ARMISelLowering.cpp revision de64aaf6c8ab3a170b2e5a5b0968595503b5aad4
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-isel"
16#include "ARM.h"
17#include "ARMAddressingModes.h"
18#include "ARMCallingConv.h"
19#include "ARMConstantPoolValue.h"
20#include "ARMISelLowering.h"
21#include "ARMMachineFunctionInfo.h"
22#include "ARMPerfectShuffle.h"
23#include "ARMRegisterInfo.h"
24#include "ARMSubtarget.h"
25#include "ARMTargetMachine.h"
26#include "ARMTargetObjectFile.h"
27#include "llvm/CallingConv.h"
28#include "llvm/Constants.h"
29#include "llvm/Function.h"
30#include "llvm/GlobalValue.h"
31#include "llvm/Instruction.h"
32#include "llvm/Instructions.h"
33#include "llvm/Intrinsics.h"
34#include "llvm/Type.h"
35#include "llvm/CodeGen/CallingConvLower.h"
36#include "llvm/CodeGen/IntrinsicLowering.h"
37#include "llvm/CodeGen/MachineBasicBlock.h"
38#include "llvm/CodeGen/MachineFrameInfo.h"
39#include "llvm/CodeGen/MachineFunction.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineRegisterInfo.h"
42#include "llvm/CodeGen/PseudoSourceValue.h"
43#include "llvm/CodeGen/SelectionDAG.h"
44#include "llvm/MC/MCSectionMachO.h"
45#include "llvm/Target/TargetOptions.h"
46#include "llvm/ADT/VectorExtras.h"
47#include "llvm/ADT/StringExtras.h"
48#include "llvm/ADT/Statistic.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/raw_ostream.h"
53#include <sstream>
54using namespace llvm;
55
56STATISTIC(NumTailCalls, "Number of tail calls");
57STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
58
59// This option should go away when tail calls fully work.
60static cl::opt<bool>
61EnableARMTailCalls("arm-tail-calls", cl::Hidden,
62  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
63  cl::init(false));
64
65cl::opt<bool>
66EnableARMLongCalls("arm-long-calls", cl::Hidden,
67  cl::desc("Generate calls via indirect call instructions"),
68  cl::init(false));
69
70static cl::opt<bool>
71ARMInterworking("arm-interworking", cl::Hidden,
72  cl::desc("Enable / disable ARM interworking (for debugging only)"),
73  cl::init(true));
74
75// The APCS parameter registers.
76static const unsigned GPRArgRegs[] = {
77  ARM::R0, ARM::R1, ARM::R2, ARM::R3
78};
79
80void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
81                                       EVT PromotedBitwiseVT) {
82  if (VT != PromotedLdStVT) {
83    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
84    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
85                       PromotedLdStVT.getSimpleVT());
86
87    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
88    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
89                       PromotedLdStVT.getSimpleVT());
90  }
91
92  EVT ElemTy = VT.getVectorElementType();
93  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
94    setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom);
95  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
96  if (ElemTy != MVT::i32) {
97    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
98    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
99    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
100    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
101  }
102  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
103  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
104  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
105  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Legal);
106  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
107  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
108  if (VT.isInteger()) {
109    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
110    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
111    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
112    setLoadExtAction(ISD::SEXTLOAD, VT.getSimpleVT(), Expand);
113    setLoadExtAction(ISD::ZEXTLOAD, VT.getSimpleVT(), Expand);
114    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
115         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
116      setTruncStoreAction(VT.getSimpleVT(),
117                          (MVT::SimpleValueType)InnerVT, Expand);
118  }
119  setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
120
121  // Promote all bit-wise operations.
122  if (VT.isInteger() && VT != PromotedBitwiseVT) {
123    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
124    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
125                       PromotedBitwiseVT.getSimpleVT());
126    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
127    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
128                       PromotedBitwiseVT.getSimpleVT());
129    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
130    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
131                       PromotedBitwiseVT.getSimpleVT());
132  }
133
134  // Neon does not support vector divide/remainder operations.
135  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
136  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
137  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
138  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
139  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
140  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
141}
142
143void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
144  addRegisterClass(VT, ARM::DPRRegisterClass);
145  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
146}
147
148void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
149  addRegisterClass(VT, ARM::QPRRegisterClass);
150  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
151}
152
153static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
154  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
155    return new TargetLoweringObjectFileMachO();
156
157  return new ARMElfTargetObjectFile();
158}
159
160ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
161    : TargetLowering(TM, createTLOF(TM)) {
162  Subtarget = &TM.getSubtarget<ARMSubtarget>();
163  RegInfo = TM.getRegisterInfo();
164  Itins = TM.getInstrItineraryData();
165
166  if (Subtarget->isTargetDarwin()) {
167    // Uses VFP for Thumb libfuncs if available.
168    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
169      // Single-precision floating-point arithmetic.
170      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
171      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
172      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
173      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
174
175      // Double-precision floating-point arithmetic.
176      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
177      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
178      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
179      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
180
181      // Single-precision comparisons.
182      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
183      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
184      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
185      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
186      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
187      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
188      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
189      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
190
191      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
192      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
193      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
194      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
195      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
196      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
197      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
198      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
199
200      // Double-precision comparisons.
201      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
202      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
203      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
204      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
205      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
206      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
207      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
208      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
209
210      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
211      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
212      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
213      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
214      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
215      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
216      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
217      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
218
219      // Floating-point to integer conversions.
220      // i64 conversions are done via library routines even when generating VFP
221      // instructions, so use the same ones.
222      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
223      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
224      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
225      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
226
227      // Conversions between floating types.
228      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
229      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
230
231      // Integer to floating-point conversions.
232      // i64 conversions are done via library routines even when generating VFP
233      // instructions, so use the same ones.
234      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
235      // e.g., __floatunsidf vs. __floatunssidfvfp.
236      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
237      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
238      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
239      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
240    }
241  }
242
243  // These libcalls are not available in 32-bit.
244  setLibcallName(RTLIB::SHL_I128, 0);
245  setLibcallName(RTLIB::SRL_I128, 0);
246  setLibcallName(RTLIB::SRA_I128, 0);
247
248  if (Subtarget->isAAPCS_ABI()) {
249    // Double-precision floating-point arithmetic helper functions
250    // RTABI chapter 4.1.2, Table 2
251    setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
252    setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
253    setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
254    setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
255    setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
256    setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
257    setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
258    setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
259
260    // Double-precision floating-point comparison helper functions
261    // RTABI chapter 4.1.2, Table 3
262    setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
263    setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
264    setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
265    setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
266    setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
267    setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
268    setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
269    setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
270    setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
271    setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
272    setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
273    setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
274    setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
275    setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
276    setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
277    setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
278    setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
279    setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
280    setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
281    setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
282    setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
283    setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
284    setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
285    setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
286
287    // Single-precision floating-point arithmetic helper functions
288    // RTABI chapter 4.1.2, Table 4
289    setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
290    setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
291    setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
292    setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
293    setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
294    setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
295    setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
296    setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
297
298    // Single-precision floating-point comparison helper functions
299    // RTABI chapter 4.1.2, Table 5
300    setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
301    setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
302    setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
303    setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
304    setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
305    setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
306    setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
307    setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
308    setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
309    setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
310    setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
311    setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
312    setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
313    setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
314    setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
315    setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
316    setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
317    setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
318    setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
319    setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
320    setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
321    setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
322    setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
323    setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
324
325    // Floating-point to integer conversions.
326    // RTABI chapter 4.1.2, Table 6
327    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
328    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
329    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
330    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
331    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
332    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
333    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
334    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
335    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
336    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
337    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
338    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
339    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
340    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
341    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
342    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
343
344    // Conversions between floating types.
345    // RTABI chapter 4.1.2, Table 7
346    setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
347    setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
348    setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
349    setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
350
351    // Integer to floating-point conversions.
352    // RTABI chapter 4.1.2, Table 8
353    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
354    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
355    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
356    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
357    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
358    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
359    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
360    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
361    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
362    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
363    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
364    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
365    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
366    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
367    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
368    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
369
370    // Long long helper functions
371    // RTABI chapter 4.2, Table 9
372    setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
373    setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
374    setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
375    setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
376    setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
377    setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
378    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
379    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
380    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
381    setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
382    setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
383    setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
384
385    // Integer division functions
386    // RTABI chapter 4.3.1
387    setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
388    setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
389    setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
390    setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
391    setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
392    setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
393    setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
394    setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
395    setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
396    setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
397    setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
398    setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
399
400    // Memory operations
401    // RTABI chapter 4.3.4
402    setLibcallName(RTLIB::MEMCPY,  "__aeabi_memcpy");
403    setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove");
404    setLibcallName(RTLIB::MEMSET,  "__aeabi_memset");
405  }
406
407  if (Subtarget->isThumb1Only())
408    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
409  else
410    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
411  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
412    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
413    if (!Subtarget->isFPOnlySP())
414      addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
415
416    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
417  }
418
419  if (Subtarget->hasNEON()) {
420    addDRTypeForNEON(MVT::v2f32);
421    addDRTypeForNEON(MVT::v8i8);
422    addDRTypeForNEON(MVT::v4i16);
423    addDRTypeForNEON(MVT::v2i32);
424    addDRTypeForNEON(MVT::v1i64);
425
426    addQRTypeForNEON(MVT::v4f32);
427    addQRTypeForNEON(MVT::v2f64);
428    addQRTypeForNEON(MVT::v16i8);
429    addQRTypeForNEON(MVT::v8i16);
430    addQRTypeForNEON(MVT::v4i32);
431    addQRTypeForNEON(MVT::v2i64);
432
433    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
434    // neither Neon nor VFP support any arithmetic operations on it.
435    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
436    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
437    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
438    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
439    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
440    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
441    setOperationAction(ISD::VSETCC, MVT::v2f64, Expand);
442    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
443    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
444    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
445    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
446    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
447    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
448    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
449    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
450    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
451    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
452    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
453    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
454    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
455    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
456    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
457    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
458    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
459
460    setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
461
462    // Neon does not support some operations on v1i64 and v2i64 types.
463    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
464    // Custom handling for some quad-vector types to detect VMULL.
465    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
466    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
467    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
468    // Custom handling for some vector types to avoid expensive expansions
469    setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
470    setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
471    setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
472    setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
473    setOperationAction(ISD::VSETCC, MVT::v1i64, Expand);
474    setOperationAction(ISD::VSETCC, MVT::v2i64, Expand);
475    // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
476    // a destination type that is wider than the source.
477    setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
478    setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
479
480    setTargetDAGCombine(ISD::INTRINSIC_VOID);
481    setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
482    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
483    setTargetDAGCombine(ISD::SHL);
484    setTargetDAGCombine(ISD::SRL);
485    setTargetDAGCombine(ISD::SRA);
486    setTargetDAGCombine(ISD::SIGN_EXTEND);
487    setTargetDAGCombine(ISD::ZERO_EXTEND);
488    setTargetDAGCombine(ISD::ANY_EXTEND);
489    setTargetDAGCombine(ISD::SELECT_CC);
490    setTargetDAGCombine(ISD::BUILD_VECTOR);
491    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
492    setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
493    setTargetDAGCombine(ISD::STORE);
494  }
495
496  computeRegisterProperties();
497
498  // ARM does not have f32 extending load.
499  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
500
501  // ARM does not have i1 sign extending load.
502  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
503
504  // ARM supports all 4 flavors of integer indexed load / store.
505  if (!Subtarget->isThumb1Only()) {
506    for (unsigned im = (unsigned)ISD::PRE_INC;
507         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
508      setIndexedLoadAction(im,  MVT::i1,  Legal);
509      setIndexedLoadAction(im,  MVT::i8,  Legal);
510      setIndexedLoadAction(im,  MVT::i16, Legal);
511      setIndexedLoadAction(im,  MVT::i32, Legal);
512      setIndexedStoreAction(im, MVT::i1,  Legal);
513      setIndexedStoreAction(im, MVT::i8,  Legal);
514      setIndexedStoreAction(im, MVT::i16, Legal);
515      setIndexedStoreAction(im, MVT::i32, Legal);
516    }
517  }
518
519  // i64 operation support.
520  setOperationAction(ISD::MUL,     MVT::i64, Expand);
521  setOperationAction(ISD::MULHU,   MVT::i32, Expand);
522  if (Subtarget->isThumb1Only()) {
523    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
524    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
525  }
526  if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops())
527    setOperationAction(ISD::MULHS, MVT::i32, Expand);
528
529  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
530  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
531  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
532  setOperationAction(ISD::SRL,       MVT::i64, Custom);
533  setOperationAction(ISD::SRA,       MVT::i64, Custom);
534
535  // ARM does not have ROTL.
536  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
537  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
538  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
539  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
540    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
541
542  // Only ARMv6 has BSWAP.
543  if (!Subtarget->hasV6Ops())
544    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
545
546  // These are expanded into libcalls.
547  if (!Subtarget->hasDivide() || !Subtarget->isThumb2()) {
548    // v7M has a hardware divider
549    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
550    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
551  }
552  setOperationAction(ISD::SREM,  MVT::i32, Expand);
553  setOperationAction(ISD::UREM,  MVT::i32, Expand);
554  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
555  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
556
557  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
558  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
559  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
560  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
561  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
562
563  setOperationAction(ISD::TRAP, MVT::Other, Legal);
564
565  // Use the default implementation.
566  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
567  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
568  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
569  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
570  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
571  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
572  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
573  setOperationAction(ISD::EXCEPTIONADDR,      MVT::i32,   Expand);
574  setExceptionPointerRegister(ARM::R0);
575  setExceptionSelectorRegister(ARM::R1);
576
577  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
578  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
579  // the default expansion.
580  if (Subtarget->hasDataBarrier() ||
581      (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
582    // membarrier needs custom lowering; the rest are legal and handled
583    // normally.
584    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
585  } else {
586    // Set them all for expansion, which will force libcalls.
587    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
588    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i8,  Expand);
589    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i16, Expand);
590    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
591    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i8,  Expand);
592    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i16, Expand);
593    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
594    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i8,  Expand);
595    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i16, Expand);
596    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
597    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i8,  Expand);
598    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i16, Expand);
599    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
600    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i8,  Expand);
601    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i16, Expand);
602    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
603    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i8,  Expand);
604    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i16, Expand);
605    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
606    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i8,  Expand);
607    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i16, Expand);
608    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
609    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i8,  Expand);
610    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i16, Expand);
611    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
612    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i8,  Expand);
613    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i16, Expand);
614    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
615    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i8,  Expand);
616    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i16, Expand);
617    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
618    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i8,  Expand);
619    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i16, Expand);
620    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
621    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i8,  Expand);
622    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i16, Expand);
623    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
624    // Since the libcalls include locking, fold in the fences
625    setShouldFoldAtomicFences(true);
626  }
627  // 64-bit versions are always libcalls (for now)
628  setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Expand);
629  setOperationAction(ISD::ATOMIC_SWAP,      MVT::i64, Expand);
630  setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Expand);
631  setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Expand);
632  setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Expand);
633  setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Expand);
634  setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Expand);
635  setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Expand);
636
637  setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
638
639  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
640  if (!Subtarget->hasV6Ops()) {
641    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
642    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
643  }
644  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
645
646  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
647    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
648    // iff target supports vfp2.
649    setOperationAction(ISD::BITCAST, MVT::i64, Custom);
650    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
651  }
652
653  // We want to custom lower some of our intrinsics.
654  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
655  if (Subtarget->isTargetDarwin()) {
656    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
657    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
658    setOperationAction(ISD::EH_SJLJ_DISPATCHSETUP, MVT::Other, Custom);
659  }
660
661  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
662  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
663  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
664  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
665  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
666  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
667  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
668  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
669  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
670
671  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
672  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
673  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
674  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
675  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
676
677  // We don't support sin/cos/fmod/copysign/pow
678  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
679  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
680  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
681  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
682  setOperationAction(ISD::FREM,      MVT::f64, Expand);
683  setOperationAction(ISD::FREM,      MVT::f32, Expand);
684  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
685    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
686    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
687  }
688  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
689  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
690
691  // Various VFP goodness
692  if (!UseSoftFloat && !Subtarget->isThumb1Only()) {
693    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
694    if (Subtarget->hasVFP2()) {
695      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
696      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
697      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
698      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
699    }
700    // Special handling for half-precision FP.
701    if (!Subtarget->hasFP16()) {
702      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
703      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
704    }
705  }
706
707  // We have target-specific dag combine patterns for the following nodes:
708  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
709  setTargetDAGCombine(ISD::ADD);
710  setTargetDAGCombine(ISD::SUB);
711  setTargetDAGCombine(ISD::MUL);
712
713  if (Subtarget->hasV6T2Ops() || Subtarget->hasNEON())
714    setTargetDAGCombine(ISD::OR);
715  if (Subtarget->hasNEON())
716    setTargetDAGCombine(ISD::AND);
717
718  setStackPointerRegisterToSaveRestore(ARM::SP);
719
720  if (UseSoftFloat || Subtarget->isThumb1Only() || !Subtarget->hasVFP2())
721    setSchedulingPreference(Sched::RegPressure);
722  else
723    setSchedulingPreference(Sched::Hybrid);
724
725  //// temporary - rewrite interface to use type
726  maxStoresPerMemcpy = maxStoresPerMemcpyOptSize = 1;
727
728  // On ARM arguments smaller than 4 bytes are extended, so all arguments
729  // are at least 4 bytes aligned.
730  setMinStackArgumentAlignment(4);
731
732  benefitFromCodePlacementOpt = true;
733
734  setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
735}
736
737// FIXME: It might make sense to define the representative register class as the
738// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
739// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
740// SPR's representative would be DPR_VFP2. This should work well if register
741// pressure tracking were modified such that a register use would increment the
742// pressure of the register class's representative and all of it's super
743// classes' representatives transitively. We have not implemented this because
744// of the difficulty prior to coalescing of modeling operand register classes
745// due to the common occurrence of cross class copies and subregister insertions
746// and extractions.
747std::pair<const TargetRegisterClass*, uint8_t>
748ARMTargetLowering::findRepresentativeClass(EVT VT) const{
749  const TargetRegisterClass *RRC = 0;
750  uint8_t Cost = 1;
751  switch (VT.getSimpleVT().SimpleTy) {
752  default:
753    return TargetLowering::findRepresentativeClass(VT);
754  // Use DPR as representative register class for all floating point
755  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
756  // the cost is 1 for both f32 and f64.
757  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
758  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
759    RRC = ARM::DPRRegisterClass;
760    // When NEON is used for SP, only half of the register file is available
761    // because operations that define both SP and DP results will be constrained
762    // to the VFP2 class (D0-D15). We currently model this constraint prior to
763    // coalescing by double-counting the SP regs. See the FIXME above.
764    if (Subtarget->useNEONForSinglePrecisionFP())
765      Cost = 2;
766    break;
767  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
768  case MVT::v4f32: case MVT::v2f64:
769    RRC = ARM::DPRRegisterClass;
770    Cost = 2;
771    break;
772  case MVT::v4i64:
773    RRC = ARM::DPRRegisterClass;
774    Cost = 4;
775    break;
776  case MVT::v8i64:
777    RRC = ARM::DPRRegisterClass;
778    Cost = 8;
779    break;
780  }
781  return std::make_pair(RRC, Cost);
782}
783
784const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
785  switch (Opcode) {
786  default: return 0;
787  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
788  case ARMISD::WrapperDYN:    return "ARMISD::WrapperDYN";
789  case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
790  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
791  case ARMISD::CALL:          return "ARMISD::CALL";
792  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
793  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
794  case ARMISD::tCALL:         return "ARMISD::tCALL";
795  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
796  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
797  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
798  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
799  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
800  case ARMISD::CMP:           return "ARMISD::CMP";
801  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
802  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
803  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
804  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
805  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
806  case ARMISD::CMOV:          return "ARMISD::CMOV";
807
808  case ARMISD::RBIT:          return "ARMISD::RBIT";
809
810  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
811  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
812  case ARMISD::SITOF:         return "ARMISD::SITOF";
813  case ARMISD::UITOF:         return "ARMISD::UITOF";
814
815  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
816  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
817  case ARMISD::RRX:           return "ARMISD::RRX";
818
819  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
820  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
821
822  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
823  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
824  case ARMISD::EH_SJLJ_DISPATCHSETUP:return "ARMISD::EH_SJLJ_DISPATCHSETUP";
825
826  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
827
828  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
829
830  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
831
832  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
833  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
834
835  case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
836
837  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
838  case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
839  case ARMISD::VCGE:          return "ARMISD::VCGE";
840  case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
841  case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
842  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
843  case ARMISD::VCGT:          return "ARMISD::VCGT";
844  case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
845  case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
846  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
847  case ARMISD::VTST:          return "ARMISD::VTST";
848
849  case ARMISD::VSHL:          return "ARMISD::VSHL";
850  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
851  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
852  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
853  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
854  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
855  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
856  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
857  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
858  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
859  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
860  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
861  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
862  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
863  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
864  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
865  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
866  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
867  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
868  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
869  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
870  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
871  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
872  case ARMISD::VDUP:          return "ARMISD::VDUP";
873  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
874  case ARMISD::VEXT:          return "ARMISD::VEXT";
875  case ARMISD::VREV64:        return "ARMISD::VREV64";
876  case ARMISD::VREV32:        return "ARMISD::VREV32";
877  case ARMISD::VREV16:        return "ARMISD::VREV16";
878  case ARMISD::VZIP:          return "ARMISD::VZIP";
879  case ARMISD::VUZP:          return "ARMISD::VUZP";
880  case ARMISD::VTRN:          return "ARMISD::VTRN";
881  case ARMISD::VTBL1:         return "ARMISD::VTBL1";
882  case ARMISD::VTBL2:         return "ARMISD::VTBL2";
883  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
884  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
885  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
886  case ARMISD::FMAX:          return "ARMISD::FMAX";
887  case ARMISD::FMIN:          return "ARMISD::FMIN";
888  case ARMISD::BFI:           return "ARMISD::BFI";
889  case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
890  case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
891  case ARMISD::VBSL:          return "ARMISD::VBSL";
892  case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
893  case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
894  case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
895  case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
896  case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
897  case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
898  case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
899  case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
900  case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
901  case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
902  case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
903  case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
904  case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
905  case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
906  case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
907  case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
908  case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
909  case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
910  case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
911  case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
912  }
913}
914
915/// getRegClassFor - Return the register class that should be used for the
916/// specified value type.
917TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
918  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
919  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
920  // load / store 4 to 8 consecutive D registers.
921  if (Subtarget->hasNEON()) {
922    if (VT == MVT::v4i64)
923      return ARM::QQPRRegisterClass;
924    else if (VT == MVT::v8i64)
925      return ARM::QQQQPRRegisterClass;
926  }
927  return TargetLowering::getRegClassFor(VT);
928}
929
930// Create a fast isel object.
931FastISel *
932ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
933  return ARM::createFastISel(funcInfo);
934}
935
936/// getMaximalGlobalOffset - Returns the maximal possible offset which can
937/// be used for loads / stores from the global.
938unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
939  return (Subtarget->isThumb1Only() ? 127 : 4095);
940}
941
942Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
943  unsigned NumVals = N->getNumValues();
944  if (!NumVals)
945    return Sched::RegPressure;
946
947  for (unsigned i = 0; i != NumVals; ++i) {
948    EVT VT = N->getValueType(i);
949    if (VT == MVT::Glue || VT == MVT::Other)
950      continue;
951    if (VT.isFloatingPoint() || VT.isVector())
952      return Sched::Latency;
953  }
954
955  if (!N->isMachineOpcode())
956    return Sched::RegPressure;
957
958  // Load are scheduled for latency even if there instruction itinerary
959  // is not available.
960  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
961  const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
962
963  if (TID.getNumDefs() == 0)
964    return Sched::RegPressure;
965  if (!Itins->isEmpty() &&
966      Itins->getOperandCycle(TID.getSchedClass(), 0) > 2)
967    return Sched::Latency;
968
969  return Sched::RegPressure;
970}
971
972//===----------------------------------------------------------------------===//
973// Lowering Code
974//===----------------------------------------------------------------------===//
975
976/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
977static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
978  switch (CC) {
979  default: llvm_unreachable("Unknown condition code!");
980  case ISD::SETNE:  return ARMCC::NE;
981  case ISD::SETEQ:  return ARMCC::EQ;
982  case ISD::SETGT:  return ARMCC::GT;
983  case ISD::SETGE:  return ARMCC::GE;
984  case ISD::SETLT:  return ARMCC::LT;
985  case ISD::SETLE:  return ARMCC::LE;
986  case ISD::SETUGT: return ARMCC::HI;
987  case ISD::SETUGE: return ARMCC::HS;
988  case ISD::SETULT: return ARMCC::LO;
989  case ISD::SETULE: return ARMCC::LS;
990  }
991}
992
993/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
994static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
995                        ARMCC::CondCodes &CondCode2) {
996  CondCode2 = ARMCC::AL;
997  switch (CC) {
998  default: llvm_unreachable("Unknown FP condition!");
999  case ISD::SETEQ:
1000  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1001  case ISD::SETGT:
1002  case ISD::SETOGT: CondCode = ARMCC::GT; break;
1003  case ISD::SETGE:
1004  case ISD::SETOGE: CondCode = ARMCC::GE; break;
1005  case ISD::SETOLT: CondCode = ARMCC::MI; break;
1006  case ISD::SETOLE: CondCode = ARMCC::LS; break;
1007  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1008  case ISD::SETO:   CondCode = ARMCC::VC; break;
1009  case ISD::SETUO:  CondCode = ARMCC::VS; break;
1010  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1011  case ISD::SETUGT: CondCode = ARMCC::HI; break;
1012  case ISD::SETUGE: CondCode = ARMCC::PL; break;
1013  case ISD::SETLT:
1014  case ISD::SETULT: CondCode = ARMCC::LT; break;
1015  case ISD::SETLE:
1016  case ISD::SETULE: CondCode = ARMCC::LE; break;
1017  case ISD::SETNE:
1018  case ISD::SETUNE: CondCode = ARMCC::NE; break;
1019  }
1020}
1021
1022//===----------------------------------------------------------------------===//
1023//                      Calling Convention Implementation
1024//===----------------------------------------------------------------------===//
1025
1026#include "ARMGenCallingConv.inc"
1027
1028/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1029/// given CallingConvention value.
1030CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1031                                                 bool Return,
1032                                                 bool isVarArg) const {
1033  switch (CC) {
1034  default:
1035    llvm_unreachable("Unsupported calling convention");
1036  case CallingConv::Fast:
1037    if (Subtarget->hasVFP2() && !isVarArg) {
1038      if (!Subtarget->isAAPCS_ABI())
1039        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1040      // For AAPCS ABI targets, just use VFP variant of the calling convention.
1041      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1042    }
1043    // Fallthrough
1044  case CallingConv::C: {
1045    // Use target triple & subtarget features to do actual dispatch.
1046    if (!Subtarget->isAAPCS_ABI())
1047      return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1048    else if (Subtarget->hasVFP2() &&
1049             FloatABIType == FloatABI::Hard && !isVarArg)
1050      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1051    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1052  }
1053  case CallingConv::ARM_AAPCS_VFP:
1054    return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1055  case CallingConv::ARM_AAPCS:
1056    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1057  case CallingConv::ARM_APCS:
1058    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1059  }
1060}
1061
1062/// LowerCallResult - Lower the result values of a call into the
1063/// appropriate copies out of appropriate physical registers.
1064SDValue
1065ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1066                                   CallingConv::ID CallConv, bool isVarArg,
1067                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1068                                   DebugLoc dl, SelectionDAG &DAG,
1069                                   SmallVectorImpl<SDValue> &InVals) const {
1070
1071  // Assign locations to each value returned by this call.
1072  SmallVector<CCValAssign, 16> RVLocs;
1073  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1074                 RVLocs, *DAG.getContext());
1075  CCInfo.AnalyzeCallResult(Ins,
1076                           CCAssignFnForNode(CallConv, /* Return*/ true,
1077                                             isVarArg));
1078
1079  // Copy all of the result registers out of their specified physreg.
1080  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1081    CCValAssign VA = RVLocs[i];
1082
1083    SDValue Val;
1084    if (VA.needsCustom()) {
1085      // Handle f64 or half of a v2f64.
1086      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1087                                      InFlag);
1088      Chain = Lo.getValue(1);
1089      InFlag = Lo.getValue(2);
1090      VA = RVLocs[++i]; // skip ahead to next loc
1091      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1092                                      InFlag);
1093      Chain = Hi.getValue(1);
1094      InFlag = Hi.getValue(2);
1095      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1096
1097      if (VA.getLocVT() == MVT::v2f64) {
1098        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1099        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1100                          DAG.getConstant(0, MVT::i32));
1101
1102        VA = RVLocs[++i]; // skip ahead to next loc
1103        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1104        Chain = Lo.getValue(1);
1105        InFlag = Lo.getValue(2);
1106        VA = RVLocs[++i]; // skip ahead to next loc
1107        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1108        Chain = Hi.getValue(1);
1109        InFlag = Hi.getValue(2);
1110        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1111        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1112                          DAG.getConstant(1, MVT::i32));
1113      }
1114    } else {
1115      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1116                               InFlag);
1117      Chain = Val.getValue(1);
1118      InFlag = Val.getValue(2);
1119    }
1120
1121    switch (VA.getLocInfo()) {
1122    default: llvm_unreachable("Unknown loc info!");
1123    case CCValAssign::Full: break;
1124    case CCValAssign::BCvt:
1125      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1126      break;
1127    }
1128
1129    InVals.push_back(Val);
1130  }
1131
1132  return Chain;
1133}
1134
1135/// LowerMemOpCallTo - Store the argument to the stack.
1136SDValue
1137ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1138                                    SDValue StackPtr, SDValue Arg,
1139                                    DebugLoc dl, SelectionDAG &DAG,
1140                                    const CCValAssign &VA,
1141                                    ISD::ArgFlagsTy Flags) const {
1142  unsigned LocMemOffset = VA.getLocMemOffset();
1143  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1144  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1145  return DAG.getStore(Chain, dl, Arg, PtrOff,
1146                      MachinePointerInfo::getStack(LocMemOffset),
1147                      false, false, 0);
1148}
1149
1150void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1151                                         SDValue Chain, SDValue &Arg,
1152                                         RegsToPassVector &RegsToPass,
1153                                         CCValAssign &VA, CCValAssign &NextVA,
1154                                         SDValue &StackPtr,
1155                                         SmallVector<SDValue, 8> &MemOpChains,
1156                                         ISD::ArgFlagsTy Flags) const {
1157
1158  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1159                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1160  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1161
1162  if (NextVA.isRegLoc())
1163    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1164  else {
1165    assert(NextVA.isMemLoc());
1166    if (StackPtr.getNode() == 0)
1167      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1168
1169    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1170                                           dl, DAG, NextVA,
1171                                           Flags));
1172  }
1173}
1174
1175/// LowerCall - Lowering a call into a callseq_start <-
1176/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1177/// nodes.
1178SDValue
1179ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1180                             CallingConv::ID CallConv, bool isVarArg,
1181                             bool &isTailCall,
1182                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1183                             const SmallVectorImpl<SDValue> &OutVals,
1184                             const SmallVectorImpl<ISD::InputArg> &Ins,
1185                             DebugLoc dl, SelectionDAG &DAG,
1186                             SmallVectorImpl<SDValue> &InVals) const {
1187  MachineFunction &MF = DAG.getMachineFunction();
1188  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1189  bool IsSibCall = false;
1190  // Temporarily disable tail calls so things don't break.
1191  if (!EnableARMTailCalls)
1192    isTailCall = false;
1193  if (isTailCall) {
1194    // Check if it's really possible to do a tail call.
1195    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1196                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1197                                                   Outs, OutVals, Ins, DAG);
1198    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1199    // detected sibcalls.
1200    if (isTailCall) {
1201      ++NumTailCalls;
1202      IsSibCall = true;
1203    }
1204  }
1205
1206  // Analyze operands of the call, assigning locations to each operand.
1207  SmallVector<CCValAssign, 16> ArgLocs;
1208  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1209                 *DAG.getContext());
1210  CCInfo.setCallOrPrologue(Call);
1211  CCInfo.AnalyzeCallOperands(Outs,
1212                             CCAssignFnForNode(CallConv, /* Return*/ false,
1213                                               isVarArg));
1214
1215  // Get a count of how many bytes are to be pushed on the stack.
1216  unsigned NumBytes = CCInfo.getNextStackOffset();
1217
1218  // For tail calls, memory operands are available in our caller's stack.
1219  if (IsSibCall)
1220    NumBytes = 0;
1221
1222  // Adjust the stack pointer for the new arguments...
1223  // These operations are automatically eliminated by the prolog/epilog pass
1224  if (!IsSibCall)
1225    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1226
1227  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1228
1229  RegsToPassVector RegsToPass;
1230  SmallVector<SDValue, 8> MemOpChains;
1231
1232  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1233  // of tail call optimization, arguments are handled later.
1234  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1235       i != e;
1236       ++i, ++realArgIdx) {
1237    CCValAssign &VA = ArgLocs[i];
1238    SDValue Arg = OutVals[realArgIdx];
1239    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1240    bool isByVal = Flags.isByVal();
1241
1242    // Promote the value if needed.
1243    switch (VA.getLocInfo()) {
1244    default: llvm_unreachable("Unknown loc info!");
1245    case CCValAssign::Full: break;
1246    case CCValAssign::SExt:
1247      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1248      break;
1249    case CCValAssign::ZExt:
1250      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1251      break;
1252    case CCValAssign::AExt:
1253      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1254      break;
1255    case CCValAssign::BCvt:
1256      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1257      break;
1258    }
1259
1260    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1261    if (VA.needsCustom()) {
1262      if (VA.getLocVT() == MVT::v2f64) {
1263        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1264                                  DAG.getConstant(0, MVT::i32));
1265        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1266                                  DAG.getConstant(1, MVT::i32));
1267
1268        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1269                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1270
1271        VA = ArgLocs[++i]; // skip ahead to next loc
1272        if (VA.isRegLoc()) {
1273          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1274                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1275        } else {
1276          assert(VA.isMemLoc());
1277
1278          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1279                                                 dl, DAG, VA, Flags));
1280        }
1281      } else {
1282        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1283                         StackPtr, MemOpChains, Flags);
1284      }
1285    } else if (VA.isRegLoc()) {
1286      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1287    } else if (isByVal) {
1288      assert(VA.isMemLoc());
1289      unsigned offset = 0;
1290
1291      // True if this byval aggregate will be split between registers
1292      // and memory.
1293      if (CCInfo.isFirstByValRegValid()) {
1294        EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1295        unsigned int i, j;
1296        for (i = 0, j = CCInfo.getFirstByValReg(); j < ARM::R4; i++, j++) {
1297          SDValue Const = DAG.getConstant(4*i, MVT::i32);
1298          SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1299          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1300                                     MachinePointerInfo(),
1301                                     false, false, 0);
1302          MemOpChains.push_back(Load.getValue(1));
1303          RegsToPass.push_back(std::make_pair(j, Load));
1304        }
1305        offset = ARM::R4 - CCInfo.getFirstByValReg();
1306        CCInfo.clearFirstByValReg();
1307      }
1308
1309      unsigned LocMemOffset = VA.getLocMemOffset();
1310      SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
1311      SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
1312                                StkPtrOff);
1313      SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
1314      SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
1315      SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
1316                                         MVT::i32);
1317      MemOpChains.push_back(DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
1318                                          Flags.getByValAlign(),
1319                                          /*isVolatile=*/false,
1320                                          /*AlwaysInline=*/false,
1321                                          MachinePointerInfo(0),
1322                                          MachinePointerInfo(0)));
1323
1324    } else if (!IsSibCall) {
1325      assert(VA.isMemLoc());
1326
1327      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1328                                             dl, DAG, VA, Flags));
1329    }
1330  }
1331
1332  if (!MemOpChains.empty())
1333    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1334                        &MemOpChains[0], MemOpChains.size());
1335
1336  // Build a sequence of copy-to-reg nodes chained together with token chain
1337  // and flag operands which copy the outgoing args into the appropriate regs.
1338  SDValue InFlag;
1339  // Tail call byval lowering might overwrite argument registers so in case of
1340  // tail call optimization the copies to registers are lowered later.
1341  if (!isTailCall)
1342    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1343      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1344                               RegsToPass[i].second, InFlag);
1345      InFlag = Chain.getValue(1);
1346    }
1347
1348  // For tail calls lower the arguments to the 'real' stack slot.
1349  if (isTailCall) {
1350    // Force all the incoming stack arguments to be loaded from the stack
1351    // before any new outgoing arguments are stored to the stack, because the
1352    // outgoing stack slots may alias the incoming argument stack slots, and
1353    // the alias isn't otherwise explicit. This is slightly more conservative
1354    // than necessary, because it means that each store effectively depends
1355    // on every argument instead of just those arguments it would clobber.
1356
1357    // Do not flag preceding copytoreg stuff together with the following stuff.
1358    InFlag = SDValue();
1359    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1360      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1361                               RegsToPass[i].second, InFlag);
1362      InFlag = Chain.getValue(1);
1363    }
1364    InFlag =SDValue();
1365  }
1366
1367  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1368  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1369  // node so that legalize doesn't hack it.
1370  bool isDirect = false;
1371  bool isARMFunc = false;
1372  bool isLocalARMFunc = false;
1373  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1374
1375  if (EnableARMLongCalls) {
1376    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1377            && "long-calls with non-static relocation model!");
1378    // Handle a global address or an external symbol. If it's not one of
1379    // those, the target's already in a register, so we don't need to do
1380    // anything extra.
1381    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1382      const GlobalValue *GV = G->getGlobal();
1383      // Create a constant pool entry for the callee address
1384      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1385      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1386                                                           ARMPCLabelIndex,
1387                                                           ARMCP::CPValue, 0);
1388      // Get the address of the callee into a register
1389      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1390      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1391      Callee = DAG.getLoad(getPointerTy(), dl,
1392                           DAG.getEntryNode(), CPAddr,
1393                           MachinePointerInfo::getConstantPool(),
1394                           false, false, 0);
1395    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1396      const char *Sym = S->getSymbol();
1397
1398      // Create a constant pool entry for the callee address
1399      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1400      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1401                                                       Sym, ARMPCLabelIndex, 0);
1402      // Get the address of the callee into a register
1403      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1404      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1405      Callee = DAG.getLoad(getPointerTy(), dl,
1406                           DAG.getEntryNode(), CPAddr,
1407                           MachinePointerInfo::getConstantPool(),
1408                           false, false, 0);
1409    }
1410  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1411    const GlobalValue *GV = G->getGlobal();
1412    isDirect = true;
1413    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1414    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1415                   getTargetMachine().getRelocationModel() != Reloc::Static;
1416    isARMFunc = !Subtarget->isThumb() || isStub;
1417    // ARM call to a local ARM function is predicable.
1418    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1419    // tBX takes a register source operand.
1420    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1421      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1422      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1423                                                           ARMPCLabelIndex,
1424                                                           ARMCP::CPValue, 4);
1425      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1426      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1427      Callee = DAG.getLoad(getPointerTy(), dl,
1428                           DAG.getEntryNode(), CPAddr,
1429                           MachinePointerInfo::getConstantPool(),
1430                           false, false, 0);
1431      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1432      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1433                           getPointerTy(), Callee, PICLabel);
1434    } else {
1435      // On ELF targets for PIC code, direct calls should go through the PLT
1436      unsigned OpFlags = 0;
1437      if (Subtarget->isTargetELF() &&
1438                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1439        OpFlags = ARMII::MO_PLT;
1440      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1441    }
1442  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1443    isDirect = true;
1444    bool isStub = Subtarget->isTargetDarwin() &&
1445                  getTargetMachine().getRelocationModel() != Reloc::Static;
1446    isARMFunc = !Subtarget->isThumb() || isStub;
1447    // tBX takes a register source operand.
1448    const char *Sym = S->getSymbol();
1449    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1450      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1451      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1452                                                       Sym, ARMPCLabelIndex, 4);
1453      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1454      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1455      Callee = DAG.getLoad(getPointerTy(), dl,
1456                           DAG.getEntryNode(), CPAddr,
1457                           MachinePointerInfo::getConstantPool(),
1458                           false, false, 0);
1459      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1460      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1461                           getPointerTy(), Callee, PICLabel);
1462    } else {
1463      unsigned OpFlags = 0;
1464      // On ELF targets for PIC code, direct calls should go through the PLT
1465      if (Subtarget->isTargetELF() &&
1466                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1467        OpFlags = ARMII::MO_PLT;
1468      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1469    }
1470  }
1471
1472  // FIXME: handle tail calls differently.
1473  unsigned CallOpc;
1474  if (Subtarget->isThumb()) {
1475    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1476      CallOpc = ARMISD::CALL_NOLINK;
1477    else
1478      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1479  } else {
1480    CallOpc = (isDirect || Subtarget->hasV5TOps())
1481      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1482      : ARMISD::CALL_NOLINK;
1483  }
1484
1485  std::vector<SDValue> Ops;
1486  Ops.push_back(Chain);
1487  Ops.push_back(Callee);
1488
1489  // Add argument registers to the end of the list so that they are known live
1490  // into the call.
1491  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1492    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1493                                  RegsToPass[i].second.getValueType()));
1494
1495  if (InFlag.getNode())
1496    Ops.push_back(InFlag);
1497
1498  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1499  if (isTailCall)
1500    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1501
1502  // Returns a chain and a flag for retval copy to use.
1503  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1504  InFlag = Chain.getValue(1);
1505
1506  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1507                             DAG.getIntPtrConstant(0, true), InFlag);
1508  if (!Ins.empty())
1509    InFlag = Chain.getValue(1);
1510
1511  // Handle result values, copying them out of physregs into vregs that we
1512  // return.
1513  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1514                         dl, DAG, InVals);
1515}
1516
1517/// HandleByVal - Every parameter *after* a byval parameter is passed
1518/// on the stack.  Remember the next parameter register to allocate,
1519/// and then confiscate the rest of the parameter registers to insure
1520/// this.
1521void
1522llvm::ARMTargetLowering::HandleByVal(CCState *State, unsigned &size) const {
1523  unsigned reg = State->AllocateReg(GPRArgRegs, 4);
1524  assert((State->getCallOrPrologue() == Prologue ||
1525          State->getCallOrPrologue() == Call) &&
1526         "unhandled ParmContext");
1527  if ((!State->isFirstByValRegValid()) &&
1528      (ARM::R0 <= reg) && (reg <= ARM::R3)) {
1529    State->setFirstByValReg(reg);
1530    // At a call site, a byval parameter that is split between
1531    // registers and memory needs its size truncated here.  In a
1532    // function prologue, such byval parameters are reassembled in
1533    // memory, and are not truncated.
1534    if (State->getCallOrPrologue() == Call) {
1535      unsigned excess = 4 * (ARM::R4 - reg);
1536      assert(size >= excess && "expected larger existing stack allocation");
1537      size -= excess;
1538    }
1539  }
1540  // Confiscate any remaining parameter registers to preclude their
1541  // assignment to subsequent parameters.
1542  while (State->AllocateReg(GPRArgRegs, 4))
1543    ;
1544}
1545
1546/// MatchingStackOffset - Return true if the given stack call argument is
1547/// already available in the same position (relatively) of the caller's
1548/// incoming argument stack.
1549static
1550bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1551                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1552                         const ARMInstrInfo *TII) {
1553  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1554  int FI = INT_MAX;
1555  if (Arg.getOpcode() == ISD::CopyFromReg) {
1556    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1557    if (!TargetRegisterInfo::isVirtualRegister(VR))
1558      return false;
1559    MachineInstr *Def = MRI->getVRegDef(VR);
1560    if (!Def)
1561      return false;
1562    if (!Flags.isByVal()) {
1563      if (!TII->isLoadFromStackSlot(Def, FI))
1564        return false;
1565    } else {
1566      return false;
1567    }
1568  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1569    if (Flags.isByVal())
1570      // ByVal argument is passed in as a pointer but it's now being
1571      // dereferenced. e.g.
1572      // define @foo(%struct.X* %A) {
1573      //   tail call @bar(%struct.X* byval %A)
1574      // }
1575      return false;
1576    SDValue Ptr = Ld->getBasePtr();
1577    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1578    if (!FINode)
1579      return false;
1580    FI = FINode->getIndex();
1581  } else
1582    return false;
1583
1584  assert(FI != INT_MAX);
1585  if (!MFI->isFixedObjectIndex(FI))
1586    return false;
1587  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1588}
1589
1590/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1591/// for tail call optimization. Targets which want to do tail call
1592/// optimization should implement this function.
1593bool
1594ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1595                                                     CallingConv::ID CalleeCC,
1596                                                     bool isVarArg,
1597                                                     bool isCalleeStructRet,
1598                                                     bool isCallerStructRet,
1599                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1600                                    const SmallVectorImpl<SDValue> &OutVals,
1601                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1602                                                     SelectionDAG& DAG) const {
1603  const Function *CallerF = DAG.getMachineFunction().getFunction();
1604  CallingConv::ID CallerCC = CallerF->getCallingConv();
1605  bool CCMatch = CallerCC == CalleeCC;
1606
1607  // Look for obvious safe cases to perform tail call optimization that do not
1608  // require ABI changes. This is what gcc calls sibcall.
1609
1610  // Do not sibcall optimize vararg calls unless the call site is not passing
1611  // any arguments.
1612  if (isVarArg && !Outs.empty())
1613    return false;
1614
1615  // Also avoid sibcall optimization if either caller or callee uses struct
1616  // return semantics.
1617  if (isCalleeStructRet || isCallerStructRet)
1618    return false;
1619
1620  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1621  // emitEpilogue is not ready for them.
1622  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1623  // LR.  This means if we need to reload LR, it takes an extra instructions,
1624  // which outweighs the value of the tail call; but here we don't know yet
1625  // whether LR is going to be used.  Probably the right approach is to
1626  // generate the tail call here and turn it back into CALL/RET in
1627  // emitEpilogue if LR is used.
1628
1629  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1630  // but we need to make sure there are enough registers; the only valid
1631  // registers are the 4 used for parameters.  We don't currently do this
1632  // case.
1633  if (Subtarget->isThumb1Only())
1634    return false;
1635
1636  // If the calling conventions do not match, then we'd better make sure the
1637  // results are returned in the same way as what the caller expects.
1638  if (!CCMatch) {
1639    SmallVector<CCValAssign, 16> RVLocs1;
1640    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
1641                    RVLocs1, *DAG.getContext());
1642    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1643
1644    SmallVector<CCValAssign, 16> RVLocs2;
1645    CCState CCInfo2(CallerCC, false, getTargetMachine(),
1646                    RVLocs2, *DAG.getContext());
1647    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1648
1649    if (RVLocs1.size() != RVLocs2.size())
1650      return false;
1651    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1652      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1653        return false;
1654      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1655        return false;
1656      if (RVLocs1[i].isRegLoc()) {
1657        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1658          return false;
1659      } else {
1660        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1661          return false;
1662      }
1663    }
1664  }
1665
1666  // If the callee takes no arguments then go on to check the results of the
1667  // call.
1668  if (!Outs.empty()) {
1669    // Check if stack adjustment is needed. For now, do not do this if any
1670    // argument is passed on the stack.
1671    SmallVector<CCValAssign, 16> ArgLocs;
1672    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
1673                   ArgLocs, *DAG.getContext());
1674    CCInfo.AnalyzeCallOperands(Outs,
1675                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1676    if (CCInfo.getNextStackOffset()) {
1677      MachineFunction &MF = DAG.getMachineFunction();
1678
1679      // Check if the arguments are already laid out in the right way as
1680      // the caller's fixed stack objects.
1681      MachineFrameInfo *MFI = MF.getFrameInfo();
1682      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1683      const ARMInstrInfo *TII =
1684        ((ARMTargetMachine&)getTargetMachine()).getInstrInfo();
1685      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1686           i != e;
1687           ++i, ++realArgIdx) {
1688        CCValAssign &VA = ArgLocs[i];
1689        EVT RegVT = VA.getLocVT();
1690        SDValue Arg = OutVals[realArgIdx];
1691        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1692        if (VA.getLocInfo() == CCValAssign::Indirect)
1693          return false;
1694        if (VA.needsCustom()) {
1695          // f64 and vector types are split into multiple registers or
1696          // register/stack-slot combinations.  The types will not match
1697          // the registers; give up on memory f64 refs until we figure
1698          // out what to do about this.
1699          if (!VA.isRegLoc())
1700            return false;
1701          if (!ArgLocs[++i].isRegLoc())
1702            return false;
1703          if (RegVT == MVT::v2f64) {
1704            if (!ArgLocs[++i].isRegLoc())
1705              return false;
1706            if (!ArgLocs[++i].isRegLoc())
1707              return false;
1708          }
1709        } else if (!VA.isRegLoc()) {
1710          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1711                                   MFI, MRI, TII))
1712            return false;
1713        }
1714      }
1715    }
1716  }
1717
1718  return true;
1719}
1720
1721SDValue
1722ARMTargetLowering::LowerReturn(SDValue Chain,
1723                               CallingConv::ID CallConv, bool isVarArg,
1724                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1725                               const SmallVectorImpl<SDValue> &OutVals,
1726                               DebugLoc dl, SelectionDAG &DAG) const {
1727
1728  // CCValAssign - represent the assignment of the return value to a location.
1729  SmallVector<CCValAssign, 16> RVLocs;
1730
1731  // CCState - Info about the registers and stack slots.
1732  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
1733                 *DAG.getContext());
1734
1735  // Analyze outgoing return values.
1736  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1737                                               isVarArg));
1738
1739  // If this is the first return lowered for this function, add
1740  // the regs to the liveout set for the function.
1741  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1742    for (unsigned i = 0; i != RVLocs.size(); ++i)
1743      if (RVLocs[i].isRegLoc())
1744        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1745  }
1746
1747  SDValue Flag;
1748
1749  // Copy the result values into the output registers.
1750  for (unsigned i = 0, realRVLocIdx = 0;
1751       i != RVLocs.size();
1752       ++i, ++realRVLocIdx) {
1753    CCValAssign &VA = RVLocs[i];
1754    assert(VA.isRegLoc() && "Can only return in registers!");
1755
1756    SDValue Arg = OutVals[realRVLocIdx];
1757
1758    switch (VA.getLocInfo()) {
1759    default: llvm_unreachable("Unknown loc info!");
1760    case CCValAssign::Full: break;
1761    case CCValAssign::BCvt:
1762      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1763      break;
1764    }
1765
1766    if (VA.needsCustom()) {
1767      if (VA.getLocVT() == MVT::v2f64) {
1768        // Extract the first half and return it in two registers.
1769        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1770                                   DAG.getConstant(0, MVT::i32));
1771        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1772                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1773
1774        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1775        Flag = Chain.getValue(1);
1776        VA = RVLocs[++i]; // skip ahead to next loc
1777        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1778                                 HalfGPRs.getValue(1), Flag);
1779        Flag = Chain.getValue(1);
1780        VA = RVLocs[++i]; // skip ahead to next loc
1781
1782        // Extract the 2nd half and fall through to handle it as an f64 value.
1783        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1784                          DAG.getConstant(1, MVT::i32));
1785      }
1786      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1787      // available.
1788      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1789                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1790      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1791      Flag = Chain.getValue(1);
1792      VA = RVLocs[++i]; // skip ahead to next loc
1793      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1794                               Flag);
1795    } else
1796      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1797
1798    // Guarantee that all emitted copies are
1799    // stuck together, avoiding something bad.
1800    Flag = Chain.getValue(1);
1801  }
1802
1803  SDValue result;
1804  if (Flag.getNode())
1805    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1806  else // Return Void
1807    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1808
1809  return result;
1810}
1811
1812bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N) const {
1813  if (N->getNumValues() != 1)
1814    return false;
1815  if (!N->hasNUsesOfValue(1, 0))
1816    return false;
1817
1818  unsigned NumCopies = 0;
1819  SDNode* Copies[2];
1820  SDNode *Use = *N->use_begin();
1821  if (Use->getOpcode() == ISD::CopyToReg) {
1822    Copies[NumCopies++] = Use;
1823  } else if (Use->getOpcode() == ARMISD::VMOVRRD) {
1824    // f64 returned in a pair of GPRs.
1825    for (SDNode::use_iterator UI = Use->use_begin(), UE = Use->use_end();
1826         UI != UE; ++UI) {
1827      if (UI->getOpcode() != ISD::CopyToReg)
1828        return false;
1829      Copies[UI.getUse().getResNo()] = *UI;
1830      ++NumCopies;
1831    }
1832  } else if (Use->getOpcode() == ISD::BITCAST) {
1833    // f32 returned in a single GPR.
1834    if (!Use->hasNUsesOfValue(1, 0))
1835      return false;
1836    Use = *Use->use_begin();
1837    if (Use->getOpcode() != ISD::CopyToReg || !Use->hasNUsesOfValue(1, 0))
1838      return false;
1839    Copies[NumCopies++] = Use;
1840  } else {
1841    return false;
1842  }
1843
1844  if (NumCopies != 1 && NumCopies != 2)
1845    return false;
1846
1847  bool HasRet = false;
1848  for (unsigned i = 0; i < NumCopies; ++i) {
1849    SDNode *Copy = Copies[i];
1850    for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1851         UI != UE; ++UI) {
1852      if (UI->getOpcode() == ISD::CopyToReg) {
1853        SDNode *Use = *UI;
1854        if (Use == Copies[0] || Use == Copies[1])
1855          continue;
1856        return false;
1857      }
1858      if (UI->getOpcode() != ARMISD::RET_FLAG)
1859        return false;
1860      HasRet = true;
1861    }
1862  }
1863
1864  return HasRet;
1865}
1866
1867bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1868  if (!EnableARMTailCalls)
1869    return false;
1870
1871  if (!CI->isTailCall())
1872    return false;
1873
1874  return !Subtarget->isThumb1Only();
1875}
1876
1877// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1878// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1879// one of the above mentioned nodes. It has to be wrapped because otherwise
1880// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1881// be used to form addressing mode. These wrapped nodes will be selected
1882// into MOVi.
1883static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1884  EVT PtrVT = Op.getValueType();
1885  // FIXME there is no actual debug info here
1886  DebugLoc dl = Op.getDebugLoc();
1887  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1888  SDValue Res;
1889  if (CP->isMachineConstantPoolEntry())
1890    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1891                                    CP->getAlignment());
1892  else
1893    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1894                                    CP->getAlignment());
1895  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1896}
1897
1898unsigned ARMTargetLowering::getJumpTableEncoding() const {
1899  return MachineJumpTableInfo::EK_Inline;
1900}
1901
1902SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
1903                                             SelectionDAG &DAG) const {
1904  MachineFunction &MF = DAG.getMachineFunction();
1905  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1906  unsigned ARMPCLabelIndex = 0;
1907  DebugLoc DL = Op.getDebugLoc();
1908  EVT PtrVT = getPointerTy();
1909  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1910  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1911  SDValue CPAddr;
1912  if (RelocM == Reloc::Static) {
1913    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
1914  } else {
1915    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1916    ARMPCLabelIndex = AFI->createPICLabelUId();
1917    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex,
1918                                                         ARMCP::CPBlockAddress,
1919                                                         PCAdj);
1920    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1921  }
1922  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
1923  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
1924                               MachinePointerInfo::getConstantPool(),
1925                               false, false, 0);
1926  if (RelocM == Reloc::Static)
1927    return Result;
1928  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1929  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
1930}
1931
1932// Lower ISD::GlobalTLSAddress using the "general dynamic" model
1933SDValue
1934ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1935                                                 SelectionDAG &DAG) const {
1936  DebugLoc dl = GA->getDebugLoc();
1937  EVT PtrVT = getPointerTy();
1938  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1939  MachineFunction &MF = DAG.getMachineFunction();
1940  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1941  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1942  ARMConstantPoolValue *CPV =
1943    new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1944                             ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
1945  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1946  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1947  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
1948                         MachinePointerInfo::getConstantPool(),
1949                         false, false, 0);
1950  SDValue Chain = Argument.getValue(1);
1951
1952  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1953  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1954
1955  // call __tls_get_addr.
1956  ArgListTy Args;
1957  ArgListEntry Entry;
1958  Entry.Node = Argument;
1959  Entry.Ty = (const Type *) Type::getInt32Ty(*DAG.getContext());
1960  Args.push_back(Entry);
1961  // FIXME: is there useful debug info available here?
1962  std::pair<SDValue, SDValue> CallResult =
1963    LowerCallTo(Chain, (const Type *) Type::getInt32Ty(*DAG.getContext()),
1964                false, false, false, false,
1965                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
1966                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
1967  return CallResult.first;
1968}
1969
1970// Lower ISD::GlobalTLSAddress using the "initial exec" or
1971// "local exec" model.
1972SDValue
1973ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
1974                                        SelectionDAG &DAG) const {
1975  const GlobalValue *GV = GA->getGlobal();
1976  DebugLoc dl = GA->getDebugLoc();
1977  SDValue Offset;
1978  SDValue Chain = DAG.getEntryNode();
1979  EVT PtrVT = getPointerTy();
1980  // Get the Thread Pointer
1981  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1982
1983  if (GV->isDeclaration()) {
1984    MachineFunction &MF = DAG.getMachineFunction();
1985    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1986    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1987    // Initial exec model.
1988    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1989    ARMConstantPoolValue *CPV =
1990      new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1991                               ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF, true);
1992    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1993    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1994    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1995                         MachinePointerInfo::getConstantPool(),
1996                         false, false, 0);
1997    Chain = Offset.getValue(1);
1998
1999    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2000    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2001
2002    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2003                         MachinePointerInfo::getConstantPool(),
2004                         false, false, 0);
2005  } else {
2006    // local exec model
2007    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMCP::TPOFF);
2008    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2009    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2010    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2011                         MachinePointerInfo::getConstantPool(),
2012                         false, false, 0);
2013  }
2014
2015  // The address of the thread local variable is the add of the thread
2016  // pointer with the offset of the variable.
2017  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2018}
2019
2020SDValue
2021ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2022  // TODO: implement the "local dynamic" model
2023  assert(Subtarget->isTargetELF() &&
2024         "TLS not implemented for non-ELF targets");
2025  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2026  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
2027  // otherwise use the "Local Exec" TLS Model
2028  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
2029    return LowerToTLSGeneralDynamicModel(GA, DAG);
2030  else
2031    return LowerToTLSExecModels(GA, DAG);
2032}
2033
2034SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2035                                                 SelectionDAG &DAG) const {
2036  EVT PtrVT = getPointerTy();
2037  DebugLoc dl = Op.getDebugLoc();
2038  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2039  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2040  if (RelocM == Reloc::PIC_) {
2041    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2042    ARMConstantPoolValue *CPV =
2043      new ARMConstantPoolValue(GV, UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2044    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2045    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2046    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
2047                                 CPAddr,
2048                                 MachinePointerInfo::getConstantPool(),
2049                                 false, false, 0);
2050    SDValue Chain = Result.getValue(1);
2051    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2052    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
2053    if (!UseGOTOFF)
2054      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2055                           MachinePointerInfo::getGOT(), false, false, 0);
2056    return Result;
2057  }
2058
2059  // If we have T2 ops, we can materialize the address directly via movt/movw
2060  // pair. This is always cheaper.
2061  if (Subtarget->useMovt()) {
2062    ++NumMovwMovt;
2063    // FIXME: Once remat is capable of dealing with instructions with register
2064    // operands, expand this into two nodes.
2065    return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2066                       DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2067  } else {
2068    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2069    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2070    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2071                       MachinePointerInfo::getConstantPool(),
2072                       false, false, 0);
2073  }
2074}
2075
2076SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2077                                                    SelectionDAG &DAG) const {
2078  EVT PtrVT = getPointerTy();
2079  DebugLoc dl = Op.getDebugLoc();
2080  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2081  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2082  MachineFunction &MF = DAG.getMachineFunction();
2083  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2084
2085  // FIXME: Enable this for static codegen when tool issues are fixed.
2086  if (Subtarget->useMovt() && RelocM != Reloc::Static) {
2087    ++NumMovwMovt;
2088    // FIXME: Once remat is capable of dealing with instructions with register
2089    // operands, expand this into two nodes.
2090    if (RelocM == Reloc::Static)
2091      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2092                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2093
2094    unsigned Wrapper = (RelocM == Reloc::PIC_)
2095      ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
2096    SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
2097                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2098    if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2099      Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2100                           MachinePointerInfo::getGOT(), false, false, 0);
2101    return Result;
2102  }
2103
2104  unsigned ARMPCLabelIndex = 0;
2105  SDValue CPAddr;
2106  if (RelocM == Reloc::Static) {
2107    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2108  } else {
2109    ARMPCLabelIndex = AFI->createPICLabelUId();
2110    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
2111    ARMConstantPoolValue *CPV =
2112      new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj);
2113    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2114  }
2115  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2116
2117  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2118                               MachinePointerInfo::getConstantPool(),
2119                               false, false, 0);
2120  SDValue Chain = Result.getValue(1);
2121
2122  if (RelocM == Reloc::PIC_) {
2123    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2124    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2125  }
2126
2127  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2128    Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
2129                         false, false, 0);
2130
2131  return Result;
2132}
2133
2134SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
2135                                                    SelectionDAG &DAG) const {
2136  assert(Subtarget->isTargetELF() &&
2137         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
2138  MachineFunction &MF = DAG.getMachineFunction();
2139  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2140  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2141  EVT PtrVT = getPointerTy();
2142  DebugLoc dl = Op.getDebugLoc();
2143  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2144  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
2145                                                       "_GLOBAL_OFFSET_TABLE_",
2146                                                       ARMPCLabelIndex, PCAdj);
2147  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2148  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2149  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2150                               MachinePointerInfo::getConstantPool(),
2151                               false, false, 0);
2152  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2153  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2154}
2155
2156SDValue
2157ARMTargetLowering::LowerEH_SJLJ_DISPATCHSETUP(SDValue Op, SelectionDAG &DAG)
2158  const {
2159  DebugLoc dl = Op.getDebugLoc();
2160  return DAG.getNode(ARMISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
2161                     Op.getOperand(0), Op.getOperand(1));
2162}
2163
2164SDValue
2165ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2166  DebugLoc dl = Op.getDebugLoc();
2167  SDValue Val = DAG.getConstant(0, MVT::i32);
2168  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(0),
2169                     Op.getOperand(1), Val);
2170}
2171
2172SDValue
2173ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2174  DebugLoc dl = Op.getDebugLoc();
2175  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2176                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2177}
2178
2179SDValue
2180ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2181                                          const ARMSubtarget *Subtarget) const {
2182  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2183  DebugLoc dl = Op.getDebugLoc();
2184  switch (IntNo) {
2185  default: return SDValue();    // Don't custom lower most intrinsics.
2186  case Intrinsic::arm_thread_pointer: {
2187    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2188    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2189  }
2190  case Intrinsic::eh_sjlj_lsda: {
2191    MachineFunction &MF = DAG.getMachineFunction();
2192    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2193    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2194    EVT PtrVT = getPointerTy();
2195    DebugLoc dl = Op.getDebugLoc();
2196    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2197    SDValue CPAddr;
2198    unsigned PCAdj = (RelocM != Reloc::PIC_)
2199      ? 0 : (Subtarget->isThumb() ? 4 : 8);
2200    ARMConstantPoolValue *CPV =
2201      new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex,
2202                               ARMCP::CPLSDA, PCAdj);
2203    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2204    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2205    SDValue Result =
2206      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2207                  MachinePointerInfo::getConstantPool(),
2208                  false, false, 0);
2209
2210    if (RelocM == Reloc::PIC_) {
2211      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2212      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2213    }
2214    return Result;
2215  }
2216  case Intrinsic::arm_neon_vmulls:
2217  case Intrinsic::arm_neon_vmullu: {
2218    unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2219      ? ARMISD::VMULLs : ARMISD::VMULLu;
2220    return DAG.getNode(NewOpc, Op.getDebugLoc(), Op.getValueType(),
2221                       Op.getOperand(1), Op.getOperand(2));
2222  }
2223  }
2224}
2225
2226static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
2227                               const ARMSubtarget *Subtarget) {
2228  DebugLoc dl = Op.getDebugLoc();
2229  if (!Subtarget->hasDataBarrier()) {
2230    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2231    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2232    // here.
2233    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2234           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2235    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2236                       DAG.getConstant(0, MVT::i32));
2237  }
2238
2239  SDValue Op5 = Op.getOperand(5);
2240  bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
2241  unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2242  unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2243  bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
2244
2245  ARM_MB::MemBOpt DMBOpt;
2246  if (isDeviceBarrier)
2247    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
2248  else
2249    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
2250  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2251                     DAG.getConstant(DMBOpt, MVT::i32));
2252}
2253
2254static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2255                             const ARMSubtarget *Subtarget) {
2256  // ARM pre v5TE and Thumb1 does not have preload instructions.
2257  if (!(Subtarget->isThumb2() ||
2258        (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2259    // Just preserve the chain.
2260    return Op.getOperand(0);
2261
2262  DebugLoc dl = Op.getDebugLoc();
2263  unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2264  if (!isRead &&
2265      (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2266    // ARMv7 with MP extension has PLDW.
2267    return Op.getOperand(0);
2268
2269  if (Subtarget->isThumb())
2270    // Invert the bits.
2271    isRead = ~isRead & 1;
2272  unsigned isData = Subtarget->isThumb() ? 0 : 1;
2273
2274  // Currently there is no intrinsic that matches pli.
2275  return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2276                     Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2277                     DAG.getConstant(isData, MVT::i32));
2278}
2279
2280static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2281  MachineFunction &MF = DAG.getMachineFunction();
2282  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2283
2284  // vastart just stores the address of the VarArgsFrameIndex slot into the
2285  // memory location argument.
2286  DebugLoc dl = Op.getDebugLoc();
2287  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2288  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2289  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2290  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2291                      MachinePointerInfo(SV), false, false, 0);
2292}
2293
2294SDValue
2295ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2296                                        SDValue &Root, SelectionDAG &DAG,
2297                                        DebugLoc dl) const {
2298  MachineFunction &MF = DAG.getMachineFunction();
2299  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2300
2301  TargetRegisterClass *RC;
2302  if (AFI->isThumb1OnlyFunction())
2303    RC = ARM::tGPRRegisterClass;
2304  else
2305    RC = ARM::GPRRegisterClass;
2306
2307  // Transform the arguments stored in physical registers into virtual ones.
2308  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2309  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2310
2311  SDValue ArgValue2;
2312  if (NextVA.isMemLoc()) {
2313    MachineFrameInfo *MFI = MF.getFrameInfo();
2314    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2315
2316    // Create load node to retrieve arguments from the stack.
2317    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2318    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2319                            MachinePointerInfo::getFixedStack(FI),
2320                            false, false, 0);
2321  } else {
2322    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2323    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2324  }
2325
2326  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2327}
2328
2329void
2330ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
2331                                  unsigned &VARegSize, unsigned &VARegSaveSize)
2332  const {
2333  unsigned NumGPRs;
2334  if (CCInfo.isFirstByValRegValid())
2335    NumGPRs = ARM::R4 - CCInfo.getFirstByValReg();
2336  else {
2337    unsigned int firstUnalloced;
2338    firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
2339                                                sizeof(GPRArgRegs) /
2340                                                sizeof(GPRArgRegs[0]));
2341    NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
2342  }
2343
2344  unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
2345  VARegSize = NumGPRs * 4;
2346  VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2347}
2348
2349// The remaining GPRs hold either the beginning of variable-argument
2350// data, or the beginning of an aggregate passed by value (usuall
2351// byval).  Either way, we allocate stack slots adjacent to the data
2352// provided by our caller, and store the unallocated registers there.
2353// If this is a variadic function, the va_list pointer will begin with
2354// these values; otherwise, this reassembles a (byval) structure that
2355// was split between registers and memory.
2356void
2357ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
2358                                        DebugLoc dl, SDValue &Chain,
2359                                        unsigned ArgOffset) const {
2360  MachineFunction &MF = DAG.getMachineFunction();
2361  MachineFrameInfo *MFI = MF.getFrameInfo();
2362  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2363  unsigned firstRegToSaveIndex;
2364  if (CCInfo.isFirstByValRegValid())
2365    firstRegToSaveIndex = CCInfo.getFirstByValReg() - ARM::R0;
2366  else {
2367    firstRegToSaveIndex = CCInfo.getFirstUnallocated
2368      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2369  }
2370
2371  unsigned VARegSize, VARegSaveSize;
2372  computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2373  if (VARegSaveSize) {
2374    // If this function is vararg, store any remaining integer argument regs
2375    // to their spots on the stack so that they may be loaded by deferencing
2376    // the result of va_next.
2377    AFI->setVarArgsRegSaveSize(VARegSaveSize);
2378    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(VARegSaveSize,
2379                                                     ArgOffset + VARegSaveSize
2380                                                     - VARegSize,
2381                                                     false));
2382    SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2383                                    getPointerTy());
2384
2385    SmallVector<SDValue, 4> MemOps;
2386    for (; firstRegToSaveIndex < 4; ++firstRegToSaveIndex) {
2387      TargetRegisterClass *RC;
2388      if (AFI->isThumb1OnlyFunction())
2389        RC = ARM::tGPRRegisterClass;
2390      else
2391        RC = ARM::GPRRegisterClass;
2392
2393      unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
2394      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2395      SDValue Store =
2396        DAG.getStore(Val.getValue(1), dl, Val, FIN,
2397                 MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
2398                     false, false, 0);
2399      MemOps.push_back(Store);
2400      FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2401                        DAG.getConstant(4, getPointerTy()));
2402    }
2403    if (!MemOps.empty())
2404      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2405                          &MemOps[0], MemOps.size());
2406  } else
2407    // This will point to the next argument passed via stack.
2408    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
2409}
2410
2411SDValue
2412ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2413                                        CallingConv::ID CallConv, bool isVarArg,
2414                                        const SmallVectorImpl<ISD::InputArg>
2415                                          &Ins,
2416                                        DebugLoc dl, SelectionDAG &DAG,
2417                                        SmallVectorImpl<SDValue> &InVals)
2418                                          const {
2419  MachineFunction &MF = DAG.getMachineFunction();
2420  MachineFrameInfo *MFI = MF.getFrameInfo();
2421
2422  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2423
2424  // Assign locations to all of the incoming arguments.
2425  SmallVector<CCValAssign, 16> ArgLocs;
2426  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
2427                 *DAG.getContext());
2428  CCInfo.setCallOrPrologue(Prologue);
2429  CCInfo.AnalyzeFormalArguments(Ins,
2430                                CCAssignFnForNode(CallConv, /* Return*/ false,
2431                                                  isVarArg));
2432
2433  SmallVector<SDValue, 16> ArgValues;
2434  int lastInsIndex = -1;
2435
2436  SDValue ArgValue;
2437  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2438    CCValAssign &VA = ArgLocs[i];
2439
2440    // Arguments stored in registers.
2441    if (VA.isRegLoc()) {
2442      EVT RegVT = VA.getLocVT();
2443
2444      if (VA.needsCustom()) {
2445        // f64 and vector types are split up into multiple registers or
2446        // combinations of registers and stack slots.
2447        if (VA.getLocVT() == MVT::v2f64) {
2448          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2449                                                   Chain, DAG, dl);
2450          VA = ArgLocs[++i]; // skip ahead to next loc
2451          SDValue ArgValue2;
2452          if (VA.isMemLoc()) {
2453            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2454            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2455            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2456                                    MachinePointerInfo::getFixedStack(FI),
2457                                    false, false, 0);
2458          } else {
2459            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2460                                             Chain, DAG, dl);
2461          }
2462          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2463          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2464                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2465          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2466                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2467        } else
2468          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2469
2470      } else {
2471        TargetRegisterClass *RC;
2472
2473        if (RegVT == MVT::f32)
2474          RC = ARM::SPRRegisterClass;
2475        else if (RegVT == MVT::f64)
2476          RC = ARM::DPRRegisterClass;
2477        else if (RegVT == MVT::v2f64)
2478          RC = ARM::QPRRegisterClass;
2479        else if (RegVT == MVT::i32)
2480          RC = (AFI->isThumb1OnlyFunction() ?
2481                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
2482        else
2483          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2484
2485        // Transform the arguments in physical registers into virtual ones.
2486        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2487        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2488      }
2489
2490      // If this is an 8 or 16-bit value, it is really passed promoted
2491      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2492      // truncate to the right size.
2493      switch (VA.getLocInfo()) {
2494      default: llvm_unreachable("Unknown loc info!");
2495      case CCValAssign::Full: break;
2496      case CCValAssign::BCvt:
2497        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2498        break;
2499      case CCValAssign::SExt:
2500        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2501                               DAG.getValueType(VA.getValVT()));
2502        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2503        break;
2504      case CCValAssign::ZExt:
2505        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2506                               DAG.getValueType(VA.getValVT()));
2507        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2508        break;
2509      }
2510
2511      InVals.push_back(ArgValue);
2512
2513    } else { // VA.isRegLoc()
2514
2515      // sanity check
2516      assert(VA.isMemLoc());
2517      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2518
2519      int index = ArgLocs[i].getValNo();
2520
2521      // Some Ins[] entries become multiple ArgLoc[] entries.
2522      // Process them only once.
2523      if (index != lastInsIndex)
2524        {
2525          ISD::ArgFlagsTy Flags = Ins[index].Flags;
2526          // FIXME: For now, all byval parameter objects are marked mutable.
2527          // This can be changed with more analysis.
2528          // In case of tail call optimization mark all arguments mutable.
2529          // Since they could be overwritten by lowering of arguments in case of
2530          // a tail call.
2531          if (Flags.isByVal()) {
2532            unsigned VARegSize, VARegSaveSize;
2533            computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2534            VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 0);
2535            unsigned Bytes = Flags.getByValSize() - VARegSize;
2536            if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
2537            int FI = MFI->CreateFixedObject(Bytes,
2538                                            VA.getLocMemOffset(), false);
2539            InVals.push_back(DAG.getFrameIndex(FI, getPointerTy()));
2540          } else {
2541            int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
2542                                            VA.getLocMemOffset(), true);
2543
2544            // Create load nodes to retrieve arguments from the stack.
2545            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2546            InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2547                                         MachinePointerInfo::getFixedStack(FI),
2548                                         false, false, 0));
2549          }
2550          lastInsIndex = index;
2551        }
2552    }
2553  }
2554
2555  // varargs
2556  if (isVarArg)
2557    VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getNextStackOffset());
2558
2559  return Chain;
2560}
2561
2562/// isFloatingPointZero - Return true if this is +0.0.
2563static bool isFloatingPointZero(SDValue Op) {
2564  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2565    return CFP->getValueAPF().isPosZero();
2566  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2567    // Maybe this has already been legalized into the constant pool?
2568    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2569      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2570      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2571        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2572          return CFP->getValueAPF().isPosZero();
2573    }
2574  }
2575  return false;
2576}
2577
2578/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2579/// the given operands.
2580SDValue
2581ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2582                             SDValue &ARMcc, SelectionDAG &DAG,
2583                             DebugLoc dl) const {
2584  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2585    unsigned C = RHSC->getZExtValue();
2586    if (!isLegalICmpImmediate(C)) {
2587      // Constant does not fit, try adjusting it by one?
2588      switch (CC) {
2589      default: break;
2590      case ISD::SETLT:
2591      case ISD::SETGE:
2592        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
2593          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2594          RHS = DAG.getConstant(C-1, MVT::i32);
2595        }
2596        break;
2597      case ISD::SETULT:
2598      case ISD::SETUGE:
2599        if (C != 0 && isLegalICmpImmediate(C-1)) {
2600          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2601          RHS = DAG.getConstant(C-1, MVT::i32);
2602        }
2603        break;
2604      case ISD::SETLE:
2605      case ISD::SETGT:
2606        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
2607          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2608          RHS = DAG.getConstant(C+1, MVT::i32);
2609        }
2610        break;
2611      case ISD::SETULE:
2612      case ISD::SETUGT:
2613        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
2614          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2615          RHS = DAG.getConstant(C+1, MVT::i32);
2616        }
2617        break;
2618      }
2619    }
2620  }
2621
2622  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2623  ARMISD::NodeType CompareType;
2624  switch (CondCode) {
2625  default:
2626    CompareType = ARMISD::CMP;
2627    break;
2628  case ARMCC::EQ:
2629  case ARMCC::NE:
2630    // Uses only Z Flag
2631    CompareType = ARMISD::CMPZ;
2632    break;
2633  }
2634  ARMcc = DAG.getConstant(CondCode, MVT::i32);
2635  return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
2636}
2637
2638/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2639SDValue
2640ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2641                             DebugLoc dl) const {
2642  SDValue Cmp;
2643  if (!isFloatingPointZero(RHS))
2644    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
2645  else
2646    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
2647  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
2648}
2649
2650/// duplicateCmp - Glue values can have only one use, so this function
2651/// duplicates a comparison node.
2652SDValue
2653ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
2654  unsigned Opc = Cmp.getOpcode();
2655  DebugLoc DL = Cmp.getDebugLoc();
2656  if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
2657    return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2658
2659  assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
2660  Cmp = Cmp.getOperand(0);
2661  Opc = Cmp.getOpcode();
2662  if (Opc == ARMISD::CMPFP)
2663    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2664  else {
2665    assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
2666    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
2667  }
2668  return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
2669}
2670
2671SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2672  SDValue Cond = Op.getOperand(0);
2673  SDValue SelectTrue = Op.getOperand(1);
2674  SDValue SelectFalse = Op.getOperand(2);
2675  DebugLoc dl = Op.getDebugLoc();
2676
2677  // Convert:
2678  //
2679  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2680  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2681  //
2682  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2683    const ConstantSDNode *CMOVTrue =
2684      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2685    const ConstantSDNode *CMOVFalse =
2686      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2687
2688    if (CMOVTrue && CMOVFalse) {
2689      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2690      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2691
2692      SDValue True;
2693      SDValue False;
2694      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2695        True = SelectTrue;
2696        False = SelectFalse;
2697      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2698        True = SelectFalse;
2699        False = SelectTrue;
2700      }
2701
2702      if (True.getNode() && False.getNode()) {
2703        EVT VT = Op.getValueType();
2704        SDValue ARMcc = Cond.getOperand(2);
2705        SDValue CCR = Cond.getOperand(3);
2706        SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
2707        assert(True.getValueType() == VT);
2708        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2709      }
2710    }
2711  }
2712
2713  return DAG.getSelectCC(dl, Cond,
2714                         DAG.getConstant(0, Cond.getValueType()),
2715                         SelectTrue, SelectFalse, ISD::SETNE);
2716}
2717
2718SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2719  EVT VT = Op.getValueType();
2720  SDValue LHS = Op.getOperand(0);
2721  SDValue RHS = Op.getOperand(1);
2722  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2723  SDValue TrueVal = Op.getOperand(2);
2724  SDValue FalseVal = Op.getOperand(3);
2725  DebugLoc dl = Op.getDebugLoc();
2726
2727  if (LHS.getValueType() == MVT::i32) {
2728    SDValue ARMcc;
2729    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2730    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2731    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2732  }
2733
2734  ARMCC::CondCodes CondCode, CondCode2;
2735  FPCCToARMCC(CC, CondCode, CondCode2);
2736
2737  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2738  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2739  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2740  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2741                               ARMcc, CCR, Cmp);
2742  if (CondCode2 != ARMCC::AL) {
2743    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2744    // FIXME: Needs another CMP because flag can have but one use.
2745    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2746    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2747                         Result, TrueVal, ARMcc2, CCR, Cmp2);
2748  }
2749  return Result;
2750}
2751
2752/// canChangeToInt - Given the fp compare operand, return true if it is suitable
2753/// to morph to an integer compare sequence.
2754static bool canChangeToInt(SDValue Op, bool &SeenZero,
2755                           const ARMSubtarget *Subtarget) {
2756  SDNode *N = Op.getNode();
2757  if (!N->hasOneUse())
2758    // Otherwise it requires moving the value from fp to integer registers.
2759    return false;
2760  if (!N->getNumValues())
2761    return false;
2762  EVT VT = Op.getValueType();
2763  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
2764    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
2765    // vmrs are very slow, e.g. cortex-a8.
2766    return false;
2767
2768  if (isFloatingPointZero(Op)) {
2769    SeenZero = true;
2770    return true;
2771  }
2772  return ISD::isNormalLoad(N);
2773}
2774
2775static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
2776  if (isFloatingPointZero(Op))
2777    return DAG.getConstant(0, MVT::i32);
2778
2779  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
2780    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2781                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
2782                       Ld->isVolatile(), Ld->isNonTemporal(),
2783                       Ld->getAlignment());
2784
2785  llvm_unreachable("Unknown VFP cmp argument!");
2786}
2787
2788static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
2789                           SDValue &RetVal1, SDValue &RetVal2) {
2790  if (isFloatingPointZero(Op)) {
2791    RetVal1 = DAG.getConstant(0, MVT::i32);
2792    RetVal2 = DAG.getConstant(0, MVT::i32);
2793    return;
2794  }
2795
2796  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
2797    SDValue Ptr = Ld->getBasePtr();
2798    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2799                          Ld->getChain(), Ptr,
2800                          Ld->getPointerInfo(),
2801                          Ld->isVolatile(), Ld->isNonTemporal(),
2802                          Ld->getAlignment());
2803
2804    EVT PtrType = Ptr.getValueType();
2805    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
2806    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
2807                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
2808    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2809                          Ld->getChain(), NewPtr,
2810                          Ld->getPointerInfo().getWithOffset(4),
2811                          Ld->isVolatile(), Ld->isNonTemporal(),
2812                          NewAlign);
2813    return;
2814  }
2815
2816  llvm_unreachable("Unknown VFP cmp argument!");
2817}
2818
2819/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
2820/// f32 and even f64 comparisons to integer ones.
2821SDValue
2822ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
2823  SDValue Chain = Op.getOperand(0);
2824  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2825  SDValue LHS = Op.getOperand(2);
2826  SDValue RHS = Op.getOperand(3);
2827  SDValue Dest = Op.getOperand(4);
2828  DebugLoc dl = Op.getDebugLoc();
2829
2830  bool SeenZero = false;
2831  if (canChangeToInt(LHS, SeenZero, Subtarget) &&
2832      canChangeToInt(RHS, SeenZero, Subtarget) &&
2833      // If one of the operand is zero, it's safe to ignore the NaN case since
2834      // we only care about equality comparisons.
2835      (SeenZero || (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS)))) {
2836    // If unsafe fp math optimization is enabled and there are no other uses of
2837    // the CMP operands, and the condition code is EQ or NE, we can optimize it
2838    // to an integer comparison.
2839    if (CC == ISD::SETOEQ)
2840      CC = ISD::SETEQ;
2841    else if (CC == ISD::SETUNE)
2842      CC = ISD::SETNE;
2843
2844    SDValue ARMcc;
2845    if (LHS.getValueType() == MVT::f32) {
2846      LHS = bitcastf32Toi32(LHS, DAG);
2847      RHS = bitcastf32Toi32(RHS, DAG);
2848      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2849      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2850      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2851                         Chain, Dest, ARMcc, CCR, Cmp);
2852    }
2853
2854    SDValue LHS1, LHS2;
2855    SDValue RHS1, RHS2;
2856    expandf64Toi32(LHS, DAG, LHS1, LHS2);
2857    expandf64Toi32(RHS, DAG, RHS1, RHS2);
2858    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2859    ARMcc = DAG.getConstant(CondCode, MVT::i32);
2860    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
2861    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
2862    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
2863  }
2864
2865  return SDValue();
2866}
2867
2868SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2869  SDValue Chain = Op.getOperand(0);
2870  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2871  SDValue LHS = Op.getOperand(2);
2872  SDValue RHS = Op.getOperand(3);
2873  SDValue Dest = Op.getOperand(4);
2874  DebugLoc dl = Op.getDebugLoc();
2875
2876  if (LHS.getValueType() == MVT::i32) {
2877    SDValue ARMcc;
2878    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2879    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2880    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2881                       Chain, Dest, ARMcc, CCR, Cmp);
2882  }
2883
2884  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
2885
2886  if (UnsafeFPMath &&
2887      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
2888       CC == ISD::SETNE || CC == ISD::SETUNE)) {
2889    SDValue Result = OptimizeVFPBrcond(Op, DAG);
2890    if (Result.getNode())
2891      return Result;
2892  }
2893
2894  ARMCC::CondCodes CondCode, CondCode2;
2895  FPCCToARMCC(CC, CondCode, CondCode2);
2896
2897  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2898  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2899  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2900  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
2901  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
2902  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2903  if (CondCode2 != ARMCC::AL) {
2904    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
2905    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
2906    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2907  }
2908  return Res;
2909}
2910
2911SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
2912  SDValue Chain = Op.getOperand(0);
2913  SDValue Table = Op.getOperand(1);
2914  SDValue Index = Op.getOperand(2);
2915  DebugLoc dl = Op.getDebugLoc();
2916
2917  EVT PTy = getPointerTy();
2918  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
2919  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2920  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
2921  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
2922  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
2923  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
2924  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2925  if (Subtarget->isThumb2()) {
2926    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
2927    // which does another jump to the destination. This also makes it easier
2928    // to translate it to TBB / TBH later.
2929    // FIXME: This might not work if the function is extremely large.
2930    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
2931                       Addr, Op.getOperand(2), JTI, UId);
2932  }
2933  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2934    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
2935                       MachinePointerInfo::getJumpTable(),
2936                       false, false, 0);
2937    Chain = Addr.getValue(1);
2938    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
2939    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2940  } else {
2941    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
2942                       MachinePointerInfo::getJumpTable(), false, false, 0);
2943    Chain = Addr.getValue(1);
2944    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2945  }
2946}
2947
2948static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
2949  DebugLoc dl = Op.getDebugLoc();
2950  unsigned Opc;
2951
2952  switch (Op.getOpcode()) {
2953  default:
2954    assert(0 && "Invalid opcode!");
2955  case ISD::FP_TO_SINT:
2956    Opc = ARMISD::FTOSI;
2957    break;
2958  case ISD::FP_TO_UINT:
2959    Opc = ARMISD::FTOUI;
2960    break;
2961  }
2962  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
2963  return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
2964}
2965
2966static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2967  EVT VT = Op.getValueType();
2968  DebugLoc dl = Op.getDebugLoc();
2969
2970  EVT OperandVT = Op.getOperand(0).getValueType();
2971  assert(OperandVT == MVT::v4i16 && "Invalid type for custom lowering!");
2972  if (VT != MVT::v4f32)
2973    return DAG.UnrollVectorOp(Op.getNode());
2974
2975  unsigned CastOpc;
2976  unsigned Opc;
2977  switch (Op.getOpcode()) {
2978  default:
2979    assert(0 && "Invalid opcode!");
2980  case ISD::SINT_TO_FP:
2981    CastOpc = ISD::SIGN_EXTEND;
2982    Opc = ISD::SINT_TO_FP;
2983    break;
2984  case ISD::UINT_TO_FP:
2985    CastOpc = ISD::ZERO_EXTEND;
2986    Opc = ISD::UINT_TO_FP;
2987    break;
2988  }
2989
2990  Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
2991  return DAG.getNode(Opc, dl, VT, Op);
2992}
2993
2994static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2995  EVT VT = Op.getValueType();
2996  if (VT.isVector())
2997    return LowerVectorINT_TO_FP(Op, DAG);
2998
2999  DebugLoc dl = Op.getDebugLoc();
3000  unsigned Opc;
3001
3002  switch (Op.getOpcode()) {
3003  default:
3004    assert(0 && "Invalid opcode!");
3005  case ISD::SINT_TO_FP:
3006    Opc = ARMISD::SITOF;
3007    break;
3008  case ISD::UINT_TO_FP:
3009    Opc = ARMISD::UITOF;
3010    break;
3011  }
3012
3013  Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
3014  return DAG.getNode(Opc, dl, VT, Op);
3015}
3016
3017SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
3018  // Implement fcopysign with a fabs and a conditional fneg.
3019  SDValue Tmp0 = Op.getOperand(0);
3020  SDValue Tmp1 = Op.getOperand(1);
3021  DebugLoc dl = Op.getDebugLoc();
3022  EVT VT = Op.getValueType();
3023  EVT SrcVT = Tmp1.getValueType();
3024  bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
3025    Tmp0.getOpcode() == ARMISD::VMOVDRR;
3026  bool UseNEON = !InGPR && Subtarget->hasNEON();
3027
3028  if (UseNEON) {
3029    // Use VBSL to copy the sign bit.
3030    unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
3031    SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
3032                               DAG.getTargetConstant(EncodedVal, MVT::i32));
3033    EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
3034    if (VT == MVT::f64)
3035      Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3036                         DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
3037                         DAG.getConstant(32, MVT::i32));
3038    else /*if (VT == MVT::f32)*/
3039      Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
3040    if (SrcVT == MVT::f32) {
3041      Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
3042      if (VT == MVT::f64)
3043        Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3044                           DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
3045                           DAG.getConstant(32, MVT::i32));
3046    } else if (VT == MVT::f32)
3047      Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
3048                         DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
3049                         DAG.getConstant(32, MVT::i32));
3050    Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
3051    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
3052
3053    SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
3054                                            MVT::i32);
3055    AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
3056    SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
3057                                  DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
3058
3059    SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
3060                              DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
3061                              DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
3062    if (VT == MVT::f32) {
3063      Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
3064      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
3065                        DAG.getConstant(0, MVT::i32));
3066    } else {
3067      Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
3068    }
3069
3070    return Res;
3071  }
3072
3073  // Bitcast operand 1 to i32.
3074  if (SrcVT == MVT::f64)
3075    Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3076                       &Tmp1, 1).getValue(1);
3077  Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
3078
3079  // Or in the signbit with integer operations.
3080  SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
3081  SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
3082  Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
3083  if (VT == MVT::f32) {
3084    Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
3085                       DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
3086    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3087                       DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
3088  }
3089
3090  // f64: Or the high part with signbit and then combine two parts.
3091  Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3092                     &Tmp0, 1);
3093  SDValue Lo = Tmp0.getValue(0);
3094  SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
3095  Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
3096  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
3097}
3098
3099SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
3100  MachineFunction &MF = DAG.getMachineFunction();
3101  MachineFrameInfo *MFI = MF.getFrameInfo();
3102  MFI->setReturnAddressIsTaken(true);
3103
3104  EVT VT = Op.getValueType();
3105  DebugLoc dl = Op.getDebugLoc();
3106  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3107  if (Depth) {
3108    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3109    SDValue Offset = DAG.getConstant(4, MVT::i32);
3110    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
3111                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
3112                       MachinePointerInfo(), false, false, 0);
3113  }
3114
3115  // Return LR, which contains the return address. Mark it an implicit live-in.
3116  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3117  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
3118}
3119
3120SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
3121  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3122  MFI->setFrameAddressIsTaken(true);
3123
3124  EVT VT = Op.getValueType();
3125  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
3126  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3127  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
3128    ? ARM::R7 : ARM::R11;
3129  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
3130  while (Depth--)
3131    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
3132                            MachinePointerInfo(),
3133                            false, false, 0);
3134  return FrameAddr;
3135}
3136
3137/// ExpandBITCAST - If the target supports VFP, this function is called to
3138/// expand a bit convert where either the source or destination type is i64 to
3139/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
3140/// operand type is illegal (e.g., v2f32 for a target that doesn't support
3141/// vectors), since the legalizer won't know what to do with that.
3142static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
3143  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3144  DebugLoc dl = N->getDebugLoc();
3145  SDValue Op = N->getOperand(0);
3146
3147  // This function is only supposed to be called for i64 types, either as the
3148  // source or destination of the bit convert.
3149  EVT SrcVT = Op.getValueType();
3150  EVT DstVT = N->getValueType(0);
3151  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
3152         "ExpandBITCAST called for non-i64 type");
3153
3154  // Turn i64->f64 into VMOVDRR.
3155  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
3156    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3157                             DAG.getConstant(0, MVT::i32));
3158    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3159                             DAG.getConstant(1, MVT::i32));
3160    return DAG.getNode(ISD::BITCAST, dl, DstVT,
3161                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
3162  }
3163
3164  // Turn f64->i64 into VMOVRRD.
3165  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
3166    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
3167                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
3168    // Merge the pieces into a single i64 value.
3169    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
3170  }
3171
3172  return SDValue();
3173}
3174
3175/// getZeroVector - Returns a vector of specified type with all zero elements.
3176/// Zero vectors are used to represent vector negation and in those cases
3177/// will be implemented with the NEON VNEG instruction.  However, VNEG does
3178/// not support i64 elements, so sometimes the zero vectors will need to be
3179/// explicitly constructed.  Regardless, use a canonical VMOV to create the
3180/// zero vector.
3181static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3182  assert(VT.isVector() && "Expected a vector type");
3183  // The canonical modified immediate encoding of a zero vector is....0!
3184  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
3185  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
3186  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
3187  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3188}
3189
3190/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3191/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3192SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
3193                                                SelectionDAG &DAG) const {
3194  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3195  EVT VT = Op.getValueType();
3196  unsigned VTBits = VT.getSizeInBits();
3197  DebugLoc dl = Op.getDebugLoc();
3198  SDValue ShOpLo = Op.getOperand(0);
3199  SDValue ShOpHi = Op.getOperand(1);
3200  SDValue ShAmt  = Op.getOperand(2);
3201  SDValue ARMcc;
3202  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3203
3204  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3205
3206  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3207                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3208  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3209  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3210                                   DAG.getConstant(VTBits, MVT::i32));
3211  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3212  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3213  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3214
3215  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3216  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3217                          ARMcc, DAG, dl);
3218  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3219  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
3220                           CCR, Cmp);
3221
3222  SDValue Ops[2] = { Lo, Hi };
3223  return DAG.getMergeValues(Ops, 2, dl);
3224}
3225
3226/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
3227/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3228SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
3229                                               SelectionDAG &DAG) const {
3230  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3231  EVT VT = Op.getValueType();
3232  unsigned VTBits = VT.getSizeInBits();
3233  DebugLoc dl = Op.getDebugLoc();
3234  SDValue ShOpLo = Op.getOperand(0);
3235  SDValue ShOpHi = Op.getOperand(1);
3236  SDValue ShAmt  = Op.getOperand(2);
3237  SDValue ARMcc;
3238
3239  assert(Op.getOpcode() == ISD::SHL_PARTS);
3240  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3241                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3242  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
3243  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3244                                   DAG.getConstant(VTBits, MVT::i32));
3245  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
3246  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
3247
3248  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3249  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3250  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3251                          ARMcc, DAG, dl);
3252  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
3253  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
3254                           CCR, Cmp);
3255
3256  SDValue Ops[2] = { Lo, Hi };
3257  return DAG.getMergeValues(Ops, 2, dl);
3258}
3259
3260SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3261                                            SelectionDAG &DAG) const {
3262  // The rounding mode is in bits 23:22 of the FPSCR.
3263  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
3264  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
3265  // so that the shift + and get folded into a bitfield extract.
3266  DebugLoc dl = Op.getDebugLoc();
3267  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
3268                              DAG.getConstant(Intrinsic::arm_get_fpscr,
3269                                              MVT::i32));
3270  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
3271                                  DAG.getConstant(1U << 22, MVT::i32));
3272  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
3273                              DAG.getConstant(22, MVT::i32));
3274  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
3275                     DAG.getConstant(3, MVT::i32));
3276}
3277
3278static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
3279                         const ARMSubtarget *ST) {
3280  EVT VT = N->getValueType(0);
3281  DebugLoc dl = N->getDebugLoc();
3282
3283  if (!ST->hasV6T2Ops())
3284    return SDValue();
3285
3286  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
3287  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
3288}
3289
3290static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
3291                          const ARMSubtarget *ST) {
3292  EVT VT = N->getValueType(0);
3293  DebugLoc dl = N->getDebugLoc();
3294
3295  if (!VT.isVector())
3296    return SDValue();
3297
3298  // Lower vector shifts on NEON to use VSHL.
3299  assert(ST->hasNEON() && "unexpected vector shift");
3300
3301  // Left shifts translate directly to the vshiftu intrinsic.
3302  if (N->getOpcode() == ISD::SHL)
3303    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3304                       DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
3305                       N->getOperand(0), N->getOperand(1));
3306
3307  assert((N->getOpcode() == ISD::SRA ||
3308          N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
3309
3310  // NEON uses the same intrinsics for both left and right shifts.  For
3311  // right shifts, the shift amounts are negative, so negate the vector of
3312  // shift amounts.
3313  EVT ShiftVT = N->getOperand(1).getValueType();
3314  SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
3315                                     getZeroVector(ShiftVT, DAG, dl),
3316                                     N->getOperand(1));
3317  Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
3318                             Intrinsic::arm_neon_vshifts :
3319                             Intrinsic::arm_neon_vshiftu);
3320  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3321                     DAG.getConstant(vshiftInt, MVT::i32),
3322                     N->getOperand(0), NegatedCount);
3323}
3324
3325static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
3326                                const ARMSubtarget *ST) {
3327  EVT VT = N->getValueType(0);
3328  DebugLoc dl = N->getDebugLoc();
3329
3330  // We can get here for a node like i32 = ISD::SHL i32, i64
3331  if (VT != MVT::i64)
3332    return SDValue();
3333
3334  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
3335         "Unknown shift to lower!");
3336
3337  // We only lower SRA, SRL of 1 here, all others use generic lowering.
3338  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
3339      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
3340    return SDValue();
3341
3342  // If we are in thumb mode, we don't have RRX.
3343  if (ST->isThumb1Only()) return SDValue();
3344
3345  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
3346  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3347                           DAG.getConstant(0, MVT::i32));
3348  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3349                           DAG.getConstant(1, MVT::i32));
3350
3351  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
3352  // captures the result into a carry flag.
3353  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
3354  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
3355
3356  // The low part is an ARMISD::RRX operand, which shifts the carry in.
3357  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
3358
3359  // Merge the pieces into a single i64 value.
3360 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
3361}
3362
3363static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
3364  SDValue TmpOp0, TmpOp1;
3365  bool Invert = false;
3366  bool Swap = false;
3367  unsigned Opc = 0;
3368
3369  SDValue Op0 = Op.getOperand(0);
3370  SDValue Op1 = Op.getOperand(1);
3371  SDValue CC = Op.getOperand(2);
3372  EVT VT = Op.getValueType();
3373  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3374  DebugLoc dl = Op.getDebugLoc();
3375
3376  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
3377    switch (SetCCOpcode) {
3378    default: llvm_unreachable("Illegal FP comparison"); break;
3379    case ISD::SETUNE:
3380    case ISD::SETNE:  Invert = true; // Fallthrough
3381    case ISD::SETOEQ:
3382    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3383    case ISD::SETOLT:
3384    case ISD::SETLT: Swap = true; // Fallthrough
3385    case ISD::SETOGT:
3386    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3387    case ISD::SETOLE:
3388    case ISD::SETLE:  Swap = true; // Fallthrough
3389    case ISD::SETOGE:
3390    case ISD::SETGE: Opc = ARMISD::VCGE; break;
3391    case ISD::SETUGE: Swap = true; // Fallthrough
3392    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
3393    case ISD::SETUGT: Swap = true; // Fallthrough
3394    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
3395    case ISD::SETUEQ: Invert = true; // Fallthrough
3396    case ISD::SETONE:
3397      // Expand this to (OLT | OGT).
3398      TmpOp0 = Op0;
3399      TmpOp1 = Op1;
3400      Opc = ISD::OR;
3401      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3402      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
3403      break;
3404    case ISD::SETUO: Invert = true; // Fallthrough
3405    case ISD::SETO:
3406      // Expand this to (OLT | OGE).
3407      TmpOp0 = Op0;
3408      TmpOp1 = Op1;
3409      Opc = ISD::OR;
3410      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3411      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
3412      break;
3413    }
3414  } else {
3415    // Integer comparisons.
3416    switch (SetCCOpcode) {
3417    default: llvm_unreachable("Illegal integer comparison"); break;
3418    case ISD::SETNE:  Invert = true;
3419    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3420    case ISD::SETLT:  Swap = true;
3421    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3422    case ISD::SETLE:  Swap = true;
3423    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
3424    case ISD::SETULT: Swap = true;
3425    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
3426    case ISD::SETULE: Swap = true;
3427    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
3428    }
3429
3430    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
3431    if (Opc == ARMISD::VCEQ) {
3432
3433      SDValue AndOp;
3434      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3435        AndOp = Op0;
3436      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
3437        AndOp = Op1;
3438
3439      // Ignore bitconvert.
3440      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
3441        AndOp = AndOp.getOperand(0);
3442
3443      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
3444        Opc = ARMISD::VTST;
3445        Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
3446        Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
3447        Invert = !Invert;
3448      }
3449    }
3450  }
3451
3452  if (Swap)
3453    std::swap(Op0, Op1);
3454
3455  // If one of the operands is a constant vector zero, attempt to fold the
3456  // comparison to a specialized compare-against-zero form.
3457  SDValue SingleOp;
3458  if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3459    SingleOp = Op0;
3460  else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
3461    if (Opc == ARMISD::VCGE)
3462      Opc = ARMISD::VCLEZ;
3463    else if (Opc == ARMISD::VCGT)
3464      Opc = ARMISD::VCLTZ;
3465    SingleOp = Op1;
3466  }
3467
3468  SDValue Result;
3469  if (SingleOp.getNode()) {
3470    switch (Opc) {
3471    case ARMISD::VCEQ:
3472      Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
3473    case ARMISD::VCGE:
3474      Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
3475    case ARMISD::VCLEZ:
3476      Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
3477    case ARMISD::VCGT:
3478      Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
3479    case ARMISD::VCLTZ:
3480      Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
3481    default:
3482      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3483    }
3484  } else {
3485     Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3486  }
3487
3488  if (Invert)
3489    Result = DAG.getNOT(dl, Result, VT);
3490
3491  return Result;
3492}
3493
3494/// isNEONModifiedImm - Check if the specified splat value corresponds to a
3495/// valid vector constant for a NEON instruction with a "modified immediate"
3496/// operand (e.g., VMOV).  If so, return the encoded value.
3497static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3498                                 unsigned SplatBitSize, SelectionDAG &DAG,
3499                                 EVT &VT, bool is128Bits, NEONModImmType type) {
3500  unsigned OpCmode, Imm;
3501
3502  // SplatBitSize is set to the smallest size that splats the vector, so a
3503  // zero vector will always have SplatBitSize == 8.  However, NEON modified
3504  // immediate instructions others than VMOV do not support the 8-bit encoding
3505  // of a zero vector, and the default encoding of zero is supposed to be the
3506  // 32-bit version.
3507  if (SplatBits == 0)
3508    SplatBitSize = 32;
3509
3510  switch (SplatBitSize) {
3511  case 8:
3512    if (type != VMOVModImm)
3513      return SDValue();
3514    // Any 1-byte value is OK.  Op=0, Cmode=1110.
3515    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3516    OpCmode = 0xe;
3517    Imm = SplatBits;
3518    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3519    break;
3520
3521  case 16:
3522    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3523    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3524    if ((SplatBits & ~0xff) == 0) {
3525      // Value = 0x00nn: Op=x, Cmode=100x.
3526      OpCmode = 0x8;
3527      Imm = SplatBits;
3528      break;
3529    }
3530    if ((SplatBits & ~0xff00) == 0) {
3531      // Value = 0xnn00: Op=x, Cmode=101x.
3532      OpCmode = 0xa;
3533      Imm = SplatBits >> 8;
3534      break;
3535    }
3536    return SDValue();
3537
3538  case 32:
3539    // NEON's 32-bit VMOV supports splat values where:
3540    // * only one byte is nonzero, or
3541    // * the least significant byte is 0xff and the second byte is nonzero, or
3542    // * the least significant 2 bytes are 0xff and the third is nonzero.
3543    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3544    if ((SplatBits & ~0xff) == 0) {
3545      // Value = 0x000000nn: Op=x, Cmode=000x.
3546      OpCmode = 0;
3547      Imm = SplatBits;
3548      break;
3549    }
3550    if ((SplatBits & ~0xff00) == 0) {
3551      // Value = 0x0000nn00: Op=x, Cmode=001x.
3552      OpCmode = 0x2;
3553      Imm = SplatBits >> 8;
3554      break;
3555    }
3556    if ((SplatBits & ~0xff0000) == 0) {
3557      // Value = 0x00nn0000: Op=x, Cmode=010x.
3558      OpCmode = 0x4;
3559      Imm = SplatBits >> 16;
3560      break;
3561    }
3562    if ((SplatBits & ~0xff000000) == 0) {
3563      // Value = 0xnn000000: Op=x, Cmode=011x.
3564      OpCmode = 0x6;
3565      Imm = SplatBits >> 24;
3566      break;
3567    }
3568
3569    // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
3570    if (type == OtherModImm) return SDValue();
3571
3572    if ((SplatBits & ~0xffff) == 0 &&
3573        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3574      // Value = 0x0000nnff: Op=x, Cmode=1100.
3575      OpCmode = 0xc;
3576      Imm = SplatBits >> 8;
3577      SplatBits |= 0xff;
3578      break;
3579    }
3580
3581    if ((SplatBits & ~0xffffff) == 0 &&
3582        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3583      // Value = 0x00nnffff: Op=x, Cmode=1101.
3584      OpCmode = 0xd;
3585      Imm = SplatBits >> 16;
3586      SplatBits |= 0xffff;
3587      break;
3588    }
3589
3590    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3591    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3592    // VMOV.I32.  A (very) minor optimization would be to replicate the value
3593    // and fall through here to test for a valid 64-bit splat.  But, then the
3594    // caller would also need to check and handle the change in size.
3595    return SDValue();
3596
3597  case 64: {
3598    if (type != VMOVModImm)
3599      return SDValue();
3600    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3601    uint64_t BitMask = 0xff;
3602    uint64_t Val = 0;
3603    unsigned ImmMask = 1;
3604    Imm = 0;
3605    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3606      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3607        Val |= BitMask;
3608        Imm |= ImmMask;
3609      } else if ((SplatBits & BitMask) != 0) {
3610        return SDValue();
3611      }
3612      BitMask <<= 8;
3613      ImmMask <<= 1;
3614    }
3615    // Op=1, Cmode=1110.
3616    OpCmode = 0x1e;
3617    SplatBits = Val;
3618    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3619    break;
3620  }
3621
3622  default:
3623    llvm_unreachable("unexpected size for isNEONModifiedImm");
3624    return SDValue();
3625  }
3626
3627  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3628  return DAG.getTargetConstant(EncodedVal, MVT::i32);
3629}
3630
3631static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
3632                       bool &ReverseVEXT, unsigned &Imm) {
3633  unsigned NumElts = VT.getVectorNumElements();
3634  ReverseVEXT = false;
3635
3636  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
3637  if (M[0] < 0)
3638    return false;
3639
3640  Imm = M[0];
3641
3642  // If this is a VEXT shuffle, the immediate value is the index of the first
3643  // element.  The other shuffle indices must be the successive elements after
3644  // the first one.
3645  unsigned ExpectedElt = Imm;
3646  for (unsigned i = 1; i < NumElts; ++i) {
3647    // Increment the expected index.  If it wraps around, it may still be
3648    // a VEXT but the source vectors must be swapped.
3649    ExpectedElt += 1;
3650    if (ExpectedElt == NumElts * 2) {
3651      ExpectedElt = 0;
3652      ReverseVEXT = true;
3653    }
3654
3655    if (M[i] < 0) continue; // ignore UNDEF indices
3656    if (ExpectedElt != static_cast<unsigned>(M[i]))
3657      return false;
3658  }
3659
3660  // Adjust the index value if the source operands will be swapped.
3661  if (ReverseVEXT)
3662    Imm -= NumElts;
3663
3664  return true;
3665}
3666
3667/// isVREVMask - Check if a vector shuffle corresponds to a VREV
3668/// instruction with the specified blocksize.  (The order of the elements
3669/// within each block of the vector is reversed.)
3670static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
3671                       unsigned BlockSize) {
3672  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
3673         "Only possible block sizes for VREV are: 16, 32, 64");
3674
3675  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3676  if (EltSz == 64)
3677    return false;
3678
3679  unsigned NumElts = VT.getVectorNumElements();
3680  unsigned BlockElts = M[0] + 1;
3681  // If the first shuffle index is UNDEF, be optimistic.
3682  if (M[0] < 0)
3683    BlockElts = BlockSize / EltSz;
3684
3685  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3686    return false;
3687
3688  for (unsigned i = 0; i < NumElts; ++i) {
3689    if (M[i] < 0) continue; // ignore UNDEF indices
3690    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3691      return false;
3692  }
3693
3694  return true;
3695}
3696
3697static bool isVTBLMask(const SmallVectorImpl<int> &M, EVT VT) {
3698  // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
3699  // range, then 0 is placed into the resulting vector. So pretty much any mask
3700  // of 8 elements can work here.
3701  return VT == MVT::v8i8 && M.size() == 8;
3702}
3703
3704static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
3705                       unsigned &WhichResult) {
3706  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3707  if (EltSz == 64)
3708    return false;
3709
3710  unsigned NumElts = VT.getVectorNumElements();
3711  WhichResult = (M[0] == 0 ? 0 : 1);
3712  for (unsigned i = 0; i < NumElts; i += 2) {
3713    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3714        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
3715      return false;
3716  }
3717  return true;
3718}
3719
3720/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
3721/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3722/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
3723static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3724                                unsigned &WhichResult) {
3725  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3726  if (EltSz == 64)
3727    return false;
3728
3729  unsigned NumElts = VT.getVectorNumElements();
3730  WhichResult = (M[0] == 0 ? 0 : 1);
3731  for (unsigned i = 0; i < NumElts; i += 2) {
3732    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3733        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
3734      return false;
3735  }
3736  return true;
3737}
3738
3739static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
3740                       unsigned &WhichResult) {
3741  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3742  if (EltSz == 64)
3743    return false;
3744
3745  unsigned NumElts = VT.getVectorNumElements();
3746  WhichResult = (M[0] == 0 ? 0 : 1);
3747  for (unsigned i = 0; i != NumElts; ++i) {
3748    if (M[i] < 0) continue; // ignore UNDEF indices
3749    if ((unsigned) M[i] != 2 * i + WhichResult)
3750      return false;
3751  }
3752
3753  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3754  if (VT.is64BitVector() && EltSz == 32)
3755    return false;
3756
3757  return true;
3758}
3759
3760/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
3761/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3762/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
3763static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3764                                unsigned &WhichResult) {
3765  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3766  if (EltSz == 64)
3767    return false;
3768
3769  unsigned Half = VT.getVectorNumElements() / 2;
3770  WhichResult = (M[0] == 0 ? 0 : 1);
3771  for (unsigned j = 0; j != 2; ++j) {
3772    unsigned Idx = WhichResult;
3773    for (unsigned i = 0; i != Half; ++i) {
3774      int MIdx = M[i + j * Half];
3775      if (MIdx >= 0 && (unsigned) MIdx != Idx)
3776        return false;
3777      Idx += 2;
3778    }
3779  }
3780
3781  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3782  if (VT.is64BitVector() && EltSz == 32)
3783    return false;
3784
3785  return true;
3786}
3787
3788static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
3789                       unsigned &WhichResult) {
3790  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3791  if (EltSz == 64)
3792    return false;
3793
3794  unsigned NumElts = VT.getVectorNumElements();
3795  WhichResult = (M[0] == 0 ? 0 : 1);
3796  unsigned Idx = WhichResult * NumElts / 2;
3797  for (unsigned i = 0; i != NumElts; i += 2) {
3798    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3799        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
3800      return false;
3801    Idx += 1;
3802  }
3803
3804  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3805  if (VT.is64BitVector() && EltSz == 32)
3806    return false;
3807
3808  return true;
3809}
3810
3811/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
3812/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3813/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
3814static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3815                                unsigned &WhichResult) {
3816  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3817  if (EltSz == 64)
3818    return false;
3819
3820  unsigned NumElts = VT.getVectorNumElements();
3821  WhichResult = (M[0] == 0 ? 0 : 1);
3822  unsigned Idx = WhichResult * NumElts / 2;
3823  for (unsigned i = 0; i != NumElts; i += 2) {
3824    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3825        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
3826      return false;
3827    Idx += 1;
3828  }
3829
3830  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3831  if (VT.is64BitVector() && EltSz == 32)
3832    return false;
3833
3834  return true;
3835}
3836
3837// If N is an integer constant that can be moved into a register in one
3838// instruction, return an SDValue of such a constant (will become a MOV
3839// instruction).  Otherwise return null.
3840static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
3841                                     const ARMSubtarget *ST, DebugLoc dl) {
3842  uint64_t Val;
3843  if (!isa<ConstantSDNode>(N))
3844    return SDValue();
3845  Val = cast<ConstantSDNode>(N)->getZExtValue();
3846
3847  if (ST->isThumb1Only()) {
3848    if (Val <= 255 || ~Val <= 255)
3849      return DAG.getConstant(Val, MVT::i32);
3850  } else {
3851    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
3852      return DAG.getConstant(Val, MVT::i32);
3853  }
3854  return SDValue();
3855}
3856
3857// If this is a case we can't handle, return null and let the default
3858// expansion code take care of it.
3859SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
3860                                             const ARMSubtarget *ST) const {
3861  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
3862  DebugLoc dl = Op.getDebugLoc();
3863  EVT VT = Op.getValueType();
3864
3865  APInt SplatBits, SplatUndef;
3866  unsigned SplatBitSize;
3867  bool HasAnyUndefs;
3868  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
3869    if (SplatBitSize <= 64) {
3870      // Check if an immediate VMOV works.
3871      EVT VmovVT;
3872      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
3873                                      SplatUndef.getZExtValue(), SplatBitSize,
3874                                      DAG, VmovVT, VT.is128BitVector(),
3875                                      VMOVModImm);
3876      if (Val.getNode()) {
3877        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
3878        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3879      }
3880
3881      // Try an immediate VMVN.
3882      uint64_t NegatedImm = (SplatBits.getZExtValue() ^
3883                             ((1LL << SplatBitSize) - 1));
3884      Val = isNEONModifiedImm(NegatedImm,
3885                                      SplatUndef.getZExtValue(), SplatBitSize,
3886                                      DAG, VmovVT, VT.is128BitVector(),
3887                                      VMVNModImm);
3888      if (Val.getNode()) {
3889        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
3890        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3891      }
3892    }
3893  }
3894
3895  // Scan through the operands to see if only one value is used.
3896  unsigned NumElts = VT.getVectorNumElements();
3897  bool isOnlyLowElement = true;
3898  bool usesOnlyOneValue = true;
3899  bool isConstant = true;
3900  SDValue Value;
3901  for (unsigned i = 0; i < NumElts; ++i) {
3902    SDValue V = Op.getOperand(i);
3903    if (V.getOpcode() == ISD::UNDEF)
3904      continue;
3905    if (i > 0)
3906      isOnlyLowElement = false;
3907    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
3908      isConstant = false;
3909
3910    if (!Value.getNode())
3911      Value = V;
3912    else if (V != Value)
3913      usesOnlyOneValue = false;
3914  }
3915
3916  if (!Value.getNode())
3917    return DAG.getUNDEF(VT);
3918
3919  if (isOnlyLowElement)
3920    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
3921
3922  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3923
3924  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
3925  // i32 and try again.
3926  if (usesOnlyOneValue && EltSize <= 32) {
3927    if (!isConstant)
3928      return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
3929    if (VT.getVectorElementType().isFloatingPoint()) {
3930      SmallVector<SDValue, 8> Ops;
3931      for (unsigned i = 0; i < NumElts; ++i)
3932        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
3933                                  Op.getOperand(i)));
3934      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
3935      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
3936      Val = LowerBUILD_VECTOR(Val, DAG, ST);
3937      if (Val.getNode())
3938        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
3939    }
3940    SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
3941    if (Val.getNode())
3942      return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
3943  }
3944
3945  // If all elements are constants and the case above didn't get hit, fall back
3946  // to the default expansion, which will generate a load from the constant
3947  // pool.
3948  if (isConstant)
3949    return SDValue();
3950
3951  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
3952  if (NumElts >= 4) {
3953    SDValue shuffle = ReconstructShuffle(Op, DAG);
3954    if (shuffle != SDValue())
3955      return shuffle;
3956  }
3957
3958  // Vectors with 32- or 64-bit elements can be built by directly assigning
3959  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
3960  // will be legalized.
3961  if (EltSize >= 32) {
3962    // Do the expansion with floating-point types, since that is what the VFP
3963    // registers are defined to use, and since i64 is not legal.
3964    EVT EltVT = EVT::getFloatingPointVT(EltSize);
3965    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
3966    SmallVector<SDValue, 8> Ops;
3967    for (unsigned i = 0; i < NumElts; ++i)
3968      Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
3969    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
3970    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
3971  }
3972
3973  return SDValue();
3974}
3975
3976// Gather data to see if the operation can be modelled as a
3977// shuffle in combination with VEXTs.
3978SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
3979                                              SelectionDAG &DAG) const {
3980  DebugLoc dl = Op.getDebugLoc();
3981  EVT VT = Op.getValueType();
3982  unsigned NumElts = VT.getVectorNumElements();
3983
3984  SmallVector<SDValue, 2> SourceVecs;
3985  SmallVector<unsigned, 2> MinElts;
3986  SmallVector<unsigned, 2> MaxElts;
3987
3988  for (unsigned i = 0; i < NumElts; ++i) {
3989    SDValue V = Op.getOperand(i);
3990    if (V.getOpcode() == ISD::UNDEF)
3991      continue;
3992    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
3993      // A shuffle can only come from building a vector from various
3994      // elements of other vectors.
3995      return SDValue();
3996    }
3997
3998    // Record this extraction against the appropriate vector if possible...
3999    SDValue SourceVec = V.getOperand(0);
4000    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4001    bool FoundSource = false;
4002    for (unsigned j = 0; j < SourceVecs.size(); ++j) {
4003      if (SourceVecs[j] == SourceVec) {
4004        if (MinElts[j] > EltNo)
4005          MinElts[j] = EltNo;
4006        if (MaxElts[j] < EltNo)
4007          MaxElts[j] = EltNo;
4008        FoundSource = true;
4009        break;
4010      }
4011    }
4012
4013    // Or record a new source if not...
4014    if (!FoundSource) {
4015      SourceVecs.push_back(SourceVec);
4016      MinElts.push_back(EltNo);
4017      MaxElts.push_back(EltNo);
4018    }
4019  }
4020
4021  // Currently only do something sane when at most two source vectors
4022  // involved.
4023  if (SourceVecs.size() > 2)
4024    return SDValue();
4025
4026  SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
4027  int VEXTOffsets[2] = {0, 0};
4028
4029  // This loop extracts the usage patterns of the source vectors
4030  // and prepares appropriate SDValues for a shuffle if possible.
4031  for (unsigned i = 0; i < SourceVecs.size(); ++i) {
4032    if (SourceVecs[i].getValueType() == VT) {
4033      // No VEXT necessary
4034      ShuffleSrcs[i] = SourceVecs[i];
4035      VEXTOffsets[i] = 0;
4036      continue;
4037    } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
4038      // It probably isn't worth padding out a smaller vector just to
4039      // break it down again in a shuffle.
4040      return SDValue();
4041    }
4042
4043    // Since only 64-bit and 128-bit vectors are legal on ARM and
4044    // we've eliminated the other cases...
4045    assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
4046           "unexpected vector sizes in ReconstructShuffle");
4047
4048    if (MaxElts[i] - MinElts[i] >= NumElts) {
4049      // Span too large for a VEXT to cope
4050      return SDValue();
4051    }
4052
4053    if (MinElts[i] >= NumElts) {
4054      // The extraction can just take the second half
4055      VEXTOffsets[i] = NumElts;
4056      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4057                                   SourceVecs[i],
4058                                   DAG.getIntPtrConstant(NumElts));
4059    } else if (MaxElts[i] < NumElts) {
4060      // The extraction can just take the first half
4061      VEXTOffsets[i] = 0;
4062      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4063                                   SourceVecs[i],
4064                                   DAG.getIntPtrConstant(0));
4065    } else {
4066      // An actual VEXT is needed
4067      VEXTOffsets[i] = MinElts[i];
4068      SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4069                                     SourceVecs[i],
4070                                     DAG.getIntPtrConstant(0));
4071      SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4072                                     SourceVecs[i],
4073                                     DAG.getIntPtrConstant(NumElts));
4074      ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
4075                                   DAG.getConstant(VEXTOffsets[i], MVT::i32));
4076    }
4077  }
4078
4079  SmallVector<int, 8> Mask;
4080
4081  for (unsigned i = 0; i < NumElts; ++i) {
4082    SDValue Entry = Op.getOperand(i);
4083    if (Entry.getOpcode() == ISD::UNDEF) {
4084      Mask.push_back(-1);
4085      continue;
4086    }
4087
4088    SDValue ExtractVec = Entry.getOperand(0);
4089    int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
4090                                          .getOperand(1))->getSExtValue();
4091    if (ExtractVec == SourceVecs[0]) {
4092      Mask.push_back(ExtractElt - VEXTOffsets[0]);
4093    } else {
4094      Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
4095    }
4096  }
4097
4098  // Final check before we try to produce nonsense...
4099  if (isShuffleMaskLegal(Mask, VT))
4100    return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
4101                                &Mask[0]);
4102
4103  return SDValue();
4104}
4105
4106/// isShuffleMaskLegal - Targets can use this to indicate that they only
4107/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4108/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4109/// are assumed to be legal.
4110bool
4111ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
4112                                      EVT VT) const {
4113  if (VT.getVectorNumElements() == 4 &&
4114      (VT.is128BitVector() || VT.is64BitVector())) {
4115    unsigned PFIndexes[4];
4116    for (unsigned i = 0; i != 4; ++i) {
4117      if (M[i] < 0)
4118        PFIndexes[i] = 8;
4119      else
4120        PFIndexes[i] = M[i];
4121    }
4122
4123    // Compute the index in the perfect shuffle table.
4124    unsigned PFTableIndex =
4125      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4126    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4127    unsigned Cost = (PFEntry >> 30);
4128
4129    if (Cost <= 4)
4130      return true;
4131  }
4132
4133  bool ReverseVEXT;
4134  unsigned Imm, WhichResult;
4135
4136  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4137  return (EltSize >= 32 ||
4138          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
4139          isVREVMask(M, VT, 64) ||
4140          isVREVMask(M, VT, 32) ||
4141          isVREVMask(M, VT, 16) ||
4142          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
4143          isVTBLMask(M, VT) ||
4144          isVTRNMask(M, VT, WhichResult) ||
4145          isVUZPMask(M, VT, WhichResult) ||
4146          isVZIPMask(M, VT, WhichResult) ||
4147          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
4148          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
4149          isVZIP_v_undef_Mask(M, VT, WhichResult));
4150}
4151
4152/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4153/// the specified operations to build the shuffle.
4154static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4155                                      SDValue RHS, SelectionDAG &DAG,
4156                                      DebugLoc dl) {
4157  unsigned OpNum = (PFEntry >> 26) & 0x0F;
4158  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4159  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4160
4161  enum {
4162    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4163    OP_VREV,
4164    OP_VDUP0,
4165    OP_VDUP1,
4166    OP_VDUP2,
4167    OP_VDUP3,
4168    OP_VEXT1,
4169    OP_VEXT2,
4170    OP_VEXT3,
4171    OP_VUZPL, // VUZP, left result
4172    OP_VUZPR, // VUZP, right result
4173    OP_VZIPL, // VZIP, left result
4174    OP_VZIPR, // VZIP, right result
4175    OP_VTRNL, // VTRN, left result
4176    OP_VTRNR  // VTRN, right result
4177  };
4178
4179  if (OpNum == OP_COPY) {
4180    if (LHSID == (1*9+2)*9+3) return LHS;
4181    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4182    return RHS;
4183  }
4184
4185  SDValue OpLHS, OpRHS;
4186  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4187  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4188  EVT VT = OpLHS.getValueType();
4189
4190  switch (OpNum) {
4191  default: llvm_unreachable("Unknown shuffle opcode!");
4192  case OP_VREV:
4193    // VREV divides the vector in half and swaps within the half.
4194    if (VT.getVectorElementType() == MVT::i32 ||
4195        VT.getVectorElementType() == MVT::f32)
4196      return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
4197    // vrev <4 x i16> -> VREV32
4198    if (VT.getVectorElementType() == MVT::i16)
4199      return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
4200    // vrev <4 x i8> -> VREV16
4201    assert(VT.getVectorElementType() == MVT::i8);
4202    return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
4203  case OP_VDUP0:
4204  case OP_VDUP1:
4205  case OP_VDUP2:
4206  case OP_VDUP3:
4207    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4208                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
4209  case OP_VEXT1:
4210  case OP_VEXT2:
4211  case OP_VEXT3:
4212    return DAG.getNode(ARMISD::VEXT, dl, VT,
4213                       OpLHS, OpRHS,
4214                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
4215  case OP_VUZPL:
4216  case OP_VUZPR:
4217    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4218                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
4219  case OP_VZIPL:
4220  case OP_VZIPR:
4221    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4222                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
4223  case OP_VTRNL:
4224  case OP_VTRNR:
4225    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4226                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
4227  }
4228}
4229
4230static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
4231                                       SmallVectorImpl<int> &ShuffleMask,
4232                                       SelectionDAG &DAG) {
4233  // Check to see if we can use the VTBL instruction.
4234  SDValue V1 = Op.getOperand(0);
4235  SDValue V2 = Op.getOperand(1);
4236  DebugLoc DL = Op.getDebugLoc();
4237
4238  SmallVector<SDValue, 8> VTBLMask;
4239  for (SmallVectorImpl<int>::iterator
4240         I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
4241    VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
4242
4243  if (V2.getNode()->getOpcode() == ISD::UNDEF)
4244    return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
4245                       DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4246                                   &VTBLMask[0], 8));
4247
4248  return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
4249                     DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4250                                 &VTBLMask[0], 8));
4251}
4252
4253static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4254  SDValue V1 = Op.getOperand(0);
4255  SDValue V2 = Op.getOperand(1);
4256  DebugLoc dl = Op.getDebugLoc();
4257  EVT VT = Op.getValueType();
4258  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
4259  SmallVector<int, 8> ShuffleMask;
4260
4261  // Convert shuffles that are directly supported on NEON to target-specific
4262  // DAG nodes, instead of keeping them as shuffles and matching them again
4263  // during code selection.  This is more efficient and avoids the possibility
4264  // of inconsistencies between legalization and selection.
4265  // FIXME: floating-point vectors should be canonicalized to integer vectors
4266  // of the same time so that they get CSEd properly.
4267  SVN->getMask(ShuffleMask);
4268
4269  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4270  if (EltSize <= 32) {
4271    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
4272      int Lane = SVN->getSplatIndex();
4273      // If this is undef splat, generate it via "just" vdup, if possible.
4274      if (Lane == -1) Lane = 0;
4275
4276      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4277        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4278      }
4279      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
4280                         DAG.getConstant(Lane, MVT::i32));
4281    }
4282
4283    bool ReverseVEXT;
4284    unsigned Imm;
4285    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
4286      if (ReverseVEXT)
4287        std::swap(V1, V2);
4288      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
4289                         DAG.getConstant(Imm, MVT::i32));
4290    }
4291
4292    if (isVREVMask(ShuffleMask, VT, 64))
4293      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
4294    if (isVREVMask(ShuffleMask, VT, 32))
4295      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
4296    if (isVREVMask(ShuffleMask, VT, 16))
4297      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
4298
4299    // Check for Neon shuffles that modify both input vectors in place.
4300    // If both results are used, i.e., if there are two shuffles with the same
4301    // source operands and with masks corresponding to both results of one of
4302    // these operations, DAG memoization will ensure that a single node is
4303    // used for both shuffles.
4304    unsigned WhichResult;
4305    if (isVTRNMask(ShuffleMask, VT, WhichResult))
4306      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4307                         V1, V2).getValue(WhichResult);
4308    if (isVUZPMask(ShuffleMask, VT, WhichResult))
4309      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4310                         V1, V2).getValue(WhichResult);
4311    if (isVZIPMask(ShuffleMask, VT, WhichResult))
4312      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4313                         V1, V2).getValue(WhichResult);
4314
4315    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
4316      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4317                         V1, V1).getValue(WhichResult);
4318    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4319      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4320                         V1, V1).getValue(WhichResult);
4321    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4322      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4323                         V1, V1).getValue(WhichResult);
4324  }
4325
4326  // If the shuffle is not directly supported and it has 4 elements, use
4327  // the PerfectShuffle-generated table to synthesize it from other shuffles.
4328  unsigned NumElts = VT.getVectorNumElements();
4329  if (NumElts == 4) {
4330    unsigned PFIndexes[4];
4331    for (unsigned i = 0; i != 4; ++i) {
4332      if (ShuffleMask[i] < 0)
4333        PFIndexes[i] = 8;
4334      else
4335        PFIndexes[i] = ShuffleMask[i];
4336    }
4337
4338    // Compute the index in the perfect shuffle table.
4339    unsigned PFTableIndex =
4340      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4341    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4342    unsigned Cost = (PFEntry >> 30);
4343
4344    if (Cost <= 4)
4345      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4346  }
4347
4348  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
4349  if (EltSize >= 32) {
4350    // Do the expansion with floating-point types, since that is what the VFP
4351    // registers are defined to use, and since i64 is not legal.
4352    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4353    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4354    V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
4355    V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
4356    SmallVector<SDValue, 8> Ops;
4357    for (unsigned i = 0; i < NumElts; ++i) {
4358      if (ShuffleMask[i] < 0)
4359        Ops.push_back(DAG.getUNDEF(EltVT));
4360      else
4361        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
4362                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
4363                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
4364                                                  MVT::i32)));
4365    }
4366    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4367    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4368  }
4369
4370  if (VT == MVT::v8i8) {
4371    SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
4372    if (NewOp.getNode())
4373      return NewOp;
4374  }
4375
4376  return SDValue();
4377}
4378
4379static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4380  // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
4381  SDValue Lane = Op.getOperand(1);
4382  if (!isa<ConstantSDNode>(Lane))
4383    return SDValue();
4384
4385  SDValue Vec = Op.getOperand(0);
4386  if (Op.getValueType() == MVT::i32 &&
4387      Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
4388    DebugLoc dl = Op.getDebugLoc();
4389    return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
4390  }
4391
4392  return Op;
4393}
4394
4395static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
4396  // The only time a CONCAT_VECTORS operation can have legal types is when
4397  // two 64-bit vectors are concatenated to a 128-bit vector.
4398  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
4399         "unexpected CONCAT_VECTORS");
4400  DebugLoc dl = Op.getDebugLoc();
4401  SDValue Val = DAG.getUNDEF(MVT::v2f64);
4402  SDValue Op0 = Op.getOperand(0);
4403  SDValue Op1 = Op.getOperand(1);
4404  if (Op0.getOpcode() != ISD::UNDEF)
4405    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4406                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
4407                      DAG.getIntPtrConstant(0));
4408  if (Op1.getOpcode() != ISD::UNDEF)
4409    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4410                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
4411                      DAG.getIntPtrConstant(1));
4412  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
4413}
4414
4415/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
4416/// element has been zero/sign-extended, depending on the isSigned parameter,
4417/// from an integer type half its size.
4418static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
4419                                   bool isSigned) {
4420  // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
4421  EVT VT = N->getValueType(0);
4422  if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
4423    SDNode *BVN = N->getOperand(0).getNode();
4424    if (BVN->getValueType(0) != MVT::v4i32 ||
4425        BVN->getOpcode() != ISD::BUILD_VECTOR)
4426      return false;
4427    unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4428    unsigned HiElt = 1 - LoElt;
4429    ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
4430    ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
4431    ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
4432    ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
4433    if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
4434      return false;
4435    if (isSigned) {
4436      if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
4437          Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
4438        return true;
4439    } else {
4440      if (Hi0->isNullValue() && Hi1->isNullValue())
4441        return true;
4442    }
4443    return false;
4444  }
4445
4446  if (N->getOpcode() != ISD::BUILD_VECTOR)
4447    return false;
4448
4449  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
4450    SDNode *Elt = N->getOperand(i).getNode();
4451    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
4452      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4453      unsigned HalfSize = EltSize / 2;
4454      if (isSigned) {
4455        int64_t SExtVal = C->getSExtValue();
4456        if ((SExtVal >> HalfSize) != (SExtVal >> EltSize))
4457          return false;
4458      } else {
4459        if ((C->getZExtValue() >> HalfSize) != 0)
4460          return false;
4461      }
4462      continue;
4463    }
4464    return false;
4465  }
4466
4467  return true;
4468}
4469
4470/// isSignExtended - Check if a node is a vector value that is sign-extended
4471/// or a constant BUILD_VECTOR with sign-extended elements.
4472static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
4473  if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
4474    return true;
4475  if (isExtendedBUILD_VECTOR(N, DAG, true))
4476    return true;
4477  return false;
4478}
4479
4480/// isZeroExtended - Check if a node is a vector value that is zero-extended
4481/// or a constant BUILD_VECTOR with zero-extended elements.
4482static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
4483  if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
4484    return true;
4485  if (isExtendedBUILD_VECTOR(N, DAG, false))
4486    return true;
4487  return false;
4488}
4489
4490/// SkipExtension - For a node that is a SIGN_EXTEND, ZERO_EXTEND, extending
4491/// load, or BUILD_VECTOR with extended elements, return the unextended value.
4492static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
4493  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
4494    return N->getOperand(0);
4495  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
4496    return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
4497                       LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
4498                       LD->isNonTemporal(), LD->getAlignment());
4499  // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
4500  // have been legalized as a BITCAST from v4i32.
4501  if (N->getOpcode() == ISD::BITCAST) {
4502    SDNode *BVN = N->getOperand(0).getNode();
4503    assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
4504           BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
4505    unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4506    return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
4507                       BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
4508  }
4509  // Construct a new BUILD_VECTOR with elements truncated to half the size.
4510  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
4511  EVT VT = N->getValueType(0);
4512  unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
4513  unsigned NumElts = VT.getVectorNumElements();
4514  MVT TruncVT = MVT::getIntegerVT(EltSize);
4515  SmallVector<SDValue, 8> Ops;
4516  for (unsigned i = 0; i != NumElts; ++i) {
4517    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
4518    const APInt &CInt = C->getAPIntValue();
4519    Ops.push_back(DAG.getConstant(CInt.trunc(EltSize), TruncVT));
4520  }
4521  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
4522                     MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
4523}
4524
4525static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
4526  unsigned Opcode = N->getOpcode();
4527  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4528    SDNode *N0 = N->getOperand(0).getNode();
4529    SDNode *N1 = N->getOperand(1).getNode();
4530    return N0->hasOneUse() && N1->hasOneUse() &&
4531      isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
4532  }
4533  return false;
4534}
4535
4536static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
4537  unsigned Opcode = N->getOpcode();
4538  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4539    SDNode *N0 = N->getOperand(0).getNode();
4540    SDNode *N1 = N->getOperand(1).getNode();
4541    return N0->hasOneUse() && N1->hasOneUse() &&
4542      isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
4543  }
4544  return false;
4545}
4546
4547static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
4548  // Multiplications are only custom-lowered for 128-bit vectors so that
4549  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
4550  EVT VT = Op.getValueType();
4551  assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
4552  SDNode *N0 = Op.getOperand(0).getNode();
4553  SDNode *N1 = Op.getOperand(1).getNode();
4554  unsigned NewOpc = 0;
4555  bool isMLA = false;
4556  bool isN0SExt = isSignExtended(N0, DAG);
4557  bool isN1SExt = isSignExtended(N1, DAG);
4558  if (isN0SExt && isN1SExt)
4559    NewOpc = ARMISD::VMULLs;
4560  else {
4561    bool isN0ZExt = isZeroExtended(N0, DAG);
4562    bool isN1ZExt = isZeroExtended(N1, DAG);
4563    if (isN0ZExt && isN1ZExt)
4564      NewOpc = ARMISD::VMULLu;
4565    else if (isN1SExt || isN1ZExt) {
4566      // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
4567      // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
4568      if (isN1SExt && isAddSubSExt(N0, DAG)) {
4569        NewOpc = ARMISD::VMULLs;
4570        isMLA = true;
4571      } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
4572        NewOpc = ARMISD::VMULLu;
4573        isMLA = true;
4574      } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
4575        std::swap(N0, N1);
4576        NewOpc = ARMISD::VMULLu;
4577        isMLA = true;
4578      }
4579    }
4580
4581    if (!NewOpc) {
4582      if (VT == MVT::v2i64)
4583        // Fall through to expand this.  It is not legal.
4584        return SDValue();
4585      else
4586        // Other vector multiplications are legal.
4587        return Op;
4588    }
4589  }
4590
4591  // Legalize to a VMULL instruction.
4592  DebugLoc DL = Op.getDebugLoc();
4593  SDValue Op0;
4594  SDValue Op1 = SkipExtension(N1, DAG);
4595  if (!isMLA) {
4596    Op0 = SkipExtension(N0, DAG);
4597    assert(Op0.getValueType().is64BitVector() &&
4598           Op1.getValueType().is64BitVector() &&
4599           "unexpected types for extended operands to VMULL");
4600    return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
4601  }
4602
4603  // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
4604  // isel lowering to take advantage of no-stall back to back vmul + vmla.
4605  //   vmull q0, d4, d6
4606  //   vmlal q0, d5, d6
4607  // is faster than
4608  //   vaddl q0, d4, d5
4609  //   vmovl q1, d6
4610  //   vmul  q0, q0, q1
4611  SDValue N00 = SkipExtension(N0->getOperand(0).getNode(), DAG);
4612  SDValue N01 = SkipExtension(N0->getOperand(1).getNode(), DAG);
4613  EVT Op1VT = Op1.getValueType();
4614  return DAG.getNode(N0->getOpcode(), DL, VT,
4615                     DAG.getNode(NewOpc, DL, VT,
4616                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
4617                     DAG.getNode(NewOpc, DL, VT,
4618                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
4619}
4620
4621static SDValue
4622LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) {
4623  // Convert to float
4624  // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
4625  // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
4626  X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
4627  Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
4628  X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
4629  Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
4630  // Get reciprocal estimate.
4631  // float4 recip = vrecpeq_f32(yf);
4632  Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4633                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
4634  // Because char has a smaller range than uchar, we can actually get away
4635  // without any newton steps.  This requires that we use a weird bias
4636  // of 0xb000, however (again, this has been exhaustively tested).
4637  // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
4638  X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
4639  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
4640  Y = DAG.getConstant(0xb000, MVT::i32);
4641  Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
4642  X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
4643  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
4644  // Convert back to short.
4645  X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
4646  X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
4647  return X;
4648}
4649
4650static SDValue
4651LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) {
4652  SDValue N2;
4653  // Convert to float.
4654  // float4 yf = vcvt_f32_s32(vmovl_s16(y));
4655  // float4 xf = vcvt_f32_s32(vmovl_s16(x));
4656  N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
4657  N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
4658  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4659  N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4660
4661  // Use reciprocal estimate and one refinement step.
4662  // float4 recip = vrecpeq_f32(yf);
4663  // recip *= vrecpsq_f32(yf, recip);
4664  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4665                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
4666  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4667                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4668                   N1, N2);
4669  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4670  // Because short has a smaller range than ushort, we can actually get away
4671  // with only a single newton step.  This requires that we use a weird bias
4672  // of 89, however (again, this has been exhaustively tested).
4673  // float4 result = as_float4(as_int4(xf*recip) + 0x89);
4674  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4675  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4676  N1 = DAG.getConstant(0x89, MVT::i32);
4677  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4678  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4679  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4680  // Convert back to integer and return.
4681  // return vmovn_s32(vcvt_s32_f32(result));
4682  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4683  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4684  return N0;
4685}
4686
4687static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
4688  EVT VT = Op.getValueType();
4689  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4690         "unexpected type for custom-lowering ISD::SDIV");
4691
4692  DebugLoc dl = Op.getDebugLoc();
4693  SDValue N0 = Op.getOperand(0);
4694  SDValue N1 = Op.getOperand(1);
4695  SDValue N2, N3;
4696
4697  if (VT == MVT::v8i8) {
4698    N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
4699    N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
4700
4701    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4702                     DAG.getIntPtrConstant(4));
4703    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4704                     DAG.getIntPtrConstant(4));
4705    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4706                     DAG.getIntPtrConstant(0));
4707    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4708                     DAG.getIntPtrConstant(0));
4709
4710    N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
4711    N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
4712
4713    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
4714    N0 = LowerCONCAT_VECTORS(N0, DAG);
4715
4716    N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
4717    return N0;
4718  }
4719  return LowerSDIV_v4i16(N0, N1, dl, DAG);
4720}
4721
4722static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
4723  EVT VT = Op.getValueType();
4724  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
4725         "unexpected type for custom-lowering ISD::UDIV");
4726
4727  DebugLoc dl = Op.getDebugLoc();
4728  SDValue N0 = Op.getOperand(0);
4729  SDValue N1 = Op.getOperand(1);
4730  SDValue N2, N3;
4731
4732  if (VT == MVT::v8i8) {
4733    N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
4734    N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
4735
4736    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4737                     DAG.getIntPtrConstant(4));
4738    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4739                     DAG.getIntPtrConstant(4));
4740    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
4741                     DAG.getIntPtrConstant(0));
4742    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
4743                     DAG.getIntPtrConstant(0));
4744
4745    N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
4746    N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
4747
4748    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
4749    N0 = LowerCONCAT_VECTORS(N0, DAG);
4750
4751    N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
4752                     DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
4753                     N0);
4754    return N0;
4755  }
4756
4757  // v4i16 sdiv ... Convert to float.
4758  // float4 yf = vcvt_f32_s32(vmovl_u16(y));
4759  // float4 xf = vcvt_f32_s32(vmovl_u16(x));
4760  N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
4761  N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
4762  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
4763  SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
4764
4765  // Use reciprocal estimate and two refinement steps.
4766  // float4 recip = vrecpeq_f32(yf);
4767  // recip *= vrecpsq_f32(yf, recip);
4768  // recip *= vrecpsq_f32(yf, recip);
4769  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4770                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
4771  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4772                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4773                   BN1, N2);
4774  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4775  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
4776                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
4777                   BN1, N2);
4778  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
4779  // Simply multiplying by the reciprocal estimate can leave us a few ulps
4780  // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
4781  // and that it will never cause us to return an answer too large).
4782  // float4 result = as_float4(as_int4(xf*recip) + 2);
4783  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
4784  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
4785  N1 = DAG.getConstant(2, MVT::i32);
4786  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
4787  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
4788  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
4789  // Convert back to integer and return.
4790  // return vmovn_u32(vcvt_s32_f32(result));
4791  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
4792  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
4793  return N0;
4794}
4795
4796SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4797  switch (Op.getOpcode()) {
4798  default: llvm_unreachable("Don't know how to custom lower this!");
4799  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
4800  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
4801  case ISD::GlobalAddress:
4802    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
4803      LowerGlobalAddressELF(Op, DAG);
4804  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
4805  case ISD::SELECT:        return LowerSELECT(Op, DAG);
4806  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
4807  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
4808  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
4809  case ISD::VASTART:       return LowerVASTART(Op, DAG);
4810  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
4811  case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
4812  case ISD::SINT_TO_FP:
4813  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
4814  case ISD::FP_TO_SINT:
4815  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
4816  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
4817  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
4818  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
4819  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
4820  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
4821  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
4822  case ISD::EH_SJLJ_DISPATCHSETUP: return LowerEH_SJLJ_DISPATCHSETUP(Op, DAG);
4823  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
4824                                                               Subtarget);
4825  case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
4826  case ISD::SHL:
4827  case ISD::SRL:
4828  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
4829  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
4830  case ISD::SRL_PARTS:
4831  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
4832  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
4833  case ISD::VSETCC:        return LowerVSETCC(Op, DAG);
4834  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
4835  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
4836  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4837  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
4838  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
4839  case ISD::MUL:           return LowerMUL(Op, DAG);
4840  case ISD::SDIV:          return LowerSDIV(Op, DAG);
4841  case ISD::UDIV:          return LowerUDIV(Op, DAG);
4842  }
4843  return SDValue();
4844}
4845
4846/// ReplaceNodeResults - Replace the results of node with an illegal result
4847/// type with new values built out of custom code.
4848void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
4849                                           SmallVectorImpl<SDValue>&Results,
4850                                           SelectionDAG &DAG) const {
4851  SDValue Res;
4852  switch (N->getOpcode()) {
4853  default:
4854    llvm_unreachable("Don't know how to custom expand this!");
4855    break;
4856  case ISD::BITCAST:
4857    Res = ExpandBITCAST(N, DAG);
4858    break;
4859  case ISD::SRL:
4860  case ISD::SRA:
4861    Res = Expand64BitShift(N, DAG, Subtarget);
4862    break;
4863  }
4864  if (Res.getNode())
4865    Results.push_back(Res);
4866}
4867
4868//===----------------------------------------------------------------------===//
4869//                           ARM Scheduler Hooks
4870//===----------------------------------------------------------------------===//
4871
4872MachineBasicBlock *
4873ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
4874                                     MachineBasicBlock *BB,
4875                                     unsigned Size) const {
4876  unsigned dest    = MI->getOperand(0).getReg();
4877  unsigned ptr     = MI->getOperand(1).getReg();
4878  unsigned oldval  = MI->getOperand(2).getReg();
4879  unsigned newval  = MI->getOperand(3).getReg();
4880  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4881  DebugLoc dl = MI->getDebugLoc();
4882  bool isThumb2 = Subtarget->isThumb2();
4883
4884  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4885  unsigned scratch =
4886    MRI.createVirtualRegister(isThumb2 ? ARM::rGPRRegisterClass
4887                                       : ARM::GPRRegisterClass);
4888
4889  if (isThumb2) {
4890    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
4891    MRI.constrainRegClass(oldval, ARM::rGPRRegisterClass);
4892    MRI.constrainRegClass(newval, ARM::rGPRRegisterClass);
4893  }
4894
4895  unsigned ldrOpc, strOpc;
4896  switch (Size) {
4897  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
4898  case 1:
4899    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
4900    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
4901    break;
4902  case 2:
4903    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
4904    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
4905    break;
4906  case 4:
4907    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
4908    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
4909    break;
4910  }
4911
4912  MachineFunction *MF = BB->getParent();
4913  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4914  MachineFunction::iterator It = BB;
4915  ++It; // insert the new blocks after the current block
4916
4917  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
4918  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
4919  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
4920  MF->insert(It, loop1MBB);
4921  MF->insert(It, loop2MBB);
4922  MF->insert(It, exitMBB);
4923
4924  // Transfer the remainder of BB and its successor edges to exitMBB.
4925  exitMBB->splice(exitMBB->begin(), BB,
4926                  llvm::next(MachineBasicBlock::iterator(MI)),
4927                  BB->end());
4928  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4929
4930  //  thisMBB:
4931  //   ...
4932  //   fallthrough --> loop1MBB
4933  BB->addSuccessor(loop1MBB);
4934
4935  // loop1MBB:
4936  //   ldrex dest, [ptr]
4937  //   cmp dest, oldval
4938  //   bne exitMBB
4939  BB = loop1MBB;
4940  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
4941  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
4942                 .addReg(dest).addReg(oldval));
4943  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4944    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
4945  BB->addSuccessor(loop2MBB);
4946  BB->addSuccessor(exitMBB);
4947
4948  // loop2MBB:
4949  //   strex scratch, newval, [ptr]
4950  //   cmp scratch, #0
4951  //   bne loop1MBB
4952  BB = loop2MBB;
4953  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval)
4954                 .addReg(ptr));
4955  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4956                 .addReg(scratch).addImm(0));
4957  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4958    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
4959  BB->addSuccessor(loop1MBB);
4960  BB->addSuccessor(exitMBB);
4961
4962  //  exitMBB:
4963  //   ...
4964  BB = exitMBB;
4965
4966  MI->eraseFromParent();   // The instruction is gone now.
4967
4968  return BB;
4969}
4970
4971MachineBasicBlock *
4972ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4973                                    unsigned Size, unsigned BinOpcode) const {
4974  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4975  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4976
4977  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4978  MachineFunction *MF = BB->getParent();
4979  MachineFunction::iterator It = BB;
4980  ++It;
4981
4982  unsigned dest = MI->getOperand(0).getReg();
4983  unsigned ptr = MI->getOperand(1).getReg();
4984  unsigned incr = MI->getOperand(2).getReg();
4985  DebugLoc dl = MI->getDebugLoc();
4986  bool isThumb2 = Subtarget->isThumb2();
4987
4988  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4989  if (isThumb2) {
4990    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
4991    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
4992  }
4993
4994  unsigned ldrOpc, strOpc;
4995  switch (Size) {
4996  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
4997  case 1:
4998    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
4999    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5000    break;
5001  case 2:
5002    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5003    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5004    break;
5005  case 4:
5006    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5007    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5008    break;
5009  }
5010
5011  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5012  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5013  MF->insert(It, loopMBB);
5014  MF->insert(It, exitMBB);
5015
5016  // Transfer the remainder of BB and its successor edges to exitMBB.
5017  exitMBB->splice(exitMBB->begin(), BB,
5018                  llvm::next(MachineBasicBlock::iterator(MI)),
5019                  BB->end());
5020  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5021
5022  TargetRegisterClass *TRC =
5023    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5024  unsigned scratch = MRI.createVirtualRegister(TRC);
5025  unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
5026
5027  //  thisMBB:
5028  //   ...
5029  //   fallthrough --> loopMBB
5030  BB->addSuccessor(loopMBB);
5031
5032  //  loopMBB:
5033  //   ldrex dest, ptr
5034  //   <binop> scratch2, dest, incr
5035  //   strex scratch, scratch2, ptr
5036  //   cmp scratch, #0
5037  //   bne- loopMBB
5038  //   fallthrough --> exitMBB
5039  BB = loopMBB;
5040  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
5041  if (BinOpcode) {
5042    // operand order needs to go the other way for NAND
5043    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
5044      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5045                     addReg(incr).addReg(dest)).addReg(0);
5046    else
5047      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5048                     addReg(dest).addReg(incr)).addReg(0);
5049  }
5050
5051  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2)
5052                 .addReg(ptr));
5053  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5054                 .addReg(scratch).addImm(0));
5055  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5056    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5057
5058  BB->addSuccessor(loopMBB);
5059  BB->addSuccessor(exitMBB);
5060
5061  //  exitMBB:
5062  //   ...
5063  BB = exitMBB;
5064
5065  MI->eraseFromParent();   // The instruction is gone now.
5066
5067  return BB;
5068}
5069
5070MachineBasicBlock *
5071ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI,
5072                                          MachineBasicBlock *BB,
5073                                          unsigned Size,
5074                                          bool signExtend,
5075                                          ARMCC::CondCodes Cond) const {
5076  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5077
5078  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5079  MachineFunction *MF = BB->getParent();
5080  MachineFunction::iterator It = BB;
5081  ++It;
5082
5083  unsigned dest = MI->getOperand(0).getReg();
5084  unsigned ptr = MI->getOperand(1).getReg();
5085  unsigned incr = MI->getOperand(2).getReg();
5086  unsigned oldval = dest;
5087  DebugLoc dl = MI->getDebugLoc();
5088  bool isThumb2 = Subtarget->isThumb2();
5089
5090  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5091  if (isThumb2) {
5092    MRI.constrainRegClass(dest, ARM::rGPRRegisterClass);
5093    MRI.constrainRegClass(ptr, ARM::rGPRRegisterClass);
5094  }
5095
5096  unsigned ldrOpc, strOpc, extendOpc;
5097  switch (Size) {
5098  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5099  case 1:
5100    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5101    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5102    extendOpc = isThumb2 ? ARM::t2SXTBr : ARM::SXTBr;
5103    break;
5104  case 2:
5105    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5106    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5107    extendOpc = isThumb2 ? ARM::t2SXTHr : ARM::SXTHr;
5108    break;
5109  case 4:
5110    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5111    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5112    extendOpc = 0;
5113    break;
5114  }
5115
5116  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5117  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5118  MF->insert(It, loopMBB);
5119  MF->insert(It, exitMBB);
5120
5121  // Transfer the remainder of BB and its successor edges to exitMBB.
5122  exitMBB->splice(exitMBB->begin(), BB,
5123                  llvm::next(MachineBasicBlock::iterator(MI)),
5124                  BB->end());
5125  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5126
5127  TargetRegisterClass *TRC =
5128    isThumb2 ? ARM::tGPRRegisterClass : ARM::GPRRegisterClass;
5129  unsigned scratch = MRI.createVirtualRegister(TRC);
5130  unsigned scratch2 = MRI.createVirtualRegister(TRC);
5131
5132  //  thisMBB:
5133  //   ...
5134  //   fallthrough --> loopMBB
5135  BB->addSuccessor(loopMBB);
5136
5137  //  loopMBB:
5138  //   ldrex dest, ptr
5139  //   (sign extend dest, if required)
5140  //   cmp dest, incr
5141  //   cmov.cond scratch2, dest, incr
5142  //   strex scratch, scratch2, ptr
5143  //   cmp scratch, #0
5144  //   bne- loopMBB
5145  //   fallthrough --> exitMBB
5146  BB = loopMBB;
5147  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
5148
5149  // Sign extend the value, if necessary.
5150  if (signExtend && extendOpc) {
5151    oldval = MRI.createVirtualRegister(ARM::GPRRegisterClass);
5152    AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval).addReg(dest));
5153  }
5154
5155  // Build compare and cmov instructions.
5156  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5157                 .addReg(oldval).addReg(incr));
5158  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2)
5159         .addReg(oldval).addReg(incr).addImm(Cond).addReg(ARM::CPSR);
5160
5161  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2)
5162                 .addReg(ptr));
5163  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5164                 .addReg(scratch).addImm(0));
5165  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5166    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5167
5168  BB->addSuccessor(loopMBB);
5169  BB->addSuccessor(exitMBB);
5170
5171  //  exitMBB:
5172  //   ...
5173  BB = exitMBB;
5174
5175  MI->eraseFromParent();   // The instruction is gone now.
5176
5177  return BB;
5178}
5179
5180static
5181MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
5182  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
5183       E = MBB->succ_end(); I != E; ++I)
5184    if (*I != Succ)
5185      return *I;
5186  llvm_unreachable("Expecting a BB with two successors!");
5187}
5188
5189// FIXME: This opcode table should obviously be expressed in the target
5190// description. We probably just need a "machine opcode" value in the pseudo
5191// instruction. But the ideal solution maybe to simply remove the "S" version
5192// of the opcode altogether.
5193struct AddSubFlagsOpcodePair {
5194  unsigned PseudoOpc;
5195  unsigned MachineOpc;
5196};
5197
5198static AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
5199  {ARM::ADCSri, ARM::ADCri},
5200  {ARM::ADCSrr, ARM::ADCrr},
5201  {ARM::ADCSrs, ARM::ADCrs},
5202  {ARM::SBCSri, ARM::SBCri},
5203  {ARM::SBCSrr, ARM::SBCrr},
5204  {ARM::SBCSrs, ARM::SBCrs},
5205  {ARM::RSBSri, ARM::RSBri},
5206  {ARM::RSBSrr, ARM::RSBrr},
5207  {ARM::RSBSrs, ARM::RSBrs},
5208  {ARM::RSCSri, ARM::RSCri},
5209  {ARM::RSCSrs, ARM::RSCrs},
5210  {ARM::t2ADCSri, ARM::t2ADCri},
5211  {ARM::t2ADCSrr, ARM::t2ADCrr},
5212  {ARM::t2ADCSrs, ARM::t2ADCrs},
5213  {ARM::t2SBCSri, ARM::t2SBCri},
5214  {ARM::t2SBCSrr, ARM::t2SBCrr},
5215  {ARM::t2SBCSrs, ARM::t2SBCrs},
5216  {ARM::t2RSBSri, ARM::t2RSBri},
5217  {ARM::t2RSBSrs, ARM::t2RSBrs},
5218};
5219
5220// Convert and Add or Subtract with Carry and Flags to a generic opcode with
5221// CPSR<def> operand. e.g. ADCS (...) -> ADC (... CPSR<def>).
5222//
5223// FIXME: Somewhere we should assert that CPSR<def> is in the correct
5224// position to be recognized by the target descrition as the 'S' bit.
5225bool ARMTargetLowering::RemapAddSubWithFlags(MachineInstr *MI,
5226                                             MachineBasicBlock *BB) const {
5227  unsigned OldOpc = MI->getOpcode();
5228  unsigned NewOpc = 0;
5229
5230  // This is only called for instructions that need remapping, so iterating over
5231  // the tiny opcode table is not costly.
5232  static const int NPairs =
5233    sizeof(AddSubFlagsOpcodeMap) / sizeof(AddSubFlagsOpcodePair);
5234  for (AddSubFlagsOpcodePair *Pair = &AddSubFlagsOpcodeMap[0],
5235         *End = &AddSubFlagsOpcodeMap[NPairs]; Pair != End; ++Pair) {
5236    if (OldOpc == Pair->PseudoOpc) {
5237      NewOpc = Pair->MachineOpc;
5238      break;
5239    }
5240  }
5241  if (!NewOpc)
5242    return false;
5243
5244  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5245  DebugLoc dl = MI->getDebugLoc();
5246  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
5247  for (unsigned i = 0; i < MI->getNumOperands(); ++i)
5248    MIB.addOperand(MI->getOperand(i));
5249  AddDefaultPred(MIB);
5250  MIB.addReg(ARM::CPSR, RegState::Define); // S bit
5251  MI->eraseFromParent();
5252  return true;
5253}
5254
5255MachineBasicBlock *
5256ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
5257                                               MachineBasicBlock *BB) const {
5258  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5259  DebugLoc dl = MI->getDebugLoc();
5260  bool isThumb2 = Subtarget->isThumb2();
5261  switch (MI->getOpcode()) {
5262  default: {
5263    if (RemapAddSubWithFlags(MI, BB))
5264      return BB;
5265
5266    MI->dump();
5267    llvm_unreachable("Unexpected instr type to insert");
5268  }
5269  case ARM::ATOMIC_LOAD_ADD_I8:
5270     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
5271  case ARM::ATOMIC_LOAD_ADD_I16:
5272     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
5273  case ARM::ATOMIC_LOAD_ADD_I32:
5274     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
5275
5276  case ARM::ATOMIC_LOAD_AND_I8:
5277     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
5278  case ARM::ATOMIC_LOAD_AND_I16:
5279     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
5280  case ARM::ATOMIC_LOAD_AND_I32:
5281     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
5282
5283  case ARM::ATOMIC_LOAD_OR_I8:
5284     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
5285  case ARM::ATOMIC_LOAD_OR_I16:
5286     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
5287  case ARM::ATOMIC_LOAD_OR_I32:
5288     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
5289
5290  case ARM::ATOMIC_LOAD_XOR_I8:
5291     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
5292  case ARM::ATOMIC_LOAD_XOR_I16:
5293     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
5294  case ARM::ATOMIC_LOAD_XOR_I32:
5295     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
5296
5297  case ARM::ATOMIC_LOAD_NAND_I8:
5298     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
5299  case ARM::ATOMIC_LOAD_NAND_I16:
5300     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
5301  case ARM::ATOMIC_LOAD_NAND_I32:
5302     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
5303
5304  case ARM::ATOMIC_LOAD_SUB_I8:
5305     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
5306  case ARM::ATOMIC_LOAD_SUB_I16:
5307     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
5308  case ARM::ATOMIC_LOAD_SUB_I32:
5309     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
5310
5311  case ARM::ATOMIC_LOAD_MIN_I8:
5312     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT);
5313  case ARM::ATOMIC_LOAD_MIN_I16:
5314     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT);
5315  case ARM::ATOMIC_LOAD_MIN_I32:
5316     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT);
5317
5318  case ARM::ATOMIC_LOAD_MAX_I8:
5319     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT);
5320  case ARM::ATOMIC_LOAD_MAX_I16:
5321     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT);
5322  case ARM::ATOMIC_LOAD_MAX_I32:
5323     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT);
5324
5325  case ARM::ATOMIC_LOAD_UMIN_I8:
5326     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO);
5327  case ARM::ATOMIC_LOAD_UMIN_I16:
5328     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO);
5329  case ARM::ATOMIC_LOAD_UMIN_I32:
5330     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO);
5331
5332  case ARM::ATOMIC_LOAD_UMAX_I8:
5333     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI);
5334  case ARM::ATOMIC_LOAD_UMAX_I16:
5335     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI);
5336  case ARM::ATOMIC_LOAD_UMAX_I32:
5337     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI);
5338
5339  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
5340  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
5341  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
5342
5343  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
5344  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
5345  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
5346
5347  case ARM::tMOVCCr_pseudo: {
5348    // To "insert" a SELECT_CC instruction, we actually have to insert the
5349    // diamond control-flow pattern.  The incoming instruction knows the
5350    // destination vreg to set, the condition code register to branch on, the
5351    // true/false values to select between, and a branch opcode to use.
5352    const BasicBlock *LLVM_BB = BB->getBasicBlock();
5353    MachineFunction::iterator It = BB;
5354    ++It;
5355
5356    //  thisMBB:
5357    //  ...
5358    //   TrueVal = ...
5359    //   cmpTY ccX, r1, r2
5360    //   bCC copy1MBB
5361    //   fallthrough --> copy0MBB
5362    MachineBasicBlock *thisMBB  = BB;
5363    MachineFunction *F = BB->getParent();
5364    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
5365    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
5366    F->insert(It, copy0MBB);
5367    F->insert(It, sinkMBB);
5368
5369    // Transfer the remainder of BB and its successor edges to sinkMBB.
5370    sinkMBB->splice(sinkMBB->begin(), BB,
5371                    llvm::next(MachineBasicBlock::iterator(MI)),
5372                    BB->end());
5373    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
5374
5375    BB->addSuccessor(copy0MBB);
5376    BB->addSuccessor(sinkMBB);
5377
5378    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
5379      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
5380
5381    //  copy0MBB:
5382    //   %FalseValue = ...
5383    //   # fallthrough to sinkMBB
5384    BB = copy0MBB;
5385
5386    // Update machine-CFG edges
5387    BB->addSuccessor(sinkMBB);
5388
5389    //  sinkMBB:
5390    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
5391    //  ...
5392    BB = sinkMBB;
5393    BuildMI(*BB, BB->begin(), dl,
5394            TII->get(ARM::PHI), MI->getOperand(0).getReg())
5395      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
5396      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
5397
5398    MI->eraseFromParent();   // The pseudo instruction is gone now.
5399    return BB;
5400  }
5401
5402  case ARM::BCCi64:
5403  case ARM::BCCZi64: {
5404    // If there is an unconditional branch to the other successor, remove it.
5405    BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
5406
5407    // Compare both parts that make up the double comparison separately for
5408    // equality.
5409    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
5410
5411    unsigned LHS1 = MI->getOperand(1).getReg();
5412    unsigned LHS2 = MI->getOperand(2).getReg();
5413    if (RHSisZero) {
5414      AddDefaultPred(BuildMI(BB, dl,
5415                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5416                     .addReg(LHS1).addImm(0));
5417      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5418        .addReg(LHS2).addImm(0)
5419        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
5420    } else {
5421      unsigned RHS1 = MI->getOperand(3).getReg();
5422      unsigned RHS2 = MI->getOperand(4).getReg();
5423      AddDefaultPred(BuildMI(BB, dl,
5424                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5425                     .addReg(LHS1).addReg(RHS1));
5426      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5427        .addReg(LHS2).addReg(RHS2)
5428        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
5429    }
5430
5431    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
5432    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
5433    if (MI->getOperand(0).getImm() == ARMCC::NE)
5434      std::swap(destMBB, exitMBB);
5435
5436    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5437      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
5438    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2B : ARM::B))
5439      .addMBB(exitMBB);
5440
5441    MI->eraseFromParent();   // The pseudo instruction is gone now.
5442    return BB;
5443  }
5444  }
5445}
5446
5447//===----------------------------------------------------------------------===//
5448//                           ARM Optimization Hooks
5449//===----------------------------------------------------------------------===//
5450
5451static
5452SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
5453                            TargetLowering::DAGCombinerInfo &DCI) {
5454  SelectionDAG &DAG = DCI.DAG;
5455  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5456  EVT VT = N->getValueType(0);
5457  unsigned Opc = N->getOpcode();
5458  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
5459  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
5460  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
5461  ISD::CondCode CC = ISD::SETCC_INVALID;
5462
5463  if (isSlctCC) {
5464    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
5465  } else {
5466    SDValue CCOp = Slct.getOperand(0);
5467    if (CCOp.getOpcode() == ISD::SETCC)
5468      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
5469  }
5470
5471  bool DoXform = false;
5472  bool InvCC = false;
5473  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
5474          "Bad input!");
5475
5476  if (LHS.getOpcode() == ISD::Constant &&
5477      cast<ConstantSDNode>(LHS)->isNullValue()) {
5478    DoXform = true;
5479  } else if (CC != ISD::SETCC_INVALID &&
5480             RHS.getOpcode() == ISD::Constant &&
5481             cast<ConstantSDNode>(RHS)->isNullValue()) {
5482    std::swap(LHS, RHS);
5483    SDValue Op0 = Slct.getOperand(0);
5484    EVT OpVT = isSlctCC ? Op0.getValueType() :
5485                          Op0.getOperand(0).getValueType();
5486    bool isInt = OpVT.isInteger();
5487    CC = ISD::getSetCCInverse(CC, isInt);
5488
5489    if (!TLI.isCondCodeLegal(CC, OpVT))
5490      return SDValue();         // Inverse operator isn't legal.
5491
5492    DoXform = true;
5493    InvCC = true;
5494  }
5495
5496  if (DoXform) {
5497    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
5498    if (isSlctCC)
5499      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
5500                             Slct.getOperand(0), Slct.getOperand(1), CC);
5501    SDValue CCOp = Slct.getOperand(0);
5502    if (InvCC)
5503      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
5504                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
5505    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
5506                       CCOp, OtherOp, Result);
5507  }
5508  return SDValue();
5509}
5510
5511/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
5512/// operands N0 and N1.  This is a helper for PerformADDCombine that is
5513/// called with the default operands, and if that fails, with commuted
5514/// operands.
5515static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
5516                                         TargetLowering::DAGCombinerInfo &DCI) {
5517  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
5518  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
5519    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
5520    if (Result.getNode()) return Result;
5521  }
5522  return SDValue();
5523}
5524
5525/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
5526///
5527static SDValue PerformADDCombine(SDNode *N,
5528                                 TargetLowering::DAGCombinerInfo &DCI) {
5529  SDValue N0 = N->getOperand(0);
5530  SDValue N1 = N->getOperand(1);
5531
5532  // First try with the default operand order.
5533  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI);
5534  if (Result.getNode())
5535    return Result;
5536
5537  // If that didn't work, try again with the operands commuted.
5538  return PerformADDCombineWithOperands(N, N1, N0, DCI);
5539}
5540
5541/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
5542///
5543static SDValue PerformSUBCombine(SDNode *N,
5544                                 TargetLowering::DAGCombinerInfo &DCI) {
5545  SDValue N0 = N->getOperand(0);
5546  SDValue N1 = N->getOperand(1);
5547
5548  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
5549  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
5550    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
5551    if (Result.getNode()) return Result;
5552  }
5553
5554  return SDValue();
5555}
5556
5557/// PerformVMULCombine
5558/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
5559/// special multiplier accumulator forwarding.
5560///   vmul d3, d0, d2
5561///   vmla d3, d1, d2
5562/// is faster than
5563///   vadd d3, d0, d1
5564///   vmul d3, d3, d2
5565static SDValue PerformVMULCombine(SDNode *N,
5566                                  TargetLowering::DAGCombinerInfo &DCI,
5567                                  const ARMSubtarget *Subtarget) {
5568  if (!Subtarget->hasVMLxForwarding())
5569    return SDValue();
5570
5571  SelectionDAG &DAG = DCI.DAG;
5572  SDValue N0 = N->getOperand(0);
5573  SDValue N1 = N->getOperand(1);
5574  unsigned Opcode = N0.getOpcode();
5575  if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
5576      Opcode != ISD::FADD && Opcode != ISD::FSUB) {
5577    Opcode = N0.getOpcode();
5578    if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
5579        Opcode != ISD::FADD && Opcode != ISD::FSUB)
5580      return SDValue();
5581    std::swap(N0, N1);
5582  }
5583
5584  EVT VT = N->getValueType(0);
5585  DebugLoc DL = N->getDebugLoc();
5586  SDValue N00 = N0->getOperand(0);
5587  SDValue N01 = N0->getOperand(1);
5588  return DAG.getNode(Opcode, DL, VT,
5589                     DAG.getNode(ISD::MUL, DL, VT, N00, N1),
5590                     DAG.getNode(ISD::MUL, DL, VT, N01, N1));
5591}
5592
5593static SDValue PerformMULCombine(SDNode *N,
5594                                 TargetLowering::DAGCombinerInfo &DCI,
5595                                 const ARMSubtarget *Subtarget) {
5596  SelectionDAG &DAG = DCI.DAG;
5597
5598  if (Subtarget->isThumb1Only())
5599    return SDValue();
5600
5601  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
5602    return SDValue();
5603
5604  EVT VT = N->getValueType(0);
5605  if (VT.is64BitVector() || VT.is128BitVector())
5606    return PerformVMULCombine(N, DCI, Subtarget);
5607  if (VT != MVT::i32)
5608    return SDValue();
5609
5610  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
5611  if (!C)
5612    return SDValue();
5613
5614  uint64_t MulAmt = C->getZExtValue();
5615  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
5616  ShiftAmt = ShiftAmt & (32 - 1);
5617  SDValue V = N->getOperand(0);
5618  DebugLoc DL = N->getDebugLoc();
5619
5620  SDValue Res;
5621  MulAmt >>= ShiftAmt;
5622  if (isPowerOf2_32(MulAmt - 1)) {
5623    // (mul x, 2^N + 1) => (add (shl x, N), x)
5624    Res = DAG.getNode(ISD::ADD, DL, VT,
5625                      V, DAG.getNode(ISD::SHL, DL, VT,
5626                                     V, DAG.getConstant(Log2_32(MulAmt-1),
5627                                                        MVT::i32)));
5628  } else if (isPowerOf2_32(MulAmt + 1)) {
5629    // (mul x, 2^N - 1) => (sub (shl x, N), x)
5630    Res = DAG.getNode(ISD::SUB, DL, VT,
5631                      DAG.getNode(ISD::SHL, DL, VT,
5632                                  V, DAG.getConstant(Log2_32(MulAmt+1),
5633                                                     MVT::i32)),
5634                                                     V);
5635  } else
5636    return SDValue();
5637
5638  if (ShiftAmt != 0)
5639    Res = DAG.getNode(ISD::SHL, DL, VT, Res,
5640                      DAG.getConstant(ShiftAmt, MVT::i32));
5641
5642  // Do not add new nodes to DAG combiner worklist.
5643  DCI.CombineTo(N, Res, false);
5644  return SDValue();
5645}
5646
5647static SDValue PerformANDCombine(SDNode *N,
5648                                TargetLowering::DAGCombinerInfo &DCI) {
5649
5650  // Attempt to use immediate-form VBIC
5651  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
5652  DebugLoc dl = N->getDebugLoc();
5653  EVT VT = N->getValueType(0);
5654  SelectionDAG &DAG = DCI.DAG;
5655
5656  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
5657    return SDValue();
5658
5659  APInt SplatBits, SplatUndef;
5660  unsigned SplatBitSize;
5661  bool HasAnyUndefs;
5662  if (BVN &&
5663      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5664    if (SplatBitSize <= 64) {
5665      EVT VbicVT;
5666      SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
5667                                      SplatUndef.getZExtValue(), SplatBitSize,
5668                                      DAG, VbicVT, VT.is128BitVector(),
5669                                      OtherModImm);
5670      if (Val.getNode()) {
5671        SDValue Input =
5672          DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
5673        SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
5674        return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
5675      }
5676    }
5677  }
5678
5679  return SDValue();
5680}
5681
5682/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
5683static SDValue PerformORCombine(SDNode *N,
5684                                TargetLowering::DAGCombinerInfo &DCI,
5685                                const ARMSubtarget *Subtarget) {
5686  // Attempt to use immediate-form VORR
5687  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
5688  DebugLoc dl = N->getDebugLoc();
5689  EVT VT = N->getValueType(0);
5690  SelectionDAG &DAG = DCI.DAG;
5691
5692  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
5693    return SDValue();
5694
5695  APInt SplatBits, SplatUndef;
5696  unsigned SplatBitSize;
5697  bool HasAnyUndefs;
5698  if (BVN && Subtarget->hasNEON() &&
5699      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5700    if (SplatBitSize <= 64) {
5701      EVT VorrVT;
5702      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
5703                                      SplatUndef.getZExtValue(), SplatBitSize,
5704                                      DAG, VorrVT, VT.is128BitVector(),
5705                                      OtherModImm);
5706      if (Val.getNode()) {
5707        SDValue Input =
5708          DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
5709        SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
5710        return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
5711      }
5712    }
5713  }
5714
5715  SDValue N0 = N->getOperand(0);
5716  if (N0.getOpcode() != ISD::AND)
5717    return SDValue();
5718  SDValue N1 = N->getOperand(1);
5719
5720  // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
5721  if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
5722      DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
5723    APInt SplatUndef;
5724    unsigned SplatBitSize;
5725    bool HasAnyUndefs;
5726
5727    BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
5728    APInt SplatBits0;
5729    if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
5730                                  HasAnyUndefs) && !HasAnyUndefs) {
5731      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
5732      APInt SplatBits1;
5733      if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
5734                                    HasAnyUndefs) && !HasAnyUndefs &&
5735          SplatBits0 == ~SplatBits1) {
5736        // Canonicalize the vector type to make instruction selection simpler.
5737        EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
5738        SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
5739                                     N0->getOperand(1), N0->getOperand(0),
5740                                     N1->getOperand(0));
5741        return DAG.getNode(ISD::BITCAST, dl, VT, Result);
5742      }
5743    }
5744  }
5745
5746  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
5747  // reasonable.
5748
5749  // BFI is only available on V6T2+
5750  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
5751    return SDValue();
5752
5753  DebugLoc DL = N->getDebugLoc();
5754  // 1) or (and A, mask), val => ARMbfi A, val, mask
5755  //      iff (val & mask) == val
5756  //
5757  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
5758  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
5759  //          && mask == ~mask2
5760  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
5761  //          && ~mask == mask2
5762  //  (i.e., copy a bitfield value into another bitfield of the same width)
5763
5764  if (VT != MVT::i32)
5765    return SDValue();
5766
5767  SDValue N00 = N0.getOperand(0);
5768
5769  // The value and the mask need to be constants so we can verify this is
5770  // actually a bitfield set. If the mask is 0xffff, we can do better
5771  // via a movt instruction, so don't use BFI in that case.
5772  SDValue MaskOp = N0.getOperand(1);
5773  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
5774  if (!MaskC)
5775    return SDValue();
5776  unsigned Mask = MaskC->getZExtValue();
5777  if (Mask == 0xffff)
5778    return SDValue();
5779  SDValue Res;
5780  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
5781  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5782  if (N1C) {
5783    unsigned Val = N1C->getZExtValue();
5784    if ((Val & ~Mask) != Val)
5785      return SDValue();
5786
5787    if (ARM::isBitFieldInvertedMask(Mask)) {
5788      Val >>= CountTrailingZeros_32(~Mask);
5789
5790      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
5791                        DAG.getConstant(Val, MVT::i32),
5792                        DAG.getConstant(Mask, MVT::i32));
5793
5794      // Do not add new nodes to DAG combiner worklist.
5795      DCI.CombineTo(N, Res, false);
5796      return SDValue();
5797    }
5798  } else if (N1.getOpcode() == ISD::AND) {
5799    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
5800    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
5801    if (!N11C)
5802      return SDValue();
5803    unsigned Mask2 = N11C->getZExtValue();
5804
5805    // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
5806    // as is to match.
5807    if (ARM::isBitFieldInvertedMask(Mask) &&
5808        (Mask == ~Mask2)) {
5809      // The pack halfword instruction works better for masks that fit it,
5810      // so use that when it's available.
5811      if (Subtarget->hasT2ExtractPack() &&
5812          (Mask == 0xffff || Mask == 0xffff0000))
5813        return SDValue();
5814      // 2a
5815      unsigned amt = CountTrailingZeros_32(Mask2);
5816      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
5817                        DAG.getConstant(amt, MVT::i32));
5818      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
5819                        DAG.getConstant(Mask, MVT::i32));
5820      // Do not add new nodes to DAG combiner worklist.
5821      DCI.CombineTo(N, Res, false);
5822      return SDValue();
5823    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
5824               (~Mask == Mask2)) {
5825      // The pack halfword instruction works better for masks that fit it,
5826      // so use that when it's available.
5827      if (Subtarget->hasT2ExtractPack() &&
5828          (Mask2 == 0xffff || Mask2 == 0xffff0000))
5829        return SDValue();
5830      // 2b
5831      unsigned lsb = CountTrailingZeros_32(Mask);
5832      Res = DAG.getNode(ISD::SRL, DL, VT, N00,
5833                        DAG.getConstant(lsb, MVT::i32));
5834      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
5835                        DAG.getConstant(Mask2, MVT::i32));
5836      // Do not add new nodes to DAG combiner worklist.
5837      DCI.CombineTo(N, Res, false);
5838      return SDValue();
5839    }
5840  }
5841
5842  if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
5843      N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
5844      ARM::isBitFieldInvertedMask(~Mask)) {
5845    // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
5846    // where lsb(mask) == #shamt and masked bits of B are known zero.
5847    SDValue ShAmt = N00.getOperand(1);
5848    unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
5849    unsigned LSB = CountTrailingZeros_32(Mask);
5850    if (ShAmtC != LSB)
5851      return SDValue();
5852
5853    Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
5854                      DAG.getConstant(~Mask, MVT::i32));
5855
5856    // Do not add new nodes to DAG combiner worklist.
5857    DCI.CombineTo(N, Res, false);
5858  }
5859
5860  return SDValue();
5861}
5862
5863/// PerformBFICombine - (bfi A, (and B, C1), C2) -> (bfi A, B, C2) iff
5864/// C1 & C2 == C1.
5865static SDValue PerformBFICombine(SDNode *N,
5866                                 TargetLowering::DAGCombinerInfo &DCI) {
5867  SDValue N1 = N->getOperand(1);
5868  if (N1.getOpcode() == ISD::AND) {
5869    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
5870    if (!N11C)
5871      return SDValue();
5872    unsigned Mask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
5873    unsigned Mask2 = N11C->getZExtValue();
5874    if ((Mask & Mask2) == Mask2)
5875      return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
5876                             N->getOperand(0), N1.getOperand(0),
5877                             N->getOperand(2));
5878  }
5879  return SDValue();
5880}
5881
5882/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
5883/// ARMISD::VMOVRRD.
5884static SDValue PerformVMOVRRDCombine(SDNode *N,
5885                                     TargetLowering::DAGCombinerInfo &DCI) {
5886  // vmovrrd(vmovdrr x, y) -> x,y
5887  SDValue InDouble = N->getOperand(0);
5888  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
5889    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
5890
5891  // vmovrrd(load f64) -> (load i32), (load i32)
5892  SDNode *InNode = InDouble.getNode();
5893  if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
5894      InNode->getValueType(0) == MVT::f64 &&
5895      InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
5896      !cast<LoadSDNode>(InNode)->isVolatile()) {
5897    // TODO: Should this be done for non-FrameIndex operands?
5898    LoadSDNode *LD = cast<LoadSDNode>(InNode);
5899
5900    SelectionDAG &DAG = DCI.DAG;
5901    DebugLoc DL = LD->getDebugLoc();
5902    SDValue BasePtr = LD->getBasePtr();
5903    SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
5904                                 LD->getPointerInfo(), LD->isVolatile(),
5905                                 LD->isNonTemporal(), LD->getAlignment());
5906
5907    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
5908                                    DAG.getConstant(4, MVT::i32));
5909    SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
5910                                 LD->getPointerInfo(), LD->isVolatile(),
5911                                 LD->isNonTemporal(),
5912                                 std::min(4U, LD->getAlignment() / 2));
5913
5914    DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
5915    SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
5916    DCI.RemoveFromWorklist(LD);
5917    DAG.DeleteNode(LD);
5918    return Result;
5919  }
5920
5921  return SDValue();
5922}
5923
5924/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
5925/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
5926static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
5927  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
5928  SDValue Op0 = N->getOperand(0);
5929  SDValue Op1 = N->getOperand(1);
5930  if (Op0.getOpcode() == ISD::BITCAST)
5931    Op0 = Op0.getOperand(0);
5932  if (Op1.getOpcode() == ISD::BITCAST)
5933    Op1 = Op1.getOperand(0);
5934  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
5935      Op0.getNode() == Op1.getNode() &&
5936      Op0.getResNo() == 0 && Op1.getResNo() == 1)
5937    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
5938                       N->getValueType(0), Op0.getOperand(0));
5939  return SDValue();
5940}
5941
5942/// PerformSTORECombine - Target-specific dag combine xforms for
5943/// ISD::STORE.
5944static SDValue PerformSTORECombine(SDNode *N,
5945                                   TargetLowering::DAGCombinerInfo &DCI) {
5946  // Bitcast an i64 store extracted from a vector to f64.
5947  // Otherwise, the i64 value will be legalized to a pair of i32 values.
5948  StoreSDNode *St = cast<StoreSDNode>(N);
5949  SDValue StVal = St->getValue();
5950  if (!ISD::isNormalStore(St) || St->isVolatile())
5951    return SDValue();
5952
5953  if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
5954      StVal.getNode()->hasOneUse() && !St->isVolatile()) {
5955    SelectionDAG  &DAG = DCI.DAG;
5956    DebugLoc DL = St->getDebugLoc();
5957    SDValue BasePtr = St->getBasePtr();
5958    SDValue NewST1 = DAG.getStore(St->getChain(), DL,
5959                                  StVal.getNode()->getOperand(0), BasePtr,
5960                                  St->getPointerInfo(), St->isVolatile(),
5961                                  St->isNonTemporal(), St->getAlignment());
5962
5963    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
5964                                    DAG.getConstant(4, MVT::i32));
5965    return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1),
5966                        OffsetPtr, St->getPointerInfo(), St->isVolatile(),
5967                        St->isNonTemporal(),
5968                        std::min(4U, St->getAlignment() / 2));
5969  }
5970
5971  if (StVal.getValueType() != MVT::i64 ||
5972      StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5973    return SDValue();
5974
5975  SelectionDAG &DAG = DCI.DAG;
5976  DebugLoc dl = StVal.getDebugLoc();
5977  SDValue IntVec = StVal.getOperand(0);
5978  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
5979                                 IntVec.getValueType().getVectorNumElements());
5980  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
5981  SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5982                               Vec, StVal.getOperand(1));
5983  dl = N->getDebugLoc();
5984  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
5985  // Make the DAGCombiner fold the bitcasts.
5986  DCI.AddToWorklist(Vec.getNode());
5987  DCI.AddToWorklist(ExtElt.getNode());
5988  DCI.AddToWorklist(V.getNode());
5989  return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
5990                      St->getPointerInfo(), St->isVolatile(),
5991                      St->isNonTemporal(), St->getAlignment(),
5992                      St->getTBAAInfo());
5993}
5994
5995/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
5996/// are normal, non-volatile loads.  If so, it is profitable to bitcast an
5997/// i64 vector to have f64 elements, since the value can then be loaded
5998/// directly into a VFP register.
5999static bool hasNormalLoadOperand(SDNode *N) {
6000  unsigned NumElts = N->getValueType(0).getVectorNumElements();
6001  for (unsigned i = 0; i < NumElts; ++i) {
6002    SDNode *Elt = N->getOperand(i).getNode();
6003    if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
6004      return true;
6005  }
6006  return false;
6007}
6008
6009/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
6010/// ISD::BUILD_VECTOR.
6011static SDValue PerformBUILD_VECTORCombine(SDNode *N,
6012                                          TargetLowering::DAGCombinerInfo &DCI){
6013  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
6014  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
6015  // into a pair of GPRs, which is fine when the value is used as a scalar,
6016  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
6017  SelectionDAG &DAG = DCI.DAG;
6018  if (N->getNumOperands() == 2) {
6019    SDValue RV = PerformVMOVDRRCombine(N, DAG);
6020    if (RV.getNode())
6021      return RV;
6022  }
6023
6024  // Load i64 elements as f64 values so that type legalization does not split
6025  // them up into i32 values.
6026  EVT VT = N->getValueType(0);
6027  if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
6028    return SDValue();
6029  DebugLoc dl = N->getDebugLoc();
6030  SmallVector<SDValue, 8> Ops;
6031  unsigned NumElts = VT.getVectorNumElements();
6032  for (unsigned i = 0; i < NumElts; ++i) {
6033    SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
6034    Ops.push_back(V);
6035    // Make the DAGCombiner fold the bitcast.
6036    DCI.AddToWorklist(V.getNode());
6037  }
6038  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
6039  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
6040  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
6041}
6042
6043/// PerformInsertEltCombine - Target-specific dag combine xforms for
6044/// ISD::INSERT_VECTOR_ELT.
6045static SDValue PerformInsertEltCombine(SDNode *N,
6046                                       TargetLowering::DAGCombinerInfo &DCI) {
6047  // Bitcast an i64 load inserted into a vector to f64.
6048  // Otherwise, the i64 value will be legalized to a pair of i32 values.
6049  EVT VT = N->getValueType(0);
6050  SDNode *Elt = N->getOperand(1).getNode();
6051  if (VT.getVectorElementType() != MVT::i64 ||
6052      !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
6053    return SDValue();
6054
6055  SelectionDAG &DAG = DCI.DAG;
6056  DebugLoc dl = N->getDebugLoc();
6057  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
6058                                 VT.getVectorNumElements());
6059  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
6060  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
6061  // Make the DAGCombiner fold the bitcasts.
6062  DCI.AddToWorklist(Vec.getNode());
6063  DCI.AddToWorklist(V.getNode());
6064  SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
6065                               Vec, V, N->getOperand(2));
6066  return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
6067}
6068
6069/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
6070/// ISD::VECTOR_SHUFFLE.
6071static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
6072  // The LLVM shufflevector instruction does not require the shuffle mask
6073  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
6074  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
6075  // operands do not match the mask length, they are extended by concatenating
6076  // them with undef vectors.  That is probably the right thing for other
6077  // targets, but for NEON it is better to concatenate two double-register
6078  // size vector operands into a single quad-register size vector.  Do that
6079  // transformation here:
6080  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
6081  //   shuffle(concat(v1, v2), undef)
6082  SDValue Op0 = N->getOperand(0);
6083  SDValue Op1 = N->getOperand(1);
6084  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
6085      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
6086      Op0.getNumOperands() != 2 ||
6087      Op1.getNumOperands() != 2)
6088    return SDValue();
6089  SDValue Concat0Op1 = Op0.getOperand(1);
6090  SDValue Concat1Op1 = Op1.getOperand(1);
6091  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
6092      Concat1Op1.getOpcode() != ISD::UNDEF)
6093    return SDValue();
6094  // Skip the transformation if any of the types are illegal.
6095  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6096  EVT VT = N->getValueType(0);
6097  if (!TLI.isTypeLegal(VT) ||
6098      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
6099      !TLI.isTypeLegal(Concat1Op1.getValueType()))
6100    return SDValue();
6101
6102  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
6103                                  Op0.getOperand(0), Op1.getOperand(0));
6104  // Translate the shuffle mask.
6105  SmallVector<int, 16> NewMask;
6106  unsigned NumElts = VT.getVectorNumElements();
6107  unsigned HalfElts = NumElts/2;
6108  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
6109  for (unsigned n = 0; n < NumElts; ++n) {
6110    int MaskElt = SVN->getMaskElt(n);
6111    int NewElt = -1;
6112    if (MaskElt < (int)HalfElts)
6113      NewElt = MaskElt;
6114    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
6115      NewElt = HalfElts + MaskElt - NumElts;
6116    NewMask.push_back(NewElt);
6117  }
6118  return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
6119                              DAG.getUNDEF(VT), NewMask.data());
6120}
6121
6122/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
6123/// NEON load/store intrinsics to merge base address updates.
6124static SDValue CombineBaseUpdate(SDNode *N,
6125                                 TargetLowering::DAGCombinerInfo &DCI) {
6126  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
6127    return SDValue();
6128
6129  SelectionDAG &DAG = DCI.DAG;
6130  bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
6131                      N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
6132  unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
6133  SDValue Addr = N->getOperand(AddrOpIdx);
6134
6135  // Search for a use of the address operand that is an increment.
6136  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
6137         UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
6138    SDNode *User = *UI;
6139    if (User->getOpcode() != ISD::ADD ||
6140        UI.getUse().getResNo() != Addr.getResNo())
6141      continue;
6142
6143    // Check that the add is independent of the load/store.  Otherwise, folding
6144    // it would create a cycle.
6145    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
6146      continue;
6147
6148    // Find the new opcode for the updating load/store.
6149    bool isLoad = true;
6150    bool isLaneOp = false;
6151    unsigned NewOpc = 0;
6152    unsigned NumVecs = 0;
6153    if (isIntrinsic) {
6154      unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
6155      switch (IntNo) {
6156      default: assert(0 && "unexpected intrinsic for Neon base update");
6157      case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
6158        NumVecs = 1; break;
6159      case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
6160        NumVecs = 2; break;
6161      case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
6162        NumVecs = 3; break;
6163      case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
6164        NumVecs = 4; break;
6165      case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
6166        NumVecs = 2; isLaneOp = true; break;
6167      case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
6168        NumVecs = 3; isLaneOp = true; break;
6169      case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
6170        NumVecs = 4; isLaneOp = true; break;
6171      case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
6172        NumVecs = 1; isLoad = false; break;
6173      case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
6174        NumVecs = 2; isLoad = false; break;
6175      case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
6176        NumVecs = 3; isLoad = false; break;
6177      case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
6178        NumVecs = 4; isLoad = false; break;
6179      case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
6180        NumVecs = 2; isLoad = false; isLaneOp = true; break;
6181      case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
6182        NumVecs = 3; isLoad = false; isLaneOp = true; break;
6183      case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
6184        NumVecs = 4; isLoad = false; isLaneOp = true; break;
6185      }
6186    } else {
6187      isLaneOp = true;
6188      switch (N->getOpcode()) {
6189      default: assert(0 && "unexpected opcode for Neon base update");
6190      case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
6191      case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
6192      case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
6193      }
6194    }
6195
6196    // Find the size of memory referenced by the load/store.
6197    EVT VecTy;
6198    if (isLoad)
6199      VecTy = N->getValueType(0);
6200    else
6201      VecTy = N->getOperand(AddrOpIdx+1).getValueType();
6202    unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
6203    if (isLaneOp)
6204      NumBytes /= VecTy.getVectorNumElements();
6205
6206    // If the increment is a constant, it must match the memory ref size.
6207    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
6208    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
6209      uint64_t IncVal = CInc->getZExtValue();
6210      if (IncVal != NumBytes)
6211        continue;
6212    } else if (NumBytes >= 3 * 16) {
6213      // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
6214      // separate instructions that make it harder to use a non-constant update.
6215      continue;
6216    }
6217
6218    // Create the new updating load/store node.
6219    EVT Tys[6];
6220    unsigned NumResultVecs = (isLoad ? NumVecs : 0);
6221    unsigned n;
6222    for (n = 0; n < NumResultVecs; ++n)
6223      Tys[n] = VecTy;
6224    Tys[n++] = MVT::i32;
6225    Tys[n] = MVT::Other;
6226    SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
6227    SmallVector<SDValue, 8> Ops;
6228    Ops.push_back(N->getOperand(0)); // incoming chain
6229    Ops.push_back(N->getOperand(AddrOpIdx));
6230    Ops.push_back(Inc);
6231    for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
6232      Ops.push_back(N->getOperand(i));
6233    }
6234    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
6235    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys,
6236                                           Ops.data(), Ops.size(),
6237                                           MemInt->getMemoryVT(),
6238                                           MemInt->getMemOperand());
6239
6240    // Update the uses.
6241    std::vector<SDValue> NewResults;
6242    for (unsigned i = 0; i < NumResultVecs; ++i) {
6243      NewResults.push_back(SDValue(UpdN.getNode(), i));
6244    }
6245    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
6246    DCI.CombineTo(N, NewResults);
6247    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
6248
6249    break;
6250  }
6251  return SDValue();
6252}
6253
6254/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
6255/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
6256/// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
6257/// return true.
6258static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
6259  SelectionDAG &DAG = DCI.DAG;
6260  EVT VT = N->getValueType(0);
6261  // vldN-dup instructions only support 64-bit vectors for N > 1.
6262  if (!VT.is64BitVector())
6263    return false;
6264
6265  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
6266  SDNode *VLD = N->getOperand(0).getNode();
6267  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
6268    return false;
6269  unsigned NumVecs = 0;
6270  unsigned NewOpc = 0;
6271  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
6272  if (IntNo == Intrinsic::arm_neon_vld2lane) {
6273    NumVecs = 2;
6274    NewOpc = ARMISD::VLD2DUP;
6275  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
6276    NumVecs = 3;
6277    NewOpc = ARMISD::VLD3DUP;
6278  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
6279    NumVecs = 4;
6280    NewOpc = ARMISD::VLD4DUP;
6281  } else {
6282    return false;
6283  }
6284
6285  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
6286  // numbers match the load.
6287  unsigned VLDLaneNo =
6288    cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
6289  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
6290       UI != UE; ++UI) {
6291    // Ignore uses of the chain result.
6292    if (UI.getUse().getResNo() == NumVecs)
6293      continue;
6294    SDNode *User = *UI;
6295    if (User->getOpcode() != ARMISD::VDUPLANE ||
6296        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
6297      return false;
6298  }
6299
6300  // Create the vldN-dup node.
6301  EVT Tys[5];
6302  unsigned n;
6303  for (n = 0; n < NumVecs; ++n)
6304    Tys[n] = VT;
6305  Tys[n] = MVT::Other;
6306  SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
6307  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
6308  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
6309  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
6310                                           Ops, 2, VLDMemInt->getMemoryVT(),
6311                                           VLDMemInt->getMemOperand());
6312
6313  // Update the uses.
6314  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
6315       UI != UE; ++UI) {
6316    unsigned ResNo = UI.getUse().getResNo();
6317    // Ignore uses of the chain result.
6318    if (ResNo == NumVecs)
6319      continue;
6320    SDNode *User = *UI;
6321    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
6322  }
6323
6324  // Now the vldN-lane intrinsic is dead except for its chain result.
6325  // Update uses of the chain.
6326  std::vector<SDValue> VLDDupResults;
6327  for (unsigned n = 0; n < NumVecs; ++n)
6328    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
6329  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
6330  DCI.CombineTo(VLD, VLDDupResults);
6331
6332  return true;
6333}
6334
6335/// PerformVDUPLANECombine - Target-specific dag combine xforms for
6336/// ARMISD::VDUPLANE.
6337static SDValue PerformVDUPLANECombine(SDNode *N,
6338                                      TargetLowering::DAGCombinerInfo &DCI) {
6339  SDValue Op = N->getOperand(0);
6340
6341  // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
6342  // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
6343  if (CombineVLDDUP(N, DCI))
6344    return SDValue(N, 0);
6345
6346  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
6347  // redundant.  Ignore bit_converts for now; element sizes are checked below.
6348  while (Op.getOpcode() == ISD::BITCAST)
6349    Op = Op.getOperand(0);
6350  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
6351    return SDValue();
6352
6353  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
6354  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
6355  // The canonical VMOV for a zero vector uses a 32-bit element size.
6356  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6357  unsigned EltBits;
6358  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
6359    EltSize = 8;
6360  EVT VT = N->getValueType(0);
6361  if (EltSize > VT.getVectorElementType().getSizeInBits())
6362    return SDValue();
6363
6364  return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
6365}
6366
6367/// getVShiftImm - Check if this is a valid build_vector for the immediate
6368/// operand of a vector shift operation, where all the elements of the
6369/// build_vector must have the same constant integer value.
6370static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6371  // Ignore bit_converts.
6372  while (Op.getOpcode() == ISD::BITCAST)
6373    Op = Op.getOperand(0);
6374  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6375  APInt SplatBits, SplatUndef;
6376  unsigned SplatBitSize;
6377  bool HasAnyUndefs;
6378  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
6379                                      HasAnyUndefs, ElementBits) ||
6380      SplatBitSize > ElementBits)
6381    return false;
6382  Cnt = SplatBits.getSExtValue();
6383  return true;
6384}
6385
6386/// isVShiftLImm - Check if this is a valid build_vector for the immediate
6387/// operand of a vector shift left operation.  That value must be in the range:
6388///   0 <= Value < ElementBits for a left shift; or
6389///   0 <= Value <= ElementBits for a long left shift.
6390static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6391  assert(VT.isVector() && "vector shift count is not a vector type");
6392  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6393  if (! getVShiftImm(Op, ElementBits, Cnt))
6394    return false;
6395  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
6396}
6397
6398/// isVShiftRImm - Check if this is a valid build_vector for the immediate
6399/// operand of a vector shift right operation.  For a shift opcode, the value
6400/// is positive, but for an intrinsic the value count must be negative. The
6401/// absolute value must be in the range:
6402///   1 <= |Value| <= ElementBits for a right shift; or
6403///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
6404static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
6405                         int64_t &Cnt) {
6406  assert(VT.isVector() && "vector shift count is not a vector type");
6407  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6408  if (! getVShiftImm(Op, ElementBits, Cnt))
6409    return false;
6410  if (isIntrinsic)
6411    Cnt = -Cnt;
6412  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
6413}
6414
6415/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
6416static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
6417  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
6418  switch (IntNo) {
6419  default:
6420    // Don't do anything for most intrinsics.
6421    break;
6422
6423  // Vector shifts: check for immediate versions and lower them.
6424  // Note: This is done during DAG combining instead of DAG legalizing because
6425  // the build_vectors for 64-bit vector element shift counts are generally
6426  // not legal, and it is hard to see their values after they get legalized to
6427  // loads from a constant pool.
6428  case Intrinsic::arm_neon_vshifts:
6429  case Intrinsic::arm_neon_vshiftu:
6430  case Intrinsic::arm_neon_vshiftls:
6431  case Intrinsic::arm_neon_vshiftlu:
6432  case Intrinsic::arm_neon_vshiftn:
6433  case Intrinsic::arm_neon_vrshifts:
6434  case Intrinsic::arm_neon_vrshiftu:
6435  case Intrinsic::arm_neon_vrshiftn:
6436  case Intrinsic::arm_neon_vqshifts:
6437  case Intrinsic::arm_neon_vqshiftu:
6438  case Intrinsic::arm_neon_vqshiftsu:
6439  case Intrinsic::arm_neon_vqshiftns:
6440  case Intrinsic::arm_neon_vqshiftnu:
6441  case Intrinsic::arm_neon_vqshiftnsu:
6442  case Intrinsic::arm_neon_vqrshiftns:
6443  case Intrinsic::arm_neon_vqrshiftnu:
6444  case Intrinsic::arm_neon_vqrshiftnsu: {
6445    EVT VT = N->getOperand(1).getValueType();
6446    int64_t Cnt;
6447    unsigned VShiftOpc = 0;
6448
6449    switch (IntNo) {
6450    case Intrinsic::arm_neon_vshifts:
6451    case Intrinsic::arm_neon_vshiftu:
6452      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
6453        VShiftOpc = ARMISD::VSHL;
6454        break;
6455      }
6456      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
6457        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
6458                     ARMISD::VSHRs : ARMISD::VSHRu);
6459        break;
6460      }
6461      return SDValue();
6462
6463    case Intrinsic::arm_neon_vshiftls:
6464    case Intrinsic::arm_neon_vshiftlu:
6465      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
6466        break;
6467      llvm_unreachable("invalid shift count for vshll intrinsic");
6468
6469    case Intrinsic::arm_neon_vrshifts:
6470    case Intrinsic::arm_neon_vrshiftu:
6471      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
6472        break;
6473      return SDValue();
6474
6475    case Intrinsic::arm_neon_vqshifts:
6476    case Intrinsic::arm_neon_vqshiftu:
6477      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
6478        break;
6479      return SDValue();
6480
6481    case Intrinsic::arm_neon_vqshiftsu:
6482      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
6483        break;
6484      llvm_unreachable("invalid shift count for vqshlu intrinsic");
6485
6486    case Intrinsic::arm_neon_vshiftn:
6487    case Intrinsic::arm_neon_vrshiftn:
6488    case Intrinsic::arm_neon_vqshiftns:
6489    case Intrinsic::arm_neon_vqshiftnu:
6490    case Intrinsic::arm_neon_vqshiftnsu:
6491    case Intrinsic::arm_neon_vqrshiftns:
6492    case Intrinsic::arm_neon_vqrshiftnu:
6493    case Intrinsic::arm_neon_vqrshiftnsu:
6494      // Narrowing shifts require an immediate right shift.
6495      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
6496        break;
6497      llvm_unreachable("invalid shift count for narrowing vector shift "
6498                       "intrinsic");
6499
6500    default:
6501      llvm_unreachable("unhandled vector shift");
6502    }
6503
6504    switch (IntNo) {
6505    case Intrinsic::arm_neon_vshifts:
6506    case Intrinsic::arm_neon_vshiftu:
6507      // Opcode already set above.
6508      break;
6509    case Intrinsic::arm_neon_vshiftls:
6510    case Intrinsic::arm_neon_vshiftlu:
6511      if (Cnt == VT.getVectorElementType().getSizeInBits())
6512        VShiftOpc = ARMISD::VSHLLi;
6513      else
6514        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
6515                     ARMISD::VSHLLs : ARMISD::VSHLLu);
6516      break;
6517    case Intrinsic::arm_neon_vshiftn:
6518      VShiftOpc = ARMISD::VSHRN; break;
6519    case Intrinsic::arm_neon_vrshifts:
6520      VShiftOpc = ARMISD::VRSHRs; break;
6521    case Intrinsic::arm_neon_vrshiftu:
6522      VShiftOpc = ARMISD::VRSHRu; break;
6523    case Intrinsic::arm_neon_vrshiftn:
6524      VShiftOpc = ARMISD::VRSHRN; break;
6525    case Intrinsic::arm_neon_vqshifts:
6526      VShiftOpc = ARMISD::VQSHLs; break;
6527    case Intrinsic::arm_neon_vqshiftu:
6528      VShiftOpc = ARMISD::VQSHLu; break;
6529    case Intrinsic::arm_neon_vqshiftsu:
6530      VShiftOpc = ARMISD::VQSHLsu; break;
6531    case Intrinsic::arm_neon_vqshiftns:
6532      VShiftOpc = ARMISD::VQSHRNs; break;
6533    case Intrinsic::arm_neon_vqshiftnu:
6534      VShiftOpc = ARMISD::VQSHRNu; break;
6535    case Intrinsic::arm_neon_vqshiftnsu:
6536      VShiftOpc = ARMISD::VQSHRNsu; break;
6537    case Intrinsic::arm_neon_vqrshiftns:
6538      VShiftOpc = ARMISD::VQRSHRNs; break;
6539    case Intrinsic::arm_neon_vqrshiftnu:
6540      VShiftOpc = ARMISD::VQRSHRNu; break;
6541    case Intrinsic::arm_neon_vqrshiftnsu:
6542      VShiftOpc = ARMISD::VQRSHRNsu; break;
6543    }
6544
6545    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
6546                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
6547  }
6548
6549  case Intrinsic::arm_neon_vshiftins: {
6550    EVT VT = N->getOperand(1).getValueType();
6551    int64_t Cnt;
6552    unsigned VShiftOpc = 0;
6553
6554    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
6555      VShiftOpc = ARMISD::VSLI;
6556    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
6557      VShiftOpc = ARMISD::VSRI;
6558    else {
6559      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
6560    }
6561
6562    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
6563                       N->getOperand(1), N->getOperand(2),
6564                       DAG.getConstant(Cnt, MVT::i32));
6565  }
6566
6567  case Intrinsic::arm_neon_vqrshifts:
6568  case Intrinsic::arm_neon_vqrshiftu:
6569    // No immediate versions of these to check for.
6570    break;
6571  }
6572
6573  return SDValue();
6574}
6575
6576/// PerformShiftCombine - Checks for immediate versions of vector shifts and
6577/// lowers them.  As with the vector shift intrinsics, this is done during DAG
6578/// combining instead of DAG legalizing because the build_vectors for 64-bit
6579/// vector element shift counts are generally not legal, and it is hard to see
6580/// their values after they get legalized to loads from a constant pool.
6581static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
6582                                   const ARMSubtarget *ST) {
6583  EVT VT = N->getValueType(0);
6584
6585  // Nothing to be done for scalar shifts.
6586  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6587  if (!VT.isVector() || !TLI.isTypeLegal(VT))
6588    return SDValue();
6589
6590  assert(ST->hasNEON() && "unexpected vector shift");
6591  int64_t Cnt;
6592
6593  switch (N->getOpcode()) {
6594  default: llvm_unreachable("unexpected shift opcode");
6595
6596  case ISD::SHL:
6597    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
6598      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
6599                         DAG.getConstant(Cnt, MVT::i32));
6600    break;
6601
6602  case ISD::SRA:
6603  case ISD::SRL:
6604    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
6605      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
6606                            ARMISD::VSHRs : ARMISD::VSHRu);
6607      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
6608                         DAG.getConstant(Cnt, MVT::i32));
6609    }
6610  }
6611  return SDValue();
6612}
6613
6614/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
6615/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
6616static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
6617                                    const ARMSubtarget *ST) {
6618  SDValue N0 = N->getOperand(0);
6619
6620  // Check for sign- and zero-extensions of vector extract operations of 8-
6621  // and 16-bit vector elements.  NEON supports these directly.  They are
6622  // handled during DAG combining because type legalization will promote them
6623  // to 32-bit types and it is messy to recognize the operations after that.
6624  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
6625    SDValue Vec = N0.getOperand(0);
6626    SDValue Lane = N0.getOperand(1);
6627    EVT VT = N->getValueType(0);
6628    EVT EltVT = N0.getValueType();
6629    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6630
6631    if (VT == MVT::i32 &&
6632        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
6633        TLI.isTypeLegal(Vec.getValueType()) &&
6634        isa<ConstantSDNode>(Lane)) {
6635
6636      unsigned Opc = 0;
6637      switch (N->getOpcode()) {
6638      default: llvm_unreachable("unexpected opcode");
6639      case ISD::SIGN_EXTEND:
6640        Opc = ARMISD::VGETLANEs;
6641        break;
6642      case ISD::ZERO_EXTEND:
6643      case ISD::ANY_EXTEND:
6644        Opc = ARMISD::VGETLANEu;
6645        break;
6646      }
6647      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
6648    }
6649  }
6650
6651  return SDValue();
6652}
6653
6654/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
6655/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
6656static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
6657                                       const ARMSubtarget *ST) {
6658  // If the target supports NEON, try to use vmax/vmin instructions for f32
6659  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
6660  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
6661  // a NaN; only do the transformation when it matches that behavior.
6662
6663  // For now only do this when using NEON for FP operations; if using VFP, it
6664  // is not obvious that the benefit outweighs the cost of switching to the
6665  // NEON pipeline.
6666  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
6667      N->getValueType(0) != MVT::f32)
6668    return SDValue();
6669
6670  SDValue CondLHS = N->getOperand(0);
6671  SDValue CondRHS = N->getOperand(1);
6672  SDValue LHS = N->getOperand(2);
6673  SDValue RHS = N->getOperand(3);
6674  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
6675
6676  unsigned Opcode = 0;
6677  bool IsReversed;
6678  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
6679    IsReversed = false; // x CC y ? x : y
6680  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
6681    IsReversed = true ; // x CC y ? y : x
6682  } else {
6683    return SDValue();
6684  }
6685
6686  bool IsUnordered;
6687  switch (CC) {
6688  default: break;
6689  case ISD::SETOLT:
6690  case ISD::SETOLE:
6691  case ISD::SETLT:
6692  case ISD::SETLE:
6693  case ISD::SETULT:
6694  case ISD::SETULE:
6695    // If LHS is NaN, an ordered comparison will be false and the result will
6696    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
6697    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
6698    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
6699    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
6700      break;
6701    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
6702    // will return -0, so vmin can only be used for unsafe math or if one of
6703    // the operands is known to be nonzero.
6704    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
6705        !UnsafeFPMath &&
6706        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
6707      break;
6708    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
6709    break;
6710
6711  case ISD::SETOGT:
6712  case ISD::SETOGE:
6713  case ISD::SETGT:
6714  case ISD::SETGE:
6715  case ISD::SETUGT:
6716  case ISD::SETUGE:
6717    // If LHS is NaN, an ordered comparison will be false and the result will
6718    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
6719    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
6720    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
6721    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
6722      break;
6723    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
6724    // will return +0, so vmax can only be used for unsafe math or if one of
6725    // the operands is known to be nonzero.
6726    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
6727        !UnsafeFPMath &&
6728        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
6729      break;
6730    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
6731    break;
6732  }
6733
6734  if (!Opcode)
6735    return SDValue();
6736  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
6737}
6738
6739SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
6740                                             DAGCombinerInfo &DCI) const {
6741  switch (N->getOpcode()) {
6742  default: break;
6743  case ISD::ADD:        return PerformADDCombine(N, DCI);
6744  case ISD::SUB:        return PerformSUBCombine(N, DCI);
6745  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
6746  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
6747  case ISD::AND:        return PerformANDCombine(N, DCI);
6748  case ARMISD::BFI:     return PerformBFICombine(N, DCI);
6749  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
6750  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
6751  case ISD::STORE:      return PerformSTORECombine(N, DCI);
6752  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
6753  case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
6754  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
6755  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
6756  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
6757  case ISD::SHL:
6758  case ISD::SRA:
6759  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
6760  case ISD::SIGN_EXTEND:
6761  case ISD::ZERO_EXTEND:
6762  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
6763  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
6764  case ARMISD::VLD2DUP:
6765  case ARMISD::VLD3DUP:
6766  case ARMISD::VLD4DUP:
6767    return CombineBaseUpdate(N, DCI);
6768  case ISD::INTRINSIC_VOID:
6769  case ISD::INTRINSIC_W_CHAIN:
6770    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
6771    case Intrinsic::arm_neon_vld1:
6772    case Intrinsic::arm_neon_vld2:
6773    case Intrinsic::arm_neon_vld3:
6774    case Intrinsic::arm_neon_vld4:
6775    case Intrinsic::arm_neon_vld2lane:
6776    case Intrinsic::arm_neon_vld3lane:
6777    case Intrinsic::arm_neon_vld4lane:
6778    case Intrinsic::arm_neon_vst1:
6779    case Intrinsic::arm_neon_vst2:
6780    case Intrinsic::arm_neon_vst3:
6781    case Intrinsic::arm_neon_vst4:
6782    case Intrinsic::arm_neon_vst2lane:
6783    case Intrinsic::arm_neon_vst3lane:
6784    case Intrinsic::arm_neon_vst4lane:
6785      return CombineBaseUpdate(N, DCI);
6786    default: break;
6787    }
6788    break;
6789  }
6790  return SDValue();
6791}
6792
6793bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
6794                                                          EVT VT) const {
6795  return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
6796}
6797
6798bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
6799  if (!Subtarget->allowsUnalignedMem())
6800    return false;
6801
6802  switch (VT.getSimpleVT().SimpleTy) {
6803  default:
6804    return false;
6805  case MVT::i8:
6806  case MVT::i16:
6807  case MVT::i32:
6808    return true;
6809  // FIXME: VLD1 etc with standard alignment is legal.
6810  }
6811}
6812
6813static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
6814  if (V < 0)
6815    return false;
6816
6817  unsigned Scale = 1;
6818  switch (VT.getSimpleVT().SimpleTy) {
6819  default: return false;
6820  case MVT::i1:
6821  case MVT::i8:
6822    // Scale == 1;
6823    break;
6824  case MVT::i16:
6825    // Scale == 2;
6826    Scale = 2;
6827    break;
6828  case MVT::i32:
6829    // Scale == 4;
6830    Scale = 4;
6831    break;
6832  }
6833
6834  if ((V & (Scale - 1)) != 0)
6835    return false;
6836  V /= Scale;
6837  return V == (V & ((1LL << 5) - 1));
6838}
6839
6840static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
6841                                      const ARMSubtarget *Subtarget) {
6842  bool isNeg = false;
6843  if (V < 0) {
6844    isNeg = true;
6845    V = - V;
6846  }
6847
6848  switch (VT.getSimpleVT().SimpleTy) {
6849  default: return false;
6850  case MVT::i1:
6851  case MVT::i8:
6852  case MVT::i16:
6853  case MVT::i32:
6854    // + imm12 or - imm8
6855    if (isNeg)
6856      return V == (V & ((1LL << 8) - 1));
6857    return V == (V & ((1LL << 12) - 1));
6858  case MVT::f32:
6859  case MVT::f64:
6860    // Same as ARM mode. FIXME: NEON?
6861    if (!Subtarget->hasVFP2())
6862      return false;
6863    if ((V & 3) != 0)
6864      return false;
6865    V >>= 2;
6866    return V == (V & ((1LL << 8) - 1));
6867  }
6868}
6869
6870/// isLegalAddressImmediate - Return true if the integer value can be used
6871/// as the offset of the target addressing mode for load / store of the
6872/// given type.
6873static bool isLegalAddressImmediate(int64_t V, EVT VT,
6874                                    const ARMSubtarget *Subtarget) {
6875  if (V == 0)
6876    return true;
6877
6878  if (!VT.isSimple())
6879    return false;
6880
6881  if (Subtarget->isThumb1Only())
6882    return isLegalT1AddressImmediate(V, VT);
6883  else if (Subtarget->isThumb2())
6884    return isLegalT2AddressImmediate(V, VT, Subtarget);
6885
6886  // ARM mode.
6887  if (V < 0)
6888    V = - V;
6889  switch (VT.getSimpleVT().SimpleTy) {
6890  default: return false;
6891  case MVT::i1:
6892  case MVT::i8:
6893  case MVT::i32:
6894    // +- imm12
6895    return V == (V & ((1LL << 12) - 1));
6896  case MVT::i16:
6897    // +- imm8
6898    return V == (V & ((1LL << 8) - 1));
6899  case MVT::f32:
6900  case MVT::f64:
6901    if (!Subtarget->hasVFP2()) // FIXME: NEON?
6902      return false;
6903    if ((V & 3) != 0)
6904      return false;
6905    V >>= 2;
6906    return V == (V & ((1LL << 8) - 1));
6907  }
6908}
6909
6910bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
6911                                                      EVT VT) const {
6912  int Scale = AM.Scale;
6913  if (Scale < 0)
6914    return false;
6915
6916  switch (VT.getSimpleVT().SimpleTy) {
6917  default: return false;
6918  case MVT::i1:
6919  case MVT::i8:
6920  case MVT::i16:
6921  case MVT::i32:
6922    if (Scale == 1)
6923      return true;
6924    // r + r << imm
6925    Scale = Scale & ~1;
6926    return Scale == 2 || Scale == 4 || Scale == 8;
6927  case MVT::i64:
6928    // r + r
6929    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
6930      return true;
6931    return false;
6932  case MVT::isVoid:
6933    // Note, we allow "void" uses (basically, uses that aren't loads or
6934    // stores), because arm allows folding a scale into many arithmetic
6935    // operations.  This should be made more precise and revisited later.
6936
6937    // Allow r << imm, but the imm has to be a multiple of two.
6938    if (Scale & 1) return false;
6939    return isPowerOf2_32(Scale);
6940  }
6941}
6942
6943/// isLegalAddressingMode - Return true if the addressing mode represented
6944/// by AM is legal for this target, for a load/store of the specified type.
6945bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
6946                                              const Type *Ty) const {
6947  EVT VT = getValueType(Ty, true);
6948  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
6949    return false;
6950
6951  // Can never fold addr of global into load/store.
6952  if (AM.BaseGV)
6953    return false;
6954
6955  switch (AM.Scale) {
6956  case 0:  // no scale reg, must be "r+i" or "r", or "i".
6957    break;
6958  case 1:
6959    if (Subtarget->isThumb1Only())
6960      return false;
6961    // FALL THROUGH.
6962  default:
6963    // ARM doesn't support any R+R*scale+imm addr modes.
6964    if (AM.BaseOffs)
6965      return false;
6966
6967    if (!VT.isSimple())
6968      return false;
6969
6970    if (Subtarget->isThumb2())
6971      return isLegalT2ScaledAddressingMode(AM, VT);
6972
6973    int Scale = AM.Scale;
6974    switch (VT.getSimpleVT().SimpleTy) {
6975    default: return false;
6976    case MVT::i1:
6977    case MVT::i8:
6978    case MVT::i32:
6979      if (Scale < 0) Scale = -Scale;
6980      if (Scale == 1)
6981        return true;
6982      // r + r << imm
6983      return isPowerOf2_32(Scale & ~1);
6984    case MVT::i16:
6985    case MVT::i64:
6986      // r + r
6987      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
6988        return true;
6989      return false;
6990
6991    case MVT::isVoid:
6992      // Note, we allow "void" uses (basically, uses that aren't loads or
6993      // stores), because arm allows folding a scale into many arithmetic
6994      // operations.  This should be made more precise and revisited later.
6995
6996      // Allow r << imm, but the imm has to be a multiple of two.
6997      if (Scale & 1) return false;
6998      return isPowerOf2_32(Scale);
6999    }
7000    break;
7001  }
7002  return true;
7003}
7004
7005/// isLegalICmpImmediate - Return true if the specified immediate is legal
7006/// icmp immediate, that is the target has icmp instructions which can compare
7007/// a register against the immediate without having to materialize the
7008/// immediate into a register.
7009bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
7010  if (!Subtarget->isThumb())
7011    return ARM_AM::getSOImmVal(Imm) != -1;
7012  if (Subtarget->isThumb2())
7013    return ARM_AM::getT2SOImmVal(Imm) != -1;
7014  return Imm >= 0 && Imm <= 255;
7015}
7016
7017/// isLegalAddImmediate - Return true if the specified immediate is legal
7018/// add immediate, that is the target has add instructions which can add
7019/// a register with the immediate without having to materialize the
7020/// immediate into a register.
7021bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
7022  return ARM_AM::getSOImmVal(Imm) != -1;
7023}
7024
7025static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
7026                                      bool isSEXTLoad, SDValue &Base,
7027                                      SDValue &Offset, bool &isInc,
7028                                      SelectionDAG &DAG) {
7029  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
7030    return false;
7031
7032  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
7033    // AddressingMode 3
7034    Base = Ptr->getOperand(0);
7035    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
7036      int RHSC = (int)RHS->getZExtValue();
7037      if (RHSC < 0 && RHSC > -256) {
7038        assert(Ptr->getOpcode() == ISD::ADD);
7039        isInc = false;
7040        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
7041        return true;
7042      }
7043    }
7044    isInc = (Ptr->getOpcode() == ISD::ADD);
7045    Offset = Ptr->getOperand(1);
7046    return true;
7047  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
7048    // AddressingMode 2
7049    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
7050      int RHSC = (int)RHS->getZExtValue();
7051      if (RHSC < 0 && RHSC > -0x1000) {
7052        assert(Ptr->getOpcode() == ISD::ADD);
7053        isInc = false;
7054        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
7055        Base = Ptr->getOperand(0);
7056        return true;
7057      }
7058    }
7059
7060    if (Ptr->getOpcode() == ISD::ADD) {
7061      isInc = true;
7062      ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
7063      if (ShOpcVal != ARM_AM::no_shift) {
7064        Base = Ptr->getOperand(1);
7065        Offset = Ptr->getOperand(0);
7066      } else {
7067        Base = Ptr->getOperand(0);
7068        Offset = Ptr->getOperand(1);
7069      }
7070      return true;
7071    }
7072
7073    isInc = (Ptr->getOpcode() == ISD::ADD);
7074    Base = Ptr->getOperand(0);
7075    Offset = Ptr->getOperand(1);
7076    return true;
7077  }
7078
7079  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
7080  return false;
7081}
7082
7083static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
7084                                     bool isSEXTLoad, SDValue &Base,
7085                                     SDValue &Offset, bool &isInc,
7086                                     SelectionDAG &DAG) {
7087  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
7088    return false;
7089
7090  Base = Ptr->getOperand(0);
7091  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
7092    int RHSC = (int)RHS->getZExtValue();
7093    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
7094      assert(Ptr->getOpcode() == ISD::ADD);
7095      isInc = false;
7096      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
7097      return true;
7098    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
7099      isInc = Ptr->getOpcode() == ISD::ADD;
7100      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
7101      return true;
7102    }
7103  }
7104
7105  return false;
7106}
7107
7108/// getPreIndexedAddressParts - returns true by value, base pointer and
7109/// offset pointer and addressing mode by reference if the node's address
7110/// can be legally represented as pre-indexed load / store address.
7111bool
7112ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
7113                                             SDValue &Offset,
7114                                             ISD::MemIndexedMode &AM,
7115                                             SelectionDAG &DAG) const {
7116  if (Subtarget->isThumb1Only())
7117    return false;
7118
7119  EVT VT;
7120  SDValue Ptr;
7121  bool isSEXTLoad = false;
7122  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
7123    Ptr = LD->getBasePtr();
7124    VT  = LD->getMemoryVT();
7125    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
7126  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
7127    Ptr = ST->getBasePtr();
7128    VT  = ST->getMemoryVT();
7129  } else
7130    return false;
7131
7132  bool isInc;
7133  bool isLegal = false;
7134  if (Subtarget->isThumb2())
7135    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
7136                                       Offset, isInc, DAG);
7137  else
7138    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
7139                                        Offset, isInc, DAG);
7140  if (!isLegal)
7141    return false;
7142
7143  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
7144  return true;
7145}
7146
7147/// getPostIndexedAddressParts - returns true by value, base pointer and
7148/// offset pointer and addressing mode by reference if this node can be
7149/// combined with a load / store to form a post-indexed load / store.
7150bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
7151                                                   SDValue &Base,
7152                                                   SDValue &Offset,
7153                                                   ISD::MemIndexedMode &AM,
7154                                                   SelectionDAG &DAG) const {
7155  if (Subtarget->isThumb1Only())
7156    return false;
7157
7158  EVT VT;
7159  SDValue Ptr;
7160  bool isSEXTLoad = false;
7161  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
7162    VT  = LD->getMemoryVT();
7163    Ptr = LD->getBasePtr();
7164    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
7165  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
7166    VT  = ST->getMemoryVT();
7167    Ptr = ST->getBasePtr();
7168  } else
7169    return false;
7170
7171  bool isInc;
7172  bool isLegal = false;
7173  if (Subtarget->isThumb2())
7174    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
7175                                       isInc, DAG);
7176  else
7177    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
7178                                        isInc, DAG);
7179  if (!isLegal)
7180    return false;
7181
7182  if (Ptr != Base) {
7183    // Swap base ptr and offset to catch more post-index load / store when
7184    // it's legal. In Thumb2 mode, offset must be an immediate.
7185    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
7186        !Subtarget->isThumb2())
7187      std::swap(Base, Offset);
7188
7189    // Post-indexed load / store update the base pointer.
7190    if (Ptr != Base)
7191      return false;
7192  }
7193
7194  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
7195  return true;
7196}
7197
7198void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
7199                                                       const APInt &Mask,
7200                                                       APInt &KnownZero,
7201                                                       APInt &KnownOne,
7202                                                       const SelectionDAG &DAG,
7203                                                       unsigned Depth) const {
7204  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
7205  switch (Op.getOpcode()) {
7206  default: break;
7207  case ARMISD::CMOV: {
7208    // Bits are known zero/one if known on the LHS and RHS.
7209    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
7210    if (KnownZero == 0 && KnownOne == 0) return;
7211
7212    APInt KnownZeroRHS, KnownOneRHS;
7213    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
7214                          KnownZeroRHS, KnownOneRHS, Depth+1);
7215    KnownZero &= KnownZeroRHS;
7216    KnownOne  &= KnownOneRHS;
7217    return;
7218  }
7219  }
7220}
7221
7222//===----------------------------------------------------------------------===//
7223//                           ARM Inline Assembly Support
7224//===----------------------------------------------------------------------===//
7225
7226bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
7227  // Looking for "rev" which is V6+.
7228  if (!Subtarget->hasV6Ops())
7229    return false;
7230
7231  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
7232  std::string AsmStr = IA->getAsmString();
7233  SmallVector<StringRef, 4> AsmPieces;
7234  SplitString(AsmStr, AsmPieces, ";\n");
7235
7236  switch (AsmPieces.size()) {
7237  default: return false;
7238  case 1:
7239    AsmStr = AsmPieces[0];
7240    AsmPieces.clear();
7241    SplitString(AsmStr, AsmPieces, " \t,");
7242
7243    // rev $0, $1
7244    if (AsmPieces.size() == 3 &&
7245        AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
7246        IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
7247      const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
7248      if (Ty && Ty->getBitWidth() == 32)
7249        return IntrinsicLowering::LowerToByteSwap(CI);
7250    }
7251    break;
7252  }
7253
7254  return false;
7255}
7256
7257/// getConstraintType - Given a constraint letter, return the type of
7258/// constraint it is for this target.
7259ARMTargetLowering::ConstraintType
7260ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
7261  if (Constraint.size() == 1) {
7262    switch (Constraint[0]) {
7263    default:  break;
7264    case 'l': return C_RegisterClass;
7265    case 'w': return C_RegisterClass;
7266    }
7267  }
7268  return TargetLowering::getConstraintType(Constraint);
7269}
7270
7271/// Examine constraint type and operand type and determine a weight value.
7272/// This object must already have been set up with the operand type
7273/// and the current alternative constraint selected.
7274TargetLowering::ConstraintWeight
7275ARMTargetLowering::getSingleConstraintMatchWeight(
7276    AsmOperandInfo &info, const char *constraint) const {
7277  ConstraintWeight weight = CW_Invalid;
7278  Value *CallOperandVal = info.CallOperandVal;
7279    // If we don't have a value, we can't do a match,
7280    // but allow it at the lowest weight.
7281  if (CallOperandVal == NULL)
7282    return CW_Default;
7283  const Type *type = CallOperandVal->getType();
7284  // Look at the constraint type.
7285  switch (*constraint) {
7286  default:
7287    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
7288    break;
7289  case 'l':
7290    if (type->isIntegerTy()) {
7291      if (Subtarget->isThumb())
7292        weight = CW_SpecificReg;
7293      else
7294        weight = CW_Register;
7295    }
7296    break;
7297  case 'w':
7298    if (type->isFloatingPointTy())
7299      weight = CW_Register;
7300    break;
7301  }
7302  return weight;
7303}
7304
7305std::pair<unsigned, const TargetRegisterClass*>
7306ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
7307                                                EVT VT) const {
7308  if (Constraint.size() == 1) {
7309    // GCC ARM Constraint Letters
7310    switch (Constraint[0]) {
7311    case 'l':
7312      if (Subtarget->isThumb())
7313        return std::make_pair(0U, ARM::tGPRRegisterClass);
7314      else
7315        return std::make_pair(0U, ARM::GPRRegisterClass);
7316    case 'r':
7317      return std::make_pair(0U, ARM::GPRRegisterClass);
7318    case 'w':
7319      if (VT == MVT::f32)
7320        return std::make_pair(0U, ARM::SPRRegisterClass);
7321      if (VT.getSizeInBits() == 64)
7322        return std::make_pair(0U, ARM::DPRRegisterClass);
7323      if (VT.getSizeInBits() == 128)
7324        return std::make_pair(0U, ARM::QPRRegisterClass);
7325      break;
7326    }
7327  }
7328  if (StringRef("{cc}").equals_lower(Constraint))
7329    return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
7330
7331  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
7332}
7333
7334std::vector<unsigned> ARMTargetLowering::
7335getRegClassForInlineAsmConstraint(const std::string &Constraint,
7336                                  EVT VT) const {
7337  if (Constraint.size() != 1)
7338    return std::vector<unsigned>();
7339
7340  switch (Constraint[0]) {      // GCC ARM Constraint Letters
7341  default: break;
7342  case 'l':
7343    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
7344                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
7345                                 0);
7346  case 'r':
7347    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
7348                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
7349                                 ARM::R8, ARM::R9, ARM::R10, ARM::R11,
7350                                 ARM::R12, ARM::LR, 0);
7351  case 'w':
7352    if (VT == MVT::f32)
7353      return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
7354                                   ARM::S4, ARM::S5, ARM::S6, ARM::S7,
7355                                   ARM::S8, ARM::S9, ARM::S10, ARM::S11,
7356                                   ARM::S12,ARM::S13,ARM::S14,ARM::S15,
7357                                   ARM::S16,ARM::S17,ARM::S18,ARM::S19,
7358                                   ARM::S20,ARM::S21,ARM::S22,ARM::S23,
7359                                   ARM::S24,ARM::S25,ARM::S26,ARM::S27,
7360                                   ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
7361    if (VT.getSizeInBits() == 64)
7362      return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
7363                                   ARM::D4, ARM::D5, ARM::D6, ARM::D7,
7364                                   ARM::D8, ARM::D9, ARM::D10,ARM::D11,
7365                                   ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
7366    if (VT.getSizeInBits() == 128)
7367      return make_vector<unsigned>(ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3,
7368                                   ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7, 0);
7369      break;
7370  }
7371
7372  return std::vector<unsigned>();
7373}
7374
7375/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
7376/// vector.  If it is invalid, don't add anything to Ops.
7377void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
7378                                                     char Constraint,
7379                                                     std::vector<SDValue>&Ops,
7380                                                     SelectionDAG &DAG) const {
7381  SDValue Result(0, 0);
7382
7383  switch (Constraint) {
7384  default: break;
7385  case 'I': case 'J': case 'K': case 'L':
7386  case 'M': case 'N': case 'O':
7387    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
7388    if (!C)
7389      return;
7390
7391    int64_t CVal64 = C->getSExtValue();
7392    int CVal = (int) CVal64;
7393    // None of these constraints allow values larger than 32 bits.  Check
7394    // that the value fits in an int.
7395    if (CVal != CVal64)
7396      return;
7397
7398    switch (Constraint) {
7399      case 'I':
7400        if (Subtarget->isThumb1Only()) {
7401          // This must be a constant between 0 and 255, for ADD
7402          // immediates.
7403          if (CVal >= 0 && CVal <= 255)
7404            break;
7405        } else if (Subtarget->isThumb2()) {
7406          // A constant that can be used as an immediate value in a
7407          // data-processing instruction.
7408          if (ARM_AM::getT2SOImmVal(CVal) != -1)
7409            break;
7410        } else {
7411          // A constant that can be used as an immediate value in a
7412          // data-processing instruction.
7413          if (ARM_AM::getSOImmVal(CVal) != -1)
7414            break;
7415        }
7416        return;
7417
7418      case 'J':
7419        if (Subtarget->isThumb()) {  // FIXME thumb2
7420          // This must be a constant between -255 and -1, for negated ADD
7421          // immediates. This can be used in GCC with an "n" modifier that
7422          // prints the negated value, for use with SUB instructions. It is
7423          // not useful otherwise but is implemented for compatibility.
7424          if (CVal >= -255 && CVal <= -1)
7425            break;
7426        } else {
7427          // This must be a constant between -4095 and 4095. It is not clear
7428          // what this constraint is intended for. Implemented for
7429          // compatibility with GCC.
7430          if (CVal >= -4095 && CVal <= 4095)
7431            break;
7432        }
7433        return;
7434
7435      case 'K':
7436        if (Subtarget->isThumb1Only()) {
7437          // A 32-bit value where only one byte has a nonzero value. Exclude
7438          // zero to match GCC. This constraint is used by GCC internally for
7439          // constants that can be loaded with a move/shift combination.
7440          // It is not useful otherwise but is implemented for compatibility.
7441          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
7442            break;
7443        } else if (Subtarget->isThumb2()) {
7444          // A constant whose bitwise inverse can be used as an immediate
7445          // value in a data-processing instruction. This can be used in GCC
7446          // with a "B" modifier that prints the inverted value, for use with
7447          // BIC and MVN instructions. It is not useful otherwise but is
7448          // implemented for compatibility.
7449          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
7450            break;
7451        } else {
7452          // A constant whose bitwise inverse can be used as an immediate
7453          // value in a data-processing instruction. This can be used in GCC
7454          // with a "B" modifier that prints the inverted value, for use with
7455          // BIC and MVN instructions. It is not useful otherwise but is
7456          // implemented for compatibility.
7457          if (ARM_AM::getSOImmVal(~CVal) != -1)
7458            break;
7459        }
7460        return;
7461
7462      case 'L':
7463        if (Subtarget->isThumb1Only()) {
7464          // This must be a constant between -7 and 7,
7465          // for 3-operand ADD/SUB immediate instructions.
7466          if (CVal >= -7 && CVal < 7)
7467            break;
7468        } else if (Subtarget->isThumb2()) {
7469          // A constant whose negation can be used as an immediate value in a
7470          // data-processing instruction. This can be used in GCC with an "n"
7471          // modifier that prints the negated value, for use with SUB
7472          // instructions. It is not useful otherwise but is implemented for
7473          // compatibility.
7474          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
7475            break;
7476        } else {
7477          // A constant whose negation can be used as an immediate value in a
7478          // data-processing instruction. This can be used in GCC with an "n"
7479          // modifier that prints the negated value, for use with SUB
7480          // instructions. It is not useful otherwise but is implemented for
7481          // compatibility.
7482          if (ARM_AM::getSOImmVal(-CVal) != -1)
7483            break;
7484        }
7485        return;
7486
7487      case 'M':
7488        if (Subtarget->isThumb()) { // FIXME thumb2
7489          // This must be a multiple of 4 between 0 and 1020, for
7490          // ADD sp + immediate.
7491          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
7492            break;
7493        } else {
7494          // A power of two or a constant between 0 and 32.  This is used in
7495          // GCC for the shift amount on shifted register operands, but it is
7496          // useful in general for any shift amounts.
7497          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
7498            break;
7499        }
7500        return;
7501
7502      case 'N':
7503        if (Subtarget->isThumb()) {  // FIXME thumb2
7504          // This must be a constant between 0 and 31, for shift amounts.
7505          if (CVal >= 0 && CVal <= 31)
7506            break;
7507        }
7508        return;
7509
7510      case 'O':
7511        if (Subtarget->isThumb()) {  // FIXME thumb2
7512          // This must be a multiple of 4 between -508 and 508, for
7513          // ADD/SUB sp = sp + immediate.
7514          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
7515            break;
7516        }
7517        return;
7518    }
7519    Result = DAG.getTargetConstant(CVal, Op.getValueType());
7520    break;
7521  }
7522
7523  if (Result.getNode()) {
7524    Ops.push_back(Result);
7525    return;
7526  }
7527  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
7528}
7529
7530bool
7531ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
7532  // The ARM target isn't yet aware of offsets.
7533  return false;
7534}
7535
7536int ARM::getVFPf32Imm(const APFloat &FPImm) {
7537  APInt Imm = FPImm.bitcastToAPInt();
7538  uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
7539  int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
7540  int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
7541
7542  // We can handle 4 bits of mantissa.
7543  // mantissa = (16+UInt(e:f:g:h))/16.
7544  if (Mantissa & 0x7ffff)
7545    return -1;
7546  Mantissa >>= 19;
7547  if ((Mantissa & 0xf) != Mantissa)
7548    return -1;
7549
7550  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
7551  if (Exp < -3 || Exp > 4)
7552    return -1;
7553  Exp = ((Exp+3) & 0x7) ^ 4;
7554
7555  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
7556}
7557
7558int ARM::getVFPf64Imm(const APFloat &FPImm) {
7559  APInt Imm = FPImm.bitcastToAPInt();
7560  uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
7561  int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
7562  uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffLL;
7563
7564  // We can handle 4 bits of mantissa.
7565  // mantissa = (16+UInt(e:f:g:h))/16.
7566  if (Mantissa & 0xffffffffffffLL)
7567    return -1;
7568  Mantissa >>= 48;
7569  if ((Mantissa & 0xf) != Mantissa)
7570    return -1;
7571
7572  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
7573  if (Exp < -3 || Exp > 4)
7574    return -1;
7575  Exp = ((Exp+3) & 0x7) ^ 4;
7576
7577  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
7578}
7579
7580bool ARM::isBitFieldInvertedMask(unsigned v) {
7581  if (v == 0xffffffff)
7582    return 0;
7583  // there can be 1's on either or both "outsides", all the "inside"
7584  // bits must be 0's
7585  unsigned int lsb = 0, msb = 31;
7586  while (v & (1 << msb)) --msb;
7587  while (v & (1 << lsb)) ++lsb;
7588  for (unsigned int i = lsb; i <= msb; ++i) {
7589    if (v & (1 << i))
7590      return 0;
7591  }
7592  return 1;
7593}
7594
7595/// isFPImmLegal - Returns true if the target can instruction select the
7596/// specified FP immediate natively. If false, the legalizer will
7597/// materialize the FP immediate as a load from a constant pool.
7598bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
7599  if (!Subtarget->hasVFP3())
7600    return false;
7601  if (VT == MVT::f32)
7602    return ARM::getVFPf32Imm(Imm) != -1;
7603  if (VT == MVT::f64)
7604    return ARM::getVFPf64Imm(Imm) != -1;
7605  return false;
7606}
7607
7608/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
7609/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
7610/// specified in the intrinsic calls.
7611bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
7612                                           const CallInst &I,
7613                                           unsigned Intrinsic) const {
7614  switch (Intrinsic) {
7615  case Intrinsic::arm_neon_vld1:
7616  case Intrinsic::arm_neon_vld2:
7617  case Intrinsic::arm_neon_vld3:
7618  case Intrinsic::arm_neon_vld4:
7619  case Intrinsic::arm_neon_vld2lane:
7620  case Intrinsic::arm_neon_vld3lane:
7621  case Intrinsic::arm_neon_vld4lane: {
7622    Info.opc = ISD::INTRINSIC_W_CHAIN;
7623    // Conservatively set memVT to the entire set of vectors loaded.
7624    uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
7625    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
7626    Info.ptrVal = I.getArgOperand(0);
7627    Info.offset = 0;
7628    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
7629    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
7630    Info.vol = false; // volatile loads with NEON intrinsics not supported
7631    Info.readMem = true;
7632    Info.writeMem = false;
7633    return true;
7634  }
7635  case Intrinsic::arm_neon_vst1:
7636  case Intrinsic::arm_neon_vst2:
7637  case Intrinsic::arm_neon_vst3:
7638  case Intrinsic::arm_neon_vst4:
7639  case Intrinsic::arm_neon_vst2lane:
7640  case Intrinsic::arm_neon_vst3lane:
7641  case Intrinsic::arm_neon_vst4lane: {
7642    Info.opc = ISD::INTRINSIC_VOID;
7643    // Conservatively set memVT to the entire set of vectors stored.
7644    unsigned NumElts = 0;
7645    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
7646      const Type *ArgTy = I.getArgOperand(ArgI)->getType();
7647      if (!ArgTy->isVectorTy())
7648        break;
7649      NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
7650    }
7651    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
7652    Info.ptrVal = I.getArgOperand(0);
7653    Info.offset = 0;
7654    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
7655    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
7656    Info.vol = false; // volatile stores with NEON intrinsics not supported
7657    Info.readMem = false;
7658    Info.writeMem = true;
7659    return true;
7660  }
7661  default:
7662    break;
7663  }
7664
7665  return false;
7666}
7667