ARMJITInfo.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- ARMJITInfo.cpp - Implement the JIT interfaces for the ARM target --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the JIT interfaces for the ARM target.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jit"
15#include "ARMJITInfo.h"
16#include "ARMConstantPoolValue.h"
17#include "ARMRelocations.h"
18#include "MCTargetDesc/ARMBaseInfo.h"
19#include "llvm/CodeGen/JITCodeEmitter.h"
20#include "llvm/IR/Function.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Support/ErrorHandling.h"
23#include "llvm/Support/Memory.h"
24#include "llvm/Support/raw_ostream.h"
25#include <cstdlib>
26using namespace llvm;
27
28void ARMJITInfo::replaceMachineCodeForFunction(void *Old, void *New) {
29  report_fatal_error("ARMJITInfo::replaceMachineCodeForFunction");
30}
31
32/// JITCompilerFunction - This contains the address of the JIT function used to
33/// compile a function lazily.
34static TargetJITInfo::JITCompilerFn JITCompilerFunction;
35
36// Get the ASMPREFIX for the current host.  This is often '_'.
37#ifndef __USER_LABEL_PREFIX__
38#define __USER_LABEL_PREFIX__
39#endif
40#define GETASMPREFIX2(X) #X
41#define GETASMPREFIX(X) GETASMPREFIX2(X)
42#define ASMPREFIX GETASMPREFIX(__USER_LABEL_PREFIX__)
43
44// CompilationCallback stub - We can't use a C function with inline assembly in
45// it, because the prolog/epilog inserted by GCC won't work for us. (We need
46// to preserve more context and manipulate the stack directly).  Instead,
47// write our own wrapper, which does things our way, so we have complete
48// control over register saving and restoring.
49extern "C" {
50#if defined(__arm__)
51  void ARMCompilationCallback();
52  asm(
53    ".text\n"
54    ".align 2\n"
55    ".globl " ASMPREFIX "ARMCompilationCallback\n"
56    ASMPREFIX "ARMCompilationCallback:\n"
57    // Save caller saved registers since they may contain stuff
58    // for the real target function right now. We have to act as if this
59    // whole compilation callback doesn't exist as far as the caller is
60    // concerned, so we can't just preserve the callee saved regs.
61    "stmdb sp!, {r0, r1, r2, r3, lr}\n"
62#if (defined(__VFP_FP__) && !defined(__SOFTFP__))
63    "vstmdb sp!, {d0, d1, d2, d3, d4, d5, d6, d7}\n"
64#endif
65    // The LR contains the address of the stub function on entry.
66    // pass it as the argument to the C part of the callback
67    "mov  r0, lr\n"
68    "sub  sp, sp, #4\n"
69    // Call the C portion of the callback
70    "bl   " ASMPREFIX "ARMCompilationCallbackC\n"
71    "add  sp, sp, #4\n"
72    // Restoring the LR to the return address of the function that invoked
73    // the stub and de-allocating the stack space for it requires us to
74    // swap the two saved LR values on the stack, as they're backwards
75    // for what we need since the pop instruction has a pre-determined
76    // order for the registers.
77    //      +--------+
78    //   0  | LR     | Original return address
79    //      +--------+
80    //   1  | LR     | Stub address (start of stub)
81    // 2-5  | R3..R0 | Saved registers (we need to preserve all regs)
82    // 6-20 | D0..D7 | Saved VFP registers
83    //      +--------+
84    //
85#if (defined(__VFP_FP__) && !defined(__SOFTFP__))
86    // Restore VFP caller-saved registers.
87    "vldmia sp!, {d0, d1, d2, d3, d4, d5, d6, d7}\n"
88#endif
89    //
90    //      We need to exchange the values in slots 0 and 1 so we can
91    //      return to the address in slot 1 with the address in slot 0
92    //      restored to the LR.
93    "ldr  r0, [sp,#20]\n"
94    "ldr  r1, [sp,#16]\n"
95    "str  r1, [sp,#20]\n"
96    "str  r0, [sp,#16]\n"
97    // Return to the (newly modified) stub to invoke the real function.
98    // The above twiddling of the saved return addresses allows us to
99    // deallocate everything, including the LR the stub saved, with two
100    // updating load instructions.
101    "ldmia  sp!, {r0, r1, r2, r3, lr}\n"
102    "ldr    pc, [sp], #4\n"
103      );
104#else  // Not an ARM host
105  void ARMCompilationCallback() {
106    llvm_unreachable("Cannot call ARMCompilationCallback() on a non-ARM arch!");
107  }
108#endif
109}
110
111/// ARMCompilationCallbackC - This is the target-specific function invoked
112/// by the function stub when we did not know the real target of a call.
113/// This function must locate the start of the stub or call site and pass
114/// it into the JIT compiler function.
115extern "C" void ARMCompilationCallbackC(intptr_t StubAddr) {
116  // Get the address of the compiled code for this function.
117  intptr_t NewVal = (intptr_t)JITCompilerFunction((void*)StubAddr);
118
119  // Rewrite the call target... so that we don't end up here every time we
120  // execute the call. We're replacing the first two instructions of the
121  // stub with:
122  //   ldr pc, [pc,#-4]
123  //   <addr>
124  if (!sys::Memory::setRangeWritable((void*)StubAddr, 8)) {
125    llvm_unreachable("ERROR: Unable to mark stub writable");
126  }
127  *(intptr_t *)StubAddr = 0xe51ff004;  // ldr pc, [pc, #-4]
128  *(intptr_t *)(StubAddr+4) = NewVal;
129  if (!sys::Memory::setRangeExecutable((void*)StubAddr, 8)) {
130    llvm_unreachable("ERROR: Unable to mark stub executable");
131  }
132}
133
134TargetJITInfo::LazyResolverFn
135ARMJITInfo::getLazyResolverFunction(JITCompilerFn F) {
136  JITCompilerFunction = F;
137  return ARMCompilationCallback;
138}
139
140void *ARMJITInfo::emitGlobalValueIndirectSym(const GlobalValue *GV, void *Ptr,
141                                             JITCodeEmitter &JCE) {
142  uint8_t Buffer[4];
143  uint8_t *Cur = Buffer;
144  MachineCodeEmitter::emitWordLEInto(Cur, (intptr_t)Ptr);
145  void *PtrAddr = JCE.allocIndirectGV(
146      GV, Buffer, sizeof(Buffer), /*Alignment=*/4);
147  addIndirectSymAddr(Ptr, (intptr_t)PtrAddr);
148  return PtrAddr;
149}
150
151TargetJITInfo::StubLayout ARMJITInfo::getStubLayout() {
152  // The stub contains up to 3 4-byte instructions, aligned at 4 bytes, and a
153  // 4-byte address.  See emitFunctionStub for details.
154  StubLayout Result = {16, 4};
155  return Result;
156}
157
158void *ARMJITInfo::emitFunctionStub(const Function* F, void *Fn,
159                                   JITCodeEmitter &JCE) {
160  void *Addr;
161  // If this is just a call to an external function, emit a branch instead of a
162  // call.  The code is the same except for one bit of the last instruction.
163  if (Fn != (void*)(intptr_t)ARMCompilationCallback) {
164    // Branch to the corresponding function addr.
165    if (IsPIC) {
166      // The stub is 16-byte size and 4-aligned.
167      intptr_t LazyPtr = getIndirectSymAddr(Fn);
168      if (!LazyPtr) {
169        // In PIC mode, the function stub is loading a lazy-ptr.
170        LazyPtr= (intptr_t)emitGlobalValueIndirectSym((const GlobalValue*)F, Fn, JCE);
171        DEBUG(if (F)
172                errs() << "JIT: Indirect symbol emitted at [" << LazyPtr
173                       << "] for GV '" << F->getName() << "'\n";
174              else
175                errs() << "JIT: Stub emitted at [" << LazyPtr
176                       << "] for external function at '" << Fn << "'\n");
177      }
178      JCE.emitAlignment(4);
179      Addr = (void*)JCE.getCurrentPCValue();
180      if (!sys::Memory::setRangeWritable(Addr, 16)) {
181        llvm_unreachable("ERROR: Unable to mark stub writable");
182      }
183      JCE.emitWordLE(0xe59fc004);            // ldr ip, [pc, #+4]
184      JCE.emitWordLE(0xe08fc00c);            // L_func$scv: add ip, pc, ip
185      JCE.emitWordLE(0xe59cf000);            // ldr pc, [ip]
186      JCE.emitWordLE(LazyPtr - (intptr_t(Addr)+4+8));  // func - (L_func$scv+8)
187      sys::Memory::InvalidateInstructionCache(Addr, 16);
188      if (!sys::Memory::setRangeExecutable(Addr, 16)) {
189        llvm_unreachable("ERROR: Unable to mark stub executable");
190      }
191    } else {
192      // The stub is 8-byte size and 4-aligned.
193      JCE.emitAlignment(4);
194      Addr = (void*)JCE.getCurrentPCValue();
195      if (!sys::Memory::setRangeWritable(Addr, 8)) {
196        llvm_unreachable("ERROR: Unable to mark stub writable");
197      }
198      JCE.emitWordLE(0xe51ff004);    // ldr pc, [pc, #-4]
199      JCE.emitWordLE((intptr_t)Fn);  // addr of function
200      sys::Memory::InvalidateInstructionCache(Addr, 8);
201      if (!sys::Memory::setRangeExecutable(Addr, 8)) {
202        llvm_unreachable("ERROR: Unable to mark stub executable");
203      }
204    }
205  } else {
206    // The compilation callback will overwrite the first two words of this
207    // stub with indirect branch instructions targeting the compiled code.
208    // This stub sets the return address to restart the stub, so that
209    // the new branch will be invoked when we come back.
210    //
211    // Branch and link to the compilation callback.
212    // The stub is 16-byte size and 4-byte aligned.
213    JCE.emitAlignment(4);
214    Addr = (void*)JCE.getCurrentPCValue();
215    if (!sys::Memory::setRangeWritable(Addr, 16)) {
216      llvm_unreachable("ERROR: Unable to mark stub writable");
217    }
218    // Save LR so the callback can determine which stub called it.
219    // The compilation callback is responsible for popping this prior
220    // to returning.
221    JCE.emitWordLE(0xe92d4000); // push {lr}
222    // Set the return address to go back to the start of this stub.
223    JCE.emitWordLE(0xe24fe00c); // sub lr, pc, #12
224    // Invoke the compilation callback.
225    JCE.emitWordLE(0xe51ff004); // ldr pc, [pc, #-4]
226    // The address of the compilation callback.
227    JCE.emitWordLE((intptr_t)ARMCompilationCallback);
228    sys::Memory::InvalidateInstructionCache(Addr, 16);
229    if (!sys::Memory::setRangeExecutable(Addr, 16)) {
230      llvm_unreachable("ERROR: Unable to mark stub executable");
231    }
232  }
233
234  return Addr;
235}
236
237intptr_t ARMJITInfo::resolveRelocDestAddr(MachineRelocation *MR) const {
238  ARM::RelocationType RT = (ARM::RelocationType)MR->getRelocationType();
239  switch (RT) {
240  default:
241    return (intptr_t)(MR->getResultPointer());
242  case ARM::reloc_arm_pic_jt:
243    // Destination address - jump table base.
244    return (intptr_t)(MR->getResultPointer()) - MR->getConstantVal();
245  case ARM::reloc_arm_jt_base:
246    // Jump table base address.
247    return getJumpTableBaseAddr(MR->getJumpTableIndex());
248  case ARM::reloc_arm_cp_entry:
249  case ARM::reloc_arm_vfp_cp_entry:
250    // Constant pool entry address.
251    return getConstantPoolEntryAddr(MR->getConstantPoolIndex());
252  case ARM::reloc_arm_machine_cp_entry: {
253    ARMConstantPoolValue *ACPV = (ARMConstantPoolValue*)MR->getConstantVal();
254    assert((!ACPV->hasModifier() && !ACPV->mustAddCurrentAddress()) &&
255           "Can't handle this machine constant pool entry yet!");
256    intptr_t Addr = (intptr_t)(MR->getResultPointer());
257    Addr -= getPCLabelAddr(ACPV->getLabelId()) + ACPV->getPCAdjustment();
258    return Addr;
259  }
260  }
261}
262
263/// relocate - Before the JIT can run a block of code that has been emitted,
264/// it must rewrite the code to contain the actual addresses of any
265/// referenced global symbols.
266void ARMJITInfo::relocate(void *Function, MachineRelocation *MR,
267                          unsigned NumRelocs, unsigned char* GOTBase) {
268  for (unsigned i = 0; i != NumRelocs; ++i, ++MR) {
269    void *RelocPos = (char*)Function + MR->getMachineCodeOffset();
270    intptr_t ResultPtr = resolveRelocDestAddr(MR);
271    switch ((ARM::RelocationType)MR->getRelocationType()) {
272    case ARM::reloc_arm_cp_entry:
273    case ARM::reloc_arm_vfp_cp_entry:
274    case ARM::reloc_arm_relative: {
275      // It is necessary to calculate the correct PC relative value. We
276      // subtract the base addr from the target addr to form a byte offset.
277      ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
278      // If the result is positive, set bit U(23) to 1.
279      if (ResultPtr >= 0)
280        *((intptr_t*)RelocPos) |= 1 << ARMII::U_BitShift;
281      else {
282        // Otherwise, obtain the absolute value and set bit U(23) to 0.
283        *((intptr_t*)RelocPos) &= ~(1 << ARMII::U_BitShift);
284        ResultPtr = - ResultPtr;
285      }
286      // Set the immed value calculated.
287      // VFP immediate offset is multiplied by 4.
288      if (MR->getRelocationType() == ARM::reloc_arm_vfp_cp_entry)
289        ResultPtr = ResultPtr >> 2;
290      *((intptr_t*)RelocPos) |= ResultPtr;
291      // Set register Rn to PC (which is register 15 on all architectures).
292      // FIXME: This avoids the need for register info in the JIT class.
293      *((intptr_t*)RelocPos) |= 15 << ARMII::RegRnShift;
294      break;
295    }
296    case ARM::reloc_arm_pic_jt:
297    case ARM::reloc_arm_machine_cp_entry:
298    case ARM::reloc_arm_absolute: {
299      // These addresses have already been resolved.
300      *((intptr_t*)RelocPos) |= (intptr_t)ResultPtr;
301      break;
302    }
303    case ARM::reloc_arm_branch: {
304      // It is necessary to calculate the correct value of signed_immed_24
305      // field. We subtract the base addr from the target addr to form a
306      // byte offset, which must be inside the range -33554432 and +33554428.
307      // Then, we set the signed_immed_24 field of the instruction to bits
308      // [25:2] of the byte offset. More details ARM-ARM p. A4-11.
309      ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
310      ResultPtr = (ResultPtr & 0x03FFFFFC) >> 2;
311      assert(ResultPtr >= -33554432 && ResultPtr <= 33554428);
312      *((intptr_t*)RelocPos) |= ResultPtr;
313      break;
314    }
315    case ARM::reloc_arm_jt_base: {
316      // JT base - (instruction addr + 8)
317      ResultPtr = ResultPtr - (intptr_t)RelocPos - 8;
318      *((intptr_t*)RelocPos) |= ResultPtr;
319      break;
320    }
321    case ARM::reloc_arm_movw: {
322      ResultPtr = ResultPtr & 0xFFFF;
323      *((intptr_t*)RelocPos) |= ResultPtr & 0xFFF;
324      *((intptr_t*)RelocPos) |= ((ResultPtr >> 12) & 0xF) << 16;
325      break;
326    }
327    case ARM::reloc_arm_movt: {
328      ResultPtr = (ResultPtr >> 16) & 0xFFFF;
329      *((intptr_t*)RelocPos) |= ResultPtr & 0xFFF;
330      *((intptr_t*)RelocPos) |= ((ResultPtr >> 12) & 0xF) << 16;
331      break;
332    }
333    }
334  }
335}
336