ARMISelLowering.cpp revision e60fee02ce7c1ee34faeefde46229b4168c2fd7f
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "ARM.h"
16#include "ARMAddressingModes.h"
17#include "ARMConstantPoolValue.h"
18#include "ARMISelLowering.h"
19#include "ARMMachineFunctionInfo.h"
20#include "ARMRegisterInfo.h"
21#include "ARMSubtarget.h"
22#include "ARMTargetMachine.h"
23#include "llvm/CallingConv.h"
24#include "llvm/Constants.h"
25#include "llvm/Function.h"
26#include "llvm/Instruction.h"
27#include "llvm/Intrinsics.h"
28#include "llvm/GlobalValue.h"
29#include "llvm/CodeGen/CallingConvLower.h"
30#include "llvm/CodeGen/MachineBasicBlock.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/PseudoSourceValue.h"
36#include "llvm/CodeGen/SelectionDAG.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/ADT/VectorExtras.h"
39#include "llvm/Support/MathExtras.h"
40using namespace llvm;
41
42static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
43                                   CCValAssign::LocInfo &LocInfo,
44                                   ISD::ArgFlagsTy &ArgFlags,
45                                   CCState &State);
46static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
47                                    CCValAssign::LocInfo &LocInfo,
48                                    ISD::ArgFlagsTy &ArgFlags,
49                                    CCState &State);
50static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
51                                      CCValAssign::LocInfo &LocInfo,
52                                      ISD::ArgFlagsTy &ArgFlags,
53                                      CCState &State);
54static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
55                                       CCValAssign::LocInfo &LocInfo,
56                                       ISD::ArgFlagsTy &ArgFlags,
57                                       CCState &State);
58
59void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
60                                       MVT PromotedBitwiseVT) {
61  if (VT != PromotedLdStVT) {
62    setOperationAction(ISD::LOAD, VT, Promote);
63    AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
64
65    setOperationAction(ISD::STORE, VT, Promote);
66    AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
67  }
68
69  MVT ElemTy = VT.getVectorElementType();
70  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
71    setOperationAction(ISD::VSETCC, VT, Custom);
72  if (ElemTy == MVT::i8 || ElemTy == MVT::i16)
73    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
74  setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
75  setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
76  setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
77  setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
78  if (VT.isInteger()) {
79    setOperationAction(ISD::SHL, VT, Custom);
80    setOperationAction(ISD::SRA, VT, Custom);
81    setOperationAction(ISD::SRL, VT, Custom);
82  }
83
84  // Promote all bit-wise operations.
85  if (VT.isInteger() && VT != PromotedBitwiseVT) {
86    setOperationAction(ISD::AND, VT, Promote);
87    AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
88    setOperationAction(ISD::OR,  VT, Promote);
89    AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
90    setOperationAction(ISD::XOR, VT, Promote);
91    AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
92  }
93}
94
95void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
96  addRegisterClass(VT, ARM::DPRRegisterClass);
97  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
98}
99
100void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
101  addRegisterClass(VT, ARM::QPRRegisterClass);
102  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
103}
104
105ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
106    : TargetLowering(TM), ARMPCLabelIndex(0) {
107  Subtarget = &TM.getSubtarget<ARMSubtarget>();
108
109  if (Subtarget->isTargetDarwin()) {
110    // Uses VFP for Thumb libfuncs if available.
111    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
112      // Single-precision floating-point arithmetic.
113      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
114      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
115      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
116      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
117
118      // Double-precision floating-point arithmetic.
119      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
120      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
121      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
122      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
123
124      // Single-precision comparisons.
125      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
126      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
127      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
128      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
129      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
130      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
131      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
132      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
133
134      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
135      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
136      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
137      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
138      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
139      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
140      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
141      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
142
143      // Double-precision comparisons.
144      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
145      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
146      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
147      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
148      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
149      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
150      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
151      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
152
153      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
154      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
155      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
156      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
157      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
158      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
159      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
160      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
161
162      // Floating-point to integer conversions.
163      // i64 conversions are done via library routines even when generating VFP
164      // instructions, so use the same ones.
165      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
166      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
167      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
168      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
169
170      // Conversions between floating types.
171      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
172      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
173
174      // Integer to floating-point conversions.
175      // i64 conversions are done via library routines even when generating VFP
176      // instructions, so use the same ones.
177      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
178      // e.g., __floatunsidf vs. __floatunssidfvfp.
179      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
180      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
181      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
182      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
183    }
184  }
185
186  // These libcalls are not available in 32-bit.
187  setLibcallName(RTLIB::SHL_I128, 0);
188  setLibcallName(RTLIB::SRL_I128, 0);
189  setLibcallName(RTLIB::SRA_I128, 0);
190
191  if (Subtarget->isThumb())
192    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
193  else
194    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
195  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb()) {
196    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
197    addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
198
199    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
200  }
201
202  if (Subtarget->hasNEON()) {
203    addDRTypeForNEON(MVT::v2f32);
204    addDRTypeForNEON(MVT::v8i8);
205    addDRTypeForNEON(MVT::v4i16);
206    addDRTypeForNEON(MVT::v2i32);
207    addDRTypeForNEON(MVT::v1i64);
208
209    addQRTypeForNEON(MVT::v4f32);
210    addQRTypeForNEON(MVT::v2f64);
211    addQRTypeForNEON(MVT::v16i8);
212    addQRTypeForNEON(MVT::v8i16);
213    addQRTypeForNEON(MVT::v4i32);
214    addQRTypeForNEON(MVT::v2i64);
215
216    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
217    setTargetDAGCombine(ISD::SHL);
218    setTargetDAGCombine(ISD::SRL);
219    setTargetDAGCombine(ISD::SRA);
220    setTargetDAGCombine(ISD::SIGN_EXTEND);
221    setTargetDAGCombine(ISD::ZERO_EXTEND);
222    setTargetDAGCombine(ISD::ANY_EXTEND);
223  }
224
225  computeRegisterProperties();
226
227  // ARM does not have f32 extending load.
228  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
229
230  // ARM does not have i1 sign extending load.
231  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
232
233  // ARM supports all 4 flavors of integer indexed load / store.
234  for (unsigned im = (unsigned)ISD::PRE_INC;
235       im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
236    setIndexedLoadAction(im,  MVT::i1,  Legal);
237    setIndexedLoadAction(im,  MVT::i8,  Legal);
238    setIndexedLoadAction(im,  MVT::i16, Legal);
239    setIndexedLoadAction(im,  MVT::i32, Legal);
240    setIndexedStoreAction(im, MVT::i1,  Legal);
241    setIndexedStoreAction(im, MVT::i8,  Legal);
242    setIndexedStoreAction(im, MVT::i16, Legal);
243    setIndexedStoreAction(im, MVT::i32, Legal);
244  }
245
246  // i64 operation support.
247  if (Subtarget->isThumb()) {
248    setOperationAction(ISD::MUL,     MVT::i64, Expand);
249    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
250    setOperationAction(ISD::MULHS,   MVT::i32, Expand);
251    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
252    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
253  } else {
254    setOperationAction(ISD::MUL,     MVT::i64, Expand);
255    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
256    if (!Subtarget->hasV6Ops())
257      setOperationAction(ISD::MULHS, MVT::i32, Expand);
258  }
259  setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
260  setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
261  setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
262  setOperationAction(ISD::SRL,       MVT::i64, Custom);
263  setOperationAction(ISD::SRA,       MVT::i64, Custom);
264
265  // ARM does not have ROTL.
266  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
267  setOperationAction(ISD::CTTZ,  MVT::i32, Expand);
268  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
269  if (!Subtarget->hasV5TOps() || Subtarget->isThumb())
270    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
271
272  // Only ARMv6 has BSWAP.
273  if (!Subtarget->hasV6Ops())
274    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
275
276  // These are expanded into libcalls.
277  setOperationAction(ISD::SDIV,  MVT::i32, Expand);
278  setOperationAction(ISD::UDIV,  MVT::i32, Expand);
279  setOperationAction(ISD::SREM,  MVT::i32, Expand);
280  setOperationAction(ISD::UREM,  MVT::i32, Expand);
281  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
282  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
283
284  // Support label based line numbers.
285  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
286  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
287
288  setOperationAction(ISD::RET,           MVT::Other, Custom);
289  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
290  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
291  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
292  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
293
294  // Use the default implementation.
295  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
296  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
297  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
298  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
299  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
300  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
301  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,   Expand);
302  setOperationAction(ISD::MEMBARRIER,         MVT::Other, Expand);
303
304  if (!Subtarget->hasV6Ops()) {
305    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
306    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
307  }
308  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
309
310  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb())
311    // Turn f64->i64 into FMRRD, i64 -> f64 to FMDRR iff target supports vfp2.
312    setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom);
313
314  // We want to custom lower some of our intrinsics.
315  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
316
317  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
318  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
319  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
320  setOperationAction(ISD::SELECT,    MVT::i32, Expand);
321  setOperationAction(ISD::SELECT,    MVT::f32, Expand);
322  setOperationAction(ISD::SELECT,    MVT::f64, Expand);
323  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
324  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
325  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
326
327  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
328  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
329  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
330  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
331  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
332
333  // We don't support sin/cos/fmod/copysign/pow
334  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
335  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
336  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
337  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
338  setOperationAction(ISD::FREM,      MVT::f64, Expand);
339  setOperationAction(ISD::FREM,      MVT::f32, Expand);
340  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb()) {
341    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
342    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
343  }
344  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
345  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
346
347  // int <-> fp are custom expanded into bit_convert + ARMISD ops.
348  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb()) {
349    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
350    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
351    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
352    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
353  }
354
355  // We have target-specific dag combine patterns for the following nodes:
356  // ARMISD::FMRRD  - No need to call setTargetDAGCombine
357  setTargetDAGCombine(ISD::ADD);
358  setTargetDAGCombine(ISD::SUB);
359
360  setStackPointerRegisterToSaveRestore(ARM::SP);
361  setSchedulingPreference(SchedulingForRegPressure);
362  setIfCvtBlockSizeLimit(Subtarget->isThumb() ? 0 : 10);
363  setIfCvtDupBlockSizeLimit(Subtarget->isThumb() ? 0 : 2);
364
365  if (!Subtarget->isThumb()) {
366    // Use branch latency information to determine if-conversion limits.
367    // FIXME: If-converter should use instruction latency of the branch being
368    // eliminated to compute the threshold. For ARMv6, the branch "latency"
369    // varies depending on whether it's dynamically or statically predicted
370    // and on whether the destination is in the prefetch buffer.
371    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
372    const InstrItineraryData &InstrItins = Subtarget->getInstrItineraryData();
373    unsigned Latency= InstrItins.getLatency(TII->get(ARM::Bcc).getSchedClass());
374    if (Latency > 1) {
375      setIfCvtBlockSizeLimit(Latency-1);
376      if (Latency > 2)
377        setIfCvtDupBlockSizeLimit(Latency-2);
378    } else {
379      setIfCvtBlockSizeLimit(10);
380      setIfCvtDupBlockSizeLimit(2);
381    }
382  }
383
384  maxStoresPerMemcpy = 1;   //// temporary - rewrite interface to use type
385  // Do not enable CodePlacementOpt for now: it currently runs after the
386  // ARMConstantIslandPass and messes up branch relaxation and placement
387  // of constant islands.
388  // benefitFromCodePlacementOpt = true;
389}
390
391const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
392  switch (Opcode) {
393  default: return 0;
394  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
395  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
396  case ARMISD::CALL:          return "ARMISD::CALL";
397  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
398  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
399  case ARMISD::tCALL:         return "ARMISD::tCALL";
400  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
401  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
402  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
403  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
404  case ARMISD::CMP:           return "ARMISD::CMP";
405  case ARMISD::CMPNZ:         return "ARMISD::CMPNZ";
406  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
407  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
408  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
409  case ARMISD::CMOV:          return "ARMISD::CMOV";
410  case ARMISD::CNEG:          return "ARMISD::CNEG";
411
412  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
413  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
414  case ARMISD::SITOF:         return "ARMISD::SITOF";
415  case ARMISD::UITOF:         return "ARMISD::UITOF";
416
417  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
418  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
419  case ARMISD::RRX:           return "ARMISD::RRX";
420
421  case ARMISD::FMRRD:         return "ARMISD::FMRRD";
422  case ARMISD::FMDRR:         return "ARMISD::FMDRR";
423
424  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
425
426  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
427  case ARMISD::VCGE:          return "ARMISD::VCGE";
428  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
429  case ARMISD::VCGT:          return "ARMISD::VCGT";
430  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
431  case ARMISD::VTST:          return "ARMISD::VTST";
432
433  case ARMISD::VSHL:          return "ARMISD::VSHL";
434  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
435  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
436  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
437  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
438  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
439  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
440  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
441  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
442  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
443  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
444  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
445  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
446  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
447  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
448  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
449  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
450  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
451  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
452  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
453  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
454  case ARMISD::VDUPLANEQ:     return "ARMISD::VDUPLANEQ";
455  }
456}
457
458//===----------------------------------------------------------------------===//
459// Lowering Code
460//===----------------------------------------------------------------------===//
461
462/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
463static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
464  switch (CC) {
465  default: assert(0 && "Unknown condition code!");
466  case ISD::SETNE:  return ARMCC::NE;
467  case ISD::SETEQ:  return ARMCC::EQ;
468  case ISD::SETGT:  return ARMCC::GT;
469  case ISD::SETGE:  return ARMCC::GE;
470  case ISD::SETLT:  return ARMCC::LT;
471  case ISD::SETLE:  return ARMCC::LE;
472  case ISD::SETUGT: return ARMCC::HI;
473  case ISD::SETUGE: return ARMCC::HS;
474  case ISD::SETULT: return ARMCC::LO;
475  case ISD::SETULE: return ARMCC::LS;
476  }
477}
478
479/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC. It
480/// returns true if the operands should be inverted to form the proper
481/// comparison.
482static bool FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
483                        ARMCC::CondCodes &CondCode2) {
484  bool Invert = false;
485  CondCode2 = ARMCC::AL;
486  switch (CC) {
487  default: assert(0 && "Unknown FP condition!");
488  case ISD::SETEQ:
489  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
490  case ISD::SETGT:
491  case ISD::SETOGT: CondCode = ARMCC::GT; break;
492  case ISD::SETGE:
493  case ISD::SETOGE: CondCode = ARMCC::GE; break;
494  case ISD::SETOLT: CondCode = ARMCC::MI; break;
495  case ISD::SETOLE: CondCode = ARMCC::GT; Invert = true; break;
496  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
497  case ISD::SETO:   CondCode = ARMCC::VC; break;
498  case ISD::SETUO:  CondCode = ARMCC::VS; break;
499  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
500  case ISD::SETUGT: CondCode = ARMCC::HI; break;
501  case ISD::SETUGE: CondCode = ARMCC::PL; break;
502  case ISD::SETLT:
503  case ISD::SETULT: CondCode = ARMCC::LT; break;
504  case ISD::SETLE:
505  case ISD::SETULE: CondCode = ARMCC::LE; break;
506  case ISD::SETNE:
507  case ISD::SETUNE: CondCode = ARMCC::NE; break;
508  }
509  return Invert;
510}
511
512//===----------------------------------------------------------------------===//
513//                      Calling Convention Implementation
514//
515//  The lower operations present on calling convention works on this order:
516//      LowerCALL (virt regs --> phys regs, virt regs --> stack)
517//      LowerFORMAL_ARGUMENTS (phys --> virt regs, stack --> virt regs)
518//      LowerRET (virt regs --> phys regs)
519//      LowerCALL (phys regs --> virt regs)
520//
521//===----------------------------------------------------------------------===//
522
523#include "ARMGenCallingConv.inc"
524
525// APCS f64 is in register pairs, possibly split to stack
526static bool f64AssignAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
527                          CCValAssign::LocInfo &LocInfo,
528                          CCState &State, bool CanFail) {
529  static const unsigned RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
530
531  // Try to get the first register.
532  if (unsigned Reg = State.AllocateReg(RegList, 4))
533    State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
534  else {
535    // For the 2nd half of a v2f64, do not fail.
536    if (CanFail)
537      return false;
538
539    // Put the whole thing on the stack.
540    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
541                                           State.AllocateStack(8, 4),
542                                           LocVT, LocInfo));
543    return true;
544  }
545
546  // Try to get the second register.
547  if (unsigned Reg = State.AllocateReg(RegList, 4))
548    State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
549  else
550    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
551                                           State.AllocateStack(4, 4),
552                                           LocVT, LocInfo));
553  return true;
554}
555
556static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
557                                   CCValAssign::LocInfo &LocInfo,
558                                   ISD::ArgFlagsTy &ArgFlags,
559                                   CCState &State) {
560  if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
561    return false;
562  if (LocVT == MVT::v2f64 &&
563      !f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
564    return false;
565  return true;  // we handled it
566}
567
568// AAPCS f64 is in aligned register pairs
569static bool f64AssignAAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
570                           CCValAssign::LocInfo &LocInfo,
571                           CCState &State, bool CanFail) {
572  static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
573  static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
574
575  unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
576  if (Reg == 0) {
577    // For the 2nd half of a v2f64, do not just fail.
578    if (CanFail)
579      return false;
580
581    // Put the whole thing on the stack.
582    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
583                                           State.AllocateStack(8, 8),
584                                           LocVT, LocInfo));
585    return true;
586  }
587
588  unsigned i;
589  for (i = 0; i < 2; ++i)
590    if (HiRegList[i] == Reg)
591      break;
592
593  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
594  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
595                                         LocVT, LocInfo));
596  return true;
597}
598
599static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
600                                    CCValAssign::LocInfo &LocInfo,
601                                    ISD::ArgFlagsTy &ArgFlags,
602                                    CCState &State) {
603  if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
604    return false;
605  if (LocVT == MVT::v2f64 &&
606      !f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
607    return false;
608  return true;  // we handled it
609}
610
611static bool f64RetAssign(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
612                         CCValAssign::LocInfo &LocInfo, CCState &State) {
613  static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
614  static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
615
616  unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
617  if (Reg == 0)
618    return false; // we didn't handle it
619
620  unsigned i;
621  for (i = 0; i < 2; ++i)
622    if (HiRegList[i] == Reg)
623      break;
624
625  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
626  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
627                                         LocVT, LocInfo));
628  return true;
629}
630
631static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
632                                      CCValAssign::LocInfo &LocInfo,
633                                      ISD::ArgFlagsTy &ArgFlags,
634                                      CCState &State) {
635  if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
636    return false;
637  if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
638    return false;
639  return true;  // we handled it
640}
641
642static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
643                                       CCValAssign::LocInfo &LocInfo,
644                                       ISD::ArgFlagsTy &ArgFlags,
645                                       CCState &State) {
646  return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags,
647                                   State);
648}
649
650/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
651/// given CallingConvention value.
652CCAssignFn *ARMTargetLowering::CCAssignFnForNode(unsigned CC,
653                                                 bool Return) const {
654  switch (CC) {
655  default:
656   assert(0 && "Unsupported calling convention");
657  case CallingConv::C:
658  case CallingConv::Fast:
659   // Use target triple & subtarget features to do actual dispatch.
660   if (Subtarget->isAAPCS_ABI()) {
661     if (Subtarget->hasVFP2() &&
662         FloatABIType == FloatABI::Hard)
663       return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
664     else
665       return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
666   } else
667     return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
668  case CallingConv::ARM_AAPCS_VFP:
669   return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
670  case CallingConv::ARM_AAPCS:
671   return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
672  case CallingConv::ARM_APCS:
673   return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
674  }
675}
676
677/// LowerCallResult - Lower the result values of an ISD::CALL into the
678/// appropriate copies out of appropriate physical registers.  This assumes that
679/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
680/// being lowered.  The returns a SDNode with the same number of values as the
681/// ISD::CALL.
682SDNode *ARMTargetLowering::
683LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
684                unsigned CallingConv, SelectionDAG &DAG) {
685
686  DebugLoc dl = TheCall->getDebugLoc();
687  // Assign locations to each value returned by this call.
688  SmallVector<CCValAssign, 16> RVLocs;
689  bool isVarArg = TheCall->isVarArg();
690  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
691  CCInfo.AnalyzeCallResult(TheCall,
692                           CCAssignFnForNode(CallingConv, /* Return*/ true));
693
694  SmallVector<SDValue, 8> ResultVals;
695
696  // Copy all of the result registers out of their specified physreg.
697  for (unsigned i = 0; i != RVLocs.size(); ++i) {
698    CCValAssign VA = RVLocs[i];
699
700    SDValue Val;
701    if (VA.needsCustom()) {
702      // Handle f64 or half of a v2f64.
703      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
704                                      InFlag);
705      Chain = Lo.getValue(1);
706      InFlag = Lo.getValue(2);
707      VA = RVLocs[++i]; // skip ahead to next loc
708      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
709                                      InFlag);
710      Chain = Hi.getValue(1);
711      InFlag = Hi.getValue(2);
712      Val = DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, Lo, Hi);
713
714      if (VA.getLocVT() == MVT::v2f64) {
715        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
716        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
717                          DAG.getConstant(0, MVT::i32));
718
719        VA = RVLocs[++i]; // skip ahead to next loc
720        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
721        Chain = Lo.getValue(1);
722        InFlag = Lo.getValue(2);
723        VA = RVLocs[++i]; // skip ahead to next loc
724        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
725        Chain = Hi.getValue(1);
726        InFlag = Hi.getValue(2);
727        Val = DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, Lo, Hi);
728        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
729                          DAG.getConstant(1, MVT::i32));
730      }
731    } else {
732      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
733                               InFlag);
734      Chain = Val.getValue(1);
735      InFlag = Val.getValue(2);
736    }
737
738    switch (VA.getLocInfo()) {
739    default: assert(0 && "Unknown loc info!");
740    case CCValAssign::Full: break;
741    case CCValAssign::BCvt:
742      Val = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), Val);
743      break;
744    }
745
746    ResultVals.push_back(Val);
747  }
748
749  // Merge everything together with a MERGE_VALUES node.
750  ResultVals.push_back(Chain);
751  return DAG.getNode(ISD::MERGE_VALUES, dl, TheCall->getVTList(),
752                     &ResultVals[0], ResultVals.size()).getNode();
753}
754
755/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
756/// by "Src" to address "Dst" of size "Size".  Alignment information is
757/// specified by the specific parameter attribute.  The copy will be passed as
758/// a byval function parameter.
759/// Sometimes what we are copying is the end of a larger object, the part that
760/// does not fit in registers.
761static SDValue
762CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
763                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
764                          DebugLoc dl) {
765  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
766  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
767                       /*AlwaysInline=*/false, NULL, 0, NULL, 0);
768}
769
770/// LowerMemOpCallTo - Store the argument to the stack.
771SDValue
772ARMTargetLowering::LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG,
773                                    const SDValue &StackPtr,
774                                    const CCValAssign &VA, SDValue Chain,
775                                    SDValue Arg, ISD::ArgFlagsTy Flags) {
776  DebugLoc dl = TheCall->getDebugLoc();
777  unsigned LocMemOffset = VA.getLocMemOffset();
778  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
779  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
780  if (Flags.isByVal()) {
781    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
782  }
783  return DAG.getStore(Chain, dl, Arg, PtrOff,
784                      PseudoSourceValue::getStack(), LocMemOffset);
785}
786
787void ARMTargetLowering::PassF64ArgInRegs(CallSDNode *TheCall, SelectionDAG &DAG,
788                                         SDValue Chain, SDValue &Arg,
789                                         RegsToPassVector &RegsToPass,
790                                         CCValAssign &VA, CCValAssign &NextVA,
791                                         SDValue &StackPtr,
792                                         SmallVector<SDValue, 8> &MemOpChains,
793                                         ISD::ArgFlagsTy Flags) {
794  DebugLoc dl = TheCall->getDebugLoc();
795
796  SDValue fmrrd = DAG.getNode(ARMISD::FMRRD, dl,
797                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
798  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
799
800  if (NextVA.isRegLoc())
801    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
802  else {
803    assert(NextVA.isMemLoc());
804    if (StackPtr.getNode() == 0)
805      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
806
807    MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, NextVA,
808                                           Chain, fmrrd.getValue(1), Flags));
809  }
810}
811
812/// LowerCALL - Lowering a ISD::CALL node into a callseq_start <-
813/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
814/// nodes.
815SDValue ARMTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
816  CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
817  MVT RetVT           = TheCall->getRetValType(0);
818  SDValue Chain       = TheCall->getChain();
819  unsigned CC         = TheCall->getCallingConv();
820  bool isVarArg       = TheCall->isVarArg();
821  SDValue Callee      = TheCall->getCallee();
822  DebugLoc dl         = TheCall->getDebugLoc();
823
824  // Analyze operands of the call, assigning locations to each operand.
825  SmallVector<CCValAssign, 16> ArgLocs;
826  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
827  CCInfo.AnalyzeCallOperands(TheCall, CCAssignFnForNode(CC, /* Return*/ false));
828
829  // Get a count of how many bytes are to be pushed on the stack.
830  unsigned NumBytes = CCInfo.getNextStackOffset();
831
832  // Adjust the stack pointer for the new arguments...
833  // These operations are automatically eliminated by the prolog/epilog pass
834  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
835
836  SDValue StackPtr = DAG.getRegister(ARM::SP, MVT::i32);
837
838  RegsToPassVector RegsToPass;
839  SmallVector<SDValue, 8> MemOpChains;
840
841  // Walk the register/memloc assignments, inserting copies/loads.  In the case
842  // of tail call optimization, arguments are handled later.
843  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
844       i != e;
845       ++i, ++realArgIdx) {
846    CCValAssign &VA = ArgLocs[i];
847    SDValue Arg = TheCall->getArg(realArgIdx);
848    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(realArgIdx);
849
850    // Promote the value if needed.
851    switch (VA.getLocInfo()) {
852    default: assert(0 && "Unknown loc info!");
853    case CCValAssign::Full: break;
854    case CCValAssign::SExt:
855      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
856      break;
857    case CCValAssign::ZExt:
858      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
859      break;
860    case CCValAssign::AExt:
861      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
862      break;
863    case CCValAssign::BCvt:
864      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
865      break;
866    }
867
868    // f64 and v2f64 are passed in i32 pairs and must be split into pieces
869    if (VA.needsCustom()) {
870      if (VA.getLocVT() == MVT::v2f64) {
871        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
872                                  DAG.getConstant(0, MVT::i32));
873        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
874                                  DAG.getConstant(1, MVT::i32));
875
876        PassF64ArgInRegs(TheCall, DAG, Chain, Op0, RegsToPass,
877                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
878
879        VA = ArgLocs[++i]; // skip ahead to next loc
880        if (VA.isRegLoc()) {
881          PassF64ArgInRegs(TheCall, DAG, Chain, Op1, RegsToPass,
882                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
883        } else {
884          assert(VA.isMemLoc());
885          if (StackPtr.getNode() == 0)
886            StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
887
888          MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA,
889                                                 Chain, Op1, Flags));
890        }
891      } else {
892        PassF64ArgInRegs(TheCall, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
893                         StackPtr, MemOpChains, Flags);
894      }
895    } else if (VA.isRegLoc()) {
896      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
897    } else {
898      assert(VA.isMemLoc());
899      if (StackPtr.getNode() == 0)
900        StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
901
902      MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA,
903                                             Chain, Arg, Flags));
904    }
905  }
906
907  if (!MemOpChains.empty())
908    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
909                        &MemOpChains[0], MemOpChains.size());
910
911  // Build a sequence of copy-to-reg nodes chained together with token chain
912  // and flag operands which copy the outgoing args into the appropriate regs.
913  SDValue InFlag;
914  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
915    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
916                             RegsToPass[i].second, InFlag);
917    InFlag = Chain.getValue(1);
918  }
919
920  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
921  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
922  // node so that legalize doesn't hack it.
923  bool isDirect = false;
924  bool isARMFunc = false;
925  bool isLocalARMFunc = false;
926  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
927    GlobalValue *GV = G->getGlobal();
928    isDirect = true;
929    bool isExt = (GV->isDeclaration() || GV->hasWeakLinkage() ||
930                  GV->hasLinkOnceLinkage());
931    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
932                   getTargetMachine().getRelocationModel() != Reloc::Static;
933    isARMFunc = !Subtarget->isThumb() || isStub;
934    // ARM call to a local ARM function is predicable.
935    isLocalARMFunc = !Subtarget->isThumb() && !isExt;
936    // tBX takes a register source operand.
937    if (isARMFunc && Subtarget->isThumb() && !Subtarget->hasV5TOps()) {
938      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMPCLabelIndex,
939                                                           ARMCP::CPStub, 4);
940      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
941      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
942      Callee = DAG.getLoad(getPointerTy(), dl,
943                           DAG.getEntryNode(), CPAddr, NULL, 0);
944      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
945      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
946                           getPointerTy(), Callee, PICLabel);
947   } else
948      Callee = DAG.getTargetGlobalAddress(GV, getPointerTy());
949  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
950    isDirect = true;
951    bool isStub = Subtarget->isTargetDarwin() &&
952                  getTargetMachine().getRelocationModel() != Reloc::Static;
953    isARMFunc = !Subtarget->isThumb() || isStub;
954    // tBX takes a register source operand.
955    const char *Sym = S->getSymbol();
956    if (isARMFunc && Subtarget->isThumb() && !Subtarget->hasV5TOps()) {
957      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(Sym, ARMPCLabelIndex,
958                                                           ARMCP::CPStub, 4);
959      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
960      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
961      Callee = DAG.getLoad(getPointerTy(), dl,
962                           DAG.getEntryNode(), CPAddr, NULL, 0);
963      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
964      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
965                           getPointerTy(), Callee, PICLabel);
966    } else
967      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
968  }
969
970  // FIXME: handle tail calls differently.
971  unsigned CallOpc;
972  if (Subtarget->isThumb()) {
973    if (!Subtarget->hasV5TOps() && (!isDirect || isARMFunc))
974      CallOpc = ARMISD::CALL_NOLINK;
975    else
976      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
977  } else {
978    CallOpc = (isDirect || Subtarget->hasV5TOps())
979      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
980      : ARMISD::CALL_NOLINK;
981  }
982  if (CallOpc == ARMISD::CALL_NOLINK && !Subtarget->isThumb()) {
983    // implicit def LR - LR mustn't be allocated as GRP:$dst of CALL_NOLINK
984    Chain = DAG.getCopyToReg(Chain, dl, ARM::LR, DAG.getUNDEF(MVT::i32),InFlag);
985    InFlag = Chain.getValue(1);
986  }
987
988  std::vector<SDValue> Ops;
989  Ops.push_back(Chain);
990  Ops.push_back(Callee);
991
992  // Add argument registers to the end of the list so that they are known live
993  // into the call.
994  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
995    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
996                                  RegsToPass[i].second.getValueType()));
997
998  if (InFlag.getNode())
999    Ops.push_back(InFlag);
1000  // Returns a chain and a flag for retval copy to use.
1001  Chain = DAG.getNode(CallOpc, dl, DAG.getVTList(MVT::Other, MVT::Flag),
1002                      &Ops[0], Ops.size());
1003  InFlag = Chain.getValue(1);
1004
1005  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1006                             DAG.getIntPtrConstant(0, true), InFlag);
1007  if (RetVT != MVT::Other)
1008    InFlag = Chain.getValue(1);
1009
1010  // Handle result values, copying them out of physregs into vregs that we
1011  // return.
1012  return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG),
1013                                 Op.getResNo());
1014}
1015
1016SDValue ARMTargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
1017  // The chain is always operand #0
1018  SDValue Chain = Op.getOperand(0);
1019  DebugLoc dl = Op.getDebugLoc();
1020
1021  // CCValAssign - represent the assignment of the return value to a location.
1022  SmallVector<CCValAssign, 16> RVLocs;
1023  unsigned CC   = DAG.getMachineFunction().getFunction()->getCallingConv();
1024  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1025
1026  // CCState - Info about the registers and stack slots.
1027  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
1028
1029  // Analyze return values of ISD::RET.
1030  CCInfo.AnalyzeReturn(Op.getNode(), CCAssignFnForNode(CC, /* Return */ true));
1031
1032  // If this is the first return lowered for this function, add
1033  // the regs to the liveout set for the function.
1034  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1035    for (unsigned i = 0; i != RVLocs.size(); ++i)
1036      if (RVLocs[i].isRegLoc())
1037        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1038  }
1039
1040  SDValue Flag;
1041
1042  // Copy the result values into the output registers.
1043  for (unsigned i = 0, realRVLocIdx = 0;
1044       i != RVLocs.size();
1045       ++i, ++realRVLocIdx) {
1046    CCValAssign &VA = RVLocs[i];
1047    assert(VA.isRegLoc() && "Can only return in registers!");
1048
1049    // ISD::RET => ret chain, (regnum1,val1), ...
1050    // So i*2+1 index only the regnums
1051    SDValue Arg = Op.getOperand(realRVLocIdx*2+1);
1052
1053    switch (VA.getLocInfo()) {
1054    default: assert(0 && "Unknown loc info!");
1055    case CCValAssign::Full: break;
1056    case CCValAssign::BCvt:
1057      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
1058      break;
1059    }
1060
1061    if (VA.needsCustom()) {
1062      if (VA.getLocVT() == MVT::v2f64) {
1063        // Extract the first half and return it in two registers.
1064        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1065                                   DAG.getConstant(0, MVT::i32));
1066        SDValue HalfGPRs = DAG.getNode(ARMISD::FMRRD, dl,
1067                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1068
1069        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1070        Flag = Chain.getValue(1);
1071        VA = RVLocs[++i]; // skip ahead to next loc
1072        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1073                                 HalfGPRs.getValue(1), Flag);
1074        Flag = Chain.getValue(1);
1075        VA = RVLocs[++i]; // skip ahead to next loc
1076
1077        // Extract the 2nd half and fall through to handle it as an f64 value.
1078        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1079                          DAG.getConstant(1, MVT::i32));
1080      }
1081      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1082      // available.
1083      SDValue fmrrd = DAG.getNode(ARMISD::FMRRD, dl,
1084                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1085      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1086      Flag = Chain.getValue(1);
1087      VA = RVLocs[++i]; // skip ahead to next loc
1088      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1089                               Flag);
1090    } else
1091      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1092
1093    // Guarantee that all emitted copies are
1094    // stuck together, avoiding something bad.
1095    Flag = Chain.getValue(1);
1096  }
1097
1098  SDValue result;
1099  if (Flag.getNode())
1100    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1101  else // Return Void
1102    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1103
1104  return result;
1105}
1106
1107// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1108// their target countpart wrapped in the ARMISD::Wrapper node. Suppose N is
1109// one of the above mentioned nodes. It has to be wrapped because otherwise
1110// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1111// be used to form addressing mode. These wrapped nodes will be selected
1112// into MOVi.
1113static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1114  MVT PtrVT = Op.getValueType();
1115  // FIXME there is no actual debug info here
1116  DebugLoc dl = Op.getDebugLoc();
1117  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1118  SDValue Res;
1119  if (CP->isMachineConstantPoolEntry())
1120    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1121                                    CP->getAlignment());
1122  else
1123    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1124                                    CP->getAlignment());
1125  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1126}
1127
1128// Lower ISD::GlobalTLSAddress using the "general dynamic" model
1129SDValue
1130ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1131                                                 SelectionDAG &DAG) {
1132  DebugLoc dl = GA->getDebugLoc();
1133  MVT PtrVT = getPointerTy();
1134  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1135  ARMConstantPoolValue *CPV =
1136    new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex, ARMCP::CPValue,
1137                             PCAdj, "tlsgd", true);
1138  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1139  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1140  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument, NULL, 0);
1141  SDValue Chain = Argument.getValue(1);
1142
1143  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1144  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1145
1146  // call __tls_get_addr.
1147  ArgListTy Args;
1148  ArgListEntry Entry;
1149  Entry.Node = Argument;
1150  Entry.Ty = (const Type *) Type::Int32Ty;
1151  Args.push_back(Entry);
1152  // FIXME: is there useful debug info available here?
1153  std::pair<SDValue, SDValue> CallResult =
1154    LowerCallTo(Chain, (const Type *) Type::Int32Ty, false, false, false, false,
1155                CallingConv::C, false,
1156                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
1157  return CallResult.first;
1158}
1159
1160// Lower ISD::GlobalTLSAddress using the "initial exec" or
1161// "local exec" model.
1162SDValue
1163ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
1164                                        SelectionDAG &DAG) {
1165  GlobalValue *GV = GA->getGlobal();
1166  DebugLoc dl = GA->getDebugLoc();
1167  SDValue Offset;
1168  SDValue Chain = DAG.getEntryNode();
1169  MVT PtrVT = getPointerTy();
1170  // Get the Thread Pointer
1171  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1172
1173  if (GV->isDeclaration()){
1174    // initial exec model
1175    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1176    ARMConstantPoolValue *CPV =
1177      new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex, ARMCP::CPValue,
1178                               PCAdj, "gottpoff", true);
1179    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1180    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1181    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, NULL, 0);
1182    Chain = Offset.getValue(1);
1183
1184    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1185    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
1186
1187    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, NULL, 0);
1188  } else {
1189    // local exec model
1190    ARMConstantPoolValue *CPV =
1191      new ARMConstantPoolValue(GV, ARMCP::CPValue, "tpoff");
1192    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1193    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1194    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, NULL, 0);
1195  }
1196
1197  // The address of the thread local variable is the add of the thread
1198  // pointer with the offset of the variable.
1199  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1200}
1201
1202SDValue
1203ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
1204  // TODO: implement the "local dynamic" model
1205  assert(Subtarget->isTargetELF() &&
1206         "TLS not implemented for non-ELF targets");
1207  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1208  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
1209  // otherwise use the "Local Exec" TLS Model
1210  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
1211    return LowerToTLSGeneralDynamicModel(GA, DAG);
1212  else
1213    return LowerToTLSExecModels(GA, DAG);
1214}
1215
1216SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
1217                                                 SelectionDAG &DAG) {
1218  MVT PtrVT = getPointerTy();
1219  DebugLoc dl = Op.getDebugLoc();
1220  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1221  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1222  if (RelocM == Reloc::PIC_) {
1223    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
1224    ARMConstantPoolValue *CPV =
1225      new ARMConstantPoolValue(GV, ARMCP::CPValue, UseGOTOFF ? "GOTOFF":"GOT");
1226    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1227    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1228    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
1229                                 CPAddr, NULL, 0);
1230    SDValue Chain = Result.getValue(1);
1231    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1232    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
1233    if (!UseGOTOFF)
1234      Result = DAG.getLoad(PtrVT, dl, Chain, Result, NULL, 0);
1235    return Result;
1236  } else {
1237    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1238    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1239    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, NULL, 0);
1240  }
1241}
1242
1243/// GVIsIndirectSymbol - true if the GV will be accessed via an indirect symbol
1244/// even in non-static mode.
1245static bool GVIsIndirectSymbol(GlobalValue *GV, Reloc::Model RelocM) {
1246  // If symbol visibility is hidden, the extra load is not needed if
1247  // the symbol is definitely defined in the current translation unit.
1248  bool isDecl = GV->isDeclaration() && !GV->hasNotBeenReadFromBitcode();
1249  if (GV->hasHiddenVisibility() && (!isDecl && !GV->hasCommonLinkage()))
1250    return false;
1251  return RelocM != Reloc::Static && (isDecl || GV->isWeakForLinker());
1252}
1253
1254SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
1255                                                    SelectionDAG &DAG) {
1256  MVT PtrVT = getPointerTy();
1257  DebugLoc dl = Op.getDebugLoc();
1258  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1259  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1260  bool IsIndirect = GVIsIndirectSymbol(GV, RelocM);
1261  SDValue CPAddr;
1262  if (RelocM == Reloc::Static)
1263    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1264  else {
1265    unsigned PCAdj = (RelocM != Reloc::PIC_)
1266      ? 0 : (Subtarget->isThumb() ? 4 : 8);
1267    ARMCP::ARMCPKind Kind = IsIndirect ? ARMCP::CPNonLazyPtr
1268      : ARMCP::CPValue;
1269    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMPCLabelIndex,
1270                                                         Kind, PCAdj);
1271    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1272  }
1273  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1274
1275  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, NULL, 0);
1276  SDValue Chain = Result.getValue(1);
1277
1278  if (RelocM == Reloc::PIC_) {
1279    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1280    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1281  }
1282  if (IsIndirect)
1283    Result = DAG.getLoad(PtrVT, dl, Chain, Result, NULL, 0);
1284
1285  return Result;
1286}
1287
1288SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
1289                                                    SelectionDAG &DAG){
1290  assert(Subtarget->isTargetELF() &&
1291         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
1292  MVT PtrVT = getPointerTy();
1293  DebugLoc dl = Op.getDebugLoc();
1294  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1295  ARMConstantPoolValue *CPV = new ARMConstantPoolValue("_GLOBAL_OFFSET_TABLE_",
1296                                                       ARMPCLabelIndex,
1297                                                       ARMCP::CPValue, PCAdj);
1298  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1299  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1300  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, NULL, 0);
1301  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1302  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1303}
1304
1305SDValue
1306ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
1307  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1308  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1309  DebugLoc dl = Op.getDebugLoc();
1310  switch (IntNo) {
1311  default: return SDValue();    // Don't custom lower most intrinsics.
1312  case Intrinsic::arm_thread_pointer:
1313      return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1314  case Intrinsic::eh_sjlj_setjmp:
1315      SDValue Res = DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32,
1316                         Op.getOperand(1));
1317      return Res;
1318  }
1319}
1320
1321static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
1322                            unsigned VarArgsFrameIndex) {
1323  // vastart just stores the address of the VarArgsFrameIndex slot into the
1324  // memory location argument.
1325  DebugLoc dl = Op.getDebugLoc();
1326  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1327  SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1328  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1329  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
1330}
1331
1332SDValue
1333ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
1334                                        SDValue &Root, SelectionDAG &DAG,
1335                                        DebugLoc dl) {
1336  MachineFunction &MF = DAG.getMachineFunction();
1337  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1338
1339  TargetRegisterClass *RC;
1340  if (AFI->isThumbFunction())
1341    RC = ARM::tGPRRegisterClass;
1342  else
1343    RC = ARM::GPRRegisterClass;
1344
1345  // Transform the arguments stored in physical registers into virtual ones.
1346  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1347  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
1348
1349  SDValue ArgValue2;
1350  if (NextVA.isMemLoc()) {
1351    unsigned ArgSize = NextVA.getLocVT().getSizeInBits()/8;
1352    MachineFrameInfo *MFI = MF.getFrameInfo();
1353    int FI = MFI->CreateFixedObject(ArgSize, NextVA.getLocMemOffset());
1354
1355    // Create load node to retrieve arguments from the stack.
1356    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1357    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN, NULL, 0);
1358  } else {
1359    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
1360    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
1361  }
1362
1363  return DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, ArgValue, ArgValue2);
1364}
1365
1366SDValue
1367ARMTargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
1368  MachineFunction &MF = DAG.getMachineFunction();
1369  MachineFrameInfo *MFI = MF.getFrameInfo();
1370
1371  SDValue Root = Op.getOperand(0);
1372  DebugLoc dl = Op.getDebugLoc();
1373  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
1374  unsigned CC = MF.getFunction()->getCallingConv();
1375  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1376
1377  // Assign locations to all of the incoming arguments.
1378  SmallVector<CCValAssign, 16> ArgLocs;
1379  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1380  CCInfo.AnalyzeFormalArguments(Op.getNode(),
1381                                CCAssignFnForNode(CC, /* Return*/ false));
1382
1383  SmallVector<SDValue, 16> ArgValues;
1384
1385  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1386    CCValAssign &VA = ArgLocs[i];
1387
1388    // Arguments stored in registers.
1389    if (VA.isRegLoc()) {
1390      MVT RegVT = VA.getLocVT();
1391
1392      SDValue ArgValue;
1393      if (VA.needsCustom()) {
1394        // f64 and vector types are split up into multiple registers or
1395        // combinations of registers and stack slots.
1396        RegVT = MVT::i32;
1397
1398        if (VA.getLocVT() == MVT::v2f64) {
1399          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
1400                                                   Root, DAG, dl);
1401          VA = ArgLocs[++i]; // skip ahead to next loc
1402          SDValue ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
1403                                                   Root, DAG, dl);
1404          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1405          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
1406                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
1407          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
1408                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
1409        } else
1410          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Root, DAG, dl);
1411
1412      } else {
1413        TargetRegisterClass *RC;
1414        if (FloatABIType == FloatABI::Hard && RegVT == MVT::f32)
1415          RC = ARM::SPRRegisterClass;
1416        else if (FloatABIType == FloatABI::Hard && RegVT == MVT::f64)
1417          RC = ARM::DPRRegisterClass;
1418        else if (AFI->isThumbFunction())
1419          RC = ARM::tGPRRegisterClass;
1420        else
1421          RC = ARM::GPRRegisterClass;
1422
1423        assert((RegVT == MVT::i32 || RegVT == MVT::f32 ||
1424                (FloatABIType == FloatABI::Hard && RegVT == MVT::f64)) &&
1425               "RegVT not supported by FORMAL_ARGUMENTS Lowering");
1426
1427        // Transform the arguments in physical registers into virtual ones.
1428        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1429        ArgValue = DAG.getCopyFromReg(Root, dl, Reg, RegVT);
1430      }
1431
1432      // If this is an 8 or 16-bit value, it is really passed promoted
1433      // to 32 bits.  Insert an assert[sz]ext to capture this, then
1434      // truncate to the right size.
1435      switch (VA.getLocInfo()) {
1436      default: assert(0 && "Unknown loc info!");
1437      case CCValAssign::Full: break;
1438      case CCValAssign::BCvt:
1439        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1440        break;
1441      case CCValAssign::SExt:
1442        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1443                               DAG.getValueType(VA.getValVT()));
1444        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1445        break;
1446      case CCValAssign::ZExt:
1447        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1448                               DAG.getValueType(VA.getValVT()));
1449        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1450        break;
1451      }
1452
1453      ArgValues.push_back(ArgValue);
1454
1455    } else { // VA.isRegLoc()
1456
1457      // sanity check
1458      assert(VA.isMemLoc());
1459      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
1460
1461      unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
1462      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset());
1463
1464      // Create load nodes to retrieve arguments from the stack.
1465      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1466      ArgValues.push_back(DAG.getLoad(VA.getValVT(), dl, Root, FIN, NULL, 0));
1467    }
1468  }
1469
1470  // varargs
1471  if (isVarArg) {
1472    static const unsigned GPRArgRegs[] = {
1473      ARM::R0, ARM::R1, ARM::R2, ARM::R3
1474    };
1475
1476    unsigned NumGPRs = CCInfo.getFirstUnallocated
1477      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
1478
1479    unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
1480    unsigned VARegSize = (4 - NumGPRs) * 4;
1481    unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
1482    unsigned ArgOffset = 0;
1483    if (VARegSaveSize) {
1484      // If this function is vararg, store any remaining integer argument regs
1485      // to their spots on the stack so that they may be loaded by deferencing
1486      // the result of va_next.
1487      AFI->setVarArgsRegSaveSize(VARegSaveSize);
1488      ArgOffset = CCInfo.getNextStackOffset();
1489      VarArgsFrameIndex = MFI->CreateFixedObject(VARegSaveSize, ArgOffset +
1490                                                 VARegSaveSize - VARegSize);
1491      SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
1492
1493      SmallVector<SDValue, 4> MemOps;
1494      for (; NumGPRs < 4; ++NumGPRs) {
1495        TargetRegisterClass *RC;
1496        if (AFI->isThumbFunction())
1497          RC = ARM::tGPRRegisterClass;
1498        else
1499          RC = ARM::GPRRegisterClass;
1500
1501        unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
1502        SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::i32);
1503        SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1504        MemOps.push_back(Store);
1505        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
1506                          DAG.getConstant(4, getPointerTy()));
1507      }
1508      if (!MemOps.empty())
1509        Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1510                           &MemOps[0], MemOps.size());
1511    } else
1512      // This will point to the next argument passed via stack.
1513      VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
1514  }
1515
1516  ArgValues.push_back(Root);
1517
1518  // Return the new list of results.
1519  return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
1520                     &ArgValues[0], ArgValues.size()).getValue(Op.getResNo());
1521}
1522
1523/// isFloatingPointZero - Return true if this is +0.0.
1524static bool isFloatingPointZero(SDValue Op) {
1525  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1526    return CFP->getValueAPF().isPosZero();
1527  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1528    // Maybe this has already been legalized into the constant pool?
1529    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
1530      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
1531      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
1532        if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1533          return CFP->getValueAPF().isPosZero();
1534    }
1535  }
1536  return false;
1537}
1538
1539static bool isLegalCmpImmediate(unsigned C, bool isThumb) {
1540  return ( isThumb && (C & ~255U) == 0) ||
1541         (!isThumb && ARM_AM::getSOImmVal(C) != -1);
1542}
1543
1544/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
1545/// the given operands.
1546static SDValue getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1547                         SDValue &ARMCC, SelectionDAG &DAG, bool isThumb,
1548                         DebugLoc dl) {
1549  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1550    unsigned C = RHSC->getZExtValue();
1551    if (!isLegalCmpImmediate(C, isThumb)) {
1552      // Constant does not fit, try adjusting it by one?
1553      switch (CC) {
1554      default: break;
1555      case ISD::SETLT:
1556      case ISD::SETGE:
1557        if (isLegalCmpImmediate(C-1, isThumb)) {
1558          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1559          RHS = DAG.getConstant(C-1, MVT::i32);
1560        }
1561        break;
1562      case ISD::SETULT:
1563      case ISD::SETUGE:
1564        if (C > 0 && isLegalCmpImmediate(C-1, isThumb)) {
1565          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1566          RHS = DAG.getConstant(C-1, MVT::i32);
1567        }
1568        break;
1569      case ISD::SETLE:
1570      case ISD::SETGT:
1571        if (isLegalCmpImmediate(C+1, isThumb)) {
1572          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1573          RHS = DAG.getConstant(C+1, MVT::i32);
1574        }
1575        break;
1576      case ISD::SETULE:
1577      case ISD::SETUGT:
1578        if (C < 0xffffffff && isLegalCmpImmediate(C+1, isThumb)) {
1579          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1580          RHS = DAG.getConstant(C+1, MVT::i32);
1581        }
1582        break;
1583      }
1584    }
1585  }
1586
1587  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
1588  ARMISD::NodeType CompareType;
1589  switch (CondCode) {
1590  default:
1591    CompareType = ARMISD::CMP;
1592    break;
1593  case ARMCC::EQ:
1594  case ARMCC::NE:
1595  case ARMCC::MI:
1596  case ARMCC::PL:
1597    // Uses only N and Z Flags
1598    CompareType = ARMISD::CMPNZ;
1599    break;
1600  }
1601  ARMCC = DAG.getConstant(CondCode, MVT::i32);
1602  return DAG.getNode(CompareType, dl, MVT::Flag, LHS, RHS);
1603}
1604
1605/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
1606static SDValue getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
1607                         DebugLoc dl) {
1608  SDValue Cmp;
1609  if (!isFloatingPointZero(RHS))
1610    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Flag, LHS, RHS);
1611  else
1612    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Flag, LHS);
1613  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Flag, Cmp);
1614}
1615
1616static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG,
1617                              const ARMSubtarget *ST) {
1618  MVT VT = Op.getValueType();
1619  SDValue LHS = Op.getOperand(0);
1620  SDValue RHS = Op.getOperand(1);
1621  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1622  SDValue TrueVal = Op.getOperand(2);
1623  SDValue FalseVal = Op.getOperand(3);
1624  DebugLoc dl = Op.getDebugLoc();
1625
1626  if (LHS.getValueType() == MVT::i32) {
1627    SDValue ARMCC;
1628    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1629    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb(), dl);
1630    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMCC, CCR,Cmp);
1631  }
1632
1633  ARMCC::CondCodes CondCode, CondCode2;
1634  if (FPCCToARMCC(CC, CondCode, CondCode2))
1635    std::swap(TrueVal, FalseVal);
1636
1637  SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
1638  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1639  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
1640  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
1641                                 ARMCC, CCR, Cmp);
1642  if (CondCode2 != ARMCC::AL) {
1643    SDValue ARMCC2 = DAG.getConstant(CondCode2, MVT::i32);
1644    // FIXME: Needs another CMP because flag can have but one use.
1645    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
1646    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
1647                         Result, TrueVal, ARMCC2, CCR, Cmp2);
1648  }
1649  return Result;
1650}
1651
1652static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG,
1653                          const ARMSubtarget *ST) {
1654  SDValue  Chain = Op.getOperand(0);
1655  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1656  SDValue    LHS = Op.getOperand(2);
1657  SDValue    RHS = Op.getOperand(3);
1658  SDValue   Dest = Op.getOperand(4);
1659  DebugLoc dl = Op.getDebugLoc();
1660
1661  if (LHS.getValueType() == MVT::i32) {
1662    SDValue ARMCC;
1663    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1664    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb(), dl);
1665    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
1666                       Chain, Dest, ARMCC, CCR,Cmp);
1667  }
1668
1669  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
1670  ARMCC::CondCodes CondCode, CondCode2;
1671  if (FPCCToARMCC(CC, CondCode, CondCode2))
1672    // Swap the LHS/RHS of the comparison if needed.
1673    std::swap(LHS, RHS);
1674
1675  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
1676  SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
1677  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1678  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
1679  SDValue Ops[] = { Chain, Dest, ARMCC, CCR, Cmp };
1680  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
1681  if (CondCode2 != ARMCC::AL) {
1682    ARMCC = DAG.getConstant(CondCode2, MVT::i32);
1683    SDValue Ops[] = { Res, Dest, ARMCC, CCR, Res.getValue(1) };
1684    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
1685  }
1686  return Res;
1687}
1688
1689SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) {
1690  SDValue Chain = Op.getOperand(0);
1691  SDValue Table = Op.getOperand(1);
1692  SDValue Index = Op.getOperand(2);
1693  DebugLoc dl = Op.getDebugLoc();
1694
1695  MVT PTy = getPointerTy();
1696  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
1697  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
1698  SDValue UId =  DAG.getConstant(AFI->createJumpTableUId(), PTy);
1699  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
1700  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
1701  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
1702  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
1703  bool isPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
1704  Addr = DAG.getLoad(isPIC ? (MVT)MVT::i32 : PTy, dl,
1705                     Chain, Addr, NULL, 0);
1706  Chain = Addr.getValue(1);
1707  if (isPIC)
1708    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
1709  return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
1710}
1711
1712static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1713  DebugLoc dl = Op.getDebugLoc();
1714  unsigned Opc =
1715    Op.getOpcode() == ISD::FP_TO_SINT ? ARMISD::FTOSI : ARMISD::FTOUI;
1716  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
1717  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
1718}
1719
1720static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1721  MVT VT = Op.getValueType();
1722  DebugLoc dl = Op.getDebugLoc();
1723  unsigned Opc =
1724    Op.getOpcode() == ISD::SINT_TO_FP ? ARMISD::SITOF : ARMISD::UITOF;
1725
1726  Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Op.getOperand(0));
1727  return DAG.getNode(Opc, dl, VT, Op);
1728}
1729
1730static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
1731  // Implement fcopysign with a fabs and a conditional fneg.
1732  SDValue Tmp0 = Op.getOperand(0);
1733  SDValue Tmp1 = Op.getOperand(1);
1734  DebugLoc dl = Op.getDebugLoc();
1735  MVT VT = Op.getValueType();
1736  MVT SrcVT = Tmp1.getValueType();
1737  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0);
1738  SDValue Cmp = getVFPCmp(Tmp1, DAG.getConstantFP(0.0, SrcVT), DAG, dl);
1739  SDValue ARMCC = DAG.getConstant(ARMCC::LT, MVT::i32);
1740  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1741  return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMCC, CCR, Cmp);
1742}
1743
1744SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
1745  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1746  MFI->setFrameAddressIsTaken(true);
1747  MVT VT = Op.getValueType();
1748  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
1749  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1750  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
1751    ? ARM::R7 : ARM::R11;
1752  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
1753  while (Depth--)
1754    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0);
1755  return FrameAddr;
1756}
1757
1758SDValue
1759ARMTargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
1760                                           SDValue Chain,
1761                                           SDValue Dst, SDValue Src,
1762                                           SDValue Size, unsigned Align,
1763                                           bool AlwaysInline,
1764                                         const Value *DstSV, uint64_t DstSVOff,
1765                                         const Value *SrcSV, uint64_t SrcSVOff){
1766  // Do repeated 4-byte loads and stores. To be improved.
1767  // This requires 4-byte alignment.
1768  if ((Align & 3) != 0)
1769    return SDValue();
1770  // This requires the copy size to be a constant, preferrably
1771  // within a subtarget-specific limit.
1772  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
1773  if (!ConstantSize)
1774    return SDValue();
1775  uint64_t SizeVal = ConstantSize->getZExtValue();
1776  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
1777    return SDValue();
1778
1779  unsigned BytesLeft = SizeVal & 3;
1780  unsigned NumMemOps = SizeVal >> 2;
1781  unsigned EmittedNumMemOps = 0;
1782  MVT VT = MVT::i32;
1783  unsigned VTSize = 4;
1784  unsigned i = 0;
1785  const unsigned MAX_LOADS_IN_LDM = 6;
1786  SDValue TFOps[MAX_LOADS_IN_LDM];
1787  SDValue Loads[MAX_LOADS_IN_LDM];
1788  uint64_t SrcOff = 0, DstOff = 0;
1789
1790  // Emit up to MAX_LOADS_IN_LDM loads, then a TokenFactor barrier, then the
1791  // same number of stores.  The loads and stores will get combined into
1792  // ldm/stm later on.
1793  while (EmittedNumMemOps < NumMemOps) {
1794    for (i = 0;
1795         i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
1796      Loads[i] = DAG.getLoad(VT, dl, Chain,
1797                             DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
1798                                         DAG.getConstant(SrcOff, MVT::i32)),
1799                             SrcSV, SrcSVOff + SrcOff);
1800      TFOps[i] = Loads[i].getValue(1);
1801      SrcOff += VTSize;
1802    }
1803    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
1804
1805    for (i = 0;
1806         i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
1807      TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
1808                           DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
1809                                       DAG.getConstant(DstOff, MVT::i32)),
1810                           DstSV, DstSVOff + DstOff);
1811      DstOff += VTSize;
1812    }
1813    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
1814
1815    EmittedNumMemOps += i;
1816  }
1817
1818  if (BytesLeft == 0)
1819    return Chain;
1820
1821  // Issue loads / stores for the trailing (1 - 3) bytes.
1822  unsigned BytesLeftSave = BytesLeft;
1823  i = 0;
1824  while (BytesLeft) {
1825    if (BytesLeft >= 2) {
1826      VT = MVT::i16;
1827      VTSize = 2;
1828    } else {
1829      VT = MVT::i8;
1830      VTSize = 1;
1831    }
1832
1833    Loads[i] = DAG.getLoad(VT, dl, Chain,
1834                           DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
1835                                       DAG.getConstant(SrcOff, MVT::i32)),
1836                           SrcSV, SrcSVOff + SrcOff);
1837    TFOps[i] = Loads[i].getValue(1);
1838    ++i;
1839    SrcOff += VTSize;
1840    BytesLeft -= VTSize;
1841  }
1842  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
1843
1844  i = 0;
1845  BytesLeft = BytesLeftSave;
1846  while (BytesLeft) {
1847    if (BytesLeft >= 2) {
1848      VT = MVT::i16;
1849      VTSize = 2;
1850    } else {
1851      VT = MVT::i8;
1852      VTSize = 1;
1853    }
1854
1855    TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
1856                            DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
1857                                        DAG.getConstant(DstOff, MVT::i32)),
1858                            DstSV, DstSVOff + DstOff);
1859    ++i;
1860    DstOff += VTSize;
1861    BytesLeft -= VTSize;
1862  }
1863  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
1864}
1865
1866static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) {
1867  SDValue Op = N->getOperand(0);
1868  DebugLoc dl = N->getDebugLoc();
1869  if (N->getValueType(0) == MVT::f64) {
1870    // Turn i64->f64 into FMDRR.
1871    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
1872                             DAG.getConstant(0, MVT::i32));
1873    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
1874                             DAG.getConstant(1, MVT::i32));
1875    return DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, Lo, Hi);
1876  }
1877
1878  // Turn f64->i64 into FMRRD.
1879  SDValue Cvt = DAG.getNode(ARMISD::FMRRD, dl,
1880                            DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
1881
1882  // Merge the pieces into a single i64 value.
1883  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
1884}
1885
1886/// getZeroVector - Returns a vector of specified type with all zero elements.
1887///
1888static SDValue getZeroVector(MVT VT, SelectionDAG &DAG, DebugLoc dl) {
1889  assert(VT.isVector() && "Expected a vector type");
1890
1891  // Zero vectors are used to represent vector negation and in those cases
1892  // will be implemented with the NEON VNEG instruction.  However, VNEG does
1893  // not support i64 elements, so sometimes the zero vectors will need to be
1894  // explicitly constructed.  For those cases, and potentially other uses in
1895  // the future, always build zero vectors as <4 x i32> or <2 x i32> bitcasted
1896  // to their dest type.  This ensures they get CSE'd.
1897  SDValue Vec;
1898  SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
1899  if (VT.getSizeInBits() == 64)
1900    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
1901  else
1902    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
1903
1904  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
1905}
1906
1907/// getOnesVector - Returns a vector of specified type with all bits set.
1908///
1909static SDValue getOnesVector(MVT VT, SelectionDAG &DAG, DebugLoc dl) {
1910  assert(VT.isVector() && "Expected a vector type");
1911
1912  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
1913  // type.  This ensures they get CSE'd.
1914  SDValue Vec;
1915  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
1916  if (VT.getSizeInBits() == 64)
1917    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
1918  else
1919    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
1920
1921  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
1922}
1923
1924static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
1925                          const ARMSubtarget *ST) {
1926  MVT VT = N->getValueType(0);
1927  DebugLoc dl = N->getDebugLoc();
1928
1929  // Lower vector shifts on NEON to use VSHL.
1930  if (VT.isVector()) {
1931    assert(ST->hasNEON() && "unexpected vector shift");
1932
1933    // Left shifts translate directly to the vshiftu intrinsic.
1934    if (N->getOpcode() == ISD::SHL)
1935      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
1936                         DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
1937                         N->getOperand(0), N->getOperand(1));
1938
1939    assert((N->getOpcode() == ISD::SRA ||
1940            N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
1941
1942    // NEON uses the same intrinsics for both left and right shifts.  For
1943    // right shifts, the shift amounts are negative, so negate the vector of
1944    // shift amounts.
1945    MVT ShiftVT = N->getOperand(1).getValueType();
1946    SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
1947                                       getZeroVector(ShiftVT, DAG, dl),
1948                                       N->getOperand(1));
1949    Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
1950                               Intrinsic::arm_neon_vshifts :
1951                               Intrinsic::arm_neon_vshiftu);
1952    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
1953                       DAG.getConstant(vshiftInt, MVT::i32),
1954                       N->getOperand(0), NegatedCount);
1955  }
1956
1957  assert(VT == MVT::i64 &&
1958         (N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
1959         "Unknown shift to lower!");
1960
1961  // We only lower SRA, SRL of 1 here, all others use generic lowering.
1962  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
1963      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
1964    return SDValue();
1965
1966  // If we are in thumb mode, we don't have RRX.
1967  if (ST->isThumb()) return SDValue();
1968
1969  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
1970  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
1971                             DAG.getConstant(0, MVT::i32));
1972  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
1973                             DAG.getConstant(1, MVT::i32));
1974
1975  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
1976  // captures the result into a carry flag.
1977  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
1978  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1);
1979
1980  // The low part is an ARMISD::RRX operand, which shifts the carry in.
1981  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
1982
1983  // Merge the pieces into a single i64 value.
1984 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
1985}
1986
1987static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
1988  SDValue TmpOp0, TmpOp1;
1989  bool Invert = false;
1990  bool Swap = false;
1991  unsigned Opc = 0;
1992
1993  SDValue Op0 = Op.getOperand(0);
1994  SDValue Op1 = Op.getOperand(1);
1995  SDValue CC = Op.getOperand(2);
1996  MVT VT = Op.getValueType();
1997  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
1998  DebugLoc dl = Op.getDebugLoc();
1999
2000  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
2001    switch (SetCCOpcode) {
2002    default: assert(0 && "Illegal FP comparison"); break;
2003    case ISD::SETUNE:
2004    case ISD::SETNE:  Invert = true; // Fallthrough
2005    case ISD::SETOEQ:
2006    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2007    case ISD::SETOLT:
2008    case ISD::SETLT: Swap = true; // Fallthrough
2009    case ISD::SETOGT:
2010    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2011    case ISD::SETOLE:
2012    case ISD::SETLE:  Swap = true; // Fallthrough
2013    case ISD::SETOGE:
2014    case ISD::SETGE: Opc = ARMISD::VCGE; break;
2015    case ISD::SETUGE: Swap = true; // Fallthrough
2016    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
2017    case ISD::SETUGT: Swap = true; // Fallthrough
2018    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
2019    case ISD::SETUEQ: Invert = true; // Fallthrough
2020    case ISD::SETONE:
2021      // Expand this to (OLT | OGT).
2022      TmpOp0 = Op0;
2023      TmpOp1 = Op1;
2024      Opc = ISD::OR;
2025      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2026      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
2027      break;
2028    case ISD::SETUO: Invert = true; // Fallthrough
2029    case ISD::SETO:
2030      // Expand this to (OLT | OGE).
2031      TmpOp0 = Op0;
2032      TmpOp1 = Op1;
2033      Opc = ISD::OR;
2034      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2035      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
2036      break;
2037    }
2038  } else {
2039    // Integer comparisons.
2040    switch (SetCCOpcode) {
2041    default: assert(0 && "Illegal integer comparison"); break;
2042    case ISD::SETNE:  Invert = true;
2043    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2044    case ISD::SETLT:  Swap = true;
2045    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2046    case ISD::SETLE:  Swap = true;
2047    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
2048    case ISD::SETULT: Swap = true;
2049    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
2050    case ISD::SETULE: Swap = true;
2051    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
2052    }
2053
2054    // Detect VTST (Vector Test Bits) = vicmp ne (and (op0, op1), zero).
2055    if (Opc == ARMISD::VCEQ) {
2056
2057      SDValue AndOp;
2058      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
2059        AndOp = Op0;
2060      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
2061        AndOp = Op1;
2062
2063      // Ignore bitconvert.
2064      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BIT_CONVERT)
2065        AndOp = AndOp.getOperand(0);
2066
2067      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
2068        Opc = ARMISD::VTST;
2069        Op0 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(0));
2070        Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(1));
2071        Invert = !Invert;
2072      }
2073    }
2074  }
2075
2076  if (Swap)
2077    std::swap(Op0, Op1);
2078
2079  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
2080
2081  if (Invert)
2082    Result = DAG.getNOT(dl, Result, VT);
2083
2084  return Result;
2085}
2086
2087/// isVMOVSplat - Check if the specified splat value corresponds to an immediate
2088/// VMOV instruction, and if so, return the constant being splatted.
2089static SDValue isVMOVSplat(uint64_t SplatBits, uint64_t SplatUndef,
2090                           unsigned SplatBitSize, SelectionDAG &DAG) {
2091  switch (SplatBitSize) {
2092  case 8:
2093    // Any 1-byte value is OK.
2094    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
2095    return DAG.getTargetConstant(SplatBits, MVT::i8);
2096
2097  case 16:
2098    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
2099    if ((SplatBits & ~0xff) == 0 ||
2100        (SplatBits & ~0xff00) == 0)
2101      return DAG.getTargetConstant(SplatBits, MVT::i16);
2102    break;
2103
2104  case 32:
2105    // NEON's 32-bit VMOV supports splat values where:
2106    // * only one byte is nonzero, or
2107    // * the least significant byte is 0xff and the second byte is nonzero, or
2108    // * the least significant 2 bytes are 0xff and the third is nonzero.
2109    if ((SplatBits & ~0xff) == 0 ||
2110        (SplatBits & ~0xff00) == 0 ||
2111        (SplatBits & ~0xff0000) == 0 ||
2112        (SplatBits & ~0xff000000) == 0)
2113      return DAG.getTargetConstant(SplatBits, MVT::i32);
2114
2115    if ((SplatBits & ~0xffff) == 0 &&
2116        ((SplatBits | SplatUndef) & 0xff) == 0xff)
2117      return DAG.getTargetConstant(SplatBits | 0xff, MVT::i32);
2118
2119    if ((SplatBits & ~0xffffff) == 0 &&
2120        ((SplatBits | SplatUndef) & 0xffff) == 0xffff)
2121      return DAG.getTargetConstant(SplatBits | 0xffff, MVT::i32);
2122
2123    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
2124    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
2125    // VMOV.I32.  A (very) minor optimization would be to replicate the value
2126    // and fall through here to test for a valid 64-bit splat.  But, then the
2127    // caller would also need to check and handle the change in size.
2128    break;
2129
2130  case 64: {
2131    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
2132    uint64_t BitMask = 0xff;
2133    uint64_t Val = 0;
2134    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
2135      if (((SplatBits | SplatUndef) & BitMask) == BitMask)
2136        Val |= BitMask;
2137      else if ((SplatBits & BitMask) != 0)
2138        return SDValue();
2139      BitMask <<= 8;
2140    }
2141    return DAG.getTargetConstant(Val, MVT::i64);
2142  }
2143
2144  default:
2145    assert(0 && "unexpected size for isVMOVSplat");
2146    break;
2147  }
2148
2149  return SDValue();
2150}
2151
2152/// getVMOVImm - If this is a build_vector of constants which can be
2153/// formed by using a VMOV instruction of the specified element size,
2154/// return the constant being splatted.  The ByteSize field indicates the
2155/// number of bytes of each element [1248].
2156SDValue ARM::getVMOVImm(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2157  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
2158  APInt SplatBits, SplatUndef;
2159  unsigned SplatBitSize;
2160  bool HasAnyUndefs;
2161  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
2162                                      HasAnyUndefs, ByteSize * 8))
2163    return SDValue();
2164
2165  if (SplatBitSize > ByteSize * 8)
2166    return SDValue();
2167
2168  return isVMOVSplat(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
2169                     SplatBitSize, DAG);
2170}
2171
2172static SDValue BuildSplat(SDValue Val, MVT VT, SelectionDAG &DAG, DebugLoc dl) {
2173  // Canonicalize all-zeros and all-ones vectors.
2174  ConstantSDNode *ConstVal = dyn_cast<ConstantSDNode>(Val.getNode());
2175  if (ConstVal->isNullValue())
2176    return getZeroVector(VT, DAG, dl);
2177  if (ConstVal->isAllOnesValue())
2178    return getOnesVector(VT, DAG, dl);
2179
2180  MVT CanonicalVT;
2181  if (VT.is64BitVector()) {
2182    switch (Val.getValueType().getSizeInBits()) {
2183    case 8:  CanonicalVT = MVT::v8i8; break;
2184    case 16: CanonicalVT = MVT::v4i16; break;
2185    case 32: CanonicalVT = MVT::v2i32; break;
2186    case 64: CanonicalVT = MVT::v1i64; break;
2187    default: assert(0 && "unexpected splat element type"); break;
2188    }
2189  } else {
2190    assert(VT.is128BitVector() && "unknown splat vector size");
2191    switch (Val.getValueType().getSizeInBits()) {
2192    case 8:  CanonicalVT = MVT::v16i8; break;
2193    case 16: CanonicalVT = MVT::v8i16; break;
2194    case 32: CanonicalVT = MVT::v4i32; break;
2195    case 64: CanonicalVT = MVT::v2i64; break;
2196    default: assert(0 && "unexpected splat element type"); break;
2197    }
2198  }
2199
2200  // Build a canonical splat for this value.
2201  SmallVector<SDValue, 8> Ops;
2202  Ops.assign(CanonicalVT.getVectorNumElements(), Val);
2203  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, &Ops[0],
2204                            Ops.size());
2205  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Res);
2206}
2207
2208// If this is a case we can't handle, return null and let the default
2209// expansion code take care of it.
2210static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
2211  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
2212  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
2213  DebugLoc dl = Op.getDebugLoc();
2214
2215  APInt SplatBits, SplatUndef;
2216  unsigned SplatBitSize;
2217  bool HasAnyUndefs;
2218  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
2219    SDValue Val = isVMOVSplat(SplatBits.getZExtValue(),
2220                              SplatUndef.getZExtValue(), SplatBitSize, DAG);
2221    if (Val.getNode())
2222      return BuildSplat(Val, Op.getValueType(), DAG, dl);
2223  }
2224
2225  return SDValue();
2226}
2227
2228static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
2229  return Op;
2230}
2231
2232static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
2233  return Op;
2234}
2235
2236static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
2237  MVT VT = Op.getValueType();
2238  DebugLoc dl = Op.getDebugLoc();
2239  assert((VT == MVT::i8 || VT == MVT::i16) &&
2240         "unexpected type for custom-lowering vector extract");
2241  SDValue Vec = Op.getOperand(0);
2242  SDValue Lane = Op.getOperand(1);
2243  Op = DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
2244  Op = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Op, DAG.getValueType(VT));
2245  return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
2246}
2247
2248static SDValue LowerCONCAT_VECTORS(SDValue Op) {
2249  if (Op.getValueType().is128BitVector() && Op.getNumOperands() == 2)
2250    return Op;
2251  return SDValue();
2252}
2253
2254SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
2255  switch (Op.getOpcode()) {
2256  default: assert(0 && "Don't know how to custom lower this!"); abort();
2257  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
2258  case ISD::GlobalAddress:
2259    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
2260      LowerGlobalAddressELF(Op, DAG);
2261  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
2262  case ISD::CALL:          return LowerCALL(Op, DAG);
2263  case ISD::RET:           return LowerRET(Op, DAG);
2264  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG, Subtarget);
2265  case ISD::BR_CC:         return LowerBR_CC(Op, DAG, Subtarget);
2266  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
2267  case ISD::VASTART:       return LowerVASTART(Op, DAG, VarArgsFrameIndex);
2268  case ISD::SINT_TO_FP:
2269  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
2270  case ISD::FP_TO_SINT:
2271  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
2272  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
2273  case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG);
2274  case ISD::RETURNADDR:    break;
2275  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
2276  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
2277  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2278  case ISD::BIT_CONVERT:   return ExpandBIT_CONVERT(Op.getNode(), DAG);
2279  case ISD::SHL:
2280  case ISD::SRL:
2281  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
2282  case ISD::VSETCC:        return LowerVSETCC(Op, DAG);
2283  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG);
2284  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
2285  case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
2286  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2287  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op);
2288  }
2289  return SDValue();
2290}
2291
2292/// ReplaceNodeResults - Replace the results of node with an illegal result
2293/// type with new values built out of custom code.
2294void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
2295                                           SmallVectorImpl<SDValue>&Results,
2296                                           SelectionDAG &DAG) {
2297  switch (N->getOpcode()) {
2298  default:
2299    assert(0 && "Don't know how to custom expand this!");
2300    return;
2301  case ISD::BIT_CONVERT:
2302    Results.push_back(ExpandBIT_CONVERT(N, DAG));
2303    return;
2304  case ISD::SRL:
2305  case ISD::SRA: {
2306    SDValue Res = LowerShift(N, DAG, Subtarget);
2307    if (Res.getNode())
2308      Results.push_back(Res);
2309    return;
2310  }
2311  }
2312}
2313
2314//===----------------------------------------------------------------------===//
2315//                           ARM Scheduler Hooks
2316//===----------------------------------------------------------------------===//
2317
2318MachineBasicBlock *
2319ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
2320                                               MachineBasicBlock *BB) const {
2321  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2322  DebugLoc dl = MI->getDebugLoc();
2323  switch (MI->getOpcode()) {
2324  default: assert(false && "Unexpected instr type to insert");
2325  case ARM::tMOVCCr: {
2326    // To "insert" a SELECT_CC instruction, we actually have to insert the
2327    // diamond control-flow pattern.  The incoming instruction knows the
2328    // destination vreg to set, the condition code register to branch on, the
2329    // true/false values to select between, and a branch opcode to use.
2330    const BasicBlock *LLVM_BB = BB->getBasicBlock();
2331    MachineFunction::iterator It = BB;
2332    ++It;
2333
2334    //  thisMBB:
2335    //  ...
2336    //   TrueVal = ...
2337    //   cmpTY ccX, r1, r2
2338    //   bCC copy1MBB
2339    //   fallthrough --> copy0MBB
2340    MachineBasicBlock *thisMBB  = BB;
2341    MachineFunction *F = BB->getParent();
2342    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
2343    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
2344    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
2345      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
2346    F->insert(It, copy0MBB);
2347    F->insert(It, sinkMBB);
2348    // Update machine-CFG edges by first adding all successors of the current
2349    // block to the new block which will contain the Phi node for the select.
2350    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
2351        e = BB->succ_end(); i != e; ++i)
2352      sinkMBB->addSuccessor(*i);
2353    // Next, remove all successors of the current block, and add the true
2354    // and fallthrough blocks as its successors.
2355    while(!BB->succ_empty())
2356      BB->removeSuccessor(BB->succ_begin());
2357    BB->addSuccessor(copy0MBB);
2358    BB->addSuccessor(sinkMBB);
2359
2360    //  copy0MBB:
2361    //   %FalseValue = ...
2362    //   # fallthrough to sinkMBB
2363    BB = copy0MBB;
2364
2365    // Update machine-CFG edges
2366    BB->addSuccessor(sinkMBB);
2367
2368    //  sinkMBB:
2369    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
2370    //  ...
2371    BB = sinkMBB;
2372    BuildMI(BB, dl, TII->get(ARM::PHI), MI->getOperand(0).getReg())
2373      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
2374      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
2375
2376    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
2377    return BB;
2378  }
2379  }
2380}
2381
2382//===----------------------------------------------------------------------===//
2383//                           ARM Optimization Hooks
2384//===----------------------------------------------------------------------===//
2385
2386static
2387SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
2388                            TargetLowering::DAGCombinerInfo &DCI) {
2389  SelectionDAG &DAG = DCI.DAG;
2390  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2391  MVT VT = N->getValueType(0);
2392  unsigned Opc = N->getOpcode();
2393  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
2394  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
2395  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
2396  ISD::CondCode CC = ISD::SETCC_INVALID;
2397
2398  if (isSlctCC) {
2399    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
2400  } else {
2401    SDValue CCOp = Slct.getOperand(0);
2402    if (CCOp.getOpcode() == ISD::SETCC)
2403      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
2404  }
2405
2406  bool DoXform = false;
2407  bool InvCC = false;
2408  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
2409          "Bad input!");
2410
2411  if (LHS.getOpcode() == ISD::Constant &&
2412      cast<ConstantSDNode>(LHS)->isNullValue()) {
2413    DoXform = true;
2414  } else if (CC != ISD::SETCC_INVALID &&
2415             RHS.getOpcode() == ISD::Constant &&
2416             cast<ConstantSDNode>(RHS)->isNullValue()) {
2417    std::swap(LHS, RHS);
2418    SDValue Op0 = Slct.getOperand(0);
2419    MVT OpVT = isSlctCC ? Op0.getValueType() :
2420                          Op0.getOperand(0).getValueType();
2421    bool isInt = OpVT.isInteger();
2422    CC = ISD::getSetCCInverse(CC, isInt);
2423
2424    if (!TLI.isCondCodeLegal(CC, OpVT))
2425      return SDValue();         // Inverse operator isn't legal.
2426
2427    DoXform = true;
2428    InvCC = true;
2429  }
2430
2431  if (DoXform) {
2432    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
2433    if (isSlctCC)
2434      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
2435                             Slct.getOperand(0), Slct.getOperand(1), CC);
2436    SDValue CCOp = Slct.getOperand(0);
2437    if (InvCC)
2438      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
2439                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
2440    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
2441                       CCOp, OtherOp, Result);
2442  }
2443  return SDValue();
2444}
2445
2446/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
2447static SDValue PerformADDCombine(SDNode *N,
2448                                 TargetLowering::DAGCombinerInfo &DCI) {
2449  // added by evan in r37685 with no testcase.
2450  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2451
2452  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
2453  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
2454    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
2455    if (Result.getNode()) return Result;
2456  }
2457  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
2458    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
2459    if (Result.getNode()) return Result;
2460  }
2461
2462  return SDValue();
2463}
2464
2465/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
2466static SDValue PerformSUBCombine(SDNode *N,
2467                                 TargetLowering::DAGCombinerInfo &DCI) {
2468  // added by evan in r37685 with no testcase.
2469  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2470
2471  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
2472  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
2473    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
2474    if (Result.getNode()) return Result;
2475  }
2476
2477  return SDValue();
2478}
2479
2480
2481/// PerformFMRRDCombine - Target-specific dag combine xforms for ARMISD::FMRRD.
2482static SDValue PerformFMRRDCombine(SDNode *N,
2483                                   TargetLowering::DAGCombinerInfo &DCI) {
2484  // fmrrd(fmdrr x, y) -> x,y
2485  SDValue InDouble = N->getOperand(0);
2486  if (InDouble.getOpcode() == ARMISD::FMDRR)
2487    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
2488  return SDValue();
2489}
2490
2491/// getVShiftImm - Check if this is a valid build_vector for the immediate
2492/// operand of a vector shift operation, where all the elements of the
2493/// build_vector must have the same constant integer value.
2494static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
2495  // Ignore bit_converts.
2496  while (Op.getOpcode() == ISD::BIT_CONVERT)
2497    Op = Op.getOperand(0);
2498  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
2499  APInt SplatBits, SplatUndef;
2500  unsigned SplatBitSize;
2501  bool HasAnyUndefs;
2502  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
2503                                      HasAnyUndefs, ElementBits) ||
2504      SplatBitSize > ElementBits)
2505    return false;
2506  Cnt = SplatBits.getSExtValue();
2507  return true;
2508}
2509
2510/// isVShiftLImm - Check if this is a valid build_vector for the immediate
2511/// operand of a vector shift left operation.  That value must be in the range:
2512///   0 <= Value < ElementBits for a left shift; or
2513///   0 <= Value <= ElementBits for a long left shift.
2514static bool isVShiftLImm(SDValue Op, MVT VT, bool isLong, int64_t &Cnt) {
2515  assert(VT.isVector() && "vector shift count is not a vector type");
2516  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
2517  if (! getVShiftImm(Op, ElementBits, Cnt))
2518    return false;
2519  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
2520}
2521
2522/// isVShiftRImm - Check if this is a valid build_vector for the immediate
2523/// operand of a vector shift right operation.  For a shift opcode, the value
2524/// is positive, but for an intrinsic the value count must be negative. The
2525/// absolute value must be in the range:
2526///   1 <= |Value| <= ElementBits for a right shift; or
2527///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
2528static bool isVShiftRImm(SDValue Op, MVT VT, bool isNarrow, bool isIntrinsic,
2529                         int64_t &Cnt) {
2530  assert(VT.isVector() && "vector shift count is not a vector type");
2531  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
2532  if (! getVShiftImm(Op, ElementBits, Cnt))
2533    return false;
2534  if (isIntrinsic)
2535    Cnt = -Cnt;
2536  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
2537}
2538
2539/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
2540static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
2541  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
2542  switch (IntNo) {
2543  default:
2544    // Don't do anything for most intrinsics.
2545    break;
2546
2547  // Vector shifts: check for immediate versions and lower them.
2548  // Note: This is done during DAG combining instead of DAG legalizing because
2549  // the build_vectors for 64-bit vector element shift counts are generally
2550  // not legal, and it is hard to see their values after they get legalized to
2551  // loads from a constant pool.
2552  case Intrinsic::arm_neon_vshifts:
2553  case Intrinsic::arm_neon_vshiftu:
2554  case Intrinsic::arm_neon_vshiftls:
2555  case Intrinsic::arm_neon_vshiftlu:
2556  case Intrinsic::arm_neon_vshiftn:
2557  case Intrinsic::arm_neon_vrshifts:
2558  case Intrinsic::arm_neon_vrshiftu:
2559  case Intrinsic::arm_neon_vrshiftn:
2560  case Intrinsic::arm_neon_vqshifts:
2561  case Intrinsic::arm_neon_vqshiftu:
2562  case Intrinsic::arm_neon_vqshiftsu:
2563  case Intrinsic::arm_neon_vqshiftns:
2564  case Intrinsic::arm_neon_vqshiftnu:
2565  case Intrinsic::arm_neon_vqshiftnsu:
2566  case Intrinsic::arm_neon_vqrshiftns:
2567  case Intrinsic::arm_neon_vqrshiftnu:
2568  case Intrinsic::arm_neon_vqrshiftnsu: {
2569    MVT VT = N->getOperand(1).getValueType();
2570    int64_t Cnt;
2571    unsigned VShiftOpc = 0;
2572
2573    switch (IntNo) {
2574    case Intrinsic::arm_neon_vshifts:
2575    case Intrinsic::arm_neon_vshiftu:
2576      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
2577        VShiftOpc = ARMISD::VSHL;
2578        break;
2579      }
2580      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
2581        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
2582                     ARMISD::VSHRs : ARMISD::VSHRu);
2583        break;
2584      }
2585      return SDValue();
2586
2587    case Intrinsic::arm_neon_vshiftls:
2588    case Intrinsic::arm_neon_vshiftlu:
2589      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
2590        break;
2591      assert(0 && "invalid shift count for vshll intrinsic");
2592      abort();
2593
2594    case Intrinsic::arm_neon_vrshifts:
2595    case Intrinsic::arm_neon_vrshiftu:
2596      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
2597        break;
2598      return SDValue();
2599
2600    case Intrinsic::arm_neon_vqshifts:
2601    case Intrinsic::arm_neon_vqshiftu:
2602      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
2603        break;
2604      return SDValue();
2605
2606    case Intrinsic::arm_neon_vqshiftsu:
2607      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
2608        break;
2609      assert(0 && "invalid shift count for vqshlu intrinsic");
2610      abort();
2611
2612    case Intrinsic::arm_neon_vshiftn:
2613    case Intrinsic::arm_neon_vrshiftn:
2614    case Intrinsic::arm_neon_vqshiftns:
2615    case Intrinsic::arm_neon_vqshiftnu:
2616    case Intrinsic::arm_neon_vqshiftnsu:
2617    case Intrinsic::arm_neon_vqrshiftns:
2618    case Intrinsic::arm_neon_vqrshiftnu:
2619    case Intrinsic::arm_neon_vqrshiftnsu:
2620      // Narrowing shifts require an immediate right shift.
2621      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
2622        break;
2623      assert(0 && "invalid shift count for narrowing vector shift intrinsic");
2624      abort();
2625
2626    default:
2627      assert(0 && "unhandled vector shift");
2628    }
2629
2630    switch (IntNo) {
2631    case Intrinsic::arm_neon_vshifts:
2632    case Intrinsic::arm_neon_vshiftu:
2633      // Opcode already set above.
2634      break;
2635    case Intrinsic::arm_neon_vshiftls:
2636    case Intrinsic::arm_neon_vshiftlu:
2637      if (Cnt == VT.getVectorElementType().getSizeInBits())
2638        VShiftOpc = ARMISD::VSHLLi;
2639      else
2640        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
2641                     ARMISD::VSHLLs : ARMISD::VSHLLu);
2642      break;
2643    case Intrinsic::arm_neon_vshiftn:
2644      VShiftOpc = ARMISD::VSHRN; break;
2645    case Intrinsic::arm_neon_vrshifts:
2646      VShiftOpc = ARMISD::VRSHRs; break;
2647    case Intrinsic::arm_neon_vrshiftu:
2648      VShiftOpc = ARMISD::VRSHRu; break;
2649    case Intrinsic::arm_neon_vrshiftn:
2650      VShiftOpc = ARMISD::VRSHRN; break;
2651    case Intrinsic::arm_neon_vqshifts:
2652      VShiftOpc = ARMISD::VQSHLs; break;
2653    case Intrinsic::arm_neon_vqshiftu:
2654      VShiftOpc = ARMISD::VQSHLu; break;
2655    case Intrinsic::arm_neon_vqshiftsu:
2656      VShiftOpc = ARMISD::VQSHLsu; break;
2657    case Intrinsic::arm_neon_vqshiftns:
2658      VShiftOpc = ARMISD::VQSHRNs; break;
2659    case Intrinsic::arm_neon_vqshiftnu:
2660      VShiftOpc = ARMISD::VQSHRNu; break;
2661    case Intrinsic::arm_neon_vqshiftnsu:
2662      VShiftOpc = ARMISD::VQSHRNsu; break;
2663    case Intrinsic::arm_neon_vqrshiftns:
2664      VShiftOpc = ARMISD::VQRSHRNs; break;
2665    case Intrinsic::arm_neon_vqrshiftnu:
2666      VShiftOpc = ARMISD::VQRSHRNu; break;
2667    case Intrinsic::arm_neon_vqrshiftnsu:
2668      VShiftOpc = ARMISD::VQRSHRNsu; break;
2669    }
2670
2671    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
2672                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
2673  }
2674
2675  case Intrinsic::arm_neon_vshiftins: {
2676    MVT VT = N->getOperand(1).getValueType();
2677    int64_t Cnt;
2678    unsigned VShiftOpc = 0;
2679
2680    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
2681      VShiftOpc = ARMISD::VSLI;
2682    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
2683      VShiftOpc = ARMISD::VSRI;
2684    else {
2685      assert(0 && "invalid shift count for vsli/vsri intrinsic");
2686      abort();
2687    }
2688
2689    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
2690                       N->getOperand(1), N->getOperand(2),
2691                       DAG.getConstant(Cnt, MVT::i32));
2692  }
2693
2694  case Intrinsic::arm_neon_vqrshifts:
2695  case Intrinsic::arm_neon_vqrshiftu:
2696    // No immediate versions of these to check for.
2697    break;
2698  }
2699
2700  return SDValue();
2701}
2702
2703/// PerformShiftCombine - Checks for immediate versions of vector shifts and
2704/// lowers them.  As with the vector shift intrinsics, this is done during DAG
2705/// combining instead of DAG legalizing because the build_vectors for 64-bit
2706/// vector element shift counts are generally not legal, and it is hard to see
2707/// their values after they get legalized to loads from a constant pool.
2708static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
2709                                   const ARMSubtarget *ST) {
2710  MVT VT = N->getValueType(0);
2711
2712  // Nothing to be done for scalar shifts.
2713  if (! VT.isVector())
2714    return SDValue();
2715
2716  assert(ST->hasNEON() && "unexpected vector shift");
2717  int64_t Cnt;
2718
2719  switch (N->getOpcode()) {
2720  default: assert(0 && "unexpected shift opcode");
2721
2722  case ISD::SHL:
2723    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
2724      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
2725                         DAG.getConstant(Cnt, MVT::i32));
2726    break;
2727
2728  case ISD::SRA:
2729  case ISD::SRL:
2730    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
2731      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
2732                            ARMISD::VSHRs : ARMISD::VSHRu);
2733      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
2734                         DAG.getConstant(Cnt, MVT::i32));
2735    }
2736  }
2737  return SDValue();
2738}
2739
2740/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
2741/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
2742static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
2743                                    const ARMSubtarget *ST) {
2744  SDValue N0 = N->getOperand(0);
2745
2746  // Check for sign- and zero-extensions of vector extract operations of 8-
2747  // and 16-bit vector elements.  NEON supports these directly.  They are
2748  // handled during DAG combining because type legalization will promote them
2749  // to 32-bit types and it is messy to recognize the operations after that.
2750  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2751    SDValue Vec = N0.getOperand(0);
2752    SDValue Lane = N0.getOperand(1);
2753    MVT VT = N->getValueType(0);
2754    MVT EltVT = N0.getValueType();
2755    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2756
2757    if (VT == MVT::i32 &&
2758        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
2759        TLI.isTypeLegal(Vec.getValueType())) {
2760
2761      unsigned Opc = 0;
2762      switch (N->getOpcode()) {
2763      default: assert(0 && "unexpected opcode");
2764      case ISD::SIGN_EXTEND:
2765        Opc = ARMISD::VGETLANEs;
2766        break;
2767      case ISD::ZERO_EXTEND:
2768      case ISD::ANY_EXTEND:
2769        Opc = ARMISD::VGETLANEu;
2770        break;
2771      }
2772      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
2773    }
2774  }
2775
2776  return SDValue();
2777}
2778
2779SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
2780                                             DAGCombinerInfo &DCI) const {
2781  switch (N->getOpcode()) {
2782  default: break;
2783  case ISD::ADD:      return PerformADDCombine(N, DCI);
2784  case ISD::SUB:      return PerformSUBCombine(N, DCI);
2785  case ARMISD::FMRRD: return PerformFMRRDCombine(N, DCI);
2786  case ISD::INTRINSIC_WO_CHAIN:
2787    return PerformIntrinsicCombine(N, DCI.DAG);
2788  case ISD::SHL:
2789  case ISD::SRA:
2790  case ISD::SRL:
2791    return PerformShiftCombine(N, DCI.DAG, Subtarget);
2792  case ISD::SIGN_EXTEND:
2793  case ISD::ZERO_EXTEND:
2794  case ISD::ANY_EXTEND:
2795    return PerformExtendCombine(N, DCI.DAG, Subtarget);
2796  }
2797  return SDValue();
2798}
2799
2800/// isLegalAddressImmediate - Return true if the integer value can be used
2801/// as the offset of the target addressing mode for load / store of the
2802/// given type.
2803static bool isLegalAddressImmediate(int64_t V, MVT VT,
2804                                    const ARMSubtarget *Subtarget) {
2805  if (V == 0)
2806    return true;
2807
2808  if (!VT.isSimple())
2809    return false;
2810
2811  if (Subtarget->isThumb()) {
2812    if (V < 0)
2813      return false;
2814
2815    unsigned Scale = 1;
2816    switch (VT.getSimpleVT()) {
2817    default: return false;
2818    case MVT::i1:
2819    case MVT::i8:
2820      // Scale == 1;
2821      break;
2822    case MVT::i16:
2823      // Scale == 2;
2824      Scale = 2;
2825      break;
2826    case MVT::i32:
2827      // Scale == 4;
2828      Scale = 4;
2829      break;
2830    }
2831
2832    if ((V & (Scale - 1)) != 0)
2833      return false;
2834    V /= Scale;
2835    return V == (V & ((1LL << 5) - 1));
2836  }
2837
2838  if (V < 0)
2839    V = - V;
2840  switch (VT.getSimpleVT()) {
2841  default: return false;
2842  case MVT::i1:
2843  case MVT::i8:
2844  case MVT::i32:
2845    // +- imm12
2846    return V == (V & ((1LL << 12) - 1));
2847  case MVT::i16:
2848    // +- imm8
2849    return V == (V & ((1LL << 8) - 1));
2850  case MVT::f32:
2851  case MVT::f64:
2852    if (!Subtarget->hasVFP2())
2853      return false;
2854    if ((V & 3) != 0)
2855      return false;
2856    V >>= 2;
2857    return V == (V & ((1LL << 8) - 1));
2858  }
2859}
2860
2861/// isLegalAddressingMode - Return true if the addressing mode represented
2862/// by AM is legal for this target, for a load/store of the specified type.
2863bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
2864                                              const Type *Ty) const {
2865  MVT VT = getValueType(Ty, true);
2866  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
2867    return false;
2868
2869  // Can never fold addr of global into load/store.
2870  if (AM.BaseGV)
2871    return false;
2872
2873  switch (AM.Scale) {
2874  case 0:  // no scale reg, must be "r+i" or "r", or "i".
2875    break;
2876  case 1:
2877    if (Subtarget->isThumb())
2878      return false;
2879    // FALL THROUGH.
2880  default:
2881    // ARM doesn't support any R+R*scale+imm addr modes.
2882    if (AM.BaseOffs)
2883      return false;
2884
2885    if (!VT.isSimple())
2886      return false;
2887
2888    int Scale = AM.Scale;
2889    switch (VT.getSimpleVT()) {
2890    default: return false;
2891    case MVT::i1:
2892    case MVT::i8:
2893    case MVT::i32:
2894    case MVT::i64:
2895      // This assumes i64 is legalized to a pair of i32. If not (i.e.
2896      // ldrd / strd are used, then its address mode is same as i16.
2897      // r + r
2898      if (Scale < 0) Scale = -Scale;
2899      if (Scale == 1)
2900        return true;
2901      // r + r << imm
2902      return isPowerOf2_32(Scale & ~1);
2903    case MVT::i16:
2904      // r + r
2905      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
2906        return true;
2907      return false;
2908
2909    case MVT::isVoid:
2910      // Note, we allow "void" uses (basically, uses that aren't loads or
2911      // stores), because arm allows folding a scale into many arithmetic
2912      // operations.  This should be made more precise and revisited later.
2913
2914      // Allow r << imm, but the imm has to be a multiple of two.
2915      if (AM.Scale & 1) return false;
2916      return isPowerOf2_32(AM.Scale);
2917    }
2918    break;
2919  }
2920  return true;
2921}
2922
2923static bool getIndexedAddressParts(SDNode *Ptr, MVT VT,
2924                                   bool isSEXTLoad, SDValue &Base,
2925                                   SDValue &Offset, bool &isInc,
2926                                   SelectionDAG &DAG) {
2927  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
2928    return false;
2929
2930  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
2931    // AddressingMode 3
2932    Base = Ptr->getOperand(0);
2933    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
2934      int RHSC = (int)RHS->getZExtValue();
2935      if (RHSC < 0 && RHSC > -256) {
2936        isInc = false;
2937        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
2938        return true;
2939      }
2940    }
2941    isInc = (Ptr->getOpcode() == ISD::ADD);
2942    Offset = Ptr->getOperand(1);
2943    return true;
2944  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
2945    // AddressingMode 2
2946    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
2947      int RHSC = (int)RHS->getZExtValue();
2948      if (RHSC < 0 && RHSC > -0x1000) {
2949        isInc = false;
2950        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
2951        Base = Ptr->getOperand(0);
2952        return true;
2953      }
2954    }
2955
2956    if (Ptr->getOpcode() == ISD::ADD) {
2957      isInc = true;
2958      ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
2959      if (ShOpcVal != ARM_AM::no_shift) {
2960        Base = Ptr->getOperand(1);
2961        Offset = Ptr->getOperand(0);
2962      } else {
2963        Base = Ptr->getOperand(0);
2964        Offset = Ptr->getOperand(1);
2965      }
2966      return true;
2967    }
2968
2969    isInc = (Ptr->getOpcode() == ISD::ADD);
2970    Base = Ptr->getOperand(0);
2971    Offset = Ptr->getOperand(1);
2972    return true;
2973  }
2974
2975  // FIXME: Use FLDM / FSTM to emulate indexed FP load / store.
2976  return false;
2977}
2978
2979/// getPreIndexedAddressParts - returns true by value, base pointer and
2980/// offset pointer and addressing mode by reference if the node's address
2981/// can be legally represented as pre-indexed load / store address.
2982bool
2983ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2984                                             SDValue &Offset,
2985                                             ISD::MemIndexedMode &AM,
2986                                             SelectionDAG &DAG) const {
2987  if (Subtarget->isThumb())
2988    return false;
2989
2990  MVT VT;
2991  SDValue Ptr;
2992  bool isSEXTLoad = false;
2993  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2994    Ptr = LD->getBasePtr();
2995    VT  = LD->getMemoryVT();
2996    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
2997  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2998    Ptr = ST->getBasePtr();
2999    VT  = ST->getMemoryVT();
3000  } else
3001    return false;
3002
3003  bool isInc;
3004  bool isLegal = getIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base, Offset,
3005                                        isInc, DAG);
3006  if (isLegal) {
3007    AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
3008    return true;
3009  }
3010  return false;
3011}
3012
3013/// getPostIndexedAddressParts - returns true by value, base pointer and
3014/// offset pointer and addressing mode by reference if this node can be
3015/// combined with a load / store to form a post-indexed load / store.
3016bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
3017                                                   SDValue &Base,
3018                                                   SDValue &Offset,
3019                                                   ISD::MemIndexedMode &AM,
3020                                                   SelectionDAG &DAG) const {
3021  if (Subtarget->isThumb())
3022    return false;
3023
3024  MVT VT;
3025  SDValue Ptr;
3026  bool isSEXTLoad = false;
3027  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
3028    VT  = LD->getMemoryVT();
3029    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
3030  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
3031    VT  = ST->getMemoryVT();
3032  } else
3033    return false;
3034
3035  bool isInc;
3036  bool isLegal = getIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
3037                                        isInc, DAG);
3038  if (isLegal) {
3039    AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
3040    return true;
3041  }
3042  return false;
3043}
3044
3045void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
3046                                                       const APInt &Mask,
3047                                                       APInt &KnownZero,
3048                                                       APInt &KnownOne,
3049                                                       const SelectionDAG &DAG,
3050                                                       unsigned Depth) const {
3051  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
3052  switch (Op.getOpcode()) {
3053  default: break;
3054  case ARMISD::CMOV: {
3055    // Bits are known zero/one if known on the LHS and RHS.
3056    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
3057    if (KnownZero == 0 && KnownOne == 0) return;
3058
3059    APInt KnownZeroRHS, KnownOneRHS;
3060    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
3061                          KnownZeroRHS, KnownOneRHS, Depth+1);
3062    KnownZero &= KnownZeroRHS;
3063    KnownOne  &= KnownOneRHS;
3064    return;
3065  }
3066  }
3067}
3068
3069//===----------------------------------------------------------------------===//
3070//                           ARM Inline Assembly Support
3071//===----------------------------------------------------------------------===//
3072
3073/// getConstraintType - Given a constraint letter, return the type of
3074/// constraint it is for this target.
3075ARMTargetLowering::ConstraintType
3076ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
3077  if (Constraint.size() == 1) {
3078    switch (Constraint[0]) {
3079    default:  break;
3080    case 'l': return C_RegisterClass;
3081    case 'w': return C_RegisterClass;
3082    }
3083  }
3084  return TargetLowering::getConstraintType(Constraint);
3085}
3086
3087std::pair<unsigned, const TargetRegisterClass*>
3088ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3089                                                MVT VT) const {
3090  if (Constraint.size() == 1) {
3091    // GCC RS6000 Constraint Letters
3092    switch (Constraint[0]) {
3093    case 'l':
3094      if (Subtarget->isThumb())
3095        return std::make_pair(0U, ARM::tGPRRegisterClass);
3096      else
3097        return std::make_pair(0U, ARM::GPRRegisterClass);
3098    case 'r':
3099      return std::make_pair(0U, ARM::GPRRegisterClass);
3100    case 'w':
3101      if (VT == MVT::f32)
3102        return std::make_pair(0U, ARM::SPRRegisterClass);
3103      if (VT == MVT::f64)
3104        return std::make_pair(0U, ARM::DPRRegisterClass);
3105      break;
3106    }
3107  }
3108  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3109}
3110
3111std::vector<unsigned> ARMTargetLowering::
3112getRegClassForInlineAsmConstraint(const std::string &Constraint,
3113                                  MVT VT) const {
3114  if (Constraint.size() != 1)
3115    return std::vector<unsigned>();
3116
3117  switch (Constraint[0]) {      // GCC ARM Constraint Letters
3118  default: break;
3119  case 'l':
3120    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
3121                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
3122                                 0);
3123  case 'r':
3124    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
3125                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
3126                                 ARM::R8, ARM::R9, ARM::R10, ARM::R11,
3127                                 ARM::R12, ARM::LR, 0);
3128  case 'w':
3129    if (VT == MVT::f32)
3130      return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
3131                                   ARM::S4, ARM::S5, ARM::S6, ARM::S7,
3132                                   ARM::S8, ARM::S9, ARM::S10, ARM::S11,
3133                                   ARM::S12,ARM::S13,ARM::S14,ARM::S15,
3134                                   ARM::S16,ARM::S17,ARM::S18,ARM::S19,
3135                                   ARM::S20,ARM::S21,ARM::S22,ARM::S23,
3136                                   ARM::S24,ARM::S25,ARM::S26,ARM::S27,
3137                                   ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
3138    if (VT == MVT::f64)
3139      return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
3140                                   ARM::D4, ARM::D5, ARM::D6, ARM::D7,
3141                                   ARM::D8, ARM::D9, ARM::D10,ARM::D11,
3142                                   ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
3143      break;
3144  }
3145
3146  return std::vector<unsigned>();
3147}
3148
3149/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3150/// vector.  If it is invalid, don't add anything to Ops.
3151void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3152                                                     char Constraint,
3153                                                     bool hasMemory,
3154                                                     std::vector<SDValue>&Ops,
3155                                                     SelectionDAG &DAG) const {
3156  SDValue Result(0, 0);
3157
3158  switch (Constraint) {
3159  default: break;
3160  case 'I': case 'J': case 'K': case 'L':
3161  case 'M': case 'N': case 'O':
3162    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
3163    if (!C)
3164      return;
3165
3166    int64_t CVal64 = C->getSExtValue();
3167    int CVal = (int) CVal64;
3168    // None of these constraints allow values larger than 32 bits.  Check
3169    // that the value fits in an int.
3170    if (CVal != CVal64)
3171      return;
3172
3173    switch (Constraint) {
3174      case 'I':
3175        if (Subtarget->isThumb()) {
3176          // This must be a constant between 0 and 255, for ADD immediates.
3177          if (CVal >= 0 && CVal <= 255)
3178            break;
3179        } else {
3180          // A constant that can be used as an immediate value in a
3181          // data-processing instruction.
3182          if (ARM_AM::getSOImmVal(CVal) != -1)
3183            break;
3184        }
3185        return;
3186
3187      case 'J':
3188        if (Subtarget->isThumb()) {
3189          // This must be a constant between -255 and -1, for negated ADD
3190          // immediates. This can be used in GCC with an "n" modifier that
3191          // prints the negated value, for use with SUB instructions. It is
3192          // not useful otherwise but is implemented for compatibility.
3193          if (CVal >= -255 && CVal <= -1)
3194            break;
3195        } else {
3196          // This must be a constant between -4095 and 4095. It is not clear
3197          // what this constraint is intended for. Implemented for
3198          // compatibility with GCC.
3199          if (CVal >= -4095 && CVal <= 4095)
3200            break;
3201        }
3202        return;
3203
3204      case 'K':
3205        if (Subtarget->isThumb()) {
3206          // A 32-bit value where only one byte has a nonzero value. Exclude
3207          // zero to match GCC. This constraint is used by GCC internally for
3208          // constants that can be loaded with a move/shift combination.
3209          // It is not useful otherwise but is implemented for compatibility.
3210          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
3211            break;
3212        } else {
3213          // A constant whose bitwise inverse can be used as an immediate
3214          // value in a data-processing instruction. This can be used in GCC
3215          // with a "B" modifier that prints the inverted value, for use with
3216          // BIC and MVN instructions. It is not useful otherwise but is
3217          // implemented for compatibility.
3218          if (ARM_AM::getSOImmVal(~CVal) != -1)
3219            break;
3220        }
3221        return;
3222
3223      case 'L':
3224        if (Subtarget->isThumb()) {
3225          // This must be a constant between -7 and 7,
3226          // for 3-operand ADD/SUB immediate instructions.
3227          if (CVal >= -7 && CVal < 7)
3228            break;
3229        } else {
3230          // A constant whose negation can be used as an immediate value in a
3231          // data-processing instruction. This can be used in GCC with an "n"
3232          // modifier that prints the negated value, for use with SUB
3233          // instructions. It is not useful otherwise but is implemented for
3234          // compatibility.
3235          if (ARM_AM::getSOImmVal(-CVal) != -1)
3236            break;
3237        }
3238        return;
3239
3240      case 'M':
3241        if (Subtarget->isThumb()) {
3242          // This must be a multiple of 4 between 0 and 1020, for
3243          // ADD sp + immediate.
3244          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
3245            break;
3246        } else {
3247          // A power of two or a constant between 0 and 32.  This is used in
3248          // GCC for the shift amount on shifted register operands, but it is
3249          // useful in general for any shift amounts.
3250          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
3251            break;
3252        }
3253        return;
3254
3255      case 'N':
3256        if (Subtarget->isThumb()) {
3257          // This must be a constant between 0 and 31, for shift amounts.
3258          if (CVal >= 0 && CVal <= 31)
3259            break;
3260        }
3261        return;
3262
3263      case 'O':
3264        if (Subtarget->isThumb()) {
3265          // This must be a multiple of 4 between -508 and 508, for
3266          // ADD/SUB sp = sp + immediate.
3267          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
3268            break;
3269        }
3270        return;
3271    }
3272    Result = DAG.getTargetConstant(CVal, Op.getValueType());
3273    break;
3274  }
3275
3276  if (Result.getNode()) {
3277    Ops.push_back(Result);
3278    return;
3279  }
3280  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
3281                                                      Ops, DAG);
3282}
3283