ARMRegisterInfo.td revision b0ccb757b3ece5897e61643e055c30df407c0fc6
1//===- ARMRegisterInfo.td - ARM Register defs -------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10//===----------------------------------------------------------------------===//
11//  Declarations that describe the ARM register file
12//===----------------------------------------------------------------------===//
13
14// Registers are identified with 4-bit ID numbers.
15class ARMReg<bits<4> num, string n, list<Register> subregs = []> : Register<n> {
16  field bits<4> Num;
17  let Namespace = "ARM";
18  let SubRegs = subregs;
19}
20
21class ARMFReg<bits<6> num, string n> : Register<n> {
22  field bits<6> Num;
23  let Namespace = "ARM";
24}
25
26// Subregister indices.
27let Namespace = "ARM" in {
28// Note: Code depends on these having consecutive numbers.
29def ssub_0  : SubRegIndex;
30def ssub_1  : SubRegIndex;
31def ssub_2  : SubRegIndex; // In a Q reg.
32def ssub_3  : SubRegIndex;
33def ssub_4  : SubRegIndex; // In a QQ reg.
34def ssub_5  : SubRegIndex;
35def ssub_6  : SubRegIndex;
36def ssub_7  : SubRegIndex;
37def ssub_8  : SubRegIndex; // In a QQQQ reg.
38def ssub_9  : SubRegIndex;
39def ssub_10 : SubRegIndex;
40def ssub_11 : SubRegIndex;
41def ssub_12 : SubRegIndex;
42def ssub_13 : SubRegIndex;
43def ssub_14 : SubRegIndex;
44def ssub_15 : SubRegIndex;
45
46def dsub_0 : SubRegIndex;
47def dsub_1 : SubRegIndex;
48def dsub_2 : SubRegIndex;
49def dsub_3 : SubRegIndex;
50def dsub_4 : SubRegIndex;
51def dsub_5 : SubRegIndex;
52def dsub_6 : SubRegIndex;
53def dsub_7 : SubRegIndex;
54
55def qsub_0 : SubRegIndex;
56def qsub_1 : SubRegIndex;
57def qsub_2 : SubRegIndex;
58def qsub_3 : SubRegIndex;
59
60def qqsub_0 : SubRegIndex;
61def qqsub_1 : SubRegIndex;
62}
63
64// Integer registers
65def R0  : ARMReg< 0, "r0">,  DwarfRegNum<[0]>;
66def R1  : ARMReg< 1, "r1">,  DwarfRegNum<[1]>;
67def R2  : ARMReg< 2, "r2">,  DwarfRegNum<[2]>;
68def R3  : ARMReg< 3, "r3">,  DwarfRegNum<[3]>;
69def R4  : ARMReg< 4, "r4">,  DwarfRegNum<[4]>;
70def R5  : ARMReg< 5, "r5">,  DwarfRegNum<[5]>;
71def R6  : ARMReg< 6, "r6">,  DwarfRegNum<[6]>;
72def R7  : ARMReg< 7, "r7">,  DwarfRegNum<[7]>;
73def R8  : ARMReg< 8, "r8">,  DwarfRegNum<[8]>;
74def R9  : ARMReg< 9, "r9">,  DwarfRegNum<[9]>;
75def R10 : ARMReg<10, "r10">, DwarfRegNum<[10]>;
76def R11 : ARMReg<11, "r11">, DwarfRegNum<[11]>;
77def R12 : ARMReg<12, "r12">, DwarfRegNum<[12]>;
78def SP  : ARMReg<13, "sp">,  DwarfRegNum<[13]>;
79def LR  : ARMReg<14, "lr">,  DwarfRegNum<[14]>;
80def PC  : ARMReg<15, "pc">,  DwarfRegNum<[15]>;
81
82// Float registers
83def S0  : ARMFReg< 0, "s0">;  def S1  : ARMFReg< 1, "s1">;
84def S2  : ARMFReg< 2, "s2">;  def S3  : ARMFReg< 3, "s3">;
85def S4  : ARMFReg< 4, "s4">;  def S5  : ARMFReg< 5, "s5">;
86def S6  : ARMFReg< 6, "s6">;  def S7  : ARMFReg< 7, "s7">;
87def S8  : ARMFReg< 8, "s8">;  def S9  : ARMFReg< 9, "s9">;
88def S10 : ARMFReg<10, "s10">; def S11 : ARMFReg<11, "s11">;
89def S12 : ARMFReg<12, "s12">; def S13 : ARMFReg<13, "s13">;
90def S14 : ARMFReg<14, "s14">; def S15 : ARMFReg<15, "s15">;
91def S16 : ARMFReg<16, "s16">; def S17 : ARMFReg<17, "s17">;
92def S18 : ARMFReg<18, "s18">; def S19 : ARMFReg<19, "s19">;
93def S20 : ARMFReg<20, "s20">; def S21 : ARMFReg<21, "s21">;
94def S22 : ARMFReg<22, "s22">; def S23 : ARMFReg<23, "s23">;
95def S24 : ARMFReg<24, "s24">; def S25 : ARMFReg<25, "s25">;
96def S26 : ARMFReg<26, "s26">; def S27 : ARMFReg<27, "s27">;
97def S28 : ARMFReg<28, "s28">; def S29 : ARMFReg<29, "s29">;
98def S30 : ARMFReg<30, "s30">; def S31 : ARMFReg<31, "s31">;
99
100// Aliases of the F* registers used to hold 64-bit fp values (doubles)
101let SubRegIndices = [ssub_0, ssub_1] in {
102def D0  : ARMReg< 0,  "d0", [S0,   S1]>;
103def D1  : ARMReg< 1,  "d1", [S2,   S3]>;
104def D2  : ARMReg< 2,  "d2", [S4,   S5]>;
105def D3  : ARMReg< 3,  "d3", [S6,   S7]>;
106def D4  : ARMReg< 4,  "d4", [S8,   S9]>;
107def D5  : ARMReg< 5,  "d5", [S10, S11]>;
108def D6  : ARMReg< 6,  "d6", [S12, S13]>;
109def D7  : ARMReg< 7,  "d7", [S14, S15]>;
110def D8  : ARMReg< 8,  "d8", [S16, S17]>;
111def D9  : ARMReg< 9,  "d9", [S18, S19]>;
112def D10 : ARMReg<10, "d10", [S20, S21]>;
113def D11 : ARMReg<11, "d11", [S22, S23]>;
114def D12 : ARMReg<12, "d12", [S24, S25]>;
115def D13 : ARMReg<13, "d13", [S26, S27]>;
116def D14 : ARMReg<14, "d14", [S28, S29]>;
117def D15 : ARMReg<15, "d15", [S30, S31]>;
118}
119
120// VFP3 defines 16 additional double registers
121def D16 : ARMFReg<16, "d16">; def D17 : ARMFReg<17, "d17">;
122def D18 : ARMFReg<18, "d18">; def D19 : ARMFReg<19, "d19">;
123def D20 : ARMFReg<20, "d20">; def D21 : ARMFReg<21, "d21">;
124def D22 : ARMFReg<22, "d22">; def D23 : ARMFReg<23, "d23">;
125def D24 : ARMFReg<24, "d24">; def D25 : ARMFReg<25, "d25">;
126def D26 : ARMFReg<26, "d26">; def D27 : ARMFReg<27, "d27">;
127def D28 : ARMFReg<28, "d28">; def D29 : ARMFReg<29, "d29">;
128def D30 : ARMFReg<30, "d30">; def D31 : ARMFReg<31, "d31">;
129
130// Advanced SIMD (NEON) defines 16 quad-word aliases
131let SubRegIndices = [dsub_0, dsub_1],
132 CompositeIndices = [(ssub_2 dsub_1, ssub_0),
133                     (ssub_3 dsub_1, ssub_1)] in {
134def Q0  : ARMReg< 0,  "q0", [D0,   D1]>;
135def Q1  : ARMReg< 1,  "q1", [D2,   D3]>;
136def Q2  : ARMReg< 2,  "q2", [D4,   D5]>;
137def Q3  : ARMReg< 3,  "q3", [D6,   D7]>;
138def Q4  : ARMReg< 4,  "q4", [D8,   D9]>;
139def Q5  : ARMReg< 5,  "q5", [D10, D11]>;
140def Q6  : ARMReg< 6,  "q6", [D12, D13]>;
141def Q7  : ARMReg< 7,  "q7", [D14, D15]>;
142}
143let SubRegIndices = [dsub_0, dsub_1] in {
144def Q8  : ARMReg< 8,  "q8", [D16, D17]>;
145def Q9  : ARMReg< 9,  "q9", [D18, D19]>;
146def Q10 : ARMReg<10, "q10", [D20, D21]>;
147def Q11 : ARMReg<11, "q11", [D22, D23]>;
148def Q12 : ARMReg<12, "q12", [D24, D25]>;
149def Q13 : ARMReg<13, "q13", [D26, D27]>;
150def Q14 : ARMReg<14, "q14", [D28, D29]>;
151def Q15 : ARMReg<15, "q15", [D30, D31]>;
152}
153
154// Pseudo 256-bit registers to represent pairs of Q registers. These should
155// never be present in the emitted code.
156// These are used for NEON load / store instructions, e.g. vld4, vst3.
157// NOTE: It's possible to define more QQ registers since technical the
158// starting D register number doesn't have to be multiple of 4. e.g. 
159// D1, D2, D3, D4 would be a legal quad. But that would make the sub-register
160// stuffs very messy.
161let SubRegIndices = [qsub_0, qsub_1] in {
162let CompositeIndices = [(dsub_2 qsub_1, dsub_0), (dsub_3 qsub_1, dsub_1),
163                        (ssub_4 qsub_1, ssub_0), (ssub_5 qsub_1, ssub_1),
164                        (ssub_6 qsub_1, ssub_2), (ssub_7 qsub_1, ssub_3)] in {
165def QQ0 : ARMReg<0, "qq0", [Q0,  Q1]>;
166def QQ1 : ARMReg<1, "qq1", [Q2,  Q3]>;
167def QQ2 : ARMReg<2, "qq2", [Q4,  Q5]>;
168def QQ3 : ARMReg<3, "qq3", [Q6,  Q7]>;
169}
170let CompositeIndices = [(dsub_2 qsub_1, dsub_0), (dsub_3 qsub_1, dsub_1)] in {
171def QQ4 : ARMReg<4, "qq4", [Q8,  Q9]>;
172def QQ5 : ARMReg<5, "qq5", [Q10, Q11]>;
173def QQ6 : ARMReg<6, "qq6", [Q12, Q13]>;
174def QQ7 : ARMReg<7, "qq7", [Q14, Q15]>;
175}
176}
177
178// Pseudo 512-bit registers to represent four consecutive Q registers.
179let SubRegIndices = [qqsub_0, qqsub_1] in {
180let CompositeIndices = [(qsub_2  qqsub_1, qsub_0), (qsub_3  qqsub_1, qsub_1),
181                        (dsub_4  qqsub_1, dsub_0), (dsub_5  qqsub_1, dsub_1),
182                        (dsub_6  qqsub_1, dsub_2), (dsub_7  qqsub_1, dsub_3),
183                        (ssub_8  qqsub_1, ssub_0), (ssub_9  qqsub_1, ssub_1),
184                        (ssub_10 qqsub_1, ssub_2), (ssub_11 qqsub_1, ssub_3),
185                        (ssub_12 qqsub_1, ssub_4), (ssub_13 qqsub_1, ssub_5),
186                        (ssub_14 qqsub_1, ssub_6), (ssub_15 qqsub_1, ssub_7)] in
187{
188def QQQQ0 : ARMReg<0, "qqqq0", [QQ0, QQ1]>;
189def QQQQ1 : ARMReg<1, "qqqq1", [QQ2, QQ3]>;
190}
191let CompositeIndices = [(qsub_2 qqsub_1, qsub_0), (qsub_3 qqsub_1, qsub_1),
192                        (dsub_4 qqsub_1, dsub_0), (dsub_5 qqsub_1, dsub_1),
193                        (dsub_6 qqsub_1, dsub_2), (dsub_7 qqsub_1, dsub_3)] in {
194def QQQQ2 : ARMReg<2, "qqqq2", [QQ4, QQ5]>;
195def QQQQ3 : ARMReg<3, "qqqq3", [QQ6, QQ7]>;
196}
197}
198
199// Current Program Status Register.
200def CPSR    : ARMReg<0, "cpsr">;
201def FPSCR   : ARMReg<1, "fpscr">;
202def ITSTATE : ARMReg<2, "itstate">;
203
204// Register classes.
205//
206// pc  == Program Counter
207// lr  == Link Register
208// sp  == Stack Pointer
209// r12 == ip (scratch)
210// r7  == Frame Pointer (thumb-style backtraces)
211// r9  == May be reserved as Thread Register
212// r11 == Frame Pointer (arm-style backtraces)
213// r10 == Stack Limit
214//
215def GPR : RegisterClass<"ARM", [i32], 32, [R0, R1, R2, R3, R4, R5, R6,
216                                           R7, R8, R9, R10, R11, R12,
217                                           SP, LR, PC]> {
218  let MethodProtos = [{
219    iterator allocation_order_begin(const MachineFunction &MF) const;
220    iterator allocation_order_end(const MachineFunction &MF) const;
221  }];
222  let MethodBodies = [{
223    // FP is R11, R9 is available.
224    static const unsigned ARM_GPR_AO_1[] = {
225      ARM::R0, ARM::R1, ARM::R2, ARM::R3,
226      ARM::R12,ARM::LR,
227      ARM::R4, ARM::R5, ARM::R6, ARM::R7,
228      ARM::R8, ARM::R9, ARM::R10,
229      ARM::R11 };
230    // FP is R11, R9 is not available.
231    static const unsigned ARM_GPR_AO_2[] = {
232      ARM::R0, ARM::R1, ARM::R2, ARM::R3,
233      ARM::R12,ARM::LR,
234      ARM::R4, ARM::R5, ARM::R6, ARM::R7,
235      ARM::R8, ARM::R10,
236      ARM::R11 };
237    // FP is R7, R9 is available as non-callee-saved register.
238    // This is used by Darwin.
239    static const unsigned ARM_GPR_AO_3[] = {
240      ARM::R0, ARM::R1, ARM::R2, ARM::R3,
241      ARM::R9, ARM::R12,ARM::LR,
242      ARM::R4, ARM::R5, ARM::R6,
243      ARM::R8, ARM::R10,ARM::R11,ARM::R7 };
244    // FP is R7, R9 is not available.
245    static const unsigned ARM_GPR_AO_4[] = {
246      ARM::R0, ARM::R1, ARM::R2, ARM::R3,
247      ARM::R12,ARM::LR,
248      ARM::R4, ARM::R5, ARM::R6,
249      ARM::R8, ARM::R10,ARM::R11,
250      ARM::R7 };
251    // FP is R7, R9 is available as callee-saved register.
252    // This is used by non-Darwin platform in Thumb mode.
253    static const unsigned ARM_GPR_AO_5[] = {
254      ARM::R0, ARM::R1, ARM::R2, ARM::R3,
255      ARM::R12,ARM::LR,
256      ARM::R4, ARM::R5, ARM::R6,
257      ARM::R8, ARM::R9, ARM::R10,ARM::R11,ARM::R7 };
258
259    // For Thumb1 mode, we don't want to allocate hi regs at all, as we
260    // don't know how to spill them. If we make our prologue/epilogue code
261    // smarter at some point, we can go back to using the above allocation
262    // orders for the Thumb1 instructions that know how to use hi regs.
263    static const unsigned THUMB_GPR_AO[] = {
264      ARM::R0, ARM::R1, ARM::R2, ARM::R3,
265      ARM::R4, ARM::R5, ARM::R6, ARM::R7 };
266
267    GPRClass::iterator
268    GPRClass::allocation_order_begin(const MachineFunction &MF) const {
269      const TargetMachine &TM = MF.getTarget();
270      const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
271      if (Subtarget.isThumb1Only())
272        return THUMB_GPR_AO;
273      if (Subtarget.isTargetDarwin()) {
274        if (Subtarget.isR9Reserved())
275          return ARM_GPR_AO_4;
276        else
277          return ARM_GPR_AO_3;
278      } else {
279        if (Subtarget.isR9Reserved())
280          return ARM_GPR_AO_2;
281        else if (Subtarget.isThumb())
282          return ARM_GPR_AO_5;
283        else
284          return ARM_GPR_AO_1;
285      }
286    }
287
288    GPRClass::iterator
289    GPRClass::allocation_order_end(const MachineFunction &MF) const {
290      const TargetMachine &TM = MF.getTarget();
291      const TargetRegisterInfo *RI = TM.getRegisterInfo();
292      const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
293      GPRClass::iterator I;
294
295      if (Subtarget.isThumb1Only()) {
296        I = THUMB_GPR_AO + (sizeof(THUMB_GPR_AO)/sizeof(unsigned));
297        // Mac OS X requires FP not to be clobbered for backtracing purpose.
298        return (Subtarget.isTargetDarwin() || RI->hasFP(MF)) ? I-1 : I;
299      }
300
301      if (Subtarget.isTargetDarwin()) {
302        if (Subtarget.isR9Reserved())
303          I = ARM_GPR_AO_4 + (sizeof(ARM_GPR_AO_4)/sizeof(unsigned));
304        else
305          I = ARM_GPR_AO_3 + (sizeof(ARM_GPR_AO_3)/sizeof(unsigned));
306      } else {
307        if (Subtarget.isR9Reserved())
308          I = ARM_GPR_AO_2 + (sizeof(ARM_GPR_AO_2)/sizeof(unsigned));
309        else if (Subtarget.isThumb())
310          I = ARM_GPR_AO_5 + (sizeof(ARM_GPR_AO_5)/sizeof(unsigned));
311        else
312          I = ARM_GPR_AO_1 + (sizeof(ARM_GPR_AO_1)/sizeof(unsigned));
313      }
314
315      // Mac OS X requires FP not to be clobbered for backtracing purpose.
316      return (Subtarget.isTargetDarwin() || RI->hasFP(MF)) ? I-1 : I;
317    }
318  }];
319}
320
321// Thumb registers are R0-R7 normally. Some instructions can still use
322// the general GPR register class above (MOV, e.g.)
323def tGPR : RegisterClass<"ARM", [i32], 32, [R0, R1, R2, R3, R4, R5, R6, R7]> {
324  let MethodProtos = [{
325    iterator allocation_order_begin(const MachineFunction &MF) const;
326    iterator allocation_order_end(const MachineFunction &MF) const;
327  }];
328  let MethodBodies = [{
329    static const unsigned THUMB_tGPR_AO[] = {
330      ARM::R0, ARM::R1, ARM::R2, ARM::R3,
331      ARM::R4, ARM::R5, ARM::R6, ARM::R7 };
332
333    // FP is R7, only low registers available.
334    tGPRClass::iterator
335    tGPRClass::allocation_order_begin(const MachineFunction &MF) const {
336      return THUMB_tGPR_AO;
337    }
338
339    tGPRClass::iterator
340    tGPRClass::allocation_order_end(const MachineFunction &MF) const {
341      const TargetMachine &TM = MF.getTarget();
342      const TargetRegisterInfo *RI = TM.getRegisterInfo();
343      const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
344      tGPRClass::iterator I =
345        THUMB_tGPR_AO + (sizeof(THUMB_tGPR_AO)/sizeof(unsigned));
346      // Mac OS X requires FP not to be clobbered for backtracing purpose.
347      return (Subtarget.isTargetDarwin() || RI->hasFP(MF)) ? I-1 : I;
348    }
349  }];
350}
351
352// For tail calls, we can't use callee-saved registers, as they are restored
353// to the saved value before the tail call, which would clobber a call address.
354// Note, getMinimalPhysRegClass(R0) returns tGPR because of the names of
355// this class and the preceding one(!)  This is what we want.
356def tcGPR : RegisterClass<"ARM", [i32], 32, [R0, R1, R2, R3, R9, R12]> {
357  let MethodProtos = [{
358    iterator allocation_order_begin(const MachineFunction &MF) const;
359    iterator allocation_order_end(const MachineFunction &MF) const;
360  }];
361  let MethodBodies = [{
362    // R9 is available.
363    static const unsigned ARM_GPR_R9_TC[] = {
364      ARM::R0, ARM::R1, ARM::R2, ARM::R3,
365      ARM::R9, ARM::R12 };
366    // R9 is not available.
367    static const unsigned ARM_GPR_NOR9_TC[] = {
368      ARM::R0, ARM::R1, ARM::R2, ARM::R3,
369      ARM::R12 };
370
371    // For Thumb1 mode, we don't want to allocate hi regs at all, as we
372    // don't know how to spill them. If we make our prologue/epilogue code
373    // smarter at some point, we can go back to using the above allocation
374    // orders for the Thumb1 instructions that know how to use hi regs.
375    static const unsigned THUMB_GPR_AO_TC[] = {
376      ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
377
378    tcGPRClass::iterator
379    tcGPRClass::allocation_order_begin(const MachineFunction &MF) const {
380      const TargetMachine &TM = MF.getTarget();
381      const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
382      if (Subtarget.isThumb1Only())
383        return THUMB_GPR_AO_TC;
384      if (Subtarget.isTargetDarwin()) {
385        if (Subtarget.isR9Reserved())
386          return ARM_GPR_NOR9_TC;
387        else
388          return ARM_GPR_R9_TC;
389      } else
390        // R9 is either callee-saved or reserved; can't use it.
391        return ARM_GPR_NOR9_TC;
392    }
393
394    tcGPRClass::iterator
395    tcGPRClass::allocation_order_end(const MachineFunction &MF) const {
396      const TargetMachine &TM = MF.getTarget();
397      const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
398      GPRClass::iterator I;
399
400      if (Subtarget.isThumb1Only()) {
401        I = THUMB_GPR_AO_TC + (sizeof(THUMB_GPR_AO_TC)/sizeof(unsigned));
402        return I;
403      }
404
405      if (Subtarget.isTargetDarwin()) {
406        if (Subtarget.isR9Reserved())
407          I = ARM_GPR_NOR9_TC + (sizeof(ARM_GPR_NOR9_TC)/sizeof(unsigned));
408        else
409          I = ARM_GPR_R9_TC + (sizeof(ARM_GPR_R9_TC)/sizeof(unsigned));
410      } else
411        // R9 is either callee-saved or reserved; can't use it.
412        I = ARM_GPR_NOR9_TC + (sizeof(ARM_GPR_NOR9_TC)/sizeof(unsigned));
413      return I;
414    }
415  }];
416}
417
418
419// Scalar single precision floating point register class..
420def SPR : RegisterClass<"ARM", [f32], 32, [S0, S1, S2, S3, S4, S5, S6, S7, S8,
421  S9, S10, S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, S22,
422  S23, S24, S25, S26, S27, S28, S29, S30, S31]>;
423
424// Subset of SPR which can be used as a source of NEON scalars for 16-bit
425// operations
426def SPR_8 : RegisterClass<"ARM", [f32], 32,
427                          [S0, S1,  S2,  S3,  S4,  S5,  S6,  S7,
428                           S8, S9, S10, S11, S12, S13, S14, S15]>;
429
430// Scalar double precision floating point / generic 64-bit vector register
431// class.
432// ARM requires only word alignment for double. It's more performant if it
433// is double-word alignment though.
434def DPR : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64,
435                        [D0,  D1,  D2,  D3,  D4,  D5,  D6,  D7,
436                         D8,  D9,  D10, D11, D12, D13, D14, D15,
437                         D16, D17, D18, D19, D20, D21, D22, D23,
438                         D24, D25, D26, D27, D28, D29, D30, D31]> {
439  let MethodProtos = [{
440    iterator allocation_order_begin(const MachineFunction &MF) const;
441    iterator allocation_order_end(const MachineFunction &MF) const;
442  }];
443  let MethodBodies = [{
444    // VFP2
445    static const unsigned ARM_DPR_VFP2[] = {
446      ARM::D0,  ARM::D1,  ARM::D2,  ARM::D3,
447      ARM::D4,  ARM::D5,  ARM::D6,  ARM::D7,
448      ARM::D8,  ARM::D9,  ARM::D10, ARM::D11,
449      ARM::D12, ARM::D13, ARM::D14, ARM::D15 };
450    // VFP3
451    static const unsigned ARM_DPR_VFP3[] = {
452      ARM::D0,  ARM::D1,  ARM::D2,  ARM::D3,
453      ARM::D4,  ARM::D5,  ARM::D6,  ARM::D7,
454      ARM::D8,  ARM::D9,  ARM::D10, ARM::D11,
455      ARM::D12, ARM::D13, ARM::D14, ARM::D15,
456      ARM::D16, ARM::D17, ARM::D18, ARM::D19,
457      ARM::D20, ARM::D21, ARM::D22, ARM::D23,
458      ARM::D24, ARM::D25, ARM::D26, ARM::D27,
459      ARM::D28, ARM::D29, ARM::D30, ARM::D31 };
460    DPRClass::iterator
461    DPRClass::allocation_order_begin(const MachineFunction &MF) const {
462      const TargetMachine &TM = MF.getTarget();
463      const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
464      if (Subtarget.hasVFP3())
465        return ARM_DPR_VFP3;
466      return ARM_DPR_VFP2;
467    }
468
469    DPRClass::iterator
470    DPRClass::allocation_order_end(const MachineFunction &MF) const {
471      const TargetMachine &TM = MF.getTarget();
472      const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
473      if (Subtarget.hasVFP3())
474        return ARM_DPR_VFP3 + (sizeof(ARM_DPR_VFP3)/sizeof(unsigned));
475      else
476        return ARM_DPR_VFP2 + (sizeof(ARM_DPR_VFP2)/sizeof(unsigned));
477    }
478  }];
479}
480
481// Subset of DPR that are accessible with VFP2 (and so that also have
482// 32-bit SPR subregs).
483def DPR_VFP2 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64,
484                             [D0,  D1,  D2,  D3,  D4,  D5,  D6,  D7,
485                              D8,  D9,  D10, D11, D12, D13, D14, D15]> {
486  let SubRegClasses = [(SPR ssub_0, ssub_1)];
487}
488
489// Subset of DPR which can be used as a source of NEON scalars for 16-bit
490// operations
491def DPR_8 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64,
492                          [D0,  D1,  D2,  D3,  D4,  D5,  D6,  D7]> {
493  let SubRegClasses = [(SPR_8 ssub_0, ssub_1)];
494}
495
496// Generic 128-bit vector register class.
497def QPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 128,
498                        [Q0,  Q1,  Q2,  Q3,  Q4,  Q5,  Q6,  Q7,
499                         Q8,  Q9,  Q10, Q11, Q12, Q13, Q14, Q15]> {
500  let SubRegClasses = [(DPR dsub_0, dsub_1)];
501}
502
503// Subset of QPR that have 32-bit SPR subregs.
504def QPR_VFP2 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
505                             128,
506                             [Q0,  Q1,  Q2,  Q3,  Q4,  Q5,  Q6,  Q7]> {
507  let SubRegClasses = [(SPR      ssub_0, ssub_1, ssub_2, ssub_3),
508                       (DPR_VFP2 dsub_0, dsub_1)];
509}
510
511// Subset of QPR that have DPR_8 and SPR_8 subregs.
512def QPR_8 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
513                           128,
514                           [Q0,  Q1,  Q2,  Q3]> {
515  let SubRegClasses = [(SPR_8 ssub_0, ssub_1, ssub_2, ssub_3),
516                       (DPR_8 dsub_0, dsub_1)];
517}
518
519// Pseudo 256-bit vector register class to model pairs of Q registers
520// (4 consecutive D registers).
521def QQPR : RegisterClass<"ARM", [v4i64],
522                         256,
523                         [QQ0, QQ1, QQ2, QQ3, QQ4, QQ5, QQ6, QQ7]> {
524  let SubRegClasses = [(DPR dsub_0, dsub_1, dsub_2, dsub_3),
525                       (QPR qsub_0, qsub_1)];
526}
527
528// Subset of QQPR that have 32-bit SPR subregs.
529def QQPR_VFP2 : RegisterClass<"ARM", [v4i64],
530                              256,
531                              [QQ0, QQ1, QQ2, QQ3]> {
532  let SubRegClasses = [(SPR      ssub_0, ssub_1, ssub_2, ssub_3),
533                       (DPR_VFP2 dsub_0, dsub_1, dsub_2, dsub_3),
534                       (QPR_VFP2 qsub_0, qsub_1)];
535
536}
537
538// Pseudo 512-bit vector register class to model 4 consecutive Q registers
539// (8 consecutive D registers).
540def QQQQPR : RegisterClass<"ARM", [v8i64],
541                         256,
542                         [QQQQ0, QQQQ1, QQQQ2, QQQQ3]> {
543  let SubRegClasses = [(DPR dsub_0, dsub_1, dsub_2, dsub_3,
544                            dsub_4, dsub_5, dsub_6, dsub_7),
545                       (QPR qsub_0, qsub_1, qsub_2, qsub_3)];
546}
547
548// Condition code registers.
549def CCR : RegisterClass<"ARM", [i32], 32, [CPSR]>;
550