ARMISelLowering.h revision 8f743387c77dd5cdd20a6441e5da8271b52ca233
1//===-- ARMISelLowering.h - ARM DAG Lowering Interface ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef ARMISELLOWERING_H
16#define ARMISELLOWERING_H
17
18#include "ARMSubtarget.h"
19#include "llvm/Target/TargetLowering.h"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include <vector>
23
24namespace llvm {
25  class ARMConstantPoolValue;
26
27  namespace ARMISD {
28    // ARM Specific DAG Nodes
29    enum NodeType {
30      // Start the numbering where the builtin ops and target ops leave off.
31      FIRST_NUMBER = ISD::BUILTIN_OP_END,
32
33      Wrapper,      // Wrapper - A wrapper node for TargetConstantPool,
34                    // TargetExternalSymbol, and TargetGlobalAddress.
35      WrapperJT,    // WrapperJT - A wrapper node for TargetJumpTable
36
37      CALL,         // Function call.
38      CALL_PRED,    // Function call that's predicable.
39      CALL_NOLINK,  // Function call with branch not branch-and-link.
40      tCALL,        // Thumb function call.
41      BRCOND,       // Conditional branch.
42      BR_JT,        // Jumptable branch.
43      BR2_JT,       // Jumptable branch (2 level - jumptable entry is a jump).
44      RET_FLAG,     // Return with a flag operand.
45
46      PIC_ADD,      // Add with a PC operand and a PIC label.
47
48      CMP,          // ARM compare instructions.
49      CMPZ,         // ARM compare that sets only Z flag.
50      CMPFP,        // ARM VFP compare instruction, sets FPSCR.
51      CMPFPw0,      // ARM VFP compare against zero instruction, sets FPSCR.
52      FMSTAT,       // ARM fmstat instruction.
53      CMOV,         // ARM conditional move instructions.
54      CNEG,         // ARM conditional negate instructions.
55
56      FTOSI,        // FP to sint within a FP register.
57      FTOUI,        // FP to uint within a FP register.
58      SITOF,        // sint to FP within a FP register.
59      UITOF,        // uint to FP within a FP register.
60
61      SRL_FLAG,     // V,Flag = srl_flag X -> srl X, 1 + save carry out.
62      SRA_FLAG,     // V,Flag = sra_flag X -> sra X, 1 + save carry out.
63      RRX,          // V = RRX X, Flag     -> srl X, 1 + shift in carry flag.
64
65      FMRRD,        // double to two gprs.
66      FMDRR,        // Two gprs to double.
67
68      EH_SJLJ_SETJMP,    // SjLj exception handling setjmp.
69      EH_SJLJ_LONGJMP,   // SjLj exception handling longjmp.
70
71      THREAD_POINTER,
72
73      DYN_ALLOC,    // Dynamic allocation on the stack.
74
75      VCEQ,         // Vector compare equal.
76      VCGE,         // Vector compare greater than or equal.
77      VCGEU,        // Vector compare unsigned greater than or equal.
78      VCGT,         // Vector compare greater than.
79      VCGTU,        // Vector compare unsigned greater than.
80      VTST,         // Vector test bits.
81
82      // Vector shift by immediate:
83      VSHL,         // ...left
84      VSHRs,        // ...right (signed)
85      VSHRu,        // ...right (unsigned)
86      VSHLLs,       // ...left long (signed)
87      VSHLLu,       // ...left long (unsigned)
88      VSHLLi,       // ...left long (with maximum shift count)
89      VSHRN,        // ...right narrow
90
91      // Vector rounding shift by immediate:
92      VRSHRs,       // ...right (signed)
93      VRSHRu,       // ...right (unsigned)
94      VRSHRN,       // ...right narrow
95
96      // Vector saturating shift by immediate:
97      VQSHLs,       // ...left (signed)
98      VQSHLu,       // ...left (unsigned)
99      VQSHLsu,      // ...left (signed to unsigned)
100      VQSHRNs,      // ...right narrow (signed)
101      VQSHRNu,      // ...right narrow (unsigned)
102      VQSHRNsu,     // ...right narrow (signed to unsigned)
103
104      // Vector saturating rounding shift by immediate:
105      VQRSHRNs,     // ...right narrow (signed)
106      VQRSHRNu,     // ...right narrow (unsigned)
107      VQRSHRNsu,    // ...right narrow (signed to unsigned)
108
109      // Vector shift and insert:
110      VSLI,         // ...left
111      VSRI,         // ...right
112
113      // Vector get lane (VMOV scalar to ARM core register)
114      // (These are used for 8- and 16-bit element types only.)
115      VGETLANEu,    // zero-extend vector extract element
116      VGETLANEs,    // sign-extend vector extract element
117
118      // Vector duplicate:
119      VDUP,
120      VDUPLANE,
121
122      // Vector shuffles:
123      VEXT,         // extract
124      VREV64,       // reverse elements within 64-bit doublewords
125      VREV32,       // reverse elements within 32-bit words
126      VREV16,       // reverse elements within 16-bit halfwords
127      VZIP,         // zip (interleave)
128      VUZP,         // unzip (deinterleave)
129      VTRN          // transpose
130    };
131  }
132
133  /// Define some predicates that are used for node matching.
134  namespace ARM {
135    /// getVMOVImm - If this is a build_vector of constants which can be
136    /// formed by using a VMOV instruction of the specified element size,
137    /// return the constant being splatted.  The ByteSize field indicates the
138    /// number of bytes of each element [1248].
139    SDValue getVMOVImm(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
140
141    /// getVFPf32Imm / getVFPf64Imm - If the given fp immediate can be
142    /// materialized with a VMOV.f32 / VMOV.f64 (i.e. fconsts / fconstd)
143    /// instruction, returns its 8-bit integer representation. Otherwise,
144    /// returns -1.
145    int getVFPf32Imm(const APFloat &FPImm);
146    int getVFPf64Imm(const APFloat &FPImm);
147  }
148
149  //===--------------------------------------------------------------------===//
150  //  ARMTargetLowering - ARM Implementation of the TargetLowering interface
151
152  class ARMTargetLowering : public TargetLowering {
153    int VarArgsFrameIndex;            // FrameIndex for start of varargs area.
154  public:
155    explicit ARMTargetLowering(TargetMachine &TM);
156
157    virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
158
159    /// ReplaceNodeResults - Replace the results of node with an illegal result
160    /// type with new values built out of custom code.
161    ///
162    virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
163                                    SelectionDAG &DAG);
164
165    virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
166
167    virtual const char *getTargetNodeName(unsigned Opcode) const;
168
169    virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
170                                                         MachineBasicBlock *MBB,
171                       DenseMap<MachineBasicBlock*, MachineBasicBlock*>*) const;
172
173    /// allowsUnalignedMemoryAccesses - Returns true if the target allows
174    /// unaligned memory accesses. of the specified type.
175    /// FIXME: Add getOptimalMemOpType to implement memcpy with NEON?
176    virtual bool allowsUnalignedMemoryAccesses(EVT VT) const;
177
178    /// isLegalAddressingMode - Return true if the addressing mode represented
179    /// by AM is legal for this target, for a load/store of the specified type.
180    virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const;
181    bool isLegalT2ScaledAddressingMode(const AddrMode &AM, EVT VT) const;
182
183    /// getPreIndexedAddressParts - returns true by value, base pointer and
184    /// offset pointer and addressing mode by reference if the node's address
185    /// can be legally represented as pre-indexed load / store address.
186    virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
187                                           SDValue &Offset,
188                                           ISD::MemIndexedMode &AM,
189                                           SelectionDAG &DAG) const;
190
191    /// getPostIndexedAddressParts - returns true by value, base pointer and
192    /// offset pointer and addressing mode by reference if this node can be
193    /// combined with a load / store to form a post-indexed load / store.
194    virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
195                                            SDValue &Base, SDValue &Offset,
196                                            ISD::MemIndexedMode &AM,
197                                            SelectionDAG &DAG) const;
198
199    virtual void computeMaskedBitsForTargetNode(const SDValue Op,
200                                                const APInt &Mask,
201                                                APInt &KnownZero,
202                                                APInt &KnownOne,
203                                                const SelectionDAG &DAG,
204                                                unsigned Depth) const;
205
206
207    ConstraintType getConstraintType(const std::string &Constraint) const;
208    std::pair<unsigned, const TargetRegisterClass*>
209      getRegForInlineAsmConstraint(const std::string &Constraint,
210                                   EVT VT) const;
211    std::vector<unsigned>
212    getRegClassForInlineAsmConstraint(const std::string &Constraint,
213                                      EVT VT) const;
214
215    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
216    /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is
217    /// true it means one of the asm constraint of the inline asm instruction
218    /// being processed is 'm'.
219    virtual void LowerAsmOperandForConstraint(SDValue Op,
220                                              char ConstraintLetter,
221                                              bool hasMemory,
222                                              std::vector<SDValue> &Ops,
223                                              SelectionDAG &DAG) const;
224
225    virtual const ARMSubtarget* getSubtarget() {
226      return Subtarget;
227    }
228
229    /// getFunctionAlignment - Return the Log2 alignment of this function.
230    virtual unsigned getFunctionAlignment(const Function *F) const;
231
232    bool isShuffleMaskLegal(const SmallVectorImpl<int> &M, EVT VT) const;
233    bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
234
235    /// isFPImmLegal - Returns true if the target can instruction select the
236    /// specified FP immediate natively. If false, the legalizer will
237    /// materialize the FP immediate as a load from a constant pool.
238    virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const;
239
240  private:
241    /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
242    /// make the right decision when generating code for different targets.
243    const ARMSubtarget *Subtarget;
244
245    /// ARMPCLabelIndex - Keep track of the number of ARM PC labels created.
246    ///
247    unsigned ARMPCLabelIndex;
248
249    void addTypeForNEON(EVT VT, EVT PromotedLdStVT, EVT PromotedBitwiseVT);
250    void addDRTypeForNEON(EVT VT);
251    void addQRTypeForNEON(EVT VT);
252
253    typedef SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPassVector;
254    void PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
255                          SDValue Chain, SDValue &Arg,
256                          RegsToPassVector &RegsToPass,
257                          CCValAssign &VA, CCValAssign &NextVA,
258                          SDValue &StackPtr,
259                          SmallVector<SDValue, 8> &MemOpChains,
260                          ISD::ArgFlagsTy Flags);
261    SDValue GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
262                                 SDValue &Root, SelectionDAG &DAG, DebugLoc dl);
263
264    CCAssignFn *CCAssignFnForNode(CallingConv::ID CC, bool Return, bool isVarArg) const;
265    SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
266                             DebugLoc dl, SelectionDAG &DAG,
267                             const CCValAssign &VA,
268                             ISD::ArgFlagsTy Flags);
269    SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG);
270    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG);
271    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG);
272    SDValue LowerGlobalAddressDarwin(SDValue Op, SelectionDAG &DAG);
273    SDValue LowerGlobalAddressELF(SDValue Op, SelectionDAG &DAG);
274    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG);
275    SDValue LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
276                                            SelectionDAG &DAG);
277    SDValue LowerToTLSExecModels(GlobalAddressSDNode *GA,
278                                   SelectionDAG &DAG);
279    SDValue LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG);
280    SDValue LowerBR_JT(SDValue Op, SelectionDAG &DAG);
281    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG);
282    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG);
283
284    SDValue EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
285                                      SDValue Chain,
286                                      SDValue Dst, SDValue Src,
287                                      SDValue Size, unsigned Align,
288                                      bool AlwaysInline,
289                                      const Value *DstSV, uint64_t DstSVOff,
290                                      const Value *SrcSV, uint64_t SrcSVOff);
291    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
292                            CallingConv::ID CallConv, bool isVarArg,
293                            const SmallVectorImpl<ISD::InputArg> &Ins,
294                            DebugLoc dl, SelectionDAG &DAG,
295                            SmallVectorImpl<SDValue> &InVals);
296
297    virtual SDValue
298      LowerFormalArguments(SDValue Chain,
299                           CallingConv::ID CallConv, bool isVarArg,
300                           const SmallVectorImpl<ISD::InputArg> &Ins,
301                           DebugLoc dl, SelectionDAG &DAG,
302                           SmallVectorImpl<SDValue> &InVals);
303
304    virtual SDValue
305      LowerCall(SDValue Chain, SDValue Callee,
306                CallingConv::ID CallConv, bool isVarArg,
307                bool isTailCall,
308                const SmallVectorImpl<ISD::OutputArg> &Outs,
309                const SmallVectorImpl<ISD::InputArg> &Ins,
310                DebugLoc dl, SelectionDAG &DAG,
311                SmallVectorImpl<SDValue> &InVals);
312
313    virtual SDValue
314      LowerReturn(SDValue Chain,
315                  CallingConv::ID CallConv, bool isVarArg,
316                  const SmallVectorImpl<ISD::OutputArg> &Outs,
317                  DebugLoc dl, SelectionDAG &DAG);
318  };
319}
320
321#endif  // ARMISELLOWERING_H
322