SDValue V = N->getOperand(0);
4225  DebugLoc DL = N->getDebugLoc();
4226
4227  SDValue Res;
4228  MulAmt >>= ShiftAmt;
4229  if (isPowerOf2_32(MulAmt - 1)) {
4230    // (mul x, 2^N + 1) => (add (shl x, N), x)
4231    Res = DAG.getNode(ISD::ADD, DL, VT,
4232                      V, DAG.getNode(ISD::SHL, DL, VT,
4233                                     V, DAG.getConstant(Log2_32(MulAmt-1),
4234                                                        MVT::i32)));
4235  } else if (isPowerOf2_32(MulAmt + 1)) {
4236    // (mul x, 2^N - 1) => (sub (shl x, N), x)
4237    Res = DAG.getNode(ISD::SUB, DL, VT,
4238                      DAG.getNode(ISD::SHL, DL, VT,
4239                                  V, DAG.getConstant(Log2_32(MulAmt+1),
4240                                                     MVT::i32)),
4241                                                     V);
4242  } else
4243    return SDValue();
4244
4245  if (ShiftAmt != 0)
4246    Res = DAG.getNode(ISD::SHL, DL, VT, Res,
4247                      DAG.getConstant(ShiftAmt, MVT::i32));
4248
4249  // Do not add new nodes to DAG combiner worklist.
4250  DCI.CombineTo(N, Res, false);
4251  return SDValue();
4252}
4253
4254/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
4255static SDValue PerformORCombine(SDNode *N,
4256                                TargetLowering::DAGCombinerInfo &DCI,
4257                                const ARMSubtarget *Subtarget) {
4258  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
4259  // reasonable.
4260
4261  // BFI is only available on V6T2+
4262  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
4263    return SDValue();
4264
4265  SelectionDAG &DAG = DCI.DAG;
4266  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
4267  DebugLoc DL = N->getDebugLoc();
4268  // 1) or (and A, mask), val => ARMbfi A, val, mask
4269  //      iff (val & mask) == val
4270  //
4271  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
4272  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
4273  //          && CountPopulation_32(mask) == CountPopulation_32(~mask2)
4274  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
4275  //          && CountPopulation_32(mask) == CountPopulation_32(~mask2)
4276  //  (i.e., copy a bitfield value into another bitfield of the same width)
4277  if (N0.getOpcode() != ISD::AND)
4278    return SDValue();
4279
4280  EVT VT = N->getValueType(0);
4281  if (VT != MVT::i32)
4282    return SDValue();
4283
4284
4285  // The value and the mask need to be constants so we can verify this is
4286  // actually a bitfield set. If the mask is 0xffff, we can do better
4287  // via a movt instruction, so don't use BFI in that case.
4288  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
4289  if (!C)
4290    return SDValue();
4291  unsigned Mask = C->getZExtValue();
4292  if (Mask == 0xffff)
4293    return SDValue();
4294  SDValue Res;
4295  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
4296  if ((C = dyn_cast<ConstantSDNode>(N1))) {
4297    unsigned Val = C->getZExtValue();
4298    if (!ARM::isBitFieldInvertedMask(Mask) || (Val & ~Mask) != Val)
4299      return SDValue();
4300    Val >>= CountTrailingZeros_32(~Mask);
4301
4302    Res = DAG.getNode(ARMISD::BFI, DL, VT, N0.getOperand(0),
4303                      DAG.getConstant(Val, MVT::i32),
4304                      DAG.getConstant(Mask, MVT::i32));
4305
4306    // Do not add new nodes to DAG combiner worklist.
4307    DCI.CombineTo(N, Res, false);
4308  } else if (N1.getOpcode() == ISD::AND) {
4309    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
4310    C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
4311    if (!C)
4312      return SDValue();
4313    unsigned Mask2 = C->getZExtValue();
4314
4315    if (ARM::isBitFieldInvertedMask(Mask) &&
4316        ARM::isBitFieldInvertedMask(~Mask2) &&
4317        (CountPopulation_32(Mask) == CountPopulation_32(~Mask2))) {
4318      // The pack halfword instruction works better for masks that fit it,
4319      // so use that when it's available.
4320      if (Subtarget->hasT2ExtractPack() &&
4321          (Mask == 0xffff || Mask == 0xffff0000))
4322        return SDValue();
4323      // 2a
4324      unsigned lsb = CountTrailingZeros_32(Mask2);
4325      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
4326                        DAG.getConstant(lsb, MVT::i32));
4327      Res = DAG.getNode(ARMISD::BFI, DL, VT, N0.getOperand(0), Res,
4328                        DAG.getConstant(Mask, MVT::i32));
4329      // Do not add new nodes to DAG combiner worklist.
4330      DCI.CombineTo(N, Res, false);
4331    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
4332               ARM::isBitFieldInvertedMask(Mask2) &&
4333               (CountPopulation_32(~Mask) == CountPopulation_32(Mask2))) {
4334      // The pack halfword instruction works better for masks that fit it,
4335      // so use that when it's available.
4336      if (Subtarget->hasT2ExtractPack() &&
4337          (Mask2 == 0xffff || Mask2 == 0xffff0000))
4338        return SDValue();
4339      // 2b
4340      unsigned lsb = CountTrailingZeros_32(Mask);
4341      Res = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0),
4342                        DAG.getConstant(lsb, MVT::i32));
4343      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
4344                                DAG.getConstant(Mask2, MVT::i32));
4345      // Do not add new nodes to DAG combiner worklist.
4346      DCI.CombineTo(N, Res, false);
4347    }
4348  }
4349
4350  return SDValue();
4351}
4352
4353/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
4354/// ARMISD::VMOVRRD.
4355static SDValue PerformVMOVRRDCombine(SDNode *N,
4356                                   TargetLowering::DAGCombinerInfo &DCI) {
4357  // fmrrd(fmdrr x, y) -> x,y
4358  SDValue InDouble = N->getOperand(0);
4359  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
4360    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
4361  return SDValue();
4362}
4363
4364/// PerformVDUPLANECombine - Target-specific dag combine xforms for
4365/// ARMISD::VDUPLANE.
4366static SDValue PerformVDUPLANECombine(SDNode *N,
4367                                      TargetLowering::DAGCombinerInfo &DCI) {
4368  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
4369  // redundant.
4370  SDValue Op = N->getOperand(0);
4371  EVT VT = N->getValueType(0);
4372
4373  // Ignore bit_converts.
4374  while (Op.getOpcode() == ISD::BIT_CONVERT)
4375    Op = Op.getOperand(0);
4376  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
4377    return SDValue();
4378
4379  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
4380  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
4381  // The canonical VMOV for a zero vector uses a 32-bit element size.
4382  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4383  unsigned EltBits;
4384  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
4385    EltSize = 8;
4386  if (EltSize > VT.getVectorElementType().getSizeInBits())
4387    return SDValue();
4388
4389  SDValue Res = DCI.DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
4390  return DCI.CombineTo(N, Res, false);
4391}
4392
4393/// getVShiftImm - Check if this is a valid build_vector for the immediate
4394/// operand of a vector shift operation, where all the elements of the
4395/// build_vector must have the same constant integer value.
4396static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
4397  // Ignore bit_converts.
4398  while (Op.getOpcode() == ISD::BIT_CONVERT)
4399    Op = Op.getOperand(0);
4400  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
4401  APInt SplatBits, SplatUndef;
4402  unsigned SplatBitSize;
4403  bool HasAnyUndefs;
4404  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
4405                                      HasAnyUndefs, ElementBits) ||
4406      SplatBitSize > ElementBits)
4407    return false;
4408  Cnt = SplatBits.getSExtValue();
4409  return true;
4410}
4411
4412/// isVShiftLImm - Check if this is a valid build_vector for the immediate
4413/// operand of a vector shift left operation.  That value must be in the range:
4414///   0 <= Value < ElementBits for a left shift; or
4415///   0 <= Value <= ElementBits for a long left shift.
4416static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
4417  assert(VT.isVector() && "vector shift count is not a vector type");
4418  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
4419  if (! getVShiftImm(Op, ElementBits, Cnt))
4420    return false;
4421  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
4422}
4423
4424/// isVShiftRImm - Check if this is a valid build_vector for the immediate
4425/// operand of a vector shift right operation.  For a shift opcode, the value
4426/// is positive, but for an intrinsic the value count must be negative. The
4427/// absolute value must be in the range:
4428///   1 <= |Value| <= ElementBits for a right shift; or
4429///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
4430static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
4431                         int64_t &Cnt) {
4432  assert(VT.isVector() && "vector shift count is not a vector type");
4433  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
4434  if (! getVShiftImm(Op, ElementBits, Cnt))
4435    return false;
4436  if (isIntrinsic)
4437    Cnt = -Cnt;
4438  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
4439}
4440
4441/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
4442static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
4443  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4444  switch (IntNo) {
4445  default:
4446    // Don't do anything for most intrinsics.
4447    break;
4448
4449  // Vector shifts: check for immediate versions and lower them.
4450  // Note: This is done during DAG combining instead of DAG legalizing because
4451  // the build_vectors for 64-bit vector element shift counts are generally
4452  // not legal, and it is hard to see their values after they get legalized to
4453  // loads from a constant pool.
4454  case Intrinsic::arm_neon_vshifts:
4455  case Intrinsic::arm_neon_vshiftu:
4456  case Intrinsic::arm_neon_vshiftls:
4457  case Intrinsic::arm_neon_vshiftlu:
4458  case Intrinsic::arm_neon_vshiftn:
4459  case Intrinsic::arm_neon_vrshifts:
4460  case Intrinsic::arm_neon_vrshiftu:
4461  case Intrinsic::arm_neon_vrshiftn:
4462  case Intrinsic::arm_neon_vqshifts:
4463  case Intrinsic::arm_neon_vqshiftu:
4464  case Intrinsic::arm_neon_vqshiftsu:
4465  case Intrinsic::arm_neon_vqshiftns:
4466  case Intrinsic::arm_neon_vqshiftnu:
4467  case Intrinsic::arm_neon_vqshiftnsu:
4468  case Intrinsic::arm_neon_vqrshiftns:
4469  case Intrinsic::arm_neon_vqrshiftnu:
4470  case Intrinsic::arm_neon_vqrshiftnsu: {
4471    EVT VT = N->getOperand(1).getValueType();
4472    int64_t Cnt;
4473    unsigned VShiftOpc = 0;
4474
4475    switch (IntNo) {
4476    case Intrinsic::arm_neon_vshifts:
4477    case Intrinsic::arm_neon_vshiftu:
4478      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
4479        VShiftOpc = ARMISD::VSHL;
4480        break;
4481      }
4482      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
4483        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
4484                     ARMISD::VSHRs : ARMISD::VSHRu);
4485        break;
4486      }
4487      return SDValue();
4488
4489    case Intrinsic::arm_neon_vshiftls:
4490    case Intrinsic::arm_neon_vshiftlu:
4491      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
4492        break;
4493      llvm_unreachable("invalid shift count for vshll intrinsic");
4494
4495    case Intrinsic::arm_neon_vrshifts:
4496    case Intrinsic::arm_neon_vrshiftu:
4497      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
4498        break;
4499      return SDValue();
4500
4501    case Intrinsic::arm_neon_vqshifts:
4502    case Intrinsic::arm_neon_vqshiftu:
4503      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
4504        break;
4505      return SDValue();
4506
4507    case Intrinsic::arm_neon_vqshiftsu:
4508      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
4509        break;
4510      llvm_unreachable("invalid shift count for vqshlu intrinsic");
4511
4512    case Intrinsic::arm_neon_vshiftn:
4513    case Intrinsic::arm_neon_vrshiftn:
4514    case Intrinsic::arm_neon_vqshiftns:
4515    case Intrinsic::arm_neon_vqshiftnu:
4516    case Intrinsic::arm_neon_vqshiftnsu:
4517    case Intrinsic::arm_neon_vqrshiftns:
4518    case Intrinsic::arm_neon_vqrshiftnu:
4519    case Intrinsic::arm_neon_vqrshiftnsu:
4520      // Narrowing shifts require an immediate right shift.
4521      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
4522        break;
4523      llvm_unreachable("invalid shift count for narrowing vector shift "
4524                       "intrinsic");
4525
4526    default:
4527      llvm_unreachable("unhandled vector shift");
4528    }
4529
4530    switch (IntNo) {
4531    case Intrinsic::arm_neon_vshifts:
4532    case Intrinsic::arm_neon_vshiftu:
4533      // Opcode already set above.
4534      break;
4535    case Intrinsic::arm_neon_vshiftls:
4536    case Intrinsic::arm_neon_vshiftlu:
4537      if (Cnt == VT.getVectorElementType().getSizeInBits())
4538        VShiftOpc = ARMISD::VSHLLi;
4539      else
4540        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
4541                     ARMISD::VSHLLs : ARMISD::VSHLLu);
4542      break;
4543    case Intrinsic::arm_neon_vshiftn:
4544      VShiftOpc = ARMISD::VSHRN; break;
4545    case Intrinsic::arm_neon_vrshifts:
4546      VShiftOpc = ARMISD::VRSHRs; break;
4547    case Intrinsic::arm_neon_vrshiftu:
4548      VShiftOpc = ARMISD::VRSHRu; break;
4549    case Intrinsic::arm_neon_vrshiftn:
4550      VShiftOpc = ARMISD::VRSHRN; break;
4551    case Intrinsic::arm_neon_vqshifts:
4552      VShiftOpc = ARMISD::VQSHLs; break;
4553    case Intrinsic::arm_neon_vqshiftu:
4554      VShiftOpc = ARMISD::VQSHLu; break;
4555    case Intrinsic::arm_neon_vqshiftsu:
4556      VShiftOpc = ARMISD::VQSHLsu; break;
4557    case Intrinsic::arm_neon_vqshiftns:
4558      VShiftOpc = ARMISD::VQSHRNs; break;
4559    case Intrinsic::arm_neon_vqshiftnu:
4560      VShiftOpc = ARMISD::VQSHRNu; break;
4561    case Intrinsic::arm_neon_vqshiftnsu:
4562      VShiftOpc = ARMISD::VQSHRNsu; break;
4563    case Intrinsic::arm_neon_vqrshiftns:
4564      VShiftOpc = ARMISD::VQRSHRNs; break;
4565    case Intrinsic::arm_neon_vqrshiftnu:
4566      VShiftOpc = ARMISD::VQRSHRNu; break;
4567    case Intrinsic::arm_neon_vqrshiftnsu:
4568      VShiftOpc = ARMISD::VQRSHRNsu; break;
4569    }
4570
4571    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
4572                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
4573  }
4574
4575  case Intrinsic::arm_neon_vshiftins: {
4576    EVT VT = N->getOperand(1).getValueType();
4577    int64_t Cnt;
4578    unsigned VShiftOpc = 0;
4579
4580    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
4581      VShiftOpc = ARMISD::VSLI;
4582    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
4583      VShiftOpc = ARMISD::VSRI;
4584    else {
4585      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
4586    }
4587
4588    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
4589                       N->getOperand(1), N->getOperand(2),
4590                       DAG.getConstant(Cnt, MVT::i32));
4591  }
4592
4593  case Intrinsic::arm_neon_vqrshifts:
4594  case Intrinsic::arm_neon_vqrshiftu:
4595    // No immediate versions of these to check for.
4596    break;
4597  }
4598
4599  return SDValue();
4600}
4601
4602/// PerformShiftCombine - Checks for immediate versions of vector shifts and
4603/// lowers them.  As with the vector shift intrinsics, this is done during DAG
4604/// combining instead of DAG legalizing because the build_vectors for 64-bit
4605/// vector element shift counts are generally not legal, and it is hard to see
4606/// their values after they get legalized to loads from a constant pool.
4607static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
4608                                   const ARMSubtarget *ST) {
4609  EVT VT = N->getValueType(0);
4610
4611  // Nothing to be done for scalar shifts.
4612  if (! VT.isVector())
4613    return SDValue();
4614
4615  assert(ST->hasNEON() && "unexpected vector shift");
4616  int64_t Cnt;
4617
4618  switch (N->getOpcode()) {
4619  default: llvm_unreachable("unexpected shift opcode");
4620
4621  case ISD::SHL:
4622    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
4623      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
4624                         DAG.getConstant(Cnt, MVT::i32));
4625    break;
4626
4627  case ISD::SRA:
4628  case ISD::SRL:
4629    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
4630      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
4631                            ARMISD::VSHRs : ARMISD::VSHRu);
4632      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
4633                         DAG.getConstant(Cnt, MVT::i32));
4634    }
4635  }
4636  return SDValue();
4637}
4638
4639/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
4640/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
4641static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
4642                                    const ARMSubtarget *ST) {
4643  SDValue N0 = N->getOperand(0);
4644
4645  // Check for sign- and zero-extensions of vector extract operations of 8-
4646  // and 16-bit vector elements.  NEON supports these directly.  They are
4647  // handled during DAG combining because type legalization will promote them
4648  // to 32-bit types and it is messy to recognize the operations after that.
4649  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
4650    SDValue Vec = N0.getOperand(0);
4651    SDValue Lane = N0.getOperand(1);
4652    EVT VT = N->getValueType(0);
4653    EVT EltVT = N0.getValueType();
4654    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4655
4656    if (VT == MVT::i32 &&
4657        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
4658        TLI.isTypeLegal(Vec.getValueType())) {
4659
4660      unsigned Opc = 0;
4661      switch (N->getOpcode()) {
4662      default: llvm_unreachable("unexpected opcode");
4663      case ISD::SIGN_EXTEND:
4664        Opc = ARMISD::VGETLANEs;
4665        break;
4666      case ISD::ZERO_EXTEND:
4667      case ISD::ANY_EXTEND:
4668        Opc = ARMISD::VGETLANEu;
4669        break;
4670      }
4671      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
4672    }
4673  }
4674
4675  return SDValue();
4676}
4677
4678/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
4679/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
4680static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
4681                                       const ARMSubtarget *ST) {
4682  // If the target supports NEON, try to use vmax/vmin instructions for f32
4683  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
4684  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
4685  // a NaN; only do the transformation when it matches that behavior.
4686
4687  // For now only do this when using NEON for FP operations; if using VFP, it
4688  // is not obvious that the benefit outweighs the cost of switching to the
4689  // NEON pipeline.
4690  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
4691      N->getValueType(0) != MVT::f32)
4692    return SDValue();
4693
4694  SDValue CondLHS = N->getOperand(0);
4695  SDValue CondRHS = N->getOperand(1);
4696  SDValue LHS = N->getOperand(2);
4697  SDValue RHS = N->getOperand(3);
4698  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
4699
4700  unsigned Opcode = 0;
4701  bool IsReversed;
4702  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
4703    IsReversed = false; // x CC y ? x : y
4704  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
4705    IsReversed = true ; // x CC y ? y : x
4706  } else {
4707    return SDValue();
4708  }
4709
4710  bool IsUnordered;
4711  switch (CC) {
4712  default: break;
4713  case ISD::SETOLT:
4714  case ISD::SETOLE:
4715  case ISD::SETLT:
4716  case ISD::SETLE:
4717  case ISD::SETULT:
4718  case ISD::SETULE:
4719    // If LHS is NaN, an ordered comparison will be false and the result will
4720    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
4721    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
4722    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
4723    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
4724      break;
4725    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
4726    // will return -0, so vmin can only be used for unsafe math or if one of
4727    // the operands is known to be nonzero.
4728    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
4729        !UnsafeFPMath &&
4730        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
4731      break;
4732    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
4733    break;
4734
4735  case ISD::SETOGT:
4736  case ISD::SETOGE:
4737  case ISD::SETGT:
4738  case ISD::SETGE:
4739  case ISD::SETUGT:
4740  case ISD::SETUGE:
4741    // If LHS is NaN, an ordered comparison will be false and the result will
4742    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
4743    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
4744    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
4745    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
4746      break;
4747    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
4748    // will return +0, so vmax can only be used for unsafe math or if one of
4749    // the operands is known to be nonzero.
4750    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
4751        !UnsafeFPMath &&
4752        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
4753      break;
4754    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
4755    break;
4756  }
4757
4758  if (!Opcode)
4759    return SDValue();
4760  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
4761}
4762
4763SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
4764                                             DAGCombinerInfo &DCI) const {
4765  switch (N->getOpcode()) {
4766  default: break;
4767  case ISD::ADD:        return PerformADDCombine(N, DCI);
4768  case ISD::SUB:        return PerformSUBCombine(N, DCI);
4769  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
4770  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
4771  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
4772  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
4773  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
4774  case ISD::SHL:
4775  case ISD::SRA:
4776  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
4777  case ISD::SIGN_EXTEND:
4778  case ISD::ZERO_EXTEND:
4779  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
4780  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
4781  }
4782  return SDValue();
4783}
4784
4785bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
4786  if (!Subtarget->hasV6Ops())
4787    // Pre-v6 does not support unaligned mem access.
4788    return false;
4789
4790  // v6+ may or may not support unaligned mem access depending on the system
4791  // configuration.
4792  // FIXME: This is pretty conservative. Should we provide cmdline option to
4793  // control the behaviour?
4794  if (!Subtarget->isTargetDarwin())
4795    return false;
4796
4797  switch (VT.getSimpleVT().SimpleTy) {
4798  default:
4799    return false;
4800  case MVT::i8:
4801  case MVT::i16:
4802  case MVT::i32:
4803    return true;
4804  // FIXME: VLD1 etc with standard alignment is legal.
4805  }
4806}
4807
4808static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
4809  if (V < 0)
4810    return false;
4811
4812  unsigned Scale = 1;
4813  switch (VT.getSimpleVT().SimpleTy) {
4814  default: return false;
4815  case MVT::i1:
4816  case MVT::i8:
4817    // Scale == 1;
4818    break;
4819  case MVT::i16:
4820    // Scale == 2;
4821    Scale = 2;
4822    break;
4823  case MVT::i32:
4824    // Scale == 4;
4825    Scale = 4;
4826    break;
4827  }
4828
4829  if ((V & (Scale - 1)) != 0)
4830    return false;
4831  V /= Scale;
4832  return V == (V & ((1LL << 5) - 1));
4833}
4834
4835static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
4836                                      const ARMSubtarget *Subtarget) {
4837  bool isNeg = false;
4838  if (V < 0) {
4839    isNeg = true;
4840    V = - V;
4841  }
4842
4843  switch (VT.getSimpleVT().SimpleTy) {
4844  default: return false;
4845  case MVT::i1:
4846  case MVT::i8:
4847  case MVT::i16:
4848  case MVT::i32:
4849    // + imm12 or - imm8
4850    if (isNeg)
4851      return V == (V & ((1LL << 8) - 1));
4852    return V == (V & ((1LL << 12) - 1));
4853  case MVT::f32:
4854  case MVT::f64:
4855    // Same as ARM mode. FIXME: NEON?
4856    if (!Subtarget->hasVFP2())
4857      return false;
4858    if ((V & 3) != 0)
4859      return false;
4860    V >>= 2;
4861    return V == (V & ((1LL << 8) - 1));
4862  }
4863}
4864
4865/// isLegalAddressImmediate - Return true if the integer value can be used
4866/// as the offset of the target addressing mode for load / store of the
4867/// given type.
4868static bool isLegalAddressImmediate(int64_t V, EVT VT,
4869                                    const ARMSubtarget *Subtarget) {
4870  if (V == 0)
4871    return true;
4872
4873  if (!VT.isSimple())
4874    return false;
4875
4876  if (Subtarget->isThumb1Only())
4877    return isLegalT1AddressImmediate(V, VT);
4878  else if (Subtarget->isThumb2())
4879    return isLegalT2AddressImmediate(V, VT, Subtarget);
4880
4881  // ARM mode.
4882  if (V < 0)
4883    V = - V;
4884  switch (VT.getSimpleVT().SimpleTy) {
4885  default: return false;
4886  case MVT::i1:
4887  case MVT::i8:
4888  case MVT::i32:
4889    // +- imm12
4890    return V == (V & ((1LL << 12) - 1));
4891  case MVT::i16:
4892    // +- imm8
4893    return V == (V & ((1LL << 8) - 1));
4894  case MVT::f32:
4895  case MVT::f64:
4896    if (!Subtarget->hasVFP2()) // FIXME: NEON?
4897      return false;
4898    if ((V & 3) != 0)
4899      return false;
4900    V >>= 2;
4901    return V == (V & ((1LL << 8) - 1));
4902  }
4903}
4904
4905bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
4906                                                      EVT VT) const {
4907  int Scale = AM.Scale;
4908  if (Scale < 0)
4909    return false;
4910
4911  switch (VT.getSimpleVT().SimpleTy) {
4912  default: return false;
4913  case MVT::i1:
4914  case MVT::i8:
4915  case MVT::i16:
4916  case MVT::i32:
4917    if (Scale == 1)
4918      return true;
4919    // r + r << imm
4920    Scale = Scale & ~1;
4921    return Scale == 2 || Scale == 4 || Scale == 8;
4922  case MVT::i64:
4923    // r + r
4924    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
4925      return true;
4926    return false;
4927  case MVT::isVoid:
4928    // Note, we allow "void" uses (basically, uses that aren't loads or
4929    // stores), because arm allows folding a scale into many arithmetic
4930    // operations.  This should be made more precise and revisited later.
4931
4932    // Allow r << imm, but the imm has to be a multiple of two.
4933    if (Scale & 1) return false;
4934    return isPowerOf2_32(Scale);
4935  }
4936}
4937
4938/// isLegalAddressingMode - Return true if the addressing mode represented
4939/// by AM is legal for this target, for a load/store of the specified type.
4940bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
4941                                              const Type *Ty) const {
4942  EVT VT = getValueType(Ty, true);
4943  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
4944    return false;
4945
4946  // Can never fold addr of global into load/store.
4947  if (AM.BaseGV)
4948    return false;
4949
4950  switch (AM.Scale) {
4951  case 0:  // no scale reg, must be "r+i" or "r", or "i".
4952    break;
4953  case 1:
4954    if (Subtarget->isThumb1Only())
4955      return false;
4956    // FALL THROUGH.
4957  default:
4958    // ARM doesn't support any R+R*scale+imm addr modes.
4959    if (AM.BaseOffs)
4960      return false;
4961
4962    if (!VT.isSimple())
4963      return false;
4964
4965    if (Subtarget->isThumb2())
4966      return isLegalT2ScaledAddressingMode(AM, VT);
4967
4968    int Scale = AM.Scale;
4969    switch (VT.getSimpleVT().SimpleTy) {
4970    default: return false;
4971    case MVT::i1:
4972    case MVT::i8:
4973    case MVT::i32:
4974      if (Scale < 0) Scale = -Scale;
4975      if (Scale == 1)
4976        return true;
4977      // r + r << imm
4978      return isPowerOf2_32(Scale & ~1);
4979    case MVT::i16:
4980    case MVT::i64:
4981      // r + r
4982      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
4983        return true;
4984      return false;
4985
4986    case MVT::isVoid:
4987      // Note, we allow "void" uses (basically, uses that aren't loads or
4988      // stores), because arm allows folding a scale into many arithmetic
4989      // operations.  This should be made more precise and revisited later.
4990
4991      // Allow r << imm, but the imm has to be a multiple of two.
4992      if (Scale & 1) return false;
4993      return isPowerOf2_32(Scale);
4994    }
4995    break;
4996  }
4997  return true;
4998}
4999
5000/// isLegalICmpImmediate - Return true if the specified immediate is legal
5001/// icmp immediate, that is the target has icmp instructions which can compare
5002/// a register against the immediate without having to materialize the
5003/// immediate into a register.
5004bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
5005  if (!Subtarget->isThumb())
5006    return ARM_AM::getSOImmVal(Imm) != -1;
5007  if (Subtarget->isThumb2())
5008    return ARM_AM::getT2SOImmVal(Imm) != -1;
5009  return Imm >= 0 && Imm <= 255;
5010}
5011
5012static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
5013                                      bool isSEXTLoad, SDValue &Base,
5014                                      SDValue &Offset, bool &isInc,
5015                                      SelectionDAG &DAG) {
5016  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
5017    return false;
5018
5019  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
5020    // AddressingMode 3
5021    Base = Ptr->getOperand(0);
5022    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5023      int RHSC = (int)RHS->getZExtValue();
5024      if (RHSC < 0 && RHSC > -256) {
5025        assert(Ptr->getOpcode() == ISD::ADD);
5026        isInc = false;
5027        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
5028        return true;
5029      }
5030    }
5031    isInc = (Ptr->getOpcode() == ISD::ADD);
5032    Offset = Ptr->getOperand(1);
5033    return true;
5034  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
5035    // AddressingMode 2
5036    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5037      int RHSC = (int)RHS->getZExtValue();
5038      if (RHSC < 0 && RHSC > -0x1000) {
5039        assert(Ptr->getOpcode() == ISD::ADD);
5040        isInc = false;
5041        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
5042        Base = Ptr->getOperand(0);
5043        return true;
5044      }
5045    }
5046
5047    if (Ptr->getOpcode() == ISD::ADD) {
5048      isInc = true;
5049      ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
5050      if (ShOpcVal != ARM_AM::no_shift) {
5051        Base = Ptr->getOperand(1);
5052        Offset = Ptr->getOperand(0);
5053      } else {
5054        Base = Ptr->getOperand(0);
5055        Offset = Ptr->getOperand(1);
5056      }
5057      return true;
5058    }
5059
5060    isInc = (Ptr->getOpcode() == ISD::ADD);
5061    Base = Ptr->getOperand(0);
5062    Offset = Ptr->getOperand(1);
5063    return true;
5064  }
5065
5066  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
5067  return false;
5068}
5069
5070static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
5071                                     bool isSEXTLoad, SDValue &Base,
5072                                     SDValue &Offset, bool &isInc,
5073                                     SelectionDAG &DAG) {
5074  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
5075    return false;
5076
5077  Base = Ptr->getOperand(0);
5078  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5079    int RHSC = (int)RHS->getZExtValue();
5080    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
5081      assert(Ptr->getOpcode() == ISD::ADD);
5082      isInc = false;
5083      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
5084      return true;
5085    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
5086      isInc = Ptr->getOpcode() == ISD::ADD;
5087      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
5088      return true;
5089    }
5090  }
5091
5092  return false;
5093}
5094
5095/// getPreIndexedAddressParts - returns true by value, base pointer and
5096/// offset pointer and addressing mode by reference if the node's address
5097/// can be legally represented as pre-indexed load / store address.
5098bool
5099ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
5100                                             SDValue &Offset,
5101                                             ISD::MemIndexedMode &AM,
5102                                             SelectionDAG &DAG) const {
5103  if (Subtarget->isThumb1Only())
5104    return false;
5105
5106  EVT VT;
5107  SDValue Ptr;
5108  bool isSEXTLoad = false;
5109  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5110    Ptr = LD->getBasePtr();
5111    VT  = LD->getMemoryVT();
5112    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
5113  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5114    Ptr = ST->getBasePtr();
5115    VT  = ST->getMemoryVT();
5116  } else
5117    return false;
5118
5119  bool isInc;
5120  bool isLegal = false;
5121  if (Subtarget->isThumb2())
5122    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
5123                                       Offset, isInc, DAG);
5124  else
5125    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
5126                                        Offset, isInc, DAG);
5127  if (!isLegal)
5128    return false;
5129
5130  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
5131  return true;
5132}
5133
5134/// getPostIndexedAddressParts - returns true by value, base pointer and
5135/// offset pointer and addressing mode by reference if this node can be
5136/// combined with a load / store to form a post-indexed load / store.
5137bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
5138                                                   SDValue &Base,
5139                                                   SDValue &Offset,
5140                                                   ISD::MemIndexedMode &AM,
5141                                                   SelectionDAG &DAG) const {
5142  if (Subtarget->isThumb1Only())
5143    return false;
5144
5145  EVT VT;
5146  SDValue Ptr;
5147  bool isSEXTLoad = false;
5148  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5149    VT  = LD->getMemoryVT();
5150    Ptr = LD->getBasePtr();
5151    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
5152  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5153    VT  = ST->getMemoryVT();
5154    Ptr = ST->getBasePtr();
5155  } else
5156    return false;
5157
5158  bool isInc;
5159  bool isLegal = false;
5160  if (Subtarget->isThumb2())
5161    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
5162                                       isInc, DAG);
5163  else
5164    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
5165                                        isInc, DAG);
5166  if (!isLegal)
5167    return false;
5168
5169  if (Ptr != Base) {
5170    // Swap base ptr and offset to catch more post-index load / store when
5171    // it's legal. In Thumb2 mode, offset must be an immediate.
5172    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
5173        !Subtarget->isThumb2())
5174      std::swap(Base, Offset);
5175
5176    // Post-indexed load / store update the base pointer.
5177    if (Ptr != Base)
5178      return false;
5179  }
5180
5181  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
5182  return true;
5183}
5184
5185void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5186                                                       const APInt &Mask,
5187                                                       APInt &KnownZero,
5188                                                       APInt &KnownOne,
5189                                                       const SelectionDAG &DAG,
5190                                                       unsigned Depth) const {
5191  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5192  switch (Op.getOpcode()) {
5193  default: break;
5194  case ARMISD::CMOV: {
5195    // Bits are known zero/one if known on the LHS and RHS.
5196    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
5197    if (KnownZero == 0 && KnownOne == 0) return;
5198
5199    APInt KnownZeroRHS, KnownOneRHS;
5200    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
5201                          KnownZeroRHS, KnownOneRHS, Depth+1);
5202    KnownZero &= KnownZeroRHS;
5203    KnownOne  &= KnownOneRHS;
5204    return;
5205  }
5206  }
5207}
5208
5209//===----------------------------------------------------------------------===//
5210//                           ARM Inline Assembly Support
5211//===----------------------------------------------------------------------===//
5212
5213/// getConstraintType - Given a constraint letter, return the type of
5214/// constraint it is for this target.
5215ARMTargetLowering::ConstraintType
5216ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
5217  if (Constraint.size() == 1) {
5218    switch (Constraint[0]) {
5219    default:  break;
5220    case 'l': return C_RegisterClass;
5221    case 'w': return C_RegisterClass;
5222    }
5223  }
5224  return TargetLowering::getConstraintType(Constraint);
5225}
5226
5227std::pair<unsigned, const TargetRegisterClass*>
5228ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5229                                                EVT VT) const {
5230  if (Constraint.size() == 1) {
5231    // GCC ARM Constraint Letters
5232    switch (Constraint[0]) {
5233    case 'l':
5234      if (Subtarget->isThumb())
5235        return std::make_pair(0U, ARM::tGPRRegisterClass);
5236      else
5237        return std::make_pair(0U, ARM::GPRRegisterClass);
5238    case 'r':
5239      return std::make_pair(0U, ARM::GPRRegisterClass);
5240    case 'w':
5241      if (VT == MVT::f32)
5242        return std::make_pair(0U, ARM::SPRRegisterClass);
5243      if (VT.getSizeInBits() == 64)
5244        return std::make_pair(0U, ARM::DPRRegisterClass);
5245      if (VT.getSizeInBits() == 128)
5246        return std::make_pair(0U, ARM::QPRRegisterClass);
5247      break;
5248    }
5249  }
5250  if (StringRef("{cc}").equals_lower(Constraint))
5251    return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
5252
5253  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5254}
5255
5256std::vector<unsigned> ARMTargetLowering::
5257getRegClassForInlineAsmConstraint(const std::string &Constraint,
5258                                  EVT VT) const {
5259  if (Constraint.size() != 1)
5260    return std::vector<unsigned>();
5261
5262  switch (Constraint[0]) {      // GCC ARM Constraint Letters
5263  default: break;
5264  case 'l':
5265    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
5266                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
5267                                 0);
5268  case 'r':
5269    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
5270                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
5271                                 ARM::R8, ARM::R9, ARM::R10, ARM::R11,
5272                                 ARM::R12, ARM::LR, 0);
5273  case 'w':
5274    if (VT == MVT::f32)
5275      return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
5276                                   ARM::S4, ARM::S5, ARM::S6, ARM::S7,
5277                                   ARM::S8, ARM::S9, ARM::S10, ARM::S11,
5278                                   ARM::S12,ARM::S13,ARM::S14,ARM::S15,
5279                                   ARM::S16,ARM::S17,ARM::S18,ARM::S19,
5280                                   ARM::S20,ARM::S21,ARM::S22,ARM::S23,
5281                                   ARM::S24,ARM::S25,ARM::S26,ARM::S27,
5282                                   ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
5283    if (VT.getSizeInBits() == 64)
5284      return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
5285                                   ARM::D4, ARM::D5, ARM::D6, ARM::D7,
5286                                   ARM::D8, ARM::D9, ARM::D10,ARM::D11,
5287                                   ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
5288    if (VT.getSizeInBits() == 128)
5289      return make_vector<unsigned>(ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3,
5290                                   ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7, 0);
5291      break;
5292  }
5293
5294  return std::vector<unsigned>();
5295}
5296
5297/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5298/// vector.  If it is invalid, don't add anything to Ops.
5299void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5300                                                     char Constraint,
5301                                                     std::vector<SDValue>&Ops,
5302                                                     SelectionDAG &DAG) const {
5303  SDValue Result(0, 0);
5304
5305  switch (Constraint) {
5306  default: break;
5307  case 'I': case 'J': case 'K': case 'L':
5308  case 'M': case 'N': case 'O':
5309    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
5310    if (!C)
5311      return;
5312
5313    int64_t CVal64 = C->getSExtValue();
5314    int CVal = (int) CVal64;
5315    // None of these constraints allow values larger than 32 bits.  Check
5316    // that the value fits in an int.
5317    if (CVal != CVal64)
5318      return;
5319
5320    switch (Constraint) {
5321      case 'I':
5322        if (Subtarget->isThumb1Only()) {
5323          // This must be a constant between 0 and 255, for ADD
5324          // immediates.
5325          if (CVal >= 0 && CVal <= 255)
5326            break;
5327        } else if (Subtarget->isThumb2()) {
5328          // A constant that can be used as an immediate value in a
5329          // data-processing instruction.
5330          if (ARM_AM::getT2SOImmVal(CVal) != -1)
5331            break;
5332        } else {
5333          // A constant that can be used as an immediate value in a
5334          // data-processing instruction.
5335          if (ARM_AM::getSOImmVal(CVal) != -1)
5336            break;
5337        }
5338        return;
5339
5340      case 'J':
5341        if (Subtarget->isThumb()) {  // FIXME thumb2
5342          // This must be a constant between -255 and -1, for negated ADD
5343          // immediates. This can be used in GCC with an "n" modifier that
5344          // prints the negated value, for use with SUB instructions. It is
5345          // not useful otherwise but is implemented for compatibility.
5346          if (CVal >= -255 && CVal <= -1)
5347            break;
5348        } else {
5349          // This must be a constant between -4095 and 4095. It is not clear
5350          // what this constraint is intended for. Implemented for
5351          // compatibility with GCC.
5352          if (CVal >= -4095 && CVal <= 4095)
5353            break;
5354        }
5355        return;
5356
5357      case 'K':
5358        if (Subtarget->isThumb1Only()) {
5359          // A 32-bit value where only one byte has a nonzero value. Exclude
5360          // zero to match GCC. This constraint is used by GCC internally for
5361          // constants that can be loaded with a move/shift combination.
5362          // It is not useful otherwise but is implemented for compatibility.
5363          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
5364            break;
5365        } else if (Subtarget->isThumb2()) {
5366          // A constant whose bitwise inverse can be used as an immediate
5367          // value in a data-processing instruction. This can be used in GCC
5368          // with a "B" modifier that prints the inverted value, for use with
5369          // BIC and MVN instructions. It is not useful otherwise but is
5370          // implemented for compatibility.
5371          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
5372            break;
5373        } else {
5374          // A constant whose bitwise inverse can be used as an immediate
5375          // value in a data-processing instruction. This can be used in GCC
5376          // with a "B" modifier that prints the inverted value, for use with
5377          // BIC and MVN instructions. It is not useful otherwise but is
5378          // implemented for compatibility.
5379          if (ARM_AM::getSOImmVal(~CVal) != -1)
5380            break;
5381        }
5382        return;
5383
5384      case 'L':
5385        if (Subtarget->isThumb1Only()) {
5386          // This must be a constant between -7 and 7,
5387          // for 3-operand ADD/SUB immediate instructions.
5388          if (CVal >= -7 && CVal < 7)
5389            break;
5390        } else if (Subtarget->isThumb2()) {
5391          // A constant whose negation can be used as an immediate value in a
5392          // data-processing instruction. This can be used in GCC with an "n"
5393          // modifier that prints the negated value, for use with SUB
5394          // instructions. It is not useful otherwise but is implemented for
5395          // compatibility.
5396          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
5397            break;
5398        } else {
5399          // A constant whose negation can be used as an immediate value in a
5400          // data-processing instruction. This can be used in GCC with an "n"
5401          // modifier that prints the negated value, for use with SUB
5402          // instructions. It is not useful otherwise but is implemented for
5403          // compatibility.
5404          if (ARM_AM::getSOImmVal(-CVal) != -1)
5405            break;
5406        }
5407        return;
5408
5409      case 'M':
5410        if (Subtarget->isThumb()) { // FIXME thumb2
5411          // This must be a multiple of 4 between 0 and 1020, for
5412          // ADD sp + immediate.
5413          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
5414            break;
5415        } else {
5416          // A power of two or a constant between 0 and 32.  This is used in
5417          // GCC for the shift amount on shifted register operands, but it is
5418          // useful in general for any shift amounts.
5419          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
5420            break;
5421        }
5422        return;
5423
5424      case 'N':
5425        if (Subtarget->isThumb()) {  // FIXME thumb2
5426          // This must be a constant between 0 and 31, for shift amounts.
5427          if (CVal >= 0 && CVal <= 31)
5428            break;
5429        }
5430        return;
5431
5432      case 'O':
5433        if (Subtarget->isThumb()) {  // FIXME thumb2
5434          // This must be a multiple of 4 between -508 and 508, for
5435          // ADD/SUB sp = sp + immediate.
5436          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
5437            break;
5438        }
5439        return;
5440    }
5441    Result = DAG.getTargetConstant(CVal, Op.getValueType());
5442    break;
5443  }
5444
5445  if (Result.getNode()) {
5446    Ops.push_back(Result);
5447    return;
5448  }
5449  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5450}
5451
5452bool
5453ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5454  // The ARM target isn't yet aware of offsets.
5455  return false;
5456}
5457
5458int ARM::getVFPf32Imm(const APFloat &FPImm) {
5459  APInt Imm = FPImm.bitcastToAPInt();
5460  uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
5461  int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
5462  int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
5463
5464  // We can handle 4 bits of mantissa.
5465  // mantissa = (16+UInt(e:f:g:h))/16.
5466  if (Mantissa & 0x7ffff)
5467    return -1;
5468  Mantissa >>= 19;
5469  if ((Mantissa & 0xf) != Mantissa)
5470    return -1;
5471
5472  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
5473  if (Exp < -3 || Exp > 4)
5474    return -1;
5475  Exp = ((Exp+3) & 0x7) ^ 4;
5476
5477  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
5478}
5479
5480int ARM::getVFPf64Imm(const APFloat &FPImm) {
5481  APInt Imm = FPImm.bitcastToAPInt();
5482  uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
5483  int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
5484  uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffLL;
5485
5486  // We can handle 4 bits of mantissa.
5487  // mantissa = (16+UInt(e:f:g:h))/16.
5488  if (Mantissa & 0xffffffffffffLL)
5489    return -1;
5490  Mantissa >>= 48;
5491  if ((Mantissa & 0xf) != Mantissa)
5492    return -1;
5493
5494  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
5495  if (Exp < -3 || Exp > 4)
5496    return -1;
5497  Exp = ((Exp+3) & 0x7) ^ 4;
5498
5499  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
5500}
5501
5502bool ARM::isBitFieldInvertedMask(unsigned v) {
5503  if (v == 0xffffffff)
5504    return 0;
5505  // there can be 1's on either or both "outsides", all the "inside"
5506  // bits must be 0's
5507  unsigned int lsb = 0, msb = 31;
5508  while (v & (1 << msb)) --msb;
5509  while (v & (1 << lsb)) ++lsb;
5510  for (unsigned int i = lsb; i <= msb; ++i) {
5511    if (v & (1 << i))
5512      return 0;
5513  }
5514  return 1;
5515}
5516
5517/// isFPImmLegal - Returns true if the target can instruction select the
5518/// specified FP immediate natively. If false, the legalizer will
5519/// materialize the FP immediate as a load from a constant pool.
5520bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
5521  if (!Subtarget->hasVFP3())
5522    return false;
5523  if (VT == MVT::f32)
5524    return ARM::getVFPf32Imm(Imm) != -1;
5525  if (VT == MVT::f64)
5526    return ARM::getVFPf64Imm(Imm) != -1;
5527  return false;
5528}
5529