ARMISelLowering.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "ARMISelLowering.h"
16#include "ARMCallingConv.h"
17#include "ARMConstantPoolValue.h"
18#include "ARMMachineFunctionInfo.h"
19#include "ARMPerfectShuffle.h"
20#include "ARMSubtarget.h"
21#include "ARMTargetMachine.h"
22#include "ARMTargetObjectFile.h"
23#include "MCTargetDesc/ARMAddressingModes.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/CodeGen/CallingConvLower.h"
27#include "llvm/CodeGen/IntrinsicLowering.h"
28#include "llvm/CodeGen/MachineBasicBlock.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/SelectionDAG.h"
35#include "llvm/IR/CallingConv.h"
36#include "llvm/IR/Constants.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/GlobalValue.h"
39#include "llvm/IR/IRBuilder.h"
40#include "llvm/IR/Instruction.h"
41#include "llvm/IR/Instructions.h"
42#include "llvm/IR/Intrinsics.h"
43#include "llvm/IR/Type.h"
44#include "llvm/MC/MCSectionMachO.h"
45#include "llvm/Support/CommandLine.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/ErrorHandling.h"
48#include "llvm/Support/MathExtras.h"
49#include "llvm/Target/TargetOptions.h"
50#include <utility>
51using namespace llvm;
52
53#define DEBUG_TYPE "arm-isel"
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
57STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
58
59cl::opt<bool>
60EnableARMLongCalls("arm-long-calls", cl::Hidden,
61  cl::desc("Generate calls via indirect call instructions"),
62  cl::init(false));
63
64static cl::opt<bool>
65ARMInterworking("arm-interworking", cl::Hidden,
66  cl::desc("Enable / disable ARM interworking (for debugging only)"),
67  cl::init(true));
68
69namespace {
70  class ARMCCState : public CCState {
71  public:
72    ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
73               const TargetMachine &TM, SmallVectorImpl<CCValAssign> &locs,
74               LLVMContext &C, ParmContext PC)
75        : CCState(CC, isVarArg, MF, TM, locs, C) {
76      assert(((PC == Call) || (PC == Prologue)) &&
77             "ARMCCState users must specify whether their context is call"
78             "or prologue generation.");
79      CallOrPrologue = PC;
80    }
81  };
82}
83
84// The APCS parameter registers.
85static const MCPhysReg GPRArgRegs[] = {
86  ARM::R0, ARM::R1, ARM::R2, ARM::R3
87};
88
89void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
90                                       MVT PromotedBitwiseVT) {
91  if (VT != PromotedLdStVT) {
92    setOperationAction(ISD::LOAD, VT, Promote);
93    AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
94
95    setOperationAction(ISD::STORE, VT, Promote);
96    AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
97  }
98
99  MVT ElemTy = VT.getVectorElementType();
100  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
101    setOperationAction(ISD::SETCC, VT, Custom);
102  setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
103  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
104  if (ElemTy == MVT::i32) {
105    setOperationAction(ISD::SINT_TO_FP, VT, Custom);
106    setOperationAction(ISD::UINT_TO_FP, VT, Custom);
107    setOperationAction(ISD::FP_TO_SINT, VT, Custom);
108    setOperationAction(ISD::FP_TO_UINT, VT, Custom);
109  } else {
110    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
111    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
112    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
113    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
114  }
115  setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
116  setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
117  setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
118  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
119  setOperationAction(ISD::SELECT,            VT, Expand);
120  setOperationAction(ISD::SELECT_CC,         VT, Expand);
121  setOperationAction(ISD::VSELECT,           VT, Expand);
122  setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
123  if (VT.isInteger()) {
124    setOperationAction(ISD::SHL, VT, Custom);
125    setOperationAction(ISD::SRA, VT, Custom);
126    setOperationAction(ISD::SRL, VT, Custom);
127  }
128
129  // Promote all bit-wise operations.
130  if (VT.isInteger() && VT != PromotedBitwiseVT) {
131    setOperationAction(ISD::AND, VT, Promote);
132    AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
133    setOperationAction(ISD::OR,  VT, Promote);
134    AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
135    setOperationAction(ISD::XOR, VT, Promote);
136    AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
137  }
138
139  // Neon does not support vector divide/remainder operations.
140  setOperationAction(ISD::SDIV, VT, Expand);
141  setOperationAction(ISD::UDIV, VT, Expand);
142  setOperationAction(ISD::FDIV, VT, Expand);
143  setOperationAction(ISD::SREM, VT, Expand);
144  setOperationAction(ISD::UREM, VT, Expand);
145  setOperationAction(ISD::FREM, VT, Expand);
146}
147
148void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
149  addRegisterClass(VT, &ARM::DPRRegClass);
150  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
151}
152
153void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
154  addRegisterClass(VT, &ARM::DPairRegClass);
155  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
156}
157
158static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
159  if (TM.getSubtarget<ARMSubtarget>().isTargetMachO())
160    return new TargetLoweringObjectFileMachO();
161  if (TM.getSubtarget<ARMSubtarget>().isTargetWindows())
162    return new TargetLoweringObjectFileCOFF();
163  return new ARMElfTargetObjectFile();
164}
165
166ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
167    : TargetLowering(TM, createTLOF(TM)) {
168  Subtarget = &TM.getSubtarget<ARMSubtarget>();
169  RegInfo = TM.getRegisterInfo();
170  Itins = TM.getInstrItineraryData();
171
172  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
173
174  if (Subtarget->isTargetMachO()) {
175    // Uses VFP for Thumb libfuncs if available.
176    if (Subtarget->isThumb() && Subtarget->hasVFP2() &&
177        Subtarget->hasARMOps() && !TM.Options.UseSoftFloat) {
178      // Single-precision floating-point arithmetic.
179      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
180      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
181      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
182      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
183
184      // Double-precision floating-point arithmetic.
185      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
186      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
187      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
188      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
189
190      // Single-precision comparisons.
191      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
192      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
193      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
194      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
195      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
196      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
197      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
198      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
199
200      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
201      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
202      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
203      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
204      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
205      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
206      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
207      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
208
209      // Double-precision comparisons.
210      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
211      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
212      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
213      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
214      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
215      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
216      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
217      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
218
219      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
220      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
221      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
222      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
223      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
224      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
225      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
226      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
227
228      // Floating-point to integer conversions.
229      // i64 conversions are done via library routines even when generating VFP
230      // instructions, so use the same ones.
231      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
232      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
233      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
234      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
235
236      // Conversions between floating types.
237      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
238      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
239
240      // Integer to floating-point conversions.
241      // i64 conversions are done via library routines even when generating VFP
242      // instructions, so use the same ones.
243      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
244      // e.g., __floatunsidf vs. __floatunssidfvfp.
245      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
246      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
247      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
248      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
249    }
250  }
251
252  // These libcalls are not available in 32-bit.
253  setLibcallName(RTLIB::SHL_I128, nullptr);
254  setLibcallName(RTLIB::SRL_I128, nullptr);
255  setLibcallName(RTLIB::SRA_I128, nullptr);
256
257  if (Subtarget->isAAPCS_ABI() && !Subtarget->isTargetMachO() &&
258      !Subtarget->isTargetWindows()) {
259    static const struct {
260      const RTLIB::Libcall Op;
261      const char * const Name;
262      const CallingConv::ID CC;
263      const ISD::CondCode Cond;
264    } LibraryCalls[] = {
265      // Double-precision floating-point arithmetic helper functions
266      // RTABI chapter 4.1.2, Table 2
267      { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
268      { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
269      { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
270      { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
271
272      // Double-precision floating-point comparison helper functions
273      // RTABI chapter 4.1.2, Table 3
274      { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
275      { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
276      { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
277      { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
278      { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
279      { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
280      { RTLIB::UO_F64,  "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
281      { RTLIB::O_F64,   "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
282
283      // Single-precision floating-point arithmetic helper functions
284      // RTABI chapter 4.1.2, Table 4
285      { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
286      { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
287      { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
288      { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
289
290      // Single-precision floating-point comparison helper functions
291      // RTABI chapter 4.1.2, Table 5
292      { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
293      { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
294      { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
295      { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
296      { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
297      { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
298      { RTLIB::UO_F32,  "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
299      { RTLIB::O_F32,   "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
300
301      // Floating-point to integer conversions.
302      // RTABI chapter 4.1.2, Table 6
303      { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
304      { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
305      { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
306      { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
307      { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
308      { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
309      { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
310      { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
311
312      // Conversions between floating types.
313      // RTABI chapter 4.1.2, Table 7
314      { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
315      { RTLIB::FPEXT_F32_F64,   "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
316
317      // Integer to floating-point conversions.
318      // RTABI chapter 4.1.2, Table 8
319      { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
320      { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
321      { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
322      { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
323      { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
324      { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
325      { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
326      { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
327
328      // Long long helper functions
329      // RTABI chapter 4.2, Table 9
330      { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
331      { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
332      { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
333      { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
334
335      // Integer division functions
336      // RTABI chapter 4.3.1
337      { RTLIB::SDIV_I8,  "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
338      { RTLIB::SDIV_I16, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
339      { RTLIB::SDIV_I32, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
340      { RTLIB::SDIV_I64, "__aeabi_ldivmod",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
341      { RTLIB::UDIV_I8,  "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
342      { RTLIB::UDIV_I16, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
343      { RTLIB::UDIV_I32, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
344      { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
345
346      // Memory operations
347      // RTABI chapter 4.3.4
348      { RTLIB::MEMCPY,  "__aeabi_memcpy",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
349      { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
350      { RTLIB::MEMSET,  "__aeabi_memset",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
351    };
352
353    for (const auto &LC : LibraryCalls) {
354      setLibcallName(LC.Op, LC.Name);
355      setLibcallCallingConv(LC.Op, LC.CC);
356      if (LC.Cond != ISD::SETCC_INVALID)
357        setCmpLibcallCC(LC.Op, LC.Cond);
358    }
359  }
360
361  if (Subtarget->isTargetWindows()) {
362    static const struct {
363      const RTLIB::Libcall Op;
364      const char * const Name;
365      const CallingConv::ID CC;
366    } LibraryCalls[] = {
367      { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
368      { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
369      { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
370      { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
371      { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
372      { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
373      { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
374      { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
375    };
376
377    for (const auto &LC : LibraryCalls) {
378      setLibcallName(LC.Op, LC.Name);
379      setLibcallCallingConv(LC.Op, LC.CC);
380    }
381  }
382
383  // Use divmod compiler-rt calls for iOS 5.0 and later.
384  if (Subtarget->getTargetTriple().isiOS() &&
385      !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
386    setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
387    setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
388  }
389
390  if (Subtarget->isThumb1Only())
391    addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
392  else
393    addRegisterClass(MVT::i32, &ARM::GPRRegClass);
394  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
395      !Subtarget->isThumb1Only()) {
396    addRegisterClass(MVT::f32, &ARM::SPRRegClass);
397    if (!Subtarget->isFPOnlySP())
398      addRegisterClass(MVT::f64, &ARM::DPRRegClass);
399
400    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
401  }
402
403  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
404       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
405    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
406         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
407      setTruncStoreAction((MVT::SimpleValueType)VT,
408                          (MVT::SimpleValueType)InnerVT, Expand);
409    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
410    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
411    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
412
413    setOperationAction(ISD::MULHS, (MVT::SimpleValueType)VT, Expand);
414    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
415    setOperationAction(ISD::MULHU, (MVT::SimpleValueType)VT, Expand);
416    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
417
418    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
419  }
420
421  setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
422  setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
423
424  if (Subtarget->hasNEON()) {
425    addDRTypeForNEON(MVT::v2f32);
426    addDRTypeForNEON(MVT::v8i8);
427    addDRTypeForNEON(MVT::v4i16);
428    addDRTypeForNEON(MVT::v2i32);
429    addDRTypeForNEON(MVT::v1i64);
430
431    addQRTypeForNEON(MVT::v4f32);
432    addQRTypeForNEON(MVT::v2f64);
433    addQRTypeForNEON(MVT::v16i8);
434    addQRTypeForNEON(MVT::v8i16);
435    addQRTypeForNEON(MVT::v4i32);
436    addQRTypeForNEON(MVT::v2i64);
437
438    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
439    // neither Neon nor VFP support any arithmetic operations on it.
440    // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
441    // supported for v4f32.
442    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
443    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
444    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
445    // FIXME: Code duplication: FDIV and FREM are expanded always, see
446    // ARMTargetLowering::addTypeForNEON method for details.
447    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
448    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
449    // FIXME: Create unittest.
450    // In another words, find a way when "copysign" appears in DAG with vector
451    // operands.
452    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
453    // FIXME: Code duplication: SETCC has custom operation action, see
454    // ARMTargetLowering::addTypeForNEON method for details.
455    setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
456    // FIXME: Create unittest for FNEG and for FABS.
457    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
458    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
459    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
460    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
461    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
462    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
463    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
464    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
465    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
466    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
467    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
468    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
469    // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
470    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
471    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
472    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
473    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
474    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
475    setOperationAction(ISD::FMA, MVT::v2f64, Expand);
476
477    setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
478    setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
479    setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
480    setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
481    setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
482    setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
483    setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
484    setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
485    setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
486    setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
487    setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
488    setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
489    setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
490    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
491    setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
492
493    // Mark v2f32 intrinsics.
494    setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
495    setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
496    setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
497    setOperationAction(ISD::FPOWI, MVT::v2f32, Expand);
498    setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
499    setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
500    setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
501    setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
502    setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
503    setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
504    setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
505    setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
506    setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
507    setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
508    setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
509
510    // Neon does not support some operations on v1i64 and v2i64 types.
511    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
512    // Custom handling for some quad-vector types to detect VMULL.
513    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
514    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
515    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
516    // Custom handling for some vector types to avoid expensive expansions
517    setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
518    setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
519    setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
520    setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
521    setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
522    setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
523    // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
524    // a destination type that is wider than the source, and nor does
525    // it have a FP_TO_[SU]INT instruction with a narrower destination than
526    // source.
527    setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
528    setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
529    setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
530    setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
531
532    setOperationAction(ISD::FP_ROUND,   MVT::v2f32, Expand);
533    setOperationAction(ISD::FP_EXTEND,  MVT::v2f64, Expand);
534
535    // NEON does not have single instruction CTPOP for vectors with element
536    // types wider than 8-bits.  However, custom lowering can leverage the
537    // v8i8/v16i8 vcnt instruction.
538    setOperationAction(ISD::CTPOP,      MVT::v2i32, Custom);
539    setOperationAction(ISD::CTPOP,      MVT::v4i32, Custom);
540    setOperationAction(ISD::CTPOP,      MVT::v4i16, Custom);
541    setOperationAction(ISD::CTPOP,      MVT::v8i16, Custom);
542
543    // NEON only has FMA instructions as of VFP4.
544    if (!Subtarget->hasVFP4()) {
545      setOperationAction(ISD::FMA, MVT::v2f32, Expand);
546      setOperationAction(ISD::FMA, MVT::v4f32, Expand);
547    }
548
549    setTargetDAGCombine(ISD::INTRINSIC_VOID);
550    setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
551    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
552    setTargetDAGCombine(ISD::SHL);
553    setTargetDAGCombine(ISD::SRL);
554    setTargetDAGCombine(ISD::SRA);
555    setTargetDAGCombine(ISD::SIGN_EXTEND);
556    setTargetDAGCombine(ISD::ZERO_EXTEND);
557    setTargetDAGCombine(ISD::ANY_EXTEND);
558    setTargetDAGCombine(ISD::SELECT_CC);
559    setTargetDAGCombine(ISD::BUILD_VECTOR);
560    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
561    setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
562    setTargetDAGCombine(ISD::STORE);
563    setTargetDAGCombine(ISD::FP_TO_SINT);
564    setTargetDAGCombine(ISD::FP_TO_UINT);
565    setTargetDAGCombine(ISD::FDIV);
566
567    // It is legal to extload from v4i8 to v4i16 or v4i32.
568    MVT Tys[6] = {MVT::v8i8, MVT::v4i8, MVT::v2i8,
569                  MVT::v4i16, MVT::v2i16,
570                  MVT::v2i32};
571    for (unsigned i = 0; i < 6; ++i) {
572      setLoadExtAction(ISD::EXTLOAD, Tys[i], Legal);
573      setLoadExtAction(ISD::ZEXTLOAD, Tys[i], Legal);
574      setLoadExtAction(ISD::SEXTLOAD, Tys[i], Legal);
575    }
576  }
577
578  // ARM and Thumb2 support UMLAL/SMLAL.
579  if (!Subtarget->isThumb1Only())
580    setTargetDAGCombine(ISD::ADDC);
581
582
583  computeRegisterProperties();
584
585  // ARM does not have f32 extending load.
586  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
587
588  // ARM does not have i1 sign extending load.
589  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
590
591  // ARM supports all 4 flavors of integer indexed load / store.
592  if (!Subtarget->isThumb1Only()) {
593    for (unsigned im = (unsigned)ISD::PRE_INC;
594         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
595      setIndexedLoadAction(im,  MVT::i1,  Legal);
596      setIndexedLoadAction(im,  MVT::i8,  Legal);
597      setIndexedLoadAction(im,  MVT::i16, Legal);
598      setIndexedLoadAction(im,  MVT::i32, Legal);
599      setIndexedStoreAction(im, MVT::i1,  Legal);
600      setIndexedStoreAction(im, MVT::i8,  Legal);
601      setIndexedStoreAction(im, MVT::i16, Legal);
602      setIndexedStoreAction(im, MVT::i32, Legal);
603    }
604  }
605
606  setOperationAction(ISD::SADDO, MVT::i32, Custom);
607  setOperationAction(ISD::UADDO, MVT::i32, Custom);
608  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
609  setOperationAction(ISD::USUBO, MVT::i32, Custom);
610
611  // i64 operation support.
612  setOperationAction(ISD::MUL,     MVT::i64, Expand);
613  setOperationAction(ISD::MULHU,   MVT::i32, Expand);
614  if (Subtarget->isThumb1Only()) {
615    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
616    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
617  }
618  if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
619      || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
620    setOperationAction(ISD::MULHS, MVT::i32, Expand);
621
622  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
623  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
624  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
625  setOperationAction(ISD::SRL,       MVT::i64, Custom);
626  setOperationAction(ISD::SRA,       MVT::i64, Custom);
627
628  if (!Subtarget->isThumb1Only()) {
629    // FIXME: We should do this for Thumb1 as well.
630    setOperationAction(ISD::ADDC,    MVT::i32, Custom);
631    setOperationAction(ISD::ADDE,    MVT::i32, Custom);
632    setOperationAction(ISD::SUBC,    MVT::i32, Custom);
633    setOperationAction(ISD::SUBE,    MVT::i32, Custom);
634  }
635
636  // ARM does not have ROTL.
637  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
638  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
639  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
640  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
641    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
642
643  // These just redirect to CTTZ and CTLZ on ARM.
644  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i32  , Expand);
645  setOperationAction(ISD::CTLZ_ZERO_UNDEF  , MVT::i32  , Expand);
646
647  setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
648
649  // Only ARMv6 has BSWAP.
650  if (!Subtarget->hasV6Ops())
651    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
652
653  if (!(Subtarget->hasDivide() && Subtarget->isThumb2()) &&
654      !(Subtarget->hasDivideInARMMode() && !Subtarget->isThumb())) {
655    // These are expanded into libcalls if the cpu doesn't have HW divider.
656    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
657    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
658  }
659
660  // FIXME: Also set divmod for SREM on EABI
661  setOperationAction(ISD::SREM,  MVT::i32, Expand);
662  setOperationAction(ISD::UREM,  MVT::i32, Expand);
663  // Register based DivRem for AEABI (RTABI 4.2)
664  if (Subtarget->isTargetAEABI()) {
665    setLibcallName(RTLIB::SDIVREM_I8,  "__aeabi_idivmod");
666    setLibcallName(RTLIB::SDIVREM_I16, "__aeabi_idivmod");
667    setLibcallName(RTLIB::SDIVREM_I32, "__aeabi_idivmod");
668    setLibcallName(RTLIB::SDIVREM_I64, "__aeabi_ldivmod");
669    setLibcallName(RTLIB::UDIVREM_I8,  "__aeabi_uidivmod");
670    setLibcallName(RTLIB::UDIVREM_I16, "__aeabi_uidivmod");
671    setLibcallName(RTLIB::UDIVREM_I32, "__aeabi_uidivmod");
672    setLibcallName(RTLIB::UDIVREM_I64, "__aeabi_uldivmod");
673
674    setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::ARM_AAPCS);
675    setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::ARM_AAPCS);
676    setLibcallCallingConv(RTLIB::SDIVREM_I32, CallingConv::ARM_AAPCS);
677    setLibcallCallingConv(RTLIB::SDIVREM_I64, CallingConv::ARM_AAPCS);
678    setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::ARM_AAPCS);
679    setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::ARM_AAPCS);
680    setLibcallCallingConv(RTLIB::UDIVREM_I32, CallingConv::ARM_AAPCS);
681    setLibcallCallingConv(RTLIB::UDIVREM_I64, CallingConv::ARM_AAPCS);
682
683    setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
684    setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
685  } else {
686    setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
687    setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
688  }
689
690  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
691  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
692  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
693  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
694  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
695
696  setOperationAction(ISD::TRAP, MVT::Other, Legal);
697
698  // Use the default implementation.
699  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
700  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
701  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
702  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
703  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
704  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
705
706  if (!Subtarget->isTargetMachO()) {
707    // Non-MachO platforms may return values in these registers via the
708    // personality function.
709    setExceptionPointerRegister(ARM::R0);
710    setExceptionSelectorRegister(ARM::R1);
711  }
712
713  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
714  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
715  // the default expansion.
716  if (Subtarget->hasAnyDataBarrier() && !Subtarget->isThumb1Only()) {
717    // ATOMIC_FENCE needs custom lowering; the others should have been expanded
718    // to ldrex/strex loops already.
719    setOperationAction(ISD::ATOMIC_FENCE,     MVT::Other, Custom);
720
721    // On v8, we have particularly efficient implementations of atomic fences
722    // if they can be combined with nearby atomic loads and stores.
723    if (!Subtarget->hasV8Ops()) {
724      // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc.
725      setInsertFencesForAtomic(true);
726    }
727  } else {
728    // If there's anything we can use as a barrier, go through custom lowering
729    // for ATOMIC_FENCE.
730    setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other,
731                       Subtarget->hasAnyDataBarrier() ? Custom : Expand);
732
733    // Set them all for expansion, which will force libcalls.
734    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
735    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
736    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
737    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
738    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
739    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
740    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
741    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
742    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
743    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
744    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
745    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
746    // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
747    // Unordered/Monotonic case.
748    setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
749    setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
750  }
751
752  setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
753
754  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
755  if (!Subtarget->hasV6Ops()) {
756    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
757    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
758  }
759  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
760
761  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
762      !Subtarget->isThumb1Only()) {
763    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
764    // iff target supports vfp2.
765    setOperationAction(ISD::BITCAST, MVT::i64, Custom);
766    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
767  }
768
769  // We want to custom lower some of our intrinsics.
770  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
771  if (Subtarget->isTargetDarwin()) {
772    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
773    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
774    setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
775  }
776
777  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
778  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
779  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
780  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
781  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
782  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
783  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
784  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
785  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
786
787  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
788  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
789  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
790  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
791  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
792
793  // We don't support sin/cos/fmod/copysign/pow
794  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
795  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
796  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
797  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
798  setOperationAction(ISD::FSINCOS,   MVT::f64, Expand);
799  setOperationAction(ISD::FSINCOS,   MVT::f32, Expand);
800  setOperationAction(ISD::FREM,      MVT::f64, Expand);
801  setOperationAction(ISD::FREM,      MVT::f32, Expand);
802  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
803      !Subtarget->isThumb1Only()) {
804    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
805    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
806  }
807  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
808  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
809
810  if (!Subtarget->hasVFP4()) {
811    setOperationAction(ISD::FMA, MVT::f64, Expand);
812    setOperationAction(ISD::FMA, MVT::f32, Expand);
813  }
814
815  // Various VFP goodness
816  if (!TM.Options.UseSoftFloat && !Subtarget->isThumb1Only()) {
817    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
818    if (Subtarget->hasVFP2()) {
819      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
820      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
821      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
822      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
823    }
824    // Special handling for half-precision FP.
825    if (!Subtarget->hasFP16()) {
826      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
827      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
828    }
829  }
830
831  // Combine sin / cos into one node or libcall if possible.
832  if (Subtarget->hasSinCos()) {
833    setLibcallName(RTLIB::SINCOS_F32, "sincosf");
834    setLibcallName(RTLIB::SINCOS_F64, "sincos");
835    if (Subtarget->getTargetTriple().getOS() == Triple::IOS) {
836      // For iOS, we don't want to the normal expansion of a libcall to
837      // sincos. We want to issue a libcall to __sincos_stret.
838      setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
839      setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
840    }
841  }
842
843  // We have target-specific dag combine patterns for the following nodes:
844  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
845  setTargetDAGCombine(ISD::ADD);
846  setTargetDAGCombine(ISD::SUB);
847  setTargetDAGCombine(ISD::MUL);
848  setTargetDAGCombine(ISD::AND);
849  setTargetDAGCombine(ISD::OR);
850  setTargetDAGCombine(ISD::XOR);
851
852  if (Subtarget->hasV6Ops())
853    setTargetDAGCombine(ISD::SRL);
854
855  setStackPointerRegisterToSaveRestore(ARM::SP);
856
857  if (TM.Options.UseSoftFloat || Subtarget->isThumb1Only() ||
858      !Subtarget->hasVFP2())
859    setSchedulingPreference(Sched::RegPressure);
860  else
861    setSchedulingPreference(Sched::Hybrid);
862
863  //// temporary - rewrite interface to use type
864  MaxStoresPerMemset = 8;
865  MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
866  MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
867  MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 4 : 2;
868  MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
869  MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 4 : 2;
870
871  // On ARM arguments smaller than 4 bytes are extended, so all arguments
872  // are at least 4 bytes aligned.
873  setMinStackArgumentAlignment(4);
874
875  // Prefer likely predicted branches to selects on out-of-order cores.
876  PredictableSelectIsExpensive = Subtarget->isLikeA9();
877
878  setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
879}
880
881// FIXME: It might make sense to define the representative register class as the
882// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
883// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
884// SPR's representative would be DPR_VFP2. This should work well if register
885// pressure tracking were modified such that a register use would increment the
886// pressure of the register class's representative and all of it's super
887// classes' representatives transitively. We have not implemented this because
888// of the difficulty prior to coalescing of modeling operand register classes
889// due to the common occurrence of cross class copies and subregister insertions
890// and extractions.
891std::pair<const TargetRegisterClass*, uint8_t>
892ARMTargetLowering::findRepresentativeClass(MVT VT) const{
893  const TargetRegisterClass *RRC = nullptr;
894  uint8_t Cost = 1;
895  switch (VT.SimpleTy) {
896  default:
897    return TargetLowering::findRepresentativeClass(VT);
898  // Use DPR as representative register class for all floating point
899  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
900  // the cost is 1 for both f32 and f64.
901  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
902  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
903    RRC = &ARM::DPRRegClass;
904    // When NEON is used for SP, only half of the register file is available
905    // because operations that define both SP and DP results will be constrained
906    // to the VFP2 class (D0-D15). We currently model this constraint prior to
907    // coalescing by double-counting the SP regs. See the FIXME above.
908    if (Subtarget->useNEONForSinglePrecisionFP())
909      Cost = 2;
910    break;
911  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
912  case MVT::v4f32: case MVT::v2f64:
913    RRC = &ARM::DPRRegClass;
914    Cost = 2;
915    break;
916  case MVT::v4i64:
917    RRC = &ARM::DPRRegClass;
918    Cost = 4;
919    break;
920  case MVT::v8i64:
921    RRC = &ARM::DPRRegClass;
922    Cost = 8;
923    break;
924  }
925  return std::make_pair(RRC, Cost);
926}
927
928const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
929  switch (Opcode) {
930  default: return nullptr;
931  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
932  case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
933  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
934  case ARMISD::CALL:          return "ARMISD::CALL";
935  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
936  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
937  case ARMISD::tCALL:         return "ARMISD::tCALL";
938  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
939  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
940  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
941  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
942  case ARMISD::INTRET_FLAG:   return "ARMISD::INTRET_FLAG";
943  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
944  case ARMISD::CMP:           return "ARMISD::CMP";
945  case ARMISD::CMN:           return "ARMISD::CMN";
946  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
947  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
948  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
949  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
950  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
951
952  case ARMISD::CMOV:          return "ARMISD::CMOV";
953
954  case ARMISD::RBIT:          return "ARMISD::RBIT";
955
956  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
957  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
958  case ARMISD::SITOF:         return "ARMISD::SITOF";
959  case ARMISD::UITOF:         return "ARMISD::UITOF";
960
961  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
962  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
963  case ARMISD::RRX:           return "ARMISD::RRX";
964
965  case ARMISD::ADDC:          return "ARMISD::ADDC";
966  case ARMISD::ADDE:          return "ARMISD::ADDE";
967  case ARMISD::SUBC:          return "ARMISD::SUBC";
968  case ARMISD::SUBE:          return "ARMISD::SUBE";
969
970  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
971  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
972
973  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
974  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
975
976  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
977
978  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
979
980  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
981
982  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
983
984  case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
985
986  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
987  case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
988  case ARMISD::VCGE:          return "ARMISD::VCGE";
989  case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
990  case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
991  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
992  case ARMISD::VCGT:          return "ARMISD::VCGT";
993  case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
994  case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
995  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
996  case ARMISD::VTST:          return "ARMISD::VTST";
997
998  case ARMISD::VSHL:          return "ARMISD::VSHL";
999  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
1000  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
1001  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
1002  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
1003  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
1004  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
1005  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
1006  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
1007  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
1008  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
1009  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
1010  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
1011  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
1012  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
1013  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
1014  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
1015  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
1016  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
1017  case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
1018  case ARMISD::VDUP:          return "ARMISD::VDUP";
1019  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
1020  case ARMISD::VEXT:          return "ARMISD::VEXT";
1021  case ARMISD::VREV64:        return "ARMISD::VREV64";
1022  case ARMISD::VREV32:        return "ARMISD::VREV32";
1023  case ARMISD::VREV16:        return "ARMISD::VREV16";
1024  case ARMISD::VZIP:          return "ARMISD::VZIP";
1025  case ARMISD::VUZP:          return "ARMISD::VUZP";
1026  case ARMISD::VTRN:          return "ARMISD::VTRN";
1027  case ARMISD::VTBL1:         return "ARMISD::VTBL1";
1028  case ARMISD::VTBL2:         return "ARMISD::VTBL2";
1029  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
1030  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
1031  case ARMISD::UMLAL:         return "ARMISD::UMLAL";
1032  case ARMISD::SMLAL:         return "ARMISD::SMLAL";
1033  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
1034  case ARMISD::FMAX:          return "ARMISD::FMAX";
1035  case ARMISD::FMIN:          return "ARMISD::FMIN";
1036  case ARMISD::VMAXNM:        return "ARMISD::VMAX";
1037  case ARMISD::VMINNM:        return "ARMISD::VMIN";
1038  case ARMISD::BFI:           return "ARMISD::BFI";
1039  case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
1040  case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
1041  case ARMISD::VBSL:          return "ARMISD::VBSL";
1042  case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
1043  case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
1044  case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
1045  case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
1046  case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
1047  case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
1048  case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
1049  case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
1050  case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
1051  case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
1052  case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
1053  case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
1054  case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
1055  case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
1056  case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
1057  case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
1058  case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
1059  case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
1060  case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
1061  case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
1062  }
1063}
1064
1065EVT ARMTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
1066  if (!VT.isVector()) return getPointerTy();
1067  return VT.changeVectorElementTypeToInteger();
1068}
1069
1070/// getRegClassFor - Return the register class that should be used for the
1071/// specified value type.
1072const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const {
1073  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1074  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1075  // load / store 4 to 8 consecutive D registers.
1076  if (Subtarget->hasNEON()) {
1077    if (VT == MVT::v4i64)
1078      return &ARM::QQPRRegClass;
1079    if (VT == MVT::v8i64)
1080      return &ARM::QQQQPRRegClass;
1081  }
1082  return TargetLowering::getRegClassFor(VT);
1083}
1084
1085// Create a fast isel object.
1086FastISel *
1087ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1088                                  const TargetLibraryInfo *libInfo) const {
1089  return ARM::createFastISel(funcInfo, libInfo);
1090}
1091
1092/// getMaximalGlobalOffset - Returns the maximal possible offset which can
1093/// be used for loads / stores from the global.
1094unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
1095  return (Subtarget->isThumb1Only() ? 127 : 4095);
1096}
1097
1098Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1099  unsigned NumVals = N->getNumValues();
1100  if (!NumVals)
1101    return Sched::RegPressure;
1102
1103  for (unsigned i = 0; i != NumVals; ++i) {
1104    EVT VT = N->getValueType(i);
1105    if (VT == MVT::Glue || VT == MVT::Other)
1106      continue;
1107    if (VT.isFloatingPoint() || VT.isVector())
1108      return Sched::ILP;
1109  }
1110
1111  if (!N->isMachineOpcode())
1112    return Sched::RegPressure;
1113
1114  // Load are scheduled for latency even if there instruction itinerary
1115  // is not available.
1116  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1117  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1118
1119  if (MCID.getNumDefs() == 0)
1120    return Sched::RegPressure;
1121  if (!Itins->isEmpty() &&
1122      Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1123    return Sched::ILP;
1124
1125  return Sched::RegPressure;
1126}
1127
1128//===----------------------------------------------------------------------===//
1129// Lowering Code
1130//===----------------------------------------------------------------------===//
1131
1132/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1133static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1134  switch (CC) {
1135  default: llvm_unreachable("Unknown condition code!");
1136  case ISD::SETNE:  return ARMCC::NE;
1137  case ISD::SETEQ:  return ARMCC::EQ;
1138  case ISD::SETGT:  return ARMCC::GT;
1139  case ISD::SETGE:  return ARMCC::GE;
1140  case ISD::SETLT:  return ARMCC::LT;
1141  case ISD::SETLE:  return ARMCC::LE;
1142  case ISD::SETUGT: return ARMCC::HI;
1143  case ISD::SETUGE: return ARMCC::HS;
1144  case ISD::SETULT: return ARMCC::LO;
1145  case ISD::SETULE: return ARMCC::LS;
1146  }
1147}
1148
1149/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1150static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1151                        ARMCC::CondCodes &CondCode2) {
1152  CondCode2 = ARMCC::AL;
1153  switch (CC) {
1154  default: llvm_unreachable("Unknown FP condition!");
1155  case ISD::SETEQ:
1156  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1157  case ISD::SETGT:
1158  case ISD::SETOGT: CondCode = ARMCC::GT; break;
1159  case ISD::SETGE:
1160  case ISD::SETOGE: CondCode = ARMCC::GE; break;
1161  case ISD::SETOLT: CondCode = ARMCC::MI; break;
1162  case ISD::SETOLE: CondCode = ARMCC::LS; break;
1163  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1164  case ISD::SETO:   CondCode = ARMCC::VC; break;
1165  case ISD::SETUO:  CondCode = ARMCC::VS; break;
1166  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1167  case ISD::SETUGT: CondCode = ARMCC::HI; break;
1168  case ISD::SETUGE: CondCode = ARMCC::PL; break;
1169  case ISD::SETLT:
1170  case ISD::SETULT: CondCode = ARMCC::LT; break;
1171  case ISD::SETLE:
1172  case ISD::SETULE: CondCode = ARMCC::LE; break;
1173  case ISD::SETNE:
1174  case ISD::SETUNE: CondCode = ARMCC::NE; break;
1175  }
1176}
1177
1178//===----------------------------------------------------------------------===//
1179//                      Calling Convention Implementation
1180//===----------------------------------------------------------------------===//
1181
1182#include "ARMGenCallingConv.inc"
1183
1184/// getEffectiveCallingConv - Get the effective calling convention, taking into
1185/// account presence of floating point hardware and calling convention
1186/// limitations, such as support for variadic functions.
1187CallingConv::ID
1188ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
1189                                           bool isVarArg) const {
1190  switch (CC) {
1191  default:
1192    llvm_unreachable("Unsupported calling convention");
1193  case CallingConv::ARM_AAPCS:
1194  case CallingConv::ARM_APCS:
1195  case CallingConv::GHC:
1196    return CC;
1197  case CallingConv::ARM_AAPCS_VFP:
1198    return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
1199  case CallingConv::C:
1200    if (!Subtarget->isAAPCS_ABI())
1201      return CallingConv::ARM_APCS;
1202    else if (Subtarget->hasVFP2() &&
1203             getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1204             !isVarArg)
1205      return CallingConv::ARM_AAPCS_VFP;
1206    else
1207      return CallingConv::ARM_AAPCS;
1208  case CallingConv::Fast:
1209    if (!Subtarget->isAAPCS_ABI()) {
1210      if (Subtarget->hasVFP2() && !isVarArg)
1211        return CallingConv::Fast;
1212      return CallingConv::ARM_APCS;
1213    } else if (Subtarget->hasVFP2() && !isVarArg)
1214      return CallingConv::ARM_AAPCS_VFP;
1215    else
1216      return CallingConv::ARM_AAPCS;
1217  }
1218}
1219
1220/// CCAssignFnForNode - Selects the correct CCAssignFn for the given
1221/// CallingConvention.
1222CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1223                                                 bool Return,
1224                                                 bool isVarArg) const {
1225  switch (getEffectiveCallingConv(CC, isVarArg)) {
1226  default:
1227    llvm_unreachable("Unsupported calling convention");
1228  case CallingConv::ARM_APCS:
1229    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1230  case CallingConv::ARM_AAPCS:
1231    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1232  case CallingConv::ARM_AAPCS_VFP:
1233    return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1234  case CallingConv::Fast:
1235    return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1236  case CallingConv::GHC:
1237    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
1238  }
1239}
1240
1241/// LowerCallResult - Lower the result values of a call into the
1242/// appropriate copies out of appropriate physical registers.
1243SDValue
1244ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1245                                   CallingConv::ID CallConv, bool isVarArg,
1246                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1247                                   SDLoc dl, SelectionDAG &DAG,
1248                                   SmallVectorImpl<SDValue> &InVals,
1249                                   bool isThisReturn, SDValue ThisVal) const {
1250
1251  // Assign locations to each value returned by this call.
1252  SmallVector<CCValAssign, 16> RVLocs;
1253  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1254                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1255  CCInfo.AnalyzeCallResult(Ins,
1256                           CCAssignFnForNode(CallConv, /* Return*/ true,
1257                                             isVarArg));
1258
1259  // Copy all of the result registers out of their specified physreg.
1260  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1261    CCValAssign VA = RVLocs[i];
1262
1263    // Pass 'this' value directly from the argument to return value, to avoid
1264    // reg unit interference
1265    if (i == 0 && isThisReturn) {
1266      assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
1267             "unexpected return calling convention register assignment");
1268      InVals.push_back(ThisVal);
1269      continue;
1270    }
1271
1272    SDValue Val;
1273    if (VA.needsCustom()) {
1274      // Handle f64 or half of a v2f64.
1275      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1276                                      InFlag);
1277      Chain = Lo.getValue(1);
1278      InFlag = Lo.getValue(2);
1279      VA = RVLocs[++i]; // skip ahead to next loc
1280      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1281                                      InFlag);
1282      Chain = Hi.getValue(1);
1283      InFlag = Hi.getValue(2);
1284      if (!Subtarget->isLittle())
1285        std::swap (Lo, Hi);
1286      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1287
1288      if (VA.getLocVT() == MVT::v2f64) {
1289        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1290        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1291                          DAG.getConstant(0, MVT::i32));
1292
1293        VA = RVLocs[++i]; // skip ahead to next loc
1294        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1295        Chain = Lo.getValue(1);
1296        InFlag = Lo.getValue(2);
1297        VA = RVLocs[++i]; // skip ahead to next loc
1298        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1299        Chain = Hi.getValue(1);
1300        InFlag = Hi.getValue(2);
1301        if (!Subtarget->isLittle())
1302          std::swap (Lo, Hi);
1303        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1304        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1305                          DAG.getConstant(1, MVT::i32));
1306      }
1307    } else {
1308      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1309                               InFlag);
1310      Chain = Val.getValue(1);
1311      InFlag = Val.getValue(2);
1312    }
1313
1314    switch (VA.getLocInfo()) {
1315    default: llvm_unreachable("Unknown loc info!");
1316    case CCValAssign::Full: break;
1317    case CCValAssign::BCvt:
1318      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1319      break;
1320    }
1321
1322    InVals.push_back(Val);
1323  }
1324
1325  return Chain;
1326}
1327
1328/// LowerMemOpCallTo - Store the argument to the stack.
1329SDValue
1330ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1331                                    SDValue StackPtr, SDValue Arg,
1332                                    SDLoc dl, SelectionDAG &DAG,
1333                                    const CCValAssign &VA,
1334                                    ISD::ArgFlagsTy Flags) const {
1335  unsigned LocMemOffset = VA.getLocMemOffset();
1336  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1337  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1338  return DAG.getStore(Chain, dl, Arg, PtrOff,
1339                      MachinePointerInfo::getStack(LocMemOffset),
1340                      false, false, 0);
1341}
1342
1343void ARMTargetLowering::PassF64ArgInRegs(SDLoc dl, SelectionDAG &DAG,
1344                                         SDValue Chain, SDValue &Arg,
1345                                         RegsToPassVector &RegsToPass,
1346                                         CCValAssign &VA, CCValAssign &NextVA,
1347                                         SDValue &StackPtr,
1348                                         SmallVectorImpl<SDValue> &MemOpChains,
1349                                         ISD::ArgFlagsTy Flags) const {
1350
1351  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1352                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1353  unsigned id = Subtarget->isLittle() ? 0 : 1;
1354  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
1355
1356  if (NextVA.isRegLoc())
1357    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
1358  else {
1359    assert(NextVA.isMemLoc());
1360    if (!StackPtr.getNode())
1361      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1362
1363    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
1364                                           dl, DAG, NextVA,
1365                                           Flags));
1366  }
1367}
1368
1369/// LowerCall - Lowering a call into a callseq_start <-
1370/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1371/// nodes.
1372SDValue
1373ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1374                             SmallVectorImpl<SDValue> &InVals) const {
1375  SelectionDAG &DAG                     = CLI.DAG;
1376  SDLoc &dl                          = CLI.DL;
1377  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1378  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1379  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1380  SDValue Chain                         = CLI.Chain;
1381  SDValue Callee                        = CLI.Callee;
1382  bool &isTailCall                      = CLI.IsTailCall;
1383  CallingConv::ID CallConv              = CLI.CallConv;
1384  bool doesNotRet                       = CLI.DoesNotReturn;
1385  bool isVarArg                         = CLI.IsVarArg;
1386
1387  MachineFunction &MF = DAG.getMachineFunction();
1388  bool isStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1389  bool isThisReturn   = false;
1390  bool isSibCall      = false;
1391
1392  // Disable tail calls if they're not supported.
1393  if (!Subtarget->supportsTailCall() || MF.getTarget().Options.DisableTailCalls)
1394    isTailCall = false;
1395
1396  if (isTailCall) {
1397    // Check if it's really possible to do a tail call.
1398    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1399                    isVarArg, isStructRet, MF.getFunction()->hasStructRetAttr(),
1400                                                   Outs, OutVals, Ins, DAG);
1401    if (!isTailCall && CLI.CS && CLI.CS->isMustTailCall())
1402      report_fatal_error("failed to perform tail call elimination on a call "
1403                         "site marked musttail");
1404    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1405    // detected sibcalls.
1406    if (isTailCall) {
1407      ++NumTailCalls;
1408      isSibCall = true;
1409    }
1410  }
1411
1412  // Analyze operands of the call, assigning locations to each operand.
1413  SmallVector<CCValAssign, 16> ArgLocs;
1414  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1415                 getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1416  CCInfo.AnalyzeCallOperands(Outs,
1417                             CCAssignFnForNode(CallConv, /* Return*/ false,
1418                                               isVarArg));
1419
1420  // Get a count of how many bytes are to be pushed on the stack.
1421  unsigned NumBytes = CCInfo.getNextStackOffset();
1422
1423  // For tail calls, memory operands are available in our caller's stack.
1424  if (isSibCall)
1425    NumBytes = 0;
1426
1427  // Adjust the stack pointer for the new arguments...
1428  // These operations are automatically eliminated by the prolog/epilog pass
1429  if (!isSibCall)
1430    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
1431                                 dl);
1432
1433  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1434
1435  RegsToPassVector RegsToPass;
1436  SmallVector<SDValue, 8> MemOpChains;
1437
1438  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1439  // of tail call optimization, arguments are handled later.
1440  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1441       i != e;
1442       ++i, ++realArgIdx) {
1443    CCValAssign &VA = ArgLocs[i];
1444    SDValue Arg = OutVals[realArgIdx];
1445    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1446    bool isByVal = Flags.isByVal();
1447
1448    // Promote the value if needed.
1449    switch (VA.getLocInfo()) {
1450    default: llvm_unreachable("Unknown loc info!");
1451    case CCValAssign::Full: break;
1452    case CCValAssign::SExt:
1453      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1454      break;
1455    case CCValAssign::ZExt:
1456      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1457      break;
1458    case CCValAssign::AExt:
1459      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1460      break;
1461    case CCValAssign::BCvt:
1462      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1463      break;
1464    }
1465
1466    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1467    if (VA.needsCustom()) {
1468      if (VA.getLocVT() == MVT::v2f64) {
1469        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1470                                  DAG.getConstant(0, MVT::i32));
1471        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1472                                  DAG.getConstant(1, MVT::i32));
1473
1474        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1475                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1476
1477        VA = ArgLocs[++i]; // skip ahead to next loc
1478        if (VA.isRegLoc()) {
1479          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1480                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1481        } else {
1482          assert(VA.isMemLoc());
1483
1484          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1485                                                 dl, DAG, VA, Flags));
1486        }
1487      } else {
1488        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1489                         StackPtr, MemOpChains, Flags);
1490      }
1491    } else if (VA.isRegLoc()) {
1492      if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i32) {
1493        assert(VA.getLocVT() == MVT::i32 &&
1494               "unexpected calling convention register assignment");
1495        assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
1496               "unexpected use of 'returned'");
1497        isThisReturn = true;
1498      }
1499      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1500    } else if (isByVal) {
1501      assert(VA.isMemLoc());
1502      unsigned offset = 0;
1503
1504      // True if this byval aggregate will be split between registers
1505      // and memory.
1506      unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
1507      unsigned CurByValIdx = CCInfo.getInRegsParamsProceed();
1508
1509      if (CurByValIdx < ByValArgsCount) {
1510
1511        unsigned RegBegin, RegEnd;
1512        CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
1513
1514        EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1515        unsigned int i, j;
1516        for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
1517          SDValue Const = DAG.getConstant(4*i, MVT::i32);
1518          SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1519          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1520                                     MachinePointerInfo(),
1521                                     false, false, false,
1522                                     DAG.InferPtrAlignment(AddArg));
1523          MemOpChains.push_back(Load.getValue(1));
1524          RegsToPass.push_back(std::make_pair(j, Load));
1525        }
1526
1527        // If parameter size outsides register area, "offset" value
1528        // helps us to calculate stack slot for remained part properly.
1529        offset = RegEnd - RegBegin;
1530
1531        CCInfo.nextInRegsParam();
1532      }
1533
1534      if (Flags.getByValSize() > 4*offset) {
1535        unsigned LocMemOffset = VA.getLocMemOffset();
1536        SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
1537        SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
1538                                  StkPtrOff);
1539        SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
1540        SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
1541        SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
1542                                           MVT::i32);
1543        SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), MVT::i32);
1544
1545        SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
1546        SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
1547        MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
1548                                          Ops));
1549      }
1550    } else if (!isSibCall) {
1551      assert(VA.isMemLoc());
1552
1553      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1554                                             dl, DAG, VA, Flags));
1555    }
1556  }
1557
1558  if (!MemOpChains.empty())
1559    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1560
1561  // Build a sequence of copy-to-reg nodes chained together with token chain
1562  // and flag operands which copy the outgoing args into the appropriate regs.
1563  SDValue InFlag;
1564  // Tail call byval lowering might overwrite argument registers so in case of
1565  // tail call optimization the copies to registers are lowered later.
1566  if (!isTailCall)
1567    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1568      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1569                               RegsToPass[i].second, InFlag);
1570      InFlag = Chain.getValue(1);
1571    }
1572
1573  // For tail calls lower the arguments to the 'real' stack slot.
1574  if (isTailCall) {
1575    // Force all the incoming stack arguments to be loaded from the stack
1576    // before any new outgoing arguments are stored to the stack, because the
1577    // outgoing stack slots may alias the incoming argument stack slots, and
1578    // the alias isn't otherwise explicit. This is slightly more conservative
1579    // than necessary, because it means that each store effectively depends
1580    // on every argument instead of just those arguments it would clobber.
1581
1582    // Do not flag preceding copytoreg stuff together with the following stuff.
1583    InFlag = SDValue();
1584    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1585      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1586                               RegsToPass[i].second, InFlag);
1587      InFlag = Chain.getValue(1);
1588    }
1589    InFlag = SDValue();
1590  }
1591
1592  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1593  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1594  // node so that legalize doesn't hack it.
1595  bool isDirect = false;
1596  bool isARMFunc = false;
1597  bool isLocalARMFunc = false;
1598  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1599
1600  if (EnableARMLongCalls) {
1601    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1602            && "long-calls with non-static relocation model!");
1603    // Handle a global address or an external symbol. If it's not one of
1604    // those, the target's already in a register, so we don't need to do
1605    // anything extra.
1606    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1607      const GlobalValue *GV = G->getGlobal();
1608      // Create a constant pool entry for the callee address
1609      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1610      ARMConstantPoolValue *CPV =
1611        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
1612
1613      // Get the address of the callee into a register
1614      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1615      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1616      Callee = DAG.getLoad(getPointerTy(), dl,
1617                           DAG.getEntryNode(), CPAddr,
1618                           MachinePointerInfo::getConstantPool(),
1619                           false, false, false, 0);
1620    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1621      const char *Sym = S->getSymbol();
1622
1623      // Create a constant pool entry for the callee address
1624      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1625      ARMConstantPoolValue *CPV =
1626        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1627                                      ARMPCLabelIndex, 0);
1628      // Get the address of the callee into a register
1629      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1630      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1631      Callee = DAG.getLoad(getPointerTy(), dl,
1632                           DAG.getEntryNode(), CPAddr,
1633                           MachinePointerInfo::getConstantPool(),
1634                           false, false, false, 0);
1635    }
1636  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1637    const GlobalValue *GV = G->getGlobal();
1638    isDirect = true;
1639    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1640    bool isStub = (isExt && Subtarget->isTargetMachO()) &&
1641                   getTargetMachine().getRelocationModel() != Reloc::Static;
1642    isARMFunc = !Subtarget->isThumb() || isStub;
1643    // ARM call to a local ARM function is predicable.
1644    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1645    // tBX takes a register source operand.
1646    if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1647      assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
1648      Callee = DAG.getNode(ARMISD::WrapperPIC, dl, getPointerTy(),
1649                           DAG.getTargetGlobalAddress(GV, dl, getPointerTy()));
1650    } else {
1651      // On ELF targets for PIC code, direct calls should go through the PLT
1652      unsigned OpFlags = 0;
1653      if (Subtarget->isTargetELF() &&
1654          getTargetMachine().getRelocationModel() == Reloc::PIC_)
1655        OpFlags = ARMII::MO_PLT;
1656      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1657    }
1658  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1659    isDirect = true;
1660    bool isStub = Subtarget->isTargetMachO() &&
1661                  getTargetMachine().getRelocationModel() != Reloc::Static;
1662    isARMFunc = !Subtarget->isThumb() || isStub;
1663    // tBX takes a register source operand.
1664    const char *Sym = S->getSymbol();
1665    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1666      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1667      ARMConstantPoolValue *CPV =
1668        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1669                                      ARMPCLabelIndex, 4);
1670      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1671      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1672      Callee = DAG.getLoad(getPointerTy(), dl,
1673                           DAG.getEntryNode(), CPAddr,
1674                           MachinePointerInfo::getConstantPool(),
1675                           false, false, false, 0);
1676      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1677      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1678                           getPointerTy(), Callee, PICLabel);
1679    } else {
1680      unsigned OpFlags = 0;
1681      // On ELF targets for PIC code, direct calls should go through the PLT
1682      if (Subtarget->isTargetELF() &&
1683                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1684        OpFlags = ARMII::MO_PLT;
1685      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1686    }
1687  }
1688
1689  // FIXME: handle tail calls differently.
1690  unsigned CallOpc;
1691  bool HasMinSizeAttr = Subtarget->isMinSize();
1692  if (Subtarget->isThumb()) {
1693    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1694      CallOpc = ARMISD::CALL_NOLINK;
1695    else
1696      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1697  } else {
1698    if (!isDirect && !Subtarget->hasV5TOps())
1699      CallOpc = ARMISD::CALL_NOLINK;
1700    else if (doesNotRet && isDirect && Subtarget->hasRAS() &&
1701               // Emit regular call when code size is the priority
1702               !HasMinSizeAttr)
1703      // "mov lr, pc; b _foo" to avoid confusing the RSP
1704      CallOpc = ARMISD::CALL_NOLINK;
1705    else
1706      CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
1707  }
1708
1709  std::vector<SDValue> Ops;
1710  Ops.push_back(Chain);
1711  Ops.push_back(Callee);
1712
1713  // Add argument registers to the end of the list so that they are known live
1714  // into the call.
1715  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1716    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1717                                  RegsToPass[i].second.getValueType()));
1718
1719  // Add a register mask operand representing the call-preserved registers.
1720  if (!isTailCall) {
1721    const uint32_t *Mask;
1722    const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
1723    const ARMBaseRegisterInfo *ARI = static_cast<const ARMBaseRegisterInfo*>(TRI);
1724    if (isThisReturn) {
1725      // For 'this' returns, use the R0-preserving mask if applicable
1726      Mask = ARI->getThisReturnPreservedMask(CallConv);
1727      if (!Mask) {
1728        // Set isThisReturn to false if the calling convention is not one that
1729        // allows 'returned' to be modeled in this way, so LowerCallResult does
1730        // not try to pass 'this' straight through
1731        isThisReturn = false;
1732        Mask = ARI->getCallPreservedMask(CallConv);
1733      }
1734    } else
1735      Mask = ARI->getCallPreservedMask(CallConv);
1736
1737    assert(Mask && "Missing call preserved mask for calling convention");
1738    Ops.push_back(DAG.getRegisterMask(Mask));
1739  }
1740
1741  if (InFlag.getNode())
1742    Ops.push_back(InFlag);
1743
1744  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1745  if (isTailCall)
1746    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
1747
1748  // Returns a chain and a flag for retval copy to use.
1749  Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
1750  InFlag = Chain.getValue(1);
1751
1752  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1753                             DAG.getIntPtrConstant(0, true), InFlag, dl);
1754  if (!Ins.empty())
1755    InFlag = Chain.getValue(1);
1756
1757  // Handle result values, copying them out of physregs into vregs that we
1758  // return.
1759  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
1760                         InVals, isThisReturn,
1761                         isThisReturn ? OutVals[0] : SDValue());
1762}
1763
1764/// HandleByVal - Every parameter *after* a byval parameter is passed
1765/// on the stack.  Remember the next parameter register to allocate,
1766/// and then confiscate the rest of the parameter registers to insure
1767/// this.
1768void
1769ARMTargetLowering::HandleByVal(
1770    CCState *State, unsigned &size, unsigned Align) const {
1771  unsigned reg = State->AllocateReg(GPRArgRegs, 4);
1772  assert((State->getCallOrPrologue() == Prologue ||
1773          State->getCallOrPrologue() == Call) &&
1774         "unhandled ParmContext");
1775
1776  if ((ARM::R0 <= reg) && (reg <= ARM::R3)) {
1777    if (Subtarget->isAAPCS_ABI() && Align > 4) {
1778      unsigned AlignInRegs = Align / 4;
1779      unsigned Waste = (ARM::R4 - reg) % AlignInRegs;
1780      for (unsigned i = 0; i < Waste; ++i)
1781        reg = State->AllocateReg(GPRArgRegs, 4);
1782    }
1783    if (reg != 0) {
1784      unsigned excess = 4 * (ARM::R4 - reg);
1785
1786      // Special case when NSAA != SP and parameter size greater than size of
1787      // all remained GPR regs. In that case we can't split parameter, we must
1788      // send it to stack. We also must set NCRN to R4, so waste all
1789      // remained registers.
1790      const unsigned NSAAOffset = State->getNextStackOffset();
1791      if (Subtarget->isAAPCS_ABI() && NSAAOffset != 0 && size > excess) {
1792        while (State->AllocateReg(GPRArgRegs, 4))
1793          ;
1794        return;
1795      }
1796
1797      // First register for byval parameter is the first register that wasn't
1798      // allocated before this method call, so it would be "reg".
1799      // If parameter is small enough to be saved in range [reg, r4), then
1800      // the end (first after last) register would be reg + param-size-in-regs,
1801      // else parameter would be splitted between registers and stack,
1802      // end register would be r4 in this case.
1803      unsigned ByValRegBegin = reg;
1804      unsigned ByValRegEnd = (size < excess) ? reg + size/4 : (unsigned)ARM::R4;
1805      State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
1806      // Note, first register is allocated in the beginning of function already,
1807      // allocate remained amount of registers we need.
1808      for (unsigned i = reg+1; i != ByValRegEnd; ++i)
1809        State->AllocateReg(GPRArgRegs, 4);
1810      // A byval parameter that is split between registers and memory needs its
1811      // size truncated here.
1812      // In the case where the entire structure fits in registers, we set the
1813      // size in memory to zero.
1814      if (size < excess)
1815        size = 0;
1816      else
1817        size -= excess;
1818    }
1819  }
1820}
1821
1822/// MatchingStackOffset - Return true if the given stack call argument is
1823/// already available in the same position (relatively) of the caller's
1824/// incoming argument stack.
1825static
1826bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1827                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1828                         const TargetInstrInfo *TII) {
1829  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1830  int FI = INT_MAX;
1831  if (Arg.getOpcode() == ISD::CopyFromReg) {
1832    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1833    if (!TargetRegisterInfo::isVirtualRegister(VR))
1834      return false;
1835    MachineInstr *Def = MRI->getVRegDef(VR);
1836    if (!Def)
1837      return false;
1838    if (!Flags.isByVal()) {
1839      if (!TII->isLoadFromStackSlot(Def, FI))
1840        return false;
1841    } else {
1842      return false;
1843    }
1844  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1845    if (Flags.isByVal())
1846      // ByVal argument is passed in as a pointer but it's now being
1847      // dereferenced. e.g.
1848      // define @foo(%struct.X* %A) {
1849      //   tail call @bar(%struct.X* byval %A)
1850      // }
1851      return false;
1852    SDValue Ptr = Ld->getBasePtr();
1853    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1854    if (!FINode)
1855      return false;
1856    FI = FINode->getIndex();
1857  } else
1858    return false;
1859
1860  assert(FI != INT_MAX);
1861  if (!MFI->isFixedObjectIndex(FI))
1862    return false;
1863  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1864}
1865
1866/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1867/// for tail call optimization. Targets which want to do tail call
1868/// optimization should implement this function.
1869bool
1870ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1871                                                     CallingConv::ID CalleeCC,
1872                                                     bool isVarArg,
1873                                                     bool isCalleeStructRet,
1874                                                     bool isCallerStructRet,
1875                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1876                                    const SmallVectorImpl<SDValue> &OutVals,
1877                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1878                                                     SelectionDAG& DAG) const {
1879  const Function *CallerF = DAG.getMachineFunction().getFunction();
1880  CallingConv::ID CallerCC = CallerF->getCallingConv();
1881  bool CCMatch = CallerCC == CalleeCC;
1882
1883  // Look for obvious safe cases to perform tail call optimization that do not
1884  // require ABI changes. This is what gcc calls sibcall.
1885
1886  // Do not sibcall optimize vararg calls unless the call site is not passing
1887  // any arguments.
1888  if (isVarArg && !Outs.empty())
1889    return false;
1890
1891  // Exception-handling functions need a special set of instructions to indicate
1892  // a return to the hardware. Tail-calling another function would probably
1893  // break this.
1894  if (CallerF->hasFnAttribute("interrupt"))
1895    return false;
1896
1897  // Also avoid sibcall optimization if either caller or callee uses struct
1898  // return semantics.
1899  if (isCalleeStructRet || isCallerStructRet)
1900    return false;
1901
1902  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1903  // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
1904  // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
1905  // support in the assembler and linker to be used. This would need to be
1906  // fixed to fully support tail calls in Thumb1.
1907  //
1908  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1909  // LR.  This means if we need to reload LR, it takes an extra instructions,
1910  // which outweighs the value of the tail call; but here we don't know yet
1911  // whether LR is going to be used.  Probably the right approach is to
1912  // generate the tail call here and turn it back into CALL/RET in
1913  // emitEpilogue if LR is used.
1914
1915  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1916  // but we need to make sure there are enough registers; the only valid
1917  // registers are the 4 used for parameters.  We don't currently do this
1918  // case.
1919  if (Subtarget->isThumb1Only())
1920    return false;
1921
1922  // If the calling conventions do not match, then we'd better make sure the
1923  // results are returned in the same way as what the caller expects.
1924  if (!CCMatch) {
1925    SmallVector<CCValAssign, 16> RVLocs1;
1926    ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1927                       getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
1928    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1929
1930    SmallVector<CCValAssign, 16> RVLocs2;
1931    ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1932                       getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
1933    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1934
1935    if (RVLocs1.size() != RVLocs2.size())
1936      return false;
1937    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1938      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1939        return false;
1940      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1941        return false;
1942      if (RVLocs1[i].isRegLoc()) {
1943        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1944          return false;
1945      } else {
1946        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1947          return false;
1948      }
1949    }
1950  }
1951
1952  // If Caller's vararg or byval argument has been split between registers and
1953  // stack, do not perform tail call, since part of the argument is in caller's
1954  // local frame.
1955  const ARMFunctionInfo *AFI_Caller = DAG.getMachineFunction().
1956                                      getInfo<ARMFunctionInfo>();
1957  if (AFI_Caller->getArgRegsSaveSize())
1958    return false;
1959
1960  // If the callee takes no arguments then go on to check the results of the
1961  // call.
1962  if (!Outs.empty()) {
1963    // Check if stack adjustment is needed. For now, do not do this if any
1964    // argument is passed on the stack.
1965    SmallVector<CCValAssign, 16> ArgLocs;
1966    ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
1967                      getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1968    CCInfo.AnalyzeCallOperands(Outs,
1969                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1970    if (CCInfo.getNextStackOffset()) {
1971      MachineFunction &MF = DAG.getMachineFunction();
1972
1973      // Check if the arguments are already laid out in the right way as
1974      // the caller's fixed stack objects.
1975      MachineFrameInfo *MFI = MF.getFrameInfo();
1976      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1977      const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1978      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1979           i != e;
1980           ++i, ++realArgIdx) {
1981        CCValAssign &VA = ArgLocs[i];
1982        EVT RegVT = VA.getLocVT();
1983        SDValue Arg = OutVals[realArgIdx];
1984        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1985        if (VA.getLocInfo() == CCValAssign::Indirect)
1986          return false;
1987        if (VA.needsCustom()) {
1988          // f64 and vector types are split into multiple registers or
1989          // register/stack-slot combinations.  The types will not match
1990          // the registers; give up on memory f64 refs until we figure
1991          // out what to do about this.
1992          if (!VA.isRegLoc())
1993            return false;
1994          if (!ArgLocs[++i].isRegLoc())
1995            return false;
1996          if (RegVT == MVT::v2f64) {
1997            if (!ArgLocs[++i].isRegLoc())
1998              return false;
1999            if (!ArgLocs[++i].isRegLoc())
2000              return false;
2001          }
2002        } else if (!VA.isRegLoc()) {
2003          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2004                                   MFI, MRI, TII))
2005            return false;
2006        }
2007      }
2008    }
2009  }
2010
2011  return true;
2012}
2013
2014bool
2015ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2016                                  MachineFunction &MF, bool isVarArg,
2017                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2018                                  LLVMContext &Context) const {
2019  SmallVector<CCValAssign, 16> RVLocs;
2020  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context);
2021  return CCInfo.CheckReturn(Outs, CCAssignFnForNode(CallConv, /*Return=*/true,
2022                                                    isVarArg));
2023}
2024
2025static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
2026                                    SDLoc DL, SelectionDAG &DAG) {
2027  const MachineFunction &MF = DAG.getMachineFunction();
2028  const Function *F = MF.getFunction();
2029
2030  StringRef IntKind = F->getFnAttribute("interrupt").getValueAsString();
2031
2032  // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2033  // version of the "preferred return address". These offsets affect the return
2034  // instruction if this is a return from PL1 without hypervisor extensions.
2035  //    IRQ/FIQ: +4     "subs pc, lr, #4"
2036  //    SWI:     0      "subs pc, lr, #0"
2037  //    ABORT:   +4     "subs pc, lr, #4"
2038  //    UNDEF:   +4/+2  "subs pc, lr, #0"
2039  // UNDEF varies depending on where the exception came from ARM or Thumb
2040  // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2041
2042  int64_t LROffset;
2043  if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
2044      IntKind == "ABORT")
2045    LROffset = 4;
2046  else if (IntKind == "SWI" || IntKind == "UNDEF")
2047    LROffset = 0;
2048  else
2049    report_fatal_error("Unsupported interrupt attribute. If present, value "
2050                       "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2051
2052  RetOps.insert(RetOps.begin() + 1, DAG.getConstant(LROffset, MVT::i32, false));
2053
2054  return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
2055}
2056
2057SDValue
2058ARMTargetLowering::LowerReturn(SDValue Chain,
2059                               CallingConv::ID CallConv, bool isVarArg,
2060                               const SmallVectorImpl<ISD::OutputArg> &Outs,
2061                               const SmallVectorImpl<SDValue> &OutVals,
2062                               SDLoc dl, SelectionDAG &DAG) const {
2063
2064  // CCValAssign - represent the assignment of the return value to a location.
2065  SmallVector<CCValAssign, 16> RVLocs;
2066
2067  // CCState - Info about the registers and stack slots.
2068  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2069                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
2070
2071  // Analyze outgoing return values.
2072  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
2073                                               isVarArg));
2074
2075  SDValue Flag;
2076  SmallVector<SDValue, 4> RetOps;
2077  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2078  bool isLittleEndian = Subtarget->isLittle();
2079
2080  // Copy the result values into the output registers.
2081  for (unsigned i = 0, realRVLocIdx = 0;
2082       i != RVLocs.size();
2083       ++i, ++realRVLocIdx) {
2084    CCValAssign &VA = RVLocs[i];
2085    assert(VA.isRegLoc() && "Can only return in registers!");
2086
2087    SDValue Arg = OutVals[realRVLocIdx];
2088
2089    switch (VA.getLocInfo()) {
2090    default: llvm_unreachable("Unknown loc info!");
2091    case CCValAssign::Full: break;
2092    case CCValAssign::BCvt:
2093      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2094      break;
2095    }
2096
2097    if (VA.needsCustom()) {
2098      if (VA.getLocVT() == MVT::v2f64) {
2099        // Extract the first half and return it in two registers.
2100        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2101                                   DAG.getConstant(0, MVT::i32));
2102        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
2103                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
2104
2105        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2106                                 HalfGPRs.getValue(isLittleEndian ? 0 : 1),
2107                                 Flag);
2108        Flag = Chain.getValue(1);
2109        RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2110        VA = RVLocs[++i]; // skip ahead to next loc
2111        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2112                                 HalfGPRs.getValue(isLittleEndian ? 1 : 0),
2113                                 Flag);
2114        Flag = Chain.getValue(1);
2115        RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2116        VA = RVLocs[++i]; // skip ahead to next loc
2117
2118        // Extract the 2nd half and fall through to handle it as an f64 value.
2119        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2120                          DAG.getConstant(1, MVT::i32));
2121      }
2122      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
2123      // available.
2124      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2125                                  DAG.getVTList(MVT::i32, MVT::i32), Arg);
2126      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2127                               fmrrd.getValue(isLittleEndian ? 0 : 1),
2128                               Flag);
2129      Flag = Chain.getValue(1);
2130      RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2131      VA = RVLocs[++i]; // skip ahead to next loc
2132      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2133                               fmrrd.getValue(isLittleEndian ? 1 : 0),
2134                               Flag);
2135    } else
2136      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
2137
2138    // Guarantee that all emitted copies are
2139    // stuck together, avoiding something bad.
2140    Flag = Chain.getValue(1);
2141    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2142  }
2143
2144  // Update chain and glue.
2145  RetOps[0] = Chain;
2146  if (Flag.getNode())
2147    RetOps.push_back(Flag);
2148
2149  // CPUs which aren't M-class use a special sequence to return from
2150  // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2151  // though we use "subs pc, lr, #N").
2152  //
2153  // M-class CPUs actually use a normal return sequence with a special
2154  // (hardware-provided) value in LR, so the normal code path works.
2155  if (DAG.getMachineFunction().getFunction()->hasFnAttribute("interrupt") &&
2156      !Subtarget->isMClass()) {
2157    if (Subtarget->isThumb1Only())
2158      report_fatal_error("interrupt attribute is not supported in Thumb1");
2159    return LowerInterruptReturn(RetOps, dl, DAG);
2160  }
2161
2162  return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps);
2163}
2164
2165bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
2166  if (N->getNumValues() != 1)
2167    return false;
2168  if (!N->hasNUsesOfValue(1, 0))
2169    return false;
2170
2171  SDValue TCChain = Chain;
2172  SDNode *Copy = *N->use_begin();
2173  if (Copy->getOpcode() == ISD::CopyToReg) {
2174    // If the copy has a glue operand, we conservatively assume it isn't safe to
2175    // perform a tail call.
2176    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2177      return false;
2178    TCChain = Copy->getOperand(0);
2179  } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
2180    SDNode *VMov = Copy;
2181    // f64 returned in a pair of GPRs.
2182    SmallPtrSet<SDNode*, 2> Copies;
2183    for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2184         UI != UE; ++UI) {
2185      if (UI->getOpcode() != ISD::CopyToReg)
2186        return false;
2187      Copies.insert(*UI);
2188    }
2189    if (Copies.size() > 2)
2190      return false;
2191
2192    for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2193         UI != UE; ++UI) {
2194      SDValue UseChain = UI->getOperand(0);
2195      if (Copies.count(UseChain.getNode()))
2196        // Second CopyToReg
2197        Copy = *UI;
2198      else
2199        // First CopyToReg
2200        TCChain = UseChain;
2201    }
2202  } else if (Copy->getOpcode() == ISD::BITCAST) {
2203    // f32 returned in a single GPR.
2204    if (!Copy->hasOneUse())
2205      return false;
2206    Copy = *Copy->use_begin();
2207    if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
2208      return false;
2209    TCChain = Copy->getOperand(0);
2210  } else {
2211    return false;
2212  }
2213
2214  bool HasRet = false;
2215  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2216       UI != UE; ++UI) {
2217    if (UI->getOpcode() != ARMISD::RET_FLAG &&
2218        UI->getOpcode() != ARMISD::INTRET_FLAG)
2219      return false;
2220    HasRet = true;
2221  }
2222
2223  if (!HasRet)
2224    return false;
2225
2226  Chain = TCChain;
2227  return true;
2228}
2229
2230bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
2231  if (!Subtarget->supportsTailCall())
2232    return false;
2233
2234  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
2235    return false;
2236
2237  return !Subtarget->isThumb1Only();
2238}
2239
2240// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2241// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2242// one of the above mentioned nodes. It has to be wrapped because otherwise
2243// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2244// be used to form addressing mode. These wrapped nodes will be selected
2245// into MOVi.
2246static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
2247  EVT PtrVT = Op.getValueType();
2248  // FIXME there is no actual debug info here
2249  SDLoc dl(Op);
2250  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2251  SDValue Res;
2252  if (CP->isMachineConstantPoolEntry())
2253    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2254                                    CP->getAlignment());
2255  else
2256    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2257                                    CP->getAlignment());
2258  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
2259}
2260
2261unsigned ARMTargetLowering::getJumpTableEncoding() const {
2262  return MachineJumpTableInfo::EK_Inline;
2263}
2264
2265SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
2266                                             SelectionDAG &DAG) const {
2267  MachineFunction &MF = DAG.getMachineFunction();
2268  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2269  unsigned ARMPCLabelIndex = 0;
2270  SDLoc DL(Op);
2271  EVT PtrVT = getPointerTy();
2272  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2273  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2274  SDValue CPAddr;
2275  if (RelocM == Reloc::Static) {
2276    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
2277  } else {
2278    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2279    ARMPCLabelIndex = AFI->createPICLabelUId();
2280    ARMConstantPoolValue *CPV =
2281      ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
2282                                      ARMCP::CPBlockAddress, PCAdj);
2283    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2284  }
2285  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2286  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
2287                               MachinePointerInfo::getConstantPool(),
2288                               false, false, false, 0);
2289  if (RelocM == Reloc::Static)
2290    return Result;
2291  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2292  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2293}
2294
2295// Lower ISD::GlobalTLSAddress using the "general dynamic" model
2296SDValue
2297ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
2298                                                 SelectionDAG &DAG) const {
2299  SDLoc dl(GA);
2300  EVT PtrVT = getPointerTy();
2301  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2302  MachineFunction &MF = DAG.getMachineFunction();
2303  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2304  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2305  ARMConstantPoolValue *CPV =
2306    ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2307                                    ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
2308  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2309  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
2310  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
2311                         MachinePointerInfo::getConstantPool(),
2312                         false, false, false, 0);
2313  SDValue Chain = Argument.getValue(1);
2314
2315  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2316  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
2317
2318  // call __tls_get_addr.
2319  ArgListTy Args;
2320  ArgListEntry Entry;
2321  Entry.Node = Argument;
2322  Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2323  Args.push_back(Entry);
2324
2325  // FIXME: is there useful debug info available here?
2326  TargetLowering::CallLoweringInfo CLI(DAG);
2327  CLI.setDebugLoc(dl).setChain(Chain)
2328    .setCallee(CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
2329               DAG.getExternalSymbol("__tls_get_addr", PtrVT), &Args, 0);
2330
2331  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2332  return CallResult.first;
2333}
2334
2335// Lower ISD::GlobalTLSAddress using the "initial exec" or
2336// "local exec" model.
2337SDValue
2338ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2339                                        SelectionDAG &DAG,
2340                                        TLSModel::Model model) const {
2341  const GlobalValue *GV = GA->getGlobal();
2342  SDLoc dl(GA);
2343  SDValue Offset;
2344  SDValue Chain = DAG.getEntryNode();
2345  EVT PtrVT = getPointerTy();
2346  // Get the Thread Pointer
2347  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2348
2349  if (model == TLSModel::InitialExec) {
2350    MachineFunction &MF = DAG.getMachineFunction();
2351    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2352    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2353    // Initial exec model.
2354    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2355    ARMConstantPoolValue *CPV =
2356      ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2357                                      ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2358                                      true);
2359    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2360    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2361    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2362                         MachinePointerInfo::getConstantPool(),
2363                         false, false, false, 0);
2364    Chain = Offset.getValue(1);
2365
2366    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2367    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2368
2369    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2370                         MachinePointerInfo::getConstantPool(),
2371                         false, false, false, 0);
2372  } else {
2373    // local exec model
2374    assert(model == TLSModel::LocalExec);
2375    ARMConstantPoolValue *CPV =
2376      ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
2377    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2378    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2379    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2380                         MachinePointerInfo::getConstantPool(),
2381                         false, false, false, 0);
2382  }
2383
2384  // The address of the thread local variable is the add of the thread
2385  // pointer with the offset of the variable.
2386  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2387}
2388
2389SDValue
2390ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2391  // TODO: implement the "local dynamic" model
2392  assert(Subtarget->isTargetELF() &&
2393         "TLS not implemented for non-ELF targets");
2394  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2395
2396  TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
2397
2398  switch (model) {
2399    case TLSModel::GeneralDynamic:
2400    case TLSModel::LocalDynamic:
2401      return LowerToTLSGeneralDynamicModel(GA, DAG);
2402    case TLSModel::InitialExec:
2403    case TLSModel::LocalExec:
2404      return LowerToTLSExecModels(GA, DAG, model);
2405  }
2406  llvm_unreachable("bogus TLS model");
2407}
2408
2409SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2410                                                 SelectionDAG &DAG) const {
2411  EVT PtrVT = getPointerTy();
2412  SDLoc dl(Op);
2413  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2414  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2415    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2416    ARMConstantPoolValue *CPV =
2417      ARMConstantPoolConstant::Create(GV,
2418                                      UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2419    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2420    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2421    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
2422                                 CPAddr,
2423                                 MachinePointerInfo::getConstantPool(),
2424                                 false, false, false, 0);
2425    SDValue Chain = Result.getValue(1);
2426    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2427    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
2428    if (!UseGOTOFF)
2429      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2430                           MachinePointerInfo::getGOT(),
2431                           false, false, false, 0);
2432    return Result;
2433  }
2434
2435  // If we have T2 ops, we can materialize the address directly via movt/movw
2436  // pair. This is always cheaper.
2437  if (Subtarget->useMovt()) {
2438    ++NumMovwMovt;
2439    // FIXME: Once remat is capable of dealing with instructions with register
2440    // operands, expand this into two nodes.
2441    return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2442                       DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2443  } else {
2444    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2445    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2446    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2447                       MachinePointerInfo::getConstantPool(),
2448                       false, false, false, 0);
2449  }
2450}
2451
2452SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2453                                                    SelectionDAG &DAG) const {
2454  EVT PtrVT = getPointerTy();
2455  SDLoc dl(Op);
2456  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2457  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2458
2459  if (Subtarget->useMovt())
2460    ++NumMovwMovt;
2461
2462  // FIXME: Once remat is capable of dealing with instructions with register
2463  // operands, expand this into multiple nodes
2464  unsigned Wrapper =
2465      RelocM == Reloc::PIC_ ? ARMISD::WrapperPIC : ARMISD::Wrapper;
2466
2467  SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
2468  SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
2469
2470  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2471    Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2472                         MachinePointerInfo::getGOT(), false, false, false, 0);
2473  return Result;
2474}
2475
2476SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
2477                                                     SelectionDAG &DAG) const {
2478  assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
2479  assert(Subtarget->useMovt() && "Windows on ARM expects to use movw/movt");
2480
2481  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2482  EVT PtrVT = getPointerTy();
2483  SDLoc DL(Op);
2484
2485  ++NumMovwMovt;
2486
2487  // FIXME: Once remat is capable of dealing with instructions with register
2488  // operands, expand this into two nodes.
2489  return DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
2490                     DAG.getTargetGlobalAddress(GV, DL, PtrVT));
2491}
2492
2493SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
2494                                                    SelectionDAG &DAG) const {
2495  assert(Subtarget->isTargetELF() &&
2496         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
2497  MachineFunction &MF = DAG.getMachineFunction();
2498  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2499  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2500  EVT PtrVT = getPointerTy();
2501  SDLoc dl(Op);
2502  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2503  ARMConstantPoolValue *CPV =
2504    ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
2505                                  ARMPCLabelIndex, PCAdj);
2506  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2507  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2508  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2509                               MachinePointerInfo::getConstantPool(),
2510                               false, false, false, 0);
2511  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2512  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2513}
2514
2515SDValue
2516ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2517  SDLoc dl(Op);
2518  SDValue Val = DAG.getConstant(0, MVT::i32);
2519  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
2520                     DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
2521                     Op.getOperand(1), Val);
2522}
2523
2524SDValue
2525ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2526  SDLoc dl(Op);
2527  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2528                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2529}
2530
2531SDValue
2532ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2533                                          const ARMSubtarget *Subtarget) const {
2534  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2535  SDLoc dl(Op);
2536  switch (IntNo) {
2537  default: return SDValue();    // Don't custom lower most intrinsics.
2538  case Intrinsic::arm_thread_pointer: {
2539    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2540    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2541  }
2542  case Intrinsic::eh_sjlj_lsda: {
2543    MachineFunction &MF = DAG.getMachineFunction();
2544    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2545    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2546    EVT PtrVT = getPointerTy();
2547    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2548    SDValue CPAddr;
2549    unsigned PCAdj = (RelocM != Reloc::PIC_)
2550      ? 0 : (Subtarget->isThumb() ? 4 : 8);
2551    ARMConstantPoolValue *CPV =
2552      ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
2553                                      ARMCP::CPLSDA, PCAdj);
2554    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2555    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2556    SDValue Result =
2557      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2558                  MachinePointerInfo::getConstantPool(),
2559                  false, false, false, 0);
2560
2561    if (RelocM == Reloc::PIC_) {
2562      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2563      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2564    }
2565    return Result;
2566  }
2567  case Intrinsic::arm_neon_vmulls:
2568  case Intrinsic::arm_neon_vmullu: {
2569    unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2570      ? ARMISD::VMULLs : ARMISD::VMULLu;
2571    return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
2572                       Op.getOperand(1), Op.getOperand(2));
2573  }
2574  }
2575}
2576
2577static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
2578                                 const ARMSubtarget *Subtarget) {
2579  // FIXME: handle "fence singlethread" more efficiently.
2580  SDLoc dl(Op);
2581  if (!Subtarget->hasDataBarrier()) {
2582    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2583    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2584    // here.
2585    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2586           "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
2587    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2588                       DAG.getConstant(0, MVT::i32));
2589  }
2590
2591  ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
2592  AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
2593  unsigned Domain = ARM_MB::ISH;
2594  if (Subtarget->isMClass()) {
2595    // Only a full system barrier exists in the M-class architectures.
2596    Domain = ARM_MB::SY;
2597  } else if (Subtarget->isSwift() && Ord == Release) {
2598    // Swift happens to implement ISHST barriers in a way that's compatible with
2599    // Release semantics but weaker than ISH so we'd be fools not to use
2600    // it. Beware: other processors probably don't!
2601    Domain = ARM_MB::ISHST;
2602  }
2603
2604  return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
2605                     DAG.getConstant(Intrinsic::arm_dmb, MVT::i32),
2606                     DAG.getConstant(Domain, MVT::i32));
2607}
2608
2609static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2610                             const ARMSubtarget *Subtarget) {
2611  // ARM pre v5TE and Thumb1 does not have preload instructions.
2612  if (!(Subtarget->isThumb2() ||
2613        (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2614    // Just preserve the chain.
2615    return Op.getOperand(0);
2616
2617  SDLoc dl(Op);
2618  unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2619  if (!isRead &&
2620      (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2621    // ARMv7 with MP extension has PLDW.
2622    return Op.getOperand(0);
2623
2624  unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2625  if (Subtarget->isThumb()) {
2626    // Invert the bits.
2627    isRead = ~isRead & 1;
2628    isData = ~isData & 1;
2629  }
2630
2631  return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2632                     Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2633                     DAG.getConstant(isData, MVT::i32));
2634}
2635
2636static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2637  MachineFunction &MF = DAG.getMachineFunction();
2638  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2639
2640  // vastart just stores the address of the VarArgsFrameIndex slot into the
2641  // memory location argument.
2642  SDLoc dl(Op);
2643  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2644  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2645  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2646  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2647                      MachinePointerInfo(SV), false, false, 0);
2648}
2649
2650SDValue
2651ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2652                                        SDValue &Root, SelectionDAG &DAG,
2653                                        SDLoc dl) const {
2654  MachineFunction &MF = DAG.getMachineFunction();
2655  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2656
2657  const TargetRegisterClass *RC;
2658  if (AFI->isThumb1OnlyFunction())
2659    RC = &ARM::tGPRRegClass;
2660  else
2661    RC = &ARM::GPRRegClass;
2662
2663  // Transform the arguments stored in physical registers into virtual ones.
2664  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2665  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2666
2667  SDValue ArgValue2;
2668  if (NextVA.isMemLoc()) {
2669    MachineFrameInfo *MFI = MF.getFrameInfo();
2670    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2671
2672    // Create load node to retrieve arguments from the stack.
2673    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2674    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2675                            MachinePointerInfo::getFixedStack(FI),
2676                            false, false, false, 0);
2677  } else {
2678    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2679    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2680  }
2681  if (!Subtarget->isLittle())
2682    std::swap (ArgValue, ArgValue2);
2683  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2684}
2685
2686void
2687ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
2688                                  unsigned InRegsParamRecordIdx,
2689                                  unsigned ArgSize,
2690                                  unsigned &ArgRegsSize,
2691                                  unsigned &ArgRegsSaveSize)
2692  const {
2693  unsigned NumGPRs;
2694  if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
2695    unsigned RBegin, REnd;
2696    CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
2697    NumGPRs = REnd - RBegin;
2698  } else {
2699    unsigned int firstUnalloced;
2700    firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
2701                                                sizeof(GPRArgRegs) /
2702                                                sizeof(GPRArgRegs[0]));
2703    NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
2704  }
2705
2706  unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
2707  ArgRegsSize = NumGPRs * 4;
2708
2709  // If parameter is split between stack and GPRs...
2710  if (NumGPRs && Align > 4 &&
2711      (ArgRegsSize < ArgSize ||
2712        InRegsParamRecordIdx >= CCInfo.getInRegsParamsCount())) {
2713    // Add padding for part of param recovered from GPRs.  For example,
2714    // if Align == 8, its last byte must be at address K*8 - 1.
2715    // We need to do it, since remained (stack) part of parameter has
2716    // stack alignment, and we need to "attach" "GPRs head" without gaps
2717    // to it:
2718    // Stack:
2719    // |---- 8 bytes block ----| |---- 8 bytes block ----| |---- 8 bytes...
2720    // [ [padding] [GPRs head] ] [        Tail passed via stack       ....
2721    //
2722    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2723    unsigned Padding =
2724        OffsetToAlignment(ArgRegsSize + AFI->getArgRegsSaveSize(), Align);
2725    ArgRegsSaveSize = ArgRegsSize + Padding;
2726  } else
2727    // We don't need to extend regs save size for byval parameters if they
2728    // are passed via GPRs only.
2729    ArgRegsSaveSize = ArgRegsSize;
2730}
2731
2732// The remaining GPRs hold either the beginning of variable-argument
2733// data, or the beginning of an aggregate passed by value (usually
2734// byval).  Either way, we allocate stack slots adjacent to the data
2735// provided by our caller, and store the unallocated registers there.
2736// If this is a variadic function, the va_list pointer will begin with
2737// these values; otherwise, this reassembles a (byval) structure that
2738// was split between registers and memory.
2739// Return: The frame index registers were stored into.
2740int
2741ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
2742                                  SDLoc dl, SDValue &Chain,
2743                                  const Value *OrigArg,
2744                                  unsigned InRegsParamRecordIdx,
2745                                  unsigned OffsetFromOrigArg,
2746                                  unsigned ArgOffset,
2747                                  unsigned ArgSize,
2748                                  bool ForceMutable,
2749                                  unsigned ByValStoreOffset,
2750                                  unsigned TotalArgRegsSaveSize) const {
2751
2752  // Currently, two use-cases possible:
2753  // Case #1. Non-var-args function, and we meet first byval parameter.
2754  //          Setup first unallocated register as first byval register;
2755  //          eat all remained registers
2756  //          (these two actions are performed by HandleByVal method).
2757  //          Then, here, we initialize stack frame with
2758  //          "store-reg" instructions.
2759  // Case #2. Var-args function, that doesn't contain byval parameters.
2760  //          The same: eat all remained unallocated registers,
2761  //          initialize stack frame.
2762
2763  MachineFunction &MF = DAG.getMachineFunction();
2764  MachineFrameInfo *MFI = MF.getFrameInfo();
2765  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2766  unsigned firstRegToSaveIndex, lastRegToSaveIndex;
2767  unsigned RBegin, REnd;
2768  if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
2769    CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
2770    firstRegToSaveIndex = RBegin - ARM::R0;
2771    lastRegToSaveIndex = REnd - ARM::R0;
2772  } else {
2773    firstRegToSaveIndex = CCInfo.getFirstUnallocated
2774      (GPRArgRegs, array_lengthof(GPRArgRegs));
2775    lastRegToSaveIndex = 4;
2776  }
2777
2778  unsigned ArgRegsSize, ArgRegsSaveSize;
2779  computeRegArea(CCInfo, MF, InRegsParamRecordIdx, ArgSize,
2780                 ArgRegsSize, ArgRegsSaveSize);
2781
2782  // Store any by-val regs to their spots on the stack so that they may be
2783  // loaded by deferencing the result of formal parameter pointer or va_next.
2784  // Note: once stack area for byval/varargs registers
2785  // was initialized, it can't be initialized again.
2786  if (ArgRegsSaveSize) {
2787    unsigned Padding = ArgRegsSaveSize - ArgRegsSize;
2788
2789    if (Padding) {
2790      assert(AFI->getStoredByValParamsPadding() == 0 &&
2791             "The only parameter may be padded.");
2792      AFI->setStoredByValParamsPadding(Padding);
2793    }
2794
2795    int FrameIndex = MFI->CreateFixedObject(ArgRegsSaveSize,
2796                                            Padding +
2797                                              ByValStoreOffset -
2798                                              (int64_t)TotalArgRegsSaveSize,
2799                                            false);
2800    SDValue FIN = DAG.getFrameIndex(FrameIndex, getPointerTy());
2801    if (Padding) {
2802       MFI->CreateFixedObject(Padding,
2803                              ArgOffset + ByValStoreOffset -
2804                                (int64_t)ArgRegsSaveSize,
2805                              false);
2806    }
2807
2808    SmallVector<SDValue, 4> MemOps;
2809    for (unsigned i = 0; firstRegToSaveIndex < lastRegToSaveIndex;
2810         ++firstRegToSaveIndex, ++i) {
2811      const TargetRegisterClass *RC;
2812      if (AFI->isThumb1OnlyFunction())
2813        RC = &ARM::tGPRRegClass;
2814      else
2815        RC = &ARM::GPRRegClass;
2816
2817      unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
2818      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2819      SDValue Store =
2820        DAG.getStore(Val.getValue(1), dl, Val, FIN,
2821                     MachinePointerInfo(OrigArg, OffsetFromOrigArg + 4*i),
2822                     false, false, 0);
2823      MemOps.push_back(Store);
2824      FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2825                        DAG.getConstant(4, getPointerTy()));
2826    }
2827
2828    AFI->setArgRegsSaveSize(ArgRegsSaveSize + AFI->getArgRegsSaveSize());
2829
2830    if (!MemOps.empty())
2831      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
2832    return FrameIndex;
2833  } else {
2834    if (ArgSize == 0) {
2835      // We cannot allocate a zero-byte object for the first variadic argument,
2836      // so just make up a size.
2837      ArgSize = 4;
2838    }
2839    // This will point to the next argument passed via stack.
2840    return MFI->CreateFixedObject(
2841      ArgSize, ArgOffset, !ForceMutable);
2842  }
2843}
2844
2845// Setup stack frame, the va_list pointer will start from.
2846void
2847ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
2848                                        SDLoc dl, SDValue &Chain,
2849                                        unsigned ArgOffset,
2850                                        unsigned TotalArgRegsSaveSize,
2851                                        bool ForceMutable) const {
2852  MachineFunction &MF = DAG.getMachineFunction();
2853  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2854
2855  // Try to store any remaining integer argument regs
2856  // to their spots on the stack so that they may be loaded by deferencing
2857  // the result of va_next.
2858  // If there is no regs to be stored, just point address after last
2859  // argument passed via stack.
2860  int FrameIndex =
2861    StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
2862                   CCInfo.getInRegsParamsCount(), 0, ArgOffset, 0, ForceMutable,
2863                   0, TotalArgRegsSaveSize);
2864
2865  AFI->setVarArgsFrameIndex(FrameIndex);
2866}
2867
2868SDValue
2869ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2870                                        CallingConv::ID CallConv, bool isVarArg,
2871                                        const SmallVectorImpl<ISD::InputArg>
2872                                          &Ins,
2873                                        SDLoc dl, SelectionDAG &DAG,
2874                                        SmallVectorImpl<SDValue> &InVals)
2875                                          const {
2876  MachineFunction &MF = DAG.getMachineFunction();
2877  MachineFrameInfo *MFI = MF.getFrameInfo();
2878
2879  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2880
2881  // Assign locations to all of the incoming arguments.
2882  SmallVector<CCValAssign, 16> ArgLocs;
2883  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2884                    getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
2885  CCInfo.AnalyzeFormalArguments(Ins,
2886                                CCAssignFnForNode(CallConv, /* Return*/ false,
2887                                                  isVarArg));
2888
2889  SmallVector<SDValue, 16> ArgValues;
2890  int lastInsIndex = -1;
2891  SDValue ArgValue;
2892  Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
2893  unsigned CurArgIdx = 0;
2894
2895  // Initially ArgRegsSaveSize is zero.
2896  // Then we increase this value each time we meet byval parameter.
2897  // We also increase this value in case of varargs function.
2898  AFI->setArgRegsSaveSize(0);
2899
2900  unsigned ByValStoreOffset = 0;
2901  unsigned TotalArgRegsSaveSize = 0;
2902  unsigned ArgRegsSaveSizeMaxAlign = 4;
2903
2904  // Calculate the amount of stack space that we need to allocate to store
2905  // byval and variadic arguments that are passed in registers.
2906  // We need to know this before we allocate the first byval or variadic
2907  // argument, as they will be allocated a stack slot below the CFA (Canonical
2908  // Frame Address, the stack pointer at entry to the function).
2909  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2910    CCValAssign &VA = ArgLocs[i];
2911    if (VA.isMemLoc()) {
2912      int index = VA.getValNo();
2913      if (index != lastInsIndex) {
2914        ISD::ArgFlagsTy Flags = Ins[index].Flags;
2915        if (Flags.isByVal()) {
2916          unsigned ExtraArgRegsSize;
2917          unsigned ExtraArgRegsSaveSize;
2918          computeRegArea(CCInfo, MF, CCInfo.getInRegsParamsProceed(),
2919                         Flags.getByValSize(),
2920                         ExtraArgRegsSize, ExtraArgRegsSaveSize);
2921
2922          TotalArgRegsSaveSize += ExtraArgRegsSaveSize;
2923          if (Flags.getByValAlign() > ArgRegsSaveSizeMaxAlign)
2924              ArgRegsSaveSizeMaxAlign = Flags.getByValAlign();
2925          CCInfo.nextInRegsParam();
2926        }
2927        lastInsIndex = index;
2928      }
2929    }
2930  }
2931  CCInfo.rewindByValRegsInfo();
2932  lastInsIndex = -1;
2933  if (isVarArg) {
2934    unsigned ExtraArgRegsSize;
2935    unsigned ExtraArgRegsSaveSize;
2936    computeRegArea(CCInfo, MF, CCInfo.getInRegsParamsCount(), 0,
2937                   ExtraArgRegsSize, ExtraArgRegsSaveSize);
2938    TotalArgRegsSaveSize += ExtraArgRegsSaveSize;
2939  }
2940  // If the arg regs save area contains N-byte aligned values, the
2941  // bottom of it must be at least N-byte aligned.
2942  TotalArgRegsSaveSize = RoundUpToAlignment(TotalArgRegsSaveSize, ArgRegsSaveSizeMaxAlign);
2943  TotalArgRegsSaveSize = std::min(TotalArgRegsSaveSize, 16U);
2944
2945  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2946    CCValAssign &VA = ArgLocs[i];
2947    std::advance(CurOrigArg, Ins[VA.getValNo()].OrigArgIndex - CurArgIdx);
2948    CurArgIdx = Ins[VA.getValNo()].OrigArgIndex;
2949    // Arguments stored in registers.
2950    if (VA.isRegLoc()) {
2951      EVT RegVT = VA.getLocVT();
2952
2953      if (VA.needsCustom()) {
2954        // f64 and vector types are split up into multiple registers or
2955        // combinations of registers and stack slots.
2956        if (VA.getLocVT() == MVT::v2f64) {
2957          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2958                                                   Chain, DAG, dl);
2959          VA = ArgLocs[++i]; // skip ahead to next loc
2960          SDValue ArgValue2;
2961          if (VA.isMemLoc()) {
2962            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2963            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2964            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2965                                    MachinePointerInfo::getFixedStack(FI),
2966                                    false, false, false, 0);
2967          } else {
2968            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2969                                             Chain, DAG, dl);
2970          }
2971          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2972          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2973                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2974          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2975                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2976        } else
2977          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2978
2979      } else {
2980        const TargetRegisterClass *RC;
2981
2982        if (RegVT == MVT::f32)
2983          RC = &ARM::SPRRegClass;
2984        else if (RegVT == MVT::f64)
2985          RC = &ARM::DPRRegClass;
2986        else if (RegVT == MVT::v2f64)
2987          RC = &ARM::QPRRegClass;
2988        else if (RegVT == MVT::i32)
2989          RC = AFI->isThumb1OnlyFunction() ?
2990            (const TargetRegisterClass*)&ARM::tGPRRegClass :
2991            (const TargetRegisterClass*)&ARM::GPRRegClass;
2992        else
2993          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2994
2995        // Transform the arguments in physical registers into virtual ones.
2996        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2997        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2998      }
2999
3000      // If this is an 8 or 16-bit value, it is really passed promoted
3001      // to 32 bits.  Insert an assert[sz]ext to capture this, then
3002      // truncate to the right size.
3003      switch (VA.getLocInfo()) {
3004      default: llvm_unreachable("Unknown loc info!");
3005      case CCValAssign::Full: break;
3006      case CCValAssign::BCvt:
3007        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
3008        break;
3009      case CCValAssign::SExt:
3010        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
3011                               DAG.getValueType(VA.getValVT()));
3012        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3013        break;
3014      case CCValAssign::ZExt:
3015        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
3016                               DAG.getValueType(VA.getValVT()));
3017        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3018        break;
3019      }
3020
3021      InVals.push_back(ArgValue);
3022
3023    } else { // VA.isRegLoc()
3024
3025      // sanity check
3026      assert(VA.isMemLoc());
3027      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
3028
3029      int index = ArgLocs[i].getValNo();
3030
3031      // Some Ins[] entries become multiple ArgLoc[] entries.
3032      // Process them only once.
3033      if (index != lastInsIndex)
3034        {
3035          ISD::ArgFlagsTy Flags = Ins[index].Flags;
3036          // FIXME: For now, all byval parameter objects are marked mutable.
3037          // This can be changed with more analysis.
3038          // In case of tail call optimization mark all arguments mutable.
3039          // Since they could be overwritten by lowering of arguments in case of
3040          // a tail call.
3041          if (Flags.isByVal()) {
3042            unsigned CurByValIndex = CCInfo.getInRegsParamsProceed();
3043
3044            ByValStoreOffset = RoundUpToAlignment(ByValStoreOffset, Flags.getByValAlign());
3045            int FrameIndex = StoreByValRegs(
3046                CCInfo, DAG, dl, Chain, CurOrigArg,
3047                CurByValIndex,
3048                Ins[VA.getValNo()].PartOffset,
3049                VA.getLocMemOffset(),
3050                Flags.getByValSize(),
3051                true /*force mutable frames*/,
3052                ByValStoreOffset,
3053                TotalArgRegsSaveSize);
3054            ByValStoreOffset += Flags.getByValSize();
3055            ByValStoreOffset = std::min(ByValStoreOffset, 16U);
3056            InVals.push_back(DAG.getFrameIndex(FrameIndex, getPointerTy()));
3057            CCInfo.nextInRegsParam();
3058          } else {
3059            unsigned FIOffset = VA.getLocMemOffset();
3060            int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
3061                                            FIOffset, true);
3062
3063            // Create load nodes to retrieve arguments from the stack.
3064            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
3065            InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
3066                                         MachinePointerInfo::getFixedStack(FI),
3067                                         false, false, false, 0));
3068          }
3069          lastInsIndex = index;
3070        }
3071    }
3072  }
3073
3074  // varargs
3075  if (isVarArg)
3076    VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
3077                         CCInfo.getNextStackOffset(),
3078                         TotalArgRegsSaveSize);
3079
3080  AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
3081
3082  return Chain;
3083}
3084
3085/// isFloatingPointZero - Return true if this is +0.0.
3086static bool isFloatingPointZero(SDValue Op) {
3087  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
3088    return CFP->getValueAPF().isPosZero();
3089  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
3090    // Maybe this has already been legalized into the constant pool?
3091    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
3092      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
3093      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
3094        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
3095          return CFP->getValueAPF().isPosZero();
3096    }
3097  }
3098  return false;
3099}
3100
3101/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
3102/// the given operands.
3103SDValue
3104ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
3105                             SDValue &ARMcc, SelectionDAG &DAG,
3106                             SDLoc dl) const {
3107  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
3108    unsigned C = RHSC->getZExtValue();
3109    if (!isLegalICmpImmediate(C)) {
3110      // Constant does not fit, try adjusting it by one?
3111      switch (CC) {
3112      default: break;
3113      case ISD::SETLT:
3114      case ISD::SETGE:
3115        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
3116          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
3117          RHS = DAG.getConstant(C-1, MVT::i32);
3118        }
3119        break;
3120      case ISD::SETULT:
3121      case ISD::SETUGE:
3122        if (C != 0 && isLegalICmpImmediate(C-1)) {
3123          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
3124          RHS = DAG.getConstant(C-1, MVT::i32);
3125        }
3126        break;
3127      case ISD::SETLE:
3128      case ISD::SETGT:
3129        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
3130          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
3131          RHS = DAG.getConstant(C+1, MVT::i32);
3132        }
3133        break;
3134      case ISD::SETULE:
3135      case ISD::SETUGT:
3136        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
3137          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3138          RHS = DAG.getConstant(C+1, MVT::i32);
3139        }
3140        break;
3141      }
3142    }
3143  }
3144
3145  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3146  ARMISD::NodeType CompareType;
3147  switch (CondCode) {
3148  default:
3149    CompareType = ARMISD::CMP;
3150    break;
3151  case ARMCC::EQ:
3152  case ARMCC::NE:
3153    // Uses only Z Flag
3154    CompareType = ARMISD::CMPZ;
3155    break;
3156  }
3157  ARMcc = DAG.getConstant(CondCode, MVT::i32);
3158  return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
3159}
3160
3161/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
3162SDValue
3163ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
3164                             SDLoc dl) const {
3165  SDValue Cmp;
3166  if (!isFloatingPointZero(RHS))
3167    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
3168  else
3169    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
3170  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
3171}
3172
3173/// duplicateCmp - Glue values can have only one use, so this function
3174/// duplicates a comparison node.
3175SDValue
3176ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
3177  unsigned Opc = Cmp.getOpcode();
3178  SDLoc DL(Cmp);
3179  if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
3180    return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
3181
3182  assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
3183  Cmp = Cmp.getOperand(0);
3184  Opc = Cmp.getOpcode();
3185  if (Opc == ARMISD::CMPFP)
3186    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
3187  else {
3188    assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
3189    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
3190  }
3191  return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
3192}
3193
3194std::pair<SDValue, SDValue>
3195ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
3196                                 SDValue &ARMcc) const {
3197  assert(Op.getValueType() == MVT::i32 &&  "Unsupported value type");
3198
3199  SDValue Value, OverflowCmp;
3200  SDValue LHS = Op.getOperand(0);
3201  SDValue RHS = Op.getOperand(1);
3202
3203
3204  // FIXME: We are currently always generating CMPs because we don't support
3205  // generating CMN through the backend. This is not as good as the natural
3206  // CMP case because it causes a register dependency and cannot be folded
3207  // later.
3208
3209  switch (Op.getOpcode()) {
3210  default:
3211    llvm_unreachable("Unknown overflow instruction!");
3212  case ISD::SADDO:
3213    ARMcc = DAG.getConstant(ARMCC::VC, MVT::i32);
3214    Value = DAG.getNode(ISD::ADD, SDLoc(Op), Op.getValueType(), LHS, RHS);
3215    OverflowCmp = DAG.getNode(ARMISD::CMP, SDLoc(Op), MVT::Glue, Value, LHS);
3216    break;
3217  case ISD::UADDO:
3218    ARMcc = DAG.getConstant(ARMCC::HS, MVT::i32);
3219    Value = DAG.getNode(ISD::ADD, SDLoc(Op), Op.getValueType(), LHS, RHS);
3220    OverflowCmp = DAG.getNode(ARMISD::CMP, SDLoc(Op), MVT::Glue, Value, LHS);
3221    break;
3222  case ISD::SSUBO:
3223    ARMcc = DAG.getConstant(ARMCC::VC, MVT::i32);
3224    Value = DAG.getNode(ISD::SUB, SDLoc(Op), Op.getValueType(), LHS, RHS);
3225    OverflowCmp = DAG.getNode(ARMISD::CMP, SDLoc(Op), MVT::Glue, LHS, RHS);
3226    break;
3227  case ISD::USUBO:
3228    ARMcc = DAG.getConstant(ARMCC::HS, MVT::i32);
3229    Value = DAG.getNode(ISD::SUB, SDLoc(Op), Op.getValueType(), LHS, RHS);
3230    OverflowCmp = DAG.getNode(ARMISD::CMP, SDLoc(Op), MVT::Glue, LHS, RHS);
3231    break;
3232  } // switch (...)
3233
3234  return std::make_pair(Value, OverflowCmp);
3235}
3236
3237
3238SDValue
3239ARMTargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
3240  // Let legalize expand this if it isn't a legal type yet.
3241  if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
3242    return SDValue();
3243
3244  SDValue Value, OverflowCmp;
3245  SDValue ARMcc;
3246  std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
3247  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3248  // We use 0 and 1 as false and true values.
3249  SDValue TVal = DAG.getConstant(1, MVT::i32);
3250  SDValue FVal = DAG.getConstant(0, MVT::i32);
3251  EVT VT = Op.getValueType();
3252
3253  SDValue Overflow = DAG.getNode(ARMISD::CMOV, SDLoc(Op), VT, TVal, FVal,
3254                                 ARMcc, CCR, OverflowCmp);
3255
3256  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
3257  return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), VTs, Value, Overflow);
3258}
3259
3260
3261SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3262  SDValue Cond = Op.getOperand(0);
3263  SDValue SelectTrue = Op.getOperand(1);
3264  SDValue SelectFalse = Op.getOperand(2);
3265  SDLoc dl(Op);
3266  unsigned Opc = Cond.getOpcode();
3267
3268  if (Cond.getResNo() == 1 &&
3269      (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3270       Opc == ISD::USUBO)) {
3271    if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
3272      return SDValue();
3273
3274    SDValue Value, OverflowCmp;
3275    SDValue ARMcc;
3276    std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
3277    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3278    EVT VT = Op.getValueType();
3279
3280    return DAG.getNode(ARMISD::CMOV, SDLoc(Op), VT, SelectTrue, SelectFalse,
3281                       ARMcc, CCR, OverflowCmp);
3282
3283  }
3284
3285  // Convert:
3286  //
3287  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
3288  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
3289  //
3290  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
3291    const ConstantSDNode *CMOVTrue =
3292      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
3293    const ConstantSDNode *CMOVFalse =
3294      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3295
3296    if (CMOVTrue && CMOVFalse) {
3297      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
3298      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
3299
3300      SDValue True;
3301      SDValue False;
3302      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
3303        True = SelectTrue;
3304        False = SelectFalse;
3305      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
3306        True = SelectFalse;
3307        False = SelectTrue;
3308      }
3309
3310      if (True.getNode() && False.getNode()) {
3311        EVT VT = Op.getValueType();
3312        SDValue ARMcc = Cond.getOperand(2);
3313        SDValue CCR = Cond.getOperand(3);
3314        SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
3315        assert(True.getValueType() == VT);
3316        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
3317      }
3318    }
3319  }
3320
3321  // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
3322  // undefined bits before doing a full-word comparison with zero.
3323  Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
3324                     DAG.getConstant(1, Cond.getValueType()));
3325
3326  return DAG.getSelectCC(dl, Cond,
3327                         DAG.getConstant(0, Cond.getValueType()),
3328                         SelectTrue, SelectFalse, ISD::SETNE);
3329}
3330
3331static ISD::CondCode getInverseCCForVSEL(ISD::CondCode CC) {
3332  if (CC == ISD::SETNE)
3333    return ISD::SETEQ;
3334  return ISD::getSetCCInverse(CC, true);
3335}
3336
3337static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
3338                                 bool &swpCmpOps, bool &swpVselOps) {
3339  // Start by selecting the GE condition code for opcodes that return true for
3340  // 'equality'
3341  if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
3342      CC == ISD::SETULE)
3343    CondCode = ARMCC::GE;
3344
3345  // and GT for opcodes that return false for 'equality'.
3346  else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
3347           CC == ISD::SETULT)
3348    CondCode = ARMCC::GT;
3349
3350  // Since we are constrained to GE/GT, if the opcode contains 'less', we need
3351  // to swap the compare operands.
3352  if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
3353      CC == ISD::SETULT)
3354    swpCmpOps = true;
3355
3356  // Both GT and GE are ordered comparisons, and return false for 'unordered'.
3357  // If we have an unordered opcode, we need to swap the operands to the VSEL
3358  // instruction (effectively negating the condition).
3359  //
3360  // This also has the effect of swapping which one of 'less' or 'greater'
3361  // returns true, so we also swap the compare operands. It also switches
3362  // whether we return true for 'equality', so we compensate by picking the
3363  // opposite condition code to our original choice.
3364  if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
3365      CC == ISD::SETUGT) {
3366    swpCmpOps = !swpCmpOps;
3367    swpVselOps = !swpVselOps;
3368    CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
3369  }
3370
3371  // 'ordered' is 'anything but unordered', so use the VS condition code and
3372  // swap the VSEL operands.
3373  if (CC == ISD::SETO) {
3374    CondCode = ARMCC::VS;
3375    swpVselOps = true;
3376  }
3377
3378  // 'unordered or not equal' is 'anything but equal', so use the EQ condition
3379  // code and swap the VSEL operands.
3380  if (CC == ISD::SETUNE) {
3381    CondCode = ARMCC::EQ;
3382    swpVselOps = true;
3383  }
3384}
3385
3386SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
3387  EVT VT = Op.getValueType();
3388  SDValue LHS = Op.getOperand(0);
3389  SDValue RHS = Op.getOperand(1);
3390  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3391  SDValue TrueVal = Op.getOperand(2);
3392  SDValue FalseVal = Op.getOperand(3);
3393  SDLoc dl(Op);
3394
3395  if (LHS.getValueType() == MVT::i32) {
3396    // Try to generate VSEL on ARMv8.
3397    // The VSEL instruction can't use all the usual ARM condition
3398    // codes: it only has two bits to select the condition code, so it's
3399    // constrained to use only GE, GT, VS and EQ.
3400    //
3401    // To implement all the various ISD::SETXXX opcodes, we sometimes need to
3402    // swap the operands of the previous compare instruction (effectively
3403    // inverting the compare condition, swapping 'less' and 'greater') and
3404    // sometimes need to swap the operands to the VSEL (which inverts the
3405    // condition in the sense of firing whenever the previous condition didn't)
3406    if (getSubtarget()->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
3407                                      TrueVal.getValueType() == MVT::f64)) {
3408      ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3409      if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
3410          CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
3411        CC = getInverseCCForVSEL(CC);
3412        std::swap(TrueVal, FalseVal);
3413      }
3414    }
3415
3416    SDValue ARMcc;
3417    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3418    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3419    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
3420                       Cmp);
3421  }
3422
3423  ARMCC::CondCodes CondCode, CondCode2;
3424  FPCCToARMCC(CC, CondCode, CondCode2);
3425
3426  // Try to generate VSEL on ARMv8.
3427  if (getSubtarget()->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
3428                                    TrueVal.getValueType() == MVT::f64)) {
3429    // We can select VMAXNM/VMINNM from a compare followed by a select with the
3430    // same operands, as follows:
3431    //   c = fcmp [ogt, olt, ugt, ult] a, b
3432    //   select c, a, b
3433    // We only do this in unsafe-fp-math, because signed zeros and NaNs are
3434    // handled differently than the original code sequence.
3435    if (getTargetMachine().Options.UnsafeFPMath && LHS == TrueVal &&
3436        RHS == FalseVal) {
3437      if (CC == ISD::SETOGT || CC == ISD::SETUGT)
3438        return DAG.getNode(ARMISD::VMAXNM, dl, VT, TrueVal, FalseVal);
3439      if (CC == ISD::SETOLT || CC == ISD::SETULT)
3440        return DAG.getNode(ARMISD::VMINNM, dl, VT, TrueVal, FalseVal);
3441    }
3442
3443    bool swpCmpOps = false;
3444    bool swpVselOps = false;
3445    checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
3446
3447    if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
3448        CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
3449      if (swpCmpOps)
3450        std::swap(LHS, RHS);
3451      if (swpVselOps)
3452        std::swap(TrueVal, FalseVal);
3453    }
3454  }
3455
3456  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
3457  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
3458  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3459  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
3460                               ARMcc, CCR, Cmp);
3461  if (CondCode2 != ARMCC::AL) {
3462    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
3463    // FIXME: Needs another CMP because flag can have but one use.
3464    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
3465    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
3466                         Result, TrueVal, ARMcc2, CCR, Cmp2);
3467  }
3468  return Result;
3469}
3470
3471/// canChangeToInt - Given the fp compare operand, return true if it is suitable
3472/// to morph to an integer compare sequence.
3473static bool canChangeToInt(SDValue Op, bool &SeenZero,
3474                           const ARMSubtarget *Subtarget) {
3475  SDNode *N = Op.getNode();
3476  if (!N->hasOneUse())
3477    // Otherwise it requires moving the value from fp to integer registers.
3478    return false;
3479  if (!N->getNumValues())
3480    return false;
3481  EVT VT = Op.getValueType();
3482  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
3483    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
3484    // vmrs are very slow, e.g. cortex-a8.
3485    return false;
3486
3487  if (isFloatingPointZero(Op)) {
3488    SeenZero = true;
3489    return true;
3490  }
3491  return ISD::isNormalLoad(N);
3492}
3493
3494static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
3495  if (isFloatingPointZero(Op))
3496    return DAG.getConstant(0, MVT::i32);
3497
3498  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
3499    return DAG.getLoad(MVT::i32, SDLoc(Op),
3500                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
3501                       Ld->isVolatile(), Ld->isNonTemporal(),
3502                       Ld->isInvariant(), Ld->getAlignment());
3503
3504  llvm_unreachable("Unknown VFP cmp argument!");
3505}
3506
3507static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
3508                           SDValue &RetVal1, SDValue &RetVal2) {
3509  if (isFloatingPointZero(Op)) {
3510    RetVal1 = DAG.getConstant(0, MVT::i32);
3511    RetVal2 = DAG.getConstant(0, MVT::i32);
3512    return;
3513  }
3514
3515  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
3516    SDValue Ptr = Ld->getBasePtr();
3517    RetVal1 = DAG.getLoad(MVT::i32, SDLoc(Op),
3518                          Ld->getChain(), Ptr,
3519                          Ld->getPointerInfo(),
3520                          Ld->isVolatile(), Ld->isNonTemporal(),
3521                          Ld->isInvariant(), Ld->getAlignment());
3522
3523    EVT PtrType = Ptr.getValueType();
3524    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
3525    SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(Op),
3526                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
3527    RetVal2 = DAG.getLoad(MVT::i32, SDLoc(Op),
3528                          Ld->getChain(), NewPtr,
3529                          Ld->getPointerInfo().getWithOffset(4),
3530                          Ld->isVolatile(), Ld->isNonTemporal(),
3531                          Ld->isInvariant(), NewAlign);
3532    return;
3533  }
3534
3535  llvm_unreachable("Unknown VFP cmp argument!");
3536}
3537
3538/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
3539/// f32 and even f64 comparisons to integer ones.
3540SDValue
3541ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
3542  SDValue Chain = Op.getOperand(0);
3543  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3544  SDValue LHS = Op.getOperand(2);
3545  SDValue RHS = Op.getOperand(3);
3546  SDValue Dest = Op.getOperand(4);
3547  SDLoc dl(Op);
3548
3549  bool LHSSeenZero = false;
3550  bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
3551  bool RHSSeenZero = false;
3552  bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
3553  if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
3554    // If unsafe fp math optimization is enabled and there are no other uses of
3555    // the CMP operands, and the condition code is EQ or NE, we can optimize it
3556    // to an integer comparison.
3557    if (CC == ISD::SETOEQ)
3558      CC = ISD::SETEQ;
3559    else if (CC == ISD::SETUNE)
3560      CC = ISD::SETNE;
3561
3562    SDValue Mask = DAG.getConstant(0x7fffffff, MVT::i32);
3563    SDValue ARMcc;
3564    if (LHS.getValueType() == MVT::f32) {
3565      LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3566                        bitcastf32Toi32(LHS, DAG), Mask);
3567      RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3568                        bitcastf32Toi32(RHS, DAG), Mask);
3569      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3570      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3571      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3572                         Chain, Dest, ARMcc, CCR, Cmp);
3573    }
3574
3575    SDValue LHS1, LHS2;
3576    SDValue RHS1, RHS2;
3577    expandf64Toi32(LHS, DAG, LHS1, LHS2);
3578    expandf64Toi32(RHS, DAG, RHS1, RHS2);
3579    LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
3580    RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
3581    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3582    ARMcc = DAG.getConstant(CondCode, MVT::i32);
3583    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3584    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
3585    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
3586  }
3587
3588  return SDValue();
3589}
3590
3591SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3592  SDValue Chain = Op.getOperand(0);
3593  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3594  SDValue LHS = Op.getOperand(2);
3595  SDValue RHS = Op.getOperand(3);
3596  SDValue Dest = Op.getOperand(4);
3597  SDLoc dl(Op);
3598
3599  if (LHS.getValueType() == MVT::i32) {
3600    SDValue ARMcc;
3601    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3602    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3603    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3604                       Chain, Dest, ARMcc, CCR, Cmp);
3605  }
3606
3607  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3608
3609  if (getTargetMachine().Options.UnsafeFPMath &&
3610      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
3611       CC == ISD::SETNE || CC == ISD::SETUNE)) {
3612    SDValue Result = OptimizeVFPBrcond(Op, DAG);
3613    if (Result.getNode())
3614      return Result;
3615  }
3616
3617  ARMCC::CondCodes CondCode, CondCode2;
3618  FPCCToARMCC(CC, CondCode, CondCode2);
3619
3620  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
3621  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
3622  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3623  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3624  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
3625  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
3626  if (CondCode2 != ARMCC::AL) {
3627    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
3628    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
3629    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
3630  }
3631  return Res;
3632}
3633
3634SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
3635  SDValue Chain = Op.getOperand(0);
3636  SDValue Table = Op.getOperand(1);
3637  SDValue Index = Op.getOperand(2);
3638  SDLoc dl(Op);
3639
3640  EVT PTy = getPointerTy();
3641  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
3642  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
3643  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
3644  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
3645  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
3646  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
3647  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3648  if (Subtarget->isThumb2()) {
3649    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
3650    // which does another jump to the destination. This also makes it easier
3651    // to translate it to TBB / TBH later.
3652    // FIXME: This might not work if the function is extremely large.
3653    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
3654                       Addr, Op.getOperand(2), JTI, UId);
3655  }
3656  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
3657    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
3658                       MachinePointerInfo::getJumpTable(),
3659                       false, false, false, 0);
3660    Chain = Addr.getValue(1);
3661    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
3662    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3663  } else {
3664    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
3665                       MachinePointerInfo::getJumpTable(),
3666                       false, false, false, 0);
3667    Chain = Addr.getValue(1);
3668    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3669  }
3670}
3671
3672static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3673  EVT VT = Op.getValueType();
3674  SDLoc dl(Op);
3675
3676  if (Op.getValueType().getVectorElementType() == MVT::i32) {
3677    if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
3678      return Op;
3679    return DAG.UnrollVectorOp(Op.getNode());
3680  }
3681
3682  assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
3683         "Invalid type for custom lowering!");
3684  if (VT != MVT::v4i16)
3685    return DAG.UnrollVectorOp(Op.getNode());
3686
3687  Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
3688  return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
3689}
3690
3691static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3692  EVT VT = Op.getValueType();
3693  if (VT.isVector())
3694    return LowerVectorFP_TO_INT(Op, DAG);
3695
3696  SDLoc dl(Op);
3697  unsigned Opc;
3698
3699  switch (Op.getOpcode()) {
3700  default: llvm_unreachable("Invalid opcode!");
3701  case ISD::FP_TO_SINT:
3702    Opc = ARMISD::FTOSI;
3703    break;
3704  case ISD::FP_TO_UINT:
3705    Opc = ARMISD::FTOUI;
3706    break;
3707  }
3708  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
3709  return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3710}
3711
3712static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3713  EVT VT = Op.getValueType();
3714  SDLoc dl(Op);
3715
3716  if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
3717    if (VT.getVectorElementType() == MVT::f32)
3718      return Op;
3719    return DAG.UnrollVectorOp(Op.getNode());
3720  }
3721
3722  assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
3723         "Invalid type for custom lowering!");
3724  if (VT != MVT::v4f32)
3725    return DAG.UnrollVectorOp(Op.getNode());
3726
3727  unsigned CastOpc;
3728  unsigned Opc;
3729  switch (Op.getOpcode()) {
3730  default: llvm_unreachable("Invalid opcode!");
3731  case ISD::SINT_TO_FP:
3732    CastOpc = ISD::SIGN_EXTEND;
3733    Opc = ISD::SINT_TO_FP;
3734    break;
3735  case ISD::UINT_TO_FP:
3736    CastOpc = ISD::ZERO_EXTEND;
3737    Opc = ISD::UINT_TO_FP;
3738    break;
3739  }
3740
3741  Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
3742  return DAG.getNode(Opc, dl, VT, Op);
3743}
3744
3745static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3746  EVT VT = Op.getValueType();
3747  if (VT.isVector())
3748    return LowerVectorINT_TO_FP(Op, DAG);
3749
3750  SDLoc dl(Op);
3751  unsigned Opc;
3752
3753  switch (Op.getOpcode()) {
3754  default: llvm_unreachable("Invalid opcode!");
3755  case ISD::SINT_TO_FP:
3756    Opc = ARMISD::SITOF;
3757    break;
3758  case ISD::UINT_TO_FP:
3759    Opc = ARMISD::UITOF;
3760    break;
3761  }
3762
3763  Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
3764  return DAG.getNode(Opc, dl, VT, Op);
3765}
3766
3767SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
3768  // Implement fcopysign with a fabs and a conditional fneg.
3769  SDValue Tmp0 = Op.getOperand(0);
3770  SDValue Tmp1 = Op.getOperand(1);
3771  SDLoc dl(Op);
3772  EVT VT = Op.getValueType();
3773  EVT SrcVT = Tmp1.getValueType();
3774  bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
3775    Tmp0.getOpcode() == ARMISD::VMOVDRR;
3776  bool UseNEON = !InGPR && Subtarget->hasNEON();
3777
3778  if (UseNEON) {
3779    // Use VBSL to copy the sign bit.
3780    unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
3781    SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
3782                               DAG.getTargetConstant(EncodedVal, MVT::i32));
3783    EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
3784    if (VT == MVT::f64)
3785      Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3786                         DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
3787                         DAG.getConstant(32, MVT::i32));
3788    else /*if (VT == MVT::f32)*/
3789      Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
3790    if (SrcVT == MVT::f32) {
3791      Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
3792      if (VT == MVT::f64)
3793        Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3794                           DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
3795                           DAG.getConstant(32, MVT::i32));
3796    } else if (VT == MVT::f32)
3797      Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
3798                         DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
3799                         DAG.getConstant(32, MVT::i32));
3800    Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
3801    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
3802
3803    SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
3804                                            MVT::i32);
3805    AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
3806    SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
3807                                  DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
3808
3809    SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
3810                              DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
3811                              DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
3812    if (VT == MVT::f32) {
3813      Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
3814      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
3815                        DAG.getConstant(0, MVT::i32));
3816    } else {
3817      Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
3818    }
3819
3820    return Res;
3821  }
3822
3823  // Bitcast operand 1 to i32.
3824  if (SrcVT == MVT::f64)
3825    Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3826                       Tmp1).getValue(1);
3827  Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
3828
3829  // Or in the signbit with integer operations.
3830  SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
3831  SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
3832  Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
3833  if (VT == MVT::f32) {
3834    Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
3835                       DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
3836    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3837                       DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
3838  }
3839
3840  // f64: Or the high part with signbit and then combine two parts.
3841  Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3842                     Tmp0);
3843  SDValue Lo = Tmp0.getValue(0);
3844  SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
3845  Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
3846  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
3847}
3848
3849SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
3850  MachineFunction &MF = DAG.getMachineFunction();
3851  MachineFrameInfo *MFI = MF.getFrameInfo();
3852  MFI->setReturnAddressIsTaken(true);
3853
3854  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3855    return SDValue();
3856
3857  EVT VT = Op.getValueType();
3858  SDLoc dl(Op);
3859  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3860  if (Depth) {
3861    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3862    SDValue Offset = DAG.getConstant(4, MVT::i32);
3863    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
3864                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
3865                       MachinePointerInfo(), false, false, false, 0);
3866  }
3867
3868  // Return LR, which contains the return address. Mark it an implicit live-in.
3869  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3870  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
3871}
3872
3873SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
3874  const ARMBaseRegisterInfo &ARI =
3875    *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
3876  MachineFunction &MF = DAG.getMachineFunction();
3877  MachineFrameInfo *MFI = MF.getFrameInfo();
3878  MFI->setFrameAddressIsTaken(true);
3879
3880  EVT VT = Op.getValueType();
3881  SDLoc dl(Op);  // FIXME probably not meaningful
3882  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3883  unsigned FrameReg = ARI.getFrameRegister(MF);
3884  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
3885  while (Depth--)
3886    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
3887                            MachinePointerInfo(),
3888                            false, false, false, 0);
3889  return FrameAddr;
3890}
3891
3892// FIXME? Maybe this could be a TableGen attribute on some registers and
3893// this table could be generated automatically from RegInfo.
3894unsigned ARMTargetLowering::getRegisterByName(const char* RegName,
3895                                              EVT VT) const {
3896  unsigned Reg = StringSwitch<unsigned>(RegName)
3897                       .Case("sp", ARM::SP)
3898                       .Default(0);
3899  if (Reg)
3900    return Reg;
3901  report_fatal_error("Invalid register name global variable");
3902}
3903
3904/// ExpandBITCAST - If the target supports VFP, this function is called to
3905/// expand a bit convert where either the source or destination type is i64 to
3906/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
3907/// operand type is illegal (e.g., v2f32 for a target that doesn't support
3908/// vectors), since the legalizer won't know what to do with that.
3909static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
3910  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3911  SDLoc dl(N);
3912  SDValue Op = N->getOperand(0);
3913
3914  // This function is only supposed to be called for i64 types, either as the
3915  // source or destination of the bit convert.
3916  EVT SrcVT = Op.getValueType();
3917  EVT DstVT = N->getValueType(0);
3918  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
3919         "ExpandBITCAST called for non-i64 type");
3920
3921  // Turn i64->f64 into VMOVDRR.
3922  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
3923    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3924                             DAG.getConstant(0, MVT::i32));
3925    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3926                             DAG.getConstant(1, MVT::i32));
3927    return DAG.getNode(ISD::BITCAST, dl, DstVT,
3928                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
3929  }
3930
3931  // Turn f64->i64 into VMOVRRD.
3932  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
3933    SDValue Cvt;
3934    if (TLI.isBigEndian() && SrcVT.isVector() &&
3935        SrcVT.getVectorNumElements() > 1)
3936      Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
3937                        DAG.getVTList(MVT::i32, MVT::i32),
3938                        DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
3939    else
3940      Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
3941                        DAG.getVTList(MVT::i32, MVT::i32), Op);
3942    // Merge the pieces into a single i64 value.
3943    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
3944  }
3945
3946  return SDValue();
3947}
3948
3949/// getZeroVector - Returns a vector of specified type with all zero elements.
3950/// Zero vectors are used to represent vector negation and in those cases
3951/// will be implemented with the NEON VNEG instruction.  However, VNEG does
3952/// not support i64 elements, so sometimes the zero vectors will need to be
3953/// explicitly constructed.  Regardless, use a canonical VMOV to create the
3954/// zero vector.
3955static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, SDLoc dl) {
3956  assert(VT.isVector() && "Expected a vector type");
3957  // The canonical modified immediate encoding of a zero vector is....0!
3958  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
3959  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
3960  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
3961  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3962}
3963
3964/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3965/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3966SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
3967                                                SelectionDAG &DAG) const {
3968  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3969  EVT VT = Op.getValueType();
3970  unsigned VTBits = VT.getSizeInBits();
3971  SDLoc dl(Op);
3972  SDValue ShOpLo = Op.getOperand(0);
3973  SDValue ShOpHi = Op.getOperand(1);
3974  SDValue ShAmt  = Op.getOperand(2);
3975  SDValue ARMcc;
3976  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3977
3978  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3979
3980  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3981                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3982  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3983  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3984                                   DAG.getConstant(VTBits, MVT::i32));
3985  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3986  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3987  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3988
3989  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3990  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3991                          ARMcc, DAG, dl);
3992  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3993  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
3994                           CCR, Cmp);
3995
3996  SDValue Ops[2] = { Lo, Hi };
3997  return DAG.getMergeValues(Ops, dl);
3998}
3999
4000/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
4001/// i32 values and take a 2 x i32 value to shift plus a shift amount.
4002SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
4003                                               SelectionDAG &DAG) const {
4004  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4005  EVT VT = Op.getValueType();
4006  unsigned VTBits = VT.getSizeInBits();
4007  SDLoc dl(Op);
4008  SDValue ShOpLo = Op.getOperand(0);
4009  SDValue ShOpHi = Op.getOperand(1);
4010  SDValue ShAmt  = Op.getOperand(2);
4011  SDValue ARMcc;
4012
4013  assert(Op.getOpcode() == ISD::SHL_PARTS);
4014  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
4015                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
4016  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
4017  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
4018                                   DAG.getConstant(VTBits, MVT::i32));
4019  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
4020  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
4021
4022  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4023  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4024  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
4025                          ARMcc, DAG, dl);
4026  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4027  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
4028                           CCR, Cmp);
4029
4030  SDValue Ops[2] = { Lo, Hi };
4031  return DAG.getMergeValues(Ops, dl);
4032}
4033
4034SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
4035                                            SelectionDAG &DAG) const {
4036  // The rounding mode is in bits 23:22 of the FPSCR.
4037  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
4038  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
4039  // so that the shift + and get folded into a bitfield extract.
4040  SDLoc dl(Op);
4041  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
4042                              DAG.getConstant(Intrinsic::arm_get_fpscr,
4043                                              MVT::i32));
4044  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
4045                                  DAG.getConstant(1U << 22, MVT::i32));
4046  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
4047                              DAG.getConstant(22, MVT::i32));
4048  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
4049                     DAG.getConstant(3, MVT::i32));
4050}
4051
4052static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
4053                         const ARMSubtarget *ST) {
4054  EVT VT = N->getValueType(0);
4055  SDLoc dl(N);
4056
4057  if (!ST->hasV6T2Ops())
4058    return SDValue();
4059
4060  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
4061  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
4062}
4063
4064/// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count
4065/// for each 16-bit element from operand, repeated.  The basic idea is to
4066/// leverage vcnt to get the 8-bit counts, gather and add the results.
4067///
4068/// Trace for v4i16:
4069/// input    = [v0    v1    v2    v3   ] (vi 16-bit element)
4070/// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element)
4071/// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi)
4072/// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6]
4073///            [b0 b1 b2 b3 b4 b5 b6 b7]
4074///           +[b1 b0 b3 b2 b5 b4 b7 b6]
4075/// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0,
4076/// vuzp:    = [k0 k1 k2 k3 k0 k1 k2 k3]  each ki is 8-bits)
4077static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) {
4078  EVT VT = N->getValueType(0);
4079  SDLoc DL(N);
4080
4081  EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
4082  SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0));
4083  SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0);
4084  SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1);
4085  SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2);
4086  return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3);
4087}
4088
4089/// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the
4090/// bit-count for each 16-bit element from the operand.  We need slightly
4091/// different sequencing for v4i16 and v8i16 to stay within NEON's available
4092/// 64/128-bit registers.
4093///
4094/// Trace for v4i16:
4095/// input           = [v0    v1    v2    v3    ] (vi 16-bit element)
4096/// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi)
4097/// v8i16:Extended  = [k0    k1    k2    k3    k0    k1    k2    k3    ]
4098/// v4i16:Extracted = [k0    k1    k2    k3    ]
4099static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) {
4100  EVT VT = N->getValueType(0);
4101  SDLoc DL(N);
4102
4103  SDValue BitCounts = getCTPOP16BitCounts(N, DAG);
4104  if (VT.is64BitVector()) {
4105    SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts);
4106    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended,
4107                       DAG.getIntPtrConstant(0));
4108  } else {
4109    SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8,
4110                                    BitCounts, DAG.getIntPtrConstant(0));
4111    return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted);
4112  }
4113}
4114
4115/// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the
4116/// bit-count for each 32-bit element from the operand.  The idea here is
4117/// to split the vector into 16-bit elements, leverage the 16-bit count
4118/// routine, and then combine the results.
4119///
4120/// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged):
4121/// input    = [v0    v1    ] (vi: 32-bit elements)
4122/// Bitcast  = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1])
4123/// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi)
4124/// vrev: N0 = [k1 k0 k3 k2 ]
4125///            [k0 k1 k2 k3 ]
4126///       N1 =+[k1 k0 k3 k2 ]
4127///            [k0 k2 k1 k3 ]
4128///       N2 =+[k1 k3 k0 k2 ]
4129///            [k0    k2    k1    k3    ]
4130/// Extended =+[k1    k3    k0    k2    ]
4131///            [k0    k2    ]
4132/// Extracted=+[k1    k3    ]
4133///
4134static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) {
4135  EVT VT = N->getValueType(0);
4136  SDLoc DL(N);
4137
4138  EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
4139
4140  SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0));
4141  SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG);
4142  SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16);
4143  SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0);
4144  SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1);
4145
4146  if (VT.is64BitVector()) {
4147    SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2);
4148    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended,
4149                       DAG.getIntPtrConstant(0));
4150  } else {
4151    SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2,
4152                                    DAG.getIntPtrConstant(0));
4153    return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted);
4154  }
4155}
4156
4157static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
4158                          const ARMSubtarget *ST) {
4159  EVT VT = N->getValueType(0);
4160
4161  assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
4162  assert((VT == MVT::v2i32 || VT == MVT::v4i32 ||
4163          VT == MVT::v4i16 || VT == MVT::v8i16) &&
4164         "Unexpected type for custom ctpop lowering");
4165
4166  if (VT.getVectorElementType() == MVT::i32)
4167    return lowerCTPOP32BitElements(N, DAG);
4168  else
4169    return lowerCTPOP16BitElements(N, DAG);
4170}
4171
4172static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
4173                          const ARMSubtarget *ST) {
4174  EVT VT = N->getValueType(0);
4175  SDLoc dl(N);
4176
4177  if (!VT.isVector())
4178    return SDValue();
4179
4180  // Lower vector shifts on NEON to use VSHL.
4181  assert(ST->hasNEON() && "unexpected vector shift");
4182
4183  // Left shifts translate directly to the vshiftu intrinsic.
4184  if (N->getOpcode() == ISD::SHL)
4185    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
4186                       DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
4187                       N->getOperand(0), N->getOperand(1));
4188
4189  assert((N->getOpcode() == ISD::SRA ||
4190          N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
4191
4192  // NEON uses the same intrinsics for both left and right shifts.  For
4193  // right shifts, the shift amounts are negative, so negate the vector of
4194  // shift amounts.
4195  EVT ShiftVT = N->getOperand(1).getValueType();
4196  SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
4197                                     getZeroVector(ShiftVT, DAG, dl),
4198                                     N->getOperand(1));
4199  Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
4200                             Intrinsic::arm_neon_vshifts :
4201                             Intrinsic::arm_neon_vshiftu);
4202  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
4203                     DAG.getConstant(vshiftInt, MVT::i32),
4204                     N->getOperand(0), NegatedCount);
4205}
4206
4207static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
4208                                const ARMSubtarget *ST) {
4209  EVT VT = N->getValueType(0);
4210  SDLoc dl(N);
4211
4212  // We can get here for a node like i32 = ISD::SHL i32, i64
4213  if (VT != MVT::i64)
4214    return SDValue();
4215
4216  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
4217         "Unknown shift to lower!");
4218
4219  // We only lower SRA, SRL of 1 here, all others use generic lowering.
4220  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
4221      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
4222    return SDValue();
4223
4224  // If we are in thumb mode, we don't have RRX.
4225  if (ST->isThumb1Only()) return SDValue();
4226
4227  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
4228  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
4229                           DAG.getConstant(0, MVT::i32));
4230  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
4231                           DAG.getConstant(1, MVT::i32));
4232
4233  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
4234  // captures the result into a carry flag.
4235  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
4236  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
4237
4238  // The low part is an ARMISD::RRX operand, which shifts the carry in.
4239  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
4240
4241  // Merge the pieces into a single i64 value.
4242 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
4243}
4244
4245static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
4246  SDValue TmpOp0, TmpOp1;
4247  bool Invert = false;
4248  bool Swap = false;
4249  unsigned Opc = 0;
4250
4251  SDValue Op0 = Op.getOperand(0);
4252  SDValue Op1 = Op.getOperand(1);
4253  SDValue CC = Op.getOperand(2);
4254  EVT VT = Op.getValueType();
4255  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4256  SDLoc dl(Op);
4257
4258  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
4259    switch (SetCCOpcode) {
4260    default: llvm_unreachable("Illegal FP comparison");
4261    case ISD::SETUNE:
4262    case ISD::SETNE:  Invert = true; // Fallthrough
4263    case ISD::SETOEQ:
4264    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
4265    case ISD::SETOLT:
4266    case ISD::SETLT: Swap = true; // Fallthrough
4267    case ISD::SETOGT:
4268    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
4269    case ISD::SETOLE:
4270    case ISD::SETLE:  Swap = true; // Fallthrough
4271    case ISD::SETOGE:
4272    case ISD::SETGE: Opc = ARMISD::VCGE; break;
4273    case ISD::SETUGE: Swap = true; // Fallthrough
4274    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
4275    case ISD::SETUGT: Swap = true; // Fallthrough
4276    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
4277    case ISD::SETUEQ: Invert = true; // Fallthrough
4278    case ISD::SETONE:
4279      // Expand this to (OLT | OGT).
4280      TmpOp0 = Op0;
4281      TmpOp1 = Op1;
4282      Opc = ISD::OR;
4283      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
4284      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
4285      break;
4286    case ISD::SETUO: Invert = true; // Fallthrough
4287    case ISD::SETO:
4288      // Expand this to (OLT | OGE).
4289      TmpOp0 = Op0;
4290      TmpOp1 = Op1;
4291      Opc = ISD::OR;
4292      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
4293      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
4294      break;
4295    }
4296  } else {
4297    // Integer comparisons.
4298    switch (SetCCOpcode) {
4299    default: llvm_unreachable("Illegal integer comparison");
4300    case ISD::SETNE:  Invert = true;
4301    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
4302    case ISD::SETLT:  Swap = true;
4303    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
4304    case ISD::SETLE:  Swap = true;
4305    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
4306    case ISD::SETULT: Swap = true;
4307    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
4308    case ISD::SETULE: Swap = true;
4309    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
4310    }
4311
4312    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
4313    if (Opc == ARMISD::VCEQ) {
4314
4315      SDValue AndOp;
4316      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
4317        AndOp = Op0;
4318      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
4319        AndOp = Op1;
4320
4321      // Ignore bitconvert.
4322      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
4323        AndOp = AndOp.getOperand(0);
4324
4325      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
4326        Opc = ARMISD::VTST;
4327        Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
4328        Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
4329        Invert = !Invert;
4330      }
4331    }
4332  }
4333
4334  if (Swap)
4335    std::swap(Op0, Op1);
4336
4337  // If one of the operands is a constant vector zero, attempt to fold the
4338  // comparison to a specialized compare-against-zero form.
4339  SDValue SingleOp;
4340  if (ISD::isBuildVectorAllZeros(Op1.getNode()))
4341    SingleOp = Op0;
4342  else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
4343    if (Opc == ARMISD::VCGE)
4344      Opc = ARMISD::VCLEZ;
4345    else if (Opc == ARMISD::VCGT)
4346      Opc = ARMISD::VCLTZ;
4347    SingleOp = Op1;
4348  }
4349
4350  SDValue Result;
4351  if (SingleOp.getNode()) {
4352    switch (Opc) {
4353    case ARMISD::VCEQ:
4354      Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
4355    case ARMISD::VCGE:
4356      Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
4357    case ARMISD::VCLEZ:
4358      Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
4359    case ARMISD::VCGT:
4360      Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
4361    case ARMISD::VCLTZ:
4362      Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
4363    default:
4364      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
4365    }
4366  } else {
4367     Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
4368  }
4369
4370  if (Invert)
4371    Result = DAG.getNOT(dl, Result, VT);
4372
4373  return Result;
4374}
4375
4376/// isNEONModifiedImm - Check if the specified splat value corresponds to a
4377/// valid vector constant for a NEON instruction with a "modified immediate"
4378/// operand (e.g., VMOV).  If so, return the encoded value.
4379static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
4380                                 unsigned SplatBitSize, SelectionDAG &DAG,
4381                                 EVT &VT, bool is128Bits, NEONModImmType type) {
4382  unsigned OpCmode, Imm;
4383
4384  // SplatBitSize is set to the smallest size that splats the vector, so a
4385  // zero vector will always have SplatBitSize == 8.  However, NEON modified
4386  // immediate instructions others than VMOV do not support the 8-bit encoding
4387  // of a zero vector, and the default encoding of zero is supposed to be the
4388  // 32-bit version.
4389  if (SplatBits == 0)
4390    SplatBitSize = 32;
4391
4392  switch (SplatBitSize) {
4393  case 8:
4394    if (type != VMOVModImm)
4395      return SDValue();
4396    // Any 1-byte value is OK.  Op=0, Cmode=1110.
4397    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
4398    OpCmode = 0xe;
4399    Imm = SplatBits;
4400    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
4401    break;
4402
4403  case 16:
4404    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
4405    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
4406    if ((SplatBits & ~0xff) == 0) {
4407      // Value = 0x00nn: Op=x, Cmode=100x.
4408      OpCmode = 0x8;
4409      Imm = SplatBits;
4410      break;
4411    }
4412    if ((SplatBits & ~0xff00) == 0) {
4413      // Value = 0xnn00: Op=x, Cmode=101x.
4414      OpCmode = 0xa;
4415      Imm = SplatBits >> 8;
4416      break;
4417    }
4418    return SDValue();
4419
4420  case 32:
4421    // NEON's 32-bit VMOV supports splat values where:
4422    // * only one byte is nonzero, or
4423    // * the least significant byte is 0xff and the second byte is nonzero, or
4424    // * the least significant 2 bytes are 0xff and the third is nonzero.
4425    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
4426    if ((SplatBits & ~0xff) == 0) {
4427      // Value = 0x000000nn: Op=x, Cmode=000x.
4428      OpCmode = 0;
4429      Imm = SplatBits;
4430      break;
4431    }
4432    if ((SplatBits & ~0xff00) == 0) {
4433      // Value = 0x0000nn00: Op=x, Cmode=001x.
4434      OpCmode = 0x2;
4435      Imm = SplatBits >> 8;
4436      break;
4437    }
4438    if ((SplatBits & ~0xff0000) == 0) {
4439      // Value = 0x00nn0000: Op=x, Cmode=010x.
4440      OpCmode = 0x4;
4441      Imm = SplatBits >> 16;
4442      break;
4443    }
4444    if ((SplatBits & ~0xff000000) == 0) {
4445      // Value = 0xnn000000: Op=x, Cmode=011x.
4446      OpCmode = 0x6;
4447      Imm = SplatBits >> 24;
4448      break;
4449    }
4450
4451    // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
4452    if (type == OtherModImm) return SDValue();
4453
4454    if ((SplatBits & ~0xffff) == 0 &&
4455        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
4456      // Value = 0x0000nnff: Op=x, Cmode=1100.
4457      OpCmode = 0xc;
4458      Imm = SplatBits >> 8;
4459      break;
4460    }
4461
4462    if ((SplatBits & ~0xffffff) == 0 &&
4463        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
4464      // Value = 0x00nnffff: Op=x, Cmode=1101.
4465      OpCmode = 0xd;
4466      Imm = SplatBits >> 16;
4467      break;
4468    }
4469
4470    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
4471    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
4472    // VMOV.I32.  A (very) minor optimization would be to replicate the value
4473    // and fall through here to test for a valid 64-bit splat.  But, then the
4474    // caller would also need to check and handle the change in size.
4475    return SDValue();
4476
4477  case 64: {
4478    if (type != VMOVModImm)
4479      return SDValue();
4480    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
4481    uint64_t BitMask = 0xff;
4482    uint64_t Val = 0;
4483    unsigned ImmMask = 1;
4484    Imm = 0;
4485    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
4486      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
4487        Val |= BitMask;
4488        Imm |= ImmMask;
4489      } else if ((SplatBits & BitMask) != 0) {
4490        return SDValue();
4491      }
4492      BitMask <<= 8;
4493      ImmMask <<= 1;
4494    }
4495    // Op=1, Cmode=1110.
4496    OpCmode = 0x1e;
4497    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
4498    break;
4499  }
4500
4501  default:
4502    llvm_unreachable("unexpected size for isNEONModifiedImm");
4503  }
4504
4505  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
4506  return DAG.getTargetConstant(EncodedVal, MVT::i32);
4507}
4508
4509SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
4510                                           const ARMSubtarget *ST) const {
4511  if (!ST->hasVFP3())
4512    return SDValue();
4513
4514  bool IsDouble = Op.getValueType() == MVT::f64;
4515  ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
4516
4517  // Try splatting with a VMOV.f32...
4518  APFloat FPVal = CFP->getValueAPF();
4519  int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
4520
4521  if (ImmVal != -1) {
4522    if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
4523      // We have code in place to select a valid ConstantFP already, no need to
4524      // do any mangling.
4525      return Op;
4526    }
4527
4528    // It's a float and we are trying to use NEON operations where
4529    // possible. Lower it to a splat followed by an extract.
4530    SDLoc DL(Op);
4531    SDValue NewVal = DAG.getTargetConstant(ImmVal, MVT::i32);
4532    SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
4533                                      NewVal);
4534    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
4535                       DAG.getConstant(0, MVT::i32));
4536  }
4537
4538  // The rest of our options are NEON only, make sure that's allowed before
4539  // proceeding..
4540  if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
4541    return SDValue();
4542
4543  EVT VMovVT;
4544  uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
4545
4546  // It wouldn't really be worth bothering for doubles except for one very
4547  // important value, which does happen to match: 0.0. So make sure we don't do
4548  // anything stupid.
4549  if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
4550    return SDValue();
4551
4552  // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
4553  SDValue NewVal = isNEONModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, VMovVT,
4554                                     false, VMOVModImm);
4555  if (NewVal != SDValue()) {
4556    SDLoc DL(Op);
4557    SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
4558                                      NewVal);
4559    if (IsDouble)
4560      return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
4561
4562    // It's a float: cast and extract a vector element.
4563    SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
4564                                       VecConstant);
4565    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
4566                       DAG.getConstant(0, MVT::i32));
4567  }
4568
4569  // Finally, try a VMVN.i32
4570  NewVal = isNEONModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, VMovVT,
4571                             false, VMVNModImm);
4572  if (NewVal != SDValue()) {
4573    SDLoc DL(Op);
4574    SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
4575
4576    if (IsDouble)
4577      return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
4578
4579    // It's a float: cast and extract a vector element.
4580    SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
4581                                       VecConstant);
4582    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
4583                       DAG.getConstant(0, MVT::i32));
4584  }
4585
4586  return SDValue();
4587}
4588
4589// check if an VEXT instruction can handle the shuffle mask when the
4590// vector sources of the shuffle are the same.
4591static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
4592  unsigned NumElts = VT.getVectorNumElements();
4593
4594  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
4595  if (M[0] < 0)
4596    return false;
4597
4598  Imm = M[0];
4599
4600  // If this is a VEXT shuffle, the immediate value is the index of the first
4601  // element.  The other shuffle indices must be the successive elements after
4602  // the first one.
4603  unsigned ExpectedElt = Imm;
4604  for (unsigned i = 1; i < NumElts; ++i) {
4605    // Increment the expected index.  If it wraps around, just follow it
4606    // back to index zero and keep going.
4607    ++ExpectedElt;
4608    if (ExpectedElt == NumElts)
4609      ExpectedElt = 0;
4610
4611    if (M[i] < 0) continue; // ignore UNDEF indices
4612    if (ExpectedElt != static_cast<unsigned>(M[i]))
4613      return false;
4614  }
4615
4616  return true;
4617}
4618
4619
4620static bool isVEXTMask(ArrayRef<int> M, EVT VT,
4621                       bool &ReverseVEXT, unsigned &Imm) {
4622  unsigned NumElts = VT.getVectorNumElements();
4623  ReverseVEXT = false;
4624
4625  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
4626  if (M[0] < 0)
4627    return false;
4628
4629  Imm = M[0];
4630
4631  // If this is a VEXT shuffle, the immediate value is the index of the first
4632  // element.  The other shuffle indices must be the successive elements after
4633  // the first one.
4634  unsigned ExpectedElt = Imm;
4635  for (unsigned i = 1; i < NumElts; ++i) {
4636    // Increment the expected index.  If it wraps around, it may still be
4637    // a VEXT but the source vectors must be swapped.
4638    ExpectedElt += 1;
4639    if (ExpectedElt == NumElts * 2) {
4640      ExpectedElt = 0;
4641      ReverseVEXT = true;
4642    }
4643
4644    if (M[i] < 0) continue; // ignore UNDEF indices
4645    if (ExpectedElt != static_cast<unsigned>(M[i]))
4646      return false;
4647  }
4648
4649  // Adjust the index value if the source operands will be swapped.
4650  if (ReverseVEXT)
4651    Imm -= NumElts;
4652
4653  return true;
4654}
4655
4656/// isVREVMask - Check if a vector shuffle corresponds to a VREV
4657/// instruction with the specified blocksize.  (The order of the elements
4658/// within each block of the vector is reversed.)
4659static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
4660  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
4661         "Only possible block sizes for VREV are: 16, 32, 64");
4662
4663  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4664  if (EltSz == 64)
4665    return false;
4666
4667  unsigned NumElts = VT.getVectorNumElements();
4668  unsigned BlockElts = M[0] + 1;
4669  // If the first shuffle index is UNDEF, be optimistic.
4670  if (M[0] < 0)
4671    BlockElts = BlockSize / EltSz;
4672
4673  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
4674    return false;
4675
4676  for (unsigned i = 0; i < NumElts; ++i) {
4677    if (M[i] < 0) continue; // ignore UNDEF indices
4678    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
4679      return false;
4680  }
4681
4682  return true;
4683}
4684
4685static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
4686  // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
4687  // range, then 0 is placed into the resulting vector. So pretty much any mask
4688  // of 8 elements can work here.
4689  return VT == MVT::v8i8 && M.size() == 8;
4690}
4691
4692static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4693  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4694  if (EltSz == 64)
4695    return false;
4696
4697  unsigned NumElts = VT.getVectorNumElements();
4698  WhichResult = (M[0] == 0 ? 0 : 1);
4699  for (unsigned i = 0; i < NumElts; i += 2) {
4700    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
4701        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
4702      return false;
4703  }
4704  return true;
4705}
4706
4707/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
4708/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4709/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
4710static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4711  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4712  if (EltSz == 64)
4713    return false;
4714
4715  unsigned NumElts = VT.getVectorNumElements();
4716  WhichResult = (M[0] == 0 ? 0 : 1);
4717  for (unsigned i = 0; i < NumElts; i += 2) {
4718    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
4719        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
4720      return false;
4721  }
4722  return true;
4723}
4724
4725static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4726  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4727  if (EltSz == 64)
4728    return false;
4729
4730  unsigned NumElts = VT.getVectorNumElements();
4731  WhichResult = (M[0] == 0 ? 0 : 1);
4732  for (unsigned i = 0; i != NumElts; ++i) {
4733    if (M[i] < 0) continue; // ignore UNDEF indices
4734    if ((unsigned) M[i] != 2 * i + WhichResult)
4735      return false;
4736  }
4737
4738  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4739  if (VT.is64BitVector() && EltSz == 32)
4740    return false;
4741
4742  return true;
4743}
4744
4745/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
4746/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4747/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
4748static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4749  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4750  if (EltSz == 64)
4751    return false;
4752
4753  unsigned Half = VT.getVectorNumElements() / 2;
4754  WhichResult = (M[0] == 0 ? 0 : 1);
4755  for (unsigned j = 0; j != 2; ++j) {
4756    unsigned Idx = WhichResult;
4757    for (unsigned i = 0; i != Half; ++i) {
4758      int MIdx = M[i + j * Half];
4759      if (MIdx >= 0 && (unsigned) MIdx != Idx)
4760        return false;
4761      Idx += 2;
4762    }
4763  }
4764
4765  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4766  if (VT.is64BitVector() && EltSz == 32)
4767    return false;
4768
4769  return true;
4770}
4771
4772static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4773  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4774  if (EltSz == 64)
4775    return false;
4776
4777  unsigned NumElts = VT.getVectorNumElements();
4778  WhichResult = (M[0] == 0 ? 0 : 1);
4779  unsigned Idx = WhichResult * NumElts / 2;
4780  for (unsigned i = 0; i != NumElts; i += 2) {
4781    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
4782        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
4783      return false;
4784    Idx += 1;
4785  }
4786
4787  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4788  if (VT.is64BitVector() && EltSz == 32)
4789    return false;
4790
4791  return true;
4792}
4793
4794/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
4795/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4796/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
4797static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4798  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4799  if (EltSz == 64)
4800    return false;
4801
4802  unsigned NumElts = VT.getVectorNumElements();
4803  WhichResult = (M[0] == 0 ? 0 : 1);
4804  unsigned Idx = WhichResult * NumElts / 2;
4805  for (unsigned i = 0; i != NumElts; i += 2) {
4806    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
4807        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
4808      return false;
4809    Idx += 1;
4810  }
4811
4812  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4813  if (VT.is64BitVector() && EltSz == 32)
4814    return false;
4815
4816  return true;
4817}
4818
4819/// \return true if this is a reverse operation on an vector.
4820static bool isReverseMask(ArrayRef<int> M, EVT VT) {
4821  unsigned NumElts = VT.getVectorNumElements();
4822  // Make sure the mask has the right size.
4823  if (NumElts != M.size())
4824      return false;
4825
4826  // Look for <15, ..., 3, -1, 1, 0>.
4827  for (unsigned i = 0; i != NumElts; ++i)
4828    if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
4829      return false;
4830
4831  return true;
4832}
4833
4834// If N is an integer constant that can be moved into a register in one
4835// instruction, return an SDValue of such a constant (will become a MOV
4836// instruction).  Otherwise return null.
4837static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
4838                                     const ARMSubtarget *ST, SDLoc dl) {
4839  uint64_t Val;
4840  if (!isa<ConstantSDNode>(N))
4841    return SDValue();
4842  Val = cast<ConstantSDNode>(N)->getZExtValue();
4843
4844  if (ST->isThumb1Only()) {
4845    if (Val <= 255 || ~Val <= 255)
4846      return DAG.getConstant(Val, MVT::i32);
4847  } else {
4848    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
4849      return DAG.getConstant(Val, MVT::i32);
4850  }
4851  return SDValue();
4852}
4853
4854// If this is a case we can't handle, return null and let the default
4855// expansion code take care of it.
4856SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
4857                                             const ARMSubtarget *ST) const {
4858  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
4859  SDLoc dl(Op);
4860  EVT VT = Op.getValueType();
4861
4862  APInt SplatBits, SplatUndef;
4863  unsigned SplatBitSize;
4864  bool HasAnyUndefs;
4865  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
4866    if (SplatBitSize <= 64) {
4867      // Check if an immediate VMOV works.
4868      EVT VmovVT;
4869      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
4870                                      SplatUndef.getZExtValue(), SplatBitSize,
4871                                      DAG, VmovVT, VT.is128BitVector(),
4872                                      VMOVModImm);
4873      if (Val.getNode()) {
4874        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
4875        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4876      }
4877
4878      // Try an immediate VMVN.
4879      uint64_t NegatedImm = (~SplatBits).getZExtValue();
4880      Val = isNEONModifiedImm(NegatedImm,
4881                                      SplatUndef.getZExtValue(), SplatBitSize,
4882                                      DAG, VmovVT, VT.is128BitVector(),
4883                                      VMVNModImm);
4884      if (Val.getNode()) {
4885        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
4886        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4887      }
4888
4889      // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
4890      if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
4891        int ImmVal = ARM_AM::getFP32Imm(SplatBits);
4892        if (ImmVal != -1) {
4893          SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
4894          return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
4895        }
4896      }
4897    }
4898  }
4899
4900  // Scan through the operands to see if only one value is used.
4901  //
4902  // As an optimisation, even if more than one value is used it may be more
4903  // profitable to splat with one value then change some lanes.
4904  //
4905  // Heuristically we decide to do this if the vector has a "dominant" value,
4906  // defined as splatted to more than half of the lanes.
4907  unsigned NumElts = VT.getVectorNumElements();
4908  bool isOnlyLowElement = true;
4909  bool usesOnlyOneValue = true;
4910  bool hasDominantValue = false;
4911  bool isConstant = true;
4912
4913  // Map of the number of times a particular SDValue appears in the
4914  // element list.
4915  DenseMap<SDValue, unsigned> ValueCounts;
4916  SDValue Value;
4917  for (unsigned i = 0; i < NumElts; ++i) {
4918    SDValue V = Op.getOperand(i);
4919    if (V.getOpcode() == ISD::UNDEF)
4920      continue;
4921    if (i > 0)
4922      isOnlyLowElement = false;
4923    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
4924      isConstant = false;
4925
4926    ValueCounts.insert(std::make_pair(V, 0));
4927    unsigned &Count = ValueCounts[V];
4928
4929    // Is this value dominant? (takes up more than half of the lanes)
4930    if (++Count > (NumElts / 2)) {
4931      hasDominantValue = true;
4932      Value = V;
4933    }
4934  }
4935  if (ValueCounts.size() != 1)
4936    usesOnlyOneValue = false;
4937  if (!Value.getNode() && ValueCounts.size() > 0)
4938    Value = ValueCounts.begin()->first;
4939
4940  if (ValueCounts.size() == 0)
4941    return DAG.getUNDEF(VT);
4942
4943  // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
4944  // Keep going if we are hitting this case.
4945  if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
4946    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
4947
4948  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4949
4950  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
4951  // i32 and try again.
4952  if (hasDominantValue && EltSize <= 32) {
4953    if (!isConstant) {
4954      SDValue N;
4955
4956      // If we are VDUPing a value that comes directly from a vector, that will
4957      // cause an unnecessary move to and from a GPR, where instead we could
4958      // just use VDUPLANE. We can only do this if the lane being extracted
4959      // is at a constant index, as the VDUP from lane instructions only have
4960      // constant-index forms.
4961      if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4962          isa<ConstantSDNode>(Value->getOperand(1))) {
4963        // We need to create a new undef vector to use for the VDUPLANE if the
4964        // size of the vector from which we get the value is different than the
4965        // size of the vector that we need to create. We will insert the element
4966        // such that the register coalescer will remove unnecessary copies.
4967        if (VT != Value->getOperand(0).getValueType()) {
4968          ConstantSDNode *constIndex;
4969          constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1));
4970          assert(constIndex && "The index is not a constant!");
4971          unsigned index = constIndex->getAPIntValue().getLimitedValue() %
4972                             VT.getVectorNumElements();
4973          N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4974                 DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
4975                        Value, DAG.getConstant(index, MVT::i32)),
4976                           DAG.getConstant(index, MVT::i32));
4977        } else
4978          N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4979                        Value->getOperand(0), Value->getOperand(1));
4980      } else
4981        N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
4982
4983      if (!usesOnlyOneValue) {
4984        // The dominant value was splatted as 'N', but we now have to insert
4985        // all differing elements.
4986        for (unsigned I = 0; I < NumElts; ++I) {
4987          if (Op.getOperand(I) == Value)
4988            continue;
4989          SmallVector<SDValue, 3> Ops;
4990          Ops.push_back(N);
4991          Ops.push_back(Op.getOperand(I));
4992          Ops.push_back(DAG.getConstant(I, MVT::i32));
4993          N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
4994        }
4995      }
4996      return N;
4997    }
4998    if (VT.getVectorElementType().isFloatingPoint()) {
4999      SmallVector<SDValue, 8> Ops;
5000      for (unsigned i = 0; i < NumElts; ++i)
5001        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
5002                                  Op.getOperand(i)));
5003      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
5004      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
5005      Val = LowerBUILD_VECTOR(Val, DAG, ST);
5006      if (Val.getNode())
5007        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5008    }
5009    if (usesOnlyOneValue) {
5010      SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
5011      if (isConstant && Val.getNode())
5012        return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
5013    }
5014  }
5015
5016  // If all elements are constants and the case above didn't get hit, fall back
5017  // to the default expansion, which will generate a load from the constant
5018  // pool.
5019  if (isConstant)
5020    return SDValue();
5021
5022  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
5023  if (NumElts >= 4) {
5024    SDValue shuffle = ReconstructShuffle(Op, DAG);
5025    if (shuffle != SDValue())
5026      return shuffle;
5027  }
5028
5029  // Vectors with 32- or 64-bit elements can be built by directly assigning
5030  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
5031  // will be legalized.
5032  if (EltSize >= 32) {
5033    // Do the expansion with floating-point types, since that is what the VFP
5034    // registers are defined to use, and since i64 is not legal.
5035    EVT EltVT = EVT::getFloatingPointVT(EltSize);
5036    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
5037    SmallVector<SDValue, 8> Ops;
5038    for (unsigned i = 0; i < NumElts; ++i)
5039      Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
5040    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
5041    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5042  }
5043
5044  // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
5045  // know the default expansion would otherwise fall back on something even
5046  // worse. For a vector with one or two non-undef values, that's
5047  // scalar_to_vector for the elements followed by a shuffle (provided the
5048  // shuffle is valid for the target) and materialization element by element
5049  // on the stack followed by a load for everything else.
5050  if (!isConstant && !usesOnlyOneValue) {
5051    SDValue Vec = DAG.getUNDEF(VT);
5052    for (unsigned i = 0 ; i < NumElts; ++i) {
5053      SDValue V = Op.getOperand(i);
5054      if (V.getOpcode() == ISD::UNDEF)
5055        continue;
5056      SDValue LaneIdx = DAG.getConstant(i, MVT::i32);
5057      Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
5058    }
5059    return Vec;
5060  }
5061
5062  return SDValue();
5063}
5064
5065// Gather data to see if the operation can be modelled as a
5066// shuffle in combination with VEXTs.
5067SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
5068                                              SelectionDAG &DAG) const {
5069  SDLoc dl(Op);
5070  EVT VT = Op.getValueType();
5071  unsigned NumElts = VT.getVectorNumElements();
5072
5073  SmallVector<SDValue, 2> SourceVecs;
5074  SmallVector<unsigned, 2> MinElts;
5075  SmallVector<unsigned, 2> MaxElts;
5076
5077  for (unsigned i = 0; i < NumElts; ++i) {
5078    SDValue V = Op.getOperand(i);
5079    if (V.getOpcode() == ISD::UNDEF)
5080      continue;
5081    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
5082      // A shuffle can only come from building a vector from various
5083      // elements of other vectors.
5084      return SDValue();
5085    } else if (V.getOperand(0).getValueType().getVectorElementType() !=
5086               VT.getVectorElementType()) {
5087      // This code doesn't know how to handle shuffles where the vector
5088      // element types do not match (this happens because type legalization
5089      // promotes the return type of EXTRACT_VECTOR_ELT).
5090      // FIXME: It might be appropriate to extend this code to handle
5091      // mismatched types.
5092      return SDValue();
5093    }
5094
5095    // Record this extraction against the appropriate vector if possible...
5096    SDValue SourceVec = V.getOperand(0);
5097    // If the element number isn't a constant, we can't effectively
5098    // analyze what's going on.
5099    if (!isa<ConstantSDNode>(V.getOperand(1)))
5100      return SDValue();
5101    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
5102    bool FoundSource = false;
5103    for (unsigned j = 0; j < SourceVecs.size(); ++j) {
5104      if (SourceVecs[j] == SourceVec) {
5105        if (MinElts[j] > EltNo)
5106          MinElts[j] = EltNo;
5107        if (MaxElts[j] < EltNo)
5108          MaxElts[j] = EltNo;
5109        FoundSource = true;
5110        break;
5111      }
5112    }
5113
5114    // Or record a new source if not...
5115    if (!FoundSource) {
5116      SourceVecs.push_back(SourceVec);
5117      MinElts.push_back(EltNo);
5118      MaxElts.push_back(EltNo);
5119    }
5120  }
5121
5122  // Currently only do something sane when at most two source vectors
5123  // involved.
5124  if (SourceVecs.size() > 2)
5125    return SDValue();
5126
5127  SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
5128  int VEXTOffsets[2] = {0, 0};
5129
5130  // This loop extracts the usage patterns of the source vectors
5131  // and prepares appropriate SDValues for a shuffle if possible.
5132  for (unsigned i = 0; i < SourceVecs.size(); ++i) {
5133    if (SourceVecs[i].getValueType() == VT) {
5134      // No VEXT necessary
5135      ShuffleSrcs[i] = SourceVecs[i];
5136      VEXTOffsets[i] = 0;
5137      continue;
5138    } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
5139      // It probably isn't worth padding out a smaller vector just to
5140      // break it down again in a shuffle.
5141      return SDValue();
5142    }
5143
5144    // Since only 64-bit and 128-bit vectors are legal on ARM and
5145    // we've eliminated the other cases...
5146    assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
5147           "unexpected vector sizes in ReconstructShuffle");
5148
5149    if (MaxElts[i] - MinElts[i] >= NumElts) {
5150      // Span too large for a VEXT to cope
5151      return SDValue();
5152    }
5153
5154    if (MinElts[i] >= NumElts) {
5155      // The extraction can just take the second half
5156      VEXTOffsets[i] = NumElts;
5157      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
5158                                   SourceVecs[i],
5159                                   DAG.getIntPtrConstant(NumElts));
5160    } else if (MaxElts[i] < NumElts) {
5161      // The extraction can just take the first half
5162      VEXTOffsets[i] = 0;
5163      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
5164                                   SourceVecs[i],
5165                                   DAG.getIntPtrConstant(0));
5166    } else {
5167      // An actual VEXT is needed
5168      VEXTOffsets[i] = MinElts[i];
5169      SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
5170                                     SourceVecs[i],
5171                                     DAG.getIntPtrConstant(0));
5172      SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
5173                                     SourceVecs[i],
5174                                     DAG.getIntPtrConstant(NumElts));
5175      ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
5176                                   DAG.getConstant(VEXTOffsets[i], MVT::i32));
5177    }
5178  }
5179
5180  SmallVector<int, 8> Mask;
5181
5182  for (unsigned i = 0; i < NumElts; ++i) {
5183    SDValue Entry = Op.getOperand(i);
5184    if (Entry.getOpcode() == ISD::UNDEF) {
5185      Mask.push_back(-1);
5186      continue;
5187    }
5188
5189    SDValue ExtractVec = Entry.getOperand(0);
5190    int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
5191                                          .getOperand(1))->getSExtValue();
5192    if (ExtractVec == SourceVecs[0]) {
5193      Mask.push_back(ExtractElt - VEXTOffsets[0]);
5194    } else {
5195      Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
5196    }
5197  }
5198
5199  // Final check before we try to produce nonsense...
5200  if (isShuffleMaskLegal(Mask, VT))
5201    return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
5202                                &Mask[0]);
5203
5204  return SDValue();
5205}
5206
5207/// isShuffleMaskLegal - Targets can use this to indicate that they only
5208/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
5209/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
5210/// are assumed to be legal.
5211bool
5212ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
5213                                      EVT VT) const {
5214  if (VT.getVectorNumElements() == 4 &&
5215      (VT.is128BitVector() || VT.is64BitVector())) {
5216    unsigned PFIndexes[4];
5217    for (unsigned i = 0; i != 4; ++i) {
5218      if (M[i] < 0)
5219        PFIndexes[i] = 8;
5220      else
5221        PFIndexes[i] = M[i];
5222    }
5223
5224    // Compute the index in the perfect shuffle table.
5225    unsigned PFTableIndex =
5226      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
5227    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5228    unsigned Cost = (PFEntry >> 30);
5229
5230    if (Cost <= 4)
5231      return true;
5232  }
5233
5234  bool ReverseVEXT;
5235  unsigned Imm, WhichResult;
5236
5237  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
5238  return (EltSize >= 32 ||
5239          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
5240          isVREVMask(M, VT, 64) ||
5241          isVREVMask(M, VT, 32) ||
5242          isVREVMask(M, VT, 16) ||
5243          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
5244          isVTBLMask(M, VT) ||
5245          isVTRNMask(M, VT, WhichResult) ||
5246          isVUZPMask(M, VT, WhichResult) ||
5247          isVZIPMask(M, VT, WhichResult) ||
5248          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
5249          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
5250          isVZIP_v_undef_Mask(M, VT, WhichResult) ||
5251          ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT)));
5252}
5253
5254/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
5255/// the specified operations to build the shuffle.
5256static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
5257                                      SDValue RHS, SelectionDAG &DAG,
5258                                      SDLoc dl) {
5259  unsigned OpNum = (PFEntry >> 26) & 0x0F;
5260  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
5261  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
5262
5263  enum {
5264    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
5265    OP_VREV,
5266    OP_VDUP0,
5267    OP_VDUP1,
5268    OP_VDUP2,
5269    OP_VDUP3,
5270    OP_VEXT1,
5271    OP_VEXT2,
5272    OP_VEXT3,
5273    OP_VUZPL, // VUZP, left result
5274    OP_VUZPR, // VUZP, right result
5275    OP_VZIPL, // VZIP, left result
5276    OP_VZIPR, // VZIP, right result
5277    OP_VTRNL, // VTRN, left result
5278    OP_VTRNR  // VTRN, right result
5279  };
5280
5281  if (OpNum == OP_COPY) {
5282    if (LHSID == (1*9+2)*9+3) return LHS;
5283    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
5284    return RHS;
5285  }
5286
5287  SDValue OpLHS, OpRHS;
5288  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5289  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5290  EVT VT = OpLHS.getValueType();
5291
5292  switch (OpNum) {
5293  default: llvm_unreachable("Unknown shuffle opcode!");
5294  case OP_VREV:
5295    // VREV divides the vector in half and swaps within the half.
5296    if (VT.getVectorElementType() == MVT::i32 ||
5297        VT.getVectorElementType() == MVT::f32)
5298      return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
5299    // vrev <4 x i16> -> VREV32
5300    if (VT.getVectorElementType() == MVT::i16)
5301      return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
5302    // vrev <4 x i8> -> VREV16
5303    assert(VT.getVectorElementType() == MVT::i8);
5304    return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
5305  case OP_VDUP0:
5306  case OP_VDUP1:
5307  case OP_VDUP2:
5308  case OP_VDUP3:
5309    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
5310                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
5311  case OP_VEXT1:
5312  case OP_VEXT2:
5313  case OP_VEXT3:
5314    return DAG.getNode(ARMISD::VEXT, dl, VT,
5315                       OpLHS, OpRHS,
5316                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
5317  case OP_VUZPL:
5318  case OP_VUZPR:
5319    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
5320                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
5321  case OP_VZIPL:
5322  case OP_VZIPR:
5323    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
5324                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
5325  case OP_VTRNL:
5326  case OP_VTRNR:
5327    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
5328                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
5329  }
5330}
5331
5332static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
5333                                       ArrayRef<int> ShuffleMask,
5334                                       SelectionDAG &DAG) {
5335  // Check to see if we can use the VTBL instruction.
5336  SDValue V1 = Op.getOperand(0);
5337  SDValue V2 = Op.getOperand(1);
5338  SDLoc DL(Op);
5339
5340  SmallVector<SDValue, 8> VTBLMask;
5341  for (ArrayRef<int>::iterator
5342         I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
5343    VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
5344
5345  if (V2.getNode()->getOpcode() == ISD::UNDEF)
5346    return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
5347                       DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8, VTBLMask));
5348
5349  return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
5350                     DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8, VTBLMask));
5351}
5352
5353static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
5354                                                      SelectionDAG &DAG) {
5355  SDLoc DL(Op);
5356  SDValue OpLHS = Op.getOperand(0);
5357  EVT VT = OpLHS.getValueType();
5358
5359  assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
5360         "Expect an v8i16/v16i8 type");
5361  OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
5362  // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
5363  // extract the first 8 bytes into the top double word and the last 8 bytes
5364  // into the bottom double word. The v8i16 case is similar.
5365  unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
5366  return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
5367                     DAG.getConstant(ExtractNum, MVT::i32));
5368}
5369
5370static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
5371  SDValue V1 = Op.getOperand(0);
5372  SDValue V2 = Op.getOperand(1);
5373  SDLoc dl(Op);
5374  EVT VT = Op.getValueType();
5375  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
5376
5377  // Convert shuffles that are directly supported on NEON to target-specific
5378  // DAG nodes, instead of keeping them as shuffles and matching them again
5379  // during code selection.  This is more efficient and avoids the possibility
5380  // of inconsistencies between legalization and selection.
5381  // FIXME: floating-point vectors should be canonicalized to integer vectors
5382  // of the same time so that they get CSEd properly.
5383  ArrayRef<int> ShuffleMask = SVN->getMask();
5384
5385  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
5386  if (EltSize <= 32) {
5387    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
5388      int Lane = SVN->getSplatIndex();
5389      // If this is undef splat, generate it via "just" vdup, if possible.
5390      if (Lane == -1) Lane = 0;
5391
5392      // Test if V1 is a SCALAR_TO_VECTOR.
5393      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5394        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
5395      }
5396      // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
5397      // (and probably will turn into a SCALAR_TO_VECTOR once legalization
5398      // reaches it).
5399      if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
5400          !isa<ConstantSDNode>(V1.getOperand(0))) {
5401        bool IsScalarToVector = true;
5402        for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
5403          if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
5404            IsScalarToVector = false;
5405            break;
5406          }
5407        if (IsScalarToVector)
5408          return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
5409      }
5410      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
5411                         DAG.getConstant(Lane, MVT::i32));
5412    }
5413
5414    bool ReverseVEXT;
5415    unsigned Imm;
5416    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
5417      if (ReverseVEXT)
5418        std::swap(V1, V2);
5419      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
5420                         DAG.getConstant(Imm, MVT::i32));
5421    }
5422
5423    if (isVREVMask(ShuffleMask, VT, 64))
5424      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
5425    if (isVREVMask(ShuffleMask, VT, 32))
5426      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
5427    if (isVREVMask(ShuffleMask, VT, 16))
5428      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
5429
5430    if (V2->getOpcode() == ISD::UNDEF &&
5431        isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
5432      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
5433                         DAG.getConstant(Imm, MVT::i32));
5434    }
5435
5436    // Check for Neon shuffles that modify both input vectors in place.
5437    // If both results are used, i.e., if there are two shuffles with the same
5438    // source operands and with masks corresponding to both results of one of
5439    // these operations, DAG memoization will ensure that a single node is
5440    // used for both shuffles.
5441    unsigned WhichResult;
5442    if (isVTRNMask(ShuffleMask, VT, WhichResult))
5443      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
5444                         V1, V2).getValue(WhichResult);
5445    if (isVUZPMask(ShuffleMask, VT, WhichResult))
5446      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
5447                         V1, V2).getValue(WhichResult);
5448    if (isVZIPMask(ShuffleMask, VT, WhichResult))
5449      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
5450                         V1, V2).getValue(WhichResult);
5451
5452    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
5453      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
5454                         V1, V1).getValue(WhichResult);
5455    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
5456      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
5457                         V1, V1).getValue(WhichResult);
5458    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
5459      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
5460                         V1, V1).getValue(WhichResult);
5461  }
5462
5463  // If the shuffle is not directly supported and it has 4 elements, use
5464  // the PerfectShuffle-generated table to synthesize it from other shuffles.
5465  unsigned NumElts = VT.getVectorNumElements();
5466  if (NumElts == 4) {
5467    unsigned PFIndexes[4];
5468    for (unsigned i = 0; i != 4; ++i) {
5469      if (ShuffleMask[i] < 0)
5470        PFIndexes[i] = 8;
5471      else
5472        PFIndexes[i] = ShuffleMask[i];
5473    }
5474
5475    // Compute the index in the perfect shuffle table.
5476    unsigned PFTableIndex =
5477      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
5478    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5479    unsigned Cost = (PFEntry >> 30);
5480
5481    if (Cost <= 4)
5482      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5483  }
5484
5485  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
5486  if (EltSize >= 32) {
5487    // Do the expansion with floating-point types, since that is what the VFP
5488    // registers are defined to use, and since i64 is not legal.
5489    EVT EltVT = EVT::getFloatingPointVT(EltSize);
5490    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
5491    V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
5492    V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
5493    SmallVector<SDValue, 8> Ops;
5494    for (unsigned i = 0; i < NumElts; ++i) {
5495      if (ShuffleMask[i] < 0)
5496        Ops.push_back(DAG.getUNDEF(EltVT));
5497      else
5498        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
5499                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
5500                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
5501                                                  MVT::i32)));
5502    }
5503    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
5504    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5505  }
5506
5507  if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
5508    return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
5509
5510  if (VT == MVT::v8i8) {
5511    SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
5512    if (NewOp.getNode())
5513      return NewOp;
5514  }
5515
5516  return SDValue();
5517}
5518
5519static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
5520  // INSERT_VECTOR_ELT is legal only for immediate indexes.
5521  SDValue Lane = Op.getOperand(2);
5522  if (!isa<ConstantSDNode>(Lane))
5523    return SDValue();
5524
5525  return Op;
5526}
5527
5528static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
5529  // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
5530  SDValue Lane = Op.getOperand(1);
5531  if (!isa<ConstantSDNode>(Lane))
5532    return SDValue();
5533
5534  SDValue Vec = Op.getOperand(0);
5535  if (Op.getValueType() == MVT::i32 &&
5536      Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
5537    SDLoc dl(Op);
5538    return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
5539  }
5540
5541  return Op;
5542}
5543
5544static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5545  // The only time a CONCAT_VECTORS operation can have legal types is when
5546  // two 64-bit vectors are concatenated to a 128-bit vector.
5547  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
5548         "unexpected CONCAT_VECTORS");
5549  SDLoc dl(Op);
5550  SDValue Val = DAG.getUNDEF(MVT::v2f64);
5551  SDValue Op0 = Op.getOperand(0);
5552  SDValue Op1 = Op.getOperand(1);
5553  if (Op0.getOpcode() != ISD::UNDEF)
5554    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
5555                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
5556                      DAG.getIntPtrConstant(0));
5557  if (Op1.getOpcode() != ISD::UNDEF)
5558    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
5559                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
5560                      DAG.getIntPtrConstant(1));
5561  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
5562}
5563
5564/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
5565/// element has been zero/sign-extended, depending on the isSigned parameter,
5566/// from an integer type half its size.
5567static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
5568                                   bool isSigned) {
5569  // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
5570  EVT VT = N->getValueType(0);
5571  if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
5572    SDNode *BVN = N->getOperand(0).getNode();
5573    if (BVN->getValueType(0) != MVT::v4i32 ||
5574        BVN->getOpcode() != ISD::BUILD_VECTOR)
5575      return false;
5576    unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
5577    unsigned HiElt = 1 - LoElt;
5578    ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
5579    ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
5580    ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
5581    ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
5582    if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
5583      return false;
5584    if (isSigned) {
5585      if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
5586          Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
5587        return true;
5588    } else {
5589      if (Hi0->isNullValue() && Hi1->isNullValue())
5590        return true;
5591    }
5592    return false;
5593  }
5594
5595  if (N->getOpcode() != ISD::BUILD_VECTOR)
5596    return false;
5597
5598  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5599    SDNode *Elt = N->getOperand(i).getNode();
5600    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
5601      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
5602      unsigned HalfSize = EltSize / 2;
5603      if (isSigned) {
5604        if (!isIntN(HalfSize, C->getSExtValue()))
5605          return false;
5606      } else {
5607        if (!isUIntN(HalfSize, C->getZExtValue()))
5608          return false;
5609      }
5610      continue;
5611    }
5612    return false;
5613  }
5614
5615  return true;
5616}
5617
5618/// isSignExtended - Check if a node is a vector value that is sign-extended
5619/// or a constant BUILD_VECTOR with sign-extended elements.
5620static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
5621  if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
5622    return true;
5623  if (isExtendedBUILD_VECTOR(N, DAG, true))
5624    return true;
5625  return false;
5626}
5627
5628/// isZeroExtended - Check if a node is a vector value that is zero-extended
5629/// or a constant BUILD_VECTOR with zero-extended elements.
5630static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
5631  if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
5632    return true;
5633  if (isExtendedBUILD_VECTOR(N, DAG, false))
5634    return true;
5635  return false;
5636}
5637
5638static EVT getExtensionTo64Bits(const EVT &OrigVT) {
5639  if (OrigVT.getSizeInBits() >= 64)
5640    return OrigVT;
5641
5642  assert(OrigVT.isSimple() && "Expecting a simple value type");
5643
5644  MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
5645  switch (OrigSimpleTy) {
5646  default: llvm_unreachable("Unexpected Vector Type");
5647  case MVT::v2i8:
5648  case MVT::v2i16:
5649     return MVT::v2i32;
5650  case MVT::v4i8:
5651    return  MVT::v4i16;
5652  }
5653}
5654
5655/// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
5656/// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
5657/// We insert the required extension here to get the vector to fill a D register.
5658static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
5659                                            const EVT &OrigTy,
5660                                            const EVT &ExtTy,
5661                                            unsigned ExtOpcode) {
5662  // The vector originally had a size of OrigTy. It was then extended to ExtTy.
5663  // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
5664  // 64-bits we need to insert a new extension so that it will be 64-bits.
5665  assert(ExtTy.is128BitVector() && "Unexpected extension size");
5666  if (OrigTy.getSizeInBits() >= 64)
5667    return N;
5668
5669  // Must extend size to at least 64 bits to be used as an operand for VMULL.
5670  EVT NewVT = getExtensionTo64Bits(OrigTy);
5671
5672  return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
5673}
5674
5675/// SkipLoadExtensionForVMULL - return a load of the original vector size that
5676/// does not do any sign/zero extension. If the original vector is less
5677/// than 64 bits, an appropriate extension will be added after the load to
5678/// reach a total size of 64 bits. We have to add the extension separately
5679/// because ARM does not have a sign/zero extending load for vectors.
5680static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
5681  EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
5682
5683  // The load already has the right type.
5684  if (ExtendedTy == LD->getMemoryVT())
5685    return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
5686                LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
5687                LD->isNonTemporal(), LD->isInvariant(),
5688                LD->getAlignment());
5689
5690  // We need to create a zextload/sextload. We cannot just create a load
5691  // followed by a zext/zext node because LowerMUL is also run during normal
5692  // operation legalization where we can't create illegal types.
5693  return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
5694                        LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
5695                        LD->getMemoryVT(), LD->isVolatile(),
5696                        LD->isNonTemporal(), LD->getAlignment());
5697}
5698
5699/// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
5700/// extending load, or BUILD_VECTOR with extended elements, return the
5701/// unextended value. The unextended vector should be 64 bits so that it can
5702/// be used as an operand to a VMULL instruction. If the original vector size
5703/// before extension is less than 64 bits we add a an extension to resize
5704/// the vector to 64 bits.
5705static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
5706  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
5707    return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
5708                                        N->getOperand(0)->getValueType(0),
5709                                        N->getValueType(0),
5710                                        N->getOpcode());
5711
5712  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
5713    return SkipLoadExtensionForVMULL(LD, DAG);
5714
5715  // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
5716  // have been legalized as a BITCAST from v4i32.
5717  if (N->getOpcode() == ISD::BITCAST) {
5718    SDNode *BVN = N->getOperand(0).getNode();
5719    assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
5720           BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
5721    unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
5722    return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), MVT::v2i32,
5723                       BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
5724  }
5725  // Construct a new BUILD_VECTOR with elements truncated to half the size.
5726  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
5727  EVT VT = N->getValueType(0);
5728  unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
5729  unsigned NumElts = VT.getVectorNumElements();
5730  MVT TruncVT = MVT::getIntegerVT(EltSize);
5731  SmallVector<SDValue, 8> Ops;
5732  for (unsigned i = 0; i != NumElts; ++i) {
5733    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
5734    const APInt &CInt = C->getAPIntValue();
5735    // Element types smaller than 32 bits are not legal, so use i32 elements.
5736    // The values are implicitly truncated so sext vs. zext doesn't matter.
5737    Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32));
5738  }
5739  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
5740                     MVT::getVectorVT(TruncVT, NumElts), Ops);
5741}
5742
5743static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
5744  unsigned Opcode = N->getOpcode();
5745  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
5746    SDNode *N0 = N->getOperand(0).getNode();
5747    SDNode *N1 = N->getOperand(1).getNode();
5748    return N0->hasOneUse() && N1->hasOneUse() &&
5749      isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
5750  }
5751  return false;
5752}
5753
5754static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
5755  unsigned Opcode = N->getOpcode();
5756  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
5757    SDNode *N0 = N->getOperand(0).getNode();
5758    SDNode *N1 = N->getOperand(1).getNode();
5759    return N0->hasOneUse() && N1->hasOneUse() &&
5760      isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
5761  }
5762  return false;
5763}
5764
5765static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
5766  // Multiplications are only custom-lowered for 128-bit vectors so that
5767  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
5768  EVT VT = Op.getValueType();
5769  assert(VT.is128BitVector() && VT.isInteger() &&
5770         "unexpected type for custom-lowering ISD::MUL");
5771  SDNode *N0 = Op.getOperand(0).getNode();
5772  SDNode *N1 = Op.getOperand(1).getNode();
5773  unsigned NewOpc = 0;
5774  bool isMLA = false;
5775  bool isN0SExt = isSignExtended(N0, DAG);
5776  bool isN1SExt = isSignExtended(N1, DAG);
5777  if (isN0SExt && isN1SExt)
5778    NewOpc = ARMISD::VMULLs;
5779  else {
5780    bool isN0ZExt = isZeroExtended(N0, DAG);
5781    bool isN1ZExt = isZeroExtended(N1, DAG);
5782    if (isN0ZExt && isN1ZExt)
5783      NewOpc = ARMISD::VMULLu;
5784    else if (isN1SExt || isN1ZExt) {
5785      // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
5786      // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
5787      if (isN1SExt && isAddSubSExt(N0, DAG)) {
5788        NewOpc = ARMISD::VMULLs;
5789        isMLA = true;
5790      } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
5791        NewOpc = ARMISD::VMULLu;
5792        isMLA = true;
5793      } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
5794        std::swap(N0, N1);
5795        NewOpc = ARMISD::VMULLu;
5796        isMLA = true;
5797      }
5798    }
5799
5800    if (!NewOpc) {
5801      if (VT == MVT::v2i64)
5802        // Fall through to expand this.  It is not legal.
5803        return SDValue();
5804      else
5805        // Other vector multiplications are legal.
5806        return Op;
5807    }
5808  }
5809
5810  // Legalize to a VMULL instruction.
5811  SDLoc DL(Op);
5812  SDValue Op0;
5813  SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
5814  if (!isMLA) {
5815    Op0 = SkipExtensionForVMULL(N0, DAG);
5816    assert(Op0.getValueType().is64BitVector() &&
5817           Op1.getValueType().is64BitVector() &&
5818           "unexpected types for extended operands to VMULL");
5819    return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
5820  }
5821
5822  // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
5823  // isel lowering to take advantage of no-stall back to back vmul + vmla.
5824  //   vmull q0, d4, d6
5825  //   vmlal q0, d5, d6
5826  // is faster than
5827  //   vaddl q0, d4, d5
5828  //   vmovl q1, d6
5829  //   vmul  q0, q0, q1
5830  SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
5831  SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
5832  EVT Op1VT = Op1.getValueType();
5833  return DAG.getNode(N0->getOpcode(), DL, VT,
5834                     DAG.getNode(NewOpc, DL, VT,
5835                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
5836                     DAG.getNode(NewOpc, DL, VT,
5837                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
5838}
5839
5840static SDValue
5841LowerSDIV_v4i8(SDValue X, SDValue Y, SDLoc dl, SelectionDAG &DAG) {
5842  // Convert to float
5843  // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
5844  // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
5845  X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
5846  Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
5847  X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
5848  Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
5849  // Get reciprocal estimate.
5850  // float4 recip = vrecpeq_f32(yf);
5851  Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5852                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
5853  // Because char has a smaller range than uchar, we can actually get away
5854  // without any newton steps.  This requires that we use a weird bias
5855  // of 0xb000, however (again, this has been exhaustively tested).
5856  // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
5857  X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
5858  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
5859  Y = DAG.getConstant(0xb000, MVT::i32);
5860  Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
5861  X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
5862  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
5863  // Convert back to short.
5864  X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
5865  X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
5866  return X;
5867}
5868
5869static SDValue
5870LowerSDIV_v4i16(SDValue N0, SDValue N1, SDLoc dl, SelectionDAG &DAG) {
5871  SDValue N2;
5872  // Convert to float.
5873  // float4 yf = vcvt_f32_s32(vmovl_s16(y));
5874  // float4 xf = vcvt_f32_s32(vmovl_s16(x));
5875  N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
5876  N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
5877  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
5878  N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
5879
5880  // Use reciprocal estimate and one refinement step.
5881  // float4 recip = vrecpeq_f32(yf);
5882  // recip *= vrecpsq_f32(yf, recip);
5883  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5884                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
5885  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5886                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5887                   N1, N2);
5888  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5889  // Because short has a smaller range than ushort, we can actually get away
5890  // with only a single newton step.  This requires that we use a weird bias
5891  // of 89, however (again, this has been exhaustively tested).
5892  // float4 result = as_float4(as_int4(xf*recip) + 0x89);
5893  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
5894  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
5895  N1 = DAG.getConstant(0x89, MVT::i32);
5896  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
5897  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
5898  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
5899  // Convert back to integer and return.
5900  // return vmovn_s32(vcvt_s32_f32(result));
5901  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
5902  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
5903  return N0;
5904}
5905
5906static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
5907  EVT VT = Op.getValueType();
5908  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
5909         "unexpected type for custom-lowering ISD::SDIV");
5910
5911  SDLoc dl(Op);
5912  SDValue N0 = Op.getOperand(0);
5913  SDValue N1 = Op.getOperand(1);
5914  SDValue N2, N3;
5915
5916  if (VT == MVT::v8i8) {
5917    N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
5918    N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
5919
5920    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5921                     DAG.getIntPtrConstant(4));
5922    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5923                     DAG.getIntPtrConstant(4));
5924    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5925                     DAG.getIntPtrConstant(0));
5926    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5927                     DAG.getIntPtrConstant(0));
5928
5929    N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
5930    N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
5931
5932    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
5933    N0 = LowerCONCAT_VECTORS(N0, DAG);
5934
5935    N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
5936    return N0;
5937  }
5938  return LowerSDIV_v4i16(N0, N1, dl, DAG);
5939}
5940
5941static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
5942  EVT VT = Op.getValueType();
5943  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
5944         "unexpected type for custom-lowering ISD::UDIV");
5945
5946  SDLoc dl(Op);
5947  SDValue N0 = Op.getOperand(0);
5948  SDValue N1 = Op.getOperand(1);
5949  SDValue N2, N3;
5950
5951  if (VT == MVT::v8i8) {
5952    N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
5953    N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
5954
5955    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5956                     DAG.getIntPtrConstant(4));
5957    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5958                     DAG.getIntPtrConstant(4));
5959    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5960                     DAG.getIntPtrConstant(0));
5961    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5962                     DAG.getIntPtrConstant(0));
5963
5964    N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
5965    N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
5966
5967    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
5968    N0 = LowerCONCAT_VECTORS(N0, DAG);
5969
5970    N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
5971                     DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
5972                     N0);
5973    return N0;
5974  }
5975
5976  // v4i16 sdiv ... Convert to float.
5977  // float4 yf = vcvt_f32_s32(vmovl_u16(y));
5978  // float4 xf = vcvt_f32_s32(vmovl_u16(x));
5979  N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
5980  N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
5981  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
5982  SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
5983
5984  // Use reciprocal estimate and two refinement steps.
5985  // float4 recip = vrecpeq_f32(yf);
5986  // recip *= vrecpsq_f32(yf, recip);
5987  // recip *= vrecpsq_f32(yf, recip);
5988  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5989                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
5990  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5991                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5992                   BN1, N2);
5993  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5994  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5995                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5996                   BN1, N2);
5997  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5998  // Simply multiplying by the reciprocal estimate can leave us a few ulps
5999  // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
6000  // and that it will never cause us to return an answer too large).
6001  // float4 result = as_float4(as_int4(xf*recip) + 2);
6002  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
6003  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
6004  N1 = DAG.getConstant(2, MVT::i32);
6005  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
6006  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
6007  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
6008  // Convert back to integer and return.
6009  // return vmovn_u32(vcvt_s32_f32(result));
6010  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
6011  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
6012  return N0;
6013}
6014
6015static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
6016  EVT VT = Op.getNode()->getValueType(0);
6017  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
6018
6019  unsigned Opc;
6020  bool ExtraOp = false;
6021  switch (Op.getOpcode()) {
6022  default: llvm_unreachable("Invalid code");
6023  case ISD::ADDC: Opc = ARMISD::ADDC; break;
6024  case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
6025  case ISD::SUBC: Opc = ARMISD::SUBC; break;
6026  case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
6027  }
6028
6029  if (!ExtraOp)
6030    return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
6031                       Op.getOperand(1));
6032  return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
6033                     Op.getOperand(1), Op.getOperand(2));
6034}
6035
6036SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
6037  assert(Subtarget->isTargetDarwin());
6038
6039  // For iOS, we want to call an alternative entry point: __sincos_stret,
6040  // return values are passed via sret.
6041  SDLoc dl(Op);
6042  SDValue Arg = Op.getOperand(0);
6043  EVT ArgVT = Arg.getValueType();
6044  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
6045
6046  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
6047  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6048
6049  // Pair of floats / doubles used to pass the result.
6050  StructType *RetTy = StructType::get(ArgTy, ArgTy, NULL);
6051
6052  // Create stack object for sret.
6053  const uint64_t ByteSize = TLI.getDataLayout()->getTypeAllocSize(RetTy);
6054  const unsigned StackAlign = TLI.getDataLayout()->getPrefTypeAlignment(RetTy);
6055  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
6056  SDValue SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy());
6057
6058  ArgListTy Args;
6059  ArgListEntry Entry;
6060
6061  Entry.Node = SRet;
6062  Entry.Ty = RetTy->getPointerTo();
6063  Entry.isSExt = false;
6064  Entry.isZExt = false;
6065  Entry.isSRet = true;
6066  Args.push_back(Entry);
6067
6068  Entry.Node = Arg;
6069  Entry.Ty = ArgTy;
6070  Entry.isSExt = false;
6071  Entry.isZExt = false;
6072  Args.push_back(Entry);
6073
6074  const char *LibcallName  = (ArgVT == MVT::f64)
6075  ? "__sincos_stret" : "__sincosf_stret";
6076  SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
6077
6078  TargetLowering::CallLoweringInfo CLI(DAG);
6079  CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
6080    .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), Callee,
6081               &Args, 0)
6082    .setDiscardResult();
6083
6084  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
6085
6086  SDValue LoadSin = DAG.getLoad(ArgVT, dl, CallResult.second, SRet,
6087                                MachinePointerInfo(), false, false, false, 0);
6088
6089  // Address of cos field.
6090  SDValue Add = DAG.getNode(ISD::ADD, dl, getPointerTy(), SRet,
6091                            DAG.getIntPtrConstant(ArgVT.getStoreSize()));
6092  SDValue LoadCos = DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add,
6093                                MachinePointerInfo(), false, false, false, 0);
6094
6095  SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
6096  return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
6097                     LoadSin.getValue(0), LoadCos.getValue(0));
6098}
6099
6100static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
6101  // Monotonic load/store is legal for all targets
6102  if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
6103    return Op;
6104
6105  // Acquire/Release load/store is not legal for targets without a
6106  // dmb or equivalent available.
6107  return SDValue();
6108}
6109
6110static void ReplaceREADCYCLECOUNTER(SDNode *N,
6111                                    SmallVectorImpl<SDValue> &Results,
6112                                    SelectionDAG &DAG,
6113                                    const ARMSubtarget *Subtarget) {
6114  SDLoc DL(N);
6115  SDValue Cycles32, OutChain;
6116
6117  if (Subtarget->hasPerfMon()) {
6118    // Under Power Management extensions, the cycle-count is:
6119    //    mrc p15, #0, <Rt>, c9, c13, #0
6120    SDValue Ops[] = { N->getOperand(0), // Chain
6121                      DAG.getConstant(Intrinsic::arm_mrc, MVT::i32),
6122                      DAG.getConstant(15, MVT::i32),
6123                      DAG.getConstant(0, MVT::i32),
6124                      DAG.getConstant(9, MVT::i32),
6125                      DAG.getConstant(13, MVT::i32),
6126                      DAG.getConstant(0, MVT::i32)
6127    };
6128
6129    Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
6130                           DAG.getVTList(MVT::i32, MVT::Other), Ops);
6131    OutChain = Cycles32.getValue(1);
6132  } else {
6133    // Intrinsic is defined to return 0 on unsupported platforms. Technically
6134    // there are older ARM CPUs that have implementation-specific ways of
6135    // obtaining this information (FIXME!).
6136    Cycles32 = DAG.getConstant(0, MVT::i32);
6137    OutChain = DAG.getEntryNode();
6138  }
6139
6140
6141  SDValue Cycles64 = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64,
6142                                 Cycles32, DAG.getConstant(0, MVT::i32));
6143  Results.push_back(Cycles64);
6144  Results.push_back(OutChain);
6145}
6146
6147SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6148  switch (Op.getOpcode()) {
6149  default: llvm_unreachable("Don't know how to custom lower this!");
6150  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
6151  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
6152  case ISD::GlobalAddress:
6153    switch (Subtarget->getTargetTriple().getObjectFormat()) {
6154    default: llvm_unreachable("unknown object format");
6155    case Triple::COFF:
6156      return LowerGlobalAddressWindows(Op, DAG);
6157    case Triple::ELF:
6158      return LowerGlobalAddressELF(Op, DAG);
6159    case Triple::MachO:
6160      return LowerGlobalAddressDarwin(Op, DAG);
6161    }
6162  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
6163  case ISD::SELECT:        return LowerSELECT(Op, DAG);
6164  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
6165  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
6166  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
6167  case ISD::VASTART:       return LowerVASTART(Op, DAG);
6168  case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
6169  case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
6170  case ISD::SINT_TO_FP:
6171  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
6172  case ISD::FP_TO_SINT:
6173  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
6174  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
6175  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
6176  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
6177  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
6178  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
6179  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
6180  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
6181                                                               Subtarget);
6182  case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
6183  case ISD::SHL:
6184  case ISD::SRL:
6185  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
6186  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
6187  case ISD::SRL_PARTS:
6188  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
6189  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
6190  case ISD::CTPOP:         return LowerCTPOP(Op.getNode(), DAG, Subtarget);
6191  case ISD::SETCC:         return LowerVSETCC(Op, DAG);
6192  case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
6193  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
6194  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
6195  case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
6196  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
6197  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
6198  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
6199  case ISD::MUL:           return LowerMUL(Op, DAG);
6200  case ISD::SDIV:          return LowerSDIV(Op, DAG);
6201  case ISD::UDIV:          return LowerUDIV(Op, DAG);
6202  case ISD::ADDC:
6203  case ISD::ADDE:
6204  case ISD::SUBC:
6205  case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
6206  case ISD::SADDO:
6207  case ISD::UADDO:
6208  case ISD::SSUBO:
6209  case ISD::USUBO:
6210    return LowerXALUO(Op, DAG);
6211  case ISD::ATOMIC_LOAD:
6212  case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
6213  case ISD::FSINCOS:       return LowerFSINCOS(Op, DAG);
6214  case ISD::SDIVREM:
6215  case ISD::UDIVREM:       return LowerDivRem(Op, DAG);
6216  }
6217}
6218
6219/// ReplaceNodeResults - Replace the results of node with an illegal result
6220/// type with new values built out of custom code.
6221void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
6222                                           SmallVectorImpl<SDValue>&Results,
6223                                           SelectionDAG &DAG) const {
6224  SDValue Res;
6225  switch (N->getOpcode()) {
6226  default:
6227    llvm_unreachable("Don't know how to custom expand this!");
6228  case ISD::BITCAST:
6229    Res = ExpandBITCAST(N, DAG);
6230    break;
6231  case ISD::SRL:
6232  case ISD::SRA:
6233    Res = Expand64BitShift(N, DAG, Subtarget);
6234    break;
6235  case ISD::READCYCLECOUNTER:
6236    ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
6237    return;
6238  }
6239  if (Res.getNode())
6240    Results.push_back(Res);
6241}
6242
6243//===----------------------------------------------------------------------===//
6244//                           ARM Scheduler Hooks
6245//===----------------------------------------------------------------------===//
6246
6247/// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
6248/// registers the function context.
6249void ARMTargetLowering::
6250SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
6251                       MachineBasicBlock *DispatchBB, int FI) const {
6252  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6253  DebugLoc dl = MI->getDebugLoc();
6254  MachineFunction *MF = MBB->getParent();
6255  MachineRegisterInfo *MRI = &MF->getRegInfo();
6256  MachineConstantPool *MCP = MF->getConstantPool();
6257  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
6258  const Function *F = MF->getFunction();
6259
6260  bool isThumb = Subtarget->isThumb();
6261  bool isThumb2 = Subtarget->isThumb2();
6262
6263  unsigned PCLabelId = AFI->createPICLabelUId();
6264  unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
6265  ARMConstantPoolValue *CPV =
6266    ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
6267  unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
6268
6269  const TargetRegisterClass *TRC = isThumb ?
6270    (const TargetRegisterClass*)&ARM::tGPRRegClass :
6271    (const TargetRegisterClass*)&ARM::GPRRegClass;
6272
6273  // Grab constant pool and fixed stack memory operands.
6274  MachineMemOperand *CPMMO =
6275    MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(),
6276                             MachineMemOperand::MOLoad, 4, 4);
6277
6278  MachineMemOperand *FIMMOSt =
6279    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
6280                             MachineMemOperand::MOStore, 4, 4);
6281
6282  // Load the address of the dispatch MBB into the jump buffer.
6283  if (isThumb2) {
6284    // Incoming value: jbuf
6285    //   ldr.n  r5, LCPI1_1
6286    //   orr    r5, r5, #1
6287    //   add    r5, pc
6288    //   str    r5, [$jbuf, #+4] ; &jbuf[1]
6289    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6290    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
6291                   .addConstantPoolIndex(CPI)
6292                   .addMemOperand(CPMMO));
6293    // Set the low bit because of thumb mode.
6294    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6295    AddDefaultCC(
6296      AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
6297                     .addReg(NewVReg1, RegState::Kill)
6298                     .addImm(0x01)));
6299    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6300    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
6301      .addReg(NewVReg2, RegState::Kill)
6302      .addImm(PCLabelId);
6303    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
6304                   .addReg(NewVReg3, RegState::Kill)
6305                   .addFrameIndex(FI)
6306                   .addImm(36)  // &jbuf[1] :: pc
6307                   .addMemOperand(FIMMOSt));
6308  } else if (isThumb) {
6309    // Incoming value: jbuf
6310    //   ldr.n  r1, LCPI1_4
6311    //   add    r1, pc
6312    //   mov    r2, #1
6313    //   orrs   r1, r2
6314    //   add    r2, $jbuf, #+4 ; &jbuf[1]
6315    //   str    r1, [r2]
6316    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6317    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
6318                   .addConstantPoolIndex(CPI)
6319                   .addMemOperand(CPMMO));
6320    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6321    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
6322      .addReg(NewVReg1, RegState::Kill)
6323      .addImm(PCLabelId);
6324    // Set the low bit because of thumb mode.
6325    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6326    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
6327                   .addReg(ARM::CPSR, RegState::Define)
6328                   .addImm(1));
6329    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6330    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
6331                   .addReg(ARM::CPSR, RegState::Define)
6332                   .addReg(NewVReg2, RegState::Kill)
6333                   .addReg(NewVReg3, RegState::Kill));
6334    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6335    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5)
6336                   .addFrameIndex(FI)
6337                   .addImm(36)); // &jbuf[1] :: pc
6338    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
6339                   .addReg(NewVReg4, RegState::Kill)
6340                   .addReg(NewVReg5, RegState::Kill)
6341                   .addImm(0)
6342                   .addMemOperand(FIMMOSt));
6343  } else {
6344    // Incoming value: jbuf
6345    //   ldr  r1, LCPI1_1
6346    //   add  r1, pc, r1
6347    //   str  r1, [$jbuf, #+4] ; &jbuf[1]
6348    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6349    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12),  NewVReg1)
6350                   .addConstantPoolIndex(CPI)
6351                   .addImm(0)
6352                   .addMemOperand(CPMMO));
6353    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6354    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
6355                   .addReg(NewVReg1, RegState::Kill)
6356                   .addImm(PCLabelId));
6357    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
6358                   .addReg(NewVReg2, RegState::Kill)
6359                   .addFrameIndex(FI)
6360                   .addImm(36)  // &jbuf[1] :: pc
6361                   .addMemOperand(FIMMOSt));
6362  }
6363}
6364
6365MachineBasicBlock *ARMTargetLowering::
6366EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
6367  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6368  DebugLoc dl = MI->getDebugLoc();
6369  MachineFunction *MF = MBB->getParent();
6370  MachineRegisterInfo *MRI = &MF->getRegInfo();
6371  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
6372  MachineFrameInfo *MFI = MF->getFrameInfo();
6373  int FI = MFI->getFunctionContextIndex();
6374
6375  const TargetRegisterClass *TRC = Subtarget->isThumb() ?
6376    (const TargetRegisterClass*)&ARM::tGPRRegClass :
6377    (const TargetRegisterClass*)&ARM::GPRnopcRegClass;
6378
6379  // Get a mapping of the call site numbers to all of the landing pads they're
6380  // associated with.
6381  DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
6382  unsigned MaxCSNum = 0;
6383  MachineModuleInfo &MMI = MF->getMMI();
6384  for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
6385       ++BB) {
6386    if (!BB->isLandingPad()) continue;
6387
6388    // FIXME: We should assert that the EH_LABEL is the first MI in the landing
6389    // pad.
6390    for (MachineBasicBlock::iterator
6391           II = BB->begin(), IE = BB->end(); II != IE; ++II) {
6392      if (!II->isEHLabel()) continue;
6393
6394      MCSymbol *Sym = II->getOperand(0).getMCSymbol();
6395      if (!MMI.hasCallSiteLandingPad(Sym)) continue;
6396
6397      SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
6398      for (SmallVectorImpl<unsigned>::iterator
6399             CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
6400           CSI != CSE; ++CSI) {
6401        CallSiteNumToLPad[*CSI].push_back(BB);
6402        MaxCSNum = std::max(MaxCSNum, *CSI);
6403      }
6404      break;
6405    }
6406  }
6407
6408  // Get an ordered list of the machine basic blocks for the jump table.
6409  std::vector<MachineBasicBlock*> LPadList;
6410  SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
6411  LPadList.reserve(CallSiteNumToLPad.size());
6412  for (unsigned I = 1; I <= MaxCSNum; ++I) {
6413    SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
6414    for (SmallVectorImpl<MachineBasicBlock*>::iterator
6415           II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
6416      LPadList.push_back(*II);
6417      InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
6418    }
6419  }
6420
6421  assert(!LPadList.empty() &&
6422         "No landing pad destinations for the dispatch jump table!");
6423
6424  // Create the jump table and associated information.
6425  MachineJumpTableInfo *JTI =
6426    MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
6427  unsigned MJTI = JTI->createJumpTableIndex(LPadList);
6428  unsigned UId = AFI->createJumpTableUId();
6429  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
6430
6431  // Create the MBBs for the dispatch code.
6432
6433  // Shove the dispatch's address into the return slot in the function context.
6434  MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
6435  DispatchBB->setIsLandingPad();
6436
6437  MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
6438  unsigned trap_opcode;
6439  if (Subtarget->isThumb())
6440    trap_opcode = ARM::tTRAP;
6441  else
6442    trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
6443
6444  BuildMI(TrapBB, dl, TII->get(trap_opcode));
6445  DispatchBB->addSuccessor(TrapBB);
6446
6447  MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
6448  DispatchBB->addSuccessor(DispContBB);
6449
6450  // Insert and MBBs.
6451  MF->insert(MF->end(), DispatchBB);
6452  MF->insert(MF->end(), DispContBB);
6453  MF->insert(MF->end(), TrapBB);
6454
6455  // Insert code into the entry block that creates and registers the function
6456  // context.
6457  SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
6458
6459  MachineMemOperand *FIMMOLd =
6460    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
6461                             MachineMemOperand::MOLoad |
6462                             MachineMemOperand::MOVolatile, 4, 4);
6463
6464  MachineInstrBuilder MIB;
6465  MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
6466
6467  const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
6468  const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
6469
6470  // Add a register mask with no preserved registers.  This results in all
6471  // registers being marked as clobbered.
6472  MIB.addRegMask(RI.getNoPreservedMask());
6473
6474  unsigned NumLPads = LPadList.size();
6475  if (Subtarget->isThumb2()) {
6476    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6477    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
6478                   .addFrameIndex(FI)
6479                   .addImm(4)
6480                   .addMemOperand(FIMMOLd));
6481
6482    if (NumLPads < 256) {
6483      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
6484                     .addReg(NewVReg1)
6485                     .addImm(LPadList.size()));
6486    } else {
6487      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6488      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
6489                     .addImm(NumLPads & 0xFFFF));
6490
6491      unsigned VReg2 = VReg1;
6492      if ((NumLPads & 0xFFFF0000) != 0) {
6493        VReg2 = MRI->createVirtualRegister(TRC);
6494        AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
6495                       .addReg(VReg1)
6496                       .addImm(NumLPads >> 16));
6497      }
6498
6499      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
6500                     .addReg(NewVReg1)
6501                     .addReg(VReg2));
6502    }
6503
6504    BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
6505      .addMBB(TrapBB)
6506      .addImm(ARMCC::HI)
6507      .addReg(ARM::CPSR);
6508
6509    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6510    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
6511                   .addJumpTableIndex(MJTI)
6512                   .addImm(UId));
6513
6514    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6515    AddDefaultCC(
6516      AddDefaultPred(
6517        BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
6518        .addReg(NewVReg3, RegState::Kill)
6519        .addReg(NewVReg1)
6520        .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
6521
6522    BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
6523      .addReg(NewVReg4, RegState::Kill)
6524      .addReg(NewVReg1)
6525      .addJumpTableIndex(MJTI)
6526      .addImm(UId);
6527  } else if (Subtarget->isThumb()) {
6528    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6529    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
6530                   .addFrameIndex(FI)
6531                   .addImm(1)
6532                   .addMemOperand(FIMMOLd));
6533
6534    if (NumLPads < 256) {
6535      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
6536                     .addReg(NewVReg1)
6537                     .addImm(NumLPads));
6538    } else {
6539      MachineConstantPool *ConstantPool = MF->getConstantPool();
6540      Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6541      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
6542
6543      // MachineConstantPool wants an explicit alignment.
6544      unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
6545      if (Align == 0)
6546        Align = getDataLayout()->getTypeAllocSize(C->getType());
6547      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6548
6549      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6550      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
6551                     .addReg(VReg1, RegState::Define)
6552                     .addConstantPoolIndex(Idx));
6553      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
6554                     .addReg(NewVReg1)
6555                     .addReg(VReg1));
6556    }
6557
6558    BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
6559      .addMBB(TrapBB)
6560      .addImm(ARMCC::HI)
6561      .addReg(ARM::CPSR);
6562
6563    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6564    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
6565                   .addReg(ARM::CPSR, RegState::Define)
6566                   .addReg(NewVReg1)
6567                   .addImm(2));
6568
6569    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6570    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
6571                   .addJumpTableIndex(MJTI)
6572                   .addImm(UId));
6573
6574    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6575    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
6576                   .addReg(ARM::CPSR, RegState::Define)
6577                   .addReg(NewVReg2, RegState::Kill)
6578                   .addReg(NewVReg3));
6579
6580    MachineMemOperand *JTMMOLd =
6581      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
6582                               MachineMemOperand::MOLoad, 4, 4);
6583
6584    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6585    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
6586                   .addReg(NewVReg4, RegState::Kill)
6587                   .addImm(0)
6588                   .addMemOperand(JTMMOLd));
6589
6590    unsigned NewVReg6 = NewVReg5;
6591    if (RelocM == Reloc::PIC_) {
6592      NewVReg6 = MRI->createVirtualRegister(TRC);
6593      AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
6594                     .addReg(ARM::CPSR, RegState::Define)
6595                     .addReg(NewVReg5, RegState::Kill)
6596                     .addReg(NewVReg3));
6597    }
6598
6599    BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
6600      .addReg(NewVReg6, RegState::Kill)
6601      .addJumpTableIndex(MJTI)
6602      .addImm(UId);
6603  } else {
6604    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6605    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
6606                   .addFrameIndex(FI)
6607                   .addImm(4)
6608                   .addMemOperand(FIMMOLd));
6609
6610    if (NumLPads < 256) {
6611      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
6612                     .addReg(NewVReg1)
6613                     .addImm(NumLPads));
6614    } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
6615      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6616      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
6617                     .addImm(NumLPads & 0xFFFF));
6618
6619      unsigned VReg2 = VReg1;
6620      if ((NumLPads & 0xFFFF0000) != 0) {
6621        VReg2 = MRI->createVirtualRegister(TRC);
6622        AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
6623                       .addReg(VReg1)
6624                       .addImm(NumLPads >> 16));
6625      }
6626
6627      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
6628                     .addReg(NewVReg1)
6629                     .addReg(VReg2));
6630    } else {
6631      MachineConstantPool *ConstantPool = MF->getConstantPool();
6632      Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6633      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
6634
6635      // MachineConstantPool wants an explicit alignment.
6636      unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
6637      if (Align == 0)
6638        Align = getDataLayout()->getTypeAllocSize(C->getType());
6639      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6640
6641      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6642      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
6643                     .addReg(VReg1, RegState::Define)
6644                     .addConstantPoolIndex(Idx)
6645                     .addImm(0));
6646      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
6647                     .addReg(NewVReg1)
6648                     .addReg(VReg1, RegState::Kill));
6649    }
6650
6651    BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
6652      .addMBB(TrapBB)
6653      .addImm(ARMCC::HI)
6654      .addReg(ARM::CPSR);
6655
6656    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6657    AddDefaultCC(
6658      AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
6659                     .addReg(NewVReg1)
6660                     .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
6661    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6662    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
6663                   .addJumpTableIndex(MJTI)
6664                   .addImm(UId));
6665
6666    MachineMemOperand *JTMMOLd =
6667      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
6668                               MachineMemOperand::MOLoad, 4, 4);
6669    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6670    AddDefaultPred(
6671      BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
6672      .addReg(NewVReg3, RegState::Kill)
6673      .addReg(NewVReg4)
6674      .addImm(0)
6675      .addMemOperand(JTMMOLd));
6676
6677    if (RelocM == Reloc::PIC_) {
6678      BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
6679        .addReg(NewVReg5, RegState::Kill)
6680        .addReg(NewVReg4)
6681        .addJumpTableIndex(MJTI)
6682        .addImm(UId);
6683    } else {
6684      BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
6685        .addReg(NewVReg5, RegState::Kill)
6686        .addJumpTableIndex(MJTI)
6687        .addImm(UId);
6688    }
6689  }
6690
6691  // Add the jump table entries as successors to the MBB.
6692  SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
6693  for (std::vector<MachineBasicBlock*>::iterator
6694         I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
6695    MachineBasicBlock *CurMBB = *I;
6696    if (SeenMBBs.insert(CurMBB))
6697      DispContBB->addSuccessor(CurMBB);
6698  }
6699
6700  // N.B. the order the invoke BBs are processed in doesn't matter here.
6701  const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
6702  SmallVector<MachineBasicBlock*, 64> MBBLPads;
6703  for (SmallPtrSet<MachineBasicBlock*, 64>::iterator
6704         I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) {
6705    MachineBasicBlock *BB = *I;
6706
6707    // Remove the landing pad successor from the invoke block and replace it
6708    // with the new dispatch block.
6709    SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
6710                                                  BB->succ_end());
6711    while (!Successors.empty()) {
6712      MachineBasicBlock *SMBB = Successors.pop_back_val();
6713      if (SMBB->isLandingPad()) {
6714        BB->removeSuccessor(SMBB);
6715        MBBLPads.push_back(SMBB);
6716      }
6717    }
6718
6719    BB->addSuccessor(DispatchBB);
6720
6721    // Find the invoke call and mark all of the callee-saved registers as
6722    // 'implicit defined' so that they're spilled. This prevents code from
6723    // moving instructions to before the EH block, where they will never be
6724    // executed.
6725    for (MachineBasicBlock::reverse_iterator
6726           II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
6727      if (!II->isCall()) continue;
6728
6729      DenseMap<unsigned, bool> DefRegs;
6730      for (MachineInstr::mop_iterator
6731             OI = II->operands_begin(), OE = II->operands_end();
6732           OI != OE; ++OI) {
6733        if (!OI->isReg()) continue;
6734        DefRegs[OI->getReg()] = true;
6735      }
6736
6737      MachineInstrBuilder MIB(*MF, &*II);
6738
6739      for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
6740        unsigned Reg = SavedRegs[i];
6741        if (Subtarget->isThumb2() &&
6742            !ARM::tGPRRegClass.contains(Reg) &&
6743            !ARM::hGPRRegClass.contains(Reg))
6744          continue;
6745        if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
6746          continue;
6747        if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
6748          continue;
6749        if (!DefRegs[Reg])
6750          MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
6751      }
6752
6753      break;
6754    }
6755  }
6756
6757  // Mark all former landing pads as non-landing pads. The dispatch is the only
6758  // landing pad now.
6759  for (SmallVectorImpl<MachineBasicBlock*>::iterator
6760         I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
6761    (*I)->setIsLandingPad(false);
6762
6763  // The instruction is gone now.
6764  MI->eraseFromParent();
6765
6766  return MBB;
6767}
6768
6769static
6770MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
6771  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
6772       E = MBB->succ_end(); I != E; ++I)
6773    if (*I != Succ)
6774      return *I;
6775  llvm_unreachable("Expecting a BB with two successors!");
6776}
6777
6778/// Return the load opcode for a given load size. If load size >= 8,
6779/// neon opcode will be returned.
6780static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
6781  if (LdSize >= 8)
6782    return LdSize == 16 ? ARM::VLD1q32wb_fixed
6783                        : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
6784  if (IsThumb1)
6785    return LdSize == 4 ? ARM::tLDRi
6786                       : LdSize == 2 ? ARM::tLDRHi
6787                                     : LdSize == 1 ? ARM::tLDRBi : 0;
6788  if (IsThumb2)
6789    return LdSize == 4 ? ARM::t2LDR_POST
6790                       : LdSize == 2 ? ARM::t2LDRH_POST
6791                                     : LdSize == 1 ? ARM::t2LDRB_POST : 0;
6792  return LdSize == 4 ? ARM::LDR_POST_IMM
6793                     : LdSize == 2 ? ARM::LDRH_POST
6794                                   : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
6795}
6796
6797/// Return the store opcode for a given store size. If store size >= 8,
6798/// neon opcode will be returned.
6799static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
6800  if (StSize >= 8)
6801    return StSize == 16 ? ARM::VST1q32wb_fixed
6802                        : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
6803  if (IsThumb1)
6804    return StSize == 4 ? ARM::tSTRi
6805                       : StSize == 2 ? ARM::tSTRHi
6806                                     : StSize == 1 ? ARM::tSTRBi : 0;
6807  if (IsThumb2)
6808    return StSize == 4 ? ARM::t2STR_POST
6809                       : StSize == 2 ? ARM::t2STRH_POST
6810                                     : StSize == 1 ? ARM::t2STRB_POST : 0;
6811  return StSize == 4 ? ARM::STR_POST_IMM
6812                     : StSize == 2 ? ARM::STRH_POST
6813                                   : StSize == 1 ? ARM::STRB_POST_IMM : 0;
6814}
6815
6816/// Emit a post-increment load operation with given size. The instructions
6817/// will be added to BB at Pos.
6818static void emitPostLd(MachineBasicBlock *BB, MachineInstr *Pos,
6819                       const TargetInstrInfo *TII, DebugLoc dl,
6820                       unsigned LdSize, unsigned Data, unsigned AddrIn,
6821                       unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
6822  unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
6823  assert(LdOpc != 0 && "Should have a load opcode");
6824  if (LdSize >= 8) {
6825    AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
6826                       .addReg(AddrOut, RegState::Define).addReg(AddrIn)
6827                       .addImm(0));
6828  } else if (IsThumb1) {
6829    // load + update AddrIn
6830    AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
6831                       .addReg(AddrIn).addImm(0));
6832    MachineInstrBuilder MIB =
6833        BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut);
6834    MIB = AddDefaultT1CC(MIB);
6835    MIB.addReg(AddrIn).addImm(LdSize);
6836    AddDefaultPred(MIB);
6837  } else if (IsThumb2) {
6838    AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
6839                       .addReg(AddrOut, RegState::Define).addReg(AddrIn)
6840                       .addImm(LdSize));
6841  } else { // arm
6842    AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
6843                       .addReg(AddrOut, RegState::Define).addReg(AddrIn)
6844                       .addReg(0).addImm(LdSize));
6845  }
6846}
6847
6848/// Emit a post-increment store operation with given size. The instructions
6849/// will be added to BB at Pos.
6850static void emitPostSt(MachineBasicBlock *BB, MachineInstr *Pos,
6851                       const TargetInstrInfo *TII, DebugLoc dl,
6852                       unsigned StSize, unsigned Data, unsigned AddrIn,
6853                       unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
6854  unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
6855  assert(StOpc != 0 && "Should have a store opcode");
6856  if (StSize >= 8) {
6857    AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
6858                       .addReg(AddrIn).addImm(0).addReg(Data));
6859  } else if (IsThumb1) {
6860    // store + update AddrIn
6861    AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc)).addReg(Data)
6862                       .addReg(AddrIn).addImm(0));
6863    MachineInstrBuilder MIB =
6864        BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut);
6865    MIB = AddDefaultT1CC(MIB);
6866    MIB.addReg(AddrIn).addImm(StSize);
6867    AddDefaultPred(MIB);
6868  } else if (IsThumb2) {
6869    AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
6870                       .addReg(Data).addReg(AddrIn).addImm(StSize));
6871  } else { // arm
6872    AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
6873                       .addReg(Data).addReg(AddrIn).addReg(0)
6874                       .addImm(StSize));
6875  }
6876}
6877
6878MachineBasicBlock *
6879ARMTargetLowering::EmitStructByval(MachineInstr *MI,
6880                                   MachineBasicBlock *BB) const {
6881  // This pseudo instruction has 3 operands: dst, src, size
6882  // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
6883  // Otherwise, we will generate unrolled scalar copies.
6884  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6885  const BasicBlock *LLVM_BB = BB->getBasicBlock();
6886  MachineFunction::iterator It = BB;
6887  ++It;
6888
6889  unsigned dest = MI->getOperand(0).getReg();
6890  unsigned src = MI->getOperand(1).getReg();
6891  unsigned SizeVal = MI->getOperand(2).getImm();
6892  unsigned Align = MI->getOperand(3).getImm();
6893  DebugLoc dl = MI->getDebugLoc();
6894
6895  MachineFunction *MF = BB->getParent();
6896  MachineRegisterInfo &MRI = MF->getRegInfo();
6897  unsigned UnitSize = 0;
6898  const TargetRegisterClass *TRC = nullptr;
6899  const TargetRegisterClass *VecTRC = nullptr;
6900
6901  bool IsThumb1 = Subtarget->isThumb1Only();
6902  bool IsThumb2 = Subtarget->isThumb2();
6903
6904  if (Align & 1) {
6905    UnitSize = 1;
6906  } else if (Align & 2) {
6907    UnitSize = 2;
6908  } else {
6909    // Check whether we can use NEON instructions.
6910    if (!MF->getFunction()->getAttributes().
6911          hasAttribute(AttributeSet::FunctionIndex,
6912                       Attribute::NoImplicitFloat) &&
6913        Subtarget->hasNEON()) {
6914      if ((Align % 16 == 0) && SizeVal >= 16)
6915        UnitSize = 16;
6916      else if ((Align % 8 == 0) && SizeVal >= 8)
6917        UnitSize = 8;
6918    }
6919    // Can't use NEON instructions.
6920    if (UnitSize == 0)
6921      UnitSize = 4;
6922  }
6923
6924  // Select the correct opcode and register class for unit size load/store
6925  bool IsNeon = UnitSize >= 8;
6926  TRC = (IsThumb1 || IsThumb2) ? (const TargetRegisterClass *)&ARM::tGPRRegClass
6927                               : (const TargetRegisterClass *)&ARM::GPRRegClass;
6928  if (IsNeon)
6929    VecTRC = UnitSize == 16
6930                 ? (const TargetRegisterClass *)&ARM::DPairRegClass
6931                 : UnitSize == 8
6932                       ? (const TargetRegisterClass *)&ARM::DPRRegClass
6933                       : nullptr;
6934
6935  unsigned BytesLeft = SizeVal % UnitSize;
6936  unsigned LoopSize = SizeVal - BytesLeft;
6937
6938  if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
6939    // Use LDR and STR to copy.
6940    // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
6941    // [destOut] = STR_POST(scratch, destIn, UnitSize)
6942    unsigned srcIn = src;
6943    unsigned destIn = dest;
6944    for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
6945      unsigned srcOut = MRI.createVirtualRegister(TRC);
6946      unsigned destOut = MRI.createVirtualRegister(TRC);
6947      unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
6948      emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
6949                 IsThumb1, IsThumb2);
6950      emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
6951                 IsThumb1, IsThumb2);
6952      srcIn = srcOut;
6953      destIn = destOut;
6954    }
6955
6956    // Handle the leftover bytes with LDRB and STRB.
6957    // [scratch, srcOut] = LDRB_POST(srcIn, 1)
6958    // [destOut] = STRB_POST(scratch, destIn, 1)
6959    for (unsigned i = 0; i < BytesLeft; i++) {
6960      unsigned srcOut = MRI.createVirtualRegister(TRC);
6961      unsigned destOut = MRI.createVirtualRegister(TRC);
6962      unsigned scratch = MRI.createVirtualRegister(TRC);
6963      emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
6964                 IsThumb1, IsThumb2);
6965      emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
6966                 IsThumb1, IsThumb2);
6967      srcIn = srcOut;
6968      destIn = destOut;
6969    }
6970    MI->eraseFromParent();   // The instruction is gone now.
6971    return BB;
6972  }
6973
6974  // Expand the pseudo op to a loop.
6975  // thisMBB:
6976  //   ...
6977  //   movw varEnd, # --> with thumb2
6978  //   movt varEnd, #
6979  //   ldrcp varEnd, idx --> without thumb2
6980  //   fallthrough --> loopMBB
6981  // loopMBB:
6982  //   PHI varPhi, varEnd, varLoop
6983  //   PHI srcPhi, src, srcLoop
6984  //   PHI destPhi, dst, destLoop
6985  //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
6986  //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
6987  //   subs varLoop, varPhi, #UnitSize
6988  //   bne loopMBB
6989  //   fallthrough --> exitMBB
6990  // exitMBB:
6991  //   epilogue to handle left-over bytes
6992  //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
6993  //   [destOut] = STRB_POST(scratch, destLoop, 1)
6994  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6995  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6996  MF->insert(It, loopMBB);
6997  MF->insert(It, exitMBB);
6998
6999  // Transfer the remainder of BB and its successor edges to exitMBB.
7000  exitMBB->splice(exitMBB->begin(), BB,
7001                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
7002  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
7003
7004  // Load an immediate to varEnd.
7005  unsigned varEnd = MRI.createVirtualRegister(TRC);
7006  if (IsThumb2) {
7007    unsigned Vtmp = varEnd;
7008    if ((LoopSize & 0xFFFF0000) != 0)
7009      Vtmp = MRI.createVirtualRegister(TRC);
7010    AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVi16), Vtmp)
7011                       .addImm(LoopSize & 0xFFFF));
7012
7013    if ((LoopSize & 0xFFFF0000) != 0)
7014      AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVTi16), varEnd)
7015                         .addReg(Vtmp).addImm(LoopSize >> 16));
7016  } else {
7017    MachineConstantPool *ConstantPool = MF->getConstantPool();
7018    Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
7019    const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
7020
7021    // MachineConstantPool wants an explicit alignment.
7022    unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
7023    if (Align == 0)
7024      Align = getDataLayout()->getTypeAllocSize(C->getType());
7025    unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
7026
7027    if (IsThumb1)
7028      AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci)).addReg(
7029          varEnd, RegState::Define).addConstantPoolIndex(Idx));
7030    else
7031      AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp)).addReg(
7032          varEnd, RegState::Define).addConstantPoolIndex(Idx).addImm(0));
7033  }
7034  BB->addSuccessor(loopMBB);
7035
7036  // Generate the loop body:
7037  //   varPhi = PHI(varLoop, varEnd)
7038  //   srcPhi = PHI(srcLoop, src)
7039  //   destPhi = PHI(destLoop, dst)
7040  MachineBasicBlock *entryBB = BB;
7041  BB = loopMBB;
7042  unsigned varLoop = MRI.createVirtualRegister(TRC);
7043  unsigned varPhi = MRI.createVirtualRegister(TRC);
7044  unsigned srcLoop = MRI.createVirtualRegister(TRC);
7045  unsigned srcPhi = MRI.createVirtualRegister(TRC);
7046  unsigned destLoop = MRI.createVirtualRegister(TRC);
7047  unsigned destPhi = MRI.createVirtualRegister(TRC);
7048
7049  BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
7050    .addReg(varLoop).addMBB(loopMBB)
7051    .addReg(varEnd).addMBB(entryBB);
7052  BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
7053    .addReg(srcLoop).addMBB(loopMBB)
7054    .addReg(src).addMBB(entryBB);
7055  BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
7056    .addReg(destLoop).addMBB(loopMBB)
7057    .addReg(dest).addMBB(entryBB);
7058
7059  //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
7060  //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
7061  unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
7062  emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
7063             IsThumb1, IsThumb2);
7064  emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
7065             IsThumb1, IsThumb2);
7066
7067  // Decrement loop variable by UnitSize.
7068  if (IsThumb1) {
7069    MachineInstrBuilder MIB =
7070        BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop);
7071    MIB = AddDefaultT1CC(MIB);
7072    MIB.addReg(varPhi).addImm(UnitSize);
7073    AddDefaultPred(MIB);
7074  } else {
7075    MachineInstrBuilder MIB =
7076        BuildMI(*BB, BB->end(), dl,
7077                TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
7078    AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize)));
7079    MIB->getOperand(5).setReg(ARM::CPSR);
7080    MIB->getOperand(5).setIsDef(true);
7081  }
7082  BuildMI(*BB, BB->end(), dl,
7083          TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
7084      .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
7085
7086  // loopMBB can loop back to loopMBB or fall through to exitMBB.
7087  BB->addSuccessor(loopMBB);
7088  BB->addSuccessor(exitMBB);
7089
7090  // Add epilogue to handle BytesLeft.
7091  BB = exitMBB;
7092  MachineInstr *StartOfExit = exitMBB->begin();
7093
7094  //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
7095  //   [destOut] = STRB_POST(scratch, destLoop, 1)
7096  unsigned srcIn = srcLoop;
7097  unsigned destIn = destLoop;
7098  for (unsigned i = 0; i < BytesLeft; i++) {
7099    unsigned srcOut = MRI.createVirtualRegister(TRC);
7100    unsigned destOut = MRI.createVirtualRegister(TRC);
7101    unsigned scratch = MRI.createVirtualRegister(TRC);
7102    emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
7103               IsThumb1, IsThumb2);
7104    emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
7105               IsThumb1, IsThumb2);
7106    srcIn = srcOut;
7107    destIn = destOut;
7108  }
7109
7110  MI->eraseFromParent();   // The instruction is gone now.
7111  return BB;
7112}
7113
7114MachineBasicBlock *
7115ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
7116                                               MachineBasicBlock *BB) const {
7117  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7118  DebugLoc dl = MI->getDebugLoc();
7119  bool isThumb2 = Subtarget->isThumb2();
7120  switch (MI->getOpcode()) {
7121  default: {
7122    MI->dump();
7123    llvm_unreachable("Unexpected instr type to insert");
7124  }
7125  // The Thumb2 pre-indexed stores have the same MI operands, they just
7126  // define them differently in the .td files from the isel patterns, so
7127  // they need pseudos.
7128  case ARM::t2STR_preidx:
7129    MI->setDesc(TII->get(ARM::t2STR_PRE));
7130    return BB;
7131  case ARM::t2STRB_preidx:
7132    MI->setDesc(TII->get(ARM::t2STRB_PRE));
7133    return BB;
7134  case ARM::t2STRH_preidx:
7135    MI->setDesc(TII->get(ARM::t2STRH_PRE));
7136    return BB;
7137
7138  case ARM::STRi_preidx:
7139  case ARM::STRBi_preidx: {
7140    unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
7141      ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
7142    // Decode the offset.
7143    unsigned Offset = MI->getOperand(4).getImm();
7144    bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
7145    Offset = ARM_AM::getAM2Offset(Offset);
7146    if (isSub)
7147      Offset = -Offset;
7148
7149    MachineMemOperand *MMO = *MI->memoperands_begin();
7150    BuildMI(*BB, MI, dl, TII->get(NewOpc))
7151      .addOperand(MI->getOperand(0))  // Rn_wb
7152      .addOperand(MI->getOperand(1))  // Rt
7153      .addOperand(MI->getOperand(2))  // Rn
7154      .addImm(Offset)                 // offset (skip GPR==zero_reg)
7155      .addOperand(MI->getOperand(5))  // pred
7156      .addOperand(MI->getOperand(6))
7157      .addMemOperand(MMO);
7158    MI->eraseFromParent();
7159    return BB;
7160  }
7161  case ARM::STRr_preidx:
7162  case ARM::STRBr_preidx:
7163  case ARM::STRH_preidx: {
7164    unsigned NewOpc;
7165    switch (MI->getOpcode()) {
7166    default: llvm_unreachable("unexpected opcode!");
7167    case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
7168    case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
7169    case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
7170    }
7171    MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
7172    for (unsigned i = 0; i < MI->getNumOperands(); ++i)
7173      MIB.addOperand(MI->getOperand(i));
7174    MI->eraseFromParent();
7175    return BB;
7176  }
7177
7178  case ARM::tMOVCCr_pseudo: {
7179    // To "insert" a SELECT_CC instruction, we actually have to insert the
7180    // diamond control-flow pattern.  The incoming instruction knows the
7181    // destination vreg to set, the condition code register to branch on, the
7182    // true/false values to select between, and a branch opcode to use.
7183    const BasicBlock *LLVM_BB = BB->getBasicBlock();
7184    MachineFunction::iterator It = BB;
7185    ++It;
7186
7187    //  thisMBB:
7188    //  ...
7189    //   TrueVal = ...
7190    //   cmpTY ccX, r1, r2
7191    //   bCC copy1MBB
7192    //   fallthrough --> copy0MBB
7193    MachineBasicBlock *thisMBB  = BB;
7194    MachineFunction *F = BB->getParent();
7195    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
7196    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
7197    F->insert(It, copy0MBB);
7198    F->insert(It, sinkMBB);
7199
7200    // Transfer the remainder of BB and its successor edges to sinkMBB.
7201    sinkMBB->splice(sinkMBB->begin(), BB,
7202                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
7203    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
7204
7205    BB->addSuccessor(copy0MBB);
7206    BB->addSuccessor(sinkMBB);
7207
7208    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
7209      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
7210
7211    //  copy0MBB:
7212    //   %FalseValue = ...
7213    //   # fallthrough to sinkMBB
7214    BB = copy0MBB;
7215
7216    // Update machine-CFG edges
7217    BB->addSuccessor(sinkMBB);
7218
7219    //  sinkMBB:
7220    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7221    //  ...
7222    BB = sinkMBB;
7223    BuildMI(*BB, BB->begin(), dl,
7224            TII->get(ARM::PHI), MI->getOperand(0).getReg())
7225      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
7226      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
7227
7228    MI->eraseFromParent();   // The pseudo instruction is gone now.
7229    return BB;
7230  }
7231
7232  case ARM::BCCi64:
7233  case ARM::BCCZi64: {
7234    // If there is an unconditional branch to the other successor, remove it.
7235    BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
7236
7237    // Compare both parts that make up the double comparison separately for
7238    // equality.
7239    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
7240
7241    unsigned LHS1 = MI->getOperand(1).getReg();
7242    unsigned LHS2 = MI->getOperand(2).getReg();
7243    if (RHSisZero) {
7244      AddDefaultPred(BuildMI(BB, dl,
7245                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
7246                     .addReg(LHS1).addImm(0));
7247      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
7248        .addReg(LHS2).addImm(0)
7249        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
7250    } else {
7251      unsigned RHS1 = MI->getOperand(3).getReg();
7252      unsigned RHS2 = MI->getOperand(4).getReg();
7253      AddDefaultPred(BuildMI(BB, dl,
7254                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
7255                     .addReg(LHS1).addReg(RHS1));
7256      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
7257        .addReg(LHS2).addReg(RHS2)
7258        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
7259    }
7260
7261    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
7262    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
7263    if (MI->getOperand(0).getImm() == ARMCC::NE)
7264      std::swap(destMBB, exitMBB);
7265
7266    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
7267      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
7268    if (isThumb2)
7269      AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
7270    else
7271      BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
7272
7273    MI->eraseFromParent();   // The pseudo instruction is gone now.
7274    return BB;
7275  }
7276
7277  case ARM::Int_eh_sjlj_setjmp:
7278  case ARM::Int_eh_sjlj_setjmp_nofp:
7279  case ARM::tInt_eh_sjlj_setjmp:
7280  case ARM::t2Int_eh_sjlj_setjmp:
7281  case ARM::t2Int_eh_sjlj_setjmp_nofp:
7282    EmitSjLjDispatchBlock(MI, BB);
7283    return BB;
7284
7285  case ARM::ABS:
7286  case ARM::t2ABS: {
7287    // To insert an ABS instruction, we have to insert the
7288    // diamond control-flow pattern.  The incoming instruction knows the
7289    // source vreg to test against 0, the destination vreg to set,
7290    // the condition code register to branch on, the
7291    // true/false values to select between, and a branch opcode to use.
7292    // It transforms
7293    //     V1 = ABS V0
7294    // into
7295    //     V2 = MOVS V0
7296    //     BCC                      (branch to SinkBB if V0 >= 0)
7297    //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
7298    //     SinkBB: V1 = PHI(V2, V3)
7299    const BasicBlock *LLVM_BB = BB->getBasicBlock();
7300    MachineFunction::iterator BBI = BB;
7301    ++BBI;
7302    MachineFunction *Fn = BB->getParent();
7303    MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
7304    MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
7305    Fn->insert(BBI, RSBBB);
7306    Fn->insert(BBI, SinkBB);
7307
7308    unsigned int ABSSrcReg = MI->getOperand(1).getReg();
7309    unsigned int ABSDstReg = MI->getOperand(0).getReg();
7310    bool isThumb2 = Subtarget->isThumb2();
7311    MachineRegisterInfo &MRI = Fn->getRegInfo();
7312    // In Thumb mode S must not be specified if source register is the SP or
7313    // PC and if destination register is the SP, so restrict register class
7314    unsigned NewRsbDstReg = MRI.createVirtualRegister(isThumb2 ?
7315      (const TargetRegisterClass*)&ARM::rGPRRegClass :
7316      (const TargetRegisterClass*)&ARM::GPRRegClass);
7317
7318    // Transfer the remainder of BB and its successor edges to sinkMBB.
7319    SinkBB->splice(SinkBB->begin(), BB,
7320                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
7321    SinkBB->transferSuccessorsAndUpdatePHIs(BB);
7322
7323    BB->addSuccessor(RSBBB);
7324    BB->addSuccessor(SinkBB);
7325
7326    // fall through to SinkMBB
7327    RSBBB->addSuccessor(SinkBB);
7328
7329    // insert a cmp at the end of BB
7330    AddDefaultPred(BuildMI(BB, dl,
7331                           TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
7332                   .addReg(ABSSrcReg).addImm(0));
7333
7334    // insert a bcc with opposite CC to ARMCC::MI at the end of BB
7335    BuildMI(BB, dl,
7336      TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
7337      .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
7338
7339    // insert rsbri in RSBBB
7340    // Note: BCC and rsbri will be converted into predicated rsbmi
7341    // by if-conversion pass
7342    BuildMI(*RSBBB, RSBBB->begin(), dl,
7343      TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
7344      .addReg(ABSSrcReg, RegState::Kill)
7345      .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
7346
7347    // insert PHI in SinkBB,
7348    // reuse ABSDstReg to not change uses of ABS instruction
7349    BuildMI(*SinkBB, SinkBB->begin(), dl,
7350      TII->get(ARM::PHI), ABSDstReg)
7351      .addReg(NewRsbDstReg).addMBB(RSBBB)
7352      .addReg(ABSSrcReg).addMBB(BB);
7353
7354    // remove ABS instruction
7355    MI->eraseFromParent();
7356
7357    // return last added BB
7358    return SinkBB;
7359  }
7360  case ARM::COPY_STRUCT_BYVAL_I32:
7361    ++NumLoopByVals;
7362    return EmitStructByval(MI, BB);
7363  }
7364}
7365
7366void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
7367                                                      SDNode *Node) const {
7368  if (!MI->hasPostISelHook()) {
7369    assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
7370           "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'");
7371    return;
7372  }
7373
7374  const MCInstrDesc *MCID = &MI->getDesc();
7375  // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
7376  // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
7377  // operand is still set to noreg. If needed, set the optional operand's
7378  // register to CPSR, and remove the redundant implicit def.
7379  //
7380  // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
7381
7382  // Rename pseudo opcodes.
7383  unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
7384  if (NewOpc) {
7385    const ARMBaseInstrInfo *TII =
7386      static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo());
7387    MCID = &TII->get(NewOpc);
7388
7389    assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
7390           "converted opcode should be the same except for cc_out");
7391
7392    MI->setDesc(*MCID);
7393
7394    // Add the optional cc_out operand
7395    MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
7396  }
7397  unsigned ccOutIdx = MCID->getNumOperands() - 1;
7398
7399  // Any ARM instruction that sets the 's' bit should specify an optional
7400  // "cc_out" operand in the last operand position.
7401  if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
7402    assert(!NewOpc && "Optional cc_out operand required");
7403    return;
7404  }
7405  // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
7406  // since we already have an optional CPSR def.
7407  bool definesCPSR = false;
7408  bool deadCPSR = false;
7409  for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
7410       i != e; ++i) {
7411    const MachineOperand &MO = MI->getOperand(i);
7412    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
7413      definesCPSR = true;
7414      if (MO.isDead())
7415        deadCPSR = true;
7416      MI->RemoveOperand(i);
7417      break;
7418    }
7419  }
7420  if (!definesCPSR) {
7421    assert(!NewOpc && "Optional cc_out operand required");
7422    return;
7423  }
7424  assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
7425  if (deadCPSR) {
7426    assert(!MI->getOperand(ccOutIdx).getReg() &&
7427           "expect uninitialized optional cc_out operand");
7428    return;
7429  }
7430
7431  // If this instruction was defined with an optional CPSR def and its dag node
7432  // had a live implicit CPSR def, then activate the optional CPSR def.
7433  MachineOperand &MO = MI->getOperand(ccOutIdx);
7434  MO.setReg(ARM::CPSR);
7435  MO.setIsDef(true);
7436}
7437
7438//===----------------------------------------------------------------------===//
7439//                           ARM Optimization Hooks
7440//===----------------------------------------------------------------------===//
7441
7442// Helper function that checks if N is a null or all ones constant.
7443static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
7444  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
7445  if (!C)
7446    return false;
7447  return AllOnes ? C->isAllOnesValue() : C->isNullValue();
7448}
7449
7450// Return true if N is conditionally 0 or all ones.
7451// Detects these expressions where cc is an i1 value:
7452//
7453//   (select cc 0, y)   [AllOnes=0]
7454//   (select cc y, 0)   [AllOnes=0]
7455//   (zext cc)          [AllOnes=0]
7456//   (sext cc)          [AllOnes=0/1]
7457//   (select cc -1, y)  [AllOnes=1]
7458//   (select cc y, -1)  [AllOnes=1]
7459//
7460// Invert is set when N is the null/all ones constant when CC is false.
7461// OtherOp is set to the alternative value of N.
7462static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
7463                                       SDValue &CC, bool &Invert,
7464                                       SDValue &OtherOp,
7465                                       SelectionDAG &DAG) {
7466  switch (N->getOpcode()) {
7467  default: return false;
7468  case ISD::SELECT: {
7469    CC = N->getOperand(0);
7470    SDValue N1 = N->getOperand(1);
7471    SDValue N2 = N->getOperand(2);
7472    if (isZeroOrAllOnes(N1, AllOnes)) {
7473      Invert = false;
7474      OtherOp = N2;
7475      return true;
7476    }
7477    if (isZeroOrAllOnes(N2, AllOnes)) {
7478      Invert = true;
7479      OtherOp = N1;
7480      return true;
7481    }
7482    return false;
7483  }
7484  case ISD::ZERO_EXTEND:
7485    // (zext cc) can never be the all ones value.
7486    if (AllOnes)
7487      return false;
7488    // Fall through.
7489  case ISD::SIGN_EXTEND: {
7490    EVT VT = N->getValueType(0);
7491    CC = N->getOperand(0);
7492    if (CC.getValueType() != MVT::i1)
7493      return false;
7494    Invert = !AllOnes;
7495    if (AllOnes)
7496      // When looking for an AllOnes constant, N is an sext, and the 'other'
7497      // value is 0.
7498      OtherOp = DAG.getConstant(0, VT);
7499    else if (N->getOpcode() == ISD::ZERO_EXTEND)
7500      // When looking for a 0 constant, N can be zext or sext.
7501      OtherOp = DAG.getConstant(1, VT);
7502    else
7503      OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
7504    return true;
7505  }
7506  }
7507}
7508
7509// Combine a constant select operand into its use:
7510//
7511//   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
7512//   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
7513//   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
7514//   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
7515//   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
7516//
7517// The transform is rejected if the select doesn't have a constant operand that
7518// is null, or all ones when AllOnes is set.
7519//
7520// Also recognize sext/zext from i1:
7521//
7522//   (add (zext cc), x) -> (select cc (add x, 1), x)
7523//   (add (sext cc), x) -> (select cc (add x, -1), x)
7524//
7525// These transformations eventually create predicated instructions.
7526//
7527// @param N       The node to transform.
7528// @param Slct    The N operand that is a select.
7529// @param OtherOp The other N operand (x above).
7530// @param DCI     Context.
7531// @param AllOnes Require the select constant to be all ones instead of null.
7532// @returns The new node, or SDValue() on failure.
7533static
7534SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7535                            TargetLowering::DAGCombinerInfo &DCI,
7536                            bool AllOnes = false) {
7537  SelectionDAG &DAG = DCI.DAG;
7538  EVT VT = N->getValueType(0);
7539  SDValue NonConstantVal;
7540  SDValue CCOp;
7541  bool SwapSelectOps;
7542  if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
7543                                  NonConstantVal, DAG))
7544    return SDValue();
7545
7546  // Slct is now know to be the desired identity constant when CC is true.
7547  SDValue TrueVal = OtherOp;
7548  SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
7549                                 OtherOp, NonConstantVal);
7550  // Unless SwapSelectOps says CC should be false.
7551  if (SwapSelectOps)
7552    std::swap(TrueVal, FalseVal);
7553
7554  return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
7555                     CCOp, TrueVal, FalseVal);
7556}
7557
7558// Attempt combineSelectAndUse on each operand of a commutative operator N.
7559static
7560SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
7561                                       TargetLowering::DAGCombinerInfo &DCI) {
7562  SDValue N0 = N->getOperand(0);
7563  SDValue N1 = N->getOperand(1);
7564  if (N0.getNode()->hasOneUse()) {
7565    SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes);
7566    if (Result.getNode())
7567      return Result;
7568  }
7569  if (N1.getNode()->hasOneUse()) {
7570    SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes);
7571    if (Result.getNode())
7572      return Result;
7573  }
7574  return SDValue();
7575}
7576
7577// AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
7578// (only after legalization).
7579static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
7580                                 TargetLowering::DAGCombinerInfo &DCI,
7581                                 const ARMSubtarget *Subtarget) {
7582
7583  // Only perform optimization if after legalize, and if NEON is available. We
7584  // also expected both operands to be BUILD_VECTORs.
7585  if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
7586      || N0.getOpcode() != ISD::BUILD_VECTOR
7587      || N1.getOpcode() != ISD::BUILD_VECTOR)
7588    return SDValue();
7589
7590  // Check output type since VPADDL operand elements can only be 8, 16, or 32.
7591  EVT VT = N->getValueType(0);
7592  if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
7593    return SDValue();
7594
7595  // Check that the vector operands are of the right form.
7596  // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
7597  // operands, where N is the size of the formed vector.
7598  // Each EXTRACT_VECTOR should have the same input vector and odd or even
7599  // index such that we have a pair wise add pattern.
7600
7601  // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
7602  if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7603    return SDValue();
7604  SDValue Vec = N0->getOperand(0)->getOperand(0);
7605  SDNode *V = Vec.getNode();
7606  unsigned nextIndex = 0;
7607
7608  // For each operands to the ADD which are BUILD_VECTORs,
7609  // check to see if each of their operands are an EXTRACT_VECTOR with
7610  // the same vector and appropriate index.
7611  for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
7612    if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
7613        && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7614
7615      SDValue ExtVec0 = N0->getOperand(i);
7616      SDValue ExtVec1 = N1->getOperand(i);
7617
7618      // First operand is the vector, verify its the same.
7619      if (V != ExtVec0->getOperand(0).getNode() ||
7620          V != ExtVec1->getOperand(0).getNode())
7621        return SDValue();
7622
7623      // Second is the constant, verify its correct.
7624      ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
7625      ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
7626
7627      // For the constant, we want to see all the even or all the odd.
7628      if (!C0 || !C1 || C0->getZExtValue() != nextIndex
7629          || C1->getZExtValue() != nextIndex+1)
7630        return SDValue();
7631
7632      // Increment index.
7633      nextIndex+=2;
7634    } else
7635      return SDValue();
7636  }
7637
7638  // Create VPADDL node.
7639  SelectionDAG &DAG = DCI.DAG;
7640  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7641
7642  // Build operand list.
7643  SmallVector<SDValue, 8> Ops;
7644  Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
7645                                TLI.getPointerTy()));
7646
7647  // Input is the vector.
7648  Ops.push_back(Vec);
7649
7650  // Get widened type and narrowed type.
7651  MVT widenType;
7652  unsigned numElem = VT.getVectorNumElements();
7653
7654  EVT inputLaneType = Vec.getValueType().getVectorElementType();
7655  switch (inputLaneType.getSimpleVT().SimpleTy) {
7656    case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
7657    case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
7658    case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
7659    default:
7660      llvm_unreachable("Invalid vector element type for padd optimization.");
7661  }
7662
7663  SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), widenType, Ops);
7664  unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
7665  return DAG.getNode(ExtOp, SDLoc(N), VT, tmp);
7666}
7667
7668static SDValue findMUL_LOHI(SDValue V) {
7669  if (V->getOpcode() == ISD::UMUL_LOHI ||
7670      V->getOpcode() == ISD::SMUL_LOHI)
7671    return V;
7672  return SDValue();
7673}
7674
7675static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode,
7676                                     TargetLowering::DAGCombinerInfo &DCI,
7677                                     const ARMSubtarget *Subtarget) {
7678
7679  if (Subtarget->isThumb1Only()) return SDValue();
7680
7681  // Only perform the checks after legalize when the pattern is available.
7682  if (DCI.isBeforeLegalize()) return SDValue();
7683
7684  // Look for multiply add opportunities.
7685  // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
7686  // each add nodes consumes a value from ISD::UMUL_LOHI and there is
7687  // a glue link from the first add to the second add.
7688  // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
7689  // a S/UMLAL instruction.
7690  //          loAdd   UMUL_LOHI
7691  //            \    / :lo    \ :hi
7692  //             \  /          \          [no multiline comment]
7693  //              ADDC         |  hiAdd
7694  //                 \ :glue  /  /
7695  //                  \      /  /
7696  //                    ADDE
7697  //
7698  assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC");
7699  SDValue AddcOp0 = AddcNode->getOperand(0);
7700  SDValue AddcOp1 = AddcNode->getOperand(1);
7701
7702  // Check if the two operands are from the same mul_lohi node.
7703  if (AddcOp0.getNode() == AddcOp1.getNode())
7704    return SDValue();
7705
7706  assert(AddcNode->getNumValues() == 2 &&
7707         AddcNode->getValueType(0) == MVT::i32 &&
7708         "Expect ADDC with two result values. First: i32");
7709
7710  // Check that we have a glued ADDC node.
7711  if (AddcNode->getValueType(1) != MVT::Glue)
7712    return SDValue();
7713
7714  // Check that the ADDC adds the low result of the S/UMUL_LOHI.
7715  if (AddcOp0->getOpcode() != ISD::UMUL_LOHI &&
7716      AddcOp0->getOpcode() != ISD::SMUL_LOHI &&
7717      AddcOp1->getOpcode() != ISD::UMUL_LOHI &&
7718      AddcOp1->getOpcode() != ISD::SMUL_LOHI)
7719    return SDValue();
7720
7721  // Look for the glued ADDE.
7722  SDNode* AddeNode = AddcNode->getGluedUser();
7723  if (!AddeNode)
7724    return SDValue();
7725
7726  // Make sure it is really an ADDE.
7727  if (AddeNode->getOpcode() != ISD::ADDE)
7728    return SDValue();
7729
7730  assert(AddeNode->getNumOperands() == 3 &&
7731         AddeNode->getOperand(2).getValueType() == MVT::Glue &&
7732         "ADDE node has the wrong inputs");
7733
7734  // Check for the triangle shape.
7735  SDValue AddeOp0 = AddeNode->getOperand(0);
7736  SDValue AddeOp1 = AddeNode->getOperand(1);
7737
7738  // Make sure that the ADDE operands are not coming from the same node.
7739  if (AddeOp0.getNode() == AddeOp1.getNode())
7740    return SDValue();
7741
7742  // Find the MUL_LOHI node walking up ADDE's operands.
7743  bool IsLeftOperandMUL = false;
7744  SDValue MULOp = findMUL_LOHI(AddeOp0);
7745  if (MULOp == SDValue())
7746   MULOp = findMUL_LOHI(AddeOp1);
7747  else
7748    IsLeftOperandMUL = true;
7749  if (MULOp == SDValue())
7750     return SDValue();
7751
7752  // Figure out the right opcode.
7753  unsigned Opc = MULOp->getOpcode();
7754  unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
7755
7756  // Figure out the high and low input values to the MLAL node.
7757  SDValue* HiMul = &MULOp;
7758  SDValue* HiAdd = nullptr;
7759  SDValue* LoMul = nullptr;
7760  SDValue* LowAdd = nullptr;
7761
7762  if (IsLeftOperandMUL)
7763    HiAdd = &AddeOp1;
7764  else
7765    HiAdd = &AddeOp0;
7766
7767
7768  if (AddcOp0->getOpcode() == Opc) {
7769    LoMul = &AddcOp0;
7770    LowAdd = &AddcOp1;
7771  }
7772  if (AddcOp1->getOpcode() == Opc) {
7773    LoMul = &AddcOp1;
7774    LowAdd = &AddcOp0;
7775  }
7776
7777  if (!LoMul)
7778    return SDValue();
7779
7780  if (LoMul->getNode() != HiMul->getNode())
7781    return SDValue();
7782
7783  // Create the merged node.
7784  SelectionDAG &DAG = DCI.DAG;
7785
7786  // Build operand list.
7787  SmallVector<SDValue, 8> Ops;
7788  Ops.push_back(LoMul->getOperand(0));
7789  Ops.push_back(LoMul->getOperand(1));
7790  Ops.push_back(*LowAdd);
7791  Ops.push_back(*HiAdd);
7792
7793  SDValue MLALNode =  DAG.getNode(FinalOpc, SDLoc(AddcNode),
7794                                 DAG.getVTList(MVT::i32, MVT::i32), Ops);
7795
7796  // Replace the ADDs' nodes uses by the MLA node's values.
7797  SDValue HiMLALResult(MLALNode.getNode(), 1);
7798  DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
7799
7800  SDValue LoMLALResult(MLALNode.getNode(), 0);
7801  DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
7802
7803  // Return original node to notify the driver to stop replacing.
7804  SDValue resNode(AddcNode, 0);
7805  return resNode;
7806}
7807
7808/// PerformADDCCombine - Target-specific dag combine transform from
7809/// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL.
7810static SDValue PerformADDCCombine(SDNode *N,
7811                                 TargetLowering::DAGCombinerInfo &DCI,
7812                                 const ARMSubtarget *Subtarget) {
7813
7814  return AddCombineTo64bitMLAL(N, DCI, Subtarget);
7815
7816}
7817
7818/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
7819/// operands N0 and N1.  This is a helper for PerformADDCombine that is
7820/// called with the default operands, and if that fails, with commuted
7821/// operands.
7822static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
7823                                          TargetLowering::DAGCombinerInfo &DCI,
7824                                          const ARMSubtarget *Subtarget){
7825
7826  // Attempt to create vpaddl for this add.
7827  SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
7828  if (Result.getNode())
7829    return Result;
7830
7831  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
7832  if (N0.getNode()->hasOneUse()) {
7833    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
7834    if (Result.getNode()) return Result;
7835  }
7836  return SDValue();
7837}
7838
7839/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
7840///
7841static SDValue PerformADDCombine(SDNode *N,
7842                                 TargetLowering::DAGCombinerInfo &DCI,
7843                                 const ARMSubtarget *Subtarget) {
7844  SDValue N0 = N->getOperand(0);
7845  SDValue N1 = N->getOperand(1);
7846
7847  // First try with the default operand order.
7848  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
7849  if (Result.getNode())
7850    return Result;
7851
7852  // If that didn't work, try again with the operands commuted.
7853  return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
7854}
7855
7856/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
7857///
7858static SDValue PerformSUBCombine(SDNode *N,
7859                                 TargetLowering::DAGCombinerInfo &DCI) {
7860  SDValue N0 = N->getOperand(0);
7861  SDValue N1 = N->getOperand(1);
7862
7863  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
7864  if (N1.getNode()->hasOneUse()) {
7865    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
7866    if (Result.getNode()) return Result;
7867  }
7868
7869  return SDValue();
7870}
7871
7872/// PerformVMULCombine
7873/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
7874/// special multiplier accumulator forwarding.
7875///   vmul d3, d0, d2
7876///   vmla d3, d1, d2
7877/// is faster than
7878///   vadd d3, d0, d1
7879///   vmul d3, d3, d2
7880//  However, for (A + B) * (A + B),
7881//    vadd d2, d0, d1
7882//    vmul d3, d0, d2
7883//    vmla d3, d1, d2
7884//  is slower than
7885//    vadd d2, d0, d1
7886//    vmul d3, d2, d2
7887static SDValue PerformVMULCombine(SDNode *N,
7888                                  TargetLowering::DAGCombinerInfo &DCI,
7889                                  const ARMSubtarget *Subtarget) {
7890  if (!Subtarget->hasVMLxForwarding())
7891    return SDValue();
7892
7893  SelectionDAG &DAG = DCI.DAG;
7894  SDValue N0 = N->getOperand(0);
7895  SDValue N1 = N->getOperand(1);
7896  unsigned Opcode = N0.getOpcode();
7897  if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
7898      Opcode != ISD::FADD && Opcode != ISD::FSUB) {
7899    Opcode = N1.getOpcode();
7900    if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
7901        Opcode != ISD::FADD && Opcode != ISD::FSUB)
7902      return SDValue();
7903    std::swap(N0, N1);
7904  }
7905
7906  if (N0 == N1)
7907    return SDValue();
7908
7909  EVT VT = N->getValueType(0);
7910  SDLoc DL(N);
7911  SDValue N00 = N0->getOperand(0);
7912  SDValue N01 = N0->getOperand(1);
7913  return DAG.getNode(Opcode, DL, VT,
7914                     DAG.getNode(ISD::MUL, DL, VT, N00, N1),
7915                     DAG.getNode(ISD::MUL, DL, VT, N01, N1));
7916}
7917
7918static SDValue PerformMULCombine(SDNode *N,
7919                                 TargetLowering::DAGCombinerInfo &DCI,
7920                                 const ARMSubtarget *Subtarget) {
7921  SelectionDAG &DAG = DCI.DAG;
7922
7923  if (Subtarget->isThumb1Only())
7924    return SDValue();
7925
7926  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
7927    return SDValue();
7928
7929  EVT VT = N->getValueType(0);
7930  if (VT.is64BitVector() || VT.is128BitVector())
7931    return PerformVMULCombine(N, DCI, Subtarget);
7932  if (VT != MVT::i32)
7933    return SDValue();
7934
7935  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
7936  if (!C)
7937    return SDValue();
7938
7939  int64_t MulAmt = C->getSExtValue();
7940  unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
7941
7942  ShiftAmt = ShiftAmt & (32 - 1);
7943  SDValue V = N->getOperand(0);
7944  SDLoc DL(N);
7945
7946  SDValue Res;
7947  MulAmt >>= ShiftAmt;
7948
7949  if (MulAmt >= 0) {
7950    if (isPowerOf2_32(MulAmt - 1)) {
7951      // (mul x, 2^N + 1) => (add (shl x, N), x)
7952      Res = DAG.getNode(ISD::ADD, DL, VT,
7953                        V,
7954                        DAG.getNode(ISD::SHL, DL, VT,
7955                                    V,
7956                                    DAG.getConstant(Log2_32(MulAmt - 1),
7957                                                    MVT::i32)));
7958    } else if (isPowerOf2_32(MulAmt + 1)) {
7959      // (mul x, 2^N - 1) => (sub (shl x, N), x)
7960      Res = DAG.getNode(ISD::SUB, DL, VT,
7961                        DAG.getNode(ISD::SHL, DL, VT,
7962                                    V,
7963                                    DAG.getConstant(Log2_32(MulAmt + 1),
7964                                                    MVT::i32)),
7965                        V);
7966    } else
7967      return SDValue();
7968  } else {
7969    uint64_t MulAmtAbs = -MulAmt;
7970    if (isPowerOf2_32(MulAmtAbs + 1)) {
7971      // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
7972      Res = DAG.getNode(ISD::SUB, DL, VT,
7973                        V,
7974                        DAG.getNode(ISD::SHL, DL, VT,
7975                                    V,
7976                                    DAG.getConstant(Log2_32(MulAmtAbs + 1),
7977                                                    MVT::i32)));
7978    } else if (isPowerOf2_32(MulAmtAbs - 1)) {
7979      // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
7980      Res = DAG.getNode(ISD::ADD, DL, VT,
7981                        V,
7982                        DAG.getNode(ISD::SHL, DL, VT,
7983                                    V,
7984                                    DAG.getConstant(Log2_32(MulAmtAbs-1),
7985                                                    MVT::i32)));
7986      Res = DAG.getNode(ISD::SUB, DL, VT,
7987                        DAG.getConstant(0, MVT::i32),Res);
7988
7989    } else
7990      return SDValue();
7991  }
7992
7993  if (ShiftAmt != 0)
7994    Res = DAG.getNode(ISD::SHL, DL, VT,
7995                      Res, DAG.getConstant(ShiftAmt, MVT::i32));
7996
7997  // Do not add new nodes to DAG combiner worklist.
7998  DCI.CombineTo(N, Res, false);
7999  return SDValue();
8000}
8001
8002static SDValue PerformANDCombine(SDNode *N,
8003                                 TargetLowering::DAGCombinerInfo &DCI,
8004                                 const ARMSubtarget *Subtarget) {
8005
8006  // Attempt to use immediate-form VBIC
8007  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
8008  SDLoc dl(N);
8009  EVT VT = N->getValueType(0);
8010  SelectionDAG &DAG = DCI.DAG;
8011
8012  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
8013    return SDValue();
8014
8015  APInt SplatBits, SplatUndef;
8016  unsigned SplatBitSize;
8017  bool HasAnyUndefs;
8018  if (BVN &&
8019      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
8020    if (SplatBitSize <= 64) {
8021      EVT VbicVT;
8022      SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
8023                                      SplatUndef.getZExtValue(), SplatBitSize,
8024                                      DAG, VbicVT, VT.is128BitVector(),
8025                                      OtherModImm);
8026      if (Val.getNode()) {
8027        SDValue Input =
8028          DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
8029        SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
8030        return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
8031      }
8032    }
8033  }
8034
8035  if (!Subtarget->isThumb1Only()) {
8036    // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
8037    SDValue Result = combineSelectAndUseCommutative(N, true, DCI);
8038    if (Result.getNode())
8039      return Result;
8040  }
8041
8042  return SDValue();
8043}
8044
8045/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
8046static SDValue PerformORCombine(SDNode *N,
8047                                TargetLowering::DAGCombinerInfo &DCI,
8048                                const ARMSubtarget *Subtarget) {
8049  // Attempt to use immediate-form VORR
8050  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
8051  SDLoc dl(N);
8052  EVT VT = N->getValueType(0);
8053  SelectionDAG &DAG = DCI.DAG;
8054
8055  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
8056    return SDValue();
8057
8058  APInt SplatBits, SplatUndef;
8059  unsigned SplatBitSize;
8060  bool HasAnyUndefs;
8061  if (BVN && Subtarget->hasNEON() &&
8062      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
8063    if (SplatBitSize <= 64) {
8064      EVT VorrVT;
8065      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
8066                                      SplatUndef.getZExtValue(), SplatBitSize,
8067                                      DAG, VorrVT, VT.is128BitVector(),
8068                                      OtherModImm);
8069      if (Val.getNode()) {
8070        SDValue Input =
8071          DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
8072        SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
8073        return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
8074      }
8075    }
8076  }
8077
8078  if (!Subtarget->isThumb1Only()) {
8079    // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
8080    SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
8081    if (Result.getNode())
8082      return Result;
8083  }
8084
8085  // The code below optimizes (or (and X, Y), Z).
8086  // The AND operand needs to have a single user to make these optimizations
8087  // profitable.
8088  SDValue N0 = N->getOperand(0);
8089  if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
8090    return SDValue();
8091  SDValue N1 = N->getOperand(1);
8092
8093  // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
8094  if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
8095      DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
8096    APInt SplatUndef;
8097    unsigned SplatBitSize;
8098    bool HasAnyUndefs;
8099
8100    APInt SplatBits0, SplatBits1;
8101    BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
8102    BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
8103    // Ensure that the second operand of both ands are constants
8104    if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
8105                                      HasAnyUndefs) && !HasAnyUndefs) {
8106        if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
8107                                          HasAnyUndefs) && !HasAnyUndefs) {
8108            // Ensure that the bit width of the constants are the same and that
8109            // the splat arguments are logical inverses as per the pattern we
8110            // are trying to simplify.
8111            if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
8112                SplatBits0 == ~SplatBits1) {
8113                // Canonicalize the vector type to make instruction selection
8114                // simpler.
8115                EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
8116                SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
8117                                             N0->getOperand(1),
8118                                             N0->getOperand(0),
8119                                             N1->getOperand(0));
8120                return DAG.getNode(ISD::BITCAST, dl, VT, Result);
8121            }
8122        }
8123    }
8124  }
8125
8126  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
8127  // reasonable.
8128
8129  // BFI is only available on V6T2+
8130  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
8131    return SDValue();
8132
8133  SDLoc DL(N);
8134  // 1) or (and A, mask), val => ARMbfi A, val, mask
8135  //      iff (val & mask) == val
8136  //
8137  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
8138  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
8139  //          && mask == ~mask2
8140  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
8141  //          && ~mask == mask2
8142  //  (i.e., copy a bitfield value into another bitfield of the same width)
8143
8144  if (VT != MVT::i32)
8145    return SDValue();
8146
8147  SDValue N00 = N0.getOperand(0);
8148
8149  // The value and the mask need to be constants so we can verify this is
8150  // actually a bitfield set. If the mask is 0xffff, we can do better
8151  // via a movt instruction, so don't use BFI in that case.
8152  SDValue MaskOp = N0.getOperand(1);
8153  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
8154  if (!MaskC)
8155    return SDValue();
8156  unsigned Mask = MaskC->getZExtValue();
8157  if (Mask == 0xffff)
8158    return SDValue();
8159  SDValue Res;
8160  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
8161  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
8162  if (N1C) {
8163    unsigned Val = N1C->getZExtValue();
8164    if ((Val & ~Mask) != Val)
8165      return SDValue();
8166
8167    if (ARM::isBitFieldInvertedMask(Mask)) {
8168      Val >>= countTrailingZeros(~Mask);
8169
8170      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
8171                        DAG.getConstant(Val, MVT::i32),
8172                        DAG.getConstant(Mask, MVT::i32));
8173
8174      // Do not add new nodes to DAG combiner worklist.
8175      DCI.CombineTo(N, Res, false);
8176      return SDValue();
8177    }
8178  } else if (N1.getOpcode() == ISD::AND) {
8179    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
8180    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
8181    if (!N11C)
8182      return SDValue();
8183    unsigned Mask2 = N11C->getZExtValue();
8184
8185    // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
8186    // as is to match.
8187    if (ARM::isBitFieldInvertedMask(Mask) &&
8188        (Mask == ~Mask2)) {
8189      // The pack halfword instruction works better for masks that fit it,
8190      // so use that when it's available.
8191      if (Subtarget->hasT2ExtractPack() &&
8192          (Mask == 0xffff || Mask == 0xffff0000))
8193        return SDValue();
8194      // 2a
8195      unsigned amt = countTrailingZeros(Mask2);
8196      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
8197                        DAG.getConstant(amt, MVT::i32));
8198      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
8199                        DAG.getConstant(Mask, MVT::i32));
8200      // Do not add new nodes to DAG combiner worklist.
8201      DCI.CombineTo(N, Res, false);
8202      return SDValue();
8203    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
8204               (~Mask == Mask2)) {
8205      // The pack halfword instruction works better for masks that fit it,
8206      // so use that when it's available.
8207      if (Subtarget->hasT2ExtractPack() &&
8208          (Mask2 == 0xffff || Mask2 == 0xffff0000))
8209        return SDValue();
8210      // 2b
8211      unsigned lsb = countTrailingZeros(Mask);
8212      Res = DAG.getNode(ISD::SRL, DL, VT, N00,
8213                        DAG.getConstant(lsb, MVT::i32));
8214      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
8215                        DAG.getConstant(Mask2, MVT::i32));
8216      // Do not add new nodes to DAG combiner worklist.
8217      DCI.CombineTo(N, Res, false);
8218      return SDValue();
8219    }
8220  }
8221
8222  if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
8223      N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
8224      ARM::isBitFieldInvertedMask(~Mask)) {
8225    // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
8226    // where lsb(mask) == #shamt and masked bits of B are known zero.
8227    SDValue ShAmt = N00.getOperand(1);
8228    unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
8229    unsigned LSB = countTrailingZeros(Mask);
8230    if (ShAmtC != LSB)
8231      return SDValue();
8232
8233    Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
8234                      DAG.getConstant(~Mask, MVT::i32));
8235
8236    // Do not add new nodes to DAG combiner worklist.
8237    DCI.CombineTo(N, Res, false);
8238  }
8239
8240  return SDValue();
8241}
8242
8243static SDValue PerformXORCombine(SDNode *N,
8244                                 TargetLowering::DAGCombinerInfo &DCI,
8245                                 const ARMSubtarget *Subtarget) {
8246  EVT VT = N->getValueType(0);
8247  SelectionDAG &DAG = DCI.DAG;
8248
8249  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
8250    return SDValue();
8251
8252  if (!Subtarget->isThumb1Only()) {
8253    // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
8254    SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
8255    if (Result.getNode())
8256      return Result;
8257  }
8258
8259  return SDValue();
8260}
8261
8262/// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
8263/// the bits being cleared by the AND are not demanded by the BFI.
8264static SDValue PerformBFICombine(SDNode *N,
8265                                 TargetLowering::DAGCombinerInfo &DCI) {
8266  SDValue N1 = N->getOperand(1);
8267  if (N1.getOpcode() == ISD::AND) {
8268    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
8269    if (!N11C)
8270      return SDValue();
8271    unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
8272    unsigned LSB = countTrailingZeros(~InvMask);
8273    unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
8274    unsigned Mask = (1 << Width)-1;
8275    unsigned Mask2 = N11C->getZExtValue();
8276    if ((Mask & (~Mask2)) == 0)
8277      return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
8278                             N->getOperand(0), N1.getOperand(0),
8279                             N->getOperand(2));
8280  }
8281  return SDValue();
8282}
8283
8284/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
8285/// ARMISD::VMOVRRD.
8286static SDValue PerformVMOVRRDCombine(SDNode *N,
8287                                     TargetLowering::DAGCombinerInfo &DCI) {
8288  // vmovrrd(vmovdrr x, y) -> x,y
8289  SDValue InDouble = N->getOperand(0);
8290  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
8291    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
8292
8293  // vmovrrd(load f64) -> (load i32), (load i32)
8294  SDNode *InNode = InDouble.getNode();
8295  if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
8296      InNode->getValueType(0) == MVT::f64 &&
8297      InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
8298      !cast<LoadSDNode>(InNode)->isVolatile()) {
8299    // TODO: Should this be done for non-FrameIndex operands?
8300    LoadSDNode *LD = cast<LoadSDNode>(InNode);
8301
8302    SelectionDAG &DAG = DCI.DAG;
8303    SDLoc DL(LD);
8304    SDValue BasePtr = LD->getBasePtr();
8305    SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
8306                                 LD->getPointerInfo(), LD->isVolatile(),
8307                                 LD->isNonTemporal(), LD->isInvariant(),
8308                                 LD->getAlignment());
8309
8310    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
8311                                    DAG.getConstant(4, MVT::i32));
8312    SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
8313                                 LD->getPointerInfo(), LD->isVolatile(),
8314                                 LD->isNonTemporal(), LD->isInvariant(),
8315                                 std::min(4U, LD->getAlignment() / 2));
8316
8317    DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
8318    SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
8319    DCI.RemoveFromWorklist(LD);
8320    DAG.DeleteNode(LD);
8321    return Result;
8322  }
8323
8324  return SDValue();
8325}
8326
8327/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
8328/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
8329static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
8330  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
8331  SDValue Op0 = N->getOperand(0);
8332  SDValue Op1 = N->getOperand(1);
8333  if (Op0.getOpcode() == ISD::BITCAST)
8334    Op0 = Op0.getOperand(0);
8335  if (Op1.getOpcode() == ISD::BITCAST)
8336    Op1 = Op1.getOperand(0);
8337  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
8338      Op0.getNode() == Op1.getNode() &&
8339      Op0.getResNo() == 0 && Op1.getResNo() == 1)
8340    return DAG.getNode(ISD::BITCAST, SDLoc(N),
8341                       N->getValueType(0), Op0.getOperand(0));
8342  return SDValue();
8343}
8344
8345/// PerformSTORECombine - Target-specific dag combine xforms for
8346/// ISD::STORE.
8347static SDValue PerformSTORECombine(SDNode *N,
8348                                   TargetLowering::DAGCombinerInfo &DCI) {
8349  StoreSDNode *St = cast<StoreSDNode>(N);
8350  if (St->isVolatile())
8351    return SDValue();
8352
8353  // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
8354  // pack all of the elements in one place.  Next, store to memory in fewer
8355  // chunks.
8356  SDValue StVal = St->getValue();
8357  EVT VT = StVal.getValueType();
8358  if (St->isTruncatingStore() && VT.isVector()) {
8359    SelectionDAG &DAG = DCI.DAG;
8360    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8361    EVT StVT = St->getMemoryVT();
8362    unsigned NumElems = VT.getVectorNumElements();
8363    assert(StVT != VT && "Cannot truncate to the same type");
8364    unsigned FromEltSz = VT.getVectorElementType().getSizeInBits();
8365    unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits();
8366
8367    // From, To sizes and ElemCount must be pow of two
8368    if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
8369
8370    // We are going to use the original vector elt for storing.
8371    // Accumulated smaller vector elements must be a multiple of the store size.
8372    if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
8373
8374    unsigned SizeRatio  = FromEltSz / ToEltSz;
8375    assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
8376
8377    // Create a type on which we perform the shuffle.
8378    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
8379                                     NumElems*SizeRatio);
8380    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
8381
8382    SDLoc DL(St);
8383    SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
8384    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
8385    for (unsigned i = 0; i < NumElems; ++i) ShuffleVec[i] = i * SizeRatio;
8386
8387    // Can't shuffle using an illegal type.
8388    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
8389
8390    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
8391                                DAG.getUNDEF(WideVec.getValueType()),
8392                                ShuffleVec.data());
8393    // At this point all of the data is stored at the bottom of the
8394    // register. We now need to save it to mem.
8395
8396    // Find the largest store unit
8397    MVT StoreType = MVT::i8;
8398    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
8399         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
8400      MVT Tp = (MVT::SimpleValueType)tp;
8401      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
8402        StoreType = Tp;
8403    }
8404    // Didn't find a legal store type.
8405    if (!TLI.isTypeLegal(StoreType))
8406      return SDValue();
8407
8408    // Bitcast the original vector into a vector of store-size units
8409    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
8410            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
8411    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
8412    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
8413    SmallVector<SDValue, 8> Chains;
8414    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
8415                                        TLI.getPointerTy());
8416    SDValue BasePtr = St->getBasePtr();
8417
8418    // Perform one or more big stores into memory.
8419    unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
8420    for (unsigned I = 0; I < E; I++) {
8421      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
8422                                   StoreType, ShuffWide,
8423                                   DAG.getIntPtrConstant(I));
8424      SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
8425                                St->getPointerInfo(), St->isVolatile(),
8426                                St->isNonTemporal(), St->getAlignment());
8427      BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
8428                            Increment);
8429      Chains.push_back(Ch);
8430    }
8431    return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
8432  }
8433
8434  if (!ISD::isNormalStore(St))
8435    return SDValue();
8436
8437  // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
8438  // ARM stores of arguments in the same cache line.
8439  if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
8440      StVal.getNode()->hasOneUse()) {
8441    SelectionDAG  &DAG = DCI.DAG;
8442    bool isBigEndian = DAG.getTargetLoweringInfo().isBigEndian();
8443    SDLoc DL(St);
8444    SDValue BasePtr = St->getBasePtr();
8445    SDValue NewST1 = DAG.getStore(St->getChain(), DL,
8446                                  StVal.getNode()->getOperand(isBigEndian ? 1 : 0 ),
8447                                  BasePtr, St->getPointerInfo(), St->isVolatile(),
8448                                  St->isNonTemporal(), St->getAlignment());
8449
8450    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
8451                                    DAG.getConstant(4, MVT::i32));
8452    return DAG.getStore(NewST1.getValue(0), DL,
8453                        StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
8454                        OffsetPtr, St->getPointerInfo(), St->isVolatile(),
8455                        St->isNonTemporal(),
8456                        std::min(4U, St->getAlignment() / 2));
8457  }
8458
8459  if (StVal.getValueType() != MVT::i64 ||
8460      StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8461    return SDValue();
8462
8463  // Bitcast an i64 store extracted from a vector to f64.
8464  // Otherwise, the i64 value will be legalized to a pair of i32 values.
8465  SelectionDAG &DAG = DCI.DAG;
8466  SDLoc dl(StVal);
8467  SDValue IntVec = StVal.getOperand(0);
8468  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
8469                                 IntVec.getValueType().getVectorNumElements());
8470  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
8471  SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8472                               Vec, StVal.getOperand(1));
8473  dl = SDLoc(N);
8474  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
8475  // Make the DAGCombiner fold the bitcasts.
8476  DCI.AddToWorklist(Vec.getNode());
8477  DCI.AddToWorklist(ExtElt.getNode());
8478  DCI.AddToWorklist(V.getNode());
8479  return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
8480                      St->getPointerInfo(), St->isVolatile(),
8481                      St->isNonTemporal(), St->getAlignment(),
8482                      St->getTBAAInfo());
8483}
8484
8485/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
8486/// are normal, non-volatile loads.  If so, it is profitable to bitcast an
8487/// i64 vector to have f64 elements, since the value can then be loaded
8488/// directly into a VFP register.
8489static bool hasNormalLoadOperand(SDNode *N) {
8490  unsigned NumElts = N->getValueType(0).getVectorNumElements();
8491  for (unsigned i = 0; i < NumElts; ++i) {
8492    SDNode *Elt = N->getOperand(i).getNode();
8493    if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
8494      return true;
8495  }
8496  return false;
8497}
8498
8499/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
8500/// ISD::BUILD_VECTOR.
8501static SDValue PerformBUILD_VECTORCombine(SDNode *N,
8502                                          TargetLowering::DAGCombinerInfo &DCI){
8503  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
8504  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
8505  // into a pair of GPRs, which is fine when the value is used as a scalar,
8506  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
8507  SelectionDAG &DAG = DCI.DAG;
8508  if (N->getNumOperands() == 2) {
8509    SDValue RV = PerformVMOVDRRCombine(N, DAG);
8510    if (RV.getNode())
8511      return RV;
8512  }
8513
8514  // Load i64 elements as f64 values so that type legalization does not split
8515  // them up into i32 values.
8516  EVT VT = N->getValueType(0);
8517  if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
8518    return SDValue();
8519  SDLoc dl(N);
8520  SmallVector<SDValue, 8> Ops;
8521  unsigned NumElts = VT.getVectorNumElements();
8522  for (unsigned i = 0; i < NumElts; ++i) {
8523    SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
8524    Ops.push_back(V);
8525    // Make the DAGCombiner fold the bitcast.
8526    DCI.AddToWorklist(V.getNode());
8527  }
8528  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
8529  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops);
8530  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
8531}
8532
8533/// \brief Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
8534static SDValue
8535PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
8536  // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
8537  // At that time, we may have inserted bitcasts from integer to float.
8538  // If these bitcasts have survived DAGCombine, change the lowering of this
8539  // BUILD_VECTOR in something more vector friendly, i.e., that does not
8540  // force to use floating point types.
8541
8542  // Make sure we can change the type of the vector.
8543  // This is possible iff:
8544  // 1. The vector is only used in a bitcast to a integer type. I.e.,
8545  //    1.1. Vector is used only once.
8546  //    1.2. Use is a bit convert to an integer type.
8547  // 2. The size of its operands are 32-bits (64-bits are not legal).
8548  EVT VT = N->getValueType(0);
8549  EVT EltVT = VT.getVectorElementType();
8550
8551  // Check 1.1. and 2.
8552  if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
8553    return SDValue();
8554
8555  // By construction, the input type must be float.
8556  assert(EltVT == MVT::f32 && "Unexpected type!");
8557
8558  // Check 1.2.
8559  SDNode *Use = *N->use_begin();
8560  if (Use->getOpcode() != ISD::BITCAST ||
8561      Use->getValueType(0).isFloatingPoint())
8562    return SDValue();
8563
8564  // Check profitability.
8565  // Model is, if more than half of the relevant operands are bitcast from
8566  // i32, turn the build_vector into a sequence of insert_vector_elt.
8567  // Relevant operands are everything that is not statically
8568  // (i.e., at compile time) bitcasted.
8569  unsigned NumOfBitCastedElts = 0;
8570  unsigned NumElts = VT.getVectorNumElements();
8571  unsigned NumOfRelevantElts = NumElts;
8572  for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
8573    SDValue Elt = N->getOperand(Idx);
8574    if (Elt->getOpcode() == ISD::BITCAST) {
8575      // Assume only bit cast to i32 will go away.
8576      if (Elt->getOperand(0).getValueType() == MVT::i32)
8577        ++NumOfBitCastedElts;
8578    } else if (Elt.getOpcode() == ISD::UNDEF || isa<ConstantSDNode>(Elt))
8579      // Constants are statically casted, thus do not count them as
8580      // relevant operands.
8581      --NumOfRelevantElts;
8582  }
8583
8584  // Check if more than half of the elements require a non-free bitcast.
8585  if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
8586    return SDValue();
8587
8588  SelectionDAG &DAG = DCI.DAG;
8589  // Create the new vector type.
8590  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
8591  // Check if the type is legal.
8592  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8593  if (!TLI.isTypeLegal(VecVT))
8594    return SDValue();
8595
8596  // Combine:
8597  // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
8598  // => BITCAST INSERT_VECTOR_ELT
8599  //                      (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
8600  //                      (BITCAST EN), N.
8601  SDValue Vec = DAG.getUNDEF(VecVT);
8602  SDLoc dl(N);
8603  for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
8604    SDValue V = N->getOperand(Idx);
8605    if (V.getOpcode() == ISD::UNDEF)
8606      continue;
8607    if (V.getOpcode() == ISD::BITCAST &&
8608        V->getOperand(0).getValueType() == MVT::i32)
8609      // Fold obvious case.
8610      V = V.getOperand(0);
8611    else {
8612      V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
8613      // Make the DAGCombiner fold the bitcasts.
8614      DCI.AddToWorklist(V.getNode());
8615    }
8616    SDValue LaneIdx = DAG.getConstant(Idx, MVT::i32);
8617    Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
8618  }
8619  Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
8620  // Make the DAGCombiner fold the bitcasts.
8621  DCI.AddToWorklist(Vec.getNode());
8622  return Vec;
8623}
8624
8625/// PerformInsertEltCombine - Target-specific dag combine xforms for
8626/// ISD::INSERT_VECTOR_ELT.
8627static SDValue PerformInsertEltCombine(SDNode *N,
8628                                       TargetLowering::DAGCombinerInfo &DCI) {
8629  // Bitcast an i64 load inserted into a vector to f64.
8630  // Otherwise, the i64 value will be legalized to a pair of i32 values.
8631  EVT VT = N->getValueType(0);
8632  SDNode *Elt = N->getOperand(1).getNode();
8633  if (VT.getVectorElementType() != MVT::i64 ||
8634      !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
8635    return SDValue();
8636
8637  SelectionDAG &DAG = DCI.DAG;
8638  SDLoc dl(N);
8639  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
8640                                 VT.getVectorNumElements());
8641  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
8642  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
8643  // Make the DAGCombiner fold the bitcasts.
8644  DCI.AddToWorklist(Vec.getNode());
8645  DCI.AddToWorklist(V.getNode());
8646  SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
8647                               Vec, V, N->getOperand(2));
8648  return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
8649}
8650
8651/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
8652/// ISD::VECTOR_SHUFFLE.
8653static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
8654  // The LLVM shufflevector instruction does not require the shuffle mask
8655  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
8656  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
8657  // operands do not match the mask length, they are extended by concatenating
8658  // them with undef vectors.  That is probably the right thing for other
8659  // targets, but for NEON it is better to concatenate two double-register
8660  // size vector operands into a single quad-register size vector.  Do that
8661  // transformation here:
8662  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
8663  //   shuffle(concat(v1, v2), undef)
8664  SDValue Op0 = N->getOperand(0);
8665  SDValue Op1 = N->getOperand(1);
8666  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
8667      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
8668      Op0.getNumOperands() != 2 ||
8669      Op1.getNumOperands() != 2)
8670    return SDValue();
8671  SDValue Concat0Op1 = Op0.getOperand(1);
8672  SDValue Concat1Op1 = Op1.getOperand(1);
8673  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
8674      Concat1Op1.getOpcode() != ISD::UNDEF)
8675    return SDValue();
8676  // Skip the transformation if any of the types are illegal.
8677  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8678  EVT VT = N->getValueType(0);
8679  if (!TLI.isTypeLegal(VT) ||
8680      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
8681      !TLI.isTypeLegal(Concat1Op1.getValueType()))
8682    return SDValue();
8683
8684  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
8685                                  Op0.getOperand(0), Op1.getOperand(0));
8686  // Translate the shuffle mask.
8687  SmallVector<int, 16> NewMask;
8688  unsigned NumElts = VT.getVectorNumElements();
8689  unsigned HalfElts = NumElts/2;
8690  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8691  for (unsigned n = 0; n < NumElts; ++n) {
8692    int MaskElt = SVN->getMaskElt(n);
8693    int NewElt = -1;
8694    if (MaskElt < (int)HalfElts)
8695      NewElt = MaskElt;
8696    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
8697      NewElt = HalfElts + MaskElt - NumElts;
8698    NewMask.push_back(NewElt);
8699  }
8700  return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
8701                              DAG.getUNDEF(VT), NewMask.data());
8702}
8703
8704/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
8705/// NEON load/store intrinsics to merge base address updates.
8706static SDValue CombineBaseUpdate(SDNode *N,
8707                                 TargetLowering::DAGCombinerInfo &DCI) {
8708  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8709    return SDValue();
8710
8711  SelectionDAG &DAG = DCI.DAG;
8712  bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
8713                      N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
8714  unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
8715  SDValue Addr = N->getOperand(AddrOpIdx);
8716
8717  // Search for a use of the address operand that is an increment.
8718  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
8719         UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
8720    SDNode *User = *UI;
8721    if (User->getOpcode() != ISD::ADD ||
8722        UI.getUse().getResNo() != Addr.getResNo())
8723      continue;
8724
8725    // Check that the add is independent of the load/store.  Otherwise, folding
8726    // it would create a cycle.
8727    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
8728      continue;
8729
8730    // Find the new opcode for the updating load/store.
8731    bool isLoad = true;
8732    bool isLaneOp = false;
8733    unsigned NewOpc = 0;
8734    unsigned NumVecs = 0;
8735    if (isIntrinsic) {
8736      unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
8737      switch (IntNo) {
8738      default: llvm_unreachable("unexpected intrinsic for Neon base update");
8739      case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
8740        NumVecs = 1; break;
8741      case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
8742        NumVecs = 2; break;
8743      case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
8744        NumVecs = 3; break;
8745      case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
8746        NumVecs = 4; break;
8747      case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
8748        NumVecs = 2; isLaneOp = true; break;
8749      case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
8750        NumVecs = 3; isLaneOp = true; break;
8751      case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
8752        NumVecs = 4; isLaneOp = true; break;
8753      case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
8754        NumVecs = 1; isLoad = false; break;
8755      case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
8756        NumVecs = 2; isLoad = false; break;
8757      case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
8758        NumVecs = 3; isLoad = false; break;
8759      case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
8760        NumVecs = 4; isLoad = false; break;
8761      case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
8762        NumVecs = 2; isLoad = false; isLaneOp = true; break;
8763      case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
8764        NumVecs = 3; isLoad = false; isLaneOp = true; break;
8765      case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
8766        NumVecs = 4; isLoad = false; isLaneOp = true; break;
8767      }
8768    } else {
8769      isLaneOp = true;
8770      switch (N->getOpcode()) {
8771      default: llvm_unreachable("unexpected opcode for Neon base update");
8772      case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
8773      case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
8774      case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
8775      }
8776    }
8777
8778    // Find the size of memory referenced by the load/store.
8779    EVT VecTy;
8780    if (isLoad)
8781      VecTy = N->getValueType(0);
8782    else
8783      VecTy = N->getOperand(AddrOpIdx+1).getValueType();
8784    unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
8785    if (isLaneOp)
8786      NumBytes /= VecTy.getVectorNumElements();
8787
8788    // If the increment is a constant, it must match the memory ref size.
8789    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
8790    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
8791      uint64_t IncVal = CInc->getZExtValue();
8792      if (IncVal != NumBytes)
8793        continue;
8794    } else if (NumBytes >= 3 * 16) {
8795      // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
8796      // separate instructions that make it harder to use a non-constant update.
8797      continue;
8798    }
8799
8800    // Create the new updating load/store node.
8801    EVT Tys[6];
8802    unsigned NumResultVecs = (isLoad ? NumVecs : 0);
8803    unsigned n;
8804    for (n = 0; n < NumResultVecs; ++n)
8805      Tys[n] = VecTy;
8806    Tys[n++] = MVT::i32;
8807    Tys[n] = MVT::Other;
8808    SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, NumResultVecs+2));
8809    SmallVector<SDValue, 8> Ops;
8810    Ops.push_back(N->getOperand(0)); // incoming chain
8811    Ops.push_back(N->getOperand(AddrOpIdx));
8812    Ops.push_back(Inc);
8813    for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
8814      Ops.push_back(N->getOperand(i));
8815    }
8816    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
8817    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys,
8818                                           Ops, MemInt->getMemoryVT(),
8819                                           MemInt->getMemOperand());
8820
8821    // Update the uses.
8822    std::vector<SDValue> NewResults;
8823    for (unsigned i = 0; i < NumResultVecs; ++i) {
8824      NewResults.push_back(SDValue(UpdN.getNode(), i));
8825    }
8826    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
8827    DCI.CombineTo(N, NewResults);
8828    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
8829
8830    break;
8831  }
8832  return SDValue();
8833}
8834
8835/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
8836/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
8837/// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
8838/// return true.
8839static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
8840  SelectionDAG &DAG = DCI.DAG;
8841  EVT VT = N->getValueType(0);
8842  // vldN-dup instructions only support 64-bit vectors for N > 1.
8843  if (!VT.is64BitVector())
8844    return false;
8845
8846  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
8847  SDNode *VLD = N->getOperand(0).getNode();
8848  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
8849    return false;
8850  unsigned NumVecs = 0;
8851  unsigned NewOpc = 0;
8852  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
8853  if (IntNo == Intrinsic::arm_neon_vld2lane) {
8854    NumVecs = 2;
8855    NewOpc = ARMISD::VLD2DUP;
8856  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
8857    NumVecs = 3;
8858    NewOpc = ARMISD::VLD3DUP;
8859  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
8860    NumVecs = 4;
8861    NewOpc = ARMISD::VLD4DUP;
8862  } else {
8863    return false;
8864  }
8865
8866  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
8867  // numbers match the load.
8868  unsigned VLDLaneNo =
8869    cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
8870  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
8871       UI != UE; ++UI) {
8872    // Ignore uses of the chain result.
8873    if (UI.getUse().getResNo() == NumVecs)
8874      continue;
8875    SDNode *User = *UI;
8876    if (User->getOpcode() != ARMISD::VDUPLANE ||
8877        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
8878      return false;
8879  }
8880
8881  // Create the vldN-dup node.
8882  EVT Tys[5];
8883  unsigned n;
8884  for (n = 0; n < NumVecs; ++n)
8885    Tys[n] = VT;
8886  Tys[n] = MVT::Other;
8887  SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, NumVecs+1));
8888  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
8889  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
8890  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
8891                                           Ops, VLDMemInt->getMemoryVT(),
8892                                           VLDMemInt->getMemOperand());
8893
8894  // Update the uses.
8895  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
8896       UI != UE; ++UI) {
8897    unsigned ResNo = UI.getUse().getResNo();
8898    // Ignore uses of the chain result.
8899    if (ResNo == NumVecs)
8900      continue;
8901    SDNode *User = *UI;
8902    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
8903  }
8904
8905  // Now the vldN-lane intrinsic is dead except for its chain result.
8906  // Update uses of the chain.
8907  std::vector<SDValue> VLDDupResults;
8908  for (unsigned n = 0; n < NumVecs; ++n)
8909    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
8910  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
8911  DCI.CombineTo(VLD, VLDDupResults);
8912
8913  return true;
8914}
8915
8916/// PerformVDUPLANECombine - Target-specific dag combine xforms for
8917/// ARMISD::VDUPLANE.
8918static SDValue PerformVDUPLANECombine(SDNode *N,
8919                                      TargetLowering::DAGCombinerInfo &DCI) {
8920  SDValue Op = N->getOperand(0);
8921
8922  // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
8923  // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
8924  if (CombineVLDDUP(N, DCI))
8925    return SDValue(N, 0);
8926
8927  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
8928  // redundant.  Ignore bit_converts for now; element sizes are checked below.
8929  while (Op.getOpcode() == ISD::BITCAST)
8930    Op = Op.getOperand(0);
8931  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
8932    return SDValue();
8933
8934  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
8935  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
8936  // The canonical VMOV for a zero vector uses a 32-bit element size.
8937  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8938  unsigned EltBits;
8939  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
8940    EltSize = 8;
8941  EVT VT = N->getValueType(0);
8942  if (EltSize > VT.getVectorElementType().getSizeInBits())
8943    return SDValue();
8944
8945  return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
8946}
8947
8948// isConstVecPow2 - Return true if each vector element is a power of 2, all
8949// elements are the same constant, C, and Log2(C) ranges from 1 to 32.
8950static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
8951{
8952  integerPart cN;
8953  integerPart c0 = 0;
8954  for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
8955       I != E; I++) {
8956    ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
8957    if (!C)
8958      return false;
8959
8960    bool isExact;
8961    APFloat APF = C->getValueAPF();
8962    if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
8963        != APFloat::opOK || !isExact)
8964      return false;
8965
8966    c0 = (I == 0) ? cN : c0;
8967    if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
8968      return false;
8969  }
8970  C = c0;
8971  return true;
8972}
8973
8974/// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
8975/// can replace combinations of VMUL and VCVT (floating-point to integer)
8976/// when the VMUL has a constant operand that is a power of 2.
8977///
8978/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
8979///  vmul.f32        d16, d17, d16
8980///  vcvt.s32.f32    d16, d16
8981/// becomes:
8982///  vcvt.s32.f32    d16, d16, #3
8983static SDValue PerformVCVTCombine(SDNode *N,
8984                                  TargetLowering::DAGCombinerInfo &DCI,
8985                                  const ARMSubtarget *Subtarget) {
8986  SelectionDAG &DAG = DCI.DAG;
8987  SDValue Op = N->getOperand(0);
8988
8989  if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
8990      Op.getOpcode() != ISD::FMUL)
8991    return SDValue();
8992
8993  uint64_t C;
8994  SDValue N0 = Op->getOperand(0);
8995  SDValue ConstVec = Op->getOperand(1);
8996  bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
8997
8998  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
8999      !isConstVecPow2(ConstVec, isSigned, C))
9000    return SDValue();
9001
9002  MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
9003  MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
9004  if (FloatTy.getSizeInBits() != 32 || IntTy.getSizeInBits() > 32) {
9005    // These instructions only exist converting from f32 to i32. We can handle
9006    // smaller integers by generating an extra truncate, but larger ones would
9007    // be lossy.
9008    return SDValue();
9009  }
9010
9011  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
9012    Intrinsic::arm_neon_vcvtfp2fxu;
9013  unsigned NumLanes = Op.getValueType().getVectorNumElements();
9014  SDValue FixConv =  DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N),
9015                                 NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
9016                                 DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
9017                                 DAG.getConstant(Log2_64(C), MVT::i32));
9018
9019  if (IntTy.getSizeInBits() < FloatTy.getSizeInBits())
9020    FixConv = DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0), FixConv);
9021
9022  return FixConv;
9023}
9024
9025/// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
9026/// can replace combinations of VCVT (integer to floating-point) and VDIV
9027/// when the VDIV has a constant operand that is a power of 2.
9028///
9029/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
9030///  vcvt.f32.s32    d16, d16
9031///  vdiv.f32        d16, d17, d16
9032/// becomes:
9033///  vcvt.f32.s32    d16, d16, #3
9034static SDValue PerformVDIVCombine(SDNode *N,
9035                                  TargetLowering::DAGCombinerInfo &DCI,
9036                                  const ARMSubtarget *Subtarget) {
9037  SelectionDAG &DAG = DCI.DAG;
9038  SDValue Op = N->getOperand(0);
9039  unsigned OpOpcode = Op.getNode()->getOpcode();
9040
9041  if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
9042      (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
9043    return SDValue();
9044
9045  uint64_t C;
9046  SDValue ConstVec = N->getOperand(1);
9047  bool isSigned = OpOpcode == ISD::SINT_TO_FP;
9048
9049  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
9050      !isConstVecPow2(ConstVec, isSigned, C))
9051    return SDValue();
9052
9053  MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
9054  MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
9055  if (FloatTy.getSizeInBits() != 32 || IntTy.getSizeInBits() > 32) {
9056    // These instructions only exist converting from i32 to f32. We can handle
9057    // smaller integers by generating an extra extend, but larger ones would
9058    // be lossy.
9059    return SDValue();
9060  }
9061
9062  SDValue ConvInput = Op.getOperand(0);
9063  unsigned NumLanes = Op.getValueType().getVectorNumElements();
9064  if (IntTy.getSizeInBits() < FloatTy.getSizeInBits())
9065    ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
9066                            SDLoc(N), NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
9067                            ConvInput);
9068
9069  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
9070    Intrinsic::arm_neon_vcvtfxu2fp;
9071  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N),
9072                     Op.getValueType(),
9073                     DAG.getConstant(IntrinsicOpcode, MVT::i32),
9074                     ConvInput, DAG.getConstant(Log2_64(C), MVT::i32));
9075}
9076
9077/// Getvshiftimm - Check if this is a valid build_vector for the immediate
9078/// operand of a vector shift operation, where all the elements of the
9079/// build_vector must have the same constant integer value.
9080static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
9081  // Ignore bit_converts.
9082  while (Op.getOpcode() == ISD::BITCAST)
9083    Op = Op.getOperand(0);
9084  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
9085  APInt SplatBits, SplatUndef;
9086  unsigned SplatBitSize;
9087  bool HasAnyUndefs;
9088  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
9089                                      HasAnyUndefs, ElementBits) ||
9090      SplatBitSize > ElementBits)
9091    return false;
9092  Cnt = SplatBits.getSExtValue();
9093  return true;
9094}
9095
9096/// isVShiftLImm - Check if this is a valid build_vector for the immediate
9097/// operand of a vector shift left operation.  That value must be in the range:
9098///   0 <= Value < ElementBits for a left shift; or
9099///   0 <= Value <= ElementBits for a long left shift.
9100static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
9101  assert(VT.isVector() && "vector shift count is not a vector type");
9102  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
9103  if (! getVShiftImm(Op, ElementBits, Cnt))
9104    return false;
9105  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
9106}
9107
9108/// isVShiftRImm - Check if this is a valid build_vector for the immediate
9109/// operand of a vector shift right operation.  For a shift opcode, the value
9110/// is positive, but for an intrinsic the value count must be negative. The
9111/// absolute value must be in the range:
9112///   1 <= |Value| <= ElementBits for a right shift; or
9113///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
9114static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
9115                         int64_t &Cnt) {
9116  assert(VT.isVector() && "vector shift count is not a vector type");
9117  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
9118  if (! getVShiftImm(Op, ElementBits, Cnt))
9119    return false;
9120  if (isIntrinsic)
9121    Cnt = -Cnt;
9122  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
9123}
9124
9125/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
9126static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
9127  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
9128  switch (IntNo) {
9129  default:
9130    // Don't do anything for most intrinsics.
9131    break;
9132
9133  // Vector shifts: check for immediate versions and lower them.
9134  // Note: This is done during DAG combining instead of DAG legalizing because
9135  // the build_vectors for 64-bit vector element shift counts are generally
9136  // not legal, and it is hard to see their values after they get legalized to
9137  // loads from a constant pool.
9138  case Intrinsic::arm_neon_vshifts:
9139  case Intrinsic::arm_neon_vshiftu:
9140  case Intrinsic::arm_neon_vrshifts:
9141  case Intrinsic::arm_neon_vrshiftu:
9142  case Intrinsic::arm_neon_vrshiftn:
9143  case Intrinsic::arm_neon_vqshifts:
9144  case Intrinsic::arm_neon_vqshiftu:
9145  case Intrinsic::arm_neon_vqshiftsu:
9146  case Intrinsic::arm_neon_vqshiftns:
9147  case Intrinsic::arm_neon_vqshiftnu:
9148  case Intrinsic::arm_neon_vqshiftnsu:
9149  case Intrinsic::arm_neon_vqrshiftns:
9150  case Intrinsic::arm_neon_vqrshiftnu:
9151  case Intrinsic::arm_neon_vqrshiftnsu: {
9152    EVT VT = N->getOperand(1).getValueType();
9153    int64_t Cnt;
9154    unsigned VShiftOpc = 0;
9155
9156    switch (IntNo) {
9157    case Intrinsic::arm_neon_vshifts:
9158    case Intrinsic::arm_neon_vshiftu:
9159      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
9160        VShiftOpc = ARMISD::VSHL;
9161        break;
9162      }
9163      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
9164        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
9165                     ARMISD::VSHRs : ARMISD::VSHRu);
9166        break;
9167      }
9168      return SDValue();
9169
9170    case Intrinsic::arm_neon_vrshifts:
9171    case Intrinsic::arm_neon_vrshiftu:
9172      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
9173        break;
9174      return SDValue();
9175
9176    case Intrinsic::arm_neon_vqshifts:
9177    case Intrinsic::arm_neon_vqshiftu:
9178      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
9179        break;
9180      return SDValue();
9181
9182    case Intrinsic::arm_neon_vqshiftsu:
9183      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
9184        break;
9185      llvm_unreachable("invalid shift count for vqshlu intrinsic");
9186
9187    case Intrinsic::arm_neon_vrshiftn:
9188    case Intrinsic::arm_neon_vqshiftns:
9189    case Intrinsic::arm_neon_vqshiftnu:
9190    case Intrinsic::arm_neon_vqshiftnsu:
9191    case Intrinsic::arm_neon_vqrshiftns:
9192    case Intrinsic::arm_neon_vqrshiftnu:
9193    case Intrinsic::arm_neon_vqrshiftnsu:
9194      // Narrowing shifts require an immediate right shift.
9195      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
9196        break;
9197      llvm_unreachable("invalid shift count for narrowing vector shift "
9198                       "intrinsic");
9199
9200    default:
9201      llvm_unreachable("unhandled vector shift");
9202    }
9203
9204    switch (IntNo) {
9205    case Intrinsic::arm_neon_vshifts:
9206    case Intrinsic::arm_neon_vshiftu:
9207      // Opcode already set above.
9208      break;
9209    case Intrinsic::arm_neon_vrshifts:
9210      VShiftOpc = ARMISD::VRSHRs; break;
9211    case Intrinsic::arm_neon_vrshiftu:
9212      VShiftOpc = ARMISD::VRSHRu; break;
9213    case Intrinsic::arm_neon_vrshiftn:
9214      VShiftOpc = ARMISD::VRSHRN; break;
9215    case Intrinsic::arm_neon_vqshifts:
9216      VShiftOpc = ARMISD::VQSHLs; break;
9217    case Intrinsic::arm_neon_vqshiftu:
9218      VShiftOpc = ARMISD::VQSHLu; break;
9219    case Intrinsic::arm_neon_vqshiftsu:
9220      VShiftOpc = ARMISD::VQSHLsu; break;
9221    case Intrinsic::arm_neon_vqshiftns:
9222      VShiftOpc = ARMISD::VQSHRNs; break;
9223    case Intrinsic::arm_neon_vqshiftnu:
9224      VShiftOpc = ARMISD::VQSHRNu; break;
9225    case Intrinsic::arm_neon_vqshiftnsu:
9226      VShiftOpc = ARMISD::VQSHRNsu; break;
9227    case Intrinsic::arm_neon_vqrshiftns:
9228      VShiftOpc = ARMISD::VQRSHRNs; break;
9229    case Intrinsic::arm_neon_vqrshiftnu:
9230      VShiftOpc = ARMISD::VQRSHRNu; break;
9231    case Intrinsic::arm_neon_vqrshiftnsu:
9232      VShiftOpc = ARMISD::VQRSHRNsu; break;
9233    }
9234
9235    return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0),
9236                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
9237  }
9238
9239  case Intrinsic::arm_neon_vshiftins: {
9240    EVT VT = N->getOperand(1).getValueType();
9241    int64_t Cnt;
9242    unsigned VShiftOpc = 0;
9243
9244    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
9245      VShiftOpc = ARMISD::VSLI;
9246    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
9247      VShiftOpc = ARMISD::VSRI;
9248    else {
9249      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
9250    }
9251
9252    return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0),
9253                       N->getOperand(1), N->getOperand(2),
9254                       DAG.getConstant(Cnt, MVT::i32));
9255  }
9256
9257  case Intrinsic::arm_neon_vqrshifts:
9258  case Intrinsic::arm_neon_vqrshiftu:
9259    // No immediate versions of these to check for.
9260    break;
9261  }
9262
9263  return SDValue();
9264}
9265
9266/// PerformShiftCombine - Checks for immediate versions of vector shifts and
9267/// lowers them.  As with the vector shift intrinsics, this is done during DAG
9268/// combining instead of DAG legalizing because the build_vectors for 64-bit
9269/// vector element shift counts are generally not legal, and it is hard to see
9270/// their values after they get legalized to loads from a constant pool.
9271static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
9272                                   const ARMSubtarget *ST) {
9273  EVT VT = N->getValueType(0);
9274  if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
9275    // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
9276    // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
9277    SDValue N1 = N->getOperand(1);
9278    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
9279      SDValue N0 = N->getOperand(0);
9280      if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
9281          DAG.MaskedValueIsZero(N0.getOperand(0),
9282                                APInt::getHighBitsSet(32, 16)))
9283        return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
9284    }
9285  }
9286
9287  // Nothing to be done for scalar shifts.
9288  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9289  if (!VT.isVector() || !TLI.isTypeLegal(VT))
9290    return SDValue();
9291
9292  assert(ST->hasNEON() && "unexpected vector shift");
9293  int64_t Cnt;
9294
9295  switch (N->getOpcode()) {
9296  default: llvm_unreachable("unexpected shift opcode");
9297
9298  case ISD::SHL:
9299    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
9300      return DAG.getNode(ARMISD::VSHL, SDLoc(N), VT, N->getOperand(0),
9301                         DAG.getConstant(Cnt, MVT::i32));
9302    break;
9303
9304  case ISD::SRA:
9305  case ISD::SRL:
9306    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
9307      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
9308                            ARMISD::VSHRs : ARMISD::VSHRu);
9309      return DAG.getNode(VShiftOpc, SDLoc(N), VT, N->getOperand(0),
9310                         DAG.getConstant(Cnt, MVT::i32));
9311    }
9312  }
9313  return SDValue();
9314}
9315
9316/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
9317/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
9318static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
9319                                    const ARMSubtarget *ST) {
9320  SDValue N0 = N->getOperand(0);
9321
9322  // Check for sign- and zero-extensions of vector extract operations of 8-
9323  // and 16-bit vector elements.  NEON supports these directly.  They are
9324  // handled during DAG combining because type legalization will promote them
9325  // to 32-bit types and it is messy to recognize the operations after that.
9326  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
9327    SDValue Vec = N0.getOperand(0);
9328    SDValue Lane = N0.getOperand(1);
9329    EVT VT = N->getValueType(0);
9330    EVT EltVT = N0.getValueType();
9331    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9332
9333    if (VT == MVT::i32 &&
9334        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
9335        TLI.isTypeLegal(Vec.getValueType()) &&
9336        isa<ConstantSDNode>(Lane)) {
9337
9338      unsigned Opc = 0;
9339      switch (N->getOpcode()) {
9340      default: llvm_unreachable("unexpected opcode");
9341      case ISD::SIGN_EXTEND:
9342        Opc = ARMISD::VGETLANEs;
9343        break;
9344      case ISD::ZERO_EXTEND:
9345      case ISD::ANY_EXTEND:
9346        Opc = ARMISD::VGETLANEu;
9347        break;
9348      }
9349      return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
9350    }
9351  }
9352
9353  return SDValue();
9354}
9355
9356/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
9357/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
9358static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
9359                                       const ARMSubtarget *ST) {
9360  // If the target supports NEON, try to use vmax/vmin instructions for f32
9361  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
9362  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
9363  // a NaN; only do the transformation when it matches that behavior.
9364
9365  // For now only do this when using NEON for FP operations; if using VFP, it
9366  // is not obvious that the benefit outweighs the cost of switching to the
9367  // NEON pipeline.
9368  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
9369      N->getValueType(0) != MVT::f32)
9370    return SDValue();
9371
9372  SDValue CondLHS = N->getOperand(0);
9373  SDValue CondRHS = N->getOperand(1);
9374  SDValue LHS = N->getOperand(2);
9375  SDValue RHS = N->getOperand(3);
9376  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
9377
9378  unsigned Opcode = 0;
9379  bool IsReversed;
9380  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
9381    IsReversed = false; // x CC y ? x : y
9382  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
9383    IsReversed = true ; // x CC y ? y : x
9384  } else {
9385    return SDValue();
9386  }
9387
9388  bool IsUnordered;
9389  switch (CC) {
9390  default: break;
9391  case ISD::SETOLT:
9392  case ISD::SETOLE:
9393  case ISD::SETLT:
9394  case ISD::SETLE:
9395  case ISD::SETULT:
9396  case ISD::SETULE:
9397    // If LHS is NaN, an ordered comparison will be false and the result will
9398    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
9399    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
9400    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
9401    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
9402      break;
9403    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
9404    // will return -0, so vmin can only be used for unsafe math or if one of
9405    // the operands is known to be nonzero.
9406    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
9407        !DAG.getTarget().Options.UnsafeFPMath &&
9408        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9409      break;
9410    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
9411    break;
9412
9413  case ISD::SETOGT:
9414  case ISD::SETOGE:
9415  case ISD::SETGT:
9416  case ISD::SETGE:
9417  case ISD::SETUGT:
9418  case ISD::SETUGE:
9419    // If LHS is NaN, an ordered comparison will be false and the result will
9420    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
9421    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
9422    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
9423    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
9424      break;
9425    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
9426    // will return +0, so vmax can only be used for unsafe math or if one of
9427    // the operands is known to be nonzero.
9428    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
9429        !DAG.getTarget().Options.UnsafeFPMath &&
9430        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9431      break;
9432    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
9433    break;
9434  }
9435
9436  if (!Opcode)
9437    return SDValue();
9438  return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), LHS, RHS);
9439}
9440
9441/// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
9442SDValue
9443ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
9444  SDValue Cmp = N->getOperand(4);
9445  if (Cmp.getOpcode() != ARMISD::CMPZ)
9446    // Only looking at EQ and NE cases.
9447    return SDValue();
9448
9449  EVT VT = N->getValueType(0);
9450  SDLoc dl(N);
9451  SDValue LHS = Cmp.getOperand(0);
9452  SDValue RHS = Cmp.getOperand(1);
9453  SDValue FalseVal = N->getOperand(0);
9454  SDValue TrueVal = N->getOperand(1);
9455  SDValue ARMcc = N->getOperand(2);
9456  ARMCC::CondCodes CC =
9457    (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
9458
9459  // Simplify
9460  //   mov     r1, r0
9461  //   cmp     r1, x
9462  //   mov     r0, y
9463  //   moveq   r0, x
9464  // to
9465  //   cmp     r0, x
9466  //   movne   r0, y
9467  //
9468  //   mov     r1, r0
9469  //   cmp     r1, x
9470  //   mov     r0, x
9471  //   movne   r0, y
9472  // to
9473  //   cmp     r0, x
9474  //   movne   r0, y
9475  /// FIXME: Turn this into a target neutral optimization?
9476  SDValue Res;
9477  if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
9478    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
9479                      N->getOperand(3), Cmp);
9480  } else if (CC == ARMCC::EQ && TrueVal == RHS) {
9481    SDValue ARMcc;
9482    SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
9483    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
9484                      N->getOperand(3), NewCmp);
9485  }
9486
9487  if (Res.getNode()) {
9488    APInt KnownZero, KnownOne;
9489    DAG.computeKnownBits(SDValue(N,0), KnownZero, KnownOne);
9490    // Capture demanded bits information that would be otherwise lost.
9491    if (KnownZero == 0xfffffffe)
9492      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
9493                        DAG.getValueType(MVT::i1));
9494    else if (KnownZero == 0xffffff00)
9495      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
9496                        DAG.getValueType(MVT::i8));
9497    else if (KnownZero == 0xffff0000)
9498      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
9499                        DAG.getValueType(MVT::i16));
9500  }
9501
9502  return Res;
9503}
9504
9505SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
9506                                             DAGCombinerInfo &DCI) const {
9507  switch (N->getOpcode()) {
9508  default: break;
9509  case ISD::ADDC:       return PerformADDCCombine(N, DCI, Subtarget);
9510  case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
9511  case ISD::SUB:        return PerformSUBCombine(N, DCI);
9512  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
9513  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
9514  case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
9515  case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
9516  case ARMISD::BFI:     return PerformBFICombine(N, DCI);
9517  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
9518  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
9519  case ISD::STORE:      return PerformSTORECombine(N, DCI);
9520  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
9521  case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
9522  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
9523  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
9524  case ISD::FP_TO_SINT:
9525  case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
9526  case ISD::FDIV:       return PerformVDIVCombine(N, DCI, Subtarget);
9527  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
9528  case ISD::SHL:
9529  case ISD::SRA:
9530  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
9531  case ISD::SIGN_EXTEND:
9532  case ISD::ZERO_EXTEND:
9533  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
9534  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
9535  case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
9536  case ARMISD::VLD2DUP:
9537  case ARMISD::VLD3DUP:
9538  case ARMISD::VLD4DUP:
9539    return CombineBaseUpdate(N, DCI);
9540  case ARMISD::BUILD_VECTOR:
9541    return PerformARMBUILD_VECTORCombine(N, DCI);
9542  case ISD::INTRINSIC_VOID:
9543  case ISD::INTRINSIC_W_CHAIN:
9544    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9545    case Intrinsic::arm_neon_vld1:
9546    case Intrinsic::arm_neon_vld2:
9547    case Intrinsic::arm_neon_vld3:
9548    case Intrinsic::arm_neon_vld4:
9549    case Intrinsic::arm_neon_vld2lane:
9550    case Intrinsic::arm_neon_vld3lane:
9551    case Intrinsic::arm_neon_vld4lane:
9552    case Intrinsic::arm_neon_vst1:
9553    case Intrinsic::arm_neon_vst2:
9554    case Intrinsic::arm_neon_vst3:
9555    case Intrinsic::arm_neon_vst4:
9556    case Intrinsic::arm_neon_vst2lane:
9557    case Intrinsic::arm_neon_vst3lane:
9558    case Intrinsic::arm_neon_vst4lane:
9559      return CombineBaseUpdate(N, DCI);
9560    default: break;
9561    }
9562    break;
9563  }
9564  return SDValue();
9565}
9566
9567bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
9568                                                          EVT VT) const {
9569  return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
9570}
9571
9572bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT, unsigned,
9573                                                      bool *Fast) const {
9574  // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
9575  bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
9576
9577  switch (VT.getSimpleVT().SimpleTy) {
9578  default:
9579    return false;
9580  case MVT::i8:
9581  case MVT::i16:
9582  case MVT::i32: {
9583    // Unaligned access can use (for example) LRDB, LRDH, LDR
9584    if (AllowsUnaligned) {
9585      if (Fast)
9586        *Fast = Subtarget->hasV7Ops();
9587      return true;
9588    }
9589    return false;
9590  }
9591  case MVT::f64:
9592  case MVT::v2f64: {
9593    // For any little-endian targets with neon, we can support unaligned ld/st
9594    // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
9595    // A big-endian target may also explicitly support unaligned accesses
9596    if (Subtarget->hasNEON() && (AllowsUnaligned || isLittleEndian())) {
9597      if (Fast)
9598        *Fast = true;
9599      return true;
9600    }
9601    return false;
9602  }
9603  }
9604}
9605
9606static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
9607                       unsigned AlignCheck) {
9608  return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
9609          (DstAlign == 0 || DstAlign % AlignCheck == 0));
9610}
9611
9612EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
9613                                           unsigned DstAlign, unsigned SrcAlign,
9614                                           bool IsMemset, bool ZeroMemset,
9615                                           bool MemcpyStrSrc,
9616                                           MachineFunction &MF) const {
9617  const Function *F = MF.getFunction();
9618
9619  // See if we can use NEON instructions for this...
9620  if ((!IsMemset || ZeroMemset) &&
9621      Subtarget->hasNEON() &&
9622      !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
9623                                       Attribute::NoImplicitFloat)) {
9624    bool Fast;
9625    if (Size >= 16 &&
9626        (memOpAlign(SrcAlign, DstAlign, 16) ||
9627         (allowsUnalignedMemoryAccesses(MVT::v2f64, 0, &Fast) && Fast))) {
9628      return MVT::v2f64;
9629    } else if (Size >= 8 &&
9630               (memOpAlign(SrcAlign, DstAlign, 8) ||
9631                (allowsUnalignedMemoryAccesses(MVT::f64, 0, &Fast) && Fast))) {
9632      return MVT::f64;
9633    }
9634  }
9635
9636  // Lowering to i32/i16 if the size permits.
9637  if (Size >= 4)
9638    return MVT::i32;
9639  else if (Size >= 2)
9640    return MVT::i16;
9641
9642  // Let the target-independent logic figure it out.
9643  return MVT::Other;
9644}
9645
9646bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
9647  if (Val.getOpcode() != ISD::LOAD)
9648    return false;
9649
9650  EVT VT1 = Val.getValueType();
9651  if (!VT1.isSimple() || !VT1.isInteger() ||
9652      !VT2.isSimple() || !VT2.isInteger())
9653    return false;
9654
9655  switch (VT1.getSimpleVT().SimpleTy) {
9656  default: break;
9657  case MVT::i1:
9658  case MVT::i8:
9659  case MVT::i16:
9660    // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
9661    return true;
9662  }
9663
9664  return false;
9665}
9666
9667bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
9668  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
9669    return false;
9670
9671  if (!isTypeLegal(EVT::getEVT(Ty1)))
9672    return false;
9673
9674  assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
9675
9676  // Assuming the caller doesn't have a zeroext or signext return parameter,
9677  // truncation all the way down to i1 is valid.
9678  return true;
9679}
9680
9681
9682static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
9683  if (V < 0)
9684    return false;
9685
9686  unsigned Scale = 1;
9687  switch (VT.getSimpleVT().SimpleTy) {
9688  default: return false;
9689  case MVT::i1:
9690  case MVT::i8:
9691    // Scale == 1;
9692    break;
9693  case MVT::i16:
9694    // Scale == 2;
9695    Scale = 2;
9696    break;
9697  case MVT::i32:
9698    // Scale == 4;
9699    Scale = 4;
9700    break;
9701  }
9702
9703  if ((V & (Scale - 1)) != 0)
9704    return false;
9705  V /= Scale;
9706  return V == (V & ((1LL << 5) - 1));
9707}
9708
9709static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
9710                                      const ARMSubtarget *Subtarget) {
9711  bool isNeg = false;
9712  if (V < 0) {
9713    isNeg = true;
9714    V = - V;
9715  }
9716
9717  switch (VT.getSimpleVT().SimpleTy) {
9718  default: return false;
9719  case MVT::i1:
9720  case MVT::i8:
9721  case MVT::i16:
9722  case MVT::i32:
9723    // + imm12 or - imm8
9724    if (isNeg)
9725      return V == (V & ((1LL << 8) - 1));
9726    return V == (V & ((1LL << 12) - 1));
9727  case MVT::f32:
9728  case MVT::f64:
9729    // Same as ARM mode. FIXME: NEON?
9730    if (!Subtarget->hasVFP2())
9731      return false;
9732    if ((V & 3) != 0)
9733      return false;
9734    V >>= 2;
9735    return V == (V & ((1LL << 8) - 1));
9736  }
9737}
9738
9739/// isLegalAddressImmediate - Return true if the integer value can be used
9740/// as the offset of the target addressing mode for load / store of the
9741/// given type.
9742static bool isLegalAddressImmediate(int64_t V, EVT VT,
9743                                    const ARMSubtarget *Subtarget) {
9744  if (V == 0)
9745    return true;
9746
9747  if (!VT.isSimple())
9748    return false;
9749
9750  if (Subtarget->isThumb1Only())
9751    return isLegalT1AddressImmediate(V, VT);
9752  else if (Subtarget->isThumb2())
9753    return isLegalT2AddressImmediate(V, VT, Subtarget);
9754
9755  // ARM mode.
9756  if (V < 0)
9757    V = - V;
9758  switch (VT.getSimpleVT().SimpleTy) {
9759  default: return false;
9760  case MVT::i1:
9761  case MVT::i8:
9762  case MVT::i32:
9763    // +- imm12
9764    return V == (V & ((1LL << 12) - 1));
9765  case MVT::i16:
9766    // +- imm8
9767    return V == (V & ((1LL << 8) - 1));
9768  case MVT::f32:
9769  case MVT::f64:
9770    if (!Subtarget->hasVFP2()) // FIXME: NEON?
9771      return false;
9772    if ((V & 3) != 0)
9773      return false;
9774    V >>= 2;
9775    return V == (V & ((1LL << 8) - 1));
9776  }
9777}
9778
9779bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
9780                                                      EVT VT) const {
9781  int Scale = AM.Scale;
9782  if (Scale < 0)
9783    return false;
9784
9785  switch (VT.getSimpleVT().SimpleTy) {
9786  default: return false;
9787  case MVT::i1:
9788  case MVT::i8:
9789  case MVT::i16:
9790  case MVT::i32:
9791    if (Scale == 1)
9792      return true;
9793    // r + r << imm
9794    Scale = Scale & ~1;
9795    return Scale == 2 || Scale == 4 || Scale == 8;
9796  case MVT::i64:
9797    // r + r
9798    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
9799      return true;
9800    return false;
9801  case MVT::isVoid:
9802    // Note, we allow "void" uses (basically, uses that aren't loads or
9803    // stores), because arm allows folding a scale into many arithmetic
9804    // operations.  This should be made more precise and revisited later.
9805
9806    // Allow r << imm, but the imm has to be a multiple of two.
9807    if (Scale & 1) return false;
9808    return isPowerOf2_32(Scale);
9809  }
9810}
9811
9812/// isLegalAddressingMode - Return true if the addressing mode represented
9813/// by AM is legal for this target, for a load/store of the specified type.
9814bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
9815                                              Type *Ty) const {
9816  EVT VT = getValueType(Ty, true);
9817  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
9818    return false;
9819
9820  // Can never fold addr of global into load/store.
9821  if (AM.BaseGV)
9822    return false;
9823
9824  switch (AM.Scale) {
9825  case 0:  // no scale reg, must be "r+i" or "r", or "i".
9826    break;
9827  case 1:
9828    if (Subtarget->isThumb1Only())
9829      return false;
9830    // FALL THROUGH.
9831  default:
9832    // ARM doesn't support any R+R*scale+imm addr modes.
9833    if (AM.BaseOffs)
9834      return false;
9835
9836    if (!VT.isSimple())
9837      return false;
9838
9839    if (Subtarget->isThumb2())
9840      return isLegalT2ScaledAddressingMode(AM, VT);
9841
9842    int Scale = AM.Scale;
9843    switch (VT.getSimpleVT().SimpleTy) {
9844    default: return false;
9845    case MVT::i1:
9846    case MVT::i8:
9847    case MVT::i32:
9848      if (Scale < 0) Scale = -Scale;
9849      if (Scale == 1)
9850        return true;
9851      // r + r << imm
9852      return isPowerOf2_32(Scale & ~1);
9853    case MVT::i16:
9854    case MVT::i64:
9855      // r + r
9856      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
9857        return true;
9858      return false;
9859
9860    case MVT::isVoid:
9861      // Note, we allow "void" uses (basically, uses that aren't loads or
9862      // stores), because arm allows folding a scale into many arithmetic
9863      // operations.  This should be made more precise and revisited later.
9864
9865      // Allow r << imm, but the imm has to be a multiple of two.
9866      if (Scale & 1) return false;
9867      return isPowerOf2_32(Scale);
9868    }
9869  }
9870  return true;
9871}
9872
9873/// isLegalICmpImmediate - Return true if the specified immediate is legal
9874/// icmp immediate, that is the target has icmp instructions which can compare
9875/// a register against the immediate without having to materialize the
9876/// immediate into a register.
9877bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
9878  // Thumb2 and ARM modes can use cmn for negative immediates.
9879  if (!Subtarget->isThumb())
9880    return ARM_AM::getSOImmVal(llvm::abs64(Imm)) != -1;
9881  if (Subtarget->isThumb2())
9882    return ARM_AM::getT2SOImmVal(llvm::abs64(Imm)) != -1;
9883  // Thumb1 doesn't have cmn, and only 8-bit immediates.
9884  return Imm >= 0 && Imm <= 255;
9885}
9886
9887/// isLegalAddImmediate - Return true if the specified immediate is a legal add
9888/// *or sub* immediate, that is the target has add or sub instructions which can
9889/// add a register with the immediate without having to materialize the
9890/// immediate into a register.
9891bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
9892  // Same encoding for add/sub, just flip the sign.
9893  int64_t AbsImm = llvm::abs64(Imm);
9894  if (!Subtarget->isThumb())
9895    return ARM_AM::getSOImmVal(AbsImm) != -1;
9896  if (Subtarget->isThumb2())
9897    return ARM_AM::getT2SOImmVal(AbsImm) != -1;
9898  // Thumb1 only has 8-bit unsigned immediate.
9899  return AbsImm >= 0 && AbsImm <= 255;
9900}
9901
9902static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
9903                                      bool isSEXTLoad, SDValue &Base,
9904                                      SDValue &Offset, bool &isInc,
9905                                      SelectionDAG &DAG) {
9906  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
9907    return false;
9908
9909  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
9910    // AddressingMode 3
9911    Base = Ptr->getOperand(0);
9912    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
9913      int RHSC = (int)RHS->getZExtValue();
9914      if (RHSC < 0 && RHSC > -256) {
9915        assert(Ptr->getOpcode() == ISD::ADD);
9916        isInc = false;
9917        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
9918        return true;
9919      }
9920    }
9921    isInc = (Ptr->getOpcode() == ISD::ADD);
9922    Offset = Ptr->getOperand(1);
9923    return true;
9924  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
9925    // AddressingMode 2
9926    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
9927      int RHSC = (int)RHS->getZExtValue();
9928      if (RHSC < 0 && RHSC > -0x1000) {
9929        assert(Ptr->getOpcode() == ISD::ADD);
9930        isInc = false;
9931        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
9932        Base = Ptr->getOperand(0);
9933        return true;
9934      }
9935    }
9936
9937    if (Ptr->getOpcode() == ISD::ADD) {
9938      isInc = true;
9939      ARM_AM::ShiftOpc ShOpcVal=
9940        ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
9941      if (ShOpcVal != ARM_AM::no_shift) {
9942        Base = Ptr->getOperand(1);
9943        Offset = Ptr->getOperand(0);
9944      } else {
9945        Base = Ptr->getOperand(0);
9946        Offset = Ptr->getOperand(1);
9947      }
9948      return true;
9949    }
9950
9951    isInc = (Ptr->getOpcode() == ISD::ADD);
9952    Base = Ptr->getOperand(0);
9953    Offset = Ptr->getOperand(1);
9954    return true;
9955  }
9956
9957  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
9958  return false;
9959}
9960
9961static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
9962                                     bool isSEXTLoad, SDValue &Base,
9963                                     SDValue &Offset, bool &isInc,
9964                                     SelectionDAG &DAG) {
9965  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
9966    return false;
9967
9968  Base = Ptr->getOperand(0);
9969  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
9970    int RHSC = (int)RHS->getZExtValue();
9971    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
9972      assert(Ptr->getOpcode() == ISD::ADD);
9973      isInc = false;
9974      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
9975      return true;
9976    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
9977      isInc = Ptr->getOpcode() == ISD::ADD;
9978      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
9979      return true;
9980    }
9981  }
9982
9983  return false;
9984}
9985
9986/// getPreIndexedAddressParts - returns true by value, base pointer and
9987/// offset pointer and addressing mode by reference if the node's address
9988/// can be legally represented as pre-indexed load / store address.
9989bool
9990ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
9991                                             SDValue &Offset,
9992                                             ISD::MemIndexedMode &AM,
9993                                             SelectionDAG &DAG) const {
9994  if (Subtarget->isThumb1Only())
9995    return false;
9996
9997  EVT VT;
9998  SDValue Ptr;
9999  bool isSEXTLoad = false;
10000  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
10001    Ptr = LD->getBasePtr();
10002    VT  = LD->getMemoryVT();
10003    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
10004  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
10005    Ptr = ST->getBasePtr();
10006    VT  = ST->getMemoryVT();
10007  } else
10008    return false;
10009
10010  bool isInc;
10011  bool isLegal = false;
10012  if (Subtarget->isThumb2())
10013    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
10014                                       Offset, isInc, DAG);
10015  else
10016    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
10017                                        Offset, isInc, DAG);
10018  if (!isLegal)
10019    return false;
10020
10021  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
10022  return true;
10023}
10024
10025/// getPostIndexedAddressParts - returns true by value, base pointer and
10026/// offset pointer and addressing mode by reference if this node can be
10027/// combined with a load / store to form a post-indexed load / store.
10028bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
10029                                                   SDValue &Base,
10030                                                   SDValue &Offset,
10031                                                   ISD::MemIndexedMode &AM,
10032                                                   SelectionDAG &DAG) const {
10033  if (Subtarget->isThumb1Only())
10034    return false;
10035
10036  EVT VT;
10037  SDValue Ptr;
10038  bool isSEXTLoad = false;
10039  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
10040    VT  = LD->getMemoryVT();
10041    Ptr = LD->getBasePtr();
10042    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
10043  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
10044    VT  = ST->getMemoryVT();
10045    Ptr = ST->getBasePtr();
10046  } else
10047    return false;
10048
10049  bool isInc;
10050  bool isLegal = false;
10051  if (Subtarget->isThumb2())
10052    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
10053                                       isInc, DAG);
10054  else
10055    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
10056                                        isInc, DAG);
10057  if (!isLegal)
10058    return false;
10059
10060  if (Ptr != Base) {
10061    // Swap base ptr and offset to catch more post-index load / store when
10062    // it's legal. In Thumb2 mode, offset must be an immediate.
10063    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
10064        !Subtarget->isThumb2())
10065      std::swap(Base, Offset);
10066
10067    // Post-indexed load / store update the base pointer.
10068    if (Ptr != Base)
10069      return false;
10070  }
10071
10072  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
10073  return true;
10074}
10075
10076void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
10077                                                      APInt &KnownZero,
10078                                                      APInt &KnownOne,
10079                                                      const SelectionDAG &DAG,
10080                                                      unsigned Depth) const {
10081  unsigned BitWidth = KnownOne.getBitWidth();
10082  KnownZero = KnownOne = APInt(BitWidth, 0);
10083  switch (Op.getOpcode()) {
10084  default: break;
10085  case ARMISD::ADDC:
10086  case ARMISD::ADDE:
10087  case ARMISD::SUBC:
10088  case ARMISD::SUBE:
10089    // These nodes' second result is a boolean
10090    if (Op.getResNo() == 0)
10091      break;
10092    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
10093    break;
10094  case ARMISD::CMOV: {
10095    // Bits are known zero/one if known on the LHS and RHS.
10096    DAG.computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
10097    if (KnownZero == 0 && KnownOne == 0) return;
10098
10099    APInt KnownZeroRHS, KnownOneRHS;
10100    DAG.computeKnownBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1);
10101    KnownZero &= KnownZeroRHS;
10102    KnownOne  &= KnownOneRHS;
10103    return;
10104  }
10105  case ISD::INTRINSIC_W_CHAIN: {
10106    ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
10107    Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
10108    switch (IntID) {
10109    default: return;
10110    case Intrinsic::arm_ldaex:
10111    case Intrinsic::arm_ldrex: {
10112      EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
10113      unsigned MemBits = VT.getScalarType().getSizeInBits();
10114      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
10115      return;
10116    }
10117    }
10118  }
10119  }
10120}
10121
10122//===----------------------------------------------------------------------===//
10123//                           ARM Inline Assembly Support
10124//===----------------------------------------------------------------------===//
10125
10126bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
10127  // Looking for "rev" which is V6+.
10128  if (!Subtarget->hasV6Ops())
10129    return false;
10130
10131  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
10132  std::string AsmStr = IA->getAsmString();
10133  SmallVector<StringRef, 4> AsmPieces;
10134  SplitString(AsmStr, AsmPieces, ";\n");
10135
10136  switch (AsmPieces.size()) {
10137  default: return false;
10138  case 1:
10139    AsmStr = AsmPieces[0];
10140    AsmPieces.clear();
10141    SplitString(AsmStr, AsmPieces, " \t,");
10142
10143    // rev $0, $1
10144    if (AsmPieces.size() == 3 &&
10145        AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
10146        IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
10147      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
10148      if (Ty && Ty->getBitWidth() == 32)
10149        return IntrinsicLowering::LowerToByteSwap(CI);
10150    }
10151    break;
10152  }
10153
10154  return false;
10155}
10156
10157/// getConstraintType - Given a constraint letter, return the type of
10158/// constraint it is for this target.
10159ARMTargetLowering::ConstraintType
10160ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
10161  if (Constraint.size() == 1) {
10162    switch (Constraint[0]) {
10163    default:  break;
10164    case 'l': return C_RegisterClass;
10165    case 'w': return C_RegisterClass;
10166    case 'h': return C_RegisterClass;
10167    case 'x': return C_RegisterClass;
10168    case 't': return C_RegisterClass;
10169    case 'j': return C_Other; // Constant for movw.
10170      // An address with a single base register. Due to the way we
10171      // currently handle addresses it is the same as an 'r' memory constraint.
10172    case 'Q': return C_Memory;
10173    }
10174  } else if (Constraint.size() == 2) {
10175    switch (Constraint[0]) {
10176    default: break;
10177    // All 'U+' constraints are addresses.
10178    case 'U': return C_Memory;
10179    }
10180  }
10181  return TargetLowering::getConstraintType(Constraint);
10182}
10183
10184/// Examine constraint type and operand type and determine a weight value.
10185/// This object must already have been set up with the operand type
10186/// and the current alternative constraint selected.
10187TargetLowering::ConstraintWeight
10188ARMTargetLowering::getSingleConstraintMatchWeight(
10189    AsmOperandInfo &info, const char *constraint) const {
10190  ConstraintWeight weight = CW_Invalid;
10191  Value *CallOperandVal = info.CallOperandVal;
10192    // If we don't have a value, we can't do a match,
10193    // but allow it at the lowest weight.
10194  if (!CallOperandVal)
10195    return CW_Default;
10196  Type *type = CallOperandVal->getType();
10197  // Look at the constraint type.
10198  switch (*constraint) {
10199  default:
10200    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
10201    break;
10202  case 'l':
10203    if (type->isIntegerTy()) {
10204      if (Subtarget->isThumb())
10205        weight = CW_SpecificReg;
10206      else
10207        weight = CW_Register;
10208    }
10209    break;
10210  case 'w':
10211    if (type->isFloatingPointTy())
10212      weight = CW_Register;
10213    break;
10214  }
10215  return weight;
10216}
10217
10218typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
10219RCPair
10220ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
10221                                                MVT VT) const {
10222  if (Constraint.size() == 1) {
10223    // GCC ARM Constraint Letters
10224    switch (Constraint[0]) {
10225    case 'l': // Low regs or general regs.
10226      if (Subtarget->isThumb())
10227        return RCPair(0U, &ARM::tGPRRegClass);
10228      return RCPair(0U, &ARM::GPRRegClass);
10229    case 'h': // High regs or no regs.
10230      if (Subtarget->isThumb())
10231        return RCPair(0U, &ARM::hGPRRegClass);
10232      break;
10233    case 'r':
10234      return RCPair(0U, &ARM::GPRRegClass);
10235    case 'w':
10236      if (VT == MVT::Other)
10237        break;
10238      if (VT == MVT::f32)
10239        return RCPair(0U, &ARM::SPRRegClass);
10240      if (VT.getSizeInBits() == 64)
10241        return RCPair(0U, &ARM::DPRRegClass);
10242      if (VT.getSizeInBits() == 128)
10243        return RCPair(0U, &ARM::QPRRegClass);
10244      break;
10245    case 'x':
10246      if (VT == MVT::Other)
10247        break;
10248      if (VT == MVT::f32)
10249        return RCPair(0U, &ARM::SPR_8RegClass);
10250      if (VT.getSizeInBits() == 64)
10251        return RCPair(0U, &ARM::DPR_8RegClass);
10252      if (VT.getSizeInBits() == 128)
10253        return RCPair(0U, &ARM::QPR_8RegClass);
10254      break;
10255    case 't':
10256      if (VT == MVT::f32)
10257        return RCPair(0U, &ARM::SPRRegClass);
10258      break;
10259    }
10260  }
10261  if (StringRef("{cc}").equals_lower(Constraint))
10262    return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
10263
10264  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
10265}
10266
10267/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
10268/// vector.  If it is invalid, don't add anything to Ops.
10269void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
10270                                                     std::string &Constraint,
10271                                                     std::vector<SDValue>&Ops,
10272                                                     SelectionDAG &DAG) const {
10273  SDValue Result;
10274
10275  // Currently only support length 1 constraints.
10276  if (Constraint.length() != 1) return;
10277
10278  char ConstraintLetter = Constraint[0];
10279  switch (ConstraintLetter) {
10280  default: break;
10281  case 'j':
10282  case 'I': case 'J': case 'K': case 'L':
10283  case 'M': case 'N': case 'O':
10284    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
10285    if (!C)
10286      return;
10287
10288    int64_t CVal64 = C->getSExtValue();
10289    int CVal = (int) CVal64;
10290    // None of these constraints allow values larger than 32 bits.  Check
10291    // that the value fits in an int.
10292    if (CVal != CVal64)
10293      return;
10294
10295    switch (ConstraintLetter) {
10296      case 'j':
10297        // Constant suitable for movw, must be between 0 and
10298        // 65535.
10299        if (Subtarget->hasV6T2Ops())
10300          if (CVal >= 0 && CVal <= 65535)
10301            break;
10302        return;
10303      case 'I':
10304        if (Subtarget->isThumb1Only()) {
10305          // This must be a constant between 0 and 255, for ADD
10306          // immediates.
10307          if (CVal >= 0 && CVal <= 255)
10308            break;
10309        } else if (Subtarget->isThumb2()) {
10310          // A constant that can be used as an immediate value in a
10311          // data-processing instruction.
10312          if (ARM_AM::getT2SOImmVal(CVal) != -1)
10313            break;
10314        } else {
10315          // A constant that can be used as an immediate value in a
10316          // data-processing instruction.
10317          if (ARM_AM::getSOImmVal(CVal) != -1)
10318            break;
10319        }
10320        return;
10321
10322      case 'J':
10323        if (Subtarget->isThumb()) {  // FIXME thumb2
10324          // This must be a constant between -255 and -1, for negated ADD
10325          // immediates. This can be used in GCC with an "n" modifier that
10326          // prints the negated value, for use with SUB instructions. It is
10327          // not useful otherwise but is implemented for compatibility.
10328          if (CVal >= -255 && CVal <= -1)
10329            break;
10330        } else {
10331          // This must be a constant between -4095 and 4095. It is not clear
10332          // what this constraint is intended for. Implemented for
10333          // compatibility with GCC.
10334          if (CVal >= -4095 && CVal <= 4095)
10335            break;
10336        }
10337        return;
10338
10339      case 'K':
10340        if (Subtarget->isThumb1Only()) {
10341          // A 32-bit value where only one byte has a nonzero value. Exclude
10342          // zero to match GCC. This constraint is used by GCC internally for
10343          // constants that can be loaded with a move/shift combination.
10344          // It is not useful otherwise but is implemented for compatibility.
10345          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
10346            break;
10347        } else if (Subtarget->isThumb2()) {
10348          // A constant whose bitwise inverse can be used as an immediate
10349          // value in a data-processing instruction. This can be used in GCC
10350          // with a "B" modifier that prints the inverted value, for use with
10351          // BIC and MVN instructions. It is not useful otherwise but is
10352          // implemented for compatibility.
10353          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
10354            break;
10355        } else {
10356          // A constant whose bitwise inverse can be used as an immediate
10357          // value in a data-processing instruction. This can be used in GCC
10358          // with a "B" modifier that prints the inverted value, for use with
10359          // BIC and MVN instructions. It is not useful otherwise but is
10360          // implemented for compatibility.
10361          if (ARM_AM::getSOImmVal(~CVal) != -1)
10362            break;
10363        }
10364        return;
10365
10366      case 'L':
10367        if (Subtarget->isThumb1Only()) {
10368          // This must be a constant between -7 and 7,
10369          // for 3-operand ADD/SUB immediate instructions.
10370          if (CVal >= -7 && CVal < 7)
10371            break;
10372        } else if (Subtarget->isThumb2()) {
10373          // A constant whose negation can be used as an immediate value in a
10374          // data-processing instruction. This can be used in GCC with an "n"
10375          // modifier that prints the negated value, for use with SUB
10376          // instructions. It is not useful otherwise but is implemented for
10377          // compatibility.
10378          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
10379            break;
10380        } else {
10381          // A constant whose negation can be used as an immediate value in a
10382          // data-processing instruction. This can be used in GCC with an "n"
10383          // modifier that prints the negated value, for use with SUB
10384          // instructions. It is not useful otherwise but is implemented for
10385          // compatibility.
10386          if (ARM_AM::getSOImmVal(-CVal) != -1)
10387            break;
10388        }
10389        return;
10390
10391      case 'M':
10392        if (Subtarget->isThumb()) { // FIXME thumb2
10393          // This must be a multiple of 4 between 0 and 1020, for
10394          // ADD sp + immediate.
10395          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
10396            break;
10397        } else {
10398          // A power of two or a constant between 0 and 32.  This is used in
10399          // GCC for the shift amount on shifted register operands, but it is
10400          // useful in general for any shift amounts.
10401          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
10402            break;
10403        }
10404        return;
10405
10406      case 'N':
10407        if (Subtarget->isThumb()) {  // FIXME thumb2
10408          // This must be a constant between 0 and 31, for shift amounts.
10409          if (CVal >= 0 && CVal <= 31)
10410            break;
10411        }
10412        return;
10413
10414      case 'O':
10415        if (Subtarget->isThumb()) {  // FIXME thumb2
10416          // This must be a multiple of 4 between -508 and 508, for
10417          // ADD/SUB sp = sp + immediate.
10418          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
10419            break;
10420        }
10421        return;
10422    }
10423    Result = DAG.getTargetConstant(CVal, Op.getValueType());
10424    break;
10425  }
10426
10427  if (Result.getNode()) {
10428    Ops.push_back(Result);
10429    return;
10430  }
10431  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
10432}
10433
10434SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
10435  assert(Subtarget->isTargetAEABI() && "Register-based DivRem lowering only");
10436  unsigned Opcode = Op->getOpcode();
10437  assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
10438      "Invalid opcode for Div/Rem lowering");
10439  bool isSigned = (Opcode == ISD::SDIVREM);
10440  EVT VT = Op->getValueType(0);
10441  Type *Ty = VT.getTypeForEVT(*DAG.getContext());
10442
10443  RTLIB::Libcall LC;
10444  switch (VT.getSimpleVT().SimpleTy) {
10445  default: llvm_unreachable("Unexpected request for libcall!");
10446  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
10447  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
10448  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
10449  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
10450  }
10451
10452  SDValue InChain = DAG.getEntryNode();
10453
10454  TargetLowering::ArgListTy Args;
10455  TargetLowering::ArgListEntry Entry;
10456  for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
10457    EVT ArgVT = Op->getOperand(i).getValueType();
10458    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
10459    Entry.Node = Op->getOperand(i);
10460    Entry.Ty = ArgTy;
10461    Entry.isSExt = isSigned;
10462    Entry.isZExt = !isSigned;
10463    Args.push_back(Entry);
10464  }
10465
10466  SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
10467                                         getPointerTy());
10468
10469  Type *RetTy = (Type*)StructType::get(Ty, Ty, NULL);
10470
10471  SDLoc dl(Op);
10472  TargetLowering::CallLoweringInfo CLI(DAG);
10473  CLI.setDebugLoc(dl).setChain(InChain)
10474    .setCallee(getLibcallCallingConv(LC), RetTy, Callee, &Args, 0)
10475    .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
10476
10477  std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
10478  return CallInfo.first;
10479}
10480
10481bool
10482ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
10483  // The ARM target isn't yet aware of offsets.
10484  return false;
10485}
10486
10487bool ARM::isBitFieldInvertedMask(unsigned v) {
10488  if (v == 0xffffffff)
10489    return false;
10490
10491  // there can be 1's on either or both "outsides", all the "inside"
10492  // bits must be 0's
10493  unsigned TO = CountTrailingOnes_32(v);
10494  unsigned LO = CountLeadingOnes_32(v);
10495  v = (v >> TO) << TO;
10496  v = (v << LO) >> LO;
10497  return v == 0;
10498}
10499
10500/// isFPImmLegal - Returns true if the target can instruction select the
10501/// specified FP immediate natively. If false, the legalizer will
10502/// materialize the FP immediate as a load from a constant pool.
10503bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
10504  if (!Subtarget->hasVFP3())
10505    return false;
10506  if (VT == MVT::f32)
10507    return ARM_AM::getFP32Imm(Imm) != -1;
10508  if (VT == MVT::f64)
10509    return ARM_AM::getFP64Imm(Imm) != -1;
10510  return false;
10511}
10512
10513/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
10514/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
10515/// specified in the intrinsic calls.
10516bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
10517                                           const CallInst &I,
10518                                           unsigned Intrinsic) const {
10519  switch (Intrinsic) {
10520  case Intrinsic::arm_neon_vld1:
10521  case Intrinsic::arm_neon_vld2:
10522  case Intrinsic::arm_neon_vld3:
10523  case Intrinsic::arm_neon_vld4:
10524  case Intrinsic::arm_neon_vld2lane:
10525  case Intrinsic::arm_neon_vld3lane:
10526  case Intrinsic::arm_neon_vld4lane: {
10527    Info.opc = ISD::INTRINSIC_W_CHAIN;
10528    // Conservatively set memVT to the entire set of vectors loaded.
10529    uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
10530    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
10531    Info.ptrVal = I.getArgOperand(0);
10532    Info.offset = 0;
10533    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
10534    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
10535    Info.vol = false; // volatile loads with NEON intrinsics not supported
10536    Info.readMem = true;
10537    Info.writeMem = false;
10538    return true;
10539  }
10540  case Intrinsic::arm_neon_vst1:
10541  case Intrinsic::arm_neon_vst2:
10542  case Intrinsic::arm_neon_vst3:
10543  case Intrinsic::arm_neon_vst4:
10544  case Intrinsic::arm_neon_vst2lane:
10545  case Intrinsic::arm_neon_vst3lane:
10546  case Intrinsic::arm_neon_vst4lane: {
10547    Info.opc = ISD::INTRINSIC_VOID;
10548    // Conservatively set memVT to the entire set of vectors stored.
10549    unsigned NumElts = 0;
10550    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
10551      Type *ArgTy = I.getArgOperand(ArgI)->getType();
10552      if (!ArgTy->isVectorTy())
10553        break;
10554      NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
10555    }
10556    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
10557    Info.ptrVal = I.getArgOperand(0);
10558    Info.offset = 0;
10559    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
10560    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
10561    Info.vol = false; // volatile stores with NEON intrinsics not supported
10562    Info.readMem = false;
10563    Info.writeMem = true;
10564    return true;
10565  }
10566  case Intrinsic::arm_ldaex:
10567  case Intrinsic::arm_ldrex: {
10568    PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
10569    Info.opc = ISD::INTRINSIC_W_CHAIN;
10570    Info.memVT = MVT::getVT(PtrTy->getElementType());
10571    Info.ptrVal = I.getArgOperand(0);
10572    Info.offset = 0;
10573    Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
10574    Info.vol = true;
10575    Info.readMem = true;
10576    Info.writeMem = false;
10577    return true;
10578  }
10579  case Intrinsic::arm_stlex:
10580  case Intrinsic::arm_strex: {
10581    PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
10582    Info.opc = ISD::INTRINSIC_W_CHAIN;
10583    Info.memVT = MVT::getVT(PtrTy->getElementType());
10584    Info.ptrVal = I.getArgOperand(1);
10585    Info.offset = 0;
10586    Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
10587    Info.vol = true;
10588    Info.readMem = false;
10589    Info.writeMem = true;
10590    return true;
10591  }
10592  case Intrinsic::arm_stlexd:
10593  case Intrinsic::arm_strexd: {
10594    Info.opc = ISD::INTRINSIC_W_CHAIN;
10595    Info.memVT = MVT::i64;
10596    Info.ptrVal = I.getArgOperand(2);
10597    Info.offset = 0;
10598    Info.align = 8;
10599    Info.vol = true;
10600    Info.readMem = false;
10601    Info.writeMem = true;
10602    return true;
10603  }
10604  case Intrinsic::arm_ldaexd:
10605  case Intrinsic::arm_ldrexd: {
10606    Info.opc = ISD::INTRINSIC_W_CHAIN;
10607    Info.memVT = MVT::i64;
10608    Info.ptrVal = I.getArgOperand(0);
10609    Info.offset = 0;
10610    Info.align = 8;
10611    Info.vol = true;
10612    Info.readMem = true;
10613    Info.writeMem = false;
10614    return true;
10615  }
10616  default:
10617    break;
10618  }
10619
10620  return false;
10621}
10622
10623/// \brief Returns true if it is beneficial to convert a load of a constant
10624/// to just the constant itself.
10625bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
10626                                                          Type *Ty) const {
10627  assert(Ty->isIntegerTy());
10628
10629  unsigned Bits = Ty->getPrimitiveSizeInBits();
10630  if (Bits == 0 || Bits > 32)
10631    return false;
10632  return true;
10633}
10634
10635bool ARMTargetLowering::shouldExpandAtomicInIR(Instruction *Inst) const {
10636  // Loads and stores less than 64-bits are already atomic; ones above that
10637  // are doomed anyway, so defer to the default libcall and blame the OS when
10638  // things go wrong:
10639  if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
10640    return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() == 64;
10641  else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
10642    return LI->getType()->getPrimitiveSizeInBits() == 64;
10643
10644  // For the real atomic operations, we have ldrex/strex up to 64 bits.
10645  return Inst->getType()->getPrimitiveSizeInBits() <= 64;
10646}
10647
10648Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
10649                                         AtomicOrdering Ord) const {
10650  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10651  Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
10652  bool IsAcquire =
10653      Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent;
10654
10655  // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
10656  // intrinsic must return {i32, i32} and we have to recombine them into a
10657  // single i64 here.
10658  if (ValTy->getPrimitiveSizeInBits() == 64) {
10659    Intrinsic::ID Int =
10660        IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
10661    Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int);
10662
10663    Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
10664    Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
10665
10666    Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
10667    Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
10668    if (!Subtarget->isLittle())
10669      std::swap (Lo, Hi);
10670    Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
10671    Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
10672    return Builder.CreateOr(
10673        Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
10674  }
10675
10676  Type *Tys[] = { Addr->getType() };
10677  Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
10678  Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int, Tys);
10679
10680  return Builder.CreateTruncOrBitCast(
10681      Builder.CreateCall(Ldrex, Addr),
10682      cast<PointerType>(Addr->getType())->getElementType());
10683}
10684
10685Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
10686                                               Value *Addr,
10687                                               AtomicOrdering Ord) const {
10688  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10689  bool IsRelease =
10690      Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent;
10691
10692  // Since the intrinsics must have legal type, the i64 intrinsics take two
10693  // parameters: "i32, i32". We must marshal Val into the appropriate form
10694  // before the call.
10695  if (Val->getType()->getPrimitiveSizeInBits() == 64) {
10696    Intrinsic::ID Int =
10697        IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
10698    Function *Strex = Intrinsic::getDeclaration(M, Int);
10699    Type *Int32Ty = Type::getInt32Ty(M->getContext());
10700
10701    Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
10702    Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
10703    if (!Subtarget->isLittle())
10704      std::swap (Lo, Hi);
10705    Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
10706    return Builder.CreateCall3(Strex, Lo, Hi, Addr);
10707  }
10708
10709  Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
10710  Type *Tys[] = { Addr->getType() };
10711  Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
10712
10713  return Builder.CreateCall2(
10714      Strex, Builder.CreateZExtOrBitCast(
10715                 Val, Strex->getFunctionType()->getParamType(0)),
10716      Addr);
10717}
10718
10719enum HABaseType {
10720  HA_UNKNOWN = 0,
10721  HA_FLOAT,
10722  HA_DOUBLE,
10723  HA_VECT64,
10724  HA_VECT128
10725};
10726
10727static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
10728                                   uint64_t &Members) {
10729  if (const StructType *ST = dyn_cast<StructType>(Ty)) {
10730    for (unsigned i = 0; i < ST->getNumElements(); ++i) {
10731      uint64_t SubMembers = 0;
10732      if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
10733        return false;
10734      Members += SubMembers;
10735    }
10736  } else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
10737    uint64_t SubMembers = 0;
10738    if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
10739      return false;
10740    Members += SubMembers * AT->getNumElements();
10741  } else if (Ty->isFloatTy()) {
10742    if (Base != HA_UNKNOWN && Base != HA_FLOAT)
10743      return false;
10744    Members = 1;
10745    Base = HA_FLOAT;
10746  } else if (Ty->isDoubleTy()) {
10747    if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
10748      return false;
10749    Members = 1;
10750    Base = HA_DOUBLE;
10751  } else if (const VectorType *VT = dyn_cast<VectorType>(Ty)) {
10752    Members = 1;
10753    switch (Base) {
10754    case HA_FLOAT:
10755    case HA_DOUBLE:
10756      return false;
10757    case HA_VECT64:
10758      return VT->getBitWidth() == 64;
10759    case HA_VECT128:
10760      return VT->getBitWidth() == 128;
10761    case HA_UNKNOWN:
10762      switch (VT->getBitWidth()) {
10763      case 64:
10764        Base = HA_VECT64;
10765        return true;
10766      case 128:
10767        Base = HA_VECT128;
10768        return true;
10769      default:
10770        return false;
10771      }
10772    }
10773  }
10774
10775  return (Members > 0 && Members <= 4);
10776}
10777
10778/// \brief Return true if a type is an AAPCS-VFP homogeneous aggregate.
10779bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
10780    Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
10781  if (getEffectiveCallingConv(CallConv, isVarArg) !=
10782      CallingConv::ARM_AAPCS_VFP)
10783    return false;
10784
10785  HABaseType Base = HA_UNKNOWN;
10786  uint64_t Members = 0;
10787  bool result = isHomogeneousAggregate(Ty, Base, Members);
10788  DEBUG(dbgs() << "isHA: " << result << " "; Ty->dump(); dbgs() << "\n");
10789  return result;
10790}
10791