ARMISelLowering.cpp revision d2ea0e10cbd158c93fb870cdd03001b9cd1156b8
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-isel"
16#include "ARMISelLowering.h"
17#include "ARM.h"
18#include "ARMCallingConv.h"
19#include "ARMConstantPoolValue.h"
20#include "ARMMachineFunctionInfo.h"
21#include "ARMPerfectShuffle.h"
22#include "ARMSubtarget.h"
23#include "ARMTargetMachine.h"
24#include "ARMTargetObjectFile.h"
25#include "MCTargetDesc/ARMAddressingModes.h"
26#include "llvm/CallingConv.h"
27#include "llvm/Constants.h"
28#include "llvm/Function.h"
29#include "llvm/GlobalValue.h"
30#include "llvm/Instruction.h"
31#include "llvm/Instructions.h"
32#include "llvm/Intrinsics.h"
33#include "llvm/Type.h"
34#include "llvm/CodeGen/CallingConvLower.h"
35#include "llvm/CodeGen/IntrinsicLowering.h"
36#include "llvm/CodeGen/MachineBasicBlock.h"
37#include "llvm/CodeGen/MachineFrameInfo.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineInstrBuilder.h"
40#include "llvm/CodeGen/MachineModuleInfo.h"
41#include "llvm/CodeGen/MachineRegisterInfo.h"
42#include "llvm/CodeGen/SelectionDAG.h"
43#include "llvm/MC/MCSectionMachO.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/ADT/StringExtras.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Support/raw_ostream.h"
51using namespace llvm;
52
53STATISTIC(NumTailCalls, "Number of tail calls");
54STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
55
56// This option should go away when tail calls fully work.
57static cl::opt<bool>
58EnableARMTailCalls("arm-tail-calls", cl::Hidden,
59  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
60  cl::init(false));
61
62cl::opt<bool>
63EnableARMLongCalls("arm-long-calls", cl::Hidden,
64  cl::desc("Generate calls via indirect call instructions"),
65  cl::init(false));
66
67static cl::opt<bool>
68ARMInterworking("arm-interworking", cl::Hidden,
69  cl::desc("Enable / disable ARM interworking (for debugging only)"),
70  cl::init(true));
71
72namespace {
73  class ARMCCState : public CCState {
74  public:
75    ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
76               const TargetMachine &TM, SmallVector<CCValAssign, 16> &locs,
77               LLVMContext &C, ParmContext PC)
78        : CCState(CC, isVarArg, MF, TM, locs, C) {
79      assert(((PC == Call) || (PC == Prologue)) &&
80             "ARMCCState users must specify whether their context is call"
81             "or prologue generation.");
82      CallOrPrologue = PC;
83    }
84  };
85}
86
87// The APCS parameter registers.
88static const uint16_t GPRArgRegs[] = {
89  ARM::R0, ARM::R1, ARM::R2, ARM::R3
90};
91
92void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
93                                       EVT PromotedBitwiseVT) {
94  if (VT != PromotedLdStVT) {
95    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
96    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
97                       PromotedLdStVT.getSimpleVT());
98
99    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
100    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
101                       PromotedLdStVT.getSimpleVT());
102  }
103
104  EVT ElemTy = VT.getVectorElementType();
105  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
106    setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
107  setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
108  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
109  if (ElemTy == MVT::i32) {
110    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Custom);
111    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Custom);
112    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
113    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
114  } else {
115    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
116    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
117    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
118    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
119  }
120  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
121  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
122  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
123  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Legal);
124  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
125  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
126  setOperationAction(ISD::SIGN_EXTEND_INREG, VT.getSimpleVT(), Expand);
127  if (VT.isInteger()) {
128    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
129    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
130    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
131  }
132
133  // Promote all bit-wise operations.
134  if (VT.isInteger() && VT != PromotedBitwiseVT) {
135    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
136    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
137                       PromotedBitwiseVT.getSimpleVT());
138    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
139    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
140                       PromotedBitwiseVT.getSimpleVT());
141    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
142    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
143                       PromotedBitwiseVT.getSimpleVT());
144  }
145
146  // Neon does not support vector divide/remainder operations.
147  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
148  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
149  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
150  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
151  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
152  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
153}
154
155void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
156  addRegisterClass(VT, &ARM::DPRRegClass);
157  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
158}
159
160void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
161  addRegisterClass(VT, &ARM::QPRRegClass);
162  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
163}
164
165static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
166  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
167    return new TargetLoweringObjectFileMachO();
168
169  return new ARMElfTargetObjectFile();
170}
171
172ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
173    : TargetLowering(TM, createTLOF(TM)) {
174  Subtarget = &TM.getSubtarget<ARMSubtarget>();
175  RegInfo = TM.getRegisterInfo();
176  Itins = TM.getInstrItineraryData();
177
178  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
179
180  if (Subtarget->isTargetDarwin()) {
181    // Uses VFP for Thumb libfuncs if available.
182    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
183      // Single-precision floating-point arithmetic.
184      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
185      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
186      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
187      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
188
189      // Double-precision floating-point arithmetic.
190      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
191      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
192      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
193      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
194
195      // Single-precision comparisons.
196      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
197      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
198      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
199      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
200      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
201      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
202      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
203      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
204
205      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
206      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
207      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
208      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
209      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
210      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
211      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
212      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
213
214      // Double-precision comparisons.
215      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
216      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
217      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
218      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
219      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
220      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
221      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
222      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
223
224      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
225      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
226      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
227      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
228      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
229      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
230      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
231      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
232
233      // Floating-point to integer conversions.
234      // i64 conversions are done via library routines even when generating VFP
235      // instructions, so use the same ones.
236      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
237      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
238      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
239      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
240
241      // Conversions between floating types.
242      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
243      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
244
245      // Integer to floating-point conversions.
246      // i64 conversions are done via library routines even when generating VFP
247      // instructions, so use the same ones.
248      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
249      // e.g., __floatunsidf vs. __floatunssidfvfp.
250      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
251      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
252      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
253      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
254    }
255  }
256
257  // These libcalls are not available in 32-bit.
258  setLibcallName(RTLIB::SHL_I128, 0);
259  setLibcallName(RTLIB::SRL_I128, 0);
260  setLibcallName(RTLIB::SRA_I128, 0);
261
262  if (Subtarget->isAAPCS_ABI() && !Subtarget->isTargetDarwin()) {
263    // Double-precision floating-point arithmetic helper functions
264    // RTABI chapter 4.1.2, Table 2
265    setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
266    setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
267    setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
268    setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
269    setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
270    setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
271    setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
272    setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
273
274    // Double-precision floating-point comparison helper functions
275    // RTABI chapter 4.1.2, Table 3
276    setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
277    setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
278    setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
279    setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
280    setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
281    setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
282    setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
283    setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
284    setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
285    setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
286    setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
287    setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
288    setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
289    setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
290    setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
291    setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
292    setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
293    setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
294    setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
295    setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
296    setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
297    setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
298    setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
299    setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
300
301    // Single-precision floating-point arithmetic helper functions
302    // RTABI chapter 4.1.2, Table 4
303    setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
304    setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
305    setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
306    setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
307    setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
308    setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
309    setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
310    setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
311
312    // Single-precision floating-point comparison helper functions
313    // RTABI chapter 4.1.2, Table 5
314    setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
315    setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
316    setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
317    setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
318    setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
319    setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
320    setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
321    setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
322    setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
323    setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
324    setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
325    setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
326    setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
327    setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
328    setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
329    setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
330    setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
331    setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
332    setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
333    setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
334    setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
335    setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
336    setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
337    setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
338
339    // Floating-point to integer conversions.
340    // RTABI chapter 4.1.2, Table 6
341    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
342    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
343    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
344    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
345    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
346    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
347    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
348    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
349    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
350    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
351    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
352    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
353    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
354    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
355    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
356    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
357
358    // Conversions between floating types.
359    // RTABI chapter 4.1.2, Table 7
360    setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
361    setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
362    setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
363    setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
364
365    // Integer to floating-point conversions.
366    // RTABI chapter 4.1.2, Table 8
367    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
368    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
369    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
370    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
371    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
372    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
373    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
374    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
375    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
376    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
377    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
378    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
379    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
380    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
381    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
382    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
383
384    // Long long helper functions
385    // RTABI chapter 4.2, Table 9
386    setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
387    setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
388    setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
389    setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
390    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
391    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
392    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
393    setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
394    setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
395    setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
396
397    // Integer division functions
398    // RTABI chapter 4.3.1
399    setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
400    setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
401    setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
402    setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
403    setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
404    setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
405    setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
406    setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
407    setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
408    setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
409    setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
410    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
411    setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
412    setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
413    setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
414    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
415
416    // Memory operations
417    // RTABI chapter 4.3.4
418    setLibcallName(RTLIB::MEMCPY,  "__aeabi_memcpy");
419    setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove");
420    setLibcallName(RTLIB::MEMSET,  "__aeabi_memset");
421    setLibcallCallingConv(RTLIB::MEMCPY, CallingConv::ARM_AAPCS);
422    setLibcallCallingConv(RTLIB::MEMMOVE, CallingConv::ARM_AAPCS);
423    setLibcallCallingConv(RTLIB::MEMSET, CallingConv::ARM_AAPCS);
424  }
425
426  // Use divmod compiler-rt calls for iOS 5.0 and later.
427  if (Subtarget->getTargetTriple().getOS() == Triple::IOS &&
428      !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
429    setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
430    setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
431  }
432
433  if (Subtarget->isThumb1Only())
434    addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
435  else
436    addRegisterClass(MVT::i32, &ARM::GPRRegClass);
437  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
438      !Subtarget->isThumb1Only()) {
439    addRegisterClass(MVT::f32, &ARM::SPRRegClass);
440    if (!Subtarget->isFPOnlySP())
441      addRegisterClass(MVT::f64, &ARM::DPRRegClass);
442
443    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
444  }
445
446  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
447       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
448    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
449         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
450      setTruncStoreAction((MVT::SimpleValueType)VT,
451                          (MVT::SimpleValueType)InnerVT, Expand);
452    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
453    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
454    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
455  }
456
457  setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
458
459  if (Subtarget->hasNEON()) {
460    addDRTypeForNEON(MVT::v2f32);
461    addDRTypeForNEON(MVT::v8i8);
462    addDRTypeForNEON(MVT::v4i16);
463    addDRTypeForNEON(MVT::v2i32);
464    addDRTypeForNEON(MVT::v1i64);
465
466    addQRTypeForNEON(MVT::v4f32);
467    addQRTypeForNEON(MVT::v2f64);
468    addQRTypeForNEON(MVT::v16i8);
469    addQRTypeForNEON(MVT::v8i16);
470    addQRTypeForNEON(MVT::v4i32);
471    addQRTypeForNEON(MVT::v2i64);
472
473    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
474    // neither Neon nor VFP support any arithmetic operations on it.
475    // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
476    // supported for v4f32.
477    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
478    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
479    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
480    // FIXME: Code duplication: FDIV and FREM are expanded always, see
481    // ARMTargetLowering::addTypeForNEON method for details.
482    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
483    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
484    // FIXME: Create unittest.
485    // In another words, find a way when "copysign" appears in DAG with vector
486    // operands.
487    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
488    // FIXME: Code duplication: SETCC has custom operation action, see
489    // ARMTargetLowering::addTypeForNEON method for details.
490    setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
491    // FIXME: Create unittest for FNEG and for FABS.
492    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
493    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
494    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
495    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
496    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
497    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
498    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
499    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
500    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
501    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
502    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
503    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
504    // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
505    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
506    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
507    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
508    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
509    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
510
511    setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
512    setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
513    setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
514    setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
515    setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
516    setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
517    setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
518    setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
519    setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
520    setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
521
522    // Neon does not support some operations on v1i64 and v2i64 types.
523    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
524    // Custom handling for some quad-vector types to detect VMULL.
525    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
526    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
527    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
528    // Custom handling for some vector types to avoid expensive expansions
529    setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
530    setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
531    setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
532    setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
533    setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
534    setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
535    // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
536    // a destination type that is wider than the source, and nor does
537    // it have a FP_TO_[SU]INT instruction with a narrower destination than
538    // source.
539    setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
540    setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
541    setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
542    setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
543
544    setTargetDAGCombine(ISD::INTRINSIC_VOID);
545    setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
546    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
547    setTargetDAGCombine(ISD::SHL);
548    setTargetDAGCombine(ISD::SRL);
549    setTargetDAGCombine(ISD::SRA);
550    setTargetDAGCombine(ISD::SIGN_EXTEND);
551    setTargetDAGCombine(ISD::ZERO_EXTEND);
552    setTargetDAGCombine(ISD::ANY_EXTEND);
553    setTargetDAGCombine(ISD::SELECT_CC);
554    setTargetDAGCombine(ISD::BUILD_VECTOR);
555    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
556    setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
557    setTargetDAGCombine(ISD::STORE);
558    setTargetDAGCombine(ISD::FP_TO_SINT);
559    setTargetDAGCombine(ISD::FP_TO_UINT);
560    setTargetDAGCombine(ISD::FDIV);
561
562    // It is legal to extload from v4i8 to v4i16 or v4i32.
563    MVT Tys[6] = {MVT::v8i8, MVT::v4i8, MVT::v2i8,
564                  MVT::v4i16, MVT::v2i16,
565                  MVT::v2i32};
566    for (unsigned i = 0; i < 6; ++i) {
567      setLoadExtAction(ISD::EXTLOAD, Tys[i], Legal);
568      setLoadExtAction(ISD::ZEXTLOAD, Tys[i], Legal);
569      setLoadExtAction(ISD::SEXTLOAD, Tys[i], Legal);
570    }
571  }
572
573  computeRegisterProperties();
574
575  // ARM does not have f32 extending load.
576  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
577
578  // ARM does not have i1 sign extending load.
579  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
580
581  // ARM supports all 4 flavors of integer indexed load / store.
582  if (!Subtarget->isThumb1Only()) {
583    for (unsigned im = (unsigned)ISD::PRE_INC;
584         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
585      setIndexedLoadAction(im,  MVT::i1,  Legal);
586      setIndexedLoadAction(im,  MVT::i8,  Legal);
587      setIndexedLoadAction(im,  MVT::i16, Legal);
588      setIndexedLoadAction(im,  MVT::i32, Legal);
589      setIndexedStoreAction(im, MVT::i1,  Legal);
590      setIndexedStoreAction(im, MVT::i8,  Legal);
591      setIndexedStoreAction(im, MVT::i16, Legal);
592      setIndexedStoreAction(im, MVT::i32, Legal);
593    }
594  }
595
596  // i64 operation support.
597  setOperationAction(ISD::MUL,     MVT::i64, Expand);
598  setOperationAction(ISD::MULHU,   MVT::i32, Expand);
599  if (Subtarget->isThumb1Only()) {
600    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
601    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
602  }
603  if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
604      || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
605    setOperationAction(ISD::MULHS, MVT::i32, Expand);
606
607  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
608  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
609  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
610  setOperationAction(ISD::SRL,       MVT::i64, Custom);
611  setOperationAction(ISD::SRA,       MVT::i64, Custom);
612
613  if (!Subtarget->isThumb1Only()) {
614    // FIXME: We should do this for Thumb1 as well.
615    setOperationAction(ISD::ADDC,    MVT::i32, Custom);
616    setOperationAction(ISD::ADDE,    MVT::i32, Custom);
617    setOperationAction(ISD::SUBC,    MVT::i32, Custom);
618    setOperationAction(ISD::SUBE,    MVT::i32, Custom);
619  }
620
621  // ARM does not have ROTL.
622  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
623  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
624  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
625  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
626    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
627
628  // These just redirect to CTTZ and CTLZ on ARM.
629  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i32  , Expand);
630  setOperationAction(ISD::CTLZ_ZERO_UNDEF  , MVT::i32  , Expand);
631
632  // Only ARMv6 has BSWAP.
633  if (!Subtarget->hasV6Ops())
634    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
635
636  // These are expanded into libcalls.
637  if (!Subtarget->hasDivide() || !Subtarget->isThumb2()) {
638    // v7M has a hardware divider
639    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
640    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
641  }
642  setOperationAction(ISD::SREM,  MVT::i32, Expand);
643  setOperationAction(ISD::UREM,  MVT::i32, Expand);
644  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
645  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
646
647  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
648  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
649  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
650  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
651  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
652
653  setOperationAction(ISD::TRAP, MVT::Other, Legal);
654
655  // Use the default implementation.
656  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
657  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
658  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
659  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
660  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
661  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
662
663  if (!Subtarget->isTargetDarwin()) {
664    // Non-Darwin platforms may return values in these registers via the
665    // personality function.
666    setOperationAction(ISD::EHSELECTION,      MVT::i32,   Expand);
667    setOperationAction(ISD::EXCEPTIONADDR,    MVT::i32,   Expand);
668    setExceptionPointerRegister(ARM::R0);
669    setExceptionSelectorRegister(ARM::R1);
670  }
671
672  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
673  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
674  // the default expansion.
675  // FIXME: This should be checking for v6k, not just v6.
676  if (Subtarget->hasDataBarrier() ||
677      (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
678    // membarrier needs custom lowering; the rest are legal and handled
679    // normally.
680    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
681    setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
682    // Custom lowering for 64-bit ops
683    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Custom);
684    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Custom);
685    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Custom);
686    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Custom);
687    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Custom);
688    setOperationAction(ISD::ATOMIC_SWAP,  MVT::i64, Custom);
689    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
690    // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc.
691    setInsertFencesForAtomic(true);
692  } else {
693    // Set them all for expansion, which will force libcalls.
694    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
695    setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other, Expand);
696    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
697    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
698    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
699    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
700    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
701    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
702    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
703    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
704    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
705    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
706    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
707    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
708    // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
709    // Unordered/Monotonic case.
710    setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
711    setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
712    // Since the libcalls include locking, fold in the fences
713    setShouldFoldAtomicFences(true);
714  }
715
716  setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
717
718  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
719  if (!Subtarget->hasV6Ops()) {
720    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
721    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
722  }
723  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
724
725  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
726      !Subtarget->isThumb1Only()) {
727    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
728    // iff target supports vfp2.
729    setOperationAction(ISD::BITCAST, MVT::i64, Custom);
730    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
731  }
732
733  // We want to custom lower some of our intrinsics.
734  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
735  if (Subtarget->isTargetDarwin()) {
736    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
737    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
738    setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
739  }
740
741  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
742  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
743  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
744  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
745  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
746  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
747  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
748  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
749  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
750
751  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
752  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
753  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
754  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
755  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
756
757  // We don't support sin/cos/fmod/copysign/pow
758  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
759  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
760  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
761  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
762  setOperationAction(ISD::FREM,      MVT::f64, Expand);
763  setOperationAction(ISD::FREM,      MVT::f32, Expand);
764  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
765      !Subtarget->isThumb1Only()) {
766    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
767    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
768  }
769  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
770  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
771
772  if (!Subtarget->hasVFP4()) {
773    setOperationAction(ISD::FMA, MVT::f64, Expand);
774    setOperationAction(ISD::FMA, MVT::f32, Expand);
775  }
776
777  // Various VFP goodness
778  if (!TM.Options.UseSoftFloat && !Subtarget->isThumb1Only()) {
779    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
780    if (Subtarget->hasVFP2()) {
781      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
782      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
783      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
784      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
785    }
786    // Special handling for half-precision FP.
787    if (!Subtarget->hasFP16()) {
788      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
789      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
790    }
791  }
792
793  // We have target-specific dag combine patterns for the following nodes:
794  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
795  setTargetDAGCombine(ISD::ADD);
796  setTargetDAGCombine(ISD::SUB);
797  setTargetDAGCombine(ISD::MUL);
798
799  if (Subtarget->hasV6T2Ops() || Subtarget->hasNEON()) {
800    setTargetDAGCombine(ISD::AND);
801    setTargetDAGCombine(ISD::OR);
802    setTargetDAGCombine(ISD::XOR);
803  }
804
805  if (Subtarget->hasV6Ops())
806    setTargetDAGCombine(ISD::SRL);
807
808  setStackPointerRegisterToSaveRestore(ARM::SP);
809
810  if (TM.Options.UseSoftFloat || Subtarget->isThumb1Only() ||
811      !Subtarget->hasVFP2())
812    setSchedulingPreference(Sched::RegPressure);
813  else
814    setSchedulingPreference(Sched::Hybrid);
815
816  //// temporary - rewrite interface to use type
817  maxStoresPerMemcpy = maxStoresPerMemcpyOptSize = 1;
818  maxStoresPerMemset = 16;
819  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
820
821  // On ARM arguments smaller than 4 bytes are extended, so all arguments
822  // are at least 4 bytes aligned.
823  setMinStackArgumentAlignment(4);
824
825  benefitFromCodePlacementOpt = true;
826
827  // Prefer likely predicted branches to selects on out-of-order cores.
828  predictableSelectIsExpensive = Subtarget->isCortexA9();
829
830  setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
831}
832
833// FIXME: It might make sense to define the representative register class as the
834// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
835// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
836// SPR's representative would be DPR_VFP2. This should work well if register
837// pressure tracking were modified such that a register use would increment the
838// pressure of the register class's representative and all of it's super
839// classes' representatives transitively. We have not implemented this because
840// of the difficulty prior to coalescing of modeling operand register classes
841// due to the common occurrence of cross class copies and subregister insertions
842// and extractions.
843std::pair<const TargetRegisterClass*, uint8_t>
844ARMTargetLowering::findRepresentativeClass(EVT VT) const{
845  const TargetRegisterClass *RRC = 0;
846  uint8_t Cost = 1;
847  switch (VT.getSimpleVT().SimpleTy) {
848  default:
849    return TargetLowering::findRepresentativeClass(VT);
850  // Use DPR as representative register class for all floating point
851  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
852  // the cost is 1 for both f32 and f64.
853  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
854  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
855    RRC = &ARM::DPRRegClass;
856    // When NEON is used for SP, only half of the register file is available
857    // because operations that define both SP and DP results will be constrained
858    // to the VFP2 class (D0-D15). We currently model this constraint prior to
859    // coalescing by double-counting the SP regs. See the FIXME above.
860    if (Subtarget->useNEONForSinglePrecisionFP())
861      Cost = 2;
862    break;
863  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
864  case MVT::v4f32: case MVT::v2f64:
865    RRC = &ARM::DPRRegClass;
866    Cost = 2;
867    break;
868  case MVT::v4i64:
869    RRC = &ARM::DPRRegClass;
870    Cost = 4;
871    break;
872  case MVT::v8i64:
873    RRC = &ARM::DPRRegClass;
874    Cost = 8;
875    break;
876  }
877  return std::make_pair(RRC, Cost);
878}
879
880const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
881  switch (Opcode) {
882  default: return 0;
883  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
884  case ARMISD::WrapperDYN:    return "ARMISD::WrapperDYN";
885  case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
886  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
887  case ARMISD::CALL:          return "ARMISD::CALL";
888  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
889  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
890  case ARMISD::tCALL:         return "ARMISD::tCALL";
891  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
892  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
893  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
894  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
895  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
896  case ARMISD::CMP:           return "ARMISD::CMP";
897  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
898  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
899  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
900  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
901  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
902
903  case ARMISD::CMOV:          return "ARMISD::CMOV";
904  case ARMISD::CAND:          return "ARMISD::CAND";
905  case ARMISD::COR:           return "ARMISD::COR";
906  case ARMISD::CXOR:          return "ARMISD::CXOR";
907
908  case ARMISD::RBIT:          return "ARMISD::RBIT";
909
910  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
911  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
912  case ARMISD::SITOF:         return "ARMISD::SITOF";
913  case ARMISD::UITOF:         return "ARMISD::UITOF";
914
915  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
916  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
917  case ARMISD::RRX:           return "ARMISD::RRX";
918
919  case ARMISD::ADDC:          return "ARMISD::ADDC";
920  case ARMISD::ADDE:          return "ARMISD::ADDE";
921  case ARMISD::SUBC:          return "ARMISD::SUBC";
922  case ARMISD::SUBE:          return "ARMISD::SUBE";
923
924  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
925  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
926
927  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
928  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
929
930  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
931
932  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
933
934  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
935
936  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
937  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
938
939  case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
940
941  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
942  case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
943  case ARMISD::VCGE:          return "ARMISD::VCGE";
944  case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
945  case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
946  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
947  case ARMISD::VCGT:          return "ARMISD::VCGT";
948  case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
949  case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
950  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
951  case ARMISD::VTST:          return "ARMISD::VTST";
952
953  case ARMISD::VSHL:          return "ARMISD::VSHL";
954  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
955  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
956  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
957  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
958  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
959  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
960  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
961  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
962  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
963  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
964  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
965  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
966  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
967  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
968  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
969  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
970  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
971  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
972  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
973  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
974  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
975  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
976  case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
977  case ARMISD::VDUP:          return "ARMISD::VDUP";
978  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
979  case ARMISD::VEXT:          return "ARMISD::VEXT";
980  case ARMISD::VREV64:        return "ARMISD::VREV64";
981  case ARMISD::VREV32:        return "ARMISD::VREV32";
982  case ARMISD::VREV16:        return "ARMISD::VREV16";
983  case ARMISD::VZIP:          return "ARMISD::VZIP";
984  case ARMISD::VUZP:          return "ARMISD::VUZP";
985  case ARMISD::VTRN:          return "ARMISD::VTRN";
986  case ARMISD::VTBL1:         return "ARMISD::VTBL1";
987  case ARMISD::VTBL2:         return "ARMISD::VTBL2";
988  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
989  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
990  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
991  case ARMISD::FMAX:          return "ARMISD::FMAX";
992  case ARMISD::FMIN:          return "ARMISD::FMIN";
993  case ARMISD::BFI:           return "ARMISD::BFI";
994  case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
995  case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
996  case ARMISD::VBSL:          return "ARMISD::VBSL";
997  case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
998  case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
999  case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
1000  case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
1001  case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
1002  case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
1003  case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
1004  case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
1005  case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
1006  case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
1007  case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
1008  case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
1009  case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
1010  case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
1011  case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
1012  case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
1013  case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
1014  case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
1015  case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
1016  case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
1017  }
1018}
1019
1020EVT ARMTargetLowering::getSetCCResultType(EVT VT) const {
1021  if (!VT.isVector()) return getPointerTy();
1022  return VT.changeVectorElementTypeToInteger();
1023}
1024
1025/// getRegClassFor - Return the register class that should be used for the
1026/// specified value type.
1027const TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
1028  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1029  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1030  // load / store 4 to 8 consecutive D registers.
1031  if (Subtarget->hasNEON()) {
1032    if (VT == MVT::v4i64)
1033      return &ARM::QQPRRegClass;
1034    if (VT == MVT::v8i64)
1035      return &ARM::QQQQPRRegClass;
1036  }
1037  return TargetLowering::getRegClassFor(VT);
1038}
1039
1040// Create a fast isel object.
1041FastISel *
1042ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
1043  return ARM::createFastISel(funcInfo);
1044}
1045
1046/// getMaximalGlobalOffset - Returns the maximal possible offset which can
1047/// be used for loads / stores from the global.
1048unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
1049  return (Subtarget->isThumb1Only() ? 127 : 4095);
1050}
1051
1052Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1053  unsigned NumVals = N->getNumValues();
1054  if (!NumVals)
1055    return Sched::RegPressure;
1056
1057  for (unsigned i = 0; i != NumVals; ++i) {
1058    EVT VT = N->getValueType(i);
1059    if (VT == MVT::Glue || VT == MVT::Other)
1060      continue;
1061    if (VT.isFloatingPoint() || VT.isVector())
1062      return Sched::ILP;
1063  }
1064
1065  if (!N->isMachineOpcode())
1066    return Sched::RegPressure;
1067
1068  // Load are scheduled for latency even if there instruction itinerary
1069  // is not available.
1070  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1071  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1072
1073  if (MCID.getNumDefs() == 0)
1074    return Sched::RegPressure;
1075  if (!Itins->isEmpty() &&
1076      Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1077    return Sched::ILP;
1078
1079  return Sched::RegPressure;
1080}
1081
1082//===----------------------------------------------------------------------===//
1083// Lowering Code
1084//===----------------------------------------------------------------------===//
1085
1086/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1087static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1088  switch (CC) {
1089  default: llvm_unreachable("Unknown condition code!");
1090  case ISD::SETNE:  return ARMCC::NE;
1091  case ISD::SETEQ:  return ARMCC::EQ;
1092  case ISD::SETGT:  return ARMCC::GT;
1093  case ISD::SETGE:  return ARMCC::GE;
1094  case ISD::SETLT:  return ARMCC::LT;
1095  case ISD::SETLE:  return ARMCC::LE;
1096  case ISD::SETUGT: return ARMCC::HI;
1097  case ISD::SETUGE: return ARMCC::HS;
1098  case ISD::SETULT: return ARMCC::LO;
1099  case ISD::SETULE: return ARMCC::LS;
1100  }
1101}
1102
1103/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1104static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1105                        ARMCC::CondCodes &CondCode2) {
1106  CondCode2 = ARMCC::AL;
1107  switch (CC) {
1108  default: llvm_unreachable("Unknown FP condition!");
1109  case ISD::SETEQ:
1110  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1111  case ISD::SETGT:
1112  case ISD::SETOGT: CondCode = ARMCC::GT; break;
1113  case ISD::SETGE:
1114  case ISD::SETOGE: CondCode = ARMCC::GE; break;
1115  case ISD::SETOLT: CondCode = ARMCC::MI; break;
1116  case ISD::SETOLE: CondCode = ARMCC::LS; break;
1117  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1118  case ISD::SETO:   CondCode = ARMCC::VC; break;
1119  case ISD::SETUO:  CondCode = ARMCC::VS; break;
1120  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1121  case ISD::SETUGT: CondCode = ARMCC::HI; break;
1122  case ISD::SETUGE: CondCode = ARMCC::PL; break;
1123  case ISD::SETLT:
1124  case ISD::SETULT: CondCode = ARMCC::LT; break;
1125  case ISD::SETLE:
1126  case ISD::SETULE: CondCode = ARMCC::LE; break;
1127  case ISD::SETNE:
1128  case ISD::SETUNE: CondCode = ARMCC::NE; break;
1129  }
1130}
1131
1132//===----------------------------------------------------------------------===//
1133//                      Calling Convention Implementation
1134//===----------------------------------------------------------------------===//
1135
1136#include "ARMGenCallingConv.inc"
1137
1138/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1139/// given CallingConvention value.
1140CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1141                                                 bool Return,
1142                                                 bool isVarArg) const {
1143  switch (CC) {
1144  default:
1145    llvm_unreachable("Unsupported calling convention");
1146  case CallingConv::Fast:
1147    if (Subtarget->hasVFP2() && !isVarArg) {
1148      if (!Subtarget->isAAPCS_ABI())
1149        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1150      // For AAPCS ABI targets, just use VFP variant of the calling convention.
1151      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1152    }
1153    // Fallthrough
1154  case CallingConv::C: {
1155    // Use target triple & subtarget features to do actual dispatch.
1156    if (!Subtarget->isAAPCS_ABI())
1157      return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1158    else if (Subtarget->hasVFP2() &&
1159             getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1160             !isVarArg)
1161      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1162    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1163  }
1164  case CallingConv::ARM_AAPCS_VFP:
1165    if (!isVarArg)
1166      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1167    // Fallthrough
1168  case CallingConv::ARM_AAPCS:
1169    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1170  case CallingConv::ARM_APCS:
1171    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1172  }
1173}
1174
1175/// LowerCallResult - Lower the result values of a call into the
1176/// appropriate copies out of appropriate physical registers.
1177SDValue
1178ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1179                                   CallingConv::ID CallConv, bool isVarArg,
1180                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1181                                   DebugLoc dl, SelectionDAG &DAG,
1182                                   SmallVectorImpl<SDValue> &InVals) const {
1183
1184  // Assign locations to each value returned by this call.
1185  SmallVector<CCValAssign, 16> RVLocs;
1186  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1187                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1188  CCInfo.AnalyzeCallResult(Ins,
1189                           CCAssignFnForNode(CallConv, /* Return*/ true,
1190                                             isVarArg));
1191
1192  // Copy all of the result registers out of their specified physreg.
1193  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1194    CCValAssign VA = RVLocs[i];
1195
1196    SDValue Val;
1197    if (VA.needsCustom()) {
1198      // Handle f64 or half of a v2f64.
1199      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1200                                      InFlag);
1201      Chain = Lo.getValue(1);
1202      InFlag = Lo.getValue(2);
1203      VA = RVLocs[++i]; // skip ahead to next loc
1204      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1205                                      InFlag);
1206      Chain = Hi.getValue(1);
1207      InFlag = Hi.getValue(2);
1208      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1209
1210      if (VA.getLocVT() == MVT::v2f64) {
1211        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1212        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1213                          DAG.getConstant(0, MVT::i32));
1214
1215        VA = RVLocs[++i]; // skip ahead to next loc
1216        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1217        Chain = Lo.getValue(1);
1218        InFlag = Lo.getValue(2);
1219        VA = RVLocs[++i]; // skip ahead to next loc
1220        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1221        Chain = Hi.getValue(1);
1222        InFlag = Hi.getValue(2);
1223        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1224        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1225                          DAG.getConstant(1, MVT::i32));
1226      }
1227    } else {
1228      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1229                               InFlag);
1230      Chain = Val.getValue(1);
1231      InFlag = Val.getValue(2);
1232    }
1233
1234    switch (VA.getLocInfo()) {
1235    default: llvm_unreachable("Unknown loc info!");
1236    case CCValAssign::Full: break;
1237    case CCValAssign::BCvt:
1238      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1239      break;
1240    }
1241
1242    InVals.push_back(Val);
1243  }
1244
1245  return Chain;
1246}
1247
1248/// LowerMemOpCallTo - Store the argument to the stack.
1249SDValue
1250ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1251                                    SDValue StackPtr, SDValue Arg,
1252                                    DebugLoc dl, SelectionDAG &DAG,
1253                                    const CCValAssign &VA,
1254                                    ISD::ArgFlagsTy Flags) const {
1255  unsigned LocMemOffset = VA.getLocMemOffset();
1256  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1257  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1258  return DAG.getStore(Chain, dl, Arg, PtrOff,
1259                      MachinePointerInfo::getStack(LocMemOffset),
1260                      false, false, 0);
1261}
1262
1263void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1264                                         SDValue Chain, SDValue &Arg,
1265                                         RegsToPassVector &RegsToPass,
1266                                         CCValAssign &VA, CCValAssign &NextVA,
1267                                         SDValue &StackPtr,
1268                                         SmallVector<SDValue, 8> &MemOpChains,
1269                                         ISD::ArgFlagsTy Flags) const {
1270
1271  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1272                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1273  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1274
1275  if (NextVA.isRegLoc())
1276    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1277  else {
1278    assert(NextVA.isMemLoc());
1279    if (StackPtr.getNode() == 0)
1280      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1281
1282    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1283                                           dl, DAG, NextVA,
1284                                           Flags));
1285  }
1286}
1287
1288/// LowerCall - Lowering a call into a callseq_start <-
1289/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1290/// nodes.
1291SDValue
1292ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1293                             SmallVectorImpl<SDValue> &InVals) const {
1294  SelectionDAG &DAG                     = CLI.DAG;
1295  DebugLoc &dl                          = CLI.DL;
1296  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
1297  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
1298  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
1299  SDValue Chain                         = CLI.Chain;
1300  SDValue Callee                        = CLI.Callee;
1301  bool &isTailCall                      = CLI.IsTailCall;
1302  CallingConv::ID CallConv              = CLI.CallConv;
1303  bool doesNotRet                       = CLI.DoesNotReturn;
1304  bool isVarArg                         = CLI.IsVarArg;
1305
1306  MachineFunction &MF = DAG.getMachineFunction();
1307  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1308  bool IsSibCall = false;
1309  // Disable tail calls if they're not supported.
1310  if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
1311    isTailCall = false;
1312  if (isTailCall) {
1313    // Check if it's really possible to do a tail call.
1314    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1315                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1316                                                   Outs, OutVals, Ins, DAG);
1317    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1318    // detected sibcalls.
1319    if (isTailCall) {
1320      ++NumTailCalls;
1321      IsSibCall = true;
1322    }
1323  }
1324
1325  // Analyze operands of the call, assigning locations to each operand.
1326  SmallVector<CCValAssign, 16> ArgLocs;
1327  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1328                 getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1329  CCInfo.AnalyzeCallOperands(Outs,
1330                             CCAssignFnForNode(CallConv, /* Return*/ false,
1331                                               isVarArg));
1332
1333  // Get a count of how many bytes are to be pushed on the stack.
1334  unsigned NumBytes = CCInfo.getNextStackOffset();
1335
1336  // For tail calls, memory operands are available in our caller's stack.
1337  if (IsSibCall)
1338    NumBytes = 0;
1339
1340  // Adjust the stack pointer for the new arguments...
1341  // These operations are automatically eliminated by the prolog/epilog pass
1342  if (!IsSibCall)
1343    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1344
1345  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1346
1347  RegsToPassVector RegsToPass;
1348  SmallVector<SDValue, 8> MemOpChains;
1349
1350  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1351  // of tail call optimization, arguments are handled later.
1352  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1353       i != e;
1354       ++i, ++realArgIdx) {
1355    CCValAssign &VA = ArgLocs[i];
1356    SDValue Arg = OutVals[realArgIdx];
1357    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1358    bool isByVal = Flags.isByVal();
1359
1360    // Promote the value if needed.
1361    switch (VA.getLocInfo()) {
1362    default: llvm_unreachable("Unknown loc info!");
1363    case CCValAssign::Full: break;
1364    case CCValAssign::SExt:
1365      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1366      break;
1367    case CCValAssign::ZExt:
1368      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1369      break;
1370    case CCValAssign::AExt:
1371      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1372      break;
1373    case CCValAssign::BCvt:
1374      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1375      break;
1376    }
1377
1378    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1379    if (VA.needsCustom()) {
1380      if (VA.getLocVT() == MVT::v2f64) {
1381        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1382                                  DAG.getConstant(0, MVT::i32));
1383        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1384                                  DAG.getConstant(1, MVT::i32));
1385
1386        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1387                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1388
1389        VA = ArgLocs[++i]; // skip ahead to next loc
1390        if (VA.isRegLoc()) {
1391          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1392                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1393        } else {
1394          assert(VA.isMemLoc());
1395
1396          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1397                                                 dl, DAG, VA, Flags));
1398        }
1399      } else {
1400        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1401                         StackPtr, MemOpChains, Flags);
1402      }
1403    } else if (VA.isRegLoc()) {
1404      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1405    } else if (isByVal) {
1406      assert(VA.isMemLoc());
1407      unsigned offset = 0;
1408
1409      // True if this byval aggregate will be split between registers
1410      // and memory.
1411      if (CCInfo.isFirstByValRegValid()) {
1412        EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1413        unsigned int i, j;
1414        for (i = 0, j = CCInfo.getFirstByValReg(); j < ARM::R4; i++, j++) {
1415          SDValue Const = DAG.getConstant(4*i, MVT::i32);
1416          SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1417          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1418                                     MachinePointerInfo(),
1419                                     false, false, false, 0);
1420          MemOpChains.push_back(Load.getValue(1));
1421          RegsToPass.push_back(std::make_pair(j, Load));
1422        }
1423        offset = ARM::R4 - CCInfo.getFirstByValReg();
1424        CCInfo.clearFirstByValReg();
1425      }
1426
1427      unsigned LocMemOffset = VA.getLocMemOffset();
1428      SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
1429      SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
1430                                StkPtrOff);
1431      SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
1432      SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
1433      SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
1434                                         MVT::i32);
1435      MemOpChains.push_back(DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
1436                                          Flags.getByValAlign(),
1437                                          /*isVolatile=*/false,
1438                                          /*AlwaysInline=*/false,
1439                                          MachinePointerInfo(0),
1440                                          MachinePointerInfo(0)));
1441
1442    } else if (!IsSibCall) {
1443      assert(VA.isMemLoc());
1444
1445      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1446                                             dl, DAG, VA, Flags));
1447    }
1448  }
1449
1450  if (!MemOpChains.empty())
1451    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1452                        &MemOpChains[0], MemOpChains.size());
1453
1454  // Build a sequence of copy-to-reg nodes chained together with token chain
1455  // and flag operands which copy the outgoing args into the appropriate regs.
1456  SDValue InFlag;
1457  // Tail call byval lowering might overwrite argument registers so in case of
1458  // tail call optimization the copies to registers are lowered later.
1459  if (!isTailCall)
1460    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1461      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1462                               RegsToPass[i].second, InFlag);
1463      InFlag = Chain.getValue(1);
1464    }
1465
1466  // For tail calls lower the arguments to the 'real' stack slot.
1467  if (isTailCall) {
1468    // Force all the incoming stack arguments to be loaded from the stack
1469    // before any new outgoing arguments are stored to the stack, because the
1470    // outgoing stack slots may alias the incoming argument stack slots, and
1471    // the alias isn't otherwise explicit. This is slightly more conservative
1472    // than necessary, because it means that each store effectively depends
1473    // on every argument instead of just those arguments it would clobber.
1474
1475    // Do not flag preceding copytoreg stuff together with the following stuff.
1476    InFlag = SDValue();
1477    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1478      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1479                               RegsToPass[i].second, InFlag);
1480      InFlag = Chain.getValue(1);
1481    }
1482    InFlag =SDValue();
1483  }
1484
1485  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1486  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1487  // node so that legalize doesn't hack it.
1488  bool isDirect = false;
1489  bool isARMFunc = false;
1490  bool isLocalARMFunc = false;
1491  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1492
1493  if (EnableARMLongCalls) {
1494    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1495            && "long-calls with non-static relocation model!");
1496    // Handle a global address or an external symbol. If it's not one of
1497    // those, the target's already in a register, so we don't need to do
1498    // anything extra.
1499    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1500      const GlobalValue *GV = G->getGlobal();
1501      // Create a constant pool entry for the callee address
1502      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1503      ARMConstantPoolValue *CPV =
1504        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
1505
1506      // Get the address of the callee into a register
1507      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1508      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1509      Callee = DAG.getLoad(getPointerTy(), dl,
1510                           DAG.getEntryNode(), CPAddr,
1511                           MachinePointerInfo::getConstantPool(),
1512                           false, false, false, 0);
1513    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1514      const char *Sym = S->getSymbol();
1515
1516      // Create a constant pool entry for the callee address
1517      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1518      ARMConstantPoolValue *CPV =
1519        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1520                                      ARMPCLabelIndex, 0);
1521      // Get the address of the callee into a register
1522      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1523      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1524      Callee = DAG.getLoad(getPointerTy(), dl,
1525                           DAG.getEntryNode(), CPAddr,
1526                           MachinePointerInfo::getConstantPool(),
1527                           false, false, false, 0);
1528    }
1529  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1530    const GlobalValue *GV = G->getGlobal();
1531    isDirect = true;
1532    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1533    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1534                   getTargetMachine().getRelocationModel() != Reloc::Static;
1535    isARMFunc = !Subtarget->isThumb() || isStub;
1536    // ARM call to a local ARM function is predicable.
1537    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1538    // tBX takes a register source operand.
1539    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1540      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1541      ARMConstantPoolValue *CPV =
1542        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 4);
1543      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1544      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1545      Callee = DAG.getLoad(getPointerTy(), dl,
1546                           DAG.getEntryNode(), CPAddr,
1547                           MachinePointerInfo::getConstantPool(),
1548                           false, false, false, 0);
1549      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1550      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1551                           getPointerTy(), Callee, PICLabel);
1552    } else {
1553      // On ELF targets for PIC code, direct calls should go through the PLT
1554      unsigned OpFlags = 0;
1555      if (Subtarget->isTargetELF() &&
1556                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1557        OpFlags = ARMII::MO_PLT;
1558      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1559    }
1560  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1561    isDirect = true;
1562    bool isStub = Subtarget->isTargetDarwin() &&
1563                  getTargetMachine().getRelocationModel() != Reloc::Static;
1564    isARMFunc = !Subtarget->isThumb() || isStub;
1565    // tBX takes a register source operand.
1566    const char *Sym = S->getSymbol();
1567    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1568      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1569      ARMConstantPoolValue *CPV =
1570        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1571                                      ARMPCLabelIndex, 4);
1572      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1573      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1574      Callee = DAG.getLoad(getPointerTy(), dl,
1575                           DAG.getEntryNode(), CPAddr,
1576                           MachinePointerInfo::getConstantPool(),
1577                           false, false, false, 0);
1578      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1579      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1580                           getPointerTy(), Callee, PICLabel);
1581    } else {
1582      unsigned OpFlags = 0;
1583      // On ELF targets for PIC code, direct calls should go through the PLT
1584      if (Subtarget->isTargetELF() &&
1585                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1586        OpFlags = ARMII::MO_PLT;
1587      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1588    }
1589  }
1590
1591  // FIXME: handle tail calls differently.
1592  unsigned CallOpc;
1593  if (Subtarget->isThumb()) {
1594    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1595      CallOpc = ARMISD::CALL_NOLINK;
1596    else if (doesNotRet && isDirect && !isARMFunc &&
1597             Subtarget->hasRAS() && !Subtarget->isThumb1Only())
1598      // "mov lr, pc; b _foo" to avoid confusing the RSP
1599      CallOpc = ARMISD::CALL_NOLINK;
1600    else
1601      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1602  } else {
1603    if (!isDirect && !Subtarget->hasV5TOps()) {
1604      CallOpc = ARMISD::CALL_NOLINK;
1605    } else if (doesNotRet && isDirect && Subtarget->hasRAS())
1606      // "mov lr, pc; b _foo" to avoid confusing the RSP
1607      CallOpc = ARMISD::CALL_NOLINK;
1608    else
1609      CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
1610  }
1611
1612  std::vector<SDValue> Ops;
1613  Ops.push_back(Chain);
1614  Ops.push_back(Callee);
1615
1616  // Add argument registers to the end of the list so that they are known live
1617  // into the call.
1618  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1619    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1620                                  RegsToPass[i].second.getValueType()));
1621
1622  // Add a register mask operand representing the call-preserved registers.
1623  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
1624  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
1625  assert(Mask && "Missing call preserved mask for calling convention");
1626  Ops.push_back(DAG.getRegisterMask(Mask));
1627
1628  if (InFlag.getNode())
1629    Ops.push_back(InFlag);
1630
1631  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1632  if (isTailCall)
1633    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1634
1635  // Returns a chain and a flag for retval copy to use.
1636  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1637  InFlag = Chain.getValue(1);
1638
1639  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1640                             DAG.getIntPtrConstant(0, true), InFlag);
1641  if (!Ins.empty())
1642    InFlag = Chain.getValue(1);
1643
1644  // Handle result values, copying them out of physregs into vregs that we
1645  // return.
1646  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1647                         dl, DAG, InVals);
1648}
1649
1650/// HandleByVal - Every parameter *after* a byval parameter is passed
1651/// on the stack.  Remember the next parameter register to allocate,
1652/// and then confiscate the rest of the parameter registers to insure
1653/// this.
1654void
1655ARMTargetLowering::HandleByVal(CCState *State, unsigned &size) const {
1656  unsigned reg = State->AllocateReg(GPRArgRegs, 4);
1657  assert((State->getCallOrPrologue() == Prologue ||
1658          State->getCallOrPrologue() == Call) &&
1659         "unhandled ParmContext");
1660  if ((!State->isFirstByValRegValid()) &&
1661      (ARM::R0 <= reg) && (reg <= ARM::R3)) {
1662    State->setFirstByValReg(reg);
1663    // At a call site, a byval parameter that is split between
1664    // registers and memory needs its size truncated here.  In a
1665    // function prologue, such byval parameters are reassembled in
1666    // memory, and are not truncated.
1667    if (State->getCallOrPrologue() == Call) {
1668      unsigned excess = 4 * (ARM::R4 - reg);
1669      assert(size >= excess && "expected larger existing stack allocation");
1670      size -= excess;
1671    }
1672  }
1673  // Confiscate any remaining parameter registers to preclude their
1674  // assignment to subsequent parameters.
1675  while (State->AllocateReg(GPRArgRegs, 4))
1676    ;
1677}
1678
1679/// MatchingStackOffset - Return true if the given stack call argument is
1680/// already available in the same position (relatively) of the caller's
1681/// incoming argument stack.
1682static
1683bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1684                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1685                         const TargetInstrInfo *TII) {
1686  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1687  int FI = INT_MAX;
1688  if (Arg.getOpcode() == ISD::CopyFromReg) {
1689    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1690    if (!TargetRegisterInfo::isVirtualRegister(VR))
1691      return false;
1692    MachineInstr *Def = MRI->getVRegDef(VR);
1693    if (!Def)
1694      return false;
1695    if (!Flags.isByVal()) {
1696      if (!TII->isLoadFromStackSlot(Def, FI))
1697        return false;
1698    } else {
1699      return false;
1700    }
1701  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1702    if (Flags.isByVal())
1703      // ByVal argument is passed in as a pointer but it's now being
1704      // dereferenced. e.g.
1705      // define @foo(%struct.X* %A) {
1706      //   tail call @bar(%struct.X* byval %A)
1707      // }
1708      return false;
1709    SDValue Ptr = Ld->getBasePtr();
1710    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1711    if (!FINode)
1712      return false;
1713    FI = FINode->getIndex();
1714  } else
1715    return false;
1716
1717  assert(FI != INT_MAX);
1718  if (!MFI->isFixedObjectIndex(FI))
1719    return false;
1720  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1721}
1722
1723/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1724/// for tail call optimization. Targets which want to do tail call
1725/// optimization should implement this function.
1726bool
1727ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1728                                                     CallingConv::ID CalleeCC,
1729                                                     bool isVarArg,
1730                                                     bool isCalleeStructRet,
1731                                                     bool isCallerStructRet,
1732                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1733                                    const SmallVectorImpl<SDValue> &OutVals,
1734                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1735                                                     SelectionDAG& DAG) const {
1736  const Function *CallerF = DAG.getMachineFunction().getFunction();
1737  CallingConv::ID CallerCC = CallerF->getCallingConv();
1738  bool CCMatch = CallerCC == CalleeCC;
1739
1740  // Look for obvious safe cases to perform tail call optimization that do not
1741  // require ABI changes. This is what gcc calls sibcall.
1742
1743  // Do not sibcall optimize vararg calls unless the call site is not passing
1744  // any arguments.
1745  if (isVarArg && !Outs.empty())
1746    return false;
1747
1748  // Also avoid sibcall optimization if either caller or callee uses struct
1749  // return semantics.
1750  if (isCalleeStructRet || isCallerStructRet)
1751    return false;
1752
1753  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1754  // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
1755  // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
1756  // support in the assembler and linker to be used. This would need to be
1757  // fixed to fully support tail calls in Thumb1.
1758  //
1759  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1760  // LR.  This means if we need to reload LR, it takes an extra instructions,
1761  // which outweighs the value of the tail call; but here we don't know yet
1762  // whether LR is going to be used.  Probably the right approach is to
1763  // generate the tail call here and turn it back into CALL/RET in
1764  // emitEpilogue if LR is used.
1765
1766  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1767  // but we need to make sure there are enough registers; the only valid
1768  // registers are the 4 used for parameters.  We don't currently do this
1769  // case.
1770  if (Subtarget->isThumb1Only())
1771    return false;
1772
1773  // If the calling conventions do not match, then we'd better make sure the
1774  // results are returned in the same way as what the caller expects.
1775  if (!CCMatch) {
1776    SmallVector<CCValAssign, 16> RVLocs1;
1777    ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1778                       getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
1779    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1780
1781    SmallVector<CCValAssign, 16> RVLocs2;
1782    ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1783                       getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
1784    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1785
1786    if (RVLocs1.size() != RVLocs2.size())
1787      return false;
1788    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1789      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1790        return false;
1791      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1792        return false;
1793      if (RVLocs1[i].isRegLoc()) {
1794        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1795          return false;
1796      } else {
1797        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1798          return false;
1799      }
1800    }
1801  }
1802
1803  // If the callee takes no arguments then go on to check the results of the
1804  // call.
1805  if (!Outs.empty()) {
1806    // Check if stack adjustment is needed. For now, do not do this if any
1807    // argument is passed on the stack.
1808    SmallVector<CCValAssign, 16> ArgLocs;
1809    ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
1810                      getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1811    CCInfo.AnalyzeCallOperands(Outs,
1812                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1813    if (CCInfo.getNextStackOffset()) {
1814      MachineFunction &MF = DAG.getMachineFunction();
1815
1816      // Check if the arguments are already laid out in the right way as
1817      // the caller's fixed stack objects.
1818      MachineFrameInfo *MFI = MF.getFrameInfo();
1819      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1820      const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1821      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1822           i != e;
1823           ++i, ++realArgIdx) {
1824        CCValAssign &VA = ArgLocs[i];
1825        EVT RegVT = VA.getLocVT();
1826        SDValue Arg = OutVals[realArgIdx];
1827        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1828        if (VA.getLocInfo() == CCValAssign::Indirect)
1829          return false;
1830        if (VA.needsCustom()) {
1831          // f64 and vector types are split into multiple registers or
1832          // register/stack-slot combinations.  The types will not match
1833          // the registers; give up on memory f64 refs until we figure
1834          // out what to do about this.
1835          if (!VA.isRegLoc())
1836            return false;
1837          if (!ArgLocs[++i].isRegLoc())
1838            return false;
1839          if (RegVT == MVT::v2f64) {
1840            if (!ArgLocs[++i].isRegLoc())
1841              return false;
1842            if (!ArgLocs[++i].isRegLoc())
1843              return false;
1844          }
1845        } else if (!VA.isRegLoc()) {
1846          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1847                                   MFI, MRI, TII))
1848            return false;
1849        }
1850      }
1851    }
1852  }
1853
1854  return true;
1855}
1856
1857SDValue
1858ARMTargetLowering::LowerReturn(SDValue Chain,
1859                               CallingConv::ID CallConv, bool isVarArg,
1860                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1861                               const SmallVectorImpl<SDValue> &OutVals,
1862                               DebugLoc dl, SelectionDAG &DAG) const {
1863
1864  // CCValAssign - represent the assignment of the return value to a location.
1865  SmallVector<CCValAssign, 16> RVLocs;
1866
1867  // CCState - Info about the registers and stack slots.
1868  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1869                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1870
1871  // Analyze outgoing return values.
1872  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1873                                               isVarArg));
1874
1875  // If this is the first return lowered for this function, add
1876  // the regs to the liveout set for the function.
1877  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1878    for (unsigned i = 0; i != RVLocs.size(); ++i)
1879      if (RVLocs[i].isRegLoc())
1880        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1881  }
1882
1883  SDValue Flag;
1884
1885  // Copy the result values into the output registers.
1886  for (unsigned i = 0, realRVLocIdx = 0;
1887       i != RVLocs.size();
1888       ++i, ++realRVLocIdx) {
1889    CCValAssign &VA = RVLocs[i];
1890    assert(VA.isRegLoc() && "Can only return in registers!");
1891
1892    SDValue Arg = OutVals[realRVLocIdx];
1893
1894    switch (VA.getLocInfo()) {
1895    default: llvm_unreachable("Unknown loc info!");
1896    case CCValAssign::Full: break;
1897    case CCValAssign::BCvt:
1898      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1899      break;
1900    }
1901
1902    if (VA.needsCustom()) {
1903      if (VA.getLocVT() == MVT::v2f64) {
1904        // Extract the first half and return it in two registers.
1905        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1906                                   DAG.getConstant(0, MVT::i32));
1907        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1908                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1909
1910        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1911        Flag = Chain.getValue(1);
1912        VA = RVLocs[++i]; // skip ahead to next loc
1913        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1914                                 HalfGPRs.getValue(1), Flag);
1915        Flag = Chain.getValue(1);
1916        VA = RVLocs[++i]; // skip ahead to next loc
1917
1918        // Extract the 2nd half and fall through to handle it as an f64 value.
1919        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1920                          DAG.getConstant(1, MVT::i32));
1921      }
1922      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1923      // available.
1924      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1925                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1926      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1927      Flag = Chain.getValue(1);
1928      VA = RVLocs[++i]; // skip ahead to next loc
1929      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1930                               Flag);
1931    } else
1932      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1933
1934    // Guarantee that all emitted copies are
1935    // stuck together, avoiding something bad.
1936    Flag = Chain.getValue(1);
1937  }
1938
1939  SDValue result;
1940  if (Flag.getNode())
1941    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1942  else // Return Void
1943    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1944
1945  return result;
1946}
1947
1948bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1949  if (N->getNumValues() != 1)
1950    return false;
1951  if (!N->hasNUsesOfValue(1, 0))
1952    return false;
1953
1954  SDValue TCChain = Chain;
1955  SDNode *Copy = *N->use_begin();
1956  if (Copy->getOpcode() == ISD::CopyToReg) {
1957    // If the copy has a glue operand, we conservatively assume it isn't safe to
1958    // perform a tail call.
1959    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1960      return false;
1961    TCChain = Copy->getOperand(0);
1962  } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
1963    SDNode *VMov = Copy;
1964    // f64 returned in a pair of GPRs.
1965    SmallPtrSet<SDNode*, 2> Copies;
1966    for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
1967         UI != UE; ++UI) {
1968      if (UI->getOpcode() != ISD::CopyToReg)
1969        return false;
1970      Copies.insert(*UI);
1971    }
1972    if (Copies.size() > 2)
1973      return false;
1974
1975    for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
1976         UI != UE; ++UI) {
1977      SDValue UseChain = UI->getOperand(0);
1978      if (Copies.count(UseChain.getNode()))
1979        // Second CopyToReg
1980        Copy = *UI;
1981      else
1982        // First CopyToReg
1983        TCChain = UseChain;
1984    }
1985  } else if (Copy->getOpcode() == ISD::BITCAST) {
1986    // f32 returned in a single GPR.
1987    if (!Copy->hasOneUse())
1988      return false;
1989    Copy = *Copy->use_begin();
1990    if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
1991      return false;
1992    Chain = Copy->getOperand(0);
1993  } else {
1994    return false;
1995  }
1996
1997  bool HasRet = false;
1998  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1999       UI != UE; ++UI) {
2000    if (UI->getOpcode() != ARMISD::RET_FLAG)
2001      return false;
2002    HasRet = true;
2003  }
2004
2005  if (!HasRet)
2006    return false;
2007
2008  Chain = TCChain;
2009  return true;
2010}
2011
2012bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
2013  if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
2014    return false;
2015
2016  if (!CI->isTailCall())
2017    return false;
2018
2019  return !Subtarget->isThumb1Only();
2020}
2021
2022// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2023// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2024// one of the above mentioned nodes. It has to be wrapped because otherwise
2025// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2026// be used to form addressing mode. These wrapped nodes will be selected
2027// into MOVi.
2028static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
2029  EVT PtrVT = Op.getValueType();
2030  // FIXME there is no actual debug info here
2031  DebugLoc dl = Op.getDebugLoc();
2032  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2033  SDValue Res;
2034  if (CP->isMachineConstantPoolEntry())
2035    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2036                                    CP->getAlignment());
2037  else
2038    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2039                                    CP->getAlignment());
2040  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
2041}
2042
2043unsigned ARMTargetLowering::getJumpTableEncoding() const {
2044  return MachineJumpTableInfo::EK_Inline;
2045}
2046
2047SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
2048                                             SelectionDAG &DAG) const {
2049  MachineFunction &MF = DAG.getMachineFunction();
2050  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2051  unsigned ARMPCLabelIndex = 0;
2052  DebugLoc DL = Op.getDebugLoc();
2053  EVT PtrVT = getPointerTy();
2054  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2055  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2056  SDValue CPAddr;
2057  if (RelocM == Reloc::Static) {
2058    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
2059  } else {
2060    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2061    ARMPCLabelIndex = AFI->createPICLabelUId();
2062    ARMConstantPoolValue *CPV =
2063      ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
2064                                      ARMCP::CPBlockAddress, PCAdj);
2065    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2066  }
2067  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2068  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
2069                               MachinePointerInfo::getConstantPool(),
2070                               false, false, false, 0);
2071  if (RelocM == Reloc::Static)
2072    return Result;
2073  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2074  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2075}
2076
2077// Lower ISD::GlobalTLSAddress using the "general dynamic" model
2078SDValue
2079ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
2080                                                 SelectionDAG &DAG) const {
2081  DebugLoc dl = GA->getDebugLoc();
2082  EVT PtrVT = getPointerTy();
2083  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2084  MachineFunction &MF = DAG.getMachineFunction();
2085  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2086  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2087  ARMConstantPoolValue *CPV =
2088    ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2089                                    ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
2090  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2091  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
2092  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
2093                         MachinePointerInfo::getConstantPool(),
2094                         false, false, false, 0);
2095  SDValue Chain = Argument.getValue(1);
2096
2097  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2098  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
2099
2100  // call __tls_get_addr.
2101  ArgListTy Args;
2102  ArgListEntry Entry;
2103  Entry.Node = Argument;
2104  Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2105  Args.push_back(Entry);
2106  // FIXME: is there useful debug info available here?
2107  TargetLowering::CallLoweringInfo CLI(Chain,
2108                (Type *) Type::getInt32Ty(*DAG.getContext()),
2109                false, false, false, false,
2110                0, CallingConv::C, /*isTailCall=*/false,
2111                /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
2112                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
2113  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2114  return CallResult.first;
2115}
2116
2117// Lower ISD::GlobalTLSAddress using the "initial exec" or
2118// "local exec" model.
2119SDValue
2120ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2121                                        SelectionDAG &DAG,
2122                                        TLSModel::Model model) const {
2123  const GlobalValue *GV = GA->getGlobal();
2124  DebugLoc dl = GA->getDebugLoc();
2125  SDValue Offset;
2126  SDValue Chain = DAG.getEntryNode();
2127  EVT PtrVT = getPointerTy();
2128  // Get the Thread Pointer
2129  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2130
2131  if (model == TLSModel::InitialExec) {
2132    MachineFunction &MF = DAG.getMachineFunction();
2133    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2134    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2135    // Initial exec model.
2136    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2137    ARMConstantPoolValue *CPV =
2138      ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2139                                      ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2140                                      true);
2141    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2142    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2143    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2144                         MachinePointerInfo::getConstantPool(),
2145                         false, false, false, 0);
2146    Chain = Offset.getValue(1);
2147
2148    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2149    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2150
2151    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2152                         MachinePointerInfo::getConstantPool(),
2153                         false, false, false, 0);
2154  } else {
2155    // local exec model
2156    assert(model == TLSModel::LocalExec);
2157    ARMConstantPoolValue *CPV =
2158      ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
2159    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2160    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2161    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2162                         MachinePointerInfo::getConstantPool(),
2163                         false, false, false, 0);
2164  }
2165
2166  // The address of the thread local variable is the add of the thread
2167  // pointer with the offset of the variable.
2168  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2169}
2170
2171SDValue
2172ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2173  // TODO: implement the "local dynamic" model
2174  assert(Subtarget->isTargetELF() &&
2175         "TLS not implemented for non-ELF targets");
2176  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2177
2178  TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
2179
2180  switch (model) {
2181    case TLSModel::GeneralDynamic:
2182    case TLSModel::LocalDynamic:
2183      return LowerToTLSGeneralDynamicModel(GA, DAG);
2184    case TLSModel::InitialExec:
2185    case TLSModel::LocalExec:
2186      return LowerToTLSExecModels(GA, DAG, model);
2187  }
2188  llvm_unreachable("bogus TLS model");
2189}
2190
2191SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2192                                                 SelectionDAG &DAG) const {
2193  EVT PtrVT = getPointerTy();
2194  DebugLoc dl = Op.getDebugLoc();
2195  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2196  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2197  if (RelocM == Reloc::PIC_) {
2198    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2199    ARMConstantPoolValue *CPV =
2200      ARMConstantPoolConstant::Create(GV,
2201                                      UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2202    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2203    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2204    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
2205                                 CPAddr,
2206                                 MachinePointerInfo::getConstantPool(),
2207                                 false, false, false, 0);
2208    SDValue Chain = Result.getValue(1);
2209    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2210    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
2211    if (!UseGOTOFF)
2212      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2213                           MachinePointerInfo::getGOT(),
2214                           false, false, false, 0);
2215    return Result;
2216  }
2217
2218  // If we have T2 ops, we can materialize the address directly via movt/movw
2219  // pair. This is always cheaper.
2220  if (Subtarget->useMovt()) {
2221    ++NumMovwMovt;
2222    // FIXME: Once remat is capable of dealing with instructions with register
2223    // operands, expand this into two nodes.
2224    return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2225                       DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2226  } else {
2227    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2228    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2229    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2230                       MachinePointerInfo::getConstantPool(),
2231                       false, false, false, 0);
2232  }
2233}
2234
2235SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2236                                                    SelectionDAG &DAG) const {
2237  EVT PtrVT = getPointerTy();
2238  DebugLoc dl = Op.getDebugLoc();
2239  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2240  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2241  MachineFunction &MF = DAG.getMachineFunction();
2242  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2243
2244  // FIXME: Enable this for static codegen when tool issues are fixed.  Also
2245  // update ARMFastISel::ARMMaterializeGV.
2246  if (Subtarget->useMovt() && RelocM != Reloc::Static) {
2247    ++NumMovwMovt;
2248    // FIXME: Once remat is capable of dealing with instructions with register
2249    // operands, expand this into two nodes.
2250    if (RelocM == Reloc::Static)
2251      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2252                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2253
2254    unsigned Wrapper = (RelocM == Reloc::PIC_)
2255      ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
2256    SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
2257                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2258    if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2259      Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2260                           MachinePointerInfo::getGOT(),
2261                           false, false, false, 0);
2262    return Result;
2263  }
2264
2265  unsigned ARMPCLabelIndex = 0;
2266  SDValue CPAddr;
2267  if (RelocM == Reloc::Static) {
2268    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2269  } else {
2270    ARMPCLabelIndex = AFI->createPICLabelUId();
2271    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
2272    ARMConstantPoolValue *CPV =
2273      ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue,
2274                                      PCAdj);
2275    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2276  }
2277  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2278
2279  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2280                               MachinePointerInfo::getConstantPool(),
2281                               false, false, false, 0);
2282  SDValue Chain = Result.getValue(1);
2283
2284  if (RelocM == Reloc::PIC_) {
2285    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2286    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2287  }
2288
2289  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2290    Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
2291                         false, false, false, 0);
2292
2293  return Result;
2294}
2295
2296SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
2297                                                    SelectionDAG &DAG) const {
2298  assert(Subtarget->isTargetELF() &&
2299         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
2300  MachineFunction &MF = DAG.getMachineFunction();
2301  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2302  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2303  EVT PtrVT = getPointerTy();
2304  DebugLoc dl = Op.getDebugLoc();
2305  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2306  ARMConstantPoolValue *CPV =
2307    ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
2308                                  ARMPCLabelIndex, PCAdj);
2309  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2310  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2311  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2312                               MachinePointerInfo::getConstantPool(),
2313                               false, false, false, 0);
2314  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2315  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2316}
2317
2318SDValue
2319ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2320  DebugLoc dl = Op.getDebugLoc();
2321  SDValue Val = DAG.getConstant(0, MVT::i32);
2322  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
2323                     DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
2324                     Op.getOperand(1), Val);
2325}
2326
2327SDValue
2328ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2329  DebugLoc dl = Op.getDebugLoc();
2330  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2331                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2332}
2333
2334SDValue
2335ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2336                                          const ARMSubtarget *Subtarget) const {
2337  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2338  DebugLoc dl = Op.getDebugLoc();
2339  switch (IntNo) {
2340  default: return SDValue();    // Don't custom lower most intrinsics.
2341  case Intrinsic::arm_thread_pointer: {
2342    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2343    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2344  }
2345  case Intrinsic::eh_sjlj_lsda: {
2346    MachineFunction &MF = DAG.getMachineFunction();
2347    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2348    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2349    EVT PtrVT = getPointerTy();
2350    DebugLoc dl = Op.getDebugLoc();
2351    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2352    SDValue CPAddr;
2353    unsigned PCAdj = (RelocM != Reloc::PIC_)
2354      ? 0 : (Subtarget->isThumb() ? 4 : 8);
2355    ARMConstantPoolValue *CPV =
2356      ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
2357                                      ARMCP::CPLSDA, PCAdj);
2358    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2359    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2360    SDValue Result =
2361      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2362                  MachinePointerInfo::getConstantPool(),
2363                  false, false, false, 0);
2364
2365    if (RelocM == Reloc::PIC_) {
2366      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2367      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2368    }
2369    return Result;
2370  }
2371  case Intrinsic::arm_neon_vmulls:
2372  case Intrinsic::arm_neon_vmullu: {
2373    unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2374      ? ARMISD::VMULLs : ARMISD::VMULLu;
2375    return DAG.getNode(NewOpc, Op.getDebugLoc(), Op.getValueType(),
2376                       Op.getOperand(1), Op.getOperand(2));
2377  }
2378  }
2379}
2380
2381static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
2382                               const ARMSubtarget *Subtarget) {
2383  DebugLoc dl = Op.getDebugLoc();
2384  if (!Subtarget->hasDataBarrier()) {
2385    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2386    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2387    // here.
2388    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2389           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2390    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2391                       DAG.getConstant(0, MVT::i32));
2392  }
2393
2394  SDValue Op5 = Op.getOperand(5);
2395  bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
2396  unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2397  unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2398  bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
2399
2400  ARM_MB::MemBOpt DMBOpt;
2401  if (isDeviceBarrier)
2402    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
2403  else
2404    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
2405  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2406                     DAG.getConstant(DMBOpt, MVT::i32));
2407}
2408
2409
2410static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
2411                                 const ARMSubtarget *Subtarget) {
2412  // FIXME: handle "fence singlethread" more efficiently.
2413  DebugLoc dl = Op.getDebugLoc();
2414  if (!Subtarget->hasDataBarrier()) {
2415    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2416    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2417    // here.
2418    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2419           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2420    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2421                       DAG.getConstant(0, MVT::i32));
2422  }
2423
2424  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2425                     DAG.getConstant(ARM_MB::ISH, MVT::i32));
2426}
2427
2428static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2429                             const ARMSubtarget *Subtarget) {
2430  // ARM pre v5TE and Thumb1 does not have preload instructions.
2431  if (!(Subtarget->isThumb2() ||
2432        (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2433    // Just preserve the chain.
2434    return Op.getOperand(0);
2435
2436  DebugLoc dl = Op.getDebugLoc();
2437  unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2438  if (!isRead &&
2439      (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2440    // ARMv7 with MP extension has PLDW.
2441    return Op.getOperand(0);
2442
2443  unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2444  if (Subtarget->isThumb()) {
2445    // Invert the bits.
2446    isRead = ~isRead & 1;
2447    isData = ~isData & 1;
2448  }
2449
2450  return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2451                     Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2452                     DAG.getConstant(isData, MVT::i32));
2453}
2454
2455static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2456  MachineFunction &MF = DAG.getMachineFunction();
2457  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2458
2459  // vastart just stores the address of the VarArgsFrameIndex slot into the
2460  // memory location argument.
2461  DebugLoc dl = Op.getDebugLoc();
2462  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2463  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2464  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2465  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2466                      MachinePointerInfo(SV), false, false, 0);
2467}
2468
2469SDValue
2470ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2471                                        SDValue &Root, SelectionDAG &DAG,
2472                                        DebugLoc dl) const {
2473  MachineFunction &MF = DAG.getMachineFunction();
2474  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2475
2476  const TargetRegisterClass *RC;
2477  if (AFI->isThumb1OnlyFunction())
2478    RC = &ARM::tGPRRegClass;
2479  else
2480    RC = &ARM::GPRRegClass;
2481
2482  // Transform the arguments stored in physical registers into virtual ones.
2483  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2484  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2485
2486  SDValue ArgValue2;
2487  if (NextVA.isMemLoc()) {
2488    MachineFrameInfo *MFI = MF.getFrameInfo();
2489    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2490
2491    // Create load node to retrieve arguments from the stack.
2492    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2493    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2494                            MachinePointerInfo::getFixedStack(FI),
2495                            false, false, false, 0);
2496  } else {
2497    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2498    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2499  }
2500
2501  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2502}
2503
2504void
2505ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
2506                                  unsigned &VARegSize, unsigned &VARegSaveSize)
2507  const {
2508  unsigned NumGPRs;
2509  if (CCInfo.isFirstByValRegValid())
2510    NumGPRs = ARM::R4 - CCInfo.getFirstByValReg();
2511  else {
2512    unsigned int firstUnalloced;
2513    firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
2514                                                sizeof(GPRArgRegs) /
2515                                                sizeof(GPRArgRegs[0]));
2516    NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
2517  }
2518
2519  unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
2520  VARegSize = NumGPRs * 4;
2521  VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2522}
2523
2524// The remaining GPRs hold either the beginning of variable-argument
2525// data, or the beginning of an aggregate passed by value (usuall
2526// byval).  Either way, we allocate stack slots adjacent to the data
2527// provided by our caller, and store the unallocated registers there.
2528// If this is a variadic function, the va_list pointer will begin with
2529// these values; otherwise, this reassembles a (byval) structure that
2530// was split between registers and memory.
2531void
2532ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
2533                                        DebugLoc dl, SDValue &Chain,
2534                                        unsigned ArgOffset) const {
2535  MachineFunction &MF = DAG.getMachineFunction();
2536  MachineFrameInfo *MFI = MF.getFrameInfo();
2537  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2538  unsigned firstRegToSaveIndex;
2539  if (CCInfo.isFirstByValRegValid())
2540    firstRegToSaveIndex = CCInfo.getFirstByValReg() - ARM::R0;
2541  else {
2542    firstRegToSaveIndex = CCInfo.getFirstUnallocated
2543      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2544  }
2545
2546  unsigned VARegSize, VARegSaveSize;
2547  computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2548  if (VARegSaveSize) {
2549    // If this function is vararg, store any remaining integer argument regs
2550    // to their spots on the stack so that they may be loaded by deferencing
2551    // the result of va_next.
2552    AFI->setVarArgsRegSaveSize(VARegSaveSize);
2553    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(VARegSaveSize,
2554                                                     ArgOffset + VARegSaveSize
2555                                                     - VARegSize,
2556                                                     false));
2557    SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2558                                    getPointerTy());
2559
2560    SmallVector<SDValue, 4> MemOps;
2561    for (; firstRegToSaveIndex < 4; ++firstRegToSaveIndex) {
2562      const TargetRegisterClass *RC;
2563      if (AFI->isThumb1OnlyFunction())
2564        RC = &ARM::tGPRRegClass;
2565      else
2566        RC = &ARM::GPRRegClass;
2567
2568      unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
2569      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2570      SDValue Store =
2571        DAG.getStore(Val.getValue(1), dl, Val, FIN,
2572                 MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
2573                     false, false, 0);
2574      MemOps.push_back(Store);
2575      FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2576                        DAG.getConstant(4, getPointerTy()));
2577    }
2578    if (!MemOps.empty())
2579      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2580                          &MemOps[0], MemOps.size());
2581  } else
2582    // This will point to the next argument passed via stack.
2583    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
2584}
2585
2586SDValue
2587ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2588                                        CallingConv::ID CallConv, bool isVarArg,
2589                                        const SmallVectorImpl<ISD::InputArg>
2590                                          &Ins,
2591                                        DebugLoc dl, SelectionDAG &DAG,
2592                                        SmallVectorImpl<SDValue> &InVals)
2593                                          const {
2594  MachineFunction &MF = DAG.getMachineFunction();
2595  MachineFrameInfo *MFI = MF.getFrameInfo();
2596
2597  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2598
2599  // Assign locations to all of the incoming arguments.
2600  SmallVector<CCValAssign, 16> ArgLocs;
2601  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2602                    getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
2603  CCInfo.AnalyzeFormalArguments(Ins,
2604                                CCAssignFnForNode(CallConv, /* Return*/ false,
2605                                                  isVarArg));
2606
2607  SmallVector<SDValue, 16> ArgValues;
2608  int lastInsIndex = -1;
2609
2610  SDValue ArgValue;
2611  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2612    CCValAssign &VA = ArgLocs[i];
2613
2614    // Arguments stored in registers.
2615    if (VA.isRegLoc()) {
2616      EVT RegVT = VA.getLocVT();
2617
2618      if (VA.needsCustom()) {
2619        // f64 and vector types are split up into multiple registers or
2620        // combinations of registers and stack slots.
2621        if (VA.getLocVT() == MVT::v2f64) {
2622          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2623                                                   Chain, DAG, dl);
2624          VA = ArgLocs[++i]; // skip ahead to next loc
2625          SDValue ArgValue2;
2626          if (VA.isMemLoc()) {
2627            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2628            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2629            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2630                                    MachinePointerInfo::getFixedStack(FI),
2631                                    false, false, false, 0);
2632          } else {
2633            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2634                                             Chain, DAG, dl);
2635          }
2636          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2637          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2638                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2639          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2640                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2641        } else
2642          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2643
2644      } else {
2645        const TargetRegisterClass *RC;
2646
2647        if (RegVT == MVT::f32)
2648          RC = &ARM::SPRRegClass;
2649        else if (RegVT == MVT::f64)
2650          RC = &ARM::DPRRegClass;
2651        else if (RegVT == MVT::v2f64)
2652          RC = &ARM::QPRRegClass;
2653        else if (RegVT == MVT::i32)
2654          RC = AFI->isThumb1OnlyFunction() ?
2655            (const TargetRegisterClass*)&ARM::tGPRRegClass :
2656            (const TargetRegisterClass*)&ARM::GPRRegClass;
2657        else
2658          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2659
2660        // Transform the arguments in physical registers into virtual ones.
2661        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2662        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2663      }
2664
2665      // If this is an 8 or 16-bit value, it is really passed promoted
2666      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2667      // truncate to the right size.
2668      switch (VA.getLocInfo()) {
2669      default: llvm_unreachable("Unknown loc info!");
2670      case CCValAssign::Full: break;
2671      case CCValAssign::BCvt:
2672        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2673        break;
2674      case CCValAssign::SExt:
2675        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2676                               DAG.getValueType(VA.getValVT()));
2677        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2678        break;
2679      case CCValAssign::ZExt:
2680        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2681                               DAG.getValueType(VA.getValVT()));
2682        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2683        break;
2684      }
2685
2686      InVals.push_back(ArgValue);
2687
2688    } else { // VA.isRegLoc()
2689
2690      // sanity check
2691      assert(VA.isMemLoc());
2692      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2693
2694      int index = ArgLocs[i].getValNo();
2695
2696      // Some Ins[] entries become multiple ArgLoc[] entries.
2697      // Process them only once.
2698      if (index != lastInsIndex)
2699        {
2700          ISD::ArgFlagsTy Flags = Ins[index].Flags;
2701          // FIXME: For now, all byval parameter objects are marked mutable.
2702          // This can be changed with more analysis.
2703          // In case of tail call optimization mark all arguments mutable.
2704          // Since they could be overwritten by lowering of arguments in case of
2705          // a tail call.
2706          if (Flags.isByVal()) {
2707            unsigned VARegSize, VARegSaveSize;
2708            computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2709            VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 0);
2710            unsigned Bytes = Flags.getByValSize() - VARegSize;
2711            if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
2712            int FI = MFI->CreateFixedObject(Bytes,
2713                                            VA.getLocMemOffset(), false);
2714            InVals.push_back(DAG.getFrameIndex(FI, getPointerTy()));
2715          } else {
2716            int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
2717                                            VA.getLocMemOffset(), true);
2718
2719            // Create load nodes to retrieve arguments from the stack.
2720            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2721            InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2722                                         MachinePointerInfo::getFixedStack(FI),
2723                                         false, false, false, 0));
2724          }
2725          lastInsIndex = index;
2726        }
2727    }
2728  }
2729
2730  // varargs
2731  if (isVarArg)
2732    VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getNextStackOffset());
2733
2734  return Chain;
2735}
2736
2737/// isFloatingPointZero - Return true if this is +0.0.
2738static bool isFloatingPointZero(SDValue Op) {
2739  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2740    return CFP->getValueAPF().isPosZero();
2741  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2742    // Maybe this has already been legalized into the constant pool?
2743    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2744      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2745      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2746        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2747          return CFP->getValueAPF().isPosZero();
2748    }
2749  }
2750  return false;
2751}
2752
2753/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2754/// the given operands.
2755SDValue
2756ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2757                             SDValue &ARMcc, SelectionDAG &DAG,
2758                             DebugLoc dl) const {
2759  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2760    unsigned C = RHSC->getZExtValue();
2761    if (!isLegalICmpImmediate(C)) {
2762      // Constant does not fit, try adjusting it by one?
2763      switch (CC) {
2764      default: break;
2765      case ISD::SETLT:
2766      case ISD::SETGE:
2767        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
2768          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2769          RHS = DAG.getConstant(C-1, MVT::i32);
2770        }
2771        break;
2772      case ISD::SETULT:
2773      case ISD::SETUGE:
2774        if (C != 0 && isLegalICmpImmediate(C-1)) {
2775          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2776          RHS = DAG.getConstant(C-1, MVT::i32);
2777        }
2778        break;
2779      case ISD::SETLE:
2780      case ISD::SETGT:
2781        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
2782          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2783          RHS = DAG.getConstant(C+1, MVT::i32);
2784        }
2785        break;
2786      case ISD::SETULE:
2787      case ISD::SETUGT:
2788        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
2789          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2790          RHS = DAG.getConstant(C+1, MVT::i32);
2791        }
2792        break;
2793      }
2794    }
2795  }
2796
2797  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2798  ARMISD::NodeType CompareType;
2799  switch (CondCode) {
2800  default:
2801    CompareType = ARMISD::CMP;
2802    break;
2803  case ARMCC::EQ:
2804  case ARMCC::NE:
2805    // Uses only Z Flag
2806    CompareType = ARMISD::CMPZ;
2807    break;
2808  }
2809  ARMcc = DAG.getConstant(CondCode, MVT::i32);
2810  return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
2811}
2812
2813/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2814SDValue
2815ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2816                             DebugLoc dl) const {
2817  SDValue Cmp;
2818  if (!isFloatingPointZero(RHS))
2819    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
2820  else
2821    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
2822  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
2823}
2824
2825/// duplicateCmp - Glue values can have only one use, so this function
2826/// duplicates a comparison node.
2827SDValue
2828ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
2829  unsigned Opc = Cmp.getOpcode();
2830  DebugLoc DL = Cmp.getDebugLoc();
2831  if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
2832    return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2833
2834  assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
2835  Cmp = Cmp.getOperand(0);
2836  Opc = Cmp.getOpcode();
2837  if (Opc == ARMISD::CMPFP)
2838    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2839  else {
2840    assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
2841    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
2842  }
2843  return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
2844}
2845
2846SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2847  SDValue Cond = Op.getOperand(0);
2848  SDValue SelectTrue = Op.getOperand(1);
2849  SDValue SelectFalse = Op.getOperand(2);
2850  DebugLoc dl = Op.getDebugLoc();
2851
2852  // Convert:
2853  //
2854  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2855  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2856  //
2857  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2858    const ConstantSDNode *CMOVTrue =
2859      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2860    const ConstantSDNode *CMOVFalse =
2861      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2862
2863    if (CMOVTrue && CMOVFalse) {
2864      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2865      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2866
2867      SDValue True;
2868      SDValue False;
2869      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2870        True = SelectTrue;
2871        False = SelectFalse;
2872      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2873        True = SelectFalse;
2874        False = SelectTrue;
2875      }
2876
2877      if (True.getNode() && False.getNode()) {
2878        EVT VT = Op.getValueType();
2879        SDValue ARMcc = Cond.getOperand(2);
2880        SDValue CCR = Cond.getOperand(3);
2881        SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
2882        assert(True.getValueType() == VT);
2883        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2884      }
2885    }
2886  }
2887
2888  // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
2889  // undefined bits before doing a full-word comparison with zero.
2890  Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
2891                     DAG.getConstant(1, Cond.getValueType()));
2892
2893  return DAG.getSelectCC(dl, Cond,
2894                         DAG.getConstant(0, Cond.getValueType()),
2895                         SelectTrue, SelectFalse, ISD::SETNE);
2896}
2897
2898SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2899  EVT VT = Op.getValueType();
2900  SDValue LHS = Op.getOperand(0);
2901  SDValue RHS = Op.getOperand(1);
2902  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2903  SDValue TrueVal = Op.getOperand(2);
2904  SDValue FalseVal = Op.getOperand(3);
2905  DebugLoc dl = Op.getDebugLoc();
2906
2907  if (LHS.getValueType() == MVT::i32) {
2908    SDValue ARMcc;
2909    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2910    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2911    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2912  }
2913
2914  ARMCC::CondCodes CondCode, CondCode2;
2915  FPCCToARMCC(CC, CondCode, CondCode2);
2916
2917  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2918  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2919  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2920  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2921                               ARMcc, CCR, Cmp);
2922  if (CondCode2 != ARMCC::AL) {
2923    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2924    // FIXME: Needs another CMP because flag can have but one use.
2925    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2926    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2927                         Result, TrueVal, ARMcc2, CCR, Cmp2);
2928  }
2929  return Result;
2930}
2931
2932/// canChangeToInt - Given the fp compare operand, return true if it is suitable
2933/// to morph to an integer compare sequence.
2934static bool canChangeToInt(SDValue Op, bool &SeenZero,
2935                           const ARMSubtarget *Subtarget) {
2936  SDNode *N = Op.getNode();
2937  if (!N->hasOneUse())
2938    // Otherwise it requires moving the value from fp to integer registers.
2939    return false;
2940  if (!N->getNumValues())
2941    return false;
2942  EVT VT = Op.getValueType();
2943  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
2944    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
2945    // vmrs are very slow, e.g. cortex-a8.
2946    return false;
2947
2948  if (isFloatingPointZero(Op)) {
2949    SeenZero = true;
2950    return true;
2951  }
2952  return ISD::isNormalLoad(N);
2953}
2954
2955static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
2956  if (isFloatingPointZero(Op))
2957    return DAG.getConstant(0, MVT::i32);
2958
2959  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
2960    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2961                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
2962                       Ld->isVolatile(), Ld->isNonTemporal(),
2963                       Ld->isInvariant(), Ld->getAlignment());
2964
2965  llvm_unreachable("Unknown VFP cmp argument!");
2966}
2967
2968static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
2969                           SDValue &RetVal1, SDValue &RetVal2) {
2970  if (isFloatingPointZero(Op)) {
2971    RetVal1 = DAG.getConstant(0, MVT::i32);
2972    RetVal2 = DAG.getConstant(0, MVT::i32);
2973    return;
2974  }
2975
2976  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
2977    SDValue Ptr = Ld->getBasePtr();
2978    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2979                          Ld->getChain(), Ptr,
2980                          Ld->getPointerInfo(),
2981                          Ld->isVolatile(), Ld->isNonTemporal(),
2982                          Ld->isInvariant(), Ld->getAlignment());
2983
2984    EVT PtrType = Ptr.getValueType();
2985    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
2986    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
2987                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
2988    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2989                          Ld->getChain(), NewPtr,
2990                          Ld->getPointerInfo().getWithOffset(4),
2991                          Ld->isVolatile(), Ld->isNonTemporal(),
2992                          Ld->isInvariant(), NewAlign);
2993    return;
2994  }
2995
2996  llvm_unreachable("Unknown VFP cmp argument!");
2997}
2998
2999/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
3000/// f32 and even f64 comparisons to integer ones.
3001SDValue
3002ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
3003  SDValue Chain = Op.getOperand(0);
3004  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3005  SDValue LHS = Op.getOperand(2);
3006  SDValue RHS = Op.getOperand(3);
3007  SDValue Dest = Op.getOperand(4);
3008  DebugLoc dl = Op.getDebugLoc();
3009
3010  bool LHSSeenZero = false;
3011  bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
3012  bool RHSSeenZero = false;
3013  bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
3014  if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
3015    // If unsafe fp math optimization is enabled and there are no other uses of
3016    // the CMP operands, and the condition code is EQ or NE, we can optimize it
3017    // to an integer comparison.
3018    if (CC == ISD::SETOEQ)
3019      CC = ISD::SETEQ;
3020    else if (CC == ISD::SETUNE)
3021      CC = ISD::SETNE;
3022
3023    SDValue Mask = DAG.getConstant(0x7fffffff, MVT::i32);
3024    SDValue ARMcc;
3025    if (LHS.getValueType() == MVT::f32) {
3026      LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3027                        bitcastf32Toi32(LHS, DAG), Mask);
3028      RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3029                        bitcastf32Toi32(RHS, DAG), Mask);
3030      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3031      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3032      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3033                         Chain, Dest, ARMcc, CCR, Cmp);
3034    }
3035
3036    SDValue LHS1, LHS2;
3037    SDValue RHS1, RHS2;
3038    expandf64Toi32(LHS, DAG, LHS1, LHS2);
3039    expandf64Toi32(RHS, DAG, RHS1, RHS2);
3040    LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
3041    RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
3042    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3043    ARMcc = DAG.getConstant(CondCode, MVT::i32);
3044    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3045    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
3046    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
3047  }
3048
3049  return SDValue();
3050}
3051
3052SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3053  SDValue Chain = Op.getOperand(0);
3054  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3055  SDValue LHS = Op.getOperand(2);
3056  SDValue RHS = Op.getOperand(3);
3057  SDValue Dest = Op.getOperand(4);
3058  DebugLoc dl = Op.getDebugLoc();
3059
3060  if (LHS.getValueType() == MVT::i32) {
3061    SDValue ARMcc;
3062    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3063    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3064    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3065                       Chain, Dest, ARMcc, CCR, Cmp);
3066  }
3067
3068  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3069
3070  if (getTargetMachine().Options.UnsafeFPMath &&
3071      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
3072       CC == ISD::SETNE || CC == ISD::SETUNE)) {
3073    SDValue Result = OptimizeVFPBrcond(Op, DAG);
3074    if (Result.getNode())
3075      return Result;
3076  }
3077
3078  ARMCC::CondCodes CondCode, CondCode2;
3079  FPCCToARMCC(CC, CondCode, CondCode2);
3080
3081  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
3082  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
3083  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3084  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3085  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
3086  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3087  if (CondCode2 != ARMCC::AL) {
3088    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
3089    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
3090    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3091  }
3092  return Res;
3093}
3094
3095SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
3096  SDValue Chain = Op.getOperand(0);
3097  SDValue Table = Op.getOperand(1);
3098  SDValue Index = Op.getOperand(2);
3099  DebugLoc dl = Op.getDebugLoc();
3100
3101  EVT PTy = getPointerTy();
3102  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
3103  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
3104  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
3105  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
3106  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
3107  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
3108  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3109  if (Subtarget->isThumb2()) {
3110    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
3111    // which does another jump to the destination. This also makes it easier
3112    // to translate it to TBB / TBH later.
3113    // FIXME: This might not work if the function is extremely large.
3114    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
3115                       Addr, Op.getOperand(2), JTI, UId);
3116  }
3117  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
3118    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
3119                       MachinePointerInfo::getJumpTable(),
3120                       false, false, false, 0);
3121    Chain = Addr.getValue(1);
3122    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
3123    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3124  } else {
3125    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
3126                       MachinePointerInfo::getJumpTable(),
3127                       false, false, false, 0);
3128    Chain = Addr.getValue(1);
3129    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3130  }
3131}
3132
3133static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3134  EVT VT = Op.getValueType();
3135  DebugLoc dl = Op.getDebugLoc();
3136
3137  if (Op.getValueType().getVectorElementType() == MVT::i32) {
3138    if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
3139      return Op;
3140    return DAG.UnrollVectorOp(Op.getNode());
3141  }
3142
3143  assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
3144         "Invalid type for custom lowering!");
3145  if (VT != MVT::v4i16)
3146    return DAG.UnrollVectorOp(Op.getNode());
3147
3148  Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
3149  return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
3150}
3151
3152static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3153  EVT VT = Op.getValueType();
3154  if (VT.isVector())
3155    return LowerVectorFP_TO_INT(Op, DAG);
3156
3157  DebugLoc dl = Op.getDebugLoc();
3158  unsigned Opc;
3159
3160  switch (Op.getOpcode()) {
3161  default: llvm_unreachable("Invalid opcode!");
3162  case ISD::FP_TO_SINT:
3163    Opc = ARMISD::FTOSI;
3164    break;
3165  case ISD::FP_TO_UINT:
3166    Opc = ARMISD::FTOUI;
3167    break;
3168  }
3169  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
3170  return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3171}
3172
3173static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3174  EVT VT = Op.getValueType();
3175  DebugLoc dl = Op.getDebugLoc();
3176
3177  if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
3178    if (VT.getVectorElementType() == MVT::f32)
3179      return Op;
3180    return DAG.UnrollVectorOp(Op.getNode());
3181  }
3182
3183  assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
3184         "Invalid type for custom lowering!");
3185  if (VT != MVT::v4f32)
3186    return DAG.UnrollVectorOp(Op.getNode());
3187
3188  unsigned CastOpc;
3189  unsigned Opc;
3190  switch (Op.getOpcode()) {
3191  default: llvm_unreachable("Invalid opcode!");
3192  case ISD::SINT_TO_FP:
3193    CastOpc = ISD::SIGN_EXTEND;
3194    Opc = ISD::SINT_TO_FP;
3195    break;
3196  case ISD::UINT_TO_FP:
3197    CastOpc = ISD::ZERO_EXTEND;
3198    Opc = ISD::UINT_TO_FP;
3199    break;
3200  }
3201
3202  Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
3203  return DAG.getNode(Opc, dl, VT, Op);
3204}
3205
3206static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3207  EVT VT = Op.getValueType();
3208  if (VT.isVector())
3209    return LowerVectorINT_TO_FP(Op, DAG);
3210
3211  DebugLoc dl = Op.getDebugLoc();
3212  unsigned Opc;
3213
3214  switch (Op.getOpcode()) {
3215  default: llvm_unreachable("Invalid opcode!");
3216  case ISD::SINT_TO_FP:
3217    Opc = ARMISD::SITOF;
3218    break;
3219  case ISD::UINT_TO_FP:
3220    Opc = ARMISD::UITOF;
3221    break;
3222  }
3223
3224  Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
3225  return DAG.getNode(Opc, dl, VT, Op);
3226}
3227
3228SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
3229  // Implement fcopysign with a fabs and a conditional fneg.
3230  SDValue Tmp0 = Op.getOperand(0);
3231  SDValue Tmp1 = Op.getOperand(1);
3232  DebugLoc dl = Op.getDebugLoc();
3233  EVT VT = Op.getValueType();
3234  EVT SrcVT = Tmp1.getValueType();
3235  bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
3236    Tmp0.getOpcode() == ARMISD::VMOVDRR;
3237  bool UseNEON = !InGPR && Subtarget->hasNEON();
3238
3239  if (UseNEON) {
3240    // Use VBSL to copy the sign bit.
3241    unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
3242    SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
3243                               DAG.getTargetConstant(EncodedVal, MVT::i32));
3244    EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
3245    if (VT == MVT::f64)
3246      Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3247                         DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
3248                         DAG.getConstant(32, MVT::i32));
3249    else /*if (VT == MVT::f32)*/
3250      Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
3251    if (SrcVT == MVT::f32) {
3252      Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
3253      if (VT == MVT::f64)
3254        Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3255                           DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
3256                           DAG.getConstant(32, MVT::i32));
3257    } else if (VT == MVT::f32)
3258      Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
3259                         DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
3260                         DAG.getConstant(32, MVT::i32));
3261    Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
3262    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
3263
3264    SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
3265                                            MVT::i32);
3266    AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
3267    SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
3268                                  DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
3269
3270    SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
3271                              DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
3272                              DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
3273    if (VT == MVT::f32) {
3274      Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
3275      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
3276                        DAG.getConstant(0, MVT::i32));
3277    } else {
3278      Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
3279    }
3280
3281    return Res;
3282  }
3283
3284  // Bitcast operand 1 to i32.
3285  if (SrcVT == MVT::f64)
3286    Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3287                       &Tmp1, 1).getValue(1);
3288  Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
3289
3290  // Or in the signbit with integer operations.
3291  SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
3292  SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
3293  Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
3294  if (VT == MVT::f32) {
3295    Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
3296                       DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
3297    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3298                       DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
3299  }
3300
3301  // f64: Or the high part with signbit and then combine two parts.
3302  Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3303                     &Tmp0, 1);
3304  SDValue Lo = Tmp0.getValue(0);
3305  SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
3306  Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
3307  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
3308}
3309
3310SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
3311  MachineFunction &MF = DAG.getMachineFunction();
3312  MachineFrameInfo *MFI = MF.getFrameInfo();
3313  MFI->setReturnAddressIsTaken(true);
3314
3315  EVT VT = Op.getValueType();
3316  DebugLoc dl = Op.getDebugLoc();
3317  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3318  if (Depth) {
3319    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3320    SDValue Offset = DAG.getConstant(4, MVT::i32);
3321    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
3322                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
3323                       MachinePointerInfo(), false, false, false, 0);
3324  }
3325
3326  // Return LR, which contains the return address. Mark it an implicit live-in.
3327  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3328  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
3329}
3330
3331SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
3332  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3333  MFI->setFrameAddressIsTaken(true);
3334
3335  EVT VT = Op.getValueType();
3336  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
3337  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3338  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
3339    ? ARM::R7 : ARM::R11;
3340  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
3341  while (Depth--)
3342    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
3343                            MachinePointerInfo(),
3344                            false, false, false, 0);
3345  return FrameAddr;
3346}
3347
3348/// ExpandBITCAST - If the target supports VFP, this function is called to
3349/// expand a bit convert where either the source or destination type is i64 to
3350/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
3351/// operand type is illegal (e.g., v2f32 for a target that doesn't support
3352/// vectors), since the legalizer won't know what to do with that.
3353static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
3354  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3355  DebugLoc dl = N->getDebugLoc();
3356  SDValue Op = N->getOperand(0);
3357
3358  // This function is only supposed to be called for i64 types, either as the
3359  // source or destination of the bit convert.
3360  EVT SrcVT = Op.getValueType();
3361  EVT DstVT = N->getValueType(0);
3362  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
3363         "ExpandBITCAST called for non-i64 type");
3364
3365  // Turn i64->f64 into VMOVDRR.
3366  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
3367    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3368                             DAG.getConstant(0, MVT::i32));
3369    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3370                             DAG.getConstant(1, MVT::i32));
3371    return DAG.getNode(ISD::BITCAST, dl, DstVT,
3372                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
3373  }
3374
3375  // Turn f64->i64 into VMOVRRD.
3376  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
3377    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
3378                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
3379    // Merge the pieces into a single i64 value.
3380    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
3381  }
3382
3383  return SDValue();
3384}
3385
3386/// getZeroVector - Returns a vector of specified type with all zero elements.
3387/// Zero vectors are used to represent vector negation and in those cases
3388/// will be implemented with the NEON VNEG instruction.  However, VNEG does
3389/// not support i64 elements, so sometimes the zero vectors will need to be
3390/// explicitly constructed.  Regardless, use a canonical VMOV to create the
3391/// zero vector.
3392static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3393  assert(VT.isVector() && "Expected a vector type");
3394  // The canonical modified immediate encoding of a zero vector is....0!
3395  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
3396  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
3397  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
3398  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3399}
3400
3401/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3402/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3403SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
3404                                                SelectionDAG &DAG) const {
3405  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3406  EVT VT = Op.getValueType();
3407  unsigned VTBits = VT.getSizeInBits();
3408  DebugLoc dl = Op.getDebugLoc();
3409  SDValue ShOpLo = Op.getOperand(0);
3410  SDValue ShOpHi = Op.getOperand(1);
3411  SDValue ShAmt  = Op.getOperand(2);
3412  SDValue ARMcc;
3413  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3414
3415  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3416
3417  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3418                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3419  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3420  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3421                                   DAG.getConstant(VTBits, MVT::i32));
3422  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3423  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3424  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3425
3426  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3427  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3428                          ARMcc, DAG, dl);
3429  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3430  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
3431                           CCR, Cmp);
3432
3433  SDValue Ops[2] = { Lo, Hi };
3434  return DAG.getMergeValues(Ops, 2, dl);
3435}
3436
3437/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
3438/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3439SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
3440                                               SelectionDAG &DAG) const {
3441  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3442  EVT VT = Op.getValueType();
3443  unsigned VTBits = VT.getSizeInBits();
3444  DebugLoc dl = Op.getDebugLoc();
3445  SDValue ShOpLo = Op.getOperand(0);
3446  SDValue ShOpHi = Op.getOperand(1);
3447  SDValue ShAmt  = Op.getOperand(2);
3448  SDValue ARMcc;
3449
3450  assert(Op.getOpcode() == ISD::SHL_PARTS);
3451  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3452                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3453  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
3454  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3455                                   DAG.getConstant(VTBits, MVT::i32));
3456  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
3457  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
3458
3459  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3460  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3461  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3462                          ARMcc, DAG, dl);
3463  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
3464  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
3465                           CCR, Cmp);
3466
3467  SDValue Ops[2] = { Lo, Hi };
3468  return DAG.getMergeValues(Ops, 2, dl);
3469}
3470
3471SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3472                                            SelectionDAG &DAG) const {
3473  // The rounding mode is in bits 23:22 of the FPSCR.
3474  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
3475  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
3476  // so that the shift + and get folded into a bitfield extract.
3477  DebugLoc dl = Op.getDebugLoc();
3478  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
3479                              DAG.getConstant(Intrinsic::arm_get_fpscr,
3480                                              MVT::i32));
3481  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
3482                                  DAG.getConstant(1U << 22, MVT::i32));
3483  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
3484                              DAG.getConstant(22, MVT::i32));
3485  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
3486                     DAG.getConstant(3, MVT::i32));
3487}
3488
3489static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
3490                         const ARMSubtarget *ST) {
3491  EVT VT = N->getValueType(0);
3492  DebugLoc dl = N->getDebugLoc();
3493
3494  if (!ST->hasV6T2Ops())
3495    return SDValue();
3496
3497  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
3498  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
3499}
3500
3501static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
3502                          const ARMSubtarget *ST) {
3503  EVT VT = N->getValueType(0);
3504  DebugLoc dl = N->getDebugLoc();
3505
3506  if (!VT.isVector())
3507    return SDValue();
3508
3509  // Lower vector shifts on NEON to use VSHL.
3510  assert(ST->hasNEON() && "unexpected vector shift");
3511
3512  // Left shifts translate directly to the vshiftu intrinsic.
3513  if (N->getOpcode() == ISD::SHL)
3514    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3515                       DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
3516                       N->getOperand(0), N->getOperand(1));
3517
3518  assert((N->getOpcode() == ISD::SRA ||
3519          N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
3520
3521  // NEON uses the same intrinsics for both left and right shifts.  For
3522  // right shifts, the shift amounts are negative, so negate the vector of
3523  // shift amounts.
3524  EVT ShiftVT = N->getOperand(1).getValueType();
3525  SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
3526                                     getZeroVector(ShiftVT, DAG, dl),
3527                                     N->getOperand(1));
3528  Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
3529                             Intrinsic::arm_neon_vshifts :
3530                             Intrinsic::arm_neon_vshiftu);
3531  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3532                     DAG.getConstant(vshiftInt, MVT::i32),
3533                     N->getOperand(0), NegatedCount);
3534}
3535
3536static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
3537                                const ARMSubtarget *ST) {
3538  EVT VT = N->getValueType(0);
3539  DebugLoc dl = N->getDebugLoc();
3540
3541  // We can get here for a node like i32 = ISD::SHL i32, i64
3542  if (VT != MVT::i64)
3543    return SDValue();
3544
3545  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
3546         "Unknown shift to lower!");
3547
3548  // We only lower SRA, SRL of 1 here, all others use generic lowering.
3549  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
3550      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
3551    return SDValue();
3552
3553  // If we are in thumb mode, we don't have RRX.
3554  if (ST->isThumb1Only()) return SDValue();
3555
3556  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
3557  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3558                           DAG.getConstant(0, MVT::i32));
3559  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3560                           DAG.getConstant(1, MVT::i32));
3561
3562  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
3563  // captures the result into a carry flag.
3564  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
3565  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
3566
3567  // The low part is an ARMISD::RRX operand, which shifts the carry in.
3568  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
3569
3570  // Merge the pieces into a single i64 value.
3571 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
3572}
3573
3574static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
3575  SDValue TmpOp0, TmpOp1;
3576  bool Invert = false;
3577  bool Swap = false;
3578  unsigned Opc = 0;
3579
3580  SDValue Op0 = Op.getOperand(0);
3581  SDValue Op1 = Op.getOperand(1);
3582  SDValue CC = Op.getOperand(2);
3583  EVT VT = Op.getValueType();
3584  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3585  DebugLoc dl = Op.getDebugLoc();
3586
3587  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
3588    switch (SetCCOpcode) {
3589    default: llvm_unreachable("Illegal FP comparison");
3590    case ISD::SETUNE:
3591    case ISD::SETNE:  Invert = true; // Fallthrough
3592    case ISD::SETOEQ:
3593    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3594    case ISD::SETOLT:
3595    case ISD::SETLT: Swap = true; // Fallthrough
3596    case ISD::SETOGT:
3597    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3598    case ISD::SETOLE:
3599    case ISD::SETLE:  Swap = true; // Fallthrough
3600    case ISD::SETOGE:
3601    case ISD::SETGE: Opc = ARMISD::VCGE; break;
3602    case ISD::SETUGE: Swap = true; // Fallthrough
3603    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
3604    case ISD::SETUGT: Swap = true; // Fallthrough
3605    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
3606    case ISD::SETUEQ: Invert = true; // Fallthrough
3607    case ISD::SETONE:
3608      // Expand this to (OLT | OGT).
3609      TmpOp0 = Op0;
3610      TmpOp1 = Op1;
3611      Opc = ISD::OR;
3612      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3613      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
3614      break;
3615    case ISD::SETUO: Invert = true; // Fallthrough
3616    case ISD::SETO:
3617      // Expand this to (OLT | OGE).
3618      TmpOp0 = Op0;
3619      TmpOp1 = Op1;
3620      Opc = ISD::OR;
3621      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3622      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
3623      break;
3624    }
3625  } else {
3626    // Integer comparisons.
3627    switch (SetCCOpcode) {
3628    default: llvm_unreachable("Illegal integer comparison");
3629    case ISD::SETNE:  Invert = true;
3630    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3631    case ISD::SETLT:  Swap = true;
3632    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3633    case ISD::SETLE:  Swap = true;
3634    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
3635    case ISD::SETULT: Swap = true;
3636    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
3637    case ISD::SETULE: Swap = true;
3638    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
3639    }
3640
3641    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
3642    if (Opc == ARMISD::VCEQ) {
3643
3644      SDValue AndOp;
3645      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3646        AndOp = Op0;
3647      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
3648        AndOp = Op1;
3649
3650      // Ignore bitconvert.
3651      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
3652        AndOp = AndOp.getOperand(0);
3653
3654      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
3655        Opc = ARMISD::VTST;
3656        Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
3657        Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
3658        Invert = !Invert;
3659      }
3660    }
3661  }
3662
3663  if (Swap)
3664    std::swap(Op0, Op1);
3665
3666  // If one of the operands is a constant vector zero, attempt to fold the
3667  // comparison to a specialized compare-against-zero form.
3668  SDValue SingleOp;
3669  if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3670    SingleOp = Op0;
3671  else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
3672    if (Opc == ARMISD::VCGE)
3673      Opc = ARMISD::VCLEZ;
3674    else if (Opc == ARMISD::VCGT)
3675      Opc = ARMISD::VCLTZ;
3676    SingleOp = Op1;
3677  }
3678
3679  SDValue Result;
3680  if (SingleOp.getNode()) {
3681    switch (Opc) {
3682    case ARMISD::VCEQ:
3683      Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
3684    case ARMISD::VCGE:
3685      Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
3686    case ARMISD::VCLEZ:
3687      Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
3688    case ARMISD::VCGT:
3689      Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
3690    case ARMISD::VCLTZ:
3691      Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
3692    default:
3693      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3694    }
3695  } else {
3696     Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3697  }
3698
3699  if (Invert)
3700    Result = DAG.getNOT(dl, Result, VT);
3701
3702  return Result;
3703}
3704
3705/// isNEONModifiedImm - Check if the specified splat value corresponds to a
3706/// valid vector constant for a NEON instruction with a "modified immediate"
3707/// operand (e.g., VMOV).  If so, return the encoded value.
3708static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3709                                 unsigned SplatBitSize, SelectionDAG &DAG,
3710                                 EVT &VT, bool is128Bits, NEONModImmType type) {
3711  unsigned OpCmode, Imm;
3712
3713  // SplatBitSize is set to the smallest size that splats the vector, so a
3714  // zero vector will always have SplatBitSize == 8.  However, NEON modified
3715  // immediate instructions others than VMOV do not support the 8-bit encoding
3716  // of a zero vector, and the default encoding of zero is supposed to be the
3717  // 32-bit version.
3718  if (SplatBits == 0)
3719    SplatBitSize = 32;
3720
3721  switch (SplatBitSize) {
3722  case 8:
3723    if (type != VMOVModImm)
3724      return SDValue();
3725    // Any 1-byte value is OK.  Op=0, Cmode=1110.
3726    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3727    OpCmode = 0xe;
3728    Imm = SplatBits;
3729    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3730    break;
3731
3732  case 16:
3733    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3734    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3735    if ((SplatBits & ~0xff) == 0) {
3736      // Value = 0x00nn: Op=x, Cmode=100x.
3737      OpCmode = 0x8;
3738      Imm = SplatBits;
3739      break;
3740    }
3741    if ((SplatBits & ~0xff00) == 0) {
3742      // Value = 0xnn00: Op=x, Cmode=101x.
3743      OpCmode = 0xa;
3744      Imm = SplatBits >> 8;
3745      break;
3746    }
3747    return SDValue();
3748
3749  case 32:
3750    // NEON's 32-bit VMOV supports splat values where:
3751    // * only one byte is nonzero, or
3752    // * the least significant byte is 0xff and the second byte is nonzero, or
3753    // * the least significant 2 bytes are 0xff and the third is nonzero.
3754    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3755    if ((SplatBits & ~0xff) == 0) {
3756      // Value = 0x000000nn: Op=x, Cmode=000x.
3757      OpCmode = 0;
3758      Imm = SplatBits;
3759      break;
3760    }
3761    if ((SplatBits & ~0xff00) == 0) {
3762      // Value = 0x0000nn00: Op=x, Cmode=001x.
3763      OpCmode = 0x2;
3764      Imm = SplatBits >> 8;
3765      break;
3766    }
3767    if ((SplatBits & ~0xff0000) == 0) {
3768      // Value = 0x00nn0000: Op=x, Cmode=010x.
3769      OpCmode = 0x4;
3770      Imm = SplatBits >> 16;
3771      break;
3772    }
3773    if ((SplatBits & ~0xff000000) == 0) {
3774      // Value = 0xnn000000: Op=x, Cmode=011x.
3775      OpCmode = 0x6;
3776      Imm = SplatBits >> 24;
3777      break;
3778    }
3779
3780    // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
3781    if (type == OtherModImm) return SDValue();
3782
3783    if ((SplatBits & ~0xffff) == 0 &&
3784        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3785      // Value = 0x0000nnff: Op=x, Cmode=1100.
3786      OpCmode = 0xc;
3787      Imm = SplatBits >> 8;
3788      SplatBits |= 0xff;
3789      break;
3790    }
3791
3792    if ((SplatBits & ~0xffffff) == 0 &&
3793        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3794      // Value = 0x00nnffff: Op=x, Cmode=1101.
3795      OpCmode = 0xd;
3796      Imm = SplatBits >> 16;
3797      SplatBits |= 0xffff;
3798      break;
3799    }
3800
3801    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3802    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3803    // VMOV.I32.  A (very) minor optimization would be to replicate the value
3804    // and fall through here to test for a valid 64-bit splat.  But, then the
3805    // caller would also need to check and handle the change in size.
3806    return SDValue();
3807
3808  case 64: {
3809    if (type != VMOVModImm)
3810      return SDValue();
3811    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3812    uint64_t BitMask = 0xff;
3813    uint64_t Val = 0;
3814    unsigned ImmMask = 1;
3815    Imm = 0;
3816    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3817      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3818        Val |= BitMask;
3819        Imm |= ImmMask;
3820      } else if ((SplatBits & BitMask) != 0) {
3821        return SDValue();
3822      }
3823      BitMask <<= 8;
3824      ImmMask <<= 1;
3825    }
3826    // Op=1, Cmode=1110.
3827    OpCmode = 0x1e;
3828    SplatBits = Val;
3829    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3830    break;
3831  }
3832
3833  default:
3834    llvm_unreachable("unexpected size for isNEONModifiedImm");
3835  }
3836
3837  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3838  return DAG.getTargetConstant(EncodedVal, MVT::i32);
3839}
3840
3841SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
3842                                           const ARMSubtarget *ST) const {
3843  if (!ST->useNEONForSinglePrecisionFP() || !ST->hasVFP3() || ST->hasD16())
3844    return SDValue();
3845
3846  ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
3847  assert(Op.getValueType() == MVT::f32 &&
3848         "ConstantFP custom lowering should only occur for f32.");
3849
3850  // Try splatting with a VMOV.f32...
3851  APFloat FPVal = CFP->getValueAPF();
3852  int ImmVal = ARM_AM::getFP32Imm(FPVal);
3853  if (ImmVal != -1) {
3854    DebugLoc DL = Op.getDebugLoc();
3855    SDValue NewVal = DAG.getTargetConstant(ImmVal, MVT::i32);
3856    SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
3857                                      NewVal);
3858    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
3859                       DAG.getConstant(0, MVT::i32));
3860  }
3861
3862  // If that fails, try a VMOV.i32
3863  EVT VMovVT;
3864  unsigned iVal = FPVal.bitcastToAPInt().getZExtValue();
3865  SDValue NewVal = isNEONModifiedImm(iVal, 0, 32, DAG, VMovVT, false,
3866                                     VMOVModImm);
3867  if (NewVal != SDValue()) {
3868    DebugLoc DL = Op.getDebugLoc();
3869    SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
3870                                      NewVal);
3871    SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
3872                                       VecConstant);
3873    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
3874                       DAG.getConstant(0, MVT::i32));
3875  }
3876
3877  // Finally, try a VMVN.i32
3878  NewVal = isNEONModifiedImm(~iVal & 0xffffffff, 0, 32, DAG, VMovVT, false,
3879                             VMVNModImm);
3880  if (NewVal != SDValue()) {
3881    DebugLoc DL = Op.getDebugLoc();
3882    SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
3883    SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
3884                                       VecConstant);
3885    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
3886                       DAG.getConstant(0, MVT::i32));
3887  }
3888
3889  return SDValue();
3890}
3891
3892
3893static bool isVEXTMask(ArrayRef<int> M, EVT VT,
3894                       bool &ReverseVEXT, unsigned &Imm) {
3895  unsigned NumElts = VT.getVectorNumElements();
3896  ReverseVEXT = false;
3897
3898  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
3899  if (M[0] < 0)
3900    return false;
3901
3902  Imm = M[0];
3903
3904  // If this is a VEXT shuffle, the immediate value is the index of the first
3905  // element.  The other shuffle indices must be the successive elements after
3906  // the first one.
3907  unsigned ExpectedElt = Imm;
3908  for (unsigned i = 1; i < NumElts; ++i) {
3909    // Increment the expected index.  If it wraps around, it may still be
3910    // a VEXT but the source vectors must be swapped.
3911    ExpectedElt += 1;
3912    if (ExpectedElt == NumElts * 2) {
3913      ExpectedElt = 0;
3914      ReverseVEXT = true;
3915    }
3916
3917    if (M[i] < 0) continue; // ignore UNDEF indices
3918    if (ExpectedElt != static_cast<unsigned>(M[i]))
3919      return false;
3920  }
3921
3922  // Adjust the index value if the source operands will be swapped.
3923  if (ReverseVEXT)
3924    Imm -= NumElts;
3925
3926  return true;
3927}
3928
3929/// isVREVMask - Check if a vector shuffle corresponds to a VREV
3930/// instruction with the specified blocksize.  (The order of the elements
3931/// within each block of the vector is reversed.)
3932static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
3933  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
3934         "Only possible block sizes for VREV are: 16, 32, 64");
3935
3936  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3937  if (EltSz == 64)
3938    return false;
3939
3940  unsigned NumElts = VT.getVectorNumElements();
3941  unsigned BlockElts = M[0] + 1;
3942  // If the first shuffle index is UNDEF, be optimistic.
3943  if (M[0] < 0)
3944    BlockElts = BlockSize / EltSz;
3945
3946  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3947    return false;
3948
3949  for (unsigned i = 0; i < NumElts; ++i) {
3950    if (M[i] < 0) continue; // ignore UNDEF indices
3951    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3952      return false;
3953  }
3954
3955  return true;
3956}
3957
3958static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
3959  // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
3960  // range, then 0 is placed into the resulting vector. So pretty much any mask
3961  // of 8 elements can work here.
3962  return VT == MVT::v8i8 && M.size() == 8;
3963}
3964
3965static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
3966  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3967  if (EltSz == 64)
3968    return false;
3969
3970  unsigned NumElts = VT.getVectorNumElements();
3971  WhichResult = (M[0] == 0 ? 0 : 1);
3972  for (unsigned i = 0; i < NumElts; i += 2) {
3973    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3974        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
3975      return false;
3976  }
3977  return true;
3978}
3979
3980/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
3981/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3982/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
3983static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
3984  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3985  if (EltSz == 64)
3986    return false;
3987
3988  unsigned NumElts = VT.getVectorNumElements();
3989  WhichResult = (M[0] == 0 ? 0 : 1);
3990  for (unsigned i = 0; i < NumElts; i += 2) {
3991    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3992        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
3993      return false;
3994  }
3995  return true;
3996}
3997
3998static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
3999  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4000  if (EltSz == 64)
4001    return false;
4002
4003  unsigned NumElts = VT.getVectorNumElements();
4004  WhichResult = (M[0] == 0 ? 0 : 1);
4005  for (unsigned i = 0; i != NumElts; ++i) {
4006    if (M[i] < 0) continue; // ignore UNDEF indices
4007    if ((unsigned) M[i] != 2 * i + WhichResult)
4008      return false;
4009  }
4010
4011  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4012  if (VT.is64BitVector() && EltSz == 32)
4013    return false;
4014
4015  return true;
4016}
4017
4018/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
4019/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4020/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
4021static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4022  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4023  if (EltSz == 64)
4024    return false;
4025
4026  unsigned Half = VT.getVectorNumElements() / 2;
4027  WhichResult = (M[0] == 0 ? 0 : 1);
4028  for (unsigned j = 0; j != 2; ++j) {
4029    unsigned Idx = WhichResult;
4030    for (unsigned i = 0; i != Half; ++i) {
4031      int MIdx = M[i + j * Half];
4032      if (MIdx >= 0 && (unsigned) MIdx != Idx)
4033        return false;
4034      Idx += 2;
4035    }
4036  }
4037
4038  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4039  if (VT.is64BitVector() && EltSz == 32)
4040    return false;
4041
4042  return true;
4043}
4044
4045static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4046  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4047  if (EltSz == 64)
4048    return false;
4049
4050  unsigned NumElts = VT.getVectorNumElements();
4051  WhichResult = (M[0] == 0 ? 0 : 1);
4052  unsigned Idx = WhichResult * NumElts / 2;
4053  for (unsigned i = 0; i != NumElts; i += 2) {
4054    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
4055        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
4056      return false;
4057    Idx += 1;
4058  }
4059
4060  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4061  if (VT.is64BitVector() && EltSz == 32)
4062    return false;
4063
4064  return true;
4065}
4066
4067/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
4068/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4069/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
4070static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4071  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4072  if (EltSz == 64)
4073    return false;
4074
4075  unsigned NumElts = VT.getVectorNumElements();
4076  WhichResult = (M[0] == 0 ? 0 : 1);
4077  unsigned Idx = WhichResult * NumElts / 2;
4078  for (unsigned i = 0; i != NumElts; i += 2) {
4079    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
4080        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
4081      return false;
4082    Idx += 1;
4083  }
4084
4085  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4086  if (VT.is64BitVector() && EltSz == 32)
4087    return false;
4088
4089  return true;
4090}
4091
4092// If N is an integer constant that can be moved into a register in one
4093// instruction, return an SDValue of such a constant (will become a MOV
4094// instruction).  Otherwise return null.
4095static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
4096                                     const ARMSubtarget *ST, DebugLoc dl) {
4097  uint64_t Val;
4098  if (!isa<ConstantSDNode>(N))
4099    return SDValue();
4100  Val = cast<ConstantSDNode>(N)->getZExtValue();
4101
4102  if (ST->isThumb1Only()) {
4103    if (Val <= 255 || ~Val <= 255)
4104      return DAG.getConstant(Val, MVT::i32);
4105  } else {
4106    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
4107      return DAG.getConstant(Val, MVT::i32);
4108  }
4109  return SDValue();
4110}
4111
4112// If this is a case we can't handle, return null and let the default
4113// expansion code take care of it.
4114SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
4115                                             const ARMSubtarget *ST) const {
4116  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
4117  DebugLoc dl = Op.getDebugLoc();
4118  EVT VT = Op.getValueType();
4119
4120  APInt SplatBits, SplatUndef;
4121  unsigned SplatBitSize;
4122  bool HasAnyUndefs;
4123  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
4124    if (SplatBitSize <= 64) {
4125      // Check if an immediate VMOV works.
4126      EVT VmovVT;
4127      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
4128                                      SplatUndef.getZExtValue(), SplatBitSize,
4129                                      DAG, VmovVT, VT.is128BitVector(),
4130                                      VMOVModImm);
4131      if (Val.getNode()) {
4132        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
4133        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4134      }
4135
4136      // Try an immediate VMVN.
4137      uint64_t NegatedImm = (~SplatBits).getZExtValue();
4138      Val = isNEONModifiedImm(NegatedImm,
4139                                      SplatUndef.getZExtValue(), SplatBitSize,
4140                                      DAG, VmovVT, VT.is128BitVector(),
4141                                      VMVNModImm);
4142      if (Val.getNode()) {
4143        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
4144        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4145      }
4146
4147      // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
4148      if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
4149        int ImmVal = ARM_AM::getFP32Imm(SplatBits);
4150        if (ImmVal != -1) {
4151          SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
4152          return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
4153        }
4154      }
4155    }
4156  }
4157
4158  // Scan through the operands to see if only one value is used.
4159  unsigned NumElts = VT.getVectorNumElements();
4160  bool isOnlyLowElement = true;
4161  bool usesOnlyOneValue = true;
4162  bool isConstant = true;
4163  SDValue Value;
4164  for (unsigned i = 0; i < NumElts; ++i) {
4165    SDValue V = Op.getOperand(i);
4166    if (V.getOpcode() == ISD::UNDEF)
4167      continue;
4168    if (i > 0)
4169      isOnlyLowElement = false;
4170    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
4171      isConstant = false;
4172
4173    if (!Value.getNode())
4174      Value = V;
4175    else if (V != Value)
4176      usesOnlyOneValue = false;
4177  }
4178
4179  if (!Value.getNode())
4180    return DAG.getUNDEF(VT);
4181
4182  if (isOnlyLowElement)
4183    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
4184
4185  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4186
4187  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
4188  // i32 and try again.
4189  if (usesOnlyOneValue && EltSize <= 32) {
4190    if (!isConstant)
4191      return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
4192    if (VT.getVectorElementType().isFloatingPoint()) {
4193      SmallVector<SDValue, 8> Ops;
4194      for (unsigned i = 0; i < NumElts; ++i)
4195        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4196                                  Op.getOperand(i)));
4197      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
4198      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
4199      Val = LowerBUILD_VECTOR(Val, DAG, ST);
4200      if (Val.getNode())
4201        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4202    }
4203    SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
4204    if (Val.getNode())
4205      return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
4206  }
4207
4208  // If all elements are constants and the case above didn't get hit, fall back
4209  // to the default expansion, which will generate a load from the constant
4210  // pool.
4211  if (isConstant)
4212    return SDValue();
4213
4214  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
4215  if (NumElts >= 4) {
4216    SDValue shuffle = ReconstructShuffle(Op, DAG);
4217    if (shuffle != SDValue())
4218      return shuffle;
4219  }
4220
4221  // Vectors with 32- or 64-bit elements can be built by directly assigning
4222  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
4223  // will be legalized.
4224  if (EltSize >= 32) {
4225    // Do the expansion with floating-point types, since that is what the VFP
4226    // registers are defined to use, and since i64 is not legal.
4227    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4228    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4229    SmallVector<SDValue, 8> Ops;
4230    for (unsigned i = 0; i < NumElts; ++i)
4231      Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
4232    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4233    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4234  }
4235
4236  return SDValue();
4237}
4238
4239// Gather data to see if the operation can be modelled as a
4240// shuffle in combination with VEXTs.
4241SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
4242                                              SelectionDAG &DAG) const {
4243  DebugLoc dl = Op.getDebugLoc();
4244  EVT VT = Op.getValueType();
4245  unsigned NumElts = VT.getVectorNumElements();
4246
4247  SmallVector<SDValue, 2> SourceVecs;
4248  SmallVector<unsigned, 2> MinElts;
4249  SmallVector<unsigned, 2> MaxElts;
4250
4251  for (unsigned i = 0; i < NumElts; ++i) {
4252    SDValue V = Op.getOperand(i);
4253    if (V.getOpcode() == ISD::UNDEF)
4254      continue;
4255    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4256      // A shuffle can only come from building a vector from various
4257      // elements of other vectors.
4258      return SDValue();
4259    } else if (V.getOperand(0).getValueType().getVectorElementType() !=
4260               VT.getVectorElementType()) {
4261      // This code doesn't know how to handle shuffles where the vector
4262      // element types do not match (this happens because type legalization
4263      // promotes the return type of EXTRACT_VECTOR_ELT).
4264      // FIXME: It might be appropriate to extend this code to handle
4265      // mismatched types.
4266      return SDValue();
4267    }
4268
4269    // Record this extraction against the appropriate vector if possible...
4270    SDValue SourceVec = V.getOperand(0);
4271    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4272    bool FoundSource = false;
4273    for (unsigned j = 0; j < SourceVecs.size(); ++j) {
4274      if (SourceVecs[j] == SourceVec) {
4275        if (MinElts[j] > EltNo)
4276          MinElts[j] = EltNo;
4277        if (MaxElts[j] < EltNo)
4278          MaxElts[j] = EltNo;
4279        FoundSource = true;
4280        break;
4281      }
4282    }
4283
4284    // Or record a new source if not...
4285    if (!FoundSource) {
4286      SourceVecs.push_back(SourceVec);
4287      MinElts.push_back(EltNo);
4288      MaxElts.push_back(EltNo);
4289    }
4290  }
4291
4292  // Currently only do something sane when at most two source vectors
4293  // involved.
4294  if (SourceVecs.size() > 2)
4295    return SDValue();
4296
4297  SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
4298  int VEXTOffsets[2] = {0, 0};
4299
4300  // This loop extracts the usage patterns of the source vectors
4301  // and prepares appropriate SDValues for a shuffle if possible.
4302  for (unsigned i = 0; i < SourceVecs.size(); ++i) {
4303    if (SourceVecs[i].getValueType() == VT) {
4304      // No VEXT necessary
4305      ShuffleSrcs[i] = SourceVecs[i];
4306      VEXTOffsets[i] = 0;
4307      continue;
4308    } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
4309      // It probably isn't worth padding out a smaller vector just to
4310      // break it down again in a shuffle.
4311      return SDValue();
4312    }
4313
4314    // Since only 64-bit and 128-bit vectors are legal on ARM and
4315    // we've eliminated the other cases...
4316    assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
4317           "unexpected vector sizes in ReconstructShuffle");
4318
4319    if (MaxElts[i] - MinElts[i] >= NumElts) {
4320      // Span too large for a VEXT to cope
4321      return SDValue();
4322    }
4323
4324    if (MinElts[i] >= NumElts) {
4325      // The extraction can just take the second half
4326      VEXTOffsets[i] = NumElts;
4327      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4328                                   SourceVecs[i],
4329                                   DAG.getIntPtrConstant(NumElts));
4330    } else if (MaxElts[i] < NumElts) {
4331      // The extraction can just take the first half
4332      VEXTOffsets[i] = 0;
4333      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4334                                   SourceVecs[i],
4335                                   DAG.getIntPtrConstant(0));
4336    } else {
4337      // An actual VEXT is needed
4338      VEXTOffsets[i] = MinElts[i];
4339      SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4340                                     SourceVecs[i],
4341                                     DAG.getIntPtrConstant(0));
4342      SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4343                                     SourceVecs[i],
4344                                     DAG.getIntPtrConstant(NumElts));
4345      ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
4346                                   DAG.getConstant(VEXTOffsets[i], MVT::i32));
4347    }
4348  }
4349
4350  SmallVector<int, 8> Mask;
4351
4352  for (unsigned i = 0; i < NumElts; ++i) {
4353    SDValue Entry = Op.getOperand(i);
4354    if (Entry.getOpcode() == ISD::UNDEF) {
4355      Mask.push_back(-1);
4356      continue;
4357    }
4358
4359    SDValue ExtractVec = Entry.getOperand(0);
4360    int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
4361                                          .getOperand(1))->getSExtValue();
4362    if (ExtractVec == SourceVecs[0]) {
4363      Mask.push_back(ExtractElt - VEXTOffsets[0]);
4364    } else {
4365      Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
4366    }
4367  }
4368
4369  // Final check before we try to produce nonsense...
4370  if (isShuffleMaskLegal(Mask, VT))
4371    return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
4372                                &Mask[0]);
4373
4374  return SDValue();
4375}
4376
4377/// isShuffleMaskLegal - Targets can use this to indicate that they only
4378/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4379/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4380/// are assumed to be legal.
4381bool
4382ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
4383                                      EVT VT) const {
4384  if (VT.getVectorNumElements() == 4 &&
4385      (VT.is128BitVector() || VT.is64BitVector())) {
4386    unsigned PFIndexes[4];
4387    for (unsigned i = 0; i != 4; ++i) {
4388      if (M[i] < 0)
4389        PFIndexes[i] = 8;
4390      else
4391        PFIndexes[i] = M[i];
4392    }
4393
4394    // Compute the index in the perfect shuffle table.
4395    unsigned PFTableIndex =
4396      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4397    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4398    unsigned Cost = (PFEntry >> 30);
4399
4400    if (Cost <= 4)
4401      return true;
4402  }
4403
4404  bool ReverseVEXT;
4405  unsigned Imm, WhichResult;
4406
4407  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4408  return (EltSize >= 32 ||
4409          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
4410          isVREVMask(M, VT, 64) ||
4411          isVREVMask(M, VT, 32) ||
4412          isVREVMask(M, VT, 16) ||
4413          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
4414          isVTBLMask(M, VT) ||
4415          isVTRNMask(M, VT, WhichResult) ||
4416          isVUZPMask(M, VT, WhichResult) ||
4417          isVZIPMask(M, VT, WhichResult) ||
4418          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
4419          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
4420          isVZIP_v_undef_Mask(M, VT, WhichResult));
4421}
4422
4423/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4424/// the specified operations to build the shuffle.
4425static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4426                                      SDValue RHS, SelectionDAG &DAG,
4427                                      DebugLoc dl) {
4428  unsigned OpNum = (PFEntry >> 26) & 0x0F;
4429  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4430  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4431
4432  enum {
4433    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4434    OP_VREV,
4435    OP_VDUP0,
4436    OP_VDUP1,
4437    OP_VDUP2,
4438    OP_VDUP3,
4439    OP_VEXT1,
4440    OP_VEXT2,
4441    OP_VEXT3,
4442    OP_VUZPL, // VUZP, left result
4443    OP_VUZPR, // VUZP, right result
4444    OP_VZIPL, // VZIP, left result
4445    OP_VZIPR, // VZIP, right result
4446    OP_VTRNL, // VTRN, left result
4447    OP_VTRNR  // VTRN, right result
4448  };
4449
4450  if (OpNum == OP_COPY) {
4451    if (LHSID == (1*9+2)*9+3) return LHS;
4452    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4453    return RHS;
4454  }
4455
4456  SDValue OpLHS, OpRHS;
4457  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4458  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4459  EVT VT = OpLHS.getValueType();
4460
4461  switch (OpNum) {
4462  default: llvm_unreachable("Unknown shuffle opcode!");
4463  case OP_VREV:
4464    // VREV divides the vector in half and swaps within the half.
4465    if (VT.getVectorElementType() == MVT::i32 ||
4466        VT.getVectorElementType() == MVT::f32)
4467      return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
4468    // vrev <4 x i16> -> VREV32
4469    if (VT.getVectorElementType() == MVT::i16)
4470      return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
4471    // vrev <4 x i8> -> VREV16
4472    assert(VT.getVectorElementType() == MVT::i8);
4473    return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
4474  case OP_VDUP0:
4475  case OP_VDUP1:
4476  case OP_VDUP2:
4477  case OP_VDUP3:
4478    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4479                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
4480  case OP_VEXT1:
4481  case OP_VEXT2:
4482  case OP_VEXT3:
4483    return DAG.getNode(ARMISD::VEXT, dl, VT,
4484                       OpLHS, OpRHS,
4485                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
4486  case OP_VUZPL:
4487  case OP_VUZPR:
4488    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4489                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
4490  case OP_VZIPL:
4491  case OP_VZIPR:
4492    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4493                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
4494  case OP_VTRNL:
4495  case OP_VTRNR:
4496    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4497                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
4498  }
4499}
4500
4501static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
4502                                       ArrayRef<int> ShuffleMask,
4503                                       SelectionDAG &DAG) {
4504  // Check to see if we can use the VTBL instruction.
4505  SDValue V1 = Op.getOperand(0);
4506  SDValue V2 = Op.getOperand(1);
4507  DebugLoc DL = Op.getDebugLoc();
4508
4509  SmallVector<SDValue, 8> VTBLMask;
4510  for (ArrayRef<int>::iterator
4511         I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
4512    VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
4513
4514  if (V2.getNode()->getOpcode() == ISD::UNDEF)
4515    return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
4516                       DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4517                                   &VTBLMask[0], 8));
4518
4519  return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
4520                     DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4521                                 &VTBLMask[0], 8));
4522}
4523
4524static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4525  SDValue V1 = Op.getOperand(0);
4526  SDValue V2 = Op.getOperand(1);
4527  DebugLoc dl = Op.getDebugLoc();
4528  EVT VT = Op.getValueType();
4529  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
4530
4531  // Convert shuffles that are directly supported on NEON to target-specific
4532  // DAG nodes, instead of keeping them as shuffles and matching them again
4533  // during code selection.  This is more efficient and avoids the possibility
4534  // of inconsistencies between legalization and selection.
4535  // FIXME: floating-point vectors should be canonicalized to integer vectors
4536  // of the same time so that they get CSEd properly.
4537  ArrayRef<int> ShuffleMask = SVN->getMask();
4538
4539  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4540  if (EltSize <= 32) {
4541    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
4542      int Lane = SVN->getSplatIndex();
4543      // If this is undef splat, generate it via "just" vdup, if possible.
4544      if (Lane == -1) Lane = 0;
4545
4546      // Test if V1 is a SCALAR_TO_VECTOR.
4547      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4548        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4549      }
4550      // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
4551      // (and probably will turn into a SCALAR_TO_VECTOR once legalization
4552      // reaches it).
4553      if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
4554          !isa<ConstantSDNode>(V1.getOperand(0))) {
4555        bool IsScalarToVector = true;
4556        for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
4557          if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
4558            IsScalarToVector = false;
4559            break;
4560          }
4561        if (IsScalarToVector)
4562          return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4563      }
4564      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
4565                         DAG.getConstant(Lane, MVT::i32));
4566    }
4567
4568    bool ReverseVEXT;
4569    unsigned Imm;
4570    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
4571      if (ReverseVEXT)
4572        std::swap(V1, V2);
4573      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
4574                         DAG.getConstant(Imm, MVT::i32));
4575    }
4576
4577    if (isVREVMask(ShuffleMask, VT, 64))
4578      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
4579    if (isVREVMask(ShuffleMask, VT, 32))
4580      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
4581    if (isVREVMask(ShuffleMask, VT, 16))
4582      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
4583
4584    // Check for Neon shuffles that modify both input vectors in place.
4585    // If both results are used, i.e., if there are two shuffles with the same
4586    // source operands and with masks corresponding to both results of one of
4587    // these operations, DAG memoization will ensure that a single node is
4588    // used for both shuffles.
4589    unsigned WhichResult;
4590    if (isVTRNMask(ShuffleMask, VT, WhichResult))
4591      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4592                         V1, V2).getValue(WhichResult);
4593    if (isVUZPMask(ShuffleMask, VT, WhichResult))
4594      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4595                         V1, V2).getValue(WhichResult);
4596    if (isVZIPMask(ShuffleMask, VT, WhichResult))
4597      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4598                         V1, V2).getValue(WhichResult);
4599
4600    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
4601      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4602                         V1, V1).getValue(WhichResult);
4603    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4604      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4605                         V1, V1).getValue(WhichResult);
4606    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4607      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4608                         V1, V1).getValue(WhichResult);
4609  }
4610
4611  // If the shuffle is not directly supported and it has 4 elements, use
4612  // the PerfectShuffle-generated table to synthesize it from other shuffles.
4613  unsigned NumElts = VT.getVectorNumElements();
4614  if (NumElts == 4) {
4615    unsigned PFIndexes[4];
4616    for (unsigned i = 0; i != 4; ++i) {
4617      if (ShuffleMask[i] < 0)
4618        PFIndexes[i] = 8;
4619      else
4620        PFIndexes[i] = ShuffleMask[i];
4621    }
4622
4623    // Compute the index in the perfect shuffle table.
4624    unsigned PFTableIndex =
4625      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4626    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4627    unsigned Cost = (PFEntry >> 30);
4628
4629    if (Cost <= 4)
4630      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4631  }
4632
4633  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
4634  if (EltSize >= 32) {
4635    // Do the expansion with floating-point types, since that is what the VFP
4636    // registers are defined to use, and since i64 is not legal.
4637    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4638    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4639    V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
4640    V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
4641    SmallVector<SDValue, 8> Ops;
4642    for (unsigned i = 0; i < NumElts; ++i) {
4643      if (ShuffleMask[i] < 0)
4644        Ops.push_back(DAG.getUNDEF(EltVT));
4645      else
4646        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
4647                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
4648                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
4649                                                  MVT::i32)));
4650    }
4651    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4652    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4653  }
4654
4655  if (VT == MVT::v8i8) {
4656    SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
4657    if (NewOp.getNode())
4658      return NewOp;
4659  }
4660
4661  return SDValue();
4662}
4663
4664static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4665  // INSERT_VECTOR_ELT is legal only for immediate indexes.
4666  SDValue Lane = Op.getOperand(2);
4667  if (!isa<ConstantSDNode>(Lane))
4668    return SDValue();
4669
4670  return Op;
4671}
4672
4673static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4674  // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
4675  SDValue Lane = Op.getOperand(1);
4676  if (!isa<ConstantSDNode>(Lane))
4677    return SDValue();
4678
4679  SDValue Vec = Op.getOperand(0);
4680  if (Op.getValueType() == MVT::i32 &&
4681      Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
4682    DebugLoc dl = Op.getDebugLoc();
4683    return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
4684  }
4685
4686  return Op;
4687}
4688
4689static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
4690  // The only time a CONCAT_VECTORS operation can have legal types is when
4691  // two 64-bit vectors are concatenated to a 128-bit vector.
4692  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
4693         "unexpected CONCAT_VECTORS");
4694  DebugLoc dl = Op.getDebugLoc();
4695  SDValue Val = DAG.getUNDEF(MVT::v2f64);
4696  SDValue Op0 = Op.getOperand(0);
4697  SDValue Op1 = Op.getOperand(1);
4698  if (Op0.getOpcode() != ISD::UNDEF)
4699    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4700                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
4701                      DAG.getIntPtrConstant(0));
4702  if (Op1.getOpcode() != ISD::UNDEF)
4703    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4704                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
4705                      DAG.getIntPtrConstant(1));
4706  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
4707}
4708
4709/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
4710/// element has been zero/sign-extended, depending on the isSigned parameter,
4711/// from an integer type half its size.
4712static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
4713                                   bool isSigned) {
4714  // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
4715  EVT VT = N->getValueType(0);
4716  if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
4717    SDNode *BVN = N->getOperand(0).getNode();
4718    if (BVN->getValueType(0) != MVT::v4i32 ||
4719        BVN->getOpcode() != ISD::BUILD_VECTOR)
4720      return false;
4721    unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4722    unsigned HiElt = 1 - LoElt;
4723    ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
4724    ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
4725    ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
4726    ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
4727    if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
4728      return false;
4729    if (isSigned) {
4730      if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
4731          Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
4732        return true;
4733    } else {
4734      if (Hi0->isNullValue() && Hi1->isNullValue())
4735        return true;
4736    }
4737    return false;
4738  }
4739
4740  if (N->getOpcode() != ISD::BUILD_VECTOR)
4741    return false;
4742
4743  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
4744    SDNode *Elt = N->getOperand(i).getNode();
4745    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
4746      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4747      unsigned HalfSize = EltSize / 2;
4748      if (isSigned) {
4749        if (!isIntN(HalfSize, C->getSExtValue()))
4750          return false;
4751      } else {
4752        if (!isUIntN(HalfSize, C->getZExtValue()))
4753          return false;
4754      }
4755      continue;
4756    }
4757    return false;
4758  }
4759
4760  return true;
4761}
4762
4763/// isSignExtended - Check if a node is a vector value that is sign-extended
4764/// or a constant BUILD_VECTOR with sign-extended elements.
4765static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
4766  if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
4767    return true;
4768  if (isExtendedBUILD_VECTOR(N, DAG, true))
4769    return true;
4770  return false;
4771}
4772
4773/// isZeroExtended - Check if a node is a vector value that is zero-extended
4774/// or a constant BUILD_VECTOR with zero-extended elements.
4775static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
4776  if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
4777    return true;
4778  if (isExtendedBUILD_VECTOR(N, DAG, false))
4779    return true;
4780  return false;
4781}
4782
4783/// SkipExtension - For a node that is a SIGN_EXTEND, ZERO_EXTEND, extending
4784/// load, or BUILD_VECTOR with extended elements, return the unextended value.
4785static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
4786  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
4787    return N->getOperand(0);
4788  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
4789    return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
4790                       LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
4791                       LD->isNonTemporal(), LD->isInvariant(),
4792                       LD->getAlignment());
4793  // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
4794  // have been legalized as a BITCAST from v4i32.
4795  if (N->getOpcode() == ISD::BITCAST) {
4796    SDNode *BVN = N->getOperand(0).getNode();
4797    assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
4798           BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
4799    unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4800    return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
4801                       BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
4802  }
4803  // Construct a new BUILD_VECTOR with elements truncated to half the size.
4804  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
4805  EVT VT = N->getValueType(0);
4806  unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
4807  unsigned NumElts = VT.getVectorNumElements();
4808  MVT TruncVT = MVT::getIntegerVT(EltSize);
4809  SmallVector<SDValue, 8> Ops;
4810  for (unsigned i = 0; i != NumElts; ++i) {
4811    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
4812    const APInt &CInt = C->getAPIntValue();
4813    // Element types smaller than 32 bits are not legal, so use i32 elements.
4814    // The values are implicitly truncated so sext vs. zext doesn't matter.
4815    Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32));
4816  }
4817  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
4818                     MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
4819}
4820
4821static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
4822  unsigned Opcode = N->getOpcode();
4823  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4824    SDNode *N0 = N->getOperand(0).getNode();
4825    SDNode *N1 = N->getOperand(1).getNode();
4826    return N0->hasOneUse() && N1->hasOneUse() &&
4827      isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
4828  }
4829  return false;
4830}
4831
4832static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
4833  unsigned Opcode = N->getOpcode();
4834  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4835    SDNode *N0 = N->getOperand(0).getNode();
4836    SDNode *N1 = N->getOperand(1).getNode();
4837    return N0->hasOneUse() && N1->hasOneUse() &&
4838      isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
4839  }
4840  return false;
4841}
4842
4843static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
4844  // Multiplications are only custom-lowered for 128-bit vectors so that
4845  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
4846  EVT VT = Op.getValueType();
4847  assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
4848  SDNode *N0 = Op.getOperand(0).getNode();
4849  SDNode *N1 = Op.getOperand(1).getNode();
4850  unsigned NewOpc = 0;
4851  bool isMLA = false;
4852  bool isN0SExt = isSignExtended(N0, DAG);
4853  bool isN1SExt = isSignExtended(N1, DAG);
4854  if (isN0SExt && isN1SExt)
4855    NewOpc = ARMISD::VMULLs;
4856  else {
4857    bool isN0ZExt = isZeroExtended(N0, DAG);
4858    bool isN1ZExt = isZeroExtended(N1, DAG);
4859    if (isN0ZExt && isN1ZExt)
4860      NewOpc = ARMISD::VMULLu;
4861    else if (isN1SExt || isN1ZExt) {
4862      // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
4863      // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
4864      if (isN1SExt && isAddSubSExt(N0, DAG)) {
4865        NewOpc = ARMISD::VMULLs;
4866        isMLA = true;
4867      } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
4868        NewOpc = ARMISD::VMULLu;
4869        isMLA = true;
4870      } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
4871        std::swap(N0, N1);
4872        NewOpc = ARMISD::VMULLu;
4873        isMLA = true;
4874      }
4875    }
4876
4877    if (!NewOpc) {
4878      if (VT == MVT::v2i64)
4879        // Fall through to expand this.  It is not legal.
4880        return SDValue();
4881      else
4882        // Other vector multiplications are legal.
4883        return Op;
4884    }
4885  }
4886
4887  // Legalize to a VMULL instruction.
4888  DebugLoc DL = Op.getDebugLoc();
4889  SDValue Op0;
4890  SDValue Op1 = SkipExtension(N1, DAG);
4891  if (!isMLA) {
4892    Op0 = SkipExtension(N0, DAG);
4893    assert(Op0.getValueType().is64BitVector() &&
4894           Op1.getValueType().is64BitVector() &&
4895           "unexpected types for extended operands to VMULL");
4896    return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
4897  }
4898
4899  // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
4900  // isel lowering to take advantage of no-stall back to back vmul + vmla.
4901  //   vmull q0, d4, d6
4902  //   vmlal q0, d5, d6
4903  // is faster than
4904  //   vaddl q0, d4, d5
4905  //   vmovl q1, d6
4906  //   vmul  q0, q0, q1
4907  SDValue N00 = SkipExtension(N0->getOperand(0).getNode(), DAG);
4908  SDValue N01 = SkipExtension(N0->getOperand(1).getNode(), DAG);
4909  EVT Op1VT = Op1.getValueType();
4910  return DAG.getNode(N0->getOpcode(), DL, VT,
4911                     DAG.getNode(NewOpc, DL, VT,
4912                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
4913                     DAG.getNode(NewOpc, DL, VT,
4914                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
4915}
4916
4917static SDValue
4918LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) {
4919  // Convert to float
4920  // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
4921  // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
4922  X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
4923  Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
4924  X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
4925  Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
4926  // Get reciprocal estimate.
4927  // float4 recip = vrecpeq_f32(yf);
4928  Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4929                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
4930  // Because char has a smaller range than uchar, we can actually get away
4931  // without any newton steps.  This requires that we use a weird bias
4932  // of 0xb000, however (again, this has been exhaustively tested).
4933  // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
4934  X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
4935  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
4936  Y = DAG.getConstant(0xb000, MVT::i32);
4937  Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
4938  X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
4939  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
4940  // Convert back to short.
4941  X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
4942  X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
4943  return X;
4944}
4945
4946static SDValue
4947LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) {
4948  SDValue N2;
4949  // Convert to float.
4950  // float4 yf = vcvt_f32_s32(vmovl_s16(y));
4951  // float4 xf = vcvt_f32_s32(vmovl_s16(x));
4952  N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
4953  N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
4954  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4955  N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4956
4957  // Use reciprocal estimate and one refinement step.
4958  // float4 recip = vrecpeq_f32(yf);
4959  // recip *= vrecpsq_f32(yf, recip);
4960  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4961                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
4962  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4963                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4964                   N1, N2);
4965  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4966  // Because short has a smaller range than ushort, we can actually get away
4967  // with only a single newton step.  This requires that we use a weird bias
4968  // of 89, however (again, this has been exhaustively tested).
4969  // float4 result = as_float4(as_int4(xf*recip) + 0x89);
4970  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4971  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4972  N1 = DAG.getConstant(0x89, MVT::i32);
4973  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4974  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4975  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4976  // Convert back to integer and return.
4977  // return vmovn_s32(vcvt_s32_f32(result));
4978  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4979  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4980  return N0;
4981}
4982
4983static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
4984  EVT VT = Op.getValueType();
4985  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4986         "unexpected type for custom-lowering ISD::SDIV");
4987
4988  DebugLoc dl = Op.getDebugLoc();
4989  SDValue N0 = Op.getOperand(0);
4990  SDValue N1 = Op.getOperand(1);
4991  SDValue N2, N3;
4992
4993  if (VT == MVT::v8i8) {
4994    N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
4995    N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
4996
4997    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4998                     DAG.getIntPtrConstant(4));
4999    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5000                     DAG.getIntPtrConstant(4));
5001    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5002                     DAG.getIntPtrConstant(0));
5003    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5004                     DAG.getIntPtrConstant(0));
5005
5006    N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
5007    N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
5008
5009    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
5010    N0 = LowerCONCAT_VECTORS(N0, DAG);
5011
5012    N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
5013    return N0;
5014  }
5015  return LowerSDIV_v4i16(N0, N1, dl, DAG);
5016}
5017
5018static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
5019  EVT VT = Op.getValueType();
5020  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
5021         "unexpected type for custom-lowering ISD::UDIV");
5022
5023  DebugLoc dl = Op.getDebugLoc();
5024  SDValue N0 = Op.getOperand(0);
5025  SDValue N1 = Op.getOperand(1);
5026  SDValue N2, N3;
5027
5028  if (VT == MVT::v8i8) {
5029    N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
5030    N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
5031
5032    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5033                     DAG.getIntPtrConstant(4));
5034    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5035                     DAG.getIntPtrConstant(4));
5036    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5037                     DAG.getIntPtrConstant(0));
5038    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5039                     DAG.getIntPtrConstant(0));
5040
5041    N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
5042    N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
5043
5044    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
5045    N0 = LowerCONCAT_VECTORS(N0, DAG);
5046
5047    N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
5048                     DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
5049                     N0);
5050    return N0;
5051  }
5052
5053  // v4i16 sdiv ... Convert to float.
5054  // float4 yf = vcvt_f32_s32(vmovl_u16(y));
5055  // float4 xf = vcvt_f32_s32(vmovl_u16(x));
5056  N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
5057  N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
5058  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
5059  SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
5060
5061  // Use reciprocal estimate and two refinement steps.
5062  // float4 recip = vrecpeq_f32(yf);
5063  // recip *= vrecpsq_f32(yf, recip);
5064  // recip *= vrecpsq_f32(yf, recip);
5065  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5066                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
5067  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5068                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5069                   BN1, N2);
5070  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5071  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5072                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5073                   BN1, N2);
5074  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5075  // Simply multiplying by the reciprocal estimate can leave us a few ulps
5076  // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
5077  // and that it will never cause us to return an answer too large).
5078  // float4 result = as_float4(as_int4(xf*recip) + 2);
5079  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
5080  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
5081  N1 = DAG.getConstant(2, MVT::i32);
5082  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
5083  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
5084  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
5085  // Convert back to integer and return.
5086  // return vmovn_u32(vcvt_s32_f32(result));
5087  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
5088  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
5089  return N0;
5090}
5091
5092static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
5093  EVT VT = Op.getNode()->getValueType(0);
5094  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
5095
5096  unsigned Opc;
5097  bool ExtraOp = false;
5098  switch (Op.getOpcode()) {
5099  default: llvm_unreachable("Invalid code");
5100  case ISD::ADDC: Opc = ARMISD::ADDC; break;
5101  case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
5102  case ISD::SUBC: Opc = ARMISD::SUBC; break;
5103  case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
5104  }
5105
5106  if (!ExtraOp)
5107    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
5108                       Op.getOperand(1));
5109  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
5110                     Op.getOperand(1), Op.getOperand(2));
5111}
5112
5113static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
5114  // Monotonic load/store is legal for all targets
5115  if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
5116    return Op;
5117
5118  // Aquire/Release load/store is not legal for targets without a
5119  // dmb or equivalent available.
5120  return SDValue();
5121}
5122
5123
5124static void
5125ReplaceATOMIC_OP_64(SDNode *Node, SmallVectorImpl<SDValue>& Results,
5126                    SelectionDAG &DAG, unsigned NewOp) {
5127  DebugLoc dl = Node->getDebugLoc();
5128  assert (Node->getValueType(0) == MVT::i64 &&
5129          "Only know how to expand i64 atomics");
5130
5131  SmallVector<SDValue, 6> Ops;
5132  Ops.push_back(Node->getOperand(0)); // Chain
5133  Ops.push_back(Node->getOperand(1)); // Ptr
5134  // Low part of Val1
5135  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5136                            Node->getOperand(2), DAG.getIntPtrConstant(0)));
5137  // High part of Val1
5138  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5139                            Node->getOperand(2), DAG.getIntPtrConstant(1)));
5140  if (NewOp == ARMISD::ATOMCMPXCHG64_DAG) {
5141    // High part of Val1
5142    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5143                              Node->getOperand(3), DAG.getIntPtrConstant(0)));
5144    // High part of Val2
5145    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5146                              Node->getOperand(3), DAG.getIntPtrConstant(1)));
5147  }
5148  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
5149  SDValue Result =
5150    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops.data(), Ops.size(), MVT::i64,
5151                            cast<MemSDNode>(Node)->getMemOperand());
5152  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1) };
5153  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
5154  Results.push_back(Result.getValue(2));
5155}
5156
5157SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5158  switch (Op.getOpcode()) {
5159  default: llvm_unreachable("Don't know how to custom lower this!");
5160  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
5161  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
5162  case ISD::GlobalAddress:
5163    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
5164      LowerGlobalAddressELF(Op, DAG);
5165  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
5166  case ISD::SELECT:        return LowerSELECT(Op, DAG);
5167  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
5168  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
5169  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
5170  case ISD::VASTART:       return LowerVASTART(Op, DAG);
5171  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
5172  case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
5173  case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
5174  case ISD::SINT_TO_FP:
5175  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
5176  case ISD::FP_TO_SINT:
5177  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
5178  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
5179  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
5180  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
5181  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
5182  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
5183  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
5184  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
5185                                                               Subtarget);
5186  case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
5187  case ISD::SHL:
5188  case ISD::SRL:
5189  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
5190  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
5191  case ISD::SRL_PARTS:
5192  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
5193  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
5194  case ISD::SETCC:         return LowerVSETCC(Op, DAG);
5195  case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
5196  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
5197  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
5198  case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
5199  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5200  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
5201  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
5202  case ISD::MUL:           return LowerMUL(Op, DAG);
5203  case ISD::SDIV:          return LowerSDIV(Op, DAG);
5204  case ISD::UDIV:          return LowerUDIV(Op, DAG);
5205  case ISD::ADDC:
5206  case ISD::ADDE:
5207  case ISD::SUBC:
5208  case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
5209  case ISD::ATOMIC_LOAD:
5210  case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
5211  }
5212}
5213
5214/// ReplaceNodeResults - Replace the results of node with an illegal result
5215/// type with new values built out of custom code.
5216void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
5217                                           SmallVectorImpl<SDValue>&Results,
5218                                           SelectionDAG &DAG) const {
5219  SDValue Res;
5220  switch (N->getOpcode()) {
5221  default:
5222    llvm_unreachable("Don't know how to custom expand this!");
5223  case ISD::BITCAST:
5224    Res = ExpandBITCAST(N, DAG);
5225    break;
5226  case ISD::SRL:
5227  case ISD::SRA:
5228    Res = Expand64BitShift(N, DAG, Subtarget);
5229    break;
5230  case ISD::ATOMIC_LOAD_ADD:
5231    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMADD64_DAG);
5232    return;
5233  case ISD::ATOMIC_LOAD_AND:
5234    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMAND64_DAG);
5235    return;
5236  case ISD::ATOMIC_LOAD_NAND:
5237    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMNAND64_DAG);
5238    return;
5239  case ISD::ATOMIC_LOAD_OR:
5240    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMOR64_DAG);
5241    return;
5242  case ISD::ATOMIC_LOAD_SUB:
5243    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSUB64_DAG);
5244    return;
5245  case ISD::ATOMIC_LOAD_XOR:
5246    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMXOR64_DAG);
5247    return;
5248  case ISD::ATOMIC_SWAP:
5249    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSWAP64_DAG);
5250    return;
5251  case ISD::ATOMIC_CMP_SWAP:
5252    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMCMPXCHG64_DAG);
5253    return;
5254  }
5255  if (Res.getNode())
5256    Results.push_back(Res);
5257}
5258
5259//===----------------------------------------------------------------------===//
5260//                           ARM Scheduler Hooks
5261//===----------------------------------------------------------------------===//
5262
5263MachineBasicBlock *
5264ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
5265                                     MachineBasicBlock *BB,
5266                                     unsigned Size) const {
5267  unsigned dest    = MI->getOperand(0).getReg();
5268  unsigned ptr     = MI->getOperand(1).getReg();
5269  unsigned oldval  = MI->getOperand(2).getReg();
5270  unsigned newval  = MI->getOperand(3).getReg();
5271  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5272  DebugLoc dl = MI->getDebugLoc();
5273  bool isThumb2 = Subtarget->isThumb2();
5274
5275  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5276  unsigned scratch = MRI.createVirtualRegister(isThumb2 ?
5277    (const TargetRegisterClass*)&ARM::rGPRRegClass :
5278    (const TargetRegisterClass*)&ARM::GPRRegClass);
5279
5280  if (isThumb2) {
5281    MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
5282    MRI.constrainRegClass(oldval, &ARM::rGPRRegClass);
5283    MRI.constrainRegClass(newval, &ARM::rGPRRegClass);
5284  }
5285
5286  unsigned ldrOpc, strOpc;
5287  switch (Size) {
5288  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5289  case 1:
5290    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5291    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5292    break;
5293  case 2:
5294    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5295    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5296    break;
5297  case 4:
5298    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5299    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5300    break;
5301  }
5302
5303  MachineFunction *MF = BB->getParent();
5304  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5305  MachineFunction::iterator It = BB;
5306  ++It; // insert the new blocks after the current block
5307
5308  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5309  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5310  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5311  MF->insert(It, loop1MBB);
5312  MF->insert(It, loop2MBB);
5313  MF->insert(It, exitMBB);
5314
5315  // Transfer the remainder of BB and its successor edges to exitMBB.
5316  exitMBB->splice(exitMBB->begin(), BB,
5317                  llvm::next(MachineBasicBlock::iterator(MI)),
5318                  BB->end());
5319  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5320
5321  //  thisMBB:
5322  //   ...
5323  //   fallthrough --> loop1MBB
5324  BB->addSuccessor(loop1MBB);
5325
5326  // loop1MBB:
5327  //   ldrex dest, [ptr]
5328  //   cmp dest, oldval
5329  //   bne exitMBB
5330  BB = loop1MBB;
5331  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5332  if (ldrOpc == ARM::t2LDREX)
5333    MIB.addImm(0);
5334  AddDefaultPred(MIB);
5335  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5336                 .addReg(dest).addReg(oldval));
5337  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5338    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5339  BB->addSuccessor(loop2MBB);
5340  BB->addSuccessor(exitMBB);
5341
5342  // loop2MBB:
5343  //   strex scratch, newval, [ptr]
5344  //   cmp scratch, #0
5345  //   bne loop1MBB
5346  BB = loop2MBB;
5347  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval).addReg(ptr);
5348  if (strOpc == ARM::t2STREX)
5349    MIB.addImm(0);
5350  AddDefaultPred(MIB);
5351  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5352                 .addReg(scratch).addImm(0));
5353  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5354    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5355  BB->addSuccessor(loop1MBB);
5356  BB->addSuccessor(exitMBB);
5357
5358  //  exitMBB:
5359  //   ...
5360  BB = exitMBB;
5361
5362  MI->eraseFromParent();   // The instruction is gone now.
5363
5364  return BB;
5365}
5366
5367MachineBasicBlock *
5368ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
5369                                    unsigned Size, unsigned BinOpcode) const {
5370  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5371  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5372
5373  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5374  MachineFunction *MF = BB->getParent();
5375  MachineFunction::iterator It = BB;
5376  ++It;
5377
5378  unsigned dest = MI->getOperand(0).getReg();
5379  unsigned ptr = MI->getOperand(1).getReg();
5380  unsigned incr = MI->getOperand(2).getReg();
5381  DebugLoc dl = MI->getDebugLoc();
5382  bool isThumb2 = Subtarget->isThumb2();
5383
5384  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5385  if (isThumb2) {
5386    MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
5387    MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
5388  }
5389
5390  unsigned ldrOpc, strOpc;
5391  switch (Size) {
5392  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5393  case 1:
5394    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5395    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5396    break;
5397  case 2:
5398    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5399    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5400    break;
5401  case 4:
5402    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5403    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5404    break;
5405  }
5406
5407  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5408  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5409  MF->insert(It, loopMBB);
5410  MF->insert(It, exitMBB);
5411
5412  // Transfer the remainder of BB and its successor edges to exitMBB.
5413  exitMBB->splice(exitMBB->begin(), BB,
5414                  llvm::next(MachineBasicBlock::iterator(MI)),
5415                  BB->end());
5416  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5417
5418  const TargetRegisterClass *TRC = isThumb2 ?
5419    (const TargetRegisterClass*)&ARM::tGPRRegClass :
5420    (const TargetRegisterClass*)&ARM::GPRRegClass;
5421  unsigned scratch = MRI.createVirtualRegister(TRC);
5422  unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
5423
5424  //  thisMBB:
5425  //   ...
5426  //   fallthrough --> loopMBB
5427  BB->addSuccessor(loopMBB);
5428
5429  //  loopMBB:
5430  //   ldrex dest, ptr
5431  //   <binop> scratch2, dest, incr
5432  //   strex scratch, scratch2, ptr
5433  //   cmp scratch, #0
5434  //   bne- loopMBB
5435  //   fallthrough --> exitMBB
5436  BB = loopMBB;
5437  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5438  if (ldrOpc == ARM::t2LDREX)
5439    MIB.addImm(0);
5440  AddDefaultPred(MIB);
5441  if (BinOpcode) {
5442    // operand order needs to go the other way for NAND
5443    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
5444      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5445                     addReg(incr).addReg(dest)).addReg(0);
5446    else
5447      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5448                     addReg(dest).addReg(incr)).addReg(0);
5449  }
5450
5451  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5452  if (strOpc == ARM::t2STREX)
5453    MIB.addImm(0);
5454  AddDefaultPred(MIB);
5455  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5456                 .addReg(scratch).addImm(0));
5457  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5458    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5459
5460  BB->addSuccessor(loopMBB);
5461  BB->addSuccessor(exitMBB);
5462
5463  //  exitMBB:
5464  //   ...
5465  BB = exitMBB;
5466
5467  MI->eraseFromParent();   // The instruction is gone now.
5468
5469  return BB;
5470}
5471
5472MachineBasicBlock *
5473ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI,
5474                                          MachineBasicBlock *BB,
5475                                          unsigned Size,
5476                                          bool signExtend,
5477                                          ARMCC::CondCodes Cond) const {
5478  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5479
5480  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5481  MachineFunction *MF = BB->getParent();
5482  MachineFunction::iterator It = BB;
5483  ++It;
5484
5485  unsigned dest = MI->getOperand(0).getReg();
5486  unsigned ptr = MI->getOperand(1).getReg();
5487  unsigned incr = MI->getOperand(2).getReg();
5488  unsigned oldval = dest;
5489  DebugLoc dl = MI->getDebugLoc();
5490  bool isThumb2 = Subtarget->isThumb2();
5491
5492  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5493  if (isThumb2) {
5494    MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
5495    MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
5496  }
5497
5498  unsigned ldrOpc, strOpc, extendOpc;
5499  switch (Size) {
5500  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5501  case 1:
5502    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5503    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5504    extendOpc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
5505    break;
5506  case 2:
5507    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5508    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5509    extendOpc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
5510    break;
5511  case 4:
5512    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5513    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5514    extendOpc = 0;
5515    break;
5516  }
5517
5518  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5519  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5520  MF->insert(It, loopMBB);
5521  MF->insert(It, exitMBB);
5522
5523  // Transfer the remainder of BB and its successor edges to exitMBB.
5524  exitMBB->splice(exitMBB->begin(), BB,
5525                  llvm::next(MachineBasicBlock::iterator(MI)),
5526                  BB->end());
5527  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5528
5529  const TargetRegisterClass *TRC = isThumb2 ?
5530    (const TargetRegisterClass*)&ARM::tGPRRegClass :
5531    (const TargetRegisterClass*)&ARM::GPRRegClass;
5532  unsigned scratch = MRI.createVirtualRegister(TRC);
5533  unsigned scratch2 = MRI.createVirtualRegister(TRC);
5534
5535  //  thisMBB:
5536  //   ...
5537  //   fallthrough --> loopMBB
5538  BB->addSuccessor(loopMBB);
5539
5540  //  loopMBB:
5541  //   ldrex dest, ptr
5542  //   (sign extend dest, if required)
5543  //   cmp dest, incr
5544  //   cmov.cond scratch2, dest, incr
5545  //   strex scratch, scratch2, ptr
5546  //   cmp scratch, #0
5547  //   bne- loopMBB
5548  //   fallthrough --> exitMBB
5549  BB = loopMBB;
5550  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5551  if (ldrOpc == ARM::t2LDREX)
5552    MIB.addImm(0);
5553  AddDefaultPred(MIB);
5554
5555  // Sign extend the value, if necessary.
5556  if (signExtend && extendOpc) {
5557    oldval = MRI.createVirtualRegister(&ARM::GPRRegClass);
5558    AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval)
5559                     .addReg(dest)
5560                     .addImm(0));
5561  }
5562
5563  // Build compare and cmov instructions.
5564  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5565                 .addReg(oldval).addReg(incr));
5566  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2)
5567         .addReg(oldval).addReg(incr).addImm(Cond).addReg(ARM::CPSR);
5568
5569  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5570  if (strOpc == ARM::t2STREX)
5571    MIB.addImm(0);
5572  AddDefaultPred(MIB);
5573  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5574                 .addReg(scratch).addImm(0));
5575  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5576    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5577
5578  BB->addSuccessor(loopMBB);
5579  BB->addSuccessor(exitMBB);
5580
5581  //  exitMBB:
5582  //   ...
5583  BB = exitMBB;
5584
5585  MI->eraseFromParent();   // The instruction is gone now.
5586
5587  return BB;
5588}
5589
5590MachineBasicBlock *
5591ARMTargetLowering::EmitAtomicBinary64(MachineInstr *MI, MachineBasicBlock *BB,
5592                                      unsigned Op1, unsigned Op2,
5593                                      bool NeedsCarry, bool IsCmpxchg) const {
5594  // This also handles ATOMIC_SWAP, indicated by Op1==0.
5595  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5596
5597  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5598  MachineFunction *MF = BB->getParent();
5599  MachineFunction::iterator It = BB;
5600  ++It;
5601
5602  unsigned destlo = MI->getOperand(0).getReg();
5603  unsigned desthi = MI->getOperand(1).getReg();
5604  unsigned ptr = MI->getOperand(2).getReg();
5605  unsigned vallo = MI->getOperand(3).getReg();
5606  unsigned valhi = MI->getOperand(4).getReg();
5607  DebugLoc dl = MI->getDebugLoc();
5608  bool isThumb2 = Subtarget->isThumb2();
5609
5610  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5611  if (isThumb2) {
5612    MRI.constrainRegClass(destlo, &ARM::rGPRRegClass);
5613    MRI.constrainRegClass(desthi, &ARM::rGPRRegClass);
5614    MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
5615  }
5616
5617  unsigned ldrOpc = isThumb2 ? ARM::t2LDREXD : ARM::LDREXD;
5618  unsigned strOpc = isThumb2 ? ARM::t2STREXD : ARM::STREXD;
5619
5620  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5621  MachineBasicBlock *contBB = 0, *cont2BB = 0;
5622  if (IsCmpxchg) {
5623    contBB = MF->CreateMachineBasicBlock(LLVM_BB);
5624    cont2BB = MF->CreateMachineBasicBlock(LLVM_BB);
5625  }
5626  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5627  MF->insert(It, loopMBB);
5628  if (IsCmpxchg) {
5629    MF->insert(It, contBB);
5630    MF->insert(It, cont2BB);
5631  }
5632  MF->insert(It, exitMBB);
5633
5634  // Transfer the remainder of BB and its successor edges to exitMBB.
5635  exitMBB->splice(exitMBB->begin(), BB,
5636                  llvm::next(MachineBasicBlock::iterator(MI)),
5637                  BB->end());
5638  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5639
5640  const TargetRegisterClass *TRC = isThumb2 ?
5641    (const TargetRegisterClass*)&ARM::tGPRRegClass :
5642    (const TargetRegisterClass*)&ARM::GPRRegClass;
5643  unsigned storesuccess = MRI.createVirtualRegister(TRC);
5644
5645  //  thisMBB:
5646  //   ...
5647  //   fallthrough --> loopMBB
5648  BB->addSuccessor(loopMBB);
5649
5650  //  loopMBB:
5651  //   ldrexd r2, r3, ptr
5652  //   <binopa> r0, r2, incr
5653  //   <binopb> r1, r3, incr
5654  //   strexd storesuccess, r0, r1, ptr
5655  //   cmp storesuccess, #0
5656  //   bne- loopMBB
5657  //   fallthrough --> exitMBB
5658  //
5659  // Note that the registers are explicitly specified because there is not any
5660  // way to force the register allocator to allocate a register pair.
5661  //
5662  // FIXME: The hardcoded registers are not necessary for Thumb2, but we
5663  // need to properly enforce the restriction that the two output registers
5664  // for ldrexd must be different.
5665  BB = loopMBB;
5666  // Load
5667  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc))
5668                 .addReg(ARM::R2, RegState::Define)
5669                 .addReg(ARM::R3, RegState::Define).addReg(ptr));
5670  // Copy r2/r3 into dest.  (This copy will normally be coalesced.)
5671  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), destlo).addReg(ARM::R2);
5672  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), desthi).addReg(ARM::R3);
5673
5674  if (IsCmpxchg) {
5675    // Add early exit
5676    for (unsigned i = 0; i < 2; i++) {
5677      AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr :
5678                                                         ARM::CMPrr))
5679                     .addReg(i == 0 ? destlo : desthi)
5680                     .addReg(i == 0 ? vallo : valhi));
5681      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5682        .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5683      BB->addSuccessor(exitMBB);
5684      BB->addSuccessor(i == 0 ? contBB : cont2BB);
5685      BB = (i == 0 ? contBB : cont2BB);
5686    }
5687
5688    // Copy to physregs for strexd
5689    unsigned setlo = MI->getOperand(5).getReg();
5690    unsigned sethi = MI->getOperand(6).getReg();
5691    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(setlo);
5692    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(sethi);
5693  } else if (Op1) {
5694    // Perform binary operation
5695    AddDefaultPred(BuildMI(BB, dl, TII->get(Op1), ARM::R0)
5696                   .addReg(destlo).addReg(vallo))
5697        .addReg(NeedsCarry ? ARM::CPSR : 0, getDefRegState(NeedsCarry));
5698    AddDefaultPred(BuildMI(BB, dl, TII->get(Op2), ARM::R1)
5699                   .addReg(desthi).addReg(valhi)).addReg(0);
5700  } else {
5701    // Copy to physregs for strexd
5702    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(vallo);
5703    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(valhi);
5704  }
5705
5706  // Store
5707  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), storesuccess)
5708                 .addReg(ARM::R0).addReg(ARM::R1).addReg(ptr));
5709  // Cmp+jump
5710  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5711                 .addReg(storesuccess).addImm(0));
5712  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5713    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5714
5715  BB->addSuccessor(loopMBB);
5716  BB->addSuccessor(exitMBB);
5717
5718  //  exitMBB:
5719  //   ...
5720  BB = exitMBB;
5721
5722  MI->eraseFromParent();   // The instruction is gone now.
5723
5724  return BB;
5725}
5726
5727/// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
5728/// registers the function context.
5729void ARMTargetLowering::
5730SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
5731                       MachineBasicBlock *DispatchBB, int FI) const {
5732  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5733  DebugLoc dl = MI->getDebugLoc();
5734  MachineFunction *MF = MBB->getParent();
5735  MachineRegisterInfo *MRI = &MF->getRegInfo();
5736  MachineConstantPool *MCP = MF->getConstantPool();
5737  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
5738  const Function *F = MF->getFunction();
5739
5740  bool isThumb = Subtarget->isThumb();
5741  bool isThumb2 = Subtarget->isThumb2();
5742
5743  unsigned PCLabelId = AFI->createPICLabelUId();
5744  unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
5745  ARMConstantPoolValue *CPV =
5746    ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
5747  unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
5748
5749  const TargetRegisterClass *TRC = isThumb ?
5750    (const TargetRegisterClass*)&ARM::tGPRRegClass :
5751    (const TargetRegisterClass*)&ARM::GPRRegClass;
5752
5753  // Grab constant pool and fixed stack memory operands.
5754  MachineMemOperand *CPMMO =
5755    MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(),
5756                             MachineMemOperand::MOLoad, 4, 4);
5757
5758  MachineMemOperand *FIMMOSt =
5759    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
5760                             MachineMemOperand::MOStore, 4, 4);
5761
5762  // Load the address of the dispatch MBB into the jump buffer.
5763  if (isThumb2) {
5764    // Incoming value: jbuf
5765    //   ldr.n  r5, LCPI1_1
5766    //   orr    r5, r5, #1
5767    //   add    r5, pc
5768    //   str    r5, [$jbuf, #+4] ; &jbuf[1]
5769    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5770    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
5771                   .addConstantPoolIndex(CPI)
5772                   .addMemOperand(CPMMO));
5773    // Set the low bit because of thumb mode.
5774    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5775    AddDefaultCC(
5776      AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
5777                     .addReg(NewVReg1, RegState::Kill)
5778                     .addImm(0x01)));
5779    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5780    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
5781      .addReg(NewVReg2, RegState::Kill)
5782      .addImm(PCLabelId);
5783    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
5784                   .addReg(NewVReg3, RegState::Kill)
5785                   .addFrameIndex(FI)
5786                   .addImm(36)  // &jbuf[1] :: pc
5787                   .addMemOperand(FIMMOSt));
5788  } else if (isThumb) {
5789    // Incoming value: jbuf
5790    //   ldr.n  r1, LCPI1_4
5791    //   add    r1, pc
5792    //   mov    r2, #1
5793    //   orrs   r1, r2
5794    //   add    r2, $jbuf, #+4 ; &jbuf[1]
5795    //   str    r1, [r2]
5796    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5797    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
5798                   .addConstantPoolIndex(CPI)
5799                   .addMemOperand(CPMMO));
5800    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5801    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
5802      .addReg(NewVReg1, RegState::Kill)
5803      .addImm(PCLabelId);
5804    // Set the low bit because of thumb mode.
5805    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5806    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
5807                   .addReg(ARM::CPSR, RegState::Define)
5808                   .addImm(1));
5809    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5810    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
5811                   .addReg(ARM::CPSR, RegState::Define)
5812                   .addReg(NewVReg2, RegState::Kill)
5813                   .addReg(NewVReg3, RegState::Kill));
5814    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
5815    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5)
5816                   .addFrameIndex(FI)
5817                   .addImm(36)); // &jbuf[1] :: pc
5818    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
5819                   .addReg(NewVReg4, RegState::Kill)
5820                   .addReg(NewVReg5, RegState::Kill)
5821                   .addImm(0)
5822                   .addMemOperand(FIMMOSt));
5823  } else {
5824    // Incoming value: jbuf
5825    //   ldr  r1, LCPI1_1
5826    //   add  r1, pc, r1
5827    //   str  r1, [$jbuf, #+4] ; &jbuf[1]
5828    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5829    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12),  NewVReg1)
5830                   .addConstantPoolIndex(CPI)
5831                   .addImm(0)
5832                   .addMemOperand(CPMMO));
5833    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5834    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
5835                   .addReg(NewVReg1, RegState::Kill)
5836                   .addImm(PCLabelId));
5837    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
5838                   .addReg(NewVReg2, RegState::Kill)
5839                   .addFrameIndex(FI)
5840                   .addImm(36)  // &jbuf[1] :: pc
5841                   .addMemOperand(FIMMOSt));
5842  }
5843}
5844
5845MachineBasicBlock *ARMTargetLowering::
5846EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
5847  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5848  DebugLoc dl = MI->getDebugLoc();
5849  MachineFunction *MF = MBB->getParent();
5850  MachineRegisterInfo *MRI = &MF->getRegInfo();
5851  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
5852  MachineFrameInfo *MFI = MF->getFrameInfo();
5853  int FI = MFI->getFunctionContextIndex();
5854
5855  const TargetRegisterClass *TRC = Subtarget->isThumb() ?
5856    (const TargetRegisterClass*)&ARM::tGPRRegClass :
5857    (const TargetRegisterClass*)&ARM::GPRnopcRegClass;
5858
5859  // Get a mapping of the call site numbers to all of the landing pads they're
5860  // associated with.
5861  DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
5862  unsigned MaxCSNum = 0;
5863  MachineModuleInfo &MMI = MF->getMMI();
5864  for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
5865       ++BB) {
5866    if (!BB->isLandingPad()) continue;
5867
5868    // FIXME: We should assert that the EH_LABEL is the first MI in the landing
5869    // pad.
5870    for (MachineBasicBlock::iterator
5871           II = BB->begin(), IE = BB->end(); II != IE; ++II) {
5872      if (!II->isEHLabel()) continue;
5873
5874      MCSymbol *Sym = II->getOperand(0).getMCSymbol();
5875      if (!MMI.hasCallSiteLandingPad(Sym)) continue;
5876
5877      SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
5878      for (SmallVectorImpl<unsigned>::iterator
5879             CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
5880           CSI != CSE; ++CSI) {
5881        CallSiteNumToLPad[*CSI].push_back(BB);
5882        MaxCSNum = std::max(MaxCSNum, *CSI);
5883      }
5884      break;
5885    }
5886  }
5887
5888  // Get an ordered list of the machine basic blocks for the jump table.
5889  std::vector<MachineBasicBlock*> LPadList;
5890  SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
5891  LPadList.reserve(CallSiteNumToLPad.size());
5892  for (unsigned I = 1; I <= MaxCSNum; ++I) {
5893    SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
5894    for (SmallVectorImpl<MachineBasicBlock*>::iterator
5895           II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
5896      LPadList.push_back(*II);
5897      InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
5898    }
5899  }
5900
5901  assert(!LPadList.empty() &&
5902         "No landing pad destinations for the dispatch jump table!");
5903
5904  // Create the jump table and associated information.
5905  MachineJumpTableInfo *JTI =
5906    MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
5907  unsigned MJTI = JTI->createJumpTableIndex(LPadList);
5908  unsigned UId = AFI->createJumpTableUId();
5909
5910  // Create the MBBs for the dispatch code.
5911
5912  // Shove the dispatch's address into the return slot in the function context.
5913  MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
5914  DispatchBB->setIsLandingPad();
5915
5916  MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
5917  BuildMI(TrapBB, dl, TII->get(Subtarget->isThumb() ? ARM::tTRAP : ARM::TRAP));
5918  DispatchBB->addSuccessor(TrapBB);
5919
5920  MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
5921  DispatchBB->addSuccessor(DispContBB);
5922
5923  // Insert and MBBs.
5924  MF->insert(MF->end(), DispatchBB);
5925  MF->insert(MF->end(), DispContBB);
5926  MF->insert(MF->end(), TrapBB);
5927
5928  // Insert code into the entry block that creates and registers the function
5929  // context.
5930  SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
5931
5932  MachineMemOperand *FIMMOLd =
5933    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
5934                             MachineMemOperand::MOLoad |
5935                             MachineMemOperand::MOVolatile, 4, 4);
5936
5937  if (AFI->isThumb1OnlyFunction())
5938    BuildMI(DispatchBB, dl, TII->get(ARM::tInt_eh_sjlj_dispatchsetup));
5939  else if (!Subtarget->hasVFP2())
5940    BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup_nofp));
5941  else
5942    BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
5943
5944  unsigned NumLPads = LPadList.size();
5945  if (Subtarget->isThumb2()) {
5946    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5947    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
5948                   .addFrameIndex(FI)
5949                   .addImm(4)
5950                   .addMemOperand(FIMMOLd));
5951
5952    if (NumLPads < 256) {
5953      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
5954                     .addReg(NewVReg1)
5955                     .addImm(LPadList.size()));
5956    } else {
5957      unsigned VReg1 = MRI->createVirtualRegister(TRC);
5958      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
5959                     .addImm(NumLPads & 0xFFFF));
5960
5961      unsigned VReg2 = VReg1;
5962      if ((NumLPads & 0xFFFF0000) != 0) {
5963        VReg2 = MRI->createVirtualRegister(TRC);
5964        AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
5965                       .addReg(VReg1)
5966                       .addImm(NumLPads >> 16));
5967      }
5968
5969      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
5970                     .addReg(NewVReg1)
5971                     .addReg(VReg2));
5972    }
5973
5974    BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
5975      .addMBB(TrapBB)
5976      .addImm(ARMCC::HI)
5977      .addReg(ARM::CPSR);
5978
5979    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5980    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
5981                   .addJumpTableIndex(MJTI)
5982                   .addImm(UId));
5983
5984    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5985    AddDefaultCC(
5986      AddDefaultPred(
5987        BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
5988        .addReg(NewVReg3, RegState::Kill)
5989        .addReg(NewVReg1)
5990        .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
5991
5992    BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
5993      .addReg(NewVReg4, RegState::Kill)
5994      .addReg(NewVReg1)
5995      .addJumpTableIndex(MJTI)
5996      .addImm(UId);
5997  } else if (Subtarget->isThumb()) {
5998    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5999    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
6000                   .addFrameIndex(FI)
6001                   .addImm(1)
6002                   .addMemOperand(FIMMOLd));
6003
6004    if (NumLPads < 256) {
6005      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
6006                     .addReg(NewVReg1)
6007                     .addImm(NumLPads));
6008    } else {
6009      MachineConstantPool *ConstantPool = MF->getConstantPool();
6010      Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6011      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
6012
6013      // MachineConstantPool wants an explicit alignment.
6014      unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
6015      if (Align == 0)
6016        Align = getTargetData()->getTypeAllocSize(C->getType());
6017      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6018
6019      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6020      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
6021                     .addReg(VReg1, RegState::Define)
6022                     .addConstantPoolIndex(Idx));
6023      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
6024                     .addReg(NewVReg1)
6025                     .addReg(VReg1));
6026    }
6027
6028    BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
6029      .addMBB(TrapBB)
6030      .addImm(ARMCC::HI)
6031      .addReg(ARM::CPSR);
6032
6033    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6034    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
6035                   .addReg(ARM::CPSR, RegState::Define)
6036                   .addReg(NewVReg1)
6037                   .addImm(2));
6038
6039    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6040    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
6041                   .addJumpTableIndex(MJTI)
6042                   .addImm(UId));
6043
6044    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6045    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
6046                   .addReg(ARM::CPSR, RegState::Define)
6047                   .addReg(NewVReg2, RegState::Kill)
6048                   .addReg(NewVReg3));
6049
6050    MachineMemOperand *JTMMOLd =
6051      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
6052                               MachineMemOperand::MOLoad, 4, 4);
6053
6054    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6055    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
6056                   .addReg(NewVReg4, RegState::Kill)
6057                   .addImm(0)
6058                   .addMemOperand(JTMMOLd));
6059
6060    unsigned NewVReg6 = MRI->createVirtualRegister(TRC);
6061    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
6062                   .addReg(ARM::CPSR, RegState::Define)
6063                   .addReg(NewVReg5, RegState::Kill)
6064                   .addReg(NewVReg3));
6065
6066    BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
6067      .addReg(NewVReg6, RegState::Kill)
6068      .addJumpTableIndex(MJTI)
6069      .addImm(UId);
6070  } else {
6071    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6072    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
6073                   .addFrameIndex(FI)
6074                   .addImm(4)
6075                   .addMemOperand(FIMMOLd));
6076
6077    if (NumLPads < 256) {
6078      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
6079                     .addReg(NewVReg1)
6080                     .addImm(NumLPads));
6081    } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
6082      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6083      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
6084                     .addImm(NumLPads & 0xFFFF));
6085
6086      unsigned VReg2 = VReg1;
6087      if ((NumLPads & 0xFFFF0000) != 0) {
6088        VReg2 = MRI->createVirtualRegister(TRC);
6089        AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
6090                       .addReg(VReg1)
6091                       .addImm(NumLPads >> 16));
6092      }
6093
6094      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
6095                     .addReg(NewVReg1)
6096                     .addReg(VReg2));
6097    } else {
6098      MachineConstantPool *ConstantPool = MF->getConstantPool();
6099      Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6100      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
6101
6102      // MachineConstantPool wants an explicit alignment.
6103      unsigned Align = getTargetData()->getPrefTypeAlignment(Int32Ty);
6104      if (Align == 0)
6105        Align = getTargetData()->getTypeAllocSize(C->getType());
6106      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6107
6108      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6109      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
6110                     .addReg(VReg1, RegState::Define)
6111                     .addConstantPoolIndex(Idx)
6112                     .addImm(0));
6113      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
6114                     .addReg(NewVReg1)
6115                     .addReg(VReg1, RegState::Kill));
6116    }
6117
6118    BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
6119      .addMBB(TrapBB)
6120      .addImm(ARMCC::HI)
6121      .addReg(ARM::CPSR);
6122
6123    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6124    AddDefaultCC(
6125      AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
6126                     .addReg(NewVReg1)
6127                     .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
6128    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6129    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
6130                   .addJumpTableIndex(MJTI)
6131                   .addImm(UId));
6132
6133    MachineMemOperand *JTMMOLd =
6134      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
6135                               MachineMemOperand::MOLoad, 4, 4);
6136    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6137    AddDefaultPred(
6138      BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
6139      .addReg(NewVReg3, RegState::Kill)
6140      .addReg(NewVReg4)
6141      .addImm(0)
6142      .addMemOperand(JTMMOLd));
6143
6144    BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
6145      .addReg(NewVReg5, RegState::Kill)
6146      .addReg(NewVReg4)
6147      .addJumpTableIndex(MJTI)
6148      .addImm(UId);
6149  }
6150
6151  // Add the jump table entries as successors to the MBB.
6152  MachineBasicBlock *PrevMBB = 0;
6153  for (std::vector<MachineBasicBlock*>::iterator
6154         I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
6155    MachineBasicBlock *CurMBB = *I;
6156    if (PrevMBB != CurMBB)
6157      DispContBB->addSuccessor(CurMBB);
6158    PrevMBB = CurMBB;
6159  }
6160
6161  // N.B. the order the invoke BBs are processed in doesn't matter here.
6162  const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
6163  const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
6164  const uint16_t *SavedRegs = RI.getCalleeSavedRegs(MF);
6165  SmallVector<MachineBasicBlock*, 64> MBBLPads;
6166  for (SmallPtrSet<MachineBasicBlock*, 64>::iterator
6167         I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) {
6168    MachineBasicBlock *BB = *I;
6169
6170    // Remove the landing pad successor from the invoke block and replace it
6171    // with the new dispatch block.
6172    SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
6173                                                  BB->succ_end());
6174    while (!Successors.empty()) {
6175      MachineBasicBlock *SMBB = Successors.pop_back_val();
6176      if (SMBB->isLandingPad()) {
6177        BB->removeSuccessor(SMBB);
6178        MBBLPads.push_back(SMBB);
6179      }
6180    }
6181
6182    BB->addSuccessor(DispatchBB);
6183
6184    // Find the invoke call and mark all of the callee-saved registers as
6185    // 'implicit defined' so that they're spilled. This prevents code from
6186    // moving instructions to before the EH block, where they will never be
6187    // executed.
6188    for (MachineBasicBlock::reverse_iterator
6189           II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
6190      if (!II->isCall()) continue;
6191
6192      DenseMap<unsigned, bool> DefRegs;
6193      for (MachineInstr::mop_iterator
6194             OI = II->operands_begin(), OE = II->operands_end();
6195           OI != OE; ++OI) {
6196        if (!OI->isReg()) continue;
6197        DefRegs[OI->getReg()] = true;
6198      }
6199
6200      MachineInstrBuilder MIB(&*II);
6201
6202      for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
6203        unsigned Reg = SavedRegs[i];
6204        if (Subtarget->isThumb2() &&
6205            !ARM::tGPRRegClass.contains(Reg) &&
6206            !ARM::hGPRRegClass.contains(Reg))
6207          continue;
6208        if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
6209          continue;
6210        if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
6211          continue;
6212        if (!DefRegs[Reg])
6213          MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
6214      }
6215
6216      break;
6217    }
6218  }
6219
6220  // Mark all former landing pads as non-landing pads. The dispatch is the only
6221  // landing pad now.
6222  for (SmallVectorImpl<MachineBasicBlock*>::iterator
6223         I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
6224    (*I)->setIsLandingPad(false);
6225
6226  // The instruction is gone now.
6227  MI->eraseFromParent();
6228
6229  return MBB;
6230}
6231
6232static
6233MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
6234  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
6235       E = MBB->succ_end(); I != E; ++I)
6236    if (*I != Succ)
6237      return *I;
6238  llvm_unreachable("Expecting a BB with two successors!");
6239}
6240
6241MachineBasicBlock *
6242ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6243                                               MachineBasicBlock *BB) const {
6244  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6245  DebugLoc dl = MI->getDebugLoc();
6246  bool isThumb2 = Subtarget->isThumb2();
6247  switch (MI->getOpcode()) {
6248  default: {
6249    MI->dump();
6250    llvm_unreachable("Unexpected instr type to insert");
6251  }
6252  // The Thumb2 pre-indexed stores have the same MI operands, they just
6253  // define them differently in the .td files from the isel patterns, so
6254  // they need pseudos.
6255  case ARM::t2STR_preidx:
6256    MI->setDesc(TII->get(ARM::t2STR_PRE));
6257    return BB;
6258  case ARM::t2STRB_preidx:
6259    MI->setDesc(TII->get(ARM::t2STRB_PRE));
6260    return BB;
6261  case ARM::t2STRH_preidx:
6262    MI->setDesc(TII->get(ARM::t2STRH_PRE));
6263    return BB;
6264
6265  case ARM::STRi_preidx:
6266  case ARM::STRBi_preidx: {
6267    unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
6268      ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
6269    // Decode the offset.
6270    unsigned Offset = MI->getOperand(4).getImm();
6271    bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
6272    Offset = ARM_AM::getAM2Offset(Offset);
6273    if (isSub)
6274      Offset = -Offset;
6275
6276    MachineMemOperand *MMO = *MI->memoperands_begin();
6277    BuildMI(*BB, MI, dl, TII->get(NewOpc))
6278      .addOperand(MI->getOperand(0))  // Rn_wb
6279      .addOperand(MI->getOperand(1))  // Rt
6280      .addOperand(MI->getOperand(2))  // Rn
6281      .addImm(Offset)                 // offset (skip GPR==zero_reg)
6282      .addOperand(MI->getOperand(5))  // pred
6283      .addOperand(MI->getOperand(6))
6284      .addMemOperand(MMO);
6285    MI->eraseFromParent();
6286    return BB;
6287  }
6288  case ARM::STRr_preidx:
6289  case ARM::STRBr_preidx:
6290  case ARM::STRH_preidx: {
6291    unsigned NewOpc;
6292    switch (MI->getOpcode()) {
6293    default: llvm_unreachable("unexpected opcode!");
6294    case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
6295    case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
6296    case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
6297    }
6298    MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
6299    for (unsigned i = 0; i < MI->getNumOperands(); ++i)
6300      MIB.addOperand(MI->getOperand(i));
6301    MI->eraseFromParent();
6302    return BB;
6303  }
6304  case ARM::ATOMIC_LOAD_ADD_I8:
6305     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6306  case ARM::ATOMIC_LOAD_ADD_I16:
6307     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6308  case ARM::ATOMIC_LOAD_ADD_I32:
6309     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6310
6311  case ARM::ATOMIC_LOAD_AND_I8:
6312     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6313  case ARM::ATOMIC_LOAD_AND_I16:
6314     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6315  case ARM::ATOMIC_LOAD_AND_I32:
6316     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6317
6318  case ARM::ATOMIC_LOAD_OR_I8:
6319     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6320  case ARM::ATOMIC_LOAD_OR_I16:
6321     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6322  case ARM::ATOMIC_LOAD_OR_I32:
6323     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6324
6325  case ARM::ATOMIC_LOAD_XOR_I8:
6326     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6327  case ARM::ATOMIC_LOAD_XOR_I16:
6328     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6329  case ARM::ATOMIC_LOAD_XOR_I32:
6330     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6331
6332  case ARM::ATOMIC_LOAD_NAND_I8:
6333     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6334  case ARM::ATOMIC_LOAD_NAND_I16:
6335     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6336  case ARM::ATOMIC_LOAD_NAND_I32:
6337     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6338
6339  case ARM::ATOMIC_LOAD_SUB_I8:
6340     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6341  case ARM::ATOMIC_LOAD_SUB_I16:
6342     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6343  case ARM::ATOMIC_LOAD_SUB_I32:
6344     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6345
6346  case ARM::ATOMIC_LOAD_MIN_I8:
6347     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT);
6348  case ARM::ATOMIC_LOAD_MIN_I16:
6349     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT);
6350  case ARM::ATOMIC_LOAD_MIN_I32:
6351     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT);
6352
6353  case ARM::ATOMIC_LOAD_MAX_I8:
6354     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT);
6355  case ARM::ATOMIC_LOAD_MAX_I16:
6356     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT);
6357  case ARM::ATOMIC_LOAD_MAX_I32:
6358     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT);
6359
6360  case ARM::ATOMIC_LOAD_UMIN_I8:
6361     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO);
6362  case ARM::ATOMIC_LOAD_UMIN_I16:
6363     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO);
6364  case ARM::ATOMIC_LOAD_UMIN_I32:
6365     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO);
6366
6367  case ARM::ATOMIC_LOAD_UMAX_I8:
6368     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI);
6369  case ARM::ATOMIC_LOAD_UMAX_I16:
6370     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI);
6371  case ARM::ATOMIC_LOAD_UMAX_I32:
6372     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI);
6373
6374  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
6375  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
6376  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
6377
6378  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
6379  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
6380  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
6381
6382
6383  case ARM::ATOMADD6432:
6384    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr,
6385                              isThumb2 ? ARM::t2ADCrr : ARM::ADCrr,
6386                              /*NeedsCarry*/ true);
6387  case ARM::ATOMSUB6432:
6388    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6389                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6390                              /*NeedsCarry*/ true);
6391  case ARM::ATOMOR6432:
6392    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr,
6393                              isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6394  case ARM::ATOMXOR6432:
6395    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2EORrr : ARM::EORrr,
6396                              isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6397  case ARM::ATOMAND6432:
6398    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr,
6399                              isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6400  case ARM::ATOMSWAP6432:
6401    return EmitAtomicBinary64(MI, BB, 0, 0, false);
6402  case ARM::ATOMCMPXCHG6432:
6403    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6404                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6405                              /*NeedsCarry*/ false, /*IsCmpxchg*/true);
6406
6407  case ARM::tMOVCCr_pseudo: {
6408    // To "insert" a SELECT_CC instruction, we actually have to insert the
6409    // diamond control-flow pattern.  The incoming instruction knows the
6410    // destination vreg to set, the condition code register to branch on, the
6411    // true/false values to select between, and a branch opcode to use.
6412    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6413    MachineFunction::iterator It = BB;
6414    ++It;
6415
6416    //  thisMBB:
6417    //  ...
6418    //   TrueVal = ...
6419    //   cmpTY ccX, r1, r2
6420    //   bCC copy1MBB
6421    //   fallthrough --> copy0MBB
6422    MachineBasicBlock *thisMBB  = BB;
6423    MachineFunction *F = BB->getParent();
6424    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6425    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
6426    F->insert(It, copy0MBB);
6427    F->insert(It, sinkMBB);
6428
6429    // Transfer the remainder of BB and its successor edges to sinkMBB.
6430    sinkMBB->splice(sinkMBB->begin(), BB,
6431                    llvm::next(MachineBasicBlock::iterator(MI)),
6432                    BB->end());
6433    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
6434
6435    BB->addSuccessor(copy0MBB);
6436    BB->addSuccessor(sinkMBB);
6437
6438    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
6439      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
6440
6441    //  copy0MBB:
6442    //   %FalseValue = ...
6443    //   # fallthrough to sinkMBB
6444    BB = copy0MBB;
6445
6446    // Update machine-CFG edges
6447    BB->addSuccessor(sinkMBB);
6448
6449    //  sinkMBB:
6450    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6451    //  ...
6452    BB = sinkMBB;
6453    BuildMI(*BB, BB->begin(), dl,
6454            TII->get(ARM::PHI), MI->getOperand(0).getReg())
6455      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
6456      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6457
6458    MI->eraseFromParent();   // The pseudo instruction is gone now.
6459    return BB;
6460  }
6461
6462  case ARM::BCCi64:
6463  case ARM::BCCZi64: {
6464    // If there is an unconditional branch to the other successor, remove it.
6465    BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
6466
6467    // Compare both parts that make up the double comparison separately for
6468    // equality.
6469    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
6470
6471    unsigned LHS1 = MI->getOperand(1).getReg();
6472    unsigned LHS2 = MI->getOperand(2).getReg();
6473    if (RHSisZero) {
6474      AddDefaultPred(BuildMI(BB, dl,
6475                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6476                     .addReg(LHS1).addImm(0));
6477      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6478        .addReg(LHS2).addImm(0)
6479        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
6480    } else {
6481      unsigned RHS1 = MI->getOperand(3).getReg();
6482      unsigned RHS2 = MI->getOperand(4).getReg();
6483      AddDefaultPred(BuildMI(BB, dl,
6484                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6485                     .addReg(LHS1).addReg(RHS1));
6486      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6487        .addReg(LHS2).addReg(RHS2)
6488        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
6489    }
6490
6491    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
6492    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
6493    if (MI->getOperand(0).getImm() == ARMCC::NE)
6494      std::swap(destMBB, exitMBB);
6495
6496    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6497      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
6498    if (isThumb2)
6499      AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
6500    else
6501      BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
6502
6503    MI->eraseFromParent();   // The pseudo instruction is gone now.
6504    return BB;
6505  }
6506
6507  case ARM::Int_eh_sjlj_setjmp:
6508  case ARM::Int_eh_sjlj_setjmp_nofp:
6509  case ARM::tInt_eh_sjlj_setjmp:
6510  case ARM::t2Int_eh_sjlj_setjmp:
6511  case ARM::t2Int_eh_sjlj_setjmp_nofp:
6512    EmitSjLjDispatchBlock(MI, BB);
6513    return BB;
6514
6515  case ARM::ABS:
6516  case ARM::t2ABS: {
6517    // To insert an ABS instruction, we have to insert the
6518    // diamond control-flow pattern.  The incoming instruction knows the
6519    // source vreg to test against 0, the destination vreg to set,
6520    // the condition code register to branch on, the
6521    // true/false values to select between, and a branch opcode to use.
6522    // It transforms
6523    //     V1 = ABS V0
6524    // into
6525    //     V2 = MOVS V0
6526    //     BCC                      (branch to SinkBB if V0 >= 0)
6527    //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
6528    //     SinkBB: V1 = PHI(V2, V3)
6529    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6530    MachineFunction::iterator BBI = BB;
6531    ++BBI;
6532    MachineFunction *Fn = BB->getParent();
6533    MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
6534    MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
6535    Fn->insert(BBI, RSBBB);
6536    Fn->insert(BBI, SinkBB);
6537
6538    unsigned int ABSSrcReg = MI->getOperand(1).getReg();
6539    unsigned int ABSDstReg = MI->getOperand(0).getReg();
6540    bool isThumb2 = Subtarget->isThumb2();
6541    MachineRegisterInfo &MRI = Fn->getRegInfo();
6542    // In Thumb mode S must not be specified if source register is the SP or
6543    // PC and if destination register is the SP, so restrict register class
6544    unsigned NewMovDstReg = MRI.createVirtualRegister(isThumb2 ?
6545      (const TargetRegisterClass*)&ARM::rGPRRegClass :
6546      (const TargetRegisterClass*)&ARM::GPRRegClass);
6547    unsigned NewRsbDstReg = MRI.createVirtualRegister(isThumb2 ?
6548      (const TargetRegisterClass*)&ARM::rGPRRegClass :
6549      (const TargetRegisterClass*)&ARM::GPRRegClass);
6550
6551    // Transfer the remainder of BB and its successor edges to sinkMBB.
6552    SinkBB->splice(SinkBB->begin(), BB,
6553      llvm::next(MachineBasicBlock::iterator(MI)),
6554      BB->end());
6555    SinkBB->transferSuccessorsAndUpdatePHIs(BB);
6556
6557    BB->addSuccessor(RSBBB);
6558    BB->addSuccessor(SinkBB);
6559
6560    // fall through to SinkMBB
6561    RSBBB->addSuccessor(SinkBB);
6562
6563    // insert a movs at the end of BB
6564    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVr : ARM::MOVr),
6565      NewMovDstReg)
6566      .addReg(ABSSrcReg, RegState::Kill)
6567      .addImm((unsigned)ARMCC::AL).addReg(0)
6568      .addReg(ARM::CPSR, RegState::Define);
6569
6570    // insert a bcc with opposite CC to ARMCC::MI at the end of BB
6571    BuildMI(BB, dl,
6572      TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
6573      .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
6574
6575    // insert rsbri in RSBBB
6576    // Note: BCC and rsbri will be converted into predicated rsbmi
6577    // by if-conversion pass
6578    BuildMI(*RSBBB, RSBBB->begin(), dl,
6579      TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
6580      .addReg(NewMovDstReg, RegState::Kill)
6581      .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
6582
6583    // insert PHI in SinkBB,
6584    // reuse ABSDstReg to not change uses of ABS instruction
6585    BuildMI(*SinkBB, SinkBB->begin(), dl,
6586      TII->get(ARM::PHI), ABSDstReg)
6587      .addReg(NewRsbDstReg).addMBB(RSBBB)
6588      .addReg(NewMovDstReg).addMBB(BB);
6589
6590    // remove ABS instruction
6591    MI->eraseFromParent();
6592
6593    // return last added BB
6594    return SinkBB;
6595  }
6596  }
6597}
6598
6599void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
6600                                                      SDNode *Node) const {
6601  if (!MI->hasPostISelHook()) {
6602    assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
6603           "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'");
6604    return;
6605  }
6606
6607  const MCInstrDesc *MCID = &MI->getDesc();
6608  // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
6609  // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
6610  // operand is still set to noreg. If needed, set the optional operand's
6611  // register to CPSR, and remove the redundant implicit def.
6612  //
6613  // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
6614
6615  // Rename pseudo opcodes.
6616  unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
6617  if (NewOpc) {
6618    const ARMBaseInstrInfo *TII =
6619      static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo());
6620    MCID = &TII->get(NewOpc);
6621
6622    assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
6623           "converted opcode should be the same except for cc_out");
6624
6625    MI->setDesc(*MCID);
6626
6627    // Add the optional cc_out operand
6628    MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
6629  }
6630  unsigned ccOutIdx = MCID->getNumOperands() - 1;
6631
6632  // Any ARM instruction that sets the 's' bit should specify an optional
6633  // "cc_out" operand in the last operand position.
6634  if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
6635    assert(!NewOpc && "Optional cc_out operand required");
6636    return;
6637  }
6638  // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
6639  // since we already have an optional CPSR def.
6640  bool definesCPSR = false;
6641  bool deadCPSR = false;
6642  for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
6643       i != e; ++i) {
6644    const MachineOperand &MO = MI->getOperand(i);
6645    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
6646      definesCPSR = true;
6647      if (MO.isDead())
6648        deadCPSR = true;
6649      MI->RemoveOperand(i);
6650      break;
6651    }
6652  }
6653  if (!definesCPSR) {
6654    assert(!NewOpc && "Optional cc_out operand required");
6655    return;
6656  }
6657  assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
6658  if (deadCPSR) {
6659    assert(!MI->getOperand(ccOutIdx).getReg() &&
6660           "expect uninitialized optional cc_out operand");
6661    return;
6662  }
6663
6664  // If this instruction was defined with an optional CPSR def and its dag node
6665  // had a live implicit CPSR def, then activate the optional CPSR def.
6666  MachineOperand &MO = MI->getOperand(ccOutIdx);
6667  MO.setReg(ARM::CPSR);
6668  MO.setIsDef(true);
6669}
6670
6671//===----------------------------------------------------------------------===//
6672//                           ARM Optimization Hooks
6673//===----------------------------------------------------------------------===//
6674
6675static
6676SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
6677                            TargetLowering::DAGCombinerInfo &DCI) {
6678  SelectionDAG &DAG = DCI.DAG;
6679  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6680  EVT VT = N->getValueType(0);
6681  unsigned Opc = N->getOpcode();
6682  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
6683  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
6684  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
6685  ISD::CondCode CC = ISD::SETCC_INVALID;
6686
6687  if (isSlctCC) {
6688    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
6689  } else {
6690    SDValue CCOp = Slct.getOperand(0);
6691    if (CCOp.getOpcode() == ISD::SETCC)
6692      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
6693  }
6694
6695  bool DoXform = false;
6696  bool InvCC = false;
6697  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
6698          "Bad input!");
6699
6700  if (LHS.getOpcode() == ISD::Constant &&
6701      cast<ConstantSDNode>(LHS)->isNullValue()) {
6702    DoXform = true;
6703  } else if (CC != ISD::SETCC_INVALID &&
6704             RHS.getOpcode() == ISD::Constant &&
6705             cast<ConstantSDNode>(RHS)->isNullValue()) {
6706    std::swap(LHS, RHS);
6707    SDValue Op0 = Slct.getOperand(0);
6708    EVT OpVT = isSlctCC ? Op0.getValueType() :
6709                          Op0.getOperand(0).getValueType();
6710    bool isInt = OpVT.isInteger();
6711    CC = ISD::getSetCCInverse(CC, isInt);
6712
6713    if (!TLI.isCondCodeLegal(CC, OpVT))
6714      return SDValue();         // Inverse operator isn't legal.
6715
6716    DoXform = true;
6717    InvCC = true;
6718  }
6719
6720  if (DoXform) {
6721    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
6722    if (isSlctCC)
6723      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
6724                             Slct.getOperand(0), Slct.getOperand(1), CC);
6725    SDValue CCOp = Slct.getOperand(0);
6726    if (InvCC)
6727      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
6728                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
6729    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
6730                       CCOp, OtherOp, Result);
6731  }
6732  return SDValue();
6733}
6734
6735// AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
6736// (only after legalization).
6737static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
6738                                 TargetLowering::DAGCombinerInfo &DCI,
6739                                 const ARMSubtarget *Subtarget) {
6740
6741  // Only perform optimization if after legalize, and if NEON is available. We
6742  // also expected both operands to be BUILD_VECTORs.
6743  if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
6744      || N0.getOpcode() != ISD::BUILD_VECTOR
6745      || N1.getOpcode() != ISD::BUILD_VECTOR)
6746    return SDValue();
6747
6748  // Check output type since VPADDL operand elements can only be 8, 16, or 32.
6749  EVT VT = N->getValueType(0);
6750  if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
6751    return SDValue();
6752
6753  // Check that the vector operands are of the right form.
6754  // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
6755  // operands, where N is the size of the formed vector.
6756  // Each EXTRACT_VECTOR should have the same input vector and odd or even
6757  // index such that we have a pair wise add pattern.
6758
6759  // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
6760  if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6761    return SDValue();
6762  SDValue Vec = N0->getOperand(0)->getOperand(0);
6763  SDNode *V = Vec.getNode();
6764  unsigned nextIndex = 0;
6765
6766  // For each operands to the ADD which are BUILD_VECTORs,
6767  // check to see if each of their operands are an EXTRACT_VECTOR with
6768  // the same vector and appropriate index.
6769  for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
6770    if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
6771        && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
6772
6773      SDValue ExtVec0 = N0->getOperand(i);
6774      SDValue ExtVec1 = N1->getOperand(i);
6775
6776      // First operand is the vector, verify its the same.
6777      if (V != ExtVec0->getOperand(0).getNode() ||
6778          V != ExtVec1->getOperand(0).getNode())
6779        return SDValue();
6780
6781      // Second is the constant, verify its correct.
6782      ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
6783      ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
6784
6785      // For the constant, we want to see all the even or all the odd.
6786      if (!C0 || !C1 || C0->getZExtValue() != nextIndex
6787          || C1->getZExtValue() != nextIndex+1)
6788        return SDValue();
6789
6790      // Increment index.
6791      nextIndex+=2;
6792    } else
6793      return SDValue();
6794  }
6795
6796  // Create VPADDL node.
6797  SelectionDAG &DAG = DCI.DAG;
6798  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6799
6800  // Build operand list.
6801  SmallVector<SDValue, 8> Ops;
6802  Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
6803                                TLI.getPointerTy()));
6804
6805  // Input is the vector.
6806  Ops.push_back(Vec);
6807
6808  // Get widened type and narrowed type.
6809  MVT widenType;
6810  unsigned numElem = VT.getVectorNumElements();
6811  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
6812    case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
6813    case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
6814    case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
6815    default:
6816      llvm_unreachable("Invalid vector element type for padd optimization.");
6817  }
6818
6819  SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
6820                            widenType, &Ops[0], Ops.size());
6821  return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, tmp);
6822}
6823
6824/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
6825/// operands N0 and N1.  This is a helper for PerformADDCombine that is
6826/// called with the default operands, and if that fails, with commuted
6827/// operands.
6828static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
6829                                          TargetLowering::DAGCombinerInfo &DCI,
6830                                          const ARMSubtarget *Subtarget){
6831
6832  // Attempt to create vpaddl for this add.
6833  SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
6834  if (Result.getNode())
6835    return Result;
6836
6837  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
6838  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
6839    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
6840    if (Result.getNode()) return Result;
6841  }
6842  return SDValue();
6843}
6844
6845/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
6846///
6847static SDValue PerformADDCombine(SDNode *N,
6848                                 TargetLowering::DAGCombinerInfo &DCI,
6849                                 const ARMSubtarget *Subtarget) {
6850  SDValue N0 = N->getOperand(0);
6851  SDValue N1 = N->getOperand(1);
6852
6853  // First try with the default operand order.
6854  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
6855  if (Result.getNode())
6856    return Result;
6857
6858  // If that didn't work, try again with the operands commuted.
6859  return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
6860}
6861
6862/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
6863///
6864static SDValue PerformSUBCombine(SDNode *N,
6865                                 TargetLowering::DAGCombinerInfo &DCI) {
6866  SDValue N0 = N->getOperand(0);
6867  SDValue N1 = N->getOperand(1);
6868
6869  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
6870  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
6871    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
6872    if (Result.getNode()) return Result;
6873  }
6874
6875  return SDValue();
6876}
6877
6878/// PerformVMULCombine
6879/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
6880/// special multiplier accumulator forwarding.
6881///   vmul d3, d0, d2
6882///   vmla d3, d1, d2
6883/// is faster than
6884///   vadd d3, d0, d1
6885///   vmul d3, d3, d2
6886static SDValue PerformVMULCombine(SDNode *N,
6887                                  TargetLowering::DAGCombinerInfo &DCI,
6888                                  const ARMSubtarget *Subtarget) {
6889  if (!Subtarget->hasVMLxForwarding())
6890    return SDValue();
6891
6892  SelectionDAG &DAG = DCI.DAG;
6893  SDValue N0 = N->getOperand(0);
6894  SDValue N1 = N->getOperand(1);
6895  unsigned Opcode = N0.getOpcode();
6896  if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
6897      Opcode != ISD::FADD && Opcode != ISD::FSUB) {
6898    Opcode = N1.getOpcode();
6899    if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
6900        Opcode != ISD::FADD && Opcode != ISD::FSUB)
6901      return SDValue();
6902    std::swap(N0, N1);
6903  }
6904
6905  EVT VT = N->getValueType(0);
6906  DebugLoc DL = N->getDebugLoc();
6907  SDValue N00 = N0->getOperand(0);
6908  SDValue N01 = N0->getOperand(1);
6909  return DAG.getNode(Opcode, DL, VT,
6910                     DAG.getNode(ISD::MUL, DL, VT, N00, N1),
6911                     DAG.getNode(ISD::MUL, DL, VT, N01, N1));
6912}
6913
6914static SDValue PerformMULCombine(SDNode *N,
6915                                 TargetLowering::DAGCombinerInfo &DCI,
6916                                 const ARMSubtarget *Subtarget) {
6917  SelectionDAG &DAG = DCI.DAG;
6918
6919  if (Subtarget->isThumb1Only())
6920    return SDValue();
6921
6922  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
6923    return SDValue();
6924
6925  EVT VT = N->getValueType(0);
6926  if (VT.is64BitVector() || VT.is128BitVector())
6927    return PerformVMULCombine(N, DCI, Subtarget);
6928  if (VT != MVT::i32)
6929    return SDValue();
6930
6931  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
6932  if (!C)
6933    return SDValue();
6934
6935  int64_t MulAmt = C->getSExtValue();
6936  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
6937
6938  ShiftAmt = ShiftAmt & (32 - 1);
6939  SDValue V = N->getOperand(0);
6940  DebugLoc DL = N->getDebugLoc();
6941
6942  SDValue Res;
6943  MulAmt >>= ShiftAmt;
6944
6945  if (MulAmt >= 0) {
6946    if (isPowerOf2_32(MulAmt - 1)) {
6947      // (mul x, 2^N + 1) => (add (shl x, N), x)
6948      Res = DAG.getNode(ISD::ADD, DL, VT,
6949                        V,
6950                        DAG.getNode(ISD::SHL, DL, VT,
6951                                    V,
6952                                    DAG.getConstant(Log2_32(MulAmt - 1),
6953                                                    MVT::i32)));
6954    } else if (isPowerOf2_32(MulAmt + 1)) {
6955      // (mul x, 2^N - 1) => (sub (shl x, N), x)
6956      Res = DAG.getNode(ISD::SUB, DL, VT,
6957                        DAG.getNode(ISD::SHL, DL, VT,
6958                                    V,
6959                                    DAG.getConstant(Log2_32(MulAmt + 1),
6960                                                    MVT::i32)),
6961                        V);
6962    } else
6963      return SDValue();
6964  } else {
6965    uint64_t MulAmtAbs = -MulAmt;
6966    if (isPowerOf2_32(MulAmtAbs + 1)) {
6967      // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
6968      Res = DAG.getNode(ISD::SUB, DL, VT,
6969                        V,
6970                        DAG.getNode(ISD::SHL, DL, VT,
6971                                    V,
6972                                    DAG.getConstant(Log2_32(MulAmtAbs + 1),
6973                                                    MVT::i32)));
6974    } else if (isPowerOf2_32(MulAmtAbs - 1)) {
6975      // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
6976      Res = DAG.getNode(ISD::ADD, DL, VT,
6977                        V,
6978                        DAG.getNode(ISD::SHL, DL, VT,
6979                                    V,
6980                                    DAG.getConstant(Log2_32(MulAmtAbs-1),
6981                                                    MVT::i32)));
6982      Res = DAG.getNode(ISD::SUB, DL, VT,
6983                        DAG.getConstant(0, MVT::i32),Res);
6984
6985    } else
6986      return SDValue();
6987  }
6988
6989  if (ShiftAmt != 0)
6990    Res = DAG.getNode(ISD::SHL, DL, VT,
6991                      Res, DAG.getConstant(ShiftAmt, MVT::i32));
6992
6993  // Do not add new nodes to DAG combiner worklist.
6994  DCI.CombineTo(N, Res, false);
6995  return SDValue();
6996}
6997
6998static bool isCMOVWithZeroOrAllOnesLHS(SDValue N, bool AllOnes) {
6999  if (N.getOpcode() != ARMISD::CMOV || !N.getNode()->hasOneUse())
7000    return false;
7001
7002  SDValue FalseVal = N.getOperand(0);
7003  ConstantSDNode *C = dyn_cast<ConstantSDNode>(FalseVal);
7004  if (!C)
7005    return false;
7006  if (AllOnes)
7007    return C->isAllOnesValue();
7008  return C->isNullValue();
7009}
7010
7011/// formConditionalOp - Combine an operation with a conditional move operand
7012/// to form a conditional op. e.g. (or x, (cmov 0, y, cond)) => (or.cond x, y)
7013/// (and x, (cmov -1, y, cond)) => (and.cond, x, y)
7014static SDValue formConditionalOp(SDNode *N, SelectionDAG &DAG,
7015                                 bool Commutable) {
7016  SDValue N0 = N->getOperand(0);
7017  SDValue N1 = N->getOperand(1);
7018
7019  bool isAND = N->getOpcode() == ISD::AND;
7020  bool isCand = isCMOVWithZeroOrAllOnesLHS(N1, isAND);
7021  if (!isCand && Commutable) {
7022    isCand = isCMOVWithZeroOrAllOnesLHS(N0, isAND);
7023    if (isCand)
7024      std::swap(N0, N1);
7025  }
7026  if (!isCand)
7027    return SDValue();
7028
7029  unsigned Opc = 0;
7030  switch (N->getOpcode()) {
7031  default: llvm_unreachable("Unexpected node");
7032  case ISD::AND: Opc = ARMISD::CAND; break;
7033  case ISD::OR:  Opc = ARMISD::COR; break;
7034  case ISD::XOR: Opc = ARMISD::CXOR; break;
7035  }
7036  return DAG.getNode(Opc, N->getDebugLoc(), N->getValueType(0), N0,
7037                     N1.getOperand(1), N1.getOperand(2), N1.getOperand(3),
7038                     N1.getOperand(4));
7039}
7040
7041static SDValue PerformANDCombine(SDNode *N,
7042                                 TargetLowering::DAGCombinerInfo &DCI,
7043                                 const ARMSubtarget *Subtarget) {
7044
7045  // Attempt to use immediate-form VBIC
7046  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
7047  DebugLoc dl = N->getDebugLoc();
7048  EVT VT = N->getValueType(0);
7049  SelectionDAG &DAG = DCI.DAG;
7050
7051  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7052    return SDValue();
7053
7054  APInt SplatBits, SplatUndef;
7055  unsigned SplatBitSize;
7056  bool HasAnyUndefs;
7057  if (BVN &&
7058      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
7059    if (SplatBitSize <= 64) {
7060      EVT VbicVT;
7061      SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
7062                                      SplatUndef.getZExtValue(), SplatBitSize,
7063                                      DAG, VbicVT, VT.is128BitVector(),
7064                                      OtherModImm);
7065      if (Val.getNode()) {
7066        SDValue Input =
7067          DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
7068        SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
7069        return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
7070      }
7071    }
7072  }
7073
7074  if (!Subtarget->isThumb1Only()) {
7075    // (and x, (cmov -1, y, cond)) => (and.cond x, y)
7076    SDValue CAND = formConditionalOp(N, DAG, true);
7077    if (CAND.getNode())
7078      return CAND;
7079  }
7080
7081  return SDValue();
7082}
7083
7084/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
7085static SDValue PerformORCombine(SDNode *N,
7086                                TargetLowering::DAGCombinerInfo &DCI,
7087                                const ARMSubtarget *Subtarget) {
7088  // Attempt to use immediate-form VORR
7089  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
7090  DebugLoc dl = N->getDebugLoc();
7091  EVT VT = N->getValueType(0);
7092  SelectionDAG &DAG = DCI.DAG;
7093
7094  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7095    return SDValue();
7096
7097  APInt SplatBits, SplatUndef;
7098  unsigned SplatBitSize;
7099  bool HasAnyUndefs;
7100  if (BVN && Subtarget->hasNEON() &&
7101      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
7102    if (SplatBitSize <= 64) {
7103      EVT VorrVT;
7104      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
7105                                      SplatUndef.getZExtValue(), SplatBitSize,
7106                                      DAG, VorrVT, VT.is128BitVector(),
7107                                      OtherModImm);
7108      if (Val.getNode()) {
7109        SDValue Input =
7110          DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
7111        SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
7112        return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
7113      }
7114    }
7115  }
7116
7117  if (!Subtarget->isThumb1Only()) {
7118    // (or x, (cmov 0, y, cond)) => (or.cond x, y)
7119    SDValue COR = formConditionalOp(N, DAG, true);
7120    if (COR.getNode())
7121      return COR;
7122  }
7123
7124  SDValue N0 = N->getOperand(0);
7125  if (N0.getOpcode() != ISD::AND)
7126    return SDValue();
7127  SDValue N1 = N->getOperand(1);
7128
7129  // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
7130  if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
7131      DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
7132    APInt SplatUndef;
7133    unsigned SplatBitSize;
7134    bool HasAnyUndefs;
7135
7136    BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
7137    APInt SplatBits0;
7138    if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
7139                                  HasAnyUndefs) && !HasAnyUndefs) {
7140      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
7141      APInt SplatBits1;
7142      if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
7143                                    HasAnyUndefs) && !HasAnyUndefs &&
7144          SplatBits0 == ~SplatBits1) {
7145        // Canonicalize the vector type to make instruction selection simpler.
7146        EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
7147        SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
7148                                     N0->getOperand(1), N0->getOperand(0),
7149                                     N1->getOperand(0));
7150        return DAG.getNode(ISD::BITCAST, dl, VT, Result);
7151      }
7152    }
7153  }
7154
7155  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
7156  // reasonable.
7157
7158  // BFI is only available on V6T2+
7159  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
7160    return SDValue();
7161
7162  DebugLoc DL = N->getDebugLoc();
7163  // 1) or (and A, mask), val => ARMbfi A, val, mask
7164  //      iff (val & mask) == val
7165  //
7166  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
7167  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
7168  //          && mask == ~mask2
7169  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
7170  //          && ~mask == mask2
7171  //  (i.e., copy a bitfield value into another bitfield of the same width)
7172
7173  if (VT != MVT::i32)
7174    return SDValue();
7175
7176  SDValue N00 = N0.getOperand(0);
7177
7178  // The value and the mask need to be constants so we can verify this is
7179  // actually a bitfield set. If the mask is 0xffff, we can do better
7180  // via a movt instruction, so don't use BFI in that case.
7181  SDValue MaskOp = N0.getOperand(1);
7182  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
7183  if (!MaskC)
7184    return SDValue();
7185  unsigned Mask = MaskC->getZExtValue();
7186  if (Mask == 0xffff)
7187    return SDValue();
7188  SDValue Res;
7189  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
7190  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
7191  if (N1C) {
7192    unsigned Val = N1C->getZExtValue();
7193    if ((Val & ~Mask) != Val)
7194      return SDValue();
7195
7196    if (ARM::isBitFieldInvertedMask(Mask)) {
7197      Val >>= CountTrailingZeros_32(~Mask);
7198
7199      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
7200                        DAG.getConstant(Val, MVT::i32),
7201                        DAG.getConstant(Mask, MVT::i32));
7202
7203      // Do not add new nodes to DAG combiner worklist.
7204      DCI.CombineTo(N, Res, false);
7205      return SDValue();
7206    }
7207  } else if (N1.getOpcode() == ISD::AND) {
7208    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
7209    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
7210    if (!N11C)
7211      return SDValue();
7212    unsigned Mask2 = N11C->getZExtValue();
7213
7214    // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
7215    // as is to match.
7216    if (ARM::isBitFieldInvertedMask(Mask) &&
7217        (Mask == ~Mask2)) {
7218      // The pack halfword instruction works better for masks that fit it,
7219      // so use that when it's available.
7220      if (Subtarget->hasT2ExtractPack() &&
7221          (Mask == 0xffff || Mask == 0xffff0000))
7222        return SDValue();
7223      // 2a
7224      unsigned amt = CountTrailingZeros_32(Mask2);
7225      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
7226                        DAG.getConstant(amt, MVT::i32));
7227      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
7228                        DAG.getConstant(Mask, MVT::i32));
7229      // Do not add new nodes to DAG combiner worklist.
7230      DCI.CombineTo(N, Res, false);
7231      return SDValue();
7232    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
7233               (~Mask == Mask2)) {
7234      // The pack halfword instruction works better for masks that fit it,
7235      // so use that when it's available.
7236      if (Subtarget->hasT2ExtractPack() &&
7237          (Mask2 == 0xffff || Mask2 == 0xffff0000))
7238        return SDValue();
7239      // 2b
7240      unsigned lsb = CountTrailingZeros_32(Mask);
7241      Res = DAG.getNode(ISD::SRL, DL, VT, N00,
7242                        DAG.getConstant(lsb, MVT::i32));
7243      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
7244                        DAG.getConstant(Mask2, MVT::i32));
7245      // Do not add new nodes to DAG combiner worklist.
7246      DCI.CombineTo(N, Res, false);
7247      return SDValue();
7248    }
7249  }
7250
7251  if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
7252      N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
7253      ARM::isBitFieldInvertedMask(~Mask)) {
7254    // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
7255    // where lsb(mask) == #shamt and masked bits of B are known zero.
7256    SDValue ShAmt = N00.getOperand(1);
7257    unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
7258    unsigned LSB = CountTrailingZeros_32(Mask);
7259    if (ShAmtC != LSB)
7260      return SDValue();
7261
7262    Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
7263                      DAG.getConstant(~Mask, MVT::i32));
7264
7265    // Do not add new nodes to DAG combiner worklist.
7266    DCI.CombineTo(N, Res, false);
7267  }
7268
7269  return SDValue();
7270}
7271
7272static SDValue PerformXORCombine(SDNode *N,
7273                                 TargetLowering::DAGCombinerInfo &DCI,
7274                                 const ARMSubtarget *Subtarget) {
7275  EVT VT = N->getValueType(0);
7276  SelectionDAG &DAG = DCI.DAG;
7277
7278  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7279    return SDValue();
7280
7281  if (!Subtarget->isThumb1Only()) {
7282    // (xor x, (cmov 0, y, cond)) => (xor.cond x, y)
7283    SDValue CXOR = formConditionalOp(N, DAG, true);
7284    if (CXOR.getNode())
7285      return CXOR;
7286  }
7287
7288  return SDValue();
7289}
7290
7291/// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
7292/// the bits being cleared by the AND are not demanded by the BFI.
7293static SDValue PerformBFICombine(SDNode *N,
7294                                 TargetLowering::DAGCombinerInfo &DCI) {
7295  SDValue N1 = N->getOperand(1);
7296  if (N1.getOpcode() == ISD::AND) {
7297    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
7298    if (!N11C)
7299      return SDValue();
7300    unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
7301    unsigned LSB = CountTrailingZeros_32(~InvMask);
7302    unsigned Width = (32 - CountLeadingZeros_32(~InvMask)) - LSB;
7303    unsigned Mask = (1 << Width)-1;
7304    unsigned Mask2 = N11C->getZExtValue();
7305    if ((Mask & (~Mask2)) == 0)
7306      return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
7307                             N->getOperand(0), N1.getOperand(0),
7308                             N->getOperand(2));
7309  }
7310  return SDValue();
7311}
7312
7313/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
7314/// ARMISD::VMOVRRD.
7315static SDValue PerformVMOVRRDCombine(SDNode *N,
7316                                     TargetLowering::DAGCombinerInfo &DCI) {
7317  // vmovrrd(vmovdrr x, y) -> x,y
7318  SDValue InDouble = N->getOperand(0);
7319  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
7320    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
7321
7322  // vmovrrd(load f64) -> (load i32), (load i32)
7323  SDNode *InNode = InDouble.getNode();
7324  if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
7325      InNode->getValueType(0) == MVT::f64 &&
7326      InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
7327      !cast<LoadSDNode>(InNode)->isVolatile()) {
7328    // TODO: Should this be done for non-FrameIndex operands?
7329    LoadSDNode *LD = cast<LoadSDNode>(InNode);
7330
7331    SelectionDAG &DAG = DCI.DAG;
7332    DebugLoc DL = LD->getDebugLoc();
7333    SDValue BasePtr = LD->getBasePtr();
7334    SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
7335                                 LD->getPointerInfo(), LD->isVolatile(),
7336                                 LD->isNonTemporal(), LD->isInvariant(),
7337                                 LD->getAlignment());
7338
7339    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
7340                                    DAG.getConstant(4, MVT::i32));
7341    SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
7342                                 LD->getPointerInfo(), LD->isVolatile(),
7343                                 LD->isNonTemporal(), LD->isInvariant(),
7344                                 std::min(4U, LD->getAlignment() / 2));
7345
7346    DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
7347    SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
7348    DCI.RemoveFromWorklist(LD);
7349    DAG.DeleteNode(LD);
7350    return Result;
7351  }
7352
7353  return SDValue();
7354}
7355
7356/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
7357/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
7358static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
7359  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
7360  SDValue Op0 = N->getOperand(0);
7361  SDValue Op1 = N->getOperand(1);
7362  if (Op0.getOpcode() == ISD::BITCAST)
7363    Op0 = Op0.getOperand(0);
7364  if (Op1.getOpcode() == ISD::BITCAST)
7365    Op1 = Op1.getOperand(0);
7366  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
7367      Op0.getNode() == Op1.getNode() &&
7368      Op0.getResNo() == 0 && Op1.getResNo() == 1)
7369    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
7370                       N->getValueType(0), Op0.getOperand(0));
7371  return SDValue();
7372}
7373
7374/// PerformSTORECombine - Target-specific dag combine xforms for
7375/// ISD::STORE.
7376static SDValue PerformSTORECombine(SDNode *N,
7377                                   TargetLowering::DAGCombinerInfo &DCI) {
7378  StoreSDNode *St = cast<StoreSDNode>(N);
7379  if (St->isVolatile())
7380    return SDValue();
7381
7382  // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
7383  // pack all of the elements in one place.  Next, store to memory in fewer
7384  // chunks.
7385  SDValue StVal = St->getValue();
7386  EVT VT = StVal.getValueType();
7387  if (St->isTruncatingStore() && VT.isVector()) {
7388    SelectionDAG &DAG = DCI.DAG;
7389    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7390    EVT StVT = St->getMemoryVT();
7391    unsigned NumElems = VT.getVectorNumElements();
7392    assert(StVT != VT && "Cannot truncate to the same type");
7393    unsigned FromEltSz = VT.getVectorElementType().getSizeInBits();
7394    unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits();
7395
7396    // From, To sizes and ElemCount must be pow of two
7397    if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
7398
7399    // We are going to use the original vector elt for storing.
7400    // Accumulated smaller vector elements must be a multiple of the store size.
7401    if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
7402
7403    unsigned SizeRatio  = FromEltSz / ToEltSz;
7404    assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
7405
7406    // Create a type on which we perform the shuffle.
7407    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
7408                                     NumElems*SizeRatio);
7409    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
7410
7411    DebugLoc DL = St->getDebugLoc();
7412    SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
7413    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
7414    for (unsigned i = 0; i < NumElems; ++i) ShuffleVec[i] = i * SizeRatio;
7415
7416    // Can't shuffle using an illegal type.
7417    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
7418
7419    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
7420                                DAG.getUNDEF(WideVec.getValueType()),
7421                                ShuffleVec.data());
7422    // At this point all of the data is stored at the bottom of the
7423    // register. We now need to save it to mem.
7424
7425    // Find the largest store unit
7426    MVT StoreType = MVT::i8;
7427    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
7428         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
7429      MVT Tp = (MVT::SimpleValueType)tp;
7430      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
7431        StoreType = Tp;
7432    }
7433    // Didn't find a legal store type.
7434    if (!TLI.isTypeLegal(StoreType))
7435      return SDValue();
7436
7437    // Bitcast the original vector into a vector of store-size units
7438    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
7439            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
7440    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
7441    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
7442    SmallVector<SDValue, 8> Chains;
7443    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
7444                                        TLI.getPointerTy());
7445    SDValue BasePtr = St->getBasePtr();
7446
7447    // Perform one or more big stores into memory.
7448    unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
7449    for (unsigned I = 0; I < E; I++) {
7450      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
7451                                   StoreType, ShuffWide,
7452                                   DAG.getIntPtrConstant(I));
7453      SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
7454                                St->getPointerInfo(), St->isVolatile(),
7455                                St->isNonTemporal(), St->getAlignment());
7456      BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
7457                            Increment);
7458      Chains.push_back(Ch);
7459    }
7460    return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &Chains[0],
7461                       Chains.size());
7462  }
7463
7464  if (!ISD::isNormalStore(St))
7465    return SDValue();
7466
7467  // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
7468  // ARM stores of arguments in the same cache line.
7469  if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
7470      StVal.getNode()->hasOneUse()) {
7471    SelectionDAG  &DAG = DCI.DAG;
7472    DebugLoc DL = St->getDebugLoc();
7473    SDValue BasePtr = St->getBasePtr();
7474    SDValue NewST1 = DAG.getStore(St->getChain(), DL,
7475                                  StVal.getNode()->getOperand(0), BasePtr,
7476                                  St->getPointerInfo(), St->isVolatile(),
7477                                  St->isNonTemporal(), St->getAlignment());
7478
7479    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
7480                                    DAG.getConstant(4, MVT::i32));
7481    return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1),
7482                        OffsetPtr, St->getPointerInfo(), St->isVolatile(),
7483                        St->isNonTemporal(),
7484                        std::min(4U, St->getAlignment() / 2));
7485  }
7486
7487  if (StVal.getValueType() != MVT::i64 ||
7488      StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7489    return SDValue();
7490
7491  // Bitcast an i64 store extracted from a vector to f64.
7492  // Otherwise, the i64 value will be legalized to a pair of i32 values.
7493  SelectionDAG &DAG = DCI.DAG;
7494  DebugLoc dl = StVal.getDebugLoc();
7495  SDValue IntVec = StVal.getOperand(0);
7496  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
7497                                 IntVec.getValueType().getVectorNumElements());
7498  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
7499  SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7500                               Vec, StVal.getOperand(1));
7501  dl = N->getDebugLoc();
7502  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
7503  // Make the DAGCombiner fold the bitcasts.
7504  DCI.AddToWorklist(Vec.getNode());
7505  DCI.AddToWorklist(ExtElt.getNode());
7506  DCI.AddToWorklist(V.getNode());
7507  return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
7508                      St->getPointerInfo(), St->isVolatile(),
7509                      St->isNonTemporal(), St->getAlignment(),
7510                      St->getTBAAInfo());
7511}
7512
7513/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
7514/// are normal, non-volatile loads.  If so, it is profitable to bitcast an
7515/// i64 vector to have f64 elements, since the value can then be loaded
7516/// directly into a VFP register.
7517static bool hasNormalLoadOperand(SDNode *N) {
7518  unsigned NumElts = N->getValueType(0).getVectorNumElements();
7519  for (unsigned i = 0; i < NumElts; ++i) {
7520    SDNode *Elt = N->getOperand(i).getNode();
7521    if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
7522      return true;
7523  }
7524  return false;
7525}
7526
7527/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
7528/// ISD::BUILD_VECTOR.
7529static SDValue PerformBUILD_VECTORCombine(SDNode *N,
7530                                          TargetLowering::DAGCombinerInfo &DCI){
7531  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
7532  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
7533  // into a pair of GPRs, which is fine when the value is used as a scalar,
7534  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
7535  SelectionDAG &DAG = DCI.DAG;
7536  if (N->getNumOperands() == 2) {
7537    SDValue RV = PerformVMOVDRRCombine(N, DAG);
7538    if (RV.getNode())
7539      return RV;
7540  }
7541
7542  // Load i64 elements as f64 values so that type legalization does not split
7543  // them up into i32 values.
7544  EVT VT = N->getValueType(0);
7545  if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
7546    return SDValue();
7547  DebugLoc dl = N->getDebugLoc();
7548  SmallVector<SDValue, 8> Ops;
7549  unsigned NumElts = VT.getVectorNumElements();
7550  for (unsigned i = 0; i < NumElts; ++i) {
7551    SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
7552    Ops.push_back(V);
7553    // Make the DAGCombiner fold the bitcast.
7554    DCI.AddToWorklist(V.getNode());
7555  }
7556  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
7557  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
7558  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
7559}
7560
7561/// PerformInsertEltCombine - Target-specific dag combine xforms for
7562/// ISD::INSERT_VECTOR_ELT.
7563static SDValue PerformInsertEltCombine(SDNode *N,
7564                                       TargetLowering::DAGCombinerInfo &DCI) {
7565  // Bitcast an i64 load inserted into a vector to f64.
7566  // Otherwise, the i64 value will be legalized to a pair of i32 values.
7567  EVT VT = N->getValueType(0);
7568  SDNode *Elt = N->getOperand(1).getNode();
7569  if (VT.getVectorElementType() != MVT::i64 ||
7570      !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
7571    return SDValue();
7572
7573  SelectionDAG &DAG = DCI.DAG;
7574  DebugLoc dl = N->getDebugLoc();
7575  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
7576                                 VT.getVectorNumElements());
7577  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
7578  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
7579  // Make the DAGCombiner fold the bitcasts.
7580  DCI.AddToWorklist(Vec.getNode());
7581  DCI.AddToWorklist(V.getNode());
7582  SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
7583                               Vec, V, N->getOperand(2));
7584  return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
7585}
7586
7587/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
7588/// ISD::VECTOR_SHUFFLE.
7589static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
7590  // The LLVM shufflevector instruction does not require the shuffle mask
7591  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
7592  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
7593  // operands do not match the mask length, they are extended by concatenating
7594  // them with undef vectors.  That is probably the right thing for other
7595  // targets, but for NEON it is better to concatenate two double-register
7596  // size vector operands into a single quad-register size vector.  Do that
7597  // transformation here:
7598  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
7599  //   shuffle(concat(v1, v2), undef)
7600  SDValue Op0 = N->getOperand(0);
7601  SDValue Op1 = N->getOperand(1);
7602  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
7603      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
7604      Op0.getNumOperands() != 2 ||
7605      Op1.getNumOperands() != 2)
7606    return SDValue();
7607  SDValue Concat0Op1 = Op0.getOperand(1);
7608  SDValue Concat1Op1 = Op1.getOperand(1);
7609  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
7610      Concat1Op1.getOpcode() != ISD::UNDEF)
7611    return SDValue();
7612  // Skip the transformation if any of the types are illegal.
7613  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7614  EVT VT = N->getValueType(0);
7615  if (!TLI.isTypeLegal(VT) ||
7616      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
7617      !TLI.isTypeLegal(Concat1Op1.getValueType()))
7618    return SDValue();
7619
7620  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
7621                                  Op0.getOperand(0), Op1.getOperand(0));
7622  // Translate the shuffle mask.
7623  SmallVector<int, 16> NewMask;
7624  unsigned NumElts = VT.getVectorNumElements();
7625  unsigned HalfElts = NumElts/2;
7626  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
7627  for (unsigned n = 0; n < NumElts; ++n) {
7628    int MaskElt = SVN->getMaskElt(n);
7629    int NewElt = -1;
7630    if (MaskElt < (int)HalfElts)
7631      NewElt = MaskElt;
7632    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
7633      NewElt = HalfElts + MaskElt - NumElts;
7634    NewMask.push_back(NewElt);
7635  }
7636  return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
7637                              DAG.getUNDEF(VT), NewMask.data());
7638}
7639
7640/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
7641/// NEON load/store intrinsics to merge base address updates.
7642static SDValue CombineBaseUpdate(SDNode *N,
7643                                 TargetLowering::DAGCombinerInfo &DCI) {
7644  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
7645    return SDValue();
7646
7647  SelectionDAG &DAG = DCI.DAG;
7648  bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
7649                      N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
7650  unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
7651  SDValue Addr = N->getOperand(AddrOpIdx);
7652
7653  // Search for a use of the address operand that is an increment.
7654  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
7655         UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
7656    SDNode *User = *UI;
7657    if (User->getOpcode() != ISD::ADD ||
7658        UI.getUse().getResNo() != Addr.getResNo())
7659      continue;
7660
7661    // Check that the add is independent of the load/store.  Otherwise, folding
7662    // it would create a cycle.
7663    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
7664      continue;
7665
7666    // Find the new opcode for the updating load/store.
7667    bool isLoad = true;
7668    bool isLaneOp = false;
7669    unsigned NewOpc = 0;
7670    unsigned NumVecs = 0;
7671    if (isIntrinsic) {
7672      unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
7673      switch (IntNo) {
7674      default: llvm_unreachable("unexpected intrinsic for Neon base update");
7675      case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
7676        NumVecs = 1; break;
7677      case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
7678        NumVecs = 2; break;
7679      case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
7680        NumVecs = 3; break;
7681      case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
7682        NumVecs = 4; break;
7683      case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
7684        NumVecs = 2; isLaneOp = true; break;
7685      case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
7686        NumVecs = 3; isLaneOp = true; break;
7687      case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
7688        NumVecs = 4; isLaneOp = true; break;
7689      case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
7690        NumVecs = 1; isLoad = false; break;
7691      case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
7692        NumVecs = 2; isLoad = false; break;
7693      case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
7694        NumVecs = 3; isLoad = false; break;
7695      case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
7696        NumVecs = 4; isLoad = false; break;
7697      case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
7698        NumVecs = 2; isLoad = false; isLaneOp = true; break;
7699      case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
7700        NumVecs = 3; isLoad = false; isLaneOp = true; break;
7701      case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
7702        NumVecs = 4; isLoad = false; isLaneOp = true; break;
7703      }
7704    } else {
7705      isLaneOp = true;
7706      switch (N->getOpcode()) {
7707      default: llvm_unreachable("unexpected opcode for Neon base update");
7708      case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
7709      case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
7710      case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
7711      }
7712    }
7713
7714    // Find the size of memory referenced by the load/store.
7715    EVT VecTy;
7716    if (isLoad)
7717      VecTy = N->getValueType(0);
7718    else
7719      VecTy = N->getOperand(AddrOpIdx+1).getValueType();
7720    unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
7721    if (isLaneOp)
7722      NumBytes /= VecTy.getVectorNumElements();
7723
7724    // If the increment is a constant, it must match the memory ref size.
7725    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
7726    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
7727      uint64_t IncVal = CInc->getZExtValue();
7728      if (IncVal != NumBytes)
7729        continue;
7730    } else if (NumBytes >= 3 * 16) {
7731      // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
7732      // separate instructions that make it harder to use a non-constant update.
7733      continue;
7734    }
7735
7736    // Create the new updating load/store node.
7737    EVT Tys[6];
7738    unsigned NumResultVecs = (isLoad ? NumVecs : 0);
7739    unsigned n;
7740    for (n = 0; n < NumResultVecs; ++n)
7741      Tys[n] = VecTy;
7742    Tys[n++] = MVT::i32;
7743    Tys[n] = MVT::Other;
7744    SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
7745    SmallVector<SDValue, 8> Ops;
7746    Ops.push_back(N->getOperand(0)); // incoming chain
7747    Ops.push_back(N->getOperand(AddrOpIdx));
7748    Ops.push_back(Inc);
7749    for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
7750      Ops.push_back(N->getOperand(i));
7751    }
7752    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
7753    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys,
7754                                           Ops.data(), Ops.size(),
7755                                           MemInt->getMemoryVT(),
7756                                           MemInt->getMemOperand());
7757
7758    // Update the uses.
7759    std::vector<SDValue> NewResults;
7760    for (unsigned i = 0; i < NumResultVecs; ++i) {
7761      NewResults.push_back(SDValue(UpdN.getNode(), i));
7762    }
7763    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
7764    DCI.CombineTo(N, NewResults);
7765    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
7766
7767    break;
7768  }
7769  return SDValue();
7770}
7771
7772/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
7773/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
7774/// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
7775/// return true.
7776static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
7777  SelectionDAG &DAG = DCI.DAG;
7778  EVT VT = N->getValueType(0);
7779  // vldN-dup instructions only support 64-bit vectors for N > 1.
7780  if (!VT.is64BitVector())
7781    return false;
7782
7783  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
7784  SDNode *VLD = N->getOperand(0).getNode();
7785  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
7786    return false;
7787  unsigned NumVecs = 0;
7788  unsigned NewOpc = 0;
7789  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
7790  if (IntNo == Intrinsic::arm_neon_vld2lane) {
7791    NumVecs = 2;
7792    NewOpc = ARMISD::VLD2DUP;
7793  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
7794    NumVecs = 3;
7795    NewOpc = ARMISD::VLD3DUP;
7796  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
7797    NumVecs = 4;
7798    NewOpc = ARMISD::VLD4DUP;
7799  } else {
7800    return false;
7801  }
7802
7803  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
7804  // numbers match the load.
7805  unsigned VLDLaneNo =
7806    cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
7807  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
7808       UI != UE; ++UI) {
7809    // Ignore uses of the chain result.
7810    if (UI.getUse().getResNo() == NumVecs)
7811      continue;
7812    SDNode *User = *UI;
7813    if (User->getOpcode() != ARMISD::VDUPLANE ||
7814        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
7815      return false;
7816  }
7817
7818  // Create the vldN-dup node.
7819  EVT Tys[5];
7820  unsigned n;
7821  for (n = 0; n < NumVecs; ++n)
7822    Tys[n] = VT;
7823  Tys[n] = MVT::Other;
7824  SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
7825  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
7826  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
7827  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
7828                                           Ops, 2, VLDMemInt->getMemoryVT(),
7829                                           VLDMemInt->getMemOperand());
7830
7831  // Update the uses.
7832  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
7833       UI != UE; ++UI) {
7834    unsigned ResNo = UI.getUse().getResNo();
7835    // Ignore uses of the chain result.
7836    if (ResNo == NumVecs)
7837      continue;
7838    SDNode *User = *UI;
7839    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
7840  }
7841
7842  // Now the vldN-lane intrinsic is dead except for its chain result.
7843  // Update uses of the chain.
7844  std::vector<SDValue> VLDDupResults;
7845  for (unsigned n = 0; n < NumVecs; ++n)
7846    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
7847  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
7848  DCI.CombineTo(VLD, VLDDupResults);
7849
7850  return true;
7851}
7852
7853/// PerformVDUPLANECombine - Target-specific dag combine xforms for
7854/// ARMISD::VDUPLANE.
7855static SDValue PerformVDUPLANECombine(SDNode *N,
7856                                      TargetLowering::DAGCombinerInfo &DCI) {
7857  SDValue Op = N->getOperand(0);
7858
7859  // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
7860  // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
7861  if (CombineVLDDUP(N, DCI))
7862    return SDValue(N, 0);
7863
7864  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
7865  // redundant.  Ignore bit_converts for now; element sizes are checked below.
7866  while (Op.getOpcode() == ISD::BITCAST)
7867    Op = Op.getOperand(0);
7868  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
7869    return SDValue();
7870
7871  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
7872  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
7873  // The canonical VMOV for a zero vector uses a 32-bit element size.
7874  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7875  unsigned EltBits;
7876  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
7877    EltSize = 8;
7878  EVT VT = N->getValueType(0);
7879  if (EltSize > VT.getVectorElementType().getSizeInBits())
7880    return SDValue();
7881
7882  return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
7883}
7884
7885// isConstVecPow2 - Return true if each vector element is a power of 2, all
7886// elements are the same constant, C, and Log2(C) ranges from 1 to 32.
7887static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
7888{
7889  integerPart cN;
7890  integerPart c0 = 0;
7891  for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
7892       I != E; I++) {
7893    ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
7894    if (!C)
7895      return false;
7896
7897    bool isExact;
7898    APFloat APF = C->getValueAPF();
7899    if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
7900        != APFloat::opOK || !isExact)
7901      return false;
7902
7903    c0 = (I == 0) ? cN : c0;
7904    if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
7905      return false;
7906  }
7907  C = c0;
7908  return true;
7909}
7910
7911/// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
7912/// can replace combinations of VMUL and VCVT (floating-point to integer)
7913/// when the VMUL has a constant operand that is a power of 2.
7914///
7915/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
7916///  vmul.f32        d16, d17, d16
7917///  vcvt.s32.f32    d16, d16
7918/// becomes:
7919///  vcvt.s32.f32    d16, d16, #3
7920static SDValue PerformVCVTCombine(SDNode *N,
7921                                  TargetLowering::DAGCombinerInfo &DCI,
7922                                  const ARMSubtarget *Subtarget) {
7923  SelectionDAG &DAG = DCI.DAG;
7924  SDValue Op = N->getOperand(0);
7925
7926  if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
7927      Op.getOpcode() != ISD::FMUL)
7928    return SDValue();
7929
7930  uint64_t C;
7931  SDValue N0 = Op->getOperand(0);
7932  SDValue ConstVec = Op->getOperand(1);
7933  bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
7934
7935  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
7936      !isConstVecPow2(ConstVec, isSigned, C))
7937    return SDValue();
7938
7939  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
7940    Intrinsic::arm_neon_vcvtfp2fxu;
7941  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
7942                     N->getValueType(0),
7943                     DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
7944                     DAG.getConstant(Log2_64(C), MVT::i32));
7945}
7946
7947/// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
7948/// can replace combinations of VCVT (integer to floating-point) and VDIV
7949/// when the VDIV has a constant operand that is a power of 2.
7950///
7951/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
7952///  vcvt.f32.s32    d16, d16
7953///  vdiv.f32        d16, d17, d16
7954/// becomes:
7955///  vcvt.f32.s32    d16, d16, #3
7956static SDValue PerformVDIVCombine(SDNode *N,
7957                                  TargetLowering::DAGCombinerInfo &DCI,
7958                                  const ARMSubtarget *Subtarget) {
7959  SelectionDAG &DAG = DCI.DAG;
7960  SDValue Op = N->getOperand(0);
7961  unsigned OpOpcode = Op.getNode()->getOpcode();
7962
7963  if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
7964      (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
7965    return SDValue();
7966
7967  uint64_t C;
7968  SDValue ConstVec = N->getOperand(1);
7969  bool isSigned = OpOpcode == ISD::SINT_TO_FP;
7970
7971  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
7972      !isConstVecPow2(ConstVec, isSigned, C))
7973    return SDValue();
7974
7975  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
7976    Intrinsic::arm_neon_vcvtfxu2fp;
7977  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
7978                     Op.getValueType(),
7979                     DAG.getConstant(IntrinsicOpcode, MVT::i32),
7980                     Op.getOperand(0), DAG.getConstant(Log2_64(C), MVT::i32));
7981}
7982
7983/// Getvshiftimm - Check if this is a valid build_vector for the immediate
7984/// operand of a vector shift operation, where all the elements of the
7985/// build_vector must have the same constant integer value.
7986static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
7987  // Ignore bit_converts.
7988  while (Op.getOpcode() == ISD::BITCAST)
7989    Op = Op.getOperand(0);
7990  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7991  APInt SplatBits, SplatUndef;
7992  unsigned SplatBitSize;
7993  bool HasAnyUndefs;
7994  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
7995                                      HasAnyUndefs, ElementBits) ||
7996      SplatBitSize > ElementBits)
7997    return false;
7998  Cnt = SplatBits.getSExtValue();
7999  return true;
8000}
8001
8002/// isVShiftLImm - Check if this is a valid build_vector for the immediate
8003/// operand of a vector shift left operation.  That value must be in the range:
8004///   0 <= Value < ElementBits for a left shift; or
8005///   0 <= Value <= ElementBits for a long left shift.
8006static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
8007  assert(VT.isVector() && "vector shift count is not a vector type");
8008  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
8009  if (! getVShiftImm(Op, ElementBits, Cnt))
8010    return false;
8011  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
8012}
8013
8014/// isVShiftRImm - Check if this is a valid build_vector for the immediate
8015/// operand of a vector shift right operation.  For a shift opcode, the value
8016/// is positive, but for an intrinsic the value count must be negative. The
8017/// absolute value must be in the range:
8018///   1 <= |Value| <= ElementBits for a right shift; or
8019///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
8020static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
8021                         int64_t &Cnt) {
8022  assert(VT.isVector() && "vector shift count is not a vector type");
8023  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
8024  if (! getVShiftImm(Op, ElementBits, Cnt))
8025    return false;
8026  if (isIntrinsic)
8027    Cnt = -Cnt;
8028  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
8029}
8030
8031/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
8032static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
8033  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
8034  switch (IntNo) {
8035  default:
8036    // Don't do anything for most intrinsics.
8037    break;
8038
8039  // Vector shifts: check for immediate versions and lower them.
8040  // Note: This is done during DAG combining instead of DAG legalizing because
8041  // the build_vectors for 64-bit vector element shift counts are generally
8042  // not legal, and it is hard to see their values after they get legalized to
8043  // loads from a constant pool.
8044  case Intrinsic::arm_neon_vshifts:
8045  case Intrinsic::arm_neon_vshiftu:
8046  case Intrinsic::arm_neon_vshiftls:
8047  case Intrinsic::arm_neon_vshiftlu:
8048  case Intrinsic::arm_neon_vshiftn:
8049  case Intrinsic::arm_neon_vrshifts:
8050  case Intrinsic::arm_neon_vrshiftu:
8051  case Intrinsic::arm_neon_vrshiftn:
8052  case Intrinsic::arm_neon_vqshifts:
8053  case Intrinsic::arm_neon_vqshiftu:
8054  case Intrinsic::arm_neon_vqshiftsu:
8055  case Intrinsic::arm_neon_vqshiftns:
8056  case Intrinsic::arm_neon_vqshiftnu:
8057  case Intrinsic::arm_neon_vqshiftnsu:
8058  case Intrinsic::arm_neon_vqrshiftns:
8059  case Intrinsic::arm_neon_vqrshiftnu:
8060  case Intrinsic::arm_neon_vqrshiftnsu: {
8061    EVT VT = N->getOperand(1).getValueType();
8062    int64_t Cnt;
8063    unsigned VShiftOpc = 0;
8064
8065    switch (IntNo) {
8066    case Intrinsic::arm_neon_vshifts:
8067    case Intrinsic::arm_neon_vshiftu:
8068      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
8069        VShiftOpc = ARMISD::VSHL;
8070        break;
8071      }
8072      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
8073        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
8074                     ARMISD::VSHRs : ARMISD::VSHRu);
8075        break;
8076      }
8077      return SDValue();
8078
8079    case Intrinsic::arm_neon_vshiftls:
8080    case Intrinsic::arm_neon_vshiftlu:
8081      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
8082        break;
8083      llvm_unreachable("invalid shift count for vshll intrinsic");
8084
8085    case Intrinsic::arm_neon_vrshifts:
8086    case Intrinsic::arm_neon_vrshiftu:
8087      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
8088        break;
8089      return SDValue();
8090
8091    case Intrinsic::arm_neon_vqshifts:
8092    case Intrinsic::arm_neon_vqshiftu:
8093      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
8094        break;
8095      return SDValue();
8096
8097    case Intrinsic::arm_neon_vqshiftsu:
8098      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
8099        break;
8100      llvm_unreachable("invalid shift count for vqshlu intrinsic");
8101
8102    case Intrinsic::arm_neon_vshiftn:
8103    case Intrinsic::arm_neon_vrshiftn:
8104    case Intrinsic::arm_neon_vqshiftns:
8105    case Intrinsic::arm_neon_vqshiftnu:
8106    case Intrinsic::arm_neon_vqshiftnsu:
8107    case Intrinsic::arm_neon_vqrshiftns:
8108    case Intrinsic::arm_neon_vqrshiftnu:
8109    case Intrinsic::arm_neon_vqrshiftnsu:
8110      // Narrowing shifts require an immediate right shift.
8111      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
8112        break;
8113      llvm_unreachable("invalid shift count for narrowing vector shift "
8114                       "intrinsic");
8115
8116    default:
8117      llvm_unreachable("unhandled vector shift");
8118    }
8119
8120    switch (IntNo) {
8121    case Intrinsic::arm_neon_vshifts:
8122    case Intrinsic::arm_neon_vshiftu:
8123      // Opcode already set above.
8124      break;
8125    case Intrinsic::arm_neon_vshiftls:
8126    case Intrinsic::arm_neon_vshiftlu:
8127      if (Cnt == VT.getVectorElementType().getSizeInBits())
8128        VShiftOpc = ARMISD::VSHLLi;
8129      else
8130        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
8131                     ARMISD::VSHLLs : ARMISD::VSHLLu);
8132      break;
8133    case Intrinsic::arm_neon_vshiftn:
8134      VShiftOpc = ARMISD::VSHRN; break;
8135    case Intrinsic::arm_neon_vrshifts:
8136      VShiftOpc = ARMISD::VRSHRs; break;
8137    case Intrinsic::arm_neon_vrshiftu:
8138      VShiftOpc = ARMISD::VRSHRu; break;
8139    case Intrinsic::arm_neon_vrshiftn:
8140      VShiftOpc = ARMISD::VRSHRN; break;
8141    case Intrinsic::arm_neon_vqshifts:
8142      VShiftOpc = ARMISD::VQSHLs; break;
8143    case Intrinsic::arm_neon_vqshiftu:
8144      VShiftOpc = ARMISD::VQSHLu; break;
8145    case Intrinsic::arm_neon_vqshiftsu:
8146      VShiftOpc = ARMISD::VQSHLsu; break;
8147    case Intrinsic::arm_neon_vqshiftns:
8148      VShiftOpc = ARMISD::VQSHRNs; break;
8149    case Intrinsic::arm_neon_vqshiftnu:
8150      VShiftOpc = ARMISD::VQSHRNu; break;
8151    case Intrinsic::arm_neon_vqshiftnsu:
8152      VShiftOpc = ARMISD::VQSHRNsu; break;
8153    case Intrinsic::arm_neon_vqrshiftns:
8154      VShiftOpc = ARMISD::VQRSHRNs; break;
8155    case Intrinsic::arm_neon_vqrshiftnu:
8156      VShiftOpc = ARMISD::VQRSHRNu; break;
8157    case Intrinsic::arm_neon_vqrshiftnsu:
8158      VShiftOpc = ARMISD::VQRSHRNsu; break;
8159    }
8160
8161    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
8162                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
8163  }
8164
8165  case Intrinsic::arm_neon_vshiftins: {
8166    EVT VT = N->getOperand(1).getValueType();
8167    int64_t Cnt;
8168    unsigned VShiftOpc = 0;
8169
8170    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
8171      VShiftOpc = ARMISD::VSLI;
8172    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
8173      VShiftOpc = ARMISD::VSRI;
8174    else {
8175      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
8176    }
8177
8178    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
8179                       N->getOperand(1), N->getOperand(2),
8180                       DAG.getConstant(Cnt, MVT::i32));
8181  }
8182
8183  case Intrinsic::arm_neon_vqrshifts:
8184  case Intrinsic::arm_neon_vqrshiftu:
8185    // No immediate versions of these to check for.
8186    break;
8187  }
8188
8189  return SDValue();
8190}
8191
8192/// PerformShiftCombine - Checks for immediate versions of vector shifts and
8193/// lowers them.  As with the vector shift intrinsics, this is done during DAG
8194/// combining instead of DAG legalizing because the build_vectors for 64-bit
8195/// vector element shift counts are generally not legal, and it is hard to see
8196/// their values after they get legalized to loads from a constant pool.
8197static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
8198                                   const ARMSubtarget *ST) {
8199  EVT VT = N->getValueType(0);
8200  if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
8201    // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
8202    // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
8203    SDValue N1 = N->getOperand(1);
8204    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
8205      SDValue N0 = N->getOperand(0);
8206      if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
8207          DAG.MaskedValueIsZero(N0.getOperand(0),
8208                                APInt::getHighBitsSet(32, 16)))
8209        return DAG.getNode(ISD::ROTR, N->getDebugLoc(), VT, N0, N1);
8210    }
8211  }
8212
8213  // Nothing to be done for scalar shifts.
8214  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8215  if (!VT.isVector() || !TLI.isTypeLegal(VT))
8216    return SDValue();
8217
8218  assert(ST->hasNEON() && "unexpected vector shift");
8219  int64_t Cnt;
8220
8221  switch (N->getOpcode()) {
8222  default: llvm_unreachable("unexpected shift opcode");
8223
8224  case ISD::SHL:
8225    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
8226      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
8227                         DAG.getConstant(Cnt, MVT::i32));
8228    break;
8229
8230  case ISD::SRA:
8231  case ISD::SRL:
8232    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
8233      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
8234                            ARMISD::VSHRs : ARMISD::VSHRu);
8235      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
8236                         DAG.getConstant(Cnt, MVT::i32));
8237    }
8238  }
8239  return SDValue();
8240}
8241
8242/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
8243/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
8244static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
8245                                    const ARMSubtarget *ST) {
8246  SDValue N0 = N->getOperand(0);
8247
8248  // Check for sign- and zero-extensions of vector extract operations of 8-
8249  // and 16-bit vector elements.  NEON supports these directly.  They are
8250  // handled during DAG combining because type legalization will promote them
8251  // to 32-bit types and it is messy to recognize the operations after that.
8252  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
8253    SDValue Vec = N0.getOperand(0);
8254    SDValue Lane = N0.getOperand(1);
8255    EVT VT = N->getValueType(0);
8256    EVT EltVT = N0.getValueType();
8257    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8258
8259    if (VT == MVT::i32 &&
8260        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
8261        TLI.isTypeLegal(Vec.getValueType()) &&
8262        isa<ConstantSDNode>(Lane)) {
8263
8264      unsigned Opc = 0;
8265      switch (N->getOpcode()) {
8266      default: llvm_unreachable("unexpected opcode");
8267      case ISD::SIGN_EXTEND:
8268        Opc = ARMISD::VGETLANEs;
8269        break;
8270      case ISD::ZERO_EXTEND:
8271      case ISD::ANY_EXTEND:
8272        Opc = ARMISD::VGETLANEu;
8273        break;
8274      }
8275      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
8276    }
8277  }
8278
8279  return SDValue();
8280}
8281
8282/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
8283/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
8284static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
8285                                       const ARMSubtarget *ST) {
8286  // If the target supports NEON, try to use vmax/vmin instructions for f32
8287  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
8288  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
8289  // a NaN; only do the transformation when it matches that behavior.
8290
8291  // For now only do this when using NEON for FP operations; if using VFP, it
8292  // is not obvious that the benefit outweighs the cost of switching to the
8293  // NEON pipeline.
8294  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
8295      N->getValueType(0) != MVT::f32)
8296    return SDValue();
8297
8298  SDValue CondLHS = N->getOperand(0);
8299  SDValue CondRHS = N->getOperand(1);
8300  SDValue LHS = N->getOperand(2);
8301  SDValue RHS = N->getOperand(3);
8302  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
8303
8304  unsigned Opcode = 0;
8305  bool IsReversed;
8306  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
8307    IsReversed = false; // x CC y ? x : y
8308  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
8309    IsReversed = true ; // x CC y ? y : x
8310  } else {
8311    return SDValue();
8312  }
8313
8314  bool IsUnordered;
8315  switch (CC) {
8316  default: break;
8317  case ISD::SETOLT:
8318  case ISD::SETOLE:
8319  case ISD::SETLT:
8320  case ISD::SETLE:
8321  case ISD::SETULT:
8322  case ISD::SETULE:
8323    // If LHS is NaN, an ordered comparison will be false and the result will
8324    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
8325    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
8326    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
8327    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
8328      break;
8329    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
8330    // will return -0, so vmin can only be used for unsafe math or if one of
8331    // the operands is known to be nonzero.
8332    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
8333        !DAG.getTarget().Options.UnsafeFPMath &&
8334        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
8335      break;
8336    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
8337    break;
8338
8339  case ISD::SETOGT:
8340  case ISD::SETOGE:
8341  case ISD::SETGT:
8342  case ISD::SETGE:
8343  case ISD::SETUGT:
8344  case ISD::SETUGE:
8345    // If LHS is NaN, an ordered comparison will be false and the result will
8346    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
8347    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
8348    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
8349    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
8350      break;
8351    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
8352    // will return +0, so vmax can only be used for unsafe math or if one of
8353    // the operands is known to be nonzero.
8354    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
8355        !DAG.getTarget().Options.UnsafeFPMath &&
8356        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
8357      break;
8358    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
8359    break;
8360  }
8361
8362  if (!Opcode)
8363    return SDValue();
8364  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
8365}
8366
8367/// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
8368SDValue
8369ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
8370  SDValue Cmp = N->getOperand(4);
8371  if (Cmp.getOpcode() != ARMISD::CMPZ)
8372    // Only looking at EQ and NE cases.
8373    return SDValue();
8374
8375  EVT VT = N->getValueType(0);
8376  DebugLoc dl = N->getDebugLoc();
8377  SDValue LHS = Cmp.getOperand(0);
8378  SDValue RHS = Cmp.getOperand(1);
8379  SDValue FalseVal = N->getOperand(0);
8380  SDValue TrueVal = N->getOperand(1);
8381  SDValue ARMcc = N->getOperand(2);
8382  ARMCC::CondCodes CC =
8383    (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
8384
8385  // Simplify
8386  //   mov     r1, r0
8387  //   cmp     r1, x
8388  //   mov     r0, y
8389  //   moveq   r0, x
8390  // to
8391  //   cmp     r0, x
8392  //   movne   r0, y
8393  //
8394  //   mov     r1, r0
8395  //   cmp     r1, x
8396  //   mov     r0, x
8397  //   movne   r0, y
8398  // to
8399  //   cmp     r0, x
8400  //   movne   r0, y
8401  /// FIXME: Turn this into a target neutral optimization?
8402  SDValue Res;
8403  if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
8404    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
8405                      N->getOperand(3), Cmp);
8406  } else if (CC == ARMCC::EQ && TrueVal == RHS) {
8407    SDValue ARMcc;
8408    SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
8409    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
8410                      N->getOperand(3), NewCmp);
8411  }
8412
8413  if (Res.getNode()) {
8414    APInt KnownZero, KnownOne;
8415    DAG.ComputeMaskedBits(SDValue(N,0), KnownZero, KnownOne);
8416    // Capture demanded bits information that would be otherwise lost.
8417    if (KnownZero == 0xfffffffe)
8418      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8419                        DAG.getValueType(MVT::i1));
8420    else if (KnownZero == 0xffffff00)
8421      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8422                        DAG.getValueType(MVT::i8));
8423    else if (KnownZero == 0xffff0000)
8424      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8425                        DAG.getValueType(MVT::i16));
8426  }
8427
8428  return Res;
8429}
8430
8431SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
8432                                             DAGCombinerInfo &DCI) const {
8433  switch (N->getOpcode()) {
8434  default: break;
8435  case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
8436  case ISD::SUB:        return PerformSUBCombine(N, DCI);
8437  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
8438  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
8439  case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
8440  case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
8441  case ARMISD::BFI:     return PerformBFICombine(N, DCI);
8442  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
8443  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
8444  case ISD::STORE:      return PerformSTORECombine(N, DCI);
8445  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
8446  case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
8447  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
8448  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
8449  case ISD::FP_TO_SINT:
8450  case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
8451  case ISD::FDIV:       return PerformVDIVCombine(N, DCI, Subtarget);
8452  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
8453  case ISD::SHL:
8454  case ISD::SRA:
8455  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
8456  case ISD::SIGN_EXTEND:
8457  case ISD::ZERO_EXTEND:
8458  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
8459  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
8460  case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
8461  case ARMISD::VLD2DUP:
8462  case ARMISD::VLD3DUP:
8463  case ARMISD::VLD4DUP:
8464    return CombineBaseUpdate(N, DCI);
8465  case ISD::INTRINSIC_VOID:
8466  case ISD::INTRINSIC_W_CHAIN:
8467    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
8468    case Intrinsic::arm_neon_vld1:
8469    case Intrinsic::arm_neon_vld2:
8470    case Intrinsic::arm_neon_vld3:
8471    case Intrinsic::arm_neon_vld4:
8472    case Intrinsic::arm_neon_vld2lane:
8473    case Intrinsic::arm_neon_vld3lane:
8474    case Intrinsic::arm_neon_vld4lane:
8475    case Intrinsic::arm_neon_vst1:
8476    case Intrinsic::arm_neon_vst2:
8477    case Intrinsic::arm_neon_vst3:
8478    case Intrinsic::arm_neon_vst4:
8479    case Intrinsic::arm_neon_vst2lane:
8480    case Intrinsic::arm_neon_vst3lane:
8481    case Intrinsic::arm_neon_vst4lane:
8482      return CombineBaseUpdate(N, DCI);
8483    default: break;
8484    }
8485    break;
8486  }
8487  return SDValue();
8488}
8489
8490bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
8491                                                          EVT VT) const {
8492  return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
8493}
8494
8495bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
8496  if (!Subtarget->allowsUnalignedMem())
8497    return false;
8498
8499  switch (VT.getSimpleVT().SimpleTy) {
8500  default:
8501    return false;
8502  case MVT::i8:
8503  case MVT::i16:
8504  case MVT::i32:
8505    return true;
8506  // FIXME: VLD1 etc with standard alignment is legal.
8507  }
8508}
8509
8510static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
8511                       unsigned AlignCheck) {
8512  return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
8513          (DstAlign == 0 || DstAlign % AlignCheck == 0));
8514}
8515
8516EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
8517                                           unsigned DstAlign, unsigned SrcAlign,
8518                                           bool IsZeroVal,
8519                                           bool MemcpyStrSrc,
8520                                           MachineFunction &MF) const {
8521  const Function *F = MF.getFunction();
8522
8523  // See if we can use NEON instructions for this...
8524  if (IsZeroVal &&
8525      !F->hasFnAttr(Attribute::NoImplicitFloat) &&
8526      Subtarget->hasNEON()) {
8527    if (memOpAlign(SrcAlign, DstAlign, 16) && Size >= 16) {
8528      return MVT::v4i32;
8529    } else if (memOpAlign(SrcAlign, DstAlign, 8) && Size >= 8) {
8530      return MVT::v2i32;
8531    }
8532  }
8533
8534  // Lowering to i32/i16 if the size permits.
8535  if (Size >= 4) {
8536    return MVT::i32;
8537  } else if (Size >= 2) {
8538    return MVT::i16;
8539  }
8540
8541  // Let the target-independent logic figure it out.
8542  return MVT::Other;
8543}
8544
8545static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
8546  if (V < 0)
8547    return false;
8548
8549  unsigned Scale = 1;
8550  switch (VT.getSimpleVT().SimpleTy) {
8551  default: return false;
8552  case MVT::i1:
8553  case MVT::i8:
8554    // Scale == 1;
8555    break;
8556  case MVT::i16:
8557    // Scale == 2;
8558    Scale = 2;
8559    break;
8560  case MVT::i32:
8561    // Scale == 4;
8562    Scale = 4;
8563    break;
8564  }
8565
8566  if ((V & (Scale - 1)) != 0)
8567    return false;
8568  V /= Scale;
8569  return V == (V & ((1LL << 5) - 1));
8570}
8571
8572static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
8573                                      const ARMSubtarget *Subtarget) {
8574  bool isNeg = false;
8575  if (V < 0) {
8576    isNeg = true;
8577    V = - V;
8578  }
8579
8580  switch (VT.getSimpleVT().SimpleTy) {
8581  default: return false;
8582  case MVT::i1:
8583  case MVT::i8:
8584  case MVT::i16:
8585  case MVT::i32:
8586    // + imm12 or - imm8
8587    if (isNeg)
8588      return V == (V & ((1LL << 8) - 1));
8589    return V == (V & ((1LL << 12) - 1));
8590  case MVT::f32:
8591  case MVT::f64:
8592    // Same as ARM mode. FIXME: NEON?
8593    if (!Subtarget->hasVFP2())
8594      return false;
8595    if ((V & 3) != 0)
8596      return false;
8597    V >>= 2;
8598    return V == (V & ((1LL << 8) - 1));
8599  }
8600}
8601
8602/// isLegalAddressImmediate - Return true if the integer value can be used
8603/// as the offset of the target addressing mode for load / store of the
8604/// given type.
8605static bool isLegalAddressImmediate(int64_t V, EVT VT,
8606                                    const ARMSubtarget *Subtarget) {
8607  if (V == 0)
8608    return true;
8609
8610  if (!VT.isSimple())
8611    return false;
8612
8613  if (Subtarget->isThumb1Only())
8614    return isLegalT1AddressImmediate(V, VT);
8615  else if (Subtarget->isThumb2())
8616    return isLegalT2AddressImmediate(V, VT, Subtarget);
8617
8618  // ARM mode.
8619  if (V < 0)
8620    V = - V;
8621  switch (VT.getSimpleVT().SimpleTy) {
8622  default: return false;
8623  case MVT::i1:
8624  case MVT::i8:
8625  case MVT::i32:
8626    // +- imm12
8627    return V == (V & ((1LL << 12) - 1));
8628  case MVT::i16:
8629    // +- imm8
8630    return V == (V & ((1LL << 8) - 1));
8631  case MVT::f32:
8632  case MVT::f64:
8633    if (!Subtarget->hasVFP2()) // FIXME: NEON?
8634      return false;
8635    if ((V & 3) != 0)
8636      return false;
8637    V >>= 2;
8638    return V == (V & ((1LL << 8) - 1));
8639  }
8640}
8641
8642bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
8643                                                      EVT VT) const {
8644  int Scale = AM.Scale;
8645  if (Scale < 0)
8646    return false;
8647
8648  switch (VT.getSimpleVT().SimpleTy) {
8649  default: return false;
8650  case MVT::i1:
8651  case MVT::i8:
8652  case MVT::i16:
8653  case MVT::i32:
8654    if (Scale == 1)
8655      return true;
8656    // r + r << imm
8657    Scale = Scale & ~1;
8658    return Scale == 2 || Scale == 4 || Scale == 8;
8659  case MVT::i64:
8660    // r + r
8661    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
8662      return true;
8663    return false;
8664  case MVT::isVoid:
8665    // Note, we allow "void" uses (basically, uses that aren't loads or
8666    // stores), because arm allows folding a scale into many arithmetic
8667    // operations.  This should be made more precise and revisited later.
8668
8669    // Allow r << imm, but the imm has to be a multiple of two.
8670    if (Scale & 1) return false;
8671    return isPowerOf2_32(Scale);
8672  }
8673}
8674
8675/// isLegalAddressingMode - Return true if the addressing mode represented
8676/// by AM is legal for this target, for a load/store of the specified type.
8677bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
8678                                              Type *Ty) const {
8679  EVT VT = getValueType(Ty, true);
8680  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
8681    return false;
8682
8683  // Can never fold addr of global into load/store.
8684  if (AM.BaseGV)
8685    return false;
8686
8687  switch (AM.Scale) {
8688  case 0:  // no scale reg, must be "r+i" or "r", or "i".
8689    break;
8690  case 1:
8691    if (Subtarget->isThumb1Only())
8692      return false;
8693    // FALL THROUGH.
8694  default:
8695    // ARM doesn't support any R+R*scale+imm addr modes.
8696    if (AM.BaseOffs)
8697      return false;
8698
8699    if (!VT.isSimple())
8700      return false;
8701
8702    if (Subtarget->isThumb2())
8703      return isLegalT2ScaledAddressingMode(AM, VT);
8704
8705    int Scale = AM.Scale;
8706    switch (VT.getSimpleVT().SimpleTy) {
8707    default: return false;
8708    case MVT::i1:
8709    case MVT::i8:
8710    case MVT::i32:
8711      if (Scale < 0) Scale = -Scale;
8712      if (Scale == 1)
8713        return true;
8714      // r + r << imm
8715      return isPowerOf2_32(Scale & ~1);
8716    case MVT::i16:
8717    case MVT::i64:
8718      // r + r
8719      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
8720        return true;
8721      return false;
8722
8723    case MVT::isVoid:
8724      // Note, we allow "void" uses (basically, uses that aren't loads or
8725      // stores), because arm allows folding a scale into many arithmetic
8726      // operations.  This should be made more precise and revisited later.
8727
8728      // Allow r << imm, but the imm has to be a multiple of two.
8729      if (Scale & 1) return false;
8730      return isPowerOf2_32(Scale);
8731    }
8732  }
8733  return true;
8734}
8735
8736/// isLegalICmpImmediate - Return true if the specified immediate is legal
8737/// icmp immediate, that is the target has icmp instructions which can compare
8738/// a register against the immediate without having to materialize the
8739/// immediate into a register.
8740bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
8741  // Thumb2 and ARM modes can use cmn for negative immediates.
8742  if (!Subtarget->isThumb())
8743    return ARM_AM::getSOImmVal(llvm::abs64(Imm)) != -1;
8744  if (Subtarget->isThumb2())
8745    return ARM_AM::getT2SOImmVal(llvm::abs64(Imm)) != -1;
8746  // Thumb1 doesn't have cmn, and only 8-bit immediates.
8747  return Imm >= 0 && Imm <= 255;
8748}
8749
8750/// isLegalAddImmediate - Return true if the specified immediate is legal
8751/// add immediate, that is the target has add instructions which can add
8752/// a register with the immediate without having to materialize the
8753/// immediate into a register.
8754bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
8755  return ARM_AM::getSOImmVal(Imm) != -1;
8756}
8757
8758static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
8759                                      bool isSEXTLoad, SDValue &Base,
8760                                      SDValue &Offset, bool &isInc,
8761                                      SelectionDAG &DAG) {
8762  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
8763    return false;
8764
8765  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
8766    // AddressingMode 3
8767    Base = Ptr->getOperand(0);
8768    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8769      int RHSC = (int)RHS->getZExtValue();
8770      if (RHSC < 0 && RHSC > -256) {
8771        assert(Ptr->getOpcode() == ISD::ADD);
8772        isInc = false;
8773        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8774        return true;
8775      }
8776    }
8777    isInc = (Ptr->getOpcode() == ISD::ADD);
8778    Offset = Ptr->getOperand(1);
8779    return true;
8780  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
8781    // AddressingMode 2
8782    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8783      int RHSC = (int)RHS->getZExtValue();
8784      if (RHSC < 0 && RHSC > -0x1000) {
8785        assert(Ptr->getOpcode() == ISD::ADD);
8786        isInc = false;
8787        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8788        Base = Ptr->getOperand(0);
8789        return true;
8790      }
8791    }
8792
8793    if (Ptr->getOpcode() == ISD::ADD) {
8794      isInc = true;
8795      ARM_AM::ShiftOpc ShOpcVal=
8796        ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
8797      if (ShOpcVal != ARM_AM::no_shift) {
8798        Base = Ptr->getOperand(1);
8799        Offset = Ptr->getOperand(0);
8800      } else {
8801        Base = Ptr->getOperand(0);
8802        Offset = Ptr->getOperand(1);
8803      }
8804      return true;
8805    }
8806
8807    isInc = (Ptr->getOpcode() == ISD::ADD);
8808    Base = Ptr->getOperand(0);
8809    Offset = Ptr->getOperand(1);
8810    return true;
8811  }
8812
8813  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
8814  return false;
8815}
8816
8817static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
8818                                     bool isSEXTLoad, SDValue &Base,
8819                                     SDValue &Offset, bool &isInc,
8820                                     SelectionDAG &DAG) {
8821  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
8822    return false;
8823
8824  Base = Ptr->getOperand(0);
8825  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
8826    int RHSC = (int)RHS->getZExtValue();
8827    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
8828      assert(Ptr->getOpcode() == ISD::ADD);
8829      isInc = false;
8830      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
8831      return true;
8832    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
8833      isInc = Ptr->getOpcode() == ISD::ADD;
8834      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
8835      return true;
8836    }
8837  }
8838
8839  return false;
8840}
8841
8842/// getPreIndexedAddressParts - returns true by value, base pointer and
8843/// offset pointer and addressing mode by reference if the node's address
8844/// can be legally represented as pre-indexed load / store address.
8845bool
8846ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
8847                                             SDValue &Offset,
8848                                             ISD::MemIndexedMode &AM,
8849                                             SelectionDAG &DAG) const {
8850  if (Subtarget->isThumb1Only())
8851    return false;
8852
8853  EVT VT;
8854  SDValue Ptr;
8855  bool isSEXTLoad = false;
8856  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8857    Ptr = LD->getBasePtr();
8858    VT  = LD->getMemoryVT();
8859    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
8860  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8861    Ptr = ST->getBasePtr();
8862    VT  = ST->getMemoryVT();
8863  } else
8864    return false;
8865
8866  bool isInc;
8867  bool isLegal = false;
8868  if (Subtarget->isThumb2())
8869    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
8870                                       Offset, isInc, DAG);
8871  else
8872    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
8873                                        Offset, isInc, DAG);
8874  if (!isLegal)
8875    return false;
8876
8877  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
8878  return true;
8879}
8880
8881/// getPostIndexedAddressParts - returns true by value, base pointer and
8882/// offset pointer and addressing mode by reference if this node can be
8883/// combined with a load / store to form a post-indexed load / store.
8884bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
8885                                                   SDValue &Base,
8886                                                   SDValue &Offset,
8887                                                   ISD::MemIndexedMode &AM,
8888                                                   SelectionDAG &DAG) const {
8889  if (Subtarget->isThumb1Only())
8890    return false;
8891
8892  EVT VT;
8893  SDValue Ptr;
8894  bool isSEXTLoad = false;
8895  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8896    VT  = LD->getMemoryVT();
8897    Ptr = LD->getBasePtr();
8898    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
8899  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8900    VT  = ST->getMemoryVT();
8901    Ptr = ST->getBasePtr();
8902  } else
8903    return false;
8904
8905  bool isInc;
8906  bool isLegal = false;
8907  if (Subtarget->isThumb2())
8908    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
8909                                       isInc, DAG);
8910  else
8911    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
8912                                        isInc, DAG);
8913  if (!isLegal)
8914    return false;
8915
8916  if (Ptr != Base) {
8917    // Swap base ptr and offset to catch more post-index load / store when
8918    // it's legal. In Thumb2 mode, offset must be an immediate.
8919    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
8920        !Subtarget->isThumb2())
8921      std::swap(Base, Offset);
8922
8923    // Post-indexed load / store update the base pointer.
8924    if (Ptr != Base)
8925      return false;
8926  }
8927
8928  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
8929  return true;
8930}
8931
8932void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8933                                                       APInt &KnownZero,
8934                                                       APInt &KnownOne,
8935                                                       const SelectionDAG &DAG,
8936                                                       unsigned Depth) const {
8937  KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
8938  switch (Op.getOpcode()) {
8939  default: break;
8940  case ARMISD::CMOV: {
8941    // Bits are known zero/one if known on the LHS and RHS.
8942    DAG.ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
8943    if (KnownZero == 0 && KnownOne == 0) return;
8944
8945    APInt KnownZeroRHS, KnownOneRHS;
8946    DAG.ComputeMaskedBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1);
8947    KnownZero &= KnownZeroRHS;
8948    KnownOne  &= KnownOneRHS;
8949    return;
8950  }
8951  }
8952}
8953
8954//===----------------------------------------------------------------------===//
8955//                           ARM Inline Assembly Support
8956//===----------------------------------------------------------------------===//
8957
8958bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
8959  // Looking for "rev" which is V6+.
8960  if (!Subtarget->hasV6Ops())
8961    return false;
8962
8963  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
8964  std::string AsmStr = IA->getAsmString();
8965  SmallVector<StringRef, 4> AsmPieces;
8966  SplitString(AsmStr, AsmPieces, ";\n");
8967
8968  switch (AsmPieces.size()) {
8969  default: return false;
8970  case 1:
8971    AsmStr = AsmPieces[0];
8972    AsmPieces.clear();
8973    SplitString(AsmStr, AsmPieces, " \t,");
8974
8975    // rev $0, $1
8976    if (AsmPieces.size() == 3 &&
8977        AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
8978        IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
8979      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
8980      if (Ty && Ty->getBitWidth() == 32)
8981        return IntrinsicLowering::LowerToByteSwap(CI);
8982    }
8983    break;
8984  }
8985
8986  return false;
8987}
8988
8989/// getConstraintType - Given a constraint letter, return the type of
8990/// constraint it is for this target.
8991ARMTargetLowering::ConstraintType
8992ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
8993  if (Constraint.size() == 1) {
8994    switch (Constraint[0]) {
8995    default:  break;
8996    case 'l': return C_RegisterClass;
8997    case 'w': return C_RegisterClass;
8998    case 'h': return C_RegisterClass;
8999    case 'x': return C_RegisterClass;
9000    case 't': return C_RegisterClass;
9001    case 'j': return C_Other; // Constant for movw.
9002      // An address with a single base register. Due to the way we
9003      // currently handle addresses it is the same as an 'r' memory constraint.
9004    case 'Q': return C_Memory;
9005    }
9006  } else if (Constraint.size() == 2) {
9007    switch (Constraint[0]) {
9008    default: break;
9009    // All 'U+' constraints are addresses.
9010    case 'U': return C_Memory;
9011    }
9012  }
9013  return TargetLowering::getConstraintType(Constraint);
9014}
9015
9016/// Examine constraint type and operand type and determine a weight value.
9017/// This object must already have been set up with the operand type
9018/// and the current alternative constraint selected.
9019TargetLowering::ConstraintWeight
9020ARMTargetLowering::getSingleConstraintMatchWeight(
9021    AsmOperandInfo &info, const char *constraint) const {
9022  ConstraintWeight weight = CW_Invalid;
9023  Value *CallOperandVal = info.CallOperandVal;
9024    // If we don't have a value, we can't do a match,
9025    // but allow it at the lowest weight.
9026  if (CallOperandVal == NULL)
9027    return CW_Default;
9028  Type *type = CallOperandVal->getType();
9029  // Look at the constraint type.
9030  switch (*constraint) {
9031  default:
9032    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
9033    break;
9034  case 'l':
9035    if (type->isIntegerTy()) {
9036      if (Subtarget->isThumb())
9037        weight = CW_SpecificReg;
9038      else
9039        weight = CW_Register;
9040    }
9041    break;
9042  case 'w':
9043    if (type->isFloatingPointTy())
9044      weight = CW_Register;
9045    break;
9046  }
9047  return weight;
9048}
9049
9050typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
9051RCPair
9052ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
9053                                                EVT VT) const {
9054  if (Constraint.size() == 1) {
9055    // GCC ARM Constraint Letters
9056    switch (Constraint[0]) {
9057    case 'l': // Low regs or general regs.
9058      if (Subtarget->isThumb())
9059        return RCPair(0U, &ARM::tGPRRegClass);
9060      return RCPair(0U, &ARM::GPRRegClass);
9061    case 'h': // High regs or no regs.
9062      if (Subtarget->isThumb())
9063        return RCPair(0U, &ARM::hGPRRegClass);
9064      break;
9065    case 'r':
9066      return RCPair(0U, &ARM::GPRRegClass);
9067    case 'w':
9068      if (VT == MVT::f32)
9069        return RCPair(0U, &ARM::SPRRegClass);
9070      if (VT.getSizeInBits() == 64)
9071        return RCPair(0U, &ARM::DPRRegClass);
9072      if (VT.getSizeInBits() == 128)
9073        return RCPair(0U, &ARM::QPRRegClass);
9074      break;
9075    case 'x':
9076      if (VT == MVT::f32)
9077        return RCPair(0U, &ARM::SPR_8RegClass);
9078      if (VT.getSizeInBits() == 64)
9079        return RCPair(0U, &ARM::DPR_8RegClass);
9080      if (VT.getSizeInBits() == 128)
9081        return RCPair(0U, &ARM::QPR_8RegClass);
9082      break;
9083    case 't':
9084      if (VT == MVT::f32)
9085        return RCPair(0U, &ARM::SPRRegClass);
9086      break;
9087    }
9088  }
9089  if (StringRef("{cc}").equals_lower(Constraint))
9090    return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
9091
9092  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
9093}
9094
9095/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
9096/// vector.  If it is invalid, don't add anything to Ops.
9097void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
9098                                                     std::string &Constraint,
9099                                                     std::vector<SDValue>&Ops,
9100                                                     SelectionDAG &DAG) const {
9101  SDValue Result(0, 0);
9102
9103  // Currently only support length 1 constraints.
9104  if (Constraint.length() != 1) return;
9105
9106  char ConstraintLetter = Constraint[0];
9107  switch (ConstraintLetter) {
9108  default: break;
9109  case 'j':
9110  case 'I': case 'J': case 'K': case 'L':
9111  case 'M': case 'N': case 'O':
9112    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
9113    if (!C)
9114      return;
9115
9116    int64_t CVal64 = C->getSExtValue();
9117    int CVal = (int) CVal64;
9118    // None of these constraints allow values larger than 32 bits.  Check
9119    // that the value fits in an int.
9120    if (CVal != CVal64)
9121      return;
9122
9123    switch (ConstraintLetter) {
9124      case 'j':
9125        // Constant suitable for movw, must be between 0 and
9126        // 65535.
9127        if (Subtarget->hasV6T2Ops())
9128          if (CVal >= 0 && CVal <= 65535)
9129            break;
9130        return;
9131      case 'I':
9132        if (Subtarget->isThumb1Only()) {
9133          // This must be a constant between 0 and 255, for ADD
9134          // immediates.
9135          if (CVal >= 0 && CVal <= 255)
9136            break;
9137        } else if (Subtarget->isThumb2()) {
9138          // A constant that can be used as an immediate value in a
9139          // data-processing instruction.
9140          if (ARM_AM::getT2SOImmVal(CVal) != -1)
9141            break;
9142        } else {
9143          // A constant that can be used as an immediate value in a
9144          // data-processing instruction.
9145          if (ARM_AM::getSOImmVal(CVal) != -1)
9146            break;
9147        }
9148        return;
9149
9150      case 'J':
9151        if (Subtarget->isThumb()) {  // FIXME thumb2
9152          // This must be a constant between -255 and -1, for negated ADD
9153          // immediates. This can be used in GCC with an "n" modifier that
9154          // prints the negated value, for use with SUB instructions. It is
9155          // not useful otherwise but is implemented for compatibility.
9156          if (CVal >= -255 && CVal <= -1)
9157            break;
9158        } else {
9159          // This must be a constant between -4095 and 4095. It is not clear
9160          // what this constraint is intended for. Implemented for
9161          // compatibility with GCC.
9162          if (CVal >= -4095 && CVal <= 4095)
9163            break;
9164        }
9165        return;
9166
9167      case 'K':
9168        if (Subtarget->isThumb1Only()) {
9169          // A 32-bit value where only one byte has a nonzero value. Exclude
9170          // zero to match GCC. This constraint is used by GCC internally for
9171          // constants that can be loaded with a move/shift combination.
9172          // It is not useful otherwise but is implemented for compatibility.
9173          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
9174            break;
9175        } else if (Subtarget->isThumb2()) {
9176          // A constant whose bitwise inverse can be used as an immediate
9177          // value in a data-processing instruction. This can be used in GCC
9178          // with a "B" modifier that prints the inverted value, for use with
9179          // BIC and MVN instructions. It is not useful otherwise but is
9180          // implemented for compatibility.
9181          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
9182            break;
9183        } else {
9184          // A constant whose bitwise inverse can be used as an immediate
9185          // value in a data-processing instruction. This can be used in GCC
9186          // with a "B" modifier that prints the inverted value, for use with
9187          // BIC and MVN instructions. It is not useful otherwise but is
9188          // implemented for compatibility.
9189          if (ARM_AM::getSOImmVal(~CVal) != -1)
9190            break;
9191        }
9192        return;
9193
9194      case 'L':
9195        if (Subtarget->isThumb1Only()) {
9196          // This must be a constant between -7 and 7,
9197          // for 3-operand ADD/SUB immediate instructions.
9198          if (CVal >= -7 && CVal < 7)
9199            break;
9200        } else if (Subtarget->isThumb2()) {
9201          // A constant whose negation can be used as an immediate value in a
9202          // data-processing instruction. This can be used in GCC with an "n"
9203          // modifier that prints the negated value, for use with SUB
9204          // instructions. It is not useful otherwise but is implemented for
9205          // compatibility.
9206          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
9207            break;
9208        } else {
9209          // A constant whose negation can be used as an immediate value in a
9210          // data-processing instruction. This can be used in GCC with an "n"
9211          // modifier that prints the negated value, for use with SUB
9212          // instructions. It is not useful otherwise but is implemented for
9213          // compatibility.
9214          if (ARM_AM::getSOImmVal(-CVal) != -1)
9215            break;
9216        }
9217        return;
9218
9219      case 'M':
9220        if (Subtarget->isThumb()) { // FIXME thumb2
9221          // This must be a multiple of 4 between 0 and 1020, for
9222          // ADD sp + immediate.
9223          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
9224            break;
9225        } else {
9226          // A power of two or a constant between 0 and 32.  This is used in
9227          // GCC for the shift amount on shifted register operands, but it is
9228          // useful in general for any shift amounts.
9229          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
9230            break;
9231        }
9232        return;
9233
9234      case 'N':
9235        if (Subtarget->isThumb()) {  // FIXME thumb2
9236          // This must be a constant between 0 and 31, for shift amounts.
9237          if (CVal >= 0 && CVal <= 31)
9238            break;
9239        }
9240        return;
9241
9242      case 'O':
9243        if (Subtarget->isThumb()) {  // FIXME thumb2
9244          // This must be a multiple of 4 between -508 and 508, for
9245          // ADD/SUB sp = sp + immediate.
9246          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
9247            break;
9248        }
9249        return;
9250    }
9251    Result = DAG.getTargetConstant(CVal, Op.getValueType());
9252    break;
9253  }
9254
9255  if (Result.getNode()) {
9256    Ops.push_back(Result);
9257    return;
9258  }
9259  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
9260}
9261
9262bool
9263ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
9264  // The ARM target isn't yet aware of offsets.
9265  return false;
9266}
9267
9268bool ARM::isBitFieldInvertedMask(unsigned v) {
9269  if (v == 0xffffffff)
9270    return 0;
9271  // there can be 1's on either or both "outsides", all the "inside"
9272  // bits must be 0's
9273  unsigned int lsb = 0, msb = 31;
9274  while (v & (1 << msb)) --msb;
9275  while (v & (1 << lsb)) ++lsb;
9276  for (unsigned int i = lsb; i <= msb; ++i) {
9277    if (v & (1 << i))
9278      return 0;
9279  }
9280  return 1;
9281}
9282
9283/// isFPImmLegal - Returns true if the target can instruction select the
9284/// specified FP immediate natively. If false, the legalizer will
9285/// materialize the FP immediate as a load from a constant pool.
9286bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
9287  if (!Subtarget->hasVFP3())
9288    return false;
9289  if (VT == MVT::f32)
9290    return ARM_AM::getFP32Imm(Imm) != -1;
9291  if (VT == MVT::f64)
9292    return ARM_AM::getFP64Imm(Imm) != -1;
9293  return false;
9294}
9295
9296/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
9297/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
9298/// specified in the intrinsic calls.
9299bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
9300                                           const CallInst &I,
9301                                           unsigned Intrinsic) const {
9302  switch (Intrinsic) {
9303  case Intrinsic::arm_neon_vld1:
9304  case Intrinsic::arm_neon_vld2:
9305  case Intrinsic::arm_neon_vld3:
9306  case Intrinsic::arm_neon_vld4:
9307  case Intrinsic::arm_neon_vld2lane:
9308  case Intrinsic::arm_neon_vld3lane:
9309  case Intrinsic::arm_neon_vld4lane: {
9310    Info.opc = ISD::INTRINSIC_W_CHAIN;
9311    // Conservatively set memVT to the entire set of vectors loaded.
9312    uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
9313    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
9314    Info.ptrVal = I.getArgOperand(0);
9315    Info.offset = 0;
9316    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
9317    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
9318    Info.vol = false; // volatile loads with NEON intrinsics not supported
9319    Info.readMem = true;
9320    Info.writeMem = false;
9321    return true;
9322  }
9323  case Intrinsic::arm_neon_vst1:
9324  case Intrinsic::arm_neon_vst2:
9325  case Intrinsic::arm_neon_vst3:
9326  case Intrinsic::arm_neon_vst4:
9327  case Intrinsic::arm_neon_vst2lane:
9328  case Intrinsic::arm_neon_vst3lane:
9329  case Intrinsic::arm_neon_vst4lane: {
9330    Info.opc = ISD::INTRINSIC_VOID;
9331    // Conservatively set memVT to the entire set of vectors stored.
9332    unsigned NumElts = 0;
9333    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
9334      Type *ArgTy = I.getArgOperand(ArgI)->getType();
9335      if (!ArgTy->isVectorTy())
9336        break;
9337      NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
9338    }
9339    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
9340    Info.ptrVal = I.getArgOperand(0);
9341    Info.offset = 0;
9342    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
9343    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
9344    Info.vol = false; // volatile stores with NEON intrinsics not supported
9345    Info.readMem = false;
9346    Info.writeMem = true;
9347    return true;
9348  }
9349  case Intrinsic::arm_strexd: {
9350    Info.opc = ISD::INTRINSIC_W_CHAIN;
9351    Info.memVT = MVT::i64;
9352    Info.ptrVal = I.getArgOperand(2);
9353    Info.offset = 0;
9354    Info.align = 8;
9355    Info.vol = true;
9356    Info.readMem = false;
9357    Info.writeMem = true;
9358    return true;
9359  }
9360  case Intrinsic::arm_ldrexd: {
9361    Info.opc = ISD::INTRINSIC_W_CHAIN;
9362    Info.memVT = MVT::i64;
9363    Info.ptrVal = I.getArgOperand(0);
9364    Info.offset = 0;
9365    Info.align = 8;
9366    Info.vol = true;
9367    Info.readMem = true;
9368    Info.writeMem = false;
9369    return true;
9370  }
9371  default:
9372    break;
9373  }
9374
9375  return false;
9376}
9377