ARMISelLowering.cpp revision e7b52526d386cd0d3a08b8daa7db67839649bb37
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "ARM.h"
16#include "ARMAddressingModes.h"
17#include "ARMConstantPoolValue.h"
18#include "ARMISelLowering.h"
19#include "ARMMachineFunctionInfo.h"
20#include "ARMPerfectShuffle.h"
21#include "ARMRegisterInfo.h"
22#include "ARMSubtarget.h"
23#include "ARMTargetMachine.h"
24#include "ARMTargetObjectFile.h"
25#include "llvm/CallingConv.h"
26#include "llvm/Constants.h"
27#include "llvm/Function.h"
28#include "llvm/GlobalValue.h"
29#include "llvm/Instruction.h"
30#include "llvm/Intrinsics.h"
31#include "llvm/Type.h"
32#include "llvm/CodeGen/CallingConvLower.h"
33#include "llvm/CodeGen/MachineBasicBlock.h"
34#include "llvm/CodeGen/MachineFrameInfo.h"
35#include "llvm/CodeGen/MachineFunction.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/CodeGen/SelectionDAG.h"
40#include "llvm/MC/MCSectionMachO.h"
41#include "llvm/Target/TargetOptions.h"
42#include "llvm/ADT/VectorExtras.h"
43#include "llvm/Support/CommandLine.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Support/raw_ostream.h"
47#include <sstream>
48using namespace llvm;
49
50static cl::opt<bool>
51EnableARMLongCalls("arm-long-calls", cl::Hidden,
52  cl::desc("Generate calls via indirect call instructions."),
53  cl::init(false));
54
55static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
56                                   CCValAssign::LocInfo &LocInfo,
57                                   ISD::ArgFlagsTy &ArgFlags,
58                                   CCState &State);
59static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
60                                    CCValAssign::LocInfo &LocInfo,
61                                    ISD::ArgFlagsTy &ArgFlags,
62                                    CCState &State);
63static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
64                                      CCValAssign::LocInfo &LocInfo,
65                                      ISD::ArgFlagsTy &ArgFlags,
66                                      CCState &State);
67static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
68                                       CCValAssign::LocInfo &LocInfo,
69                                       ISD::ArgFlagsTy &ArgFlags,
70                                       CCState &State);
71
72void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
73                                       EVT PromotedBitwiseVT) {
74  if (VT != PromotedLdStVT) {
75    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
76    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
77                       PromotedLdStVT.getSimpleVT());
78
79    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
80    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
81                       PromotedLdStVT.getSimpleVT());
82  }
83
84  EVT ElemTy = VT.getVectorElementType();
85  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
86    setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom);
87  if (ElemTy == MVT::i8 || ElemTy == MVT::i16)
88    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
89  if (ElemTy != MVT::i32) {
90    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
91    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
92    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
93    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
94  }
95  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
96  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
97  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Custom);
98  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Expand);
99  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
100  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
101  if (VT.isInteger()) {
102    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
103    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
104    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
105  }
106
107  // Promote all bit-wise operations.
108  if (VT.isInteger() && VT != PromotedBitwiseVT) {
109    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
110    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
111                       PromotedBitwiseVT.getSimpleVT());
112    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
113    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
114                       PromotedBitwiseVT.getSimpleVT());
115    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
116    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
117                       PromotedBitwiseVT.getSimpleVT());
118  }
119
120  // Neon does not support vector divide/remainder operations.
121  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
122  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
123  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
124  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
125  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
126  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
127}
128
129void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
130  addRegisterClass(VT, ARM::DPRRegisterClass);
131  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
132}
133
134void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
135  addRegisterClass(VT, ARM::QPRRegisterClass);
136  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
137}
138
139static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
140  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
141    return new TargetLoweringObjectFileMachO();
142
143  return new ARMElfTargetObjectFile();
144}
145
146ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
147    : TargetLowering(TM, createTLOF(TM)) {
148  Subtarget = &TM.getSubtarget<ARMSubtarget>();
149
150  if (Subtarget->isTargetDarwin()) {
151    // Uses VFP for Thumb libfuncs if available.
152    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
153      // Single-precision floating-point arithmetic.
154      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
155      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
156      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
157      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
158
159      // Double-precision floating-point arithmetic.
160      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
161      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
162      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
163      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
164
165      // Single-precision comparisons.
166      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
167      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
168      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
169      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
170      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
171      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
172      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
173      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
174
175      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
176      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
177      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
178      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
179      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
180      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
181      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
182      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
183
184      // Double-precision comparisons.
185      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
186      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
187      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
188      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
189      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
190      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
191      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
192      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
193
194      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
195      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
196      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
197      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
198      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
199      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
200      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
201      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
202
203      // Floating-point to integer conversions.
204      // i64 conversions are done via library routines even when generating VFP
205      // instructions, so use the same ones.
206      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
207      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
208      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
209      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
210
211      // Conversions between floating types.
212      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
213      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
214
215      // Integer to floating-point conversions.
216      // i64 conversions are done via library routines even when generating VFP
217      // instructions, so use the same ones.
218      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
219      // e.g., __floatunsidf vs. __floatunssidfvfp.
220      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
221      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
222      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
223      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
224    }
225  }
226
227  // These libcalls are not available in 32-bit.
228  setLibcallName(RTLIB::SHL_I128, 0);
229  setLibcallName(RTLIB::SRL_I128, 0);
230  setLibcallName(RTLIB::SRA_I128, 0);
231
232  // Libcalls should use the AAPCS base standard ABI, even if hard float
233  // is in effect, as per the ARM RTABI specification, section 4.1.2.
234  if (Subtarget->isAAPCS_ABI()) {
235    for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
236      setLibcallCallingConv(static_cast<RTLIB::Libcall>(i),
237                            CallingConv::ARM_AAPCS);
238    }
239  }
240
241  if (Subtarget->isThumb1Only())
242    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
243  else
244    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
245  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
246    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
247    addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
248
249    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
250  }
251
252  if (Subtarget->hasNEON()) {
253    addDRTypeForNEON(MVT::v2f32);
254    addDRTypeForNEON(MVT::v8i8);
255    addDRTypeForNEON(MVT::v4i16);
256    addDRTypeForNEON(MVT::v2i32);
257    addDRTypeForNEON(MVT::v1i64);
258
259    addQRTypeForNEON(MVT::v4f32);
260    addQRTypeForNEON(MVT::v2f64);
261    addQRTypeForNEON(MVT::v16i8);
262    addQRTypeForNEON(MVT::v8i16);
263    addQRTypeForNEON(MVT::v4i32);
264    addQRTypeForNEON(MVT::v2i64);
265
266    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
267    // neither Neon nor VFP support any arithmetic operations on it.
268    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
269    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
270    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
271    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
272    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
273    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
274    setOperationAction(ISD::VSETCC, MVT::v2f64, Expand);
275    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
276    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
277    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
278    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
279    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
280    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
281    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
282    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
283    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
284    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
285    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
286    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
287    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
288    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
289    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
290    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
291    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
292
293    // Neon does not support some operations on v1i64 and v2i64 types.
294    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
295    setOperationAction(ISD::MUL, MVT::v2i64, Expand);
296    setOperationAction(ISD::VSETCC, MVT::v1i64, Expand);
297    setOperationAction(ISD::VSETCC, MVT::v2i64, Expand);
298
299    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
300    setTargetDAGCombine(ISD::SHL);
301    setTargetDAGCombine(ISD::SRL);
302    setTargetDAGCombine(ISD::SRA);
303    setTargetDAGCombine(ISD::SIGN_EXTEND);
304    setTargetDAGCombine(ISD::ZERO_EXTEND);
305    setTargetDAGCombine(ISD::ANY_EXTEND);
306    setTargetDAGCombine(ISD::SELECT_CC);
307  }
308
309  computeRegisterProperties();
310
311  // ARM does not have f32 extending load.
312  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
313
314  // ARM does not have i1 sign extending load.
315  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
316
317  // ARM supports all 4 flavors of integer indexed load / store.
318  if (!Subtarget->isThumb1Only()) {
319    for (unsigned im = (unsigned)ISD::PRE_INC;
320         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
321      setIndexedLoadAction(im,  MVT::i1,  Legal);
322      setIndexedLoadAction(im,  MVT::i8,  Legal);
323      setIndexedLoadAction(im,  MVT::i16, Legal);
324      setIndexedLoadAction(im,  MVT::i32, Legal);
325      setIndexedStoreAction(im, MVT::i1,  Legal);
326      setIndexedStoreAction(im, MVT::i8,  Legal);
327      setIndexedStoreAction(im, MVT::i16, Legal);
328      setIndexedStoreAction(im, MVT::i32, Legal);
329    }
330  }
331
332  // i64 operation support.
333  if (Subtarget->isThumb1Only()) {
334    setOperationAction(ISD::MUL,     MVT::i64, Expand);
335    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
336    setOperationAction(ISD::MULHS,   MVT::i32, Expand);
337    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
338    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
339  } else {
340    setOperationAction(ISD::MUL,     MVT::i64, Expand);
341    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
342    if (!Subtarget->hasV6Ops())
343      setOperationAction(ISD::MULHS, MVT::i32, Expand);
344  }
345  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
346  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
347  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
348  setOperationAction(ISD::SRL,       MVT::i64, Custom);
349  setOperationAction(ISD::SRA,       MVT::i64, Custom);
350
351  // ARM does not have ROTL.
352  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
353  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
354  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
355  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
356    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
357
358  // Only ARMv6 has BSWAP.
359  if (!Subtarget->hasV6Ops())
360    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
361
362  // These are expanded into libcalls.
363  setOperationAction(ISD::SDIV,  MVT::i32, Expand);
364  setOperationAction(ISD::UDIV,  MVT::i32, Expand);
365  setOperationAction(ISD::SREM,  MVT::i32, Expand);
366  setOperationAction(ISD::UREM,  MVT::i32, Expand);
367  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
368  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
369
370  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
371  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
372  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
373  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
374  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
375
376  // Use the default implementation.
377  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
378  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
379  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
380  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
381  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
382  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
383  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
384  // FIXME: Shouldn't need this, since no register is used, but the legalizer
385  // doesn't yet know how to not do that for SjLj.
386  setExceptionSelectorRegister(ARM::R0);
387  if (Subtarget->isThumb())
388    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
389  else
390    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
391  setOperationAction(ISD::MEMBARRIER,         MVT::Other, Custom);
392
393  if (!Subtarget->hasV6Ops() && !Subtarget->isThumb2()) {
394    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
395    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
396  }
397  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
398
399  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only())
400    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
401    // iff target supports vfp2.
402    setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom);
403
404  // We want to custom lower some of our intrinsics.
405  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
406
407  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
408  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
409  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
410  setOperationAction(ISD::SELECT,    MVT::i32, Expand);
411  setOperationAction(ISD::SELECT,    MVT::f32, Expand);
412  setOperationAction(ISD::SELECT,    MVT::f64, Expand);
413  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
414  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
415  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
416
417  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
418  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
419  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
420  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
421  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
422
423  // We don't support sin/cos/fmod/copysign/pow
424  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
425  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
426  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
427  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
428  setOperationAction(ISD::FREM,      MVT::f64, Expand);
429  setOperationAction(ISD::FREM,      MVT::f32, Expand);
430  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
431    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
432    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
433  }
434  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
435  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
436
437  // Various VFP goodness
438  if (!UseSoftFloat && !Subtarget->isThumb1Only()) {
439    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
440    if (Subtarget->hasVFP2()) {
441      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
442      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
443      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
444      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
445    }
446    // Special handling for half-precision FP.
447    if (!Subtarget->hasFP16()) {
448      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
449      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
450    }
451  }
452
453  // We have target-specific dag combine patterns for the following nodes:
454  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
455  setTargetDAGCombine(ISD::ADD);
456  setTargetDAGCombine(ISD::SUB);
457
458  setStackPointerRegisterToSaveRestore(ARM::SP);
459  setSchedulingPreference(SchedulingForRegPressure);
460
461  // FIXME: If-converter should use instruction latency to determine
462  // profitability rather than relying on fixed limits.
463  if (Subtarget->getCPUString() == "generic") {
464    // Generic (and overly aggressive) if-conversion limits.
465    setIfCvtBlockSizeLimit(10);
466    setIfCvtDupBlockSizeLimit(2);
467  } else if (Subtarget->hasV7Ops()) {
468    setIfCvtBlockSizeLimit(3);
469    setIfCvtDupBlockSizeLimit(1);
470  } else if (Subtarget->hasV6Ops()) {
471    setIfCvtBlockSizeLimit(2);
472    setIfCvtDupBlockSizeLimit(1);
473  } else {
474    setIfCvtBlockSizeLimit(3);
475    setIfCvtDupBlockSizeLimit(2);
476  }
477
478  maxStoresPerMemcpy = 1;   //// temporary - rewrite interface to use type
479  // Do not enable CodePlacementOpt for now: it currently runs after the
480  // ARMConstantIslandPass and messes up branch relaxation and placement
481  // of constant islands.
482  // benefitFromCodePlacementOpt = true;
483}
484
485const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
486  switch (Opcode) {
487  default: return 0;
488  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
489  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
490  case ARMISD::CALL:          return "ARMISD::CALL";
491  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
492  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
493  case ARMISD::tCALL:         return "ARMISD::tCALL";
494  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
495  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
496  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
497  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
498  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
499  case ARMISD::CMP:           return "ARMISD::CMP";
500  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
501  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
502  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
503  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
504  case ARMISD::CMOV:          return "ARMISD::CMOV";
505  case ARMISD::CNEG:          return "ARMISD::CNEG";
506
507  case ARMISD::RBIT:          return "ARMISD::RBIT";
508
509  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
510  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
511  case ARMISD::SITOF:         return "ARMISD::SITOF";
512  case ARMISD::UITOF:         return "ARMISD::UITOF";
513
514  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
515  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
516  case ARMISD::RRX:           return "ARMISD::RRX";
517
518  case ARMISD::VMOVRRD:         return "ARMISD::VMOVRRD";
519  case ARMISD::VMOVDRR:         return "ARMISD::VMOVDRR";
520
521  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
522  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
523
524  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
525
526  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
527
528  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
529  case ARMISD::SYNCBARRIER:   return "ARMISD::SYNCBARRIER";
530
531  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
532  case ARMISD::VCGE:          return "ARMISD::VCGE";
533  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
534  case ARMISD::VCGT:          return "ARMISD::VCGT";
535  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
536  case ARMISD::VTST:          return "ARMISD::VTST";
537
538  case ARMISD::VSHL:          return "ARMISD::VSHL";
539  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
540  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
541  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
542  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
543  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
544  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
545  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
546  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
547  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
548  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
549  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
550  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
551  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
552  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
553  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
554  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
555  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
556  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
557  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
558  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
559  case ARMISD::VDUP:          return "ARMISD::VDUP";
560  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
561  case ARMISD::VEXT:          return "ARMISD::VEXT";
562  case ARMISD::VREV64:        return "ARMISD::VREV64";
563  case ARMISD::VREV32:        return "ARMISD::VREV32";
564  case ARMISD::VREV16:        return "ARMISD::VREV16";
565  case ARMISD::VZIP:          return "ARMISD::VZIP";
566  case ARMISD::VUZP:          return "ARMISD::VUZP";
567  case ARMISD::VTRN:          return "ARMISD::VTRN";
568  case ARMISD::FMAX:          return "ARMISD::FMAX";
569  case ARMISD::FMIN:          return "ARMISD::FMIN";
570  }
571}
572
573/// getFunctionAlignment - Return the Log2 alignment of this function.
574unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const {
575  return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 0 : 1;
576}
577
578//===----------------------------------------------------------------------===//
579// Lowering Code
580//===----------------------------------------------------------------------===//
581
582/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
583static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
584  switch (CC) {
585  default: llvm_unreachable("Unknown condition code!");
586  case ISD::SETNE:  return ARMCC::NE;
587  case ISD::SETEQ:  return ARMCC::EQ;
588  case ISD::SETGT:  return ARMCC::GT;
589  case ISD::SETGE:  return ARMCC::GE;
590  case ISD::SETLT:  return ARMCC::LT;
591  case ISD::SETLE:  return ARMCC::LE;
592  case ISD::SETUGT: return ARMCC::HI;
593  case ISD::SETUGE: return ARMCC::HS;
594  case ISD::SETULT: return ARMCC::LO;
595  case ISD::SETULE: return ARMCC::LS;
596  }
597}
598
599/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
600static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
601                        ARMCC::CondCodes &CondCode2) {
602  CondCode2 = ARMCC::AL;
603  switch (CC) {
604  default: llvm_unreachable("Unknown FP condition!");
605  case ISD::SETEQ:
606  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
607  case ISD::SETGT:
608  case ISD::SETOGT: CondCode = ARMCC::GT; break;
609  case ISD::SETGE:
610  case ISD::SETOGE: CondCode = ARMCC::GE; break;
611  case ISD::SETOLT: CondCode = ARMCC::MI; break;
612  case ISD::SETOLE: CondCode = ARMCC::LS; break;
613  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
614  case ISD::SETO:   CondCode = ARMCC::VC; break;
615  case ISD::SETUO:  CondCode = ARMCC::VS; break;
616  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
617  case ISD::SETUGT: CondCode = ARMCC::HI; break;
618  case ISD::SETUGE: CondCode = ARMCC::PL; break;
619  case ISD::SETLT:
620  case ISD::SETULT: CondCode = ARMCC::LT; break;
621  case ISD::SETLE:
622  case ISD::SETULE: CondCode = ARMCC::LE; break;
623  case ISD::SETNE:
624  case ISD::SETUNE: CondCode = ARMCC::NE; break;
625  }
626}
627
628//===----------------------------------------------------------------------===//
629//                      Calling Convention Implementation
630//===----------------------------------------------------------------------===//
631
632#include "ARMGenCallingConv.inc"
633
634// APCS f64 is in register pairs, possibly split to stack
635static bool f64AssignAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
636                          CCValAssign::LocInfo &LocInfo,
637                          CCState &State, bool CanFail) {
638  static const unsigned RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
639
640  // Try to get the first register.
641  if (unsigned Reg = State.AllocateReg(RegList, 4))
642    State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
643  else {
644    // For the 2nd half of a v2f64, do not fail.
645    if (CanFail)
646      return false;
647
648    // Put the whole thing on the stack.
649    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
650                                           State.AllocateStack(8, 4),
651                                           LocVT, LocInfo));
652    return true;
653  }
654
655  // Try to get the second register.
656  if (unsigned Reg = State.AllocateReg(RegList, 4))
657    State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
658  else
659    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
660                                           State.AllocateStack(4, 4),
661                                           LocVT, LocInfo));
662  return true;
663}
664
665static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
666                                   CCValAssign::LocInfo &LocInfo,
667                                   ISD::ArgFlagsTy &ArgFlags,
668                                   CCState &State) {
669  if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
670    return false;
671  if (LocVT == MVT::v2f64 &&
672      !f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
673    return false;
674  return true;  // we handled it
675}
676
677// AAPCS f64 is in aligned register pairs
678static bool f64AssignAAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
679                           CCValAssign::LocInfo &LocInfo,
680                           CCState &State, bool CanFail) {
681  static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
682  static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
683
684  unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
685  if (Reg == 0) {
686    // For the 2nd half of a v2f64, do not just fail.
687    if (CanFail)
688      return false;
689
690    // Put the whole thing on the stack.
691    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
692                                           State.AllocateStack(8, 8),
693                                           LocVT, LocInfo));
694    return true;
695  }
696
697  unsigned i;
698  for (i = 0; i < 2; ++i)
699    if (HiRegList[i] == Reg)
700      break;
701
702  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
703  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
704                                         LocVT, LocInfo));
705  return true;
706}
707
708static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
709                                    CCValAssign::LocInfo &LocInfo,
710                                    ISD::ArgFlagsTy &ArgFlags,
711                                    CCState &State) {
712  if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
713    return false;
714  if (LocVT == MVT::v2f64 &&
715      !f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
716    return false;
717  return true;  // we handled it
718}
719
720static bool f64RetAssign(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
721                         CCValAssign::LocInfo &LocInfo, CCState &State) {
722  static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
723  static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
724
725  unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
726  if (Reg == 0)
727    return false; // we didn't handle it
728
729  unsigned i;
730  for (i = 0; i < 2; ++i)
731    if (HiRegList[i] == Reg)
732      break;
733
734  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
735  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
736                                         LocVT, LocInfo));
737  return true;
738}
739
740static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
741                                      CCValAssign::LocInfo &LocInfo,
742                                      ISD::ArgFlagsTy &ArgFlags,
743                                      CCState &State) {
744  if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
745    return false;
746  if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
747    return false;
748  return true;  // we handled it
749}
750
751static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
752                                       CCValAssign::LocInfo &LocInfo,
753                                       ISD::ArgFlagsTy &ArgFlags,
754                                       CCState &State) {
755  return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags,
756                                   State);
757}
758
759/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
760/// given CallingConvention value.
761CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
762                                                 bool Return,
763                                                 bool isVarArg) const {
764  switch (CC) {
765  default:
766    llvm_unreachable("Unsupported calling convention");
767  case CallingConv::C:
768  case CallingConv::Fast:
769    // Use target triple & subtarget features to do actual dispatch.
770    if (Subtarget->isAAPCS_ABI()) {
771      if (Subtarget->hasVFP2() &&
772          FloatABIType == FloatABI::Hard && !isVarArg)
773        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
774      else
775        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
776    } else
777        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
778  case CallingConv::ARM_AAPCS_VFP:
779    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
780  case CallingConv::ARM_AAPCS:
781    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
782  case CallingConv::ARM_APCS:
783    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
784  }
785}
786
787/// LowerCallResult - Lower the result values of a call into the
788/// appropriate copies out of appropriate physical registers.
789SDValue
790ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
791                                   CallingConv::ID CallConv, bool isVarArg,
792                                   const SmallVectorImpl<ISD::InputArg> &Ins,
793                                   DebugLoc dl, SelectionDAG &DAG,
794                                   SmallVectorImpl<SDValue> &InVals) {
795
796  // Assign locations to each value returned by this call.
797  SmallVector<CCValAssign, 16> RVLocs;
798  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
799                 RVLocs, *DAG.getContext());
800  CCInfo.AnalyzeCallResult(Ins,
801                           CCAssignFnForNode(CallConv, /* Return*/ true,
802                                             isVarArg));
803
804  // Copy all of the result registers out of their specified physreg.
805  for (unsigned i = 0; i != RVLocs.size(); ++i) {
806    CCValAssign VA = RVLocs[i];
807
808    SDValue Val;
809    if (VA.needsCustom()) {
810      // Handle f64 or half of a v2f64.
811      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
812                                      InFlag);
813      Chain = Lo.getValue(1);
814      InFlag = Lo.getValue(2);
815      VA = RVLocs[++i]; // skip ahead to next loc
816      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
817                                      InFlag);
818      Chain = Hi.getValue(1);
819      InFlag = Hi.getValue(2);
820      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
821
822      if (VA.getLocVT() == MVT::v2f64) {
823        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
824        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
825                          DAG.getConstant(0, MVT::i32));
826
827        VA = RVLocs[++i]; // skip ahead to next loc
828        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
829        Chain = Lo.getValue(1);
830        InFlag = Lo.getValue(2);
831        VA = RVLocs[++i]; // skip ahead to next loc
832        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
833        Chain = Hi.getValue(1);
834        InFlag = Hi.getValue(2);
835        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
836        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
837                          DAG.getConstant(1, MVT::i32));
838      }
839    } else {
840      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
841                               InFlag);
842      Chain = Val.getValue(1);
843      InFlag = Val.getValue(2);
844    }
845
846    switch (VA.getLocInfo()) {
847    default: llvm_unreachable("Unknown loc info!");
848    case CCValAssign::Full: break;
849    case CCValAssign::BCvt:
850      Val = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), Val);
851      break;
852    }
853
854    InVals.push_back(Val);
855  }
856
857  return Chain;
858}
859
860/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
861/// by "Src" to address "Dst" of size "Size".  Alignment information is
862/// specified by the specific parameter attribute.  The copy will be passed as
863/// a byval function parameter.
864/// Sometimes what we are copying is the end of a larger object, the part that
865/// does not fit in registers.
866static SDValue
867CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
868                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
869                          DebugLoc dl) {
870  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
871  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
872                       /*isVolatile=*/false, /*AlwaysInline=*/false,
873                       NULL, 0, NULL, 0);
874}
875
876/// LowerMemOpCallTo - Store the argument to the stack.
877SDValue
878ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
879                                    SDValue StackPtr, SDValue Arg,
880                                    DebugLoc dl, SelectionDAG &DAG,
881                                    const CCValAssign &VA,
882                                    ISD::ArgFlagsTy Flags) {
883  unsigned LocMemOffset = VA.getLocMemOffset();
884  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
885  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
886  if (Flags.isByVal()) {
887    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
888  }
889  return DAG.getStore(Chain, dl, Arg, PtrOff,
890                      PseudoSourceValue::getStack(), LocMemOffset,
891                      false, false, 0);
892}
893
894void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
895                                         SDValue Chain, SDValue &Arg,
896                                         RegsToPassVector &RegsToPass,
897                                         CCValAssign &VA, CCValAssign &NextVA,
898                                         SDValue &StackPtr,
899                                         SmallVector<SDValue, 8> &MemOpChains,
900                                         ISD::ArgFlagsTy Flags) {
901
902  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
903                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
904  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
905
906  if (NextVA.isRegLoc())
907    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
908  else {
909    assert(NextVA.isMemLoc());
910    if (StackPtr.getNode() == 0)
911      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
912
913    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
914                                           dl, DAG, NextVA,
915                                           Flags));
916  }
917}
918
919/// LowerCall - Lowering a call into a callseq_start <-
920/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
921/// nodes.
922SDValue
923ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
924                             CallingConv::ID CallConv, bool isVarArg,
925                             bool &isTailCall,
926                             const SmallVectorImpl<ISD::OutputArg> &Outs,
927                             const SmallVectorImpl<ISD::InputArg> &Ins,
928                             DebugLoc dl, SelectionDAG &DAG,
929                             SmallVectorImpl<SDValue> &InVals) {
930  // ARM target does not yet support tail call optimization.
931  isTailCall = false;
932
933  // Analyze operands of the call, assigning locations to each operand.
934  SmallVector<CCValAssign, 16> ArgLocs;
935  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
936                 *DAG.getContext());
937  CCInfo.AnalyzeCallOperands(Outs,
938                             CCAssignFnForNode(CallConv, /* Return*/ false,
939                                               isVarArg));
940
941  // Get a count of how many bytes are to be pushed on the stack.
942  unsigned NumBytes = CCInfo.getNextStackOffset();
943
944  // Adjust the stack pointer for the new arguments...
945  // These operations are automatically eliminated by the prolog/epilog pass
946  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
947
948  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
949
950  RegsToPassVector RegsToPass;
951  SmallVector<SDValue, 8> MemOpChains;
952
953  // Walk the register/memloc assignments, inserting copies/loads.  In the case
954  // of tail call optimization, arguments are handled later.
955  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
956       i != e;
957       ++i, ++realArgIdx) {
958    CCValAssign &VA = ArgLocs[i];
959    SDValue Arg = Outs[realArgIdx].Val;
960    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
961
962    // Promote the value if needed.
963    switch (VA.getLocInfo()) {
964    default: llvm_unreachable("Unknown loc info!");
965    case CCValAssign::Full: break;
966    case CCValAssign::SExt:
967      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
968      break;
969    case CCValAssign::ZExt:
970      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
971      break;
972    case CCValAssign::AExt:
973      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
974      break;
975    case CCValAssign::BCvt:
976      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
977      break;
978    }
979
980    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
981    if (VA.needsCustom()) {
982      if (VA.getLocVT() == MVT::v2f64) {
983        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
984                                  DAG.getConstant(0, MVT::i32));
985        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
986                                  DAG.getConstant(1, MVT::i32));
987
988        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
989                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
990
991        VA = ArgLocs[++i]; // skip ahead to next loc
992        if (VA.isRegLoc()) {
993          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
994                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
995        } else {
996          assert(VA.isMemLoc());
997
998          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
999                                                 dl, DAG, VA, Flags));
1000        }
1001      } else {
1002        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1003                         StackPtr, MemOpChains, Flags);
1004      }
1005    } else if (VA.isRegLoc()) {
1006      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1007    } else {
1008      assert(VA.isMemLoc());
1009
1010      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1011                                             dl, DAG, VA, Flags));
1012    }
1013  }
1014
1015  if (!MemOpChains.empty())
1016    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1017                        &MemOpChains[0], MemOpChains.size());
1018
1019  // Build a sequence of copy-to-reg nodes chained together with token chain
1020  // and flag operands which copy the outgoing args into the appropriate regs.
1021  SDValue InFlag;
1022  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1023    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1024                             RegsToPass[i].second, InFlag);
1025    InFlag = Chain.getValue(1);
1026  }
1027
1028  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1029  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1030  // node so that legalize doesn't hack it.
1031  bool isDirect = false;
1032  bool isARMFunc = false;
1033  bool isLocalARMFunc = false;
1034  MachineFunction &MF = DAG.getMachineFunction();
1035  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1036
1037  if (EnableARMLongCalls) {
1038    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1039            && "long-calls with non-static relocation model!");
1040    // Handle a global address or an external symbol. If it's not one of
1041    // those, the target's already in a register, so we don't need to do
1042    // anything extra.
1043    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1044      GlobalValue *GV = G->getGlobal();
1045      // Create a constant pool entry for the callee address
1046      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1047      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1048                                                           ARMPCLabelIndex,
1049                                                           ARMCP::CPValue, 0);
1050      // Get the address of the callee into a register
1051      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1052      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1053      Callee = DAG.getLoad(getPointerTy(), dl,
1054                           DAG.getEntryNode(), CPAddr,
1055                           PseudoSourceValue::getConstantPool(), 0,
1056                           false, false, 0);
1057    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1058      const char *Sym = S->getSymbol();
1059
1060      // Create a constant pool entry for the callee address
1061      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1062      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1063                                                       Sym, ARMPCLabelIndex, 0);
1064      // Get the address of the callee into a register
1065      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1066      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1067      Callee = DAG.getLoad(getPointerTy(), dl,
1068                           DAG.getEntryNode(), CPAddr,
1069                           PseudoSourceValue::getConstantPool(), 0,
1070                           false, false, 0);
1071    }
1072  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1073    GlobalValue *GV = G->getGlobal();
1074    isDirect = true;
1075    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1076    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1077                   getTargetMachine().getRelocationModel() != Reloc::Static;
1078    isARMFunc = !Subtarget->isThumb() || isStub;
1079    // ARM call to a local ARM function is predicable.
1080    isLocalARMFunc = !Subtarget->isThumb() && !isExt;
1081    // tBX takes a register source operand.
1082    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1083      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1084      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1085                                                           ARMPCLabelIndex,
1086                                                           ARMCP::CPValue, 4);
1087      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1088      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1089      Callee = DAG.getLoad(getPointerTy(), dl,
1090                           DAG.getEntryNode(), CPAddr,
1091                           PseudoSourceValue::getConstantPool(), 0,
1092                           false, false, 0);
1093      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1094      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1095                           getPointerTy(), Callee, PICLabel);
1096    } else
1097      Callee = DAG.getTargetGlobalAddress(GV, getPointerTy());
1098  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1099    isDirect = true;
1100    bool isStub = Subtarget->isTargetDarwin() &&
1101                  getTargetMachine().getRelocationModel() != Reloc::Static;
1102    isARMFunc = !Subtarget->isThumb() || isStub;
1103    // tBX takes a register source operand.
1104    const char *Sym = S->getSymbol();
1105    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1106      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1107      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1108                                                       Sym, ARMPCLabelIndex, 4);
1109      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1110      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1111      Callee = DAG.getLoad(getPointerTy(), dl,
1112                           DAG.getEntryNode(), CPAddr,
1113                           PseudoSourceValue::getConstantPool(), 0,
1114                           false, false, 0);
1115      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1116      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1117                           getPointerTy(), Callee, PICLabel);
1118    } else
1119      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
1120  }
1121
1122  // FIXME: handle tail calls differently.
1123  unsigned CallOpc;
1124  if (Subtarget->isThumb()) {
1125    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1126      CallOpc = ARMISD::CALL_NOLINK;
1127    else
1128      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1129  } else {
1130    CallOpc = (isDirect || Subtarget->hasV5TOps())
1131      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1132      : ARMISD::CALL_NOLINK;
1133  }
1134  if (CallOpc == ARMISD::CALL_NOLINK && !Subtarget->isThumb1Only()) {
1135    // implicit def LR - LR mustn't be allocated as GRP:$dst of CALL_NOLINK
1136    Chain = DAG.getCopyToReg(Chain, dl, ARM::LR, DAG.getUNDEF(MVT::i32),InFlag);
1137    InFlag = Chain.getValue(1);
1138  }
1139
1140  std::vector<SDValue> Ops;
1141  Ops.push_back(Chain);
1142  Ops.push_back(Callee);
1143
1144  // Add argument registers to the end of the list so that they are known live
1145  // into the call.
1146  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1147    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1148                                  RegsToPass[i].second.getValueType()));
1149
1150  if (InFlag.getNode())
1151    Ops.push_back(InFlag);
1152  // Returns a chain and a flag for retval copy to use.
1153  Chain = DAG.getNode(CallOpc, dl, DAG.getVTList(MVT::Other, MVT::Flag),
1154                      &Ops[0], Ops.size());
1155  InFlag = Chain.getValue(1);
1156
1157  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1158                             DAG.getIntPtrConstant(0, true), InFlag);
1159  if (!Ins.empty())
1160    InFlag = Chain.getValue(1);
1161
1162  // Handle result values, copying them out of physregs into vregs that we
1163  // return.
1164  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1165                         dl, DAG, InVals);
1166}
1167
1168SDValue
1169ARMTargetLowering::LowerReturn(SDValue Chain,
1170                               CallingConv::ID CallConv, bool isVarArg,
1171                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1172                               DebugLoc dl, SelectionDAG &DAG) {
1173
1174  // CCValAssign - represent the assignment of the return value to a location.
1175  SmallVector<CCValAssign, 16> RVLocs;
1176
1177  // CCState - Info about the registers and stack slots.
1178  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
1179                 *DAG.getContext());
1180
1181  // Analyze outgoing return values.
1182  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1183                                               isVarArg));
1184
1185  // If this is the first return lowered for this function, add
1186  // the regs to the liveout set for the function.
1187  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1188    for (unsigned i = 0; i != RVLocs.size(); ++i)
1189      if (RVLocs[i].isRegLoc())
1190        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1191  }
1192
1193  SDValue Flag;
1194
1195  // Copy the result values into the output registers.
1196  for (unsigned i = 0, realRVLocIdx = 0;
1197       i != RVLocs.size();
1198       ++i, ++realRVLocIdx) {
1199    CCValAssign &VA = RVLocs[i];
1200    assert(VA.isRegLoc() && "Can only return in registers!");
1201
1202    SDValue Arg = Outs[realRVLocIdx].Val;
1203
1204    switch (VA.getLocInfo()) {
1205    default: llvm_unreachable("Unknown loc info!");
1206    case CCValAssign::Full: break;
1207    case CCValAssign::BCvt:
1208      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
1209      break;
1210    }
1211
1212    if (VA.needsCustom()) {
1213      if (VA.getLocVT() == MVT::v2f64) {
1214        // Extract the first half and return it in two registers.
1215        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1216                                   DAG.getConstant(0, MVT::i32));
1217        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1218                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1219
1220        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1221        Flag = Chain.getValue(1);
1222        VA = RVLocs[++i]; // skip ahead to next loc
1223        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1224                                 HalfGPRs.getValue(1), Flag);
1225        Flag = Chain.getValue(1);
1226        VA = RVLocs[++i]; // skip ahead to next loc
1227
1228        // Extract the 2nd half and fall through to handle it as an f64 value.
1229        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1230                          DAG.getConstant(1, MVT::i32));
1231      }
1232      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1233      // available.
1234      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1235                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1236      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1237      Flag = Chain.getValue(1);
1238      VA = RVLocs[++i]; // skip ahead to next loc
1239      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1240                               Flag);
1241    } else
1242      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1243
1244    // Guarantee that all emitted copies are
1245    // stuck together, avoiding something bad.
1246    Flag = Chain.getValue(1);
1247  }
1248
1249  SDValue result;
1250  if (Flag.getNode())
1251    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1252  else // Return Void
1253    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1254
1255  return result;
1256}
1257
1258// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1259// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1260// one of the above mentioned nodes. It has to be wrapped because otherwise
1261// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1262// be used to form addressing mode. These wrapped nodes will be selected
1263// into MOVi.
1264static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1265  EVT PtrVT = Op.getValueType();
1266  // FIXME there is no actual debug info here
1267  DebugLoc dl = Op.getDebugLoc();
1268  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1269  SDValue Res;
1270  if (CP->isMachineConstantPoolEntry())
1271    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1272                                    CP->getAlignment());
1273  else
1274    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1275                                    CP->getAlignment());
1276  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1277}
1278
1279SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) {
1280  MachineFunction &MF = DAG.getMachineFunction();
1281  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1282  unsigned ARMPCLabelIndex = 0;
1283  DebugLoc DL = Op.getDebugLoc();
1284  EVT PtrVT = getPointerTy();
1285  BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1286  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1287  SDValue CPAddr;
1288  if (RelocM == Reloc::Static) {
1289    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
1290  } else {
1291    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1292    ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1293    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex,
1294                                                         ARMCP::CPBlockAddress,
1295                                                         PCAdj);
1296    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1297  }
1298  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
1299  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
1300                               PseudoSourceValue::getConstantPool(), 0,
1301                               false, false, 0);
1302  if (RelocM == Reloc::Static)
1303    return Result;
1304  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1305  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
1306}
1307
1308// Lower ISD::GlobalTLSAddress using the "general dynamic" model
1309SDValue
1310ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1311                                                 SelectionDAG &DAG) {
1312  DebugLoc dl = GA->getDebugLoc();
1313  EVT PtrVT = getPointerTy();
1314  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1315  MachineFunction &MF = DAG.getMachineFunction();
1316  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1317  unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1318  ARMConstantPoolValue *CPV =
1319    new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1320                             ARMCP::CPValue, PCAdj, "tlsgd", true);
1321  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1322  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1323  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
1324                         PseudoSourceValue::getConstantPool(), 0,
1325                         false, false, 0);
1326  SDValue Chain = Argument.getValue(1);
1327
1328  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1329  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1330
1331  // call __tls_get_addr.
1332  ArgListTy Args;
1333  ArgListEntry Entry;
1334  Entry.Node = Argument;
1335  Entry.Ty = (const Type *) Type::getInt32Ty(*DAG.getContext());
1336  Args.push_back(Entry);
1337  // FIXME: is there useful debug info available here?
1338  std::pair<SDValue, SDValue> CallResult =
1339    LowerCallTo(Chain, (const Type *) Type::getInt32Ty(*DAG.getContext()),
1340                false, false, false, false,
1341                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
1342                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
1343  return CallResult.first;
1344}
1345
1346// Lower ISD::GlobalTLSAddress using the "initial exec" or
1347// "local exec" model.
1348SDValue
1349ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
1350                                        SelectionDAG &DAG) {
1351  GlobalValue *GV = GA->getGlobal();
1352  DebugLoc dl = GA->getDebugLoc();
1353  SDValue Offset;
1354  SDValue Chain = DAG.getEntryNode();
1355  EVT PtrVT = getPointerTy();
1356  // Get the Thread Pointer
1357  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1358
1359  if (GV->isDeclaration()) {
1360    MachineFunction &MF = DAG.getMachineFunction();
1361    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1362    unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1363    // Initial exec model.
1364    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1365    ARMConstantPoolValue *CPV =
1366      new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1367                               ARMCP::CPValue, PCAdj, "gottpoff", true);
1368    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1369    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1370    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1371                         PseudoSourceValue::getConstantPool(), 0,
1372                         false, false, 0);
1373    Chain = Offset.getValue(1);
1374
1375    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1376    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
1377
1378    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1379                         PseudoSourceValue::getConstantPool(), 0,
1380                         false, false, 0);
1381  } else {
1382    // local exec model
1383    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, "tpoff");
1384    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1385    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1386    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1387                         PseudoSourceValue::getConstantPool(), 0,
1388                         false, false, 0);
1389  }
1390
1391  // The address of the thread local variable is the add of the thread
1392  // pointer with the offset of the variable.
1393  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1394}
1395
1396SDValue
1397ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
1398  // TODO: implement the "local dynamic" model
1399  assert(Subtarget->isTargetELF() &&
1400         "TLS not implemented for non-ELF targets");
1401  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1402  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
1403  // otherwise use the "Local Exec" TLS Model
1404  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
1405    return LowerToTLSGeneralDynamicModel(GA, DAG);
1406  else
1407    return LowerToTLSExecModels(GA, DAG);
1408}
1409
1410SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
1411                                                 SelectionDAG &DAG) {
1412  EVT PtrVT = getPointerTy();
1413  DebugLoc dl = Op.getDebugLoc();
1414  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1415  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1416  if (RelocM == Reloc::PIC_) {
1417    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
1418    ARMConstantPoolValue *CPV =
1419      new ARMConstantPoolValue(GV, UseGOTOFF ? "GOTOFF" : "GOT");
1420    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1421    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1422    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
1423                                 CPAddr,
1424                                 PseudoSourceValue::getConstantPool(), 0,
1425                                 false, false, 0);
1426    SDValue Chain = Result.getValue(1);
1427    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1428    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
1429    if (!UseGOTOFF)
1430      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
1431                           PseudoSourceValue::getGOT(), 0,
1432                           false, false, 0);
1433    return Result;
1434  } else {
1435    // If we have T2 ops, we can materialize the address directly via movt/movw
1436    // pair. This is always cheaper.
1437    if (Subtarget->useMovt()) {
1438      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
1439                         DAG.getTargetGlobalAddress(GV, PtrVT));
1440    } else {
1441      SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1442      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1443      return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1444                         PseudoSourceValue::getConstantPool(), 0,
1445                         false, false, 0);
1446    }
1447  }
1448}
1449
1450SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
1451                                                    SelectionDAG &DAG) {
1452  MachineFunction &MF = DAG.getMachineFunction();
1453  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1454  unsigned ARMPCLabelIndex = 0;
1455  EVT PtrVT = getPointerTy();
1456  DebugLoc dl = Op.getDebugLoc();
1457  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1458  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1459  SDValue CPAddr;
1460  if (RelocM == Reloc::Static)
1461    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1462  else {
1463    ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1464    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
1465    ARMConstantPoolValue *CPV =
1466      new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj);
1467    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1468  }
1469  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1470
1471  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1472                               PseudoSourceValue::getConstantPool(), 0,
1473                               false, false, 0);
1474  SDValue Chain = Result.getValue(1);
1475
1476  if (RelocM == Reloc::PIC_) {
1477    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1478    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1479  }
1480
1481  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
1482    Result = DAG.getLoad(PtrVT, dl, Chain, Result,
1483                         PseudoSourceValue::getGOT(), 0,
1484                         false, false, 0);
1485
1486  return Result;
1487}
1488
1489SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
1490                                                    SelectionDAG &DAG){
1491  assert(Subtarget->isTargetELF() &&
1492         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
1493  MachineFunction &MF = DAG.getMachineFunction();
1494  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1495  unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1496  EVT PtrVT = getPointerTy();
1497  DebugLoc dl = Op.getDebugLoc();
1498  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1499  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1500                                                       "_GLOBAL_OFFSET_TABLE_",
1501                                                       ARMPCLabelIndex, PCAdj);
1502  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1503  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1504  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1505                               PseudoSourceValue::getConstantPool(), 0,
1506                               false, false, 0);
1507  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1508  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1509}
1510
1511SDValue
1512ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
1513                                           const ARMSubtarget *Subtarget) {
1514  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1515  DebugLoc dl = Op.getDebugLoc();
1516  switch (IntNo) {
1517  default: return SDValue();    // Don't custom lower most intrinsics.
1518  case Intrinsic::arm_thread_pointer: {
1519    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1520    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1521  }
1522  case Intrinsic::eh_sjlj_lsda: {
1523    MachineFunction &MF = DAG.getMachineFunction();
1524    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1525    unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1526    EVT PtrVT = getPointerTy();
1527    DebugLoc dl = Op.getDebugLoc();
1528    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1529    SDValue CPAddr;
1530    unsigned PCAdj = (RelocM != Reloc::PIC_)
1531      ? 0 : (Subtarget->isThumb() ? 4 : 8);
1532    ARMConstantPoolValue *CPV =
1533      new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex,
1534                               ARMCP::CPLSDA, PCAdj);
1535    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1536    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1537    SDValue Result =
1538      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1539                  PseudoSourceValue::getConstantPool(), 0,
1540                  false, false, 0);
1541    SDValue Chain = Result.getValue(1);
1542
1543    if (RelocM == Reloc::PIC_) {
1544      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1545      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1546    }
1547    return Result;
1548  }
1549  case Intrinsic::eh_sjlj_setjmp:
1550    SDValue Val = Subtarget->isThumb() ?
1551      DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::SP, MVT::i32) :
1552      DAG.getConstant(0, MVT::i32);
1553    return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(1),
1554                       Val);
1555  }
1556}
1557
1558static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
1559                          const ARMSubtarget *Subtarget) {
1560  DebugLoc dl = Op.getDebugLoc();
1561  SDValue Op5 = Op.getOperand(5);
1562  SDValue Res;
1563  unsigned isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue();
1564  if (isDeviceBarrier) {
1565    if (Subtarget->hasV7Ops())
1566      Res = DAG.getNode(ARMISD::SYNCBARRIER, dl, MVT::Other, Op.getOperand(0));
1567    else
1568      Res = DAG.getNode(ARMISD::SYNCBARRIER, dl, MVT::Other, Op.getOperand(0),
1569                        DAG.getConstant(0, MVT::i32));
1570  } else {
1571    if (Subtarget->hasV7Ops())
1572      Res = DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
1573    else
1574      Res = DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
1575                        DAG.getConstant(0, MVT::i32));
1576  }
1577  return Res;
1578}
1579
1580static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
1581                            unsigned VarArgsFrameIndex) {
1582  // vastart just stores the address of the VarArgsFrameIndex slot into the
1583  // memory location argument.
1584  DebugLoc dl = Op.getDebugLoc();
1585  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1586  SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1587  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1588  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
1589                      false, false, 0);
1590}
1591
1592SDValue
1593ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) {
1594  SDNode *Node = Op.getNode();
1595  DebugLoc dl = Node->getDebugLoc();
1596  EVT VT = Node->getValueType(0);
1597  SDValue Chain = Op.getOperand(0);
1598  SDValue Size  = Op.getOperand(1);
1599  SDValue Align = Op.getOperand(2);
1600
1601  // Chain the dynamic stack allocation so that it doesn't modify the stack
1602  // pointer when other instructions are using the stack.
1603  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1604
1605  unsigned AlignVal = cast<ConstantSDNode>(Align)->getZExtValue();
1606  unsigned StackAlign = getTargetMachine().getFrameInfo()->getStackAlignment();
1607  if (AlignVal > StackAlign)
1608    // Do this now since selection pass cannot introduce new target
1609    // independent node.
1610    Align = DAG.getConstant(-(uint64_t)AlignVal, VT);
1611
1612  // In Thumb1 mode, there isn't a "sub r, sp, r" instruction, we will end up
1613  // using a "add r, sp, r" instead. Negate the size now so we don't have to
1614  // do even more horrible hack later.
1615  MachineFunction &MF = DAG.getMachineFunction();
1616  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1617  if (AFI->isThumb1OnlyFunction()) {
1618    bool Negate = true;
1619    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Size);
1620    if (C) {
1621      uint32_t Val = C->getZExtValue();
1622      if (Val <= 508 && ((Val & 3) == 0))
1623        Negate = false;
1624    }
1625    if (Negate)
1626      Size = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, VT), Size);
1627  }
1628
1629  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
1630  SDValue Ops1[] = { Chain, Size, Align };
1631  SDValue Res = DAG.getNode(ARMISD::DYN_ALLOC, dl, VTList, Ops1, 3);
1632  Chain = Res.getValue(1);
1633  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
1634                             DAG.getIntPtrConstant(0, true), SDValue());
1635  SDValue Ops2[] = { Res, Chain };
1636  return DAG.getMergeValues(Ops2, 2, dl);
1637}
1638
1639SDValue
1640ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
1641                                        SDValue &Root, SelectionDAG &DAG,
1642                                        DebugLoc dl) {
1643  MachineFunction &MF = DAG.getMachineFunction();
1644  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1645
1646  TargetRegisterClass *RC;
1647  if (AFI->isThumb1OnlyFunction())
1648    RC = ARM::tGPRRegisterClass;
1649  else
1650    RC = ARM::GPRRegisterClass;
1651
1652  // Transform the arguments stored in physical registers into virtual ones.
1653  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1654  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
1655
1656  SDValue ArgValue2;
1657  if (NextVA.isMemLoc()) {
1658    MachineFrameInfo *MFI = MF.getFrameInfo();
1659    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true, false);
1660
1661    // Create load node to retrieve arguments from the stack.
1662    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1663    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
1664                            PseudoSourceValue::getFixedStack(FI), 0,
1665                            false, false, 0);
1666  } else {
1667    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
1668    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
1669  }
1670
1671  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
1672}
1673
1674SDValue
1675ARMTargetLowering::LowerFormalArguments(SDValue Chain,
1676                                        CallingConv::ID CallConv, bool isVarArg,
1677                                        const SmallVectorImpl<ISD::InputArg>
1678                                          &Ins,
1679                                        DebugLoc dl, SelectionDAG &DAG,
1680                                        SmallVectorImpl<SDValue> &InVals) {
1681
1682  MachineFunction &MF = DAG.getMachineFunction();
1683  MachineFrameInfo *MFI = MF.getFrameInfo();
1684
1685  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1686
1687  // Assign locations to all of the incoming arguments.
1688  SmallVector<CCValAssign, 16> ArgLocs;
1689  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1690                 *DAG.getContext());
1691  CCInfo.AnalyzeFormalArguments(Ins,
1692                                CCAssignFnForNode(CallConv, /* Return*/ false,
1693                                                  isVarArg));
1694
1695  SmallVector<SDValue, 16> ArgValues;
1696
1697  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1698    CCValAssign &VA = ArgLocs[i];
1699
1700    // Arguments stored in registers.
1701    if (VA.isRegLoc()) {
1702      EVT RegVT = VA.getLocVT();
1703
1704      SDValue ArgValue;
1705      if (VA.needsCustom()) {
1706        // f64 and vector types are split up into multiple registers or
1707        // combinations of registers and stack slots.
1708        if (VA.getLocVT() == MVT::v2f64) {
1709          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
1710                                                   Chain, DAG, dl);
1711          VA = ArgLocs[++i]; // skip ahead to next loc
1712          SDValue ArgValue2;
1713          if (VA.isMemLoc()) {
1714            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(),
1715                                            true, false);
1716            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1717            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
1718                                    PseudoSourceValue::getFixedStack(FI), 0,
1719                                    false, false, 0);
1720          } else {
1721            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
1722                                             Chain, DAG, dl);
1723          }
1724          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1725          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
1726                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
1727          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
1728                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
1729        } else
1730          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
1731
1732      } else {
1733        TargetRegisterClass *RC;
1734
1735        if (RegVT == MVT::f32)
1736          RC = ARM::SPRRegisterClass;
1737        else if (RegVT == MVT::f64)
1738          RC = ARM::DPRRegisterClass;
1739        else if (RegVT == MVT::v2f64)
1740          RC = ARM::QPRRegisterClass;
1741        else if (RegVT == MVT::i32)
1742          RC = (AFI->isThumb1OnlyFunction() ?
1743                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
1744        else
1745          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
1746
1747        // Transform the arguments in physical registers into virtual ones.
1748        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1749        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1750      }
1751
1752      // If this is an 8 or 16-bit value, it is really passed promoted
1753      // to 32 bits.  Insert an assert[sz]ext to capture this, then
1754      // truncate to the right size.
1755      switch (VA.getLocInfo()) {
1756      default: llvm_unreachable("Unknown loc info!");
1757      case CCValAssign::Full: break;
1758      case CCValAssign::BCvt:
1759        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1760        break;
1761      case CCValAssign::SExt:
1762        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1763                               DAG.getValueType(VA.getValVT()));
1764        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1765        break;
1766      case CCValAssign::ZExt:
1767        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1768                               DAG.getValueType(VA.getValVT()));
1769        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1770        break;
1771      }
1772
1773      InVals.push_back(ArgValue);
1774
1775    } else { // VA.isRegLoc()
1776
1777      // sanity check
1778      assert(VA.isMemLoc());
1779      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
1780
1781      unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
1782      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1783                                      true, false);
1784
1785      // Create load nodes to retrieve arguments from the stack.
1786      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1787      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
1788                                   PseudoSourceValue::getFixedStack(FI), 0,
1789                                   false, false, 0));
1790    }
1791  }
1792
1793  // varargs
1794  if (isVarArg) {
1795    static const unsigned GPRArgRegs[] = {
1796      ARM::R0, ARM::R1, ARM::R2, ARM::R3
1797    };
1798
1799    unsigned NumGPRs = CCInfo.getFirstUnallocated
1800      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
1801
1802    unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
1803    unsigned VARegSize = (4 - NumGPRs) * 4;
1804    unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
1805    unsigned ArgOffset = CCInfo.getNextStackOffset();
1806    if (VARegSaveSize) {
1807      // If this function is vararg, store any remaining integer argument regs
1808      // to their spots on the stack so that they may be loaded by deferencing
1809      // the result of va_next.
1810      AFI->setVarArgsRegSaveSize(VARegSaveSize);
1811      VarArgsFrameIndex = MFI->CreateFixedObject(VARegSaveSize, ArgOffset +
1812                                                 VARegSaveSize - VARegSize,
1813                                                 true, false);
1814      SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
1815
1816      SmallVector<SDValue, 4> MemOps;
1817      for (; NumGPRs < 4; ++NumGPRs) {
1818        TargetRegisterClass *RC;
1819        if (AFI->isThumb1OnlyFunction())
1820          RC = ARM::tGPRRegisterClass;
1821        else
1822          RC = ARM::GPRRegisterClass;
1823
1824        unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
1825        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1826        SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1827                                     PseudoSourceValue::getFixedStack(VarArgsFrameIndex), 0,
1828                                     false, false, 0);
1829        MemOps.push_back(Store);
1830        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
1831                          DAG.getConstant(4, getPointerTy()));
1832      }
1833      if (!MemOps.empty())
1834        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1835                            &MemOps[0], MemOps.size());
1836    } else
1837      // This will point to the next argument passed via stack.
1838      VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset, true, false);
1839  }
1840
1841  return Chain;
1842}
1843
1844/// isFloatingPointZero - Return true if this is +0.0.
1845static bool isFloatingPointZero(SDValue Op) {
1846  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1847    return CFP->getValueAPF().isPosZero();
1848  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1849    // Maybe this has already been legalized into the constant pool?
1850    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
1851      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
1852      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
1853        if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1854          return CFP->getValueAPF().isPosZero();
1855    }
1856  }
1857  return false;
1858}
1859
1860/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
1861/// the given operands.
1862SDValue
1863ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1864                             SDValue &ARMCC, SelectionDAG &DAG, DebugLoc dl) {
1865  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1866    unsigned C = RHSC->getZExtValue();
1867    if (!isLegalICmpImmediate(C)) {
1868      // Constant does not fit, try adjusting it by one?
1869      switch (CC) {
1870      default: break;
1871      case ISD::SETLT:
1872      case ISD::SETGE:
1873        if (isLegalICmpImmediate(C-1)) {
1874          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1875          RHS = DAG.getConstant(C-1, MVT::i32);
1876        }
1877        break;
1878      case ISD::SETULT:
1879      case ISD::SETUGE:
1880        if (C > 0 && isLegalICmpImmediate(C-1)) {
1881          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1882          RHS = DAG.getConstant(C-1, MVT::i32);
1883        }
1884        break;
1885      case ISD::SETLE:
1886      case ISD::SETGT:
1887        if (isLegalICmpImmediate(C+1)) {
1888          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1889          RHS = DAG.getConstant(C+1, MVT::i32);
1890        }
1891        break;
1892      case ISD::SETULE:
1893      case ISD::SETUGT:
1894        if (C < 0xffffffff && isLegalICmpImmediate(C+1)) {
1895          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1896          RHS = DAG.getConstant(C+1, MVT::i32);
1897        }
1898        break;
1899      }
1900    }
1901  }
1902
1903  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
1904  ARMISD::NodeType CompareType;
1905  switch (CondCode) {
1906  default:
1907    CompareType = ARMISD::CMP;
1908    break;
1909  case ARMCC::EQ:
1910  case ARMCC::NE:
1911    // Uses only Z Flag
1912    CompareType = ARMISD::CMPZ;
1913    break;
1914  }
1915  ARMCC = DAG.getConstant(CondCode, MVT::i32);
1916  return DAG.getNode(CompareType, dl, MVT::Flag, LHS, RHS);
1917}
1918
1919/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
1920static SDValue getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
1921                         DebugLoc dl) {
1922  SDValue Cmp;
1923  if (!isFloatingPointZero(RHS))
1924    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Flag, LHS, RHS);
1925  else
1926    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Flag, LHS);
1927  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Flag, Cmp);
1928}
1929
1930SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
1931  EVT VT = Op.getValueType();
1932  SDValue LHS = Op.getOperand(0);
1933  SDValue RHS = Op.getOperand(1);
1934  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1935  SDValue TrueVal = Op.getOperand(2);
1936  SDValue FalseVal = Op.getOperand(3);
1937  DebugLoc dl = Op.getDebugLoc();
1938
1939  if (LHS.getValueType() == MVT::i32) {
1940    SDValue ARMCC;
1941    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1942    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, dl);
1943    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMCC, CCR,Cmp);
1944  }
1945
1946  ARMCC::CondCodes CondCode, CondCode2;
1947  FPCCToARMCC(CC, CondCode, CondCode2);
1948
1949  SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
1950  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1951  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
1952  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
1953                                 ARMCC, CCR, Cmp);
1954  if (CondCode2 != ARMCC::AL) {
1955    SDValue ARMCC2 = DAG.getConstant(CondCode2, MVT::i32);
1956    // FIXME: Needs another CMP because flag can have but one use.
1957    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
1958    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
1959                         Result, TrueVal, ARMCC2, CCR, Cmp2);
1960  }
1961  return Result;
1962}
1963
1964SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) {
1965  SDValue  Chain = Op.getOperand(0);
1966  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1967  SDValue    LHS = Op.getOperand(2);
1968  SDValue    RHS = Op.getOperand(3);
1969  SDValue   Dest = Op.getOperand(4);
1970  DebugLoc dl = Op.getDebugLoc();
1971
1972  if (LHS.getValueType() == MVT::i32) {
1973    SDValue ARMCC;
1974    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1975    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, dl);
1976    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
1977                       Chain, Dest, ARMCC, CCR,Cmp);
1978  }
1979
1980  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
1981  ARMCC::CondCodes CondCode, CondCode2;
1982  FPCCToARMCC(CC, CondCode, CondCode2);
1983
1984  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
1985  SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
1986  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1987  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
1988  SDValue Ops[] = { Chain, Dest, ARMCC, CCR, Cmp };
1989  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
1990  if (CondCode2 != ARMCC::AL) {
1991    ARMCC = DAG.getConstant(CondCode2, MVT::i32);
1992    SDValue Ops[] = { Res, Dest, ARMCC, CCR, Res.getValue(1) };
1993    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
1994  }
1995  return Res;
1996}
1997
1998SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) {
1999  SDValue Chain = Op.getOperand(0);
2000  SDValue Table = Op.getOperand(1);
2001  SDValue Index = Op.getOperand(2);
2002  DebugLoc dl = Op.getDebugLoc();
2003
2004  EVT PTy = getPointerTy();
2005  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
2006  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2007  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
2008  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
2009  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
2010  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
2011  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2012  if (Subtarget->isThumb2()) {
2013    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
2014    // which does another jump to the destination. This also makes it easier
2015    // to translate it to TBB / TBH later.
2016    // FIXME: This might not work if the function is extremely large.
2017    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
2018                       Addr, Op.getOperand(2), JTI, UId);
2019  }
2020  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2021    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
2022                       PseudoSourceValue::getJumpTable(), 0,
2023                       false, false, 0);
2024    Chain = Addr.getValue(1);
2025    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
2026    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2027  } else {
2028    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
2029                       PseudoSourceValue::getJumpTable(), 0, false, false, 0);
2030    Chain = Addr.getValue(1);
2031    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2032  }
2033}
2034
2035static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
2036  DebugLoc dl = Op.getDebugLoc();
2037  unsigned Opc;
2038
2039  switch (Op.getOpcode()) {
2040  default:
2041    assert(0 && "Invalid opcode!");
2042  case ISD::FP_TO_SINT:
2043    Opc = ARMISD::FTOSI;
2044    break;
2045  case ISD::FP_TO_UINT:
2046    Opc = ARMISD::FTOUI;
2047    break;
2048  }
2049  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
2050  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
2051}
2052
2053static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2054  EVT VT = Op.getValueType();
2055  DebugLoc dl = Op.getDebugLoc();
2056  unsigned Opc;
2057
2058  switch (Op.getOpcode()) {
2059  default:
2060    assert(0 && "Invalid opcode!");
2061  case ISD::SINT_TO_FP:
2062    Opc = ARMISD::SITOF;
2063    break;
2064  case ISD::UINT_TO_FP:
2065    Opc = ARMISD::UITOF;
2066    break;
2067  }
2068
2069  Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Op.getOperand(0));
2070  return DAG.getNode(Opc, dl, VT, Op);
2071}
2072
2073static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
2074  // Implement fcopysign with a fabs and a conditional fneg.
2075  SDValue Tmp0 = Op.getOperand(0);
2076  SDValue Tmp1 = Op.getOperand(1);
2077  DebugLoc dl = Op.getDebugLoc();
2078  EVT VT = Op.getValueType();
2079  EVT SrcVT = Tmp1.getValueType();
2080  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0);
2081  SDValue Cmp = getVFPCmp(Tmp1, DAG.getConstantFP(0.0, SrcVT), DAG, dl);
2082  SDValue ARMCC = DAG.getConstant(ARMCC::LT, MVT::i32);
2083  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2084  return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMCC, CCR, Cmp);
2085}
2086
2087SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
2088  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2089  MFI->setFrameAddressIsTaken(true);
2090  EVT VT = Op.getValueType();
2091  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
2092  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2093  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
2094    ? ARM::R7 : ARM::R11;
2095  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
2096  while (Depth--)
2097    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
2098                            false, false, 0);
2099  return FrameAddr;
2100}
2101
2102SDValue
2103ARMTargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
2104                                           SDValue Chain,
2105                                           SDValue Dst, SDValue Src,
2106                                           SDValue Size, unsigned Align,
2107                                           bool isVolatile, bool AlwaysInline,
2108                                         const Value *DstSV, uint64_t DstSVOff,
2109                                         const Value *SrcSV, uint64_t SrcSVOff){
2110  // Do repeated 4-byte loads and stores. To be improved.
2111  // This requires 4-byte alignment.
2112  if ((Align & 3) != 0)
2113    return SDValue();
2114  // This requires the copy size to be a constant, preferrably
2115  // within a subtarget-specific limit.
2116  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2117  if (!ConstantSize)
2118    return SDValue();
2119  uint64_t SizeVal = ConstantSize->getZExtValue();
2120  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
2121    return SDValue();
2122
2123  unsigned BytesLeft = SizeVal & 3;
2124  unsigned NumMemOps = SizeVal >> 2;
2125  unsigned EmittedNumMemOps = 0;
2126  EVT VT = MVT::i32;
2127  unsigned VTSize = 4;
2128  unsigned i = 0;
2129  const unsigned MAX_LOADS_IN_LDM = 6;
2130  SDValue TFOps[MAX_LOADS_IN_LDM];
2131  SDValue Loads[MAX_LOADS_IN_LDM];
2132  uint64_t SrcOff = 0, DstOff = 0;
2133
2134  // Emit up to MAX_LOADS_IN_LDM loads, then a TokenFactor barrier, then the
2135  // same number of stores.  The loads and stores will get combined into
2136  // ldm/stm later on.
2137  while (EmittedNumMemOps < NumMemOps) {
2138    for (i = 0;
2139         i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
2140      Loads[i] = DAG.getLoad(VT, dl, Chain,
2141                             DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
2142                                         DAG.getConstant(SrcOff, MVT::i32)),
2143                             SrcSV, SrcSVOff + SrcOff, isVolatile, false, 0);
2144      TFOps[i] = Loads[i].getValue(1);
2145      SrcOff += VTSize;
2146    }
2147    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
2148
2149    for (i = 0;
2150         i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
2151      TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
2152                              DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
2153                                          DAG.getConstant(DstOff, MVT::i32)),
2154                              DstSV, DstSVOff + DstOff, isVolatile, false, 0);
2155      DstOff += VTSize;
2156    }
2157    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
2158
2159    EmittedNumMemOps += i;
2160  }
2161
2162  if (BytesLeft == 0)
2163    return Chain;
2164
2165  // Issue loads / stores for the trailing (1 - 3) bytes.
2166  unsigned BytesLeftSave = BytesLeft;
2167  i = 0;
2168  while (BytesLeft) {
2169    if (BytesLeft >= 2) {
2170      VT = MVT::i16;
2171      VTSize = 2;
2172    } else {
2173      VT = MVT::i8;
2174      VTSize = 1;
2175    }
2176
2177    Loads[i] = DAG.getLoad(VT, dl, Chain,
2178                           DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
2179                                       DAG.getConstant(SrcOff, MVT::i32)),
2180                           SrcSV, SrcSVOff + SrcOff, false, false, 0);
2181    TFOps[i] = Loads[i].getValue(1);
2182    ++i;
2183    SrcOff += VTSize;
2184    BytesLeft -= VTSize;
2185  }
2186  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
2187
2188  i = 0;
2189  BytesLeft = BytesLeftSave;
2190  while (BytesLeft) {
2191    if (BytesLeft >= 2) {
2192      VT = MVT::i16;
2193      VTSize = 2;
2194    } else {
2195      VT = MVT::i8;
2196      VTSize = 1;
2197    }
2198
2199    TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
2200                            DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
2201                                        DAG.getConstant(DstOff, MVT::i32)),
2202                            DstSV, DstSVOff + DstOff, false, false, 0);
2203    ++i;
2204    DstOff += VTSize;
2205    BytesLeft -= VTSize;
2206  }
2207  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
2208}
2209
2210static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) {
2211  SDValue Op = N->getOperand(0);
2212
2213  // Do not create a VMOVDRR or VMOVRRD node if the operand type is not
2214  // legal.  The legalizer won't know what to do with that.
2215  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2216  if (!TLI.isTypeLegal(Op.getValueType()))
2217    return SDValue();
2218
2219  DebugLoc dl = N->getDebugLoc();
2220  if (N->getValueType(0) == MVT::f64) {
2221    // Turn i64->f64 into VMOVDRR.
2222    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2223                             DAG.getConstant(0, MVT::i32));
2224    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2225                             DAG.getConstant(1, MVT::i32));
2226    return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
2227  }
2228
2229  // Turn f64->i64 into VMOVRRD.
2230  SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
2231                            DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
2232
2233  // Merge the pieces into a single i64 value.
2234  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
2235}
2236
2237/// getZeroVector - Returns a vector of specified type with all zero elements.
2238///
2239static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2240  assert(VT.isVector() && "Expected a vector type");
2241
2242  // Zero vectors are used to represent vector negation and in those cases
2243  // will be implemented with the NEON VNEG instruction.  However, VNEG does
2244  // not support i64 elements, so sometimes the zero vectors will need to be
2245  // explicitly constructed.  For those cases, and potentially other uses in
2246  // the future, always build zero vectors as <16 x i8> or <8 x i8> bitcasted
2247  // to their dest type.  This ensures they get CSE'd.
2248  SDValue Vec;
2249  SDValue Cst = DAG.getTargetConstant(0, MVT::i8);
2250  SmallVector<SDValue, 8> Ops;
2251  MVT TVT;
2252
2253  if (VT.getSizeInBits() == 64) {
2254    Ops.assign(8, Cst); TVT = MVT::v8i8;
2255  } else {
2256    Ops.assign(16, Cst); TVT = MVT::v16i8;
2257  }
2258  Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, TVT, &Ops[0], Ops.size());
2259
2260  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2261}
2262
2263/// getOnesVector - Returns a vector of specified type with all bits set.
2264///
2265static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2266  assert(VT.isVector() && "Expected a vector type");
2267
2268  // Always build ones vectors as <16 x i8> or <8 x i8> bitcasted to their
2269  // dest type. This ensures they get CSE'd.
2270  SDValue Vec;
2271  SDValue Cst = DAG.getTargetConstant(0xFF, MVT::i8);
2272  SmallVector<SDValue, 8> Ops;
2273  MVT TVT;
2274
2275  if (VT.getSizeInBits() == 64) {
2276    Ops.assign(8, Cst); TVT = MVT::v8i8;
2277  } else {
2278    Ops.assign(16, Cst); TVT = MVT::v16i8;
2279  }
2280  Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, TVT, &Ops[0], Ops.size());
2281
2282  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2283}
2284
2285/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
2286/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2287SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op, SelectionDAG &DAG) {
2288  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2289  EVT VT = Op.getValueType();
2290  unsigned VTBits = VT.getSizeInBits();
2291  DebugLoc dl = Op.getDebugLoc();
2292  SDValue ShOpLo = Op.getOperand(0);
2293  SDValue ShOpHi = Op.getOperand(1);
2294  SDValue ShAmt  = Op.getOperand(2);
2295  SDValue ARMCC;
2296  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
2297
2298  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
2299
2300  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2301                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2302  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
2303  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2304                                   DAG.getConstant(VTBits, MVT::i32));
2305  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
2306  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2307  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
2308
2309  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2310  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2311                          ARMCC, DAG, dl);
2312  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2313  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMCC,
2314                           CCR, Cmp);
2315
2316  SDValue Ops[2] = { Lo, Hi };
2317  return DAG.getMergeValues(Ops, 2, dl);
2318}
2319
2320/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
2321/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2322SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op, SelectionDAG &DAG) {
2323  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2324  EVT VT = Op.getValueType();
2325  unsigned VTBits = VT.getSizeInBits();
2326  DebugLoc dl = Op.getDebugLoc();
2327  SDValue ShOpLo = Op.getOperand(0);
2328  SDValue ShOpHi = Op.getOperand(1);
2329  SDValue ShAmt  = Op.getOperand(2);
2330  SDValue ARMCC;
2331
2332  assert(Op.getOpcode() == ISD::SHL_PARTS);
2333  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2334                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2335  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
2336  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2337                                   DAG.getConstant(VTBits, MVT::i32));
2338  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
2339  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
2340
2341  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2342  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2343  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2344                          ARMCC, DAG, dl);
2345  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2346  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMCC,
2347                           CCR, Cmp);
2348
2349  SDValue Ops[2] = { Lo, Hi };
2350  return DAG.getMergeValues(Ops, 2, dl);
2351}
2352
2353static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
2354                         const ARMSubtarget *ST) {
2355  EVT VT = N->getValueType(0);
2356  DebugLoc dl = N->getDebugLoc();
2357
2358  if (!ST->hasV6T2Ops())
2359    return SDValue();
2360
2361  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
2362  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
2363}
2364
2365static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
2366                          const ARMSubtarget *ST) {
2367  EVT VT = N->getValueType(0);
2368  DebugLoc dl = N->getDebugLoc();
2369
2370  // Lower vector shifts on NEON to use VSHL.
2371  if (VT.isVector()) {
2372    assert(ST->hasNEON() && "unexpected vector shift");
2373
2374    // Left shifts translate directly to the vshiftu intrinsic.
2375    if (N->getOpcode() == ISD::SHL)
2376      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2377                         DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
2378                         N->getOperand(0), N->getOperand(1));
2379
2380    assert((N->getOpcode() == ISD::SRA ||
2381            N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
2382
2383    // NEON uses the same intrinsics for both left and right shifts.  For
2384    // right shifts, the shift amounts are negative, so negate the vector of
2385    // shift amounts.
2386    EVT ShiftVT = N->getOperand(1).getValueType();
2387    SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
2388                                       getZeroVector(ShiftVT, DAG, dl),
2389                                       N->getOperand(1));
2390    Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
2391                               Intrinsic::arm_neon_vshifts :
2392                               Intrinsic::arm_neon_vshiftu);
2393    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2394                       DAG.getConstant(vshiftInt, MVT::i32),
2395                       N->getOperand(0), NegatedCount);
2396  }
2397
2398  // We can get here for a node like i32 = ISD::SHL i32, i64
2399  if (VT != MVT::i64)
2400    return SDValue();
2401
2402  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
2403         "Unknown shift to lower!");
2404
2405  // We only lower SRA, SRL of 1 here, all others use generic lowering.
2406  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
2407      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
2408    return SDValue();
2409
2410  // If we are in thumb mode, we don't have RRX.
2411  if (ST->isThumb1Only()) return SDValue();
2412
2413  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
2414  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2415                             DAG.getConstant(0, MVT::i32));
2416  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2417                             DAG.getConstant(1, MVT::i32));
2418
2419  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
2420  // captures the result into a carry flag.
2421  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
2422  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1);
2423
2424  // The low part is an ARMISD::RRX operand, which shifts the carry in.
2425  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
2426
2427  // Merge the pieces into a single i64 value.
2428 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
2429}
2430
2431static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
2432  SDValue TmpOp0, TmpOp1;
2433  bool Invert = false;
2434  bool Swap = false;
2435  unsigned Opc = 0;
2436
2437  SDValue Op0 = Op.getOperand(0);
2438  SDValue Op1 = Op.getOperand(1);
2439  SDValue CC = Op.getOperand(2);
2440  EVT VT = Op.getValueType();
2441  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
2442  DebugLoc dl = Op.getDebugLoc();
2443
2444  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
2445    switch (SetCCOpcode) {
2446    default: llvm_unreachable("Illegal FP comparison"); break;
2447    case ISD::SETUNE:
2448    case ISD::SETNE:  Invert = true; // Fallthrough
2449    case ISD::SETOEQ:
2450    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2451    case ISD::SETOLT:
2452    case ISD::SETLT: Swap = true; // Fallthrough
2453    case ISD::SETOGT:
2454    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2455    case ISD::SETOLE:
2456    case ISD::SETLE:  Swap = true; // Fallthrough
2457    case ISD::SETOGE:
2458    case ISD::SETGE: Opc = ARMISD::VCGE; break;
2459    case ISD::SETUGE: Swap = true; // Fallthrough
2460    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
2461    case ISD::SETUGT: Swap = true; // Fallthrough
2462    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
2463    case ISD::SETUEQ: Invert = true; // Fallthrough
2464    case ISD::SETONE:
2465      // Expand this to (OLT | OGT).
2466      TmpOp0 = Op0;
2467      TmpOp1 = Op1;
2468      Opc = ISD::OR;
2469      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2470      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
2471      break;
2472    case ISD::SETUO: Invert = true; // Fallthrough
2473    case ISD::SETO:
2474      // Expand this to (OLT | OGE).
2475      TmpOp0 = Op0;
2476      TmpOp1 = Op1;
2477      Opc = ISD::OR;
2478      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2479      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
2480      break;
2481    }
2482  } else {
2483    // Integer comparisons.
2484    switch (SetCCOpcode) {
2485    default: llvm_unreachable("Illegal integer comparison"); break;
2486    case ISD::SETNE:  Invert = true;
2487    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2488    case ISD::SETLT:  Swap = true;
2489    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2490    case ISD::SETLE:  Swap = true;
2491    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
2492    case ISD::SETULT: Swap = true;
2493    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
2494    case ISD::SETULE: Swap = true;
2495    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
2496    }
2497
2498    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
2499    if (Opc == ARMISD::VCEQ) {
2500
2501      SDValue AndOp;
2502      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
2503        AndOp = Op0;
2504      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
2505        AndOp = Op1;
2506
2507      // Ignore bitconvert.
2508      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BIT_CONVERT)
2509        AndOp = AndOp.getOperand(0);
2510
2511      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
2512        Opc = ARMISD::VTST;
2513        Op0 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(0));
2514        Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(1));
2515        Invert = !Invert;
2516      }
2517    }
2518  }
2519
2520  if (Swap)
2521    std::swap(Op0, Op1);
2522
2523  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
2524
2525  if (Invert)
2526    Result = DAG.getNOT(dl, Result, VT);
2527
2528  return Result;
2529}
2530
2531/// isVMOVSplat - Check if the specified splat value corresponds to an immediate
2532/// VMOV instruction, and if so, return the constant being splatted.
2533static SDValue isVMOVSplat(uint64_t SplatBits, uint64_t SplatUndef,
2534                           unsigned SplatBitSize, SelectionDAG &DAG) {
2535  switch (SplatBitSize) {
2536  case 8:
2537    // Any 1-byte value is OK.
2538    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
2539    return DAG.getTargetConstant(SplatBits, MVT::i8);
2540
2541  case 16:
2542    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
2543    if ((SplatBits & ~0xff) == 0 ||
2544        (SplatBits & ~0xff00) == 0)
2545      return DAG.getTargetConstant(SplatBits, MVT::i16);
2546    break;
2547
2548  case 32:
2549    // NEON's 32-bit VMOV supports splat values where:
2550    // * only one byte is nonzero, or
2551    // * the least significant byte is 0xff and the second byte is nonzero, or
2552    // * the least significant 2 bytes are 0xff and the third is nonzero.
2553    if ((SplatBits & ~0xff) == 0 ||
2554        (SplatBits & ~0xff00) == 0 ||
2555        (SplatBits & ~0xff0000) == 0 ||
2556        (SplatBits & ~0xff000000) == 0)
2557      return DAG.getTargetConstant(SplatBits, MVT::i32);
2558
2559    if ((SplatBits & ~0xffff) == 0 &&
2560        ((SplatBits | SplatUndef) & 0xff) == 0xff)
2561      return DAG.getTargetConstant(SplatBits | 0xff, MVT::i32);
2562
2563    if ((SplatBits & ~0xffffff) == 0 &&
2564        ((SplatBits | SplatUndef) & 0xffff) == 0xffff)
2565      return DAG.getTargetConstant(SplatBits | 0xffff, MVT::i32);
2566
2567    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
2568    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
2569    // VMOV.I32.  A (very) minor optimization would be to replicate the value
2570    // and fall through here to test for a valid 64-bit splat.  But, then the
2571    // caller would also need to check and handle the change in size.
2572    break;
2573
2574  case 64: {
2575    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
2576    uint64_t BitMask = 0xff;
2577    uint64_t Val = 0;
2578    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
2579      if (((SplatBits | SplatUndef) & BitMask) == BitMask)
2580        Val |= BitMask;
2581      else if ((SplatBits & BitMask) != 0)
2582        return SDValue();
2583      BitMask <<= 8;
2584    }
2585    return DAG.getTargetConstant(Val, MVT::i64);
2586  }
2587
2588  default:
2589    llvm_unreachable("unexpected size for isVMOVSplat");
2590    break;
2591  }
2592
2593  return SDValue();
2594}
2595
2596/// getVMOVImm - If this is a build_vector of constants which can be
2597/// formed by using a VMOV instruction of the specified element size,
2598/// return the constant being splatted.  The ByteSize field indicates the
2599/// number of bytes of each element [1248].
2600SDValue ARM::getVMOVImm(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2601  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
2602  APInt SplatBits, SplatUndef;
2603  unsigned SplatBitSize;
2604  bool HasAnyUndefs;
2605  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
2606                                      HasAnyUndefs, ByteSize * 8))
2607    return SDValue();
2608
2609  if (SplatBitSize > ByteSize * 8)
2610    return SDValue();
2611
2612  return isVMOVSplat(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
2613                     SplatBitSize, DAG);
2614}
2615
2616static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
2617                       bool &ReverseVEXT, unsigned &Imm) {
2618  unsigned NumElts = VT.getVectorNumElements();
2619  ReverseVEXT = false;
2620  Imm = M[0];
2621
2622  // If this is a VEXT shuffle, the immediate value is the index of the first
2623  // element.  The other shuffle indices must be the successive elements after
2624  // the first one.
2625  unsigned ExpectedElt = Imm;
2626  for (unsigned i = 1; i < NumElts; ++i) {
2627    // Increment the expected index.  If it wraps around, it may still be
2628    // a VEXT but the source vectors must be swapped.
2629    ExpectedElt += 1;
2630    if (ExpectedElt == NumElts * 2) {
2631      ExpectedElt = 0;
2632      ReverseVEXT = true;
2633    }
2634
2635    if (ExpectedElt != static_cast<unsigned>(M[i]))
2636      return false;
2637  }
2638
2639  // Adjust the index value if the source operands will be swapped.
2640  if (ReverseVEXT)
2641    Imm -= NumElts;
2642
2643  return true;
2644}
2645
2646/// isVREVMask - Check if a vector shuffle corresponds to a VREV
2647/// instruction with the specified blocksize.  (The order of the elements
2648/// within each block of the vector is reversed.)
2649static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
2650                       unsigned BlockSize) {
2651  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
2652         "Only possible block sizes for VREV are: 16, 32, 64");
2653
2654  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2655  if (EltSz == 64)
2656    return false;
2657
2658  unsigned NumElts = VT.getVectorNumElements();
2659  unsigned BlockElts = M[0] + 1;
2660
2661  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
2662    return false;
2663
2664  for (unsigned i = 0; i < NumElts; ++i) {
2665    if ((unsigned) M[i] !=
2666        (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
2667      return false;
2668  }
2669
2670  return true;
2671}
2672
2673static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
2674                       unsigned &WhichResult) {
2675  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2676  if (EltSz == 64)
2677    return false;
2678
2679  unsigned NumElts = VT.getVectorNumElements();
2680  WhichResult = (M[0] == 0 ? 0 : 1);
2681  for (unsigned i = 0; i < NumElts; i += 2) {
2682    if ((unsigned) M[i] != i + WhichResult ||
2683        (unsigned) M[i+1] != i + NumElts + WhichResult)
2684      return false;
2685  }
2686  return true;
2687}
2688
2689/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
2690/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
2691/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
2692static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
2693                                unsigned &WhichResult) {
2694  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2695  if (EltSz == 64)
2696    return false;
2697
2698  unsigned NumElts = VT.getVectorNumElements();
2699  WhichResult = (M[0] == 0 ? 0 : 1);
2700  for (unsigned i = 0; i < NumElts; i += 2) {
2701    if ((unsigned) M[i] != i + WhichResult ||
2702        (unsigned) M[i+1] != i + WhichResult)
2703      return false;
2704  }
2705  return true;
2706}
2707
2708static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
2709                       unsigned &WhichResult) {
2710  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2711  if (EltSz == 64)
2712    return false;
2713
2714  unsigned NumElts = VT.getVectorNumElements();
2715  WhichResult = (M[0] == 0 ? 0 : 1);
2716  for (unsigned i = 0; i != NumElts; ++i) {
2717    if ((unsigned) M[i] != 2 * i + WhichResult)
2718      return false;
2719  }
2720
2721  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
2722  if (VT.is64BitVector() && EltSz == 32)
2723    return false;
2724
2725  return true;
2726}
2727
2728/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
2729/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
2730/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
2731static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
2732                                unsigned &WhichResult) {
2733  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2734  if (EltSz == 64)
2735    return false;
2736
2737  unsigned Half = VT.getVectorNumElements() / 2;
2738  WhichResult = (M[0] == 0 ? 0 : 1);
2739  for (unsigned j = 0; j != 2; ++j) {
2740    unsigned Idx = WhichResult;
2741    for (unsigned i = 0; i != Half; ++i) {
2742      if ((unsigned) M[i + j * Half] != Idx)
2743        return false;
2744      Idx += 2;
2745    }
2746  }
2747
2748  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
2749  if (VT.is64BitVector() && EltSz == 32)
2750    return false;
2751
2752  return true;
2753}
2754
2755static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
2756                       unsigned &WhichResult) {
2757  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2758  if (EltSz == 64)
2759    return false;
2760
2761  unsigned NumElts = VT.getVectorNumElements();
2762  WhichResult = (M[0] == 0 ? 0 : 1);
2763  unsigned Idx = WhichResult * NumElts / 2;
2764  for (unsigned i = 0; i != NumElts; i += 2) {
2765    if ((unsigned) M[i] != Idx ||
2766        (unsigned) M[i+1] != Idx + NumElts)
2767      return false;
2768    Idx += 1;
2769  }
2770
2771  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
2772  if (VT.is64BitVector() && EltSz == 32)
2773    return false;
2774
2775  return true;
2776}
2777
2778/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
2779/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
2780/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
2781static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
2782                                unsigned &WhichResult) {
2783  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2784  if (EltSz == 64)
2785    return false;
2786
2787  unsigned NumElts = VT.getVectorNumElements();
2788  WhichResult = (M[0] == 0 ? 0 : 1);
2789  unsigned Idx = WhichResult * NumElts / 2;
2790  for (unsigned i = 0; i != NumElts; i += 2) {
2791    if ((unsigned) M[i] != Idx ||
2792        (unsigned) M[i+1] != Idx)
2793      return false;
2794    Idx += 1;
2795  }
2796
2797  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
2798  if (VT.is64BitVector() && EltSz == 32)
2799    return false;
2800
2801  return true;
2802}
2803
2804
2805static SDValue BuildSplat(SDValue Val, EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2806  // Canonicalize all-zeros and all-ones vectors.
2807  ConstantSDNode *ConstVal = cast<ConstantSDNode>(Val.getNode());
2808  if (ConstVal->isNullValue())
2809    return getZeroVector(VT, DAG, dl);
2810  if (ConstVal->isAllOnesValue())
2811    return getOnesVector(VT, DAG, dl);
2812
2813  EVT CanonicalVT;
2814  if (VT.is64BitVector()) {
2815    switch (Val.getValueType().getSizeInBits()) {
2816    case 8:  CanonicalVT = MVT::v8i8; break;
2817    case 16: CanonicalVT = MVT::v4i16; break;
2818    case 32: CanonicalVT = MVT::v2i32; break;
2819    case 64: CanonicalVT = MVT::v1i64; break;
2820    default: llvm_unreachable("unexpected splat element type"); break;
2821    }
2822  } else {
2823    assert(VT.is128BitVector() && "unknown splat vector size");
2824    switch (Val.getValueType().getSizeInBits()) {
2825    case 8:  CanonicalVT = MVT::v16i8; break;
2826    case 16: CanonicalVT = MVT::v8i16; break;
2827    case 32: CanonicalVT = MVT::v4i32; break;
2828    case 64: CanonicalVT = MVT::v2i64; break;
2829    default: llvm_unreachable("unexpected splat element type"); break;
2830    }
2831  }
2832
2833  // Build a canonical splat for this value.
2834  SmallVector<SDValue, 8> Ops;
2835  Ops.assign(CanonicalVT.getVectorNumElements(), Val);
2836  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, &Ops[0],
2837                            Ops.size());
2838  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Res);
2839}
2840
2841// If this is a case we can't handle, return null and let the default
2842// expansion code take care of it.
2843static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
2844  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
2845  DebugLoc dl = Op.getDebugLoc();
2846  EVT VT = Op.getValueType();
2847
2848  APInt SplatBits, SplatUndef;
2849  unsigned SplatBitSize;
2850  bool HasAnyUndefs;
2851  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
2852    if (SplatBitSize <= 64) {
2853      SDValue Val = isVMOVSplat(SplatBits.getZExtValue(),
2854                                SplatUndef.getZExtValue(), SplatBitSize, DAG);
2855      if (Val.getNode())
2856        return BuildSplat(Val, VT, DAG, dl);
2857    }
2858  }
2859
2860  // If there are only 2 elements in a 128-bit vector, insert them into an
2861  // undef vector.  This handles the common case for 128-bit vector argument
2862  // passing, where the insertions should be translated to subreg accesses
2863  // with no real instructions.
2864  if (VT.is128BitVector() && Op.getNumOperands() == 2) {
2865    SDValue Val = DAG.getUNDEF(VT);
2866    SDValue Op0 = Op.getOperand(0);
2867    SDValue Op1 = Op.getOperand(1);
2868    if (Op0.getOpcode() != ISD::UNDEF)
2869      Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, Op0,
2870                        DAG.getIntPtrConstant(0));
2871    if (Op1.getOpcode() != ISD::UNDEF)
2872      Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, Op1,
2873                        DAG.getIntPtrConstant(1));
2874    return Val;
2875  }
2876
2877  return SDValue();
2878}
2879
2880/// isShuffleMaskLegal - Targets can use this to indicate that they only
2881/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
2882/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
2883/// are assumed to be legal.
2884bool
2885ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
2886                                      EVT VT) const {
2887  if (VT.getVectorNumElements() == 4 &&
2888      (VT.is128BitVector() || VT.is64BitVector())) {
2889    unsigned PFIndexes[4];
2890    for (unsigned i = 0; i != 4; ++i) {
2891      if (M[i] < 0)
2892        PFIndexes[i] = 8;
2893      else
2894        PFIndexes[i] = M[i];
2895    }
2896
2897    // Compute the index in the perfect shuffle table.
2898    unsigned PFTableIndex =
2899      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
2900    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
2901    unsigned Cost = (PFEntry >> 30);
2902
2903    if (Cost <= 4)
2904      return true;
2905  }
2906
2907  bool ReverseVEXT;
2908  unsigned Imm, WhichResult;
2909
2910  return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
2911          isVREVMask(M, VT, 64) ||
2912          isVREVMask(M, VT, 32) ||
2913          isVREVMask(M, VT, 16) ||
2914          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
2915          isVTRNMask(M, VT, WhichResult) ||
2916          isVUZPMask(M, VT, WhichResult) ||
2917          isVZIPMask(M, VT, WhichResult) ||
2918          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
2919          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
2920          isVZIP_v_undef_Mask(M, VT, WhichResult));
2921}
2922
2923/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2924/// the specified operations to build the shuffle.
2925static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
2926                                      SDValue RHS, SelectionDAG &DAG,
2927                                      DebugLoc dl) {
2928  unsigned OpNum = (PFEntry >> 26) & 0x0F;
2929  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
2930  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
2931
2932  enum {
2933    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
2934    OP_VREV,
2935    OP_VDUP0,
2936    OP_VDUP1,
2937    OP_VDUP2,
2938    OP_VDUP3,
2939    OP_VEXT1,
2940    OP_VEXT2,
2941    OP_VEXT3,
2942    OP_VUZPL, // VUZP, left result
2943    OP_VUZPR, // VUZP, right result
2944    OP_VZIPL, // VZIP, left result
2945    OP_VZIPR, // VZIP, right result
2946    OP_VTRNL, // VTRN, left result
2947    OP_VTRNR  // VTRN, right result
2948  };
2949
2950  if (OpNum == OP_COPY) {
2951    if (LHSID == (1*9+2)*9+3) return LHS;
2952    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
2953    return RHS;
2954  }
2955
2956  SDValue OpLHS, OpRHS;
2957  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
2958  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
2959  EVT VT = OpLHS.getValueType();
2960
2961  switch (OpNum) {
2962  default: llvm_unreachable("Unknown shuffle opcode!");
2963  case OP_VREV:
2964    return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
2965  case OP_VDUP0:
2966  case OP_VDUP1:
2967  case OP_VDUP2:
2968  case OP_VDUP3:
2969    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
2970                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
2971  case OP_VEXT1:
2972  case OP_VEXT2:
2973  case OP_VEXT3:
2974    return DAG.getNode(ARMISD::VEXT, dl, VT,
2975                       OpLHS, OpRHS,
2976                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
2977  case OP_VUZPL:
2978  case OP_VUZPR:
2979    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
2980                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
2981  case OP_VZIPL:
2982  case OP_VZIPR:
2983    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
2984                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
2985  case OP_VTRNL:
2986  case OP_VTRNR:
2987    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
2988                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
2989  }
2990}
2991
2992static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
2993  SDValue V1 = Op.getOperand(0);
2994  SDValue V2 = Op.getOperand(1);
2995  DebugLoc dl = Op.getDebugLoc();
2996  EVT VT = Op.getValueType();
2997  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2998  SmallVector<int, 8> ShuffleMask;
2999
3000  // Convert shuffles that are directly supported on NEON to target-specific
3001  // DAG nodes, instead of keeping them as shuffles and matching them again
3002  // during code selection.  This is more efficient and avoids the possibility
3003  // of inconsistencies between legalization and selection.
3004  // FIXME: floating-point vectors should be canonicalized to integer vectors
3005  // of the same time so that they get CSEd properly.
3006  SVN->getMask(ShuffleMask);
3007
3008  if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
3009    int Lane = SVN->getSplatIndex();
3010    // If this is undef splat, generate it via "just" vdup, if possible.
3011    if (Lane == -1) Lane = 0;
3012
3013    if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
3014      return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
3015    }
3016    return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
3017                       DAG.getConstant(Lane, MVT::i32));
3018  }
3019
3020  bool ReverseVEXT;
3021  unsigned Imm;
3022  if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
3023    if (ReverseVEXT)
3024      std::swap(V1, V2);
3025    return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
3026                       DAG.getConstant(Imm, MVT::i32));
3027  }
3028
3029  if (isVREVMask(ShuffleMask, VT, 64))
3030    return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
3031  if (isVREVMask(ShuffleMask, VT, 32))
3032    return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
3033  if (isVREVMask(ShuffleMask, VT, 16))
3034    return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
3035
3036  // Check for Neon shuffles that modify both input vectors in place.
3037  // If both results are used, i.e., if there are two shuffles with the same
3038  // source operands and with masks corresponding to both results of one of
3039  // these operations, DAG memoization will ensure that a single node is
3040  // used for both shuffles.
3041  unsigned WhichResult;
3042  if (isVTRNMask(ShuffleMask, VT, WhichResult))
3043    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3044                       V1, V2).getValue(WhichResult);
3045  if (isVUZPMask(ShuffleMask, VT, WhichResult))
3046    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3047                       V1, V2).getValue(WhichResult);
3048  if (isVZIPMask(ShuffleMask, VT, WhichResult))
3049    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3050                       V1, V2).getValue(WhichResult);
3051
3052  if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
3053    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3054                       V1, V1).getValue(WhichResult);
3055  if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
3056    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3057                       V1, V1).getValue(WhichResult);
3058  if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
3059    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3060                       V1, V1).getValue(WhichResult);
3061
3062  // If the shuffle is not directly supported and it has 4 elements, use
3063  // the PerfectShuffle-generated table to synthesize it from other shuffles.
3064  if (VT.getVectorNumElements() == 4 &&
3065      (VT.is128BitVector() || VT.is64BitVector())) {
3066    unsigned PFIndexes[4];
3067    for (unsigned i = 0; i != 4; ++i) {
3068      if (ShuffleMask[i] < 0)
3069        PFIndexes[i] = 8;
3070      else
3071        PFIndexes[i] = ShuffleMask[i];
3072    }
3073
3074    // Compute the index in the perfect shuffle table.
3075    unsigned PFTableIndex =
3076      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3077
3078    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3079    unsigned Cost = (PFEntry >> 30);
3080
3081    if (Cost <= 4)
3082      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
3083  }
3084
3085  return SDValue();
3086}
3087
3088static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
3089  EVT VT = Op.getValueType();
3090  DebugLoc dl = Op.getDebugLoc();
3091  SDValue Vec = Op.getOperand(0);
3092  SDValue Lane = Op.getOperand(1);
3093  assert(VT == MVT::i32 &&
3094         Vec.getValueType().getVectorElementType().getSizeInBits() < 32 &&
3095         "unexpected type for custom-lowering vector extract");
3096  return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
3097}
3098
3099static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
3100  // The only time a CONCAT_VECTORS operation can have legal types is when
3101  // two 64-bit vectors are concatenated to a 128-bit vector.
3102  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
3103         "unexpected CONCAT_VECTORS");
3104  DebugLoc dl = Op.getDebugLoc();
3105  SDValue Val = DAG.getUNDEF(MVT::v2f64);
3106  SDValue Op0 = Op.getOperand(0);
3107  SDValue Op1 = Op.getOperand(1);
3108  if (Op0.getOpcode() != ISD::UNDEF)
3109    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
3110                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op0),
3111                      DAG.getIntPtrConstant(0));
3112  if (Op1.getOpcode() != ISD::UNDEF)
3113    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
3114                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op1),
3115                      DAG.getIntPtrConstant(1));
3116  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Val);
3117}
3118
3119SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
3120  switch (Op.getOpcode()) {
3121  default: llvm_unreachable("Don't know how to custom lower this!");
3122  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
3123  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
3124  case ISD::GlobalAddress:
3125    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
3126      LowerGlobalAddressELF(Op, DAG);
3127  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3128  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
3129  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
3130  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
3131  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
3132  case ISD::VASTART:       return LowerVASTART(Op, DAG, VarArgsFrameIndex);
3133  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
3134  case ISD::SINT_TO_FP:
3135  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
3136  case ISD::FP_TO_SINT:
3137  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
3138  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
3139  case ISD::RETURNADDR:    break;
3140  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
3141  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
3142  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
3143                                                               Subtarget);
3144  case ISD::BIT_CONVERT:   return ExpandBIT_CONVERT(Op.getNode(), DAG);
3145  case ISD::SHL:
3146  case ISD::SRL:
3147  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
3148  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
3149  case ISD::SRL_PARTS:
3150  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
3151  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
3152  case ISD::VSETCC:        return LowerVSETCC(Op, DAG);
3153  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG);
3154  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
3155  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
3156  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
3157  }
3158  return SDValue();
3159}
3160
3161/// ReplaceNodeResults - Replace the results of node with an illegal result
3162/// type with new values built out of custom code.
3163void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
3164                                           SmallVectorImpl<SDValue>&Results,
3165                                           SelectionDAG &DAG) {
3166  SDValue Res;
3167  switch (N->getOpcode()) {
3168  default:
3169    llvm_unreachable("Don't know how to custom expand this!");
3170    break;
3171  case ISD::BIT_CONVERT:
3172    Res = ExpandBIT_CONVERT(N, DAG);
3173    break;
3174  case ISD::SRL:
3175  case ISD::SRA:
3176    Res = LowerShift(N, DAG, Subtarget);
3177    break;
3178  }
3179  if (Res.getNode())
3180    Results.push_back(Res);
3181}
3182
3183//===----------------------------------------------------------------------===//
3184//                           ARM Scheduler Hooks
3185//===----------------------------------------------------------------------===//
3186
3187MachineBasicBlock *
3188ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
3189                                     MachineBasicBlock *BB,
3190                                     unsigned Size) const {
3191  unsigned dest    = MI->getOperand(0).getReg();
3192  unsigned ptr     = MI->getOperand(1).getReg();
3193  unsigned oldval  = MI->getOperand(2).getReg();
3194  unsigned newval  = MI->getOperand(3).getReg();
3195  unsigned scratch = BB->getParent()->getRegInfo()
3196    .createVirtualRegister(ARM::GPRRegisterClass);
3197  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3198  DebugLoc dl = MI->getDebugLoc();
3199  bool isThumb2 = Subtarget->isThumb2();
3200
3201  unsigned ldrOpc, strOpc;
3202  switch (Size) {
3203  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
3204  case 1:
3205    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
3206    strOpc = isThumb2 ? ARM::t2LDREXB : ARM::STREXB;
3207    break;
3208  case 2:
3209    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
3210    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
3211    break;
3212  case 4:
3213    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
3214    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
3215    break;
3216  }
3217
3218  MachineFunction *MF = BB->getParent();
3219  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3220  MachineFunction::iterator It = BB;
3221  ++It; // insert the new blocks after the current block
3222
3223  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
3224  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
3225  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
3226  MF->insert(It, loop1MBB);
3227  MF->insert(It, loop2MBB);
3228  MF->insert(It, exitMBB);
3229  exitMBB->transferSuccessors(BB);
3230
3231  //  thisMBB:
3232  //   ...
3233  //   fallthrough --> loop1MBB
3234  BB->addSuccessor(loop1MBB);
3235
3236  // loop1MBB:
3237  //   ldrex dest, [ptr]
3238  //   cmp dest, oldval
3239  //   bne exitMBB
3240  BB = loop1MBB;
3241  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
3242  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
3243                 .addReg(dest).addReg(oldval));
3244  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
3245    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
3246  BB->addSuccessor(loop2MBB);
3247  BB->addSuccessor(exitMBB);
3248
3249  // loop2MBB:
3250  //   strex scratch, newval, [ptr]
3251  //   cmp scratch, #0
3252  //   bne loop1MBB
3253  BB = loop2MBB;
3254  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval)
3255                 .addReg(ptr));
3256  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
3257                 .addReg(scratch).addImm(0));
3258  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
3259    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
3260  BB->addSuccessor(loop1MBB);
3261  BB->addSuccessor(exitMBB);
3262
3263  //  exitMBB:
3264  //   ...
3265  BB = exitMBB;
3266
3267  MF->DeleteMachineInstr(MI);   // The instruction is gone now.
3268
3269  return BB;
3270}
3271
3272MachineBasicBlock *
3273ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
3274                                    unsigned Size, unsigned BinOpcode) const {
3275  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
3276  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3277
3278  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3279  MachineFunction *MF = BB->getParent();
3280  MachineFunction::iterator It = BB;
3281  ++It;
3282
3283  unsigned dest = MI->getOperand(0).getReg();
3284  unsigned ptr = MI->getOperand(1).getReg();
3285  unsigned incr = MI->getOperand(2).getReg();
3286  DebugLoc dl = MI->getDebugLoc();
3287
3288  bool isThumb2 = Subtarget->isThumb2();
3289  unsigned ldrOpc, strOpc;
3290  switch (Size) {
3291  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
3292  case 1:
3293    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
3294    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
3295    break;
3296  case 2:
3297    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
3298    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
3299    break;
3300  case 4:
3301    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
3302    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
3303    break;
3304  }
3305
3306  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
3307  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
3308  MF->insert(It, loopMBB);
3309  MF->insert(It, exitMBB);
3310  exitMBB->transferSuccessors(BB);
3311
3312  MachineRegisterInfo &RegInfo = MF->getRegInfo();
3313  unsigned scratch = RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
3314  unsigned scratch2 = (!BinOpcode) ? incr :
3315    RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
3316
3317  //  thisMBB:
3318  //   ...
3319  //   fallthrough --> loopMBB
3320  BB->addSuccessor(loopMBB);
3321
3322  //  loopMBB:
3323  //   ldrex dest, ptr
3324  //   <binop> scratch2, dest, incr
3325  //   strex scratch, scratch2, ptr
3326  //   cmp scratch, #0
3327  //   bne- loopMBB
3328  //   fallthrough --> exitMBB
3329  BB = loopMBB;
3330  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
3331  if (BinOpcode) {
3332    // operand order needs to go the other way for NAND
3333    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
3334      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
3335                     addReg(incr).addReg(dest)).addReg(0);
3336    else
3337      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
3338                     addReg(dest).addReg(incr)).addReg(0);
3339  }
3340
3341  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2)
3342                 .addReg(ptr));
3343  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
3344                 .addReg(scratch).addImm(0));
3345  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
3346    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
3347
3348  BB->addSuccessor(loopMBB);
3349  BB->addSuccessor(exitMBB);
3350
3351  //  exitMBB:
3352  //   ...
3353  BB = exitMBB;
3354
3355  MF->DeleteMachineInstr(MI);   // The instruction is gone now.
3356
3357  return BB;
3358}
3359
3360MachineBasicBlock *
3361ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
3362                                               MachineBasicBlock *BB,
3363                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
3364  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3365  DebugLoc dl = MI->getDebugLoc();
3366  bool isThumb2 = Subtarget->isThumb2();
3367  switch (MI->getOpcode()) {
3368  default:
3369    MI->dump();
3370    llvm_unreachable("Unexpected instr type to insert");
3371
3372  case ARM::ATOMIC_LOAD_ADD_I8:
3373     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
3374  case ARM::ATOMIC_LOAD_ADD_I16:
3375     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
3376  case ARM::ATOMIC_LOAD_ADD_I32:
3377     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
3378
3379  case ARM::ATOMIC_LOAD_AND_I8:
3380     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
3381  case ARM::ATOMIC_LOAD_AND_I16:
3382     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
3383  case ARM::ATOMIC_LOAD_AND_I32:
3384     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
3385
3386  case ARM::ATOMIC_LOAD_OR_I8:
3387     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
3388  case ARM::ATOMIC_LOAD_OR_I16:
3389     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
3390  case ARM::ATOMIC_LOAD_OR_I32:
3391     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
3392
3393  case ARM::ATOMIC_LOAD_XOR_I8:
3394     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
3395  case ARM::ATOMIC_LOAD_XOR_I16:
3396     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
3397  case ARM::ATOMIC_LOAD_XOR_I32:
3398     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
3399
3400  case ARM::ATOMIC_LOAD_NAND_I8:
3401     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
3402  case ARM::ATOMIC_LOAD_NAND_I16:
3403     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
3404  case ARM::ATOMIC_LOAD_NAND_I32:
3405     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
3406
3407  case ARM::ATOMIC_LOAD_SUB_I8:
3408     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
3409  case ARM::ATOMIC_LOAD_SUB_I16:
3410     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
3411  case ARM::ATOMIC_LOAD_SUB_I32:
3412     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
3413
3414  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
3415  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
3416  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
3417
3418  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
3419  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
3420  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
3421
3422  case ARM::tMOVCCr_pseudo: {
3423    // To "insert" a SELECT_CC instruction, we actually have to insert the
3424    // diamond control-flow pattern.  The incoming instruction knows the
3425    // destination vreg to set, the condition code register to branch on, the
3426    // true/false values to select between, and a branch opcode to use.
3427    const BasicBlock *LLVM_BB = BB->getBasicBlock();
3428    MachineFunction::iterator It = BB;
3429    ++It;
3430
3431    //  thisMBB:
3432    //  ...
3433    //   TrueVal = ...
3434    //   cmpTY ccX, r1, r2
3435    //   bCC copy1MBB
3436    //   fallthrough --> copy0MBB
3437    MachineBasicBlock *thisMBB  = BB;
3438    MachineFunction *F = BB->getParent();
3439    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
3440    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
3441    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
3442      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
3443    F->insert(It, copy0MBB);
3444    F->insert(It, sinkMBB);
3445    // Update machine-CFG edges by first adding all successors of the current
3446    // block to the new block which will contain the Phi node for the select.
3447    // Also inform sdisel of the edge changes.
3448    for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
3449           E = BB->succ_end(); I != E; ++I) {
3450      EM->insert(std::make_pair(*I, sinkMBB));
3451      sinkMBB->addSuccessor(*I);
3452    }
3453    // Next, remove all successors of the current block, and add the true
3454    // and fallthrough blocks as its successors.
3455    while (!BB->succ_empty())
3456      BB->removeSuccessor(BB->succ_begin());
3457    BB->addSuccessor(copy0MBB);
3458    BB->addSuccessor(sinkMBB);
3459
3460    //  copy0MBB:
3461    //   %FalseValue = ...
3462    //   # fallthrough to sinkMBB
3463    BB = copy0MBB;
3464
3465    // Update machine-CFG edges
3466    BB->addSuccessor(sinkMBB);
3467
3468    //  sinkMBB:
3469    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
3470    //  ...
3471    BB = sinkMBB;
3472    BuildMI(BB, dl, TII->get(ARM::PHI), MI->getOperand(0).getReg())
3473      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
3474      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
3475
3476    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
3477    return BB;
3478  }
3479
3480  case ARM::tANDsp:
3481  case ARM::tADDspr_:
3482  case ARM::tSUBspi_:
3483  case ARM::t2SUBrSPi_:
3484  case ARM::t2SUBrSPi12_:
3485  case ARM::t2SUBrSPs_: {
3486    MachineFunction *MF = BB->getParent();
3487    unsigned DstReg = MI->getOperand(0).getReg();
3488    unsigned SrcReg = MI->getOperand(1).getReg();
3489    bool DstIsDead = MI->getOperand(0).isDead();
3490    bool SrcIsKill = MI->getOperand(1).isKill();
3491
3492    if (SrcReg != ARM::SP) {
3493      // Copy the source to SP from virtual register.
3494      const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(SrcReg);
3495      unsigned CopyOpc = (RC == ARM::tGPRRegisterClass)
3496        ? ARM::tMOVtgpr2gpr : ARM::tMOVgpr2gpr;
3497      BuildMI(BB, dl, TII->get(CopyOpc), ARM::SP)
3498        .addReg(SrcReg, getKillRegState(SrcIsKill));
3499    }
3500
3501    unsigned OpOpc = 0;
3502    bool NeedPred = false, NeedCC = false, NeedOp3 = false;
3503    switch (MI->getOpcode()) {
3504    default:
3505      llvm_unreachable("Unexpected pseudo instruction!");
3506    case ARM::tANDsp:
3507      OpOpc = ARM::tAND;
3508      NeedPred = true;
3509      break;
3510    case ARM::tADDspr_:
3511      OpOpc = ARM::tADDspr;
3512      break;
3513    case ARM::tSUBspi_:
3514      OpOpc = ARM::tSUBspi;
3515      break;
3516    case ARM::t2SUBrSPi_:
3517      OpOpc = ARM::t2SUBrSPi;
3518      NeedPred = true; NeedCC = true;
3519      break;
3520    case ARM::t2SUBrSPi12_:
3521      OpOpc = ARM::t2SUBrSPi12;
3522      NeedPred = true;
3523      break;
3524    case ARM::t2SUBrSPs_:
3525      OpOpc = ARM::t2SUBrSPs;
3526      NeedPred = true; NeedCC = true; NeedOp3 = true;
3527      break;
3528    }
3529    MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(OpOpc), ARM::SP);
3530    if (OpOpc == ARM::tAND)
3531      AddDefaultT1CC(MIB);
3532    MIB.addReg(ARM::SP);
3533    MIB.addOperand(MI->getOperand(2));
3534    if (NeedOp3)
3535      MIB.addOperand(MI->getOperand(3));
3536    if (NeedPred)
3537      AddDefaultPred(MIB);
3538    if (NeedCC)
3539      AddDefaultCC(MIB);
3540
3541    // Copy the result from SP to virtual register.
3542    const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(DstReg);
3543    unsigned CopyOpc = (RC == ARM::tGPRRegisterClass)
3544      ? ARM::tMOVgpr2tgpr : ARM::tMOVgpr2gpr;
3545    BuildMI(BB, dl, TII->get(CopyOpc))
3546      .addReg(DstReg, getDefRegState(true) | getDeadRegState(DstIsDead))
3547      .addReg(ARM::SP);
3548    MF->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
3549    return BB;
3550  }
3551  }
3552}
3553
3554//===----------------------------------------------------------------------===//
3555//                           ARM Optimization Hooks
3556//===----------------------------------------------------------------------===//
3557
3558static
3559SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
3560                            TargetLowering::DAGCombinerInfo &DCI) {
3561  SelectionDAG &DAG = DCI.DAG;
3562  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3563  EVT VT = N->getValueType(0);
3564  unsigned Opc = N->getOpcode();
3565  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
3566  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
3567  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
3568  ISD::CondCode CC = ISD::SETCC_INVALID;
3569
3570  if (isSlctCC) {
3571    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
3572  } else {
3573    SDValue CCOp = Slct.getOperand(0);
3574    if (CCOp.getOpcode() == ISD::SETCC)
3575      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
3576  }
3577
3578  bool DoXform = false;
3579  bool InvCC = false;
3580  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
3581          "Bad input!");
3582
3583  if (LHS.getOpcode() == ISD::Constant &&
3584      cast<ConstantSDNode>(LHS)->isNullValue()) {
3585    DoXform = true;
3586  } else if (CC != ISD::SETCC_INVALID &&
3587             RHS.getOpcode() == ISD::Constant &&
3588             cast<ConstantSDNode>(RHS)->isNullValue()) {
3589    std::swap(LHS, RHS);
3590    SDValue Op0 = Slct.getOperand(0);
3591    EVT OpVT = isSlctCC ? Op0.getValueType() :
3592                          Op0.getOperand(0).getValueType();
3593    bool isInt = OpVT.isInteger();
3594    CC = ISD::getSetCCInverse(CC, isInt);
3595
3596    if (!TLI.isCondCodeLegal(CC, OpVT))
3597      return SDValue();         // Inverse operator isn't legal.
3598
3599    DoXform = true;
3600    InvCC = true;
3601  }
3602
3603  if (DoXform) {
3604    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
3605    if (isSlctCC)
3606      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
3607                             Slct.getOperand(0), Slct.getOperand(1), CC);
3608    SDValue CCOp = Slct.getOperand(0);
3609    if (InvCC)
3610      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
3611                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
3612    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
3613                       CCOp, OtherOp, Result);
3614  }
3615  return SDValue();
3616}
3617
3618/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
3619static SDValue PerformADDCombine(SDNode *N,
3620                                 TargetLowering::DAGCombinerInfo &DCI) {
3621  // added by evan in r37685 with no testcase.
3622  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
3623
3624  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
3625  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
3626    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
3627    if (Result.getNode()) return Result;
3628  }
3629  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
3630    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
3631    if (Result.getNode()) return Result;
3632  }
3633
3634  return SDValue();
3635}
3636
3637/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
3638static SDValue PerformSUBCombine(SDNode *N,
3639                                 TargetLowering::DAGCombinerInfo &DCI) {
3640  // added by evan in r37685 with no testcase.
3641  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
3642
3643  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
3644  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
3645    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
3646    if (Result.getNode()) return Result;
3647  }
3648
3649  return SDValue();
3650}
3651
3652/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
3653/// ARMISD::VMOVRRD.
3654static SDValue PerformVMOVRRDCombine(SDNode *N,
3655                                   TargetLowering::DAGCombinerInfo &DCI) {
3656  // fmrrd(fmdrr x, y) -> x,y
3657  SDValue InDouble = N->getOperand(0);
3658  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
3659    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
3660  return SDValue();
3661}
3662
3663/// getVShiftImm - Check if this is a valid build_vector for the immediate
3664/// operand of a vector shift operation, where all the elements of the
3665/// build_vector must have the same constant integer value.
3666static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
3667  // Ignore bit_converts.
3668  while (Op.getOpcode() == ISD::BIT_CONVERT)
3669    Op = Op.getOperand(0);
3670  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3671  APInt SplatBits, SplatUndef;
3672  unsigned SplatBitSize;
3673  bool HasAnyUndefs;
3674  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
3675                                      HasAnyUndefs, ElementBits) ||
3676      SplatBitSize > ElementBits)
3677    return false;
3678  Cnt = SplatBits.getSExtValue();
3679  return true;
3680}
3681
3682/// isVShiftLImm - Check if this is a valid build_vector for the immediate
3683/// operand of a vector shift left operation.  That value must be in the range:
3684///   0 <= Value < ElementBits for a left shift; or
3685///   0 <= Value <= ElementBits for a long left shift.
3686static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
3687  assert(VT.isVector() && "vector shift count is not a vector type");
3688  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
3689  if (! getVShiftImm(Op, ElementBits, Cnt))
3690    return false;
3691  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
3692}
3693
3694/// isVShiftRImm - Check if this is a valid build_vector for the immediate
3695/// operand of a vector shift right operation.  For a shift opcode, the value
3696/// is positive, but for an intrinsic the value count must be negative. The
3697/// absolute value must be in the range:
3698///   1 <= |Value| <= ElementBits for a right shift; or
3699///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
3700static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
3701                         int64_t &Cnt) {
3702  assert(VT.isVector() && "vector shift count is not a vector type");
3703  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
3704  if (! getVShiftImm(Op, ElementBits, Cnt))
3705    return false;
3706  if (isIntrinsic)
3707    Cnt = -Cnt;
3708  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
3709}
3710
3711/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
3712static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
3713  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3714  switch (IntNo) {
3715  default:
3716    // Don't do anything for most intrinsics.
3717    break;
3718
3719  // Vector shifts: check for immediate versions and lower them.
3720  // Note: This is done during DAG combining instead of DAG legalizing because
3721  // the build_vectors for 64-bit vector element shift counts are generally
3722  // not legal, and it is hard to see their values after they get legalized to
3723  // loads from a constant pool.
3724  case Intrinsic::arm_neon_vshifts:
3725  case Intrinsic::arm_neon_vshiftu:
3726  case Intrinsic::arm_neon_vshiftls:
3727  case Intrinsic::arm_neon_vshiftlu:
3728  case Intrinsic::arm_neon_vshiftn:
3729  case Intrinsic::arm_neon_vrshifts:
3730  case Intrinsic::arm_neon_vrshiftu:
3731  case Intrinsic::arm_neon_vrshiftn:
3732  case Intrinsic::arm_neon_vqshifts:
3733  case Intrinsic::arm_neon_vqshiftu:
3734  case Intrinsic::arm_neon_vqshiftsu:
3735  case Intrinsic::arm_neon_vqshiftns:
3736  case Intrinsic::arm_neon_vqshiftnu:
3737  case Intrinsic::arm_neon_vqshiftnsu:
3738  case Intrinsic::arm_neon_vqrshiftns:
3739  case Intrinsic::arm_neon_vqrshiftnu:
3740  case Intrinsic::arm_neon_vqrshiftnsu: {
3741    EVT VT = N->getOperand(1).getValueType();
3742    int64_t Cnt;
3743    unsigned VShiftOpc = 0;
3744
3745    switch (IntNo) {
3746    case Intrinsic::arm_neon_vshifts:
3747    case Intrinsic::arm_neon_vshiftu:
3748      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
3749        VShiftOpc = ARMISD::VSHL;
3750        break;
3751      }
3752      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
3753        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
3754                     ARMISD::VSHRs : ARMISD::VSHRu);
3755        break;
3756      }
3757      return SDValue();
3758
3759    case Intrinsic::arm_neon_vshiftls:
3760    case Intrinsic::arm_neon_vshiftlu:
3761      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
3762        break;
3763      llvm_unreachable("invalid shift count for vshll intrinsic");
3764
3765    case Intrinsic::arm_neon_vrshifts:
3766    case Intrinsic::arm_neon_vrshiftu:
3767      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
3768        break;
3769      return SDValue();
3770
3771    case Intrinsic::arm_neon_vqshifts:
3772    case Intrinsic::arm_neon_vqshiftu:
3773      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
3774        break;
3775      return SDValue();
3776
3777    case Intrinsic::arm_neon_vqshiftsu:
3778      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
3779        break;
3780      llvm_unreachable("invalid shift count for vqshlu intrinsic");
3781
3782    case Intrinsic::arm_neon_vshiftn:
3783    case Intrinsic::arm_neon_vrshiftn:
3784    case Intrinsic::arm_neon_vqshiftns:
3785    case Intrinsic::arm_neon_vqshiftnu:
3786    case Intrinsic::arm_neon_vqshiftnsu:
3787    case Intrinsic::arm_neon_vqrshiftns:
3788    case Intrinsic::arm_neon_vqrshiftnu:
3789    case Intrinsic::arm_neon_vqrshiftnsu:
3790      // Narrowing shifts require an immediate right shift.
3791      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
3792        break;
3793      llvm_unreachable("invalid shift count for narrowing vector shift intrinsic");
3794
3795    default:
3796      llvm_unreachable("unhandled vector shift");
3797    }
3798
3799    switch (IntNo) {
3800    case Intrinsic::arm_neon_vshifts:
3801    case Intrinsic::arm_neon_vshiftu:
3802      // Opcode already set above.
3803      break;
3804    case Intrinsic::arm_neon_vshiftls:
3805    case Intrinsic::arm_neon_vshiftlu:
3806      if (Cnt == VT.getVectorElementType().getSizeInBits())
3807        VShiftOpc = ARMISD::VSHLLi;
3808      else
3809        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
3810                     ARMISD::VSHLLs : ARMISD::VSHLLu);
3811      break;
3812    case Intrinsic::arm_neon_vshiftn:
3813      VShiftOpc = ARMISD::VSHRN; break;
3814    case Intrinsic::arm_neon_vrshifts:
3815      VShiftOpc = ARMISD::VRSHRs; break;
3816    case Intrinsic::arm_neon_vrshiftu:
3817      VShiftOpc = ARMISD::VRSHRu; break;
3818    case Intrinsic::arm_neon_vrshiftn:
3819      VShiftOpc = ARMISD::VRSHRN; break;
3820    case Intrinsic::arm_neon_vqshifts:
3821      VShiftOpc = ARMISD::VQSHLs; break;
3822    case Intrinsic::arm_neon_vqshiftu:
3823      VShiftOpc = ARMISD::VQSHLu; break;
3824    case Intrinsic::arm_neon_vqshiftsu:
3825      VShiftOpc = ARMISD::VQSHLsu; break;
3826    case Intrinsic::arm_neon_vqshiftns:
3827      VShiftOpc = ARMISD::VQSHRNs; break;
3828    case Intrinsic::arm_neon_vqshiftnu:
3829      VShiftOpc = ARMISD::VQSHRNu; break;
3830    case Intrinsic::arm_neon_vqshiftnsu:
3831      VShiftOpc = ARMISD::VQSHRNsu; break;
3832    case Intrinsic::arm_neon_vqrshiftns:
3833      VShiftOpc = ARMISD::VQRSHRNs; break;
3834    case Intrinsic::arm_neon_vqrshiftnu:
3835      VShiftOpc = ARMISD::VQRSHRNu; break;
3836    case Intrinsic::arm_neon_vqrshiftnsu:
3837      VShiftOpc = ARMISD::VQRSHRNsu; break;
3838    }
3839
3840    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
3841                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
3842  }
3843
3844  case Intrinsic::arm_neon_vshiftins: {
3845    EVT VT = N->getOperand(1).getValueType();
3846    int64_t Cnt;
3847    unsigned VShiftOpc = 0;
3848
3849    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
3850      VShiftOpc = ARMISD::VSLI;
3851    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
3852      VShiftOpc = ARMISD::VSRI;
3853    else {
3854      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
3855    }
3856
3857    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
3858                       N->getOperand(1), N->getOperand(2),
3859                       DAG.getConstant(Cnt, MVT::i32));
3860  }
3861
3862  case Intrinsic::arm_neon_vqrshifts:
3863  case Intrinsic::arm_neon_vqrshiftu:
3864    // No immediate versions of these to check for.
3865    break;
3866  }
3867
3868  return SDValue();
3869}
3870
3871/// PerformShiftCombine - Checks for immediate versions of vector shifts and
3872/// lowers them.  As with the vector shift intrinsics, this is done during DAG
3873/// combining instead of DAG legalizing because the build_vectors for 64-bit
3874/// vector element shift counts are generally not legal, and it is hard to see
3875/// their values after they get legalized to loads from a constant pool.
3876static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
3877                                   const ARMSubtarget *ST) {
3878  EVT VT = N->getValueType(0);
3879
3880  // Nothing to be done for scalar shifts.
3881  if (! VT.isVector())
3882    return SDValue();
3883
3884  assert(ST->hasNEON() && "unexpected vector shift");
3885  int64_t Cnt;
3886
3887  switch (N->getOpcode()) {
3888  default: llvm_unreachable("unexpected shift opcode");
3889
3890  case ISD::SHL:
3891    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
3892      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
3893                         DAG.getConstant(Cnt, MVT::i32));
3894    break;
3895
3896  case ISD::SRA:
3897  case ISD::SRL:
3898    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
3899      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
3900                            ARMISD::VSHRs : ARMISD::VSHRu);
3901      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
3902                         DAG.getConstant(Cnt, MVT::i32));
3903    }
3904  }
3905  return SDValue();
3906}
3907
3908/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
3909/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
3910static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
3911                                    const ARMSubtarget *ST) {
3912  SDValue N0 = N->getOperand(0);
3913
3914  // Check for sign- and zero-extensions of vector extract operations of 8-
3915  // and 16-bit vector elements.  NEON supports these directly.  They are
3916  // handled during DAG combining because type legalization will promote them
3917  // to 32-bit types and it is messy to recognize the operations after that.
3918  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
3919    SDValue Vec = N0.getOperand(0);
3920    SDValue Lane = N0.getOperand(1);
3921    EVT VT = N->getValueType(0);
3922    EVT EltVT = N0.getValueType();
3923    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3924
3925    if (VT == MVT::i32 &&
3926        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
3927        TLI.isTypeLegal(Vec.getValueType())) {
3928
3929      unsigned Opc = 0;
3930      switch (N->getOpcode()) {
3931      default: llvm_unreachable("unexpected opcode");
3932      case ISD::SIGN_EXTEND:
3933        Opc = ARMISD::VGETLANEs;
3934        break;
3935      case ISD::ZERO_EXTEND:
3936      case ISD::ANY_EXTEND:
3937        Opc = ARMISD::VGETLANEu;
3938        break;
3939      }
3940      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
3941    }
3942  }
3943
3944  return SDValue();
3945}
3946
3947/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
3948/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
3949static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
3950                                       const ARMSubtarget *ST) {
3951  // If the target supports NEON, try to use vmax/vmin instructions for f32
3952  // selects like "x < y ? x : y".  Unless the FiniteOnlyFPMath option is set,
3953  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
3954  // a NaN; only do the transformation when it matches that behavior.
3955
3956  // For now only do this when using NEON for FP operations; if using VFP, it
3957  // is not obvious that the benefit outweighs the cost of switching to the
3958  // NEON pipeline.
3959  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
3960      N->getValueType(0) != MVT::f32)
3961    return SDValue();
3962
3963  SDValue CondLHS = N->getOperand(0);
3964  SDValue CondRHS = N->getOperand(1);
3965  SDValue LHS = N->getOperand(2);
3966  SDValue RHS = N->getOperand(3);
3967  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
3968
3969  unsigned Opcode = 0;
3970  bool IsReversed;
3971  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
3972    IsReversed = false; // x CC y ? x : y
3973  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
3974    IsReversed = true ; // x CC y ? y : x
3975  } else {
3976    return SDValue();
3977  }
3978
3979  bool IsUnordered;
3980  switch (CC) {
3981  default: break;
3982  case ISD::SETOLT:
3983  case ISD::SETOLE:
3984  case ISD::SETLT:
3985  case ISD::SETLE:
3986  case ISD::SETULT:
3987  case ISD::SETULE:
3988    // If LHS is NaN, an ordered comparison will be false and the result will
3989    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
3990    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
3991    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
3992    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
3993      break;
3994    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
3995    // will return -0, so vmin can only be used for unsafe math or if one of
3996    // the operands is known to be nonzero.
3997    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
3998        !UnsafeFPMath &&
3999        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
4000      break;
4001    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
4002    break;
4003
4004  case ISD::SETOGT:
4005  case ISD::SETOGE:
4006  case ISD::SETGT:
4007  case ISD::SETGE:
4008  case ISD::SETUGT:
4009  case ISD::SETUGE:
4010    // If LHS is NaN, an ordered comparison will be false and the result will
4011    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
4012    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
4013    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
4014    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
4015      break;
4016    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
4017    // will return +0, so vmax can only be used for unsafe math or if one of
4018    // the operands is known to be nonzero.
4019    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
4020        !UnsafeFPMath &&
4021        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
4022      break;
4023    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
4024    break;
4025  }
4026
4027  if (!Opcode)
4028    return SDValue();
4029  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
4030}
4031
4032SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
4033                                             DAGCombinerInfo &DCI) const {
4034  switch (N->getOpcode()) {
4035  default: break;
4036  case ISD::ADD:        return PerformADDCombine(N, DCI);
4037  case ISD::SUB:        return PerformSUBCombine(N, DCI);
4038  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
4039  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
4040  case ISD::SHL:
4041  case ISD::SRA:
4042  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
4043  case ISD::SIGN_EXTEND:
4044  case ISD::ZERO_EXTEND:
4045  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
4046  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
4047  }
4048  return SDValue();
4049}
4050
4051bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
4052  if (!Subtarget->hasV6Ops())
4053    // Pre-v6 does not support unaligned mem access.
4054    return false;
4055  else {
4056    // v6+ may or may not support unaligned mem access depending on the system
4057    // configuration.
4058    // FIXME: This is pretty conservative. Should we provide cmdline option to
4059    // control the behaviour?
4060    if (!Subtarget->isTargetDarwin())
4061      return false;
4062  }
4063
4064  switch (VT.getSimpleVT().SimpleTy) {
4065  default:
4066    return false;
4067  case MVT::i8:
4068  case MVT::i16:
4069  case MVT::i32:
4070    return true;
4071  // FIXME: VLD1 etc with standard alignment is legal.
4072  }
4073}
4074
4075static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
4076  if (V < 0)
4077    return false;
4078
4079  unsigned Scale = 1;
4080  switch (VT.getSimpleVT().SimpleTy) {
4081  default: return false;
4082  case MVT::i1:
4083  case MVT::i8:
4084    // Scale == 1;
4085    break;
4086  case MVT::i16:
4087    // Scale == 2;
4088    Scale = 2;
4089    break;
4090  case MVT::i32:
4091    // Scale == 4;
4092    Scale = 4;
4093    break;
4094  }
4095
4096  if ((V & (Scale - 1)) != 0)
4097    return false;
4098  V /= Scale;
4099  return V == (V & ((1LL << 5) - 1));
4100}
4101
4102static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
4103                                      const ARMSubtarget *Subtarget) {
4104  bool isNeg = false;
4105  if (V < 0) {
4106    isNeg = true;
4107    V = - V;
4108  }
4109
4110  switch (VT.getSimpleVT().SimpleTy) {
4111  default: return false;
4112  case MVT::i1:
4113  case MVT::i8:
4114  case MVT::i16:
4115  case MVT::i32:
4116    // + imm12 or - imm8
4117    if (isNeg)
4118      return V == (V & ((1LL << 8) - 1));
4119    return V == (V & ((1LL << 12) - 1));
4120  case MVT::f32:
4121  case MVT::f64:
4122    // Same as ARM mode. FIXME: NEON?
4123    if (!Subtarget->hasVFP2())
4124      return false;
4125    if ((V & 3) != 0)
4126      return false;
4127    V >>= 2;
4128    return V == (V & ((1LL << 8) - 1));
4129  }
4130}
4131
4132/// isLegalAddressImmediate - Return true if the integer value can be used
4133/// as the offset of the target addressing mode for load / store of the
4134/// given type.
4135static bool isLegalAddressImmediate(int64_t V, EVT VT,
4136                                    const ARMSubtarget *Subtarget) {
4137  if (V == 0)
4138    return true;
4139
4140  if (!VT.isSimple())
4141    return false;
4142
4143  if (Subtarget->isThumb1Only())
4144    return isLegalT1AddressImmediate(V, VT);
4145  else if (Subtarget->isThumb2())
4146    return isLegalT2AddressImmediate(V, VT, Subtarget);
4147
4148  // ARM mode.
4149  if (V < 0)
4150    V = - V;
4151  switch (VT.getSimpleVT().SimpleTy) {
4152  default: return false;
4153  case MVT::i1:
4154  case MVT::i8:
4155  case MVT::i32:
4156    // +- imm12
4157    return V == (V & ((1LL << 12) - 1));
4158  case MVT::i16:
4159    // +- imm8
4160    return V == (V & ((1LL << 8) - 1));
4161  case MVT::f32:
4162  case MVT::f64:
4163    if (!Subtarget->hasVFP2()) // FIXME: NEON?
4164      return false;
4165    if ((V & 3) != 0)
4166      return false;
4167    V >>= 2;
4168    return V == (V & ((1LL << 8) - 1));
4169  }
4170}
4171
4172bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
4173                                                      EVT VT) const {
4174  int Scale = AM.Scale;
4175  if (Scale < 0)
4176    return false;
4177
4178  switch (VT.getSimpleVT().SimpleTy) {
4179  default: return false;
4180  case MVT::i1:
4181  case MVT::i8:
4182  case MVT::i16:
4183  case MVT::i32:
4184    if (Scale == 1)
4185      return true;
4186    // r + r << imm
4187    Scale = Scale & ~1;
4188    return Scale == 2 || Scale == 4 || Scale == 8;
4189  case MVT::i64:
4190    // r + r
4191    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
4192      return true;
4193    return false;
4194  case MVT::isVoid:
4195    // Note, we allow "void" uses (basically, uses that aren't loads or
4196    // stores), because arm allows folding a scale into many arithmetic
4197    // operations.  This should be made more precise and revisited later.
4198
4199    // Allow r << imm, but the imm has to be a multiple of two.
4200    if (Scale & 1) return false;
4201    return isPowerOf2_32(Scale);
4202  }
4203}
4204
4205/// isLegalAddressingMode - Return true if the addressing mode represented
4206/// by AM is legal for this target, for a load/store of the specified type.
4207bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
4208                                              const Type *Ty) const {
4209  EVT VT = getValueType(Ty, true);
4210  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
4211    return false;
4212
4213  // Can never fold addr of global into load/store.
4214  if (AM.BaseGV)
4215    return false;
4216
4217  switch (AM.Scale) {
4218  case 0:  // no scale reg, must be "r+i" or "r", or "i".
4219    break;
4220  case 1:
4221    if (Subtarget->isThumb1Only())
4222      return false;
4223    // FALL THROUGH.
4224  default:
4225    // ARM doesn't support any R+R*scale+imm addr modes.
4226    if (AM.BaseOffs)
4227      return false;
4228
4229    if (!VT.isSimple())
4230      return false;
4231
4232    if (Subtarget->isThumb2())
4233      return isLegalT2ScaledAddressingMode(AM, VT);
4234
4235    int Scale = AM.Scale;
4236    switch (VT.getSimpleVT().SimpleTy) {
4237    default: return false;
4238    case MVT::i1:
4239    case MVT::i8:
4240    case MVT::i32:
4241      if (Scale < 0) Scale = -Scale;
4242      if (Scale == 1)
4243        return true;
4244      // r + r << imm
4245      return isPowerOf2_32(Scale & ~1);
4246    case MVT::i16:
4247    case MVT::i64:
4248      // r + r
4249      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
4250        return true;
4251      return false;
4252
4253    case MVT::isVoid:
4254      // Note, we allow "void" uses (basically, uses that aren't loads or
4255      // stores), because arm allows folding a scale into many arithmetic
4256      // operations.  This should be made more precise and revisited later.
4257
4258      // Allow r << imm, but the imm has to be a multiple of two.
4259      if (Scale & 1) return false;
4260      return isPowerOf2_32(Scale);
4261    }
4262    break;
4263  }
4264  return true;
4265}
4266
4267/// isLegalICmpImmediate - Return true if the specified immediate is legal
4268/// icmp immediate, that is the target has icmp instructions which can compare
4269/// a register against the immediate without having to materialize the
4270/// immediate into a register.
4271bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
4272  if (!Subtarget->isThumb())
4273    return ARM_AM::getSOImmVal(Imm) != -1;
4274  if (Subtarget->isThumb2())
4275    return ARM_AM::getT2SOImmVal(Imm) != -1;
4276  return Imm >= 0 && Imm <= 255;
4277}
4278
4279static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
4280                                      bool isSEXTLoad, SDValue &Base,
4281                                      SDValue &Offset, bool &isInc,
4282                                      SelectionDAG &DAG) {
4283  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
4284    return false;
4285
4286  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
4287    // AddressingMode 3
4288    Base = Ptr->getOperand(0);
4289    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
4290      int RHSC = (int)RHS->getZExtValue();
4291      if (RHSC < 0 && RHSC > -256) {
4292        assert(Ptr->getOpcode() == ISD::ADD);
4293        isInc = false;
4294        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
4295        return true;
4296      }
4297    }
4298    isInc = (Ptr->getOpcode() == ISD::ADD);
4299    Offset = Ptr->getOperand(1);
4300    return true;
4301  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
4302    // AddressingMode 2
4303    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
4304      int RHSC = (int)RHS->getZExtValue();
4305      if (RHSC < 0 && RHSC > -0x1000) {
4306        assert(Ptr->getOpcode() == ISD::ADD);
4307        isInc = false;
4308        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
4309        Base = Ptr->getOperand(0);
4310        return true;
4311      }
4312    }
4313
4314    if (Ptr->getOpcode() == ISD::ADD) {
4315      isInc = true;
4316      ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
4317      if (ShOpcVal != ARM_AM::no_shift) {
4318        Base = Ptr->getOperand(1);
4319        Offset = Ptr->getOperand(0);
4320      } else {
4321        Base = Ptr->getOperand(0);
4322        Offset = Ptr->getOperand(1);
4323      }
4324      return true;
4325    }
4326
4327    isInc = (Ptr->getOpcode() == ISD::ADD);
4328    Base = Ptr->getOperand(0);
4329    Offset = Ptr->getOperand(1);
4330    return true;
4331  }
4332
4333  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
4334  return false;
4335}
4336
4337static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
4338                                     bool isSEXTLoad, SDValue &Base,
4339                                     SDValue &Offset, bool &isInc,
4340                                     SelectionDAG &DAG) {
4341  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
4342    return false;
4343
4344  Base = Ptr->getOperand(0);
4345  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
4346    int RHSC = (int)RHS->getZExtValue();
4347    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
4348      assert(Ptr->getOpcode() == ISD::ADD);
4349      isInc = false;
4350      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
4351      return true;
4352    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
4353      isInc = Ptr->getOpcode() == ISD::ADD;
4354      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
4355      return true;
4356    }
4357  }
4358
4359  return false;
4360}
4361
4362/// getPreIndexedAddressParts - returns true by value, base pointer and
4363/// offset pointer and addressing mode by reference if the node's address
4364/// can be legally represented as pre-indexed load / store address.
4365bool
4366ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
4367                                             SDValue &Offset,
4368                                             ISD::MemIndexedMode &AM,
4369                                             SelectionDAG &DAG) const {
4370  if (Subtarget->isThumb1Only())
4371    return false;
4372
4373  EVT VT;
4374  SDValue Ptr;
4375  bool isSEXTLoad = false;
4376  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
4377    Ptr = LD->getBasePtr();
4378    VT  = LD->getMemoryVT();
4379    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
4380  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
4381    Ptr = ST->getBasePtr();
4382    VT  = ST->getMemoryVT();
4383  } else
4384    return false;
4385
4386  bool isInc;
4387  bool isLegal = false;
4388  if (Subtarget->isThumb2())
4389    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
4390                                       Offset, isInc, DAG);
4391  else
4392    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
4393                                        Offset, isInc, DAG);
4394  if (!isLegal)
4395    return false;
4396
4397  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
4398  return true;
4399}
4400
4401/// getPostIndexedAddressParts - returns true by value, base pointer and
4402/// offset pointer and addressing mode by reference if this node can be
4403/// combined with a load / store to form a post-indexed load / store.
4404bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
4405                                                   SDValue &Base,
4406                                                   SDValue &Offset,
4407                                                   ISD::MemIndexedMode &AM,
4408                                                   SelectionDAG &DAG) const {
4409  if (Subtarget->isThumb1Only())
4410    return false;
4411
4412  EVT VT;
4413  SDValue Ptr;
4414  bool isSEXTLoad = false;
4415  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
4416    VT  = LD->getMemoryVT();
4417    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
4418  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
4419    VT  = ST->getMemoryVT();
4420  } else
4421    return false;
4422
4423  bool isInc;
4424  bool isLegal = false;
4425  if (Subtarget->isThumb2())
4426    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
4427                                        isInc, DAG);
4428  else
4429    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
4430                                        isInc, DAG);
4431  if (!isLegal)
4432    return false;
4433
4434  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
4435  return true;
4436}
4437
4438void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
4439                                                       const APInt &Mask,
4440                                                       APInt &KnownZero,
4441                                                       APInt &KnownOne,
4442                                                       const SelectionDAG &DAG,
4443                                                       unsigned Depth) const {
4444  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
4445  switch (Op.getOpcode()) {
4446  default: break;
4447  case ARMISD::CMOV: {
4448    // Bits are known zero/one if known on the LHS and RHS.
4449    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
4450    if (KnownZero == 0 && KnownOne == 0) return;
4451
4452    APInt KnownZeroRHS, KnownOneRHS;
4453    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
4454                          KnownZeroRHS, KnownOneRHS, Depth+1);
4455    KnownZero &= KnownZeroRHS;
4456    KnownOne  &= KnownOneRHS;
4457    return;
4458  }
4459  }
4460}
4461
4462//===----------------------------------------------------------------------===//
4463//                           ARM Inline Assembly Support
4464//===----------------------------------------------------------------------===//
4465
4466/// getConstraintType - Given a constraint letter, return the type of
4467/// constraint it is for this target.
4468ARMTargetLowering::ConstraintType
4469ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
4470  if (Constraint.size() == 1) {
4471    switch (Constraint[0]) {
4472    default:  break;
4473    case 'l': return C_RegisterClass;
4474    case 'w': return C_RegisterClass;
4475    }
4476  }
4477  return TargetLowering::getConstraintType(Constraint);
4478}
4479
4480std::pair<unsigned, const TargetRegisterClass*>
4481ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
4482                                                EVT VT) const {
4483  if (Constraint.size() == 1) {
4484    // GCC ARM Constraint Letters
4485    switch (Constraint[0]) {
4486    case 'l':
4487      if (Subtarget->isThumb())
4488        return std::make_pair(0U, ARM::tGPRRegisterClass);
4489      else
4490        return std::make_pair(0U, ARM::GPRRegisterClass);
4491    case 'r':
4492      return std::make_pair(0U, ARM::GPRRegisterClass);
4493    case 'w':
4494      if (VT == MVT::f32)
4495        return std::make_pair(0U, ARM::SPRRegisterClass);
4496      if (VT.getSizeInBits() == 64)
4497        return std::make_pair(0U, ARM::DPRRegisterClass);
4498      if (VT.getSizeInBits() == 128)
4499        return std::make_pair(0U, ARM::QPRRegisterClass);
4500      break;
4501    }
4502  }
4503  if (StringRef("{cc}").equals_lower(Constraint))
4504    return std::make_pair(0U, ARM::CCRRegisterClass);
4505
4506  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4507}
4508
4509std::vector<unsigned> ARMTargetLowering::
4510getRegClassForInlineAsmConstraint(const std::string &Constraint,
4511                                  EVT VT) const {
4512  if (Constraint.size() != 1)
4513    return std::vector<unsigned>();
4514
4515  switch (Constraint[0]) {      // GCC ARM Constraint Letters
4516  default: break;
4517  case 'l':
4518    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
4519                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
4520                                 0);
4521  case 'r':
4522    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
4523                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
4524                                 ARM::R8, ARM::R9, ARM::R10, ARM::R11,
4525                                 ARM::R12, ARM::LR, 0);
4526  case 'w':
4527    if (VT == MVT::f32)
4528      return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
4529                                   ARM::S4, ARM::S5, ARM::S6, ARM::S7,
4530                                   ARM::S8, ARM::S9, ARM::S10, ARM::S11,
4531                                   ARM::S12,ARM::S13,ARM::S14,ARM::S15,
4532                                   ARM::S16,ARM::S17,ARM::S18,ARM::S19,
4533                                   ARM::S20,ARM::S21,ARM::S22,ARM::S23,
4534                                   ARM::S24,ARM::S25,ARM::S26,ARM::S27,
4535                                   ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
4536    if (VT.getSizeInBits() == 64)
4537      return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
4538                                   ARM::D4, ARM::D5, ARM::D6, ARM::D7,
4539                                   ARM::D8, ARM::D9, ARM::D10,ARM::D11,
4540                                   ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
4541    if (VT.getSizeInBits() == 128)
4542      return make_vector<unsigned>(ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3,
4543                                   ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7, 0);
4544      break;
4545  }
4546
4547  return std::vector<unsigned>();
4548}
4549
4550/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4551/// vector.  If it is invalid, don't add anything to Ops.
4552void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4553                                                     char Constraint,
4554                                                     bool hasMemory,
4555                                                     std::vector<SDValue>&Ops,
4556                                                     SelectionDAG &DAG) const {
4557  SDValue Result(0, 0);
4558
4559  switch (Constraint) {
4560  default: break;
4561  case 'I': case 'J': case 'K': case 'L':
4562  case 'M': case 'N': case 'O':
4563    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4564    if (!C)
4565      return;
4566
4567    int64_t CVal64 = C->getSExtValue();
4568    int CVal = (int) CVal64;
4569    // None of these constraints allow values larger than 32 bits.  Check
4570    // that the value fits in an int.
4571    if (CVal != CVal64)
4572      return;
4573
4574    switch (Constraint) {
4575      case 'I':
4576        if (Subtarget->isThumb1Only()) {
4577          // This must be a constant between 0 and 255, for ADD
4578          // immediates.
4579          if (CVal >= 0 && CVal <= 255)
4580            break;
4581        } else if (Subtarget->isThumb2()) {
4582          // A constant that can be used as an immediate value in a
4583          // data-processing instruction.
4584          if (ARM_AM::getT2SOImmVal(CVal) != -1)
4585            break;
4586        } else {
4587          // A constant that can be used as an immediate value in a
4588          // data-processing instruction.
4589          if (ARM_AM::getSOImmVal(CVal) != -1)
4590            break;
4591        }
4592        return;
4593
4594      case 'J':
4595        if (Subtarget->isThumb()) {  // FIXME thumb2
4596          // This must be a constant between -255 and -1, for negated ADD
4597          // immediates. This can be used in GCC with an "n" modifier that
4598          // prints the negated value, for use with SUB instructions. It is
4599          // not useful otherwise but is implemented for compatibility.
4600          if (CVal >= -255 && CVal <= -1)
4601            break;
4602        } else {
4603          // This must be a constant between -4095 and 4095. It is not clear
4604          // what this constraint is intended for. Implemented for
4605          // compatibility with GCC.
4606          if (CVal >= -4095 && CVal <= 4095)
4607            break;
4608        }
4609        return;
4610
4611      case 'K':
4612        if (Subtarget->isThumb1Only()) {
4613          // A 32-bit value where only one byte has a nonzero value. Exclude
4614          // zero to match GCC. This constraint is used by GCC internally for
4615          // constants that can be loaded with a move/shift combination.
4616          // It is not useful otherwise but is implemented for compatibility.
4617          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
4618            break;
4619        } else if (Subtarget->isThumb2()) {
4620          // A constant whose bitwise inverse can be used as an immediate
4621          // value in a data-processing instruction. This can be used in GCC
4622          // with a "B" modifier that prints the inverted value, for use with
4623          // BIC and MVN instructions. It is not useful otherwise but is
4624          // implemented for compatibility.
4625          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
4626            break;
4627        } else {
4628          // A constant whose bitwise inverse can be used as an immediate
4629          // value in a data-processing instruction. This can be used in GCC
4630          // with a "B" modifier that prints the inverted value, for use with
4631          // BIC and MVN instructions. It is not useful otherwise but is
4632          // implemented for compatibility.
4633          if (ARM_AM::getSOImmVal(~CVal) != -1)
4634            break;
4635        }
4636        return;
4637
4638      case 'L':
4639        if (Subtarget->isThumb1Only()) {
4640          // This must be a constant between -7 and 7,
4641          // for 3-operand ADD/SUB immediate instructions.
4642          if (CVal >= -7 && CVal < 7)
4643            break;
4644        } else if (Subtarget->isThumb2()) {
4645          // A constant whose negation can be used as an immediate value in a
4646          // data-processing instruction. This can be used in GCC with an "n"
4647          // modifier that prints the negated value, for use with SUB
4648          // instructions. It is not useful otherwise but is implemented for
4649          // compatibility.
4650          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
4651            break;
4652        } else {
4653          // A constant whose negation can be used as an immediate value in a
4654          // data-processing instruction. This can be used in GCC with an "n"
4655          // modifier that prints the negated value, for use with SUB
4656          // instructions. It is not useful otherwise but is implemented for
4657          // compatibility.
4658          if (ARM_AM::getSOImmVal(-CVal) != -1)
4659            break;
4660        }
4661        return;
4662
4663      case 'M':
4664        if (Subtarget->isThumb()) { // FIXME thumb2
4665          // This must be a multiple of 4 between 0 and 1020, for
4666          // ADD sp + immediate.
4667          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
4668            break;
4669        } else {
4670          // A power of two or a constant between 0 and 32.  This is used in
4671          // GCC for the shift amount on shifted register operands, but it is
4672          // useful in general for any shift amounts.
4673          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
4674            break;
4675        }
4676        return;
4677
4678      case 'N':
4679        if (Subtarget->isThumb()) {  // FIXME thumb2
4680          // This must be a constant between 0 and 31, for shift amounts.
4681          if (CVal >= 0 && CVal <= 31)
4682            break;
4683        }
4684        return;
4685
4686      case 'O':
4687        if (Subtarget->isThumb()) {  // FIXME thumb2
4688          // This must be a multiple of 4 between -508 and 508, for
4689          // ADD/SUB sp = sp + immediate.
4690          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
4691            break;
4692        }
4693        return;
4694    }
4695    Result = DAG.getTargetConstant(CVal, Op.getValueType());
4696    break;
4697  }
4698
4699  if (Result.getNode()) {
4700    Ops.push_back(Result);
4701    return;
4702  }
4703  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
4704                                                      Ops, DAG);
4705}
4706
4707bool
4708ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
4709  // The ARM target isn't yet aware of offsets.
4710  return false;
4711}
4712
4713int ARM::getVFPf32Imm(const APFloat &FPImm) {
4714  APInt Imm = FPImm.bitcastToAPInt();
4715  uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
4716  int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
4717  int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
4718
4719  // We can handle 4 bits of mantissa.
4720  // mantissa = (16+UInt(e:f:g:h))/16.
4721  if (Mantissa & 0x7ffff)
4722    return -1;
4723  Mantissa >>= 19;
4724  if ((Mantissa & 0xf) != Mantissa)
4725    return -1;
4726
4727  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
4728  if (Exp < -3 || Exp > 4)
4729    return -1;
4730  Exp = ((Exp+3) & 0x7) ^ 4;
4731
4732  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
4733}
4734
4735int ARM::getVFPf64Imm(const APFloat &FPImm) {
4736  APInt Imm = FPImm.bitcastToAPInt();
4737  uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
4738  int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
4739  uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffLL;
4740
4741  // We can handle 4 bits of mantissa.
4742  // mantissa = (16+UInt(e:f:g:h))/16.
4743  if (Mantissa & 0xffffffffffffLL)
4744    return -1;
4745  Mantissa >>= 48;
4746  if ((Mantissa & 0xf) != Mantissa)
4747    return -1;
4748
4749  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
4750  if (Exp < -3 || Exp > 4)
4751    return -1;
4752  Exp = ((Exp+3) & 0x7) ^ 4;
4753
4754  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
4755}
4756
4757/// isFPImmLegal - Returns true if the target can instruction select the
4758/// specified FP immediate natively. If false, the legalizer will
4759/// materialize the FP immediate as a load from a constant pool.
4760bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
4761  if (!Subtarget->hasVFP3())
4762    return false;
4763  if (VT == MVT::f32)
4764    return ARM::getVFPf32Imm(Imm) != -1;
4765  if (VT == MVT::f64)
4766    return ARM::getVFPf64Imm(Imm) != -1;
4767  return false;
4768}
4769