ARMRegisterInfo.td revision ca66226e7e8368719f5b9937ed6523c7117a9d63
1//===- ARMRegisterInfo.td - ARM Register defs --------------*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10//===----------------------------------------------------------------------===//
11//  Declarations that describe the ARM register file
12//===----------------------------------------------------------------------===//
13
14// Registers are identified with 4-bit ID numbers.
15class ARMReg<bits<4> num, string n, list<Register> subregs = []> : Register<n> {
16  field bits<4> Num;
17  let Namespace = "ARM";
18  let SubRegs = subregs;
19}
20
21class ARMFReg<bits<6> num, string n> : Register<n> {
22  field bits<6> Num;
23  let Namespace = "ARM";
24}
25
26// Subregister indices.
27let Namespace = "ARM" in {
28// Note: Code depends on these having consecutive numbers.
29def ssub_0  : SubRegIndex;
30def ssub_1  : SubRegIndex;
31def ssub_2  : SubRegIndex; // In a Q reg.
32def ssub_3  : SubRegIndex;
33
34def dsub_0 : SubRegIndex;
35def dsub_1 : SubRegIndex;
36def dsub_2 : SubRegIndex;
37def dsub_3 : SubRegIndex;
38def dsub_4 : SubRegIndex;
39def dsub_5 : SubRegIndex;
40def dsub_6 : SubRegIndex;
41def dsub_7 : SubRegIndex;
42
43def qsub_0 : SubRegIndex;
44def qsub_1 : SubRegIndex;
45def qsub_2 : SubRegIndex;
46def qsub_3 : SubRegIndex;
47
48def qqsub_0 : SubRegIndex;
49def qqsub_1 : SubRegIndex;
50}
51
52// Integer registers
53def R0  : ARMReg< 0, "r0">,  DwarfRegNum<[0]>;
54def R1  : ARMReg< 1, "r1">,  DwarfRegNum<[1]>;
55def R2  : ARMReg< 2, "r2">,  DwarfRegNum<[2]>;
56def R3  : ARMReg< 3, "r3">,  DwarfRegNum<[3]>;
57def R4  : ARMReg< 4, "r4">,  DwarfRegNum<[4]>;
58def R5  : ARMReg< 5, "r5">,  DwarfRegNum<[5]>;
59def R6  : ARMReg< 6, "r6">,  DwarfRegNum<[6]>;
60def R7  : ARMReg< 7, "r7">,  DwarfRegNum<[7]>;
61// These require 32-bit instructions.
62let CostPerUse = 1 in {
63def R8  : ARMReg< 8, "r8">,  DwarfRegNum<[8]>;
64def R9  : ARMReg< 9, "r9">,  DwarfRegNum<[9]>;
65def R10 : ARMReg<10, "r10">, DwarfRegNum<[10]>;
66def R11 : ARMReg<11, "r11">, DwarfRegNum<[11]>;
67def R12 : ARMReg<12, "r12">, DwarfRegNum<[12]>;
68def SP  : ARMReg<13, "sp">,  DwarfRegNum<[13]>;
69def LR  : ARMReg<14, "lr">,  DwarfRegNum<[14]>;
70def PC  : ARMReg<15, "pc">,  DwarfRegNum<[15]>;
71}
72
73// Float registers
74def S0  : ARMFReg< 0, "s0">;  def S1  : ARMFReg< 1, "s1">;
75def S2  : ARMFReg< 2, "s2">;  def S3  : ARMFReg< 3, "s3">;
76def S4  : ARMFReg< 4, "s4">;  def S5  : ARMFReg< 5, "s5">;
77def S6  : ARMFReg< 6, "s6">;  def S7  : ARMFReg< 7, "s7">;
78def S8  : ARMFReg< 8, "s8">;  def S9  : ARMFReg< 9, "s9">;
79def S10 : ARMFReg<10, "s10">; def S11 : ARMFReg<11, "s11">;
80def S12 : ARMFReg<12, "s12">; def S13 : ARMFReg<13, "s13">;
81def S14 : ARMFReg<14, "s14">; def S15 : ARMFReg<15, "s15">;
82def S16 : ARMFReg<16, "s16">; def S17 : ARMFReg<17, "s17">;
83def S18 : ARMFReg<18, "s18">; def S19 : ARMFReg<19, "s19">;
84def S20 : ARMFReg<20, "s20">; def S21 : ARMFReg<21, "s21">;
85def S22 : ARMFReg<22, "s22">; def S23 : ARMFReg<23, "s23">;
86def S24 : ARMFReg<24, "s24">; def S25 : ARMFReg<25, "s25">;
87def S26 : ARMFReg<26, "s26">; def S27 : ARMFReg<27, "s27">;
88def S28 : ARMFReg<28, "s28">; def S29 : ARMFReg<29, "s29">;
89def S30 : ARMFReg<30, "s30">; def S31 : ARMFReg<31, "s31">;
90
91// Aliases of the F* registers used to hold 64-bit fp values (doubles)
92let SubRegIndices = [ssub_0, ssub_1] in {
93def D0  : ARMReg< 0,  "d0", [S0,   S1]>, DwarfRegNum<[256]>;
94def D1  : ARMReg< 1,  "d1", [S2,   S3]>, DwarfRegNum<[257]>;
95def D2  : ARMReg< 2,  "d2", [S4,   S5]>, DwarfRegNum<[258]>;
96def D3  : ARMReg< 3,  "d3", [S6,   S7]>, DwarfRegNum<[259]>;
97def D4  : ARMReg< 4,  "d4", [S8,   S9]>, DwarfRegNum<[260]>;
98def D5  : ARMReg< 5,  "d5", [S10, S11]>, DwarfRegNum<[261]>;
99def D6  : ARMReg< 6,  "d6", [S12, S13]>, DwarfRegNum<[262]>;
100def D7  : ARMReg< 7,  "d7", [S14, S15]>, DwarfRegNum<[263]>;
101def D8  : ARMReg< 8,  "d8", [S16, S17]>, DwarfRegNum<[264]>;
102def D9  : ARMReg< 9,  "d9", [S18, S19]>, DwarfRegNum<[265]>;
103def D10 : ARMReg<10, "d10", [S20, S21]>, DwarfRegNum<[266]>;
104def D11 : ARMReg<11, "d11", [S22, S23]>, DwarfRegNum<[267]>;
105def D12 : ARMReg<12, "d12", [S24, S25]>, DwarfRegNum<[268]>;
106def D13 : ARMReg<13, "d13", [S26, S27]>, DwarfRegNum<[269]>;
107def D14 : ARMReg<14, "d14", [S28, S29]>, DwarfRegNum<[270]>;
108def D15 : ARMReg<15, "d15", [S30, S31]>, DwarfRegNum<[271]>;
109}
110
111// VFP3 defines 16 additional double registers
112def D16 : ARMFReg<16, "d16">, DwarfRegNum<[272]>; 
113def D17 : ARMFReg<17, "d17">, DwarfRegNum<[273]>;
114def D18 : ARMFReg<18, "d18">, DwarfRegNum<[274]>;
115def D19 : ARMFReg<19, "d19">, DwarfRegNum<[275]>;
116def D20 : ARMFReg<20, "d20">, DwarfRegNum<[276]>;
117def D21 : ARMFReg<21, "d21">, DwarfRegNum<[277]>;
118def D22 : ARMFReg<22, "d22">, DwarfRegNum<[278]>; 
119def D23 : ARMFReg<23, "d23">, DwarfRegNum<[279]>;
120def D24 : ARMFReg<24, "d24">, DwarfRegNum<[280]>;
121def D25 : ARMFReg<25, "d25">, DwarfRegNum<[281]>;
122def D26 : ARMFReg<26, "d26">, DwarfRegNum<[282]>;
123def D27 : ARMFReg<27, "d27">, DwarfRegNum<[283]>;
124def D28 : ARMFReg<28, "d28">, DwarfRegNum<[284]>;
125def D29 : ARMFReg<29, "d29">, DwarfRegNum<[285]>;
126def D30 : ARMFReg<30, "d30">, DwarfRegNum<[286]>;
127def D31 : ARMFReg<31, "d31">, DwarfRegNum<[287]>;
128
129// Advanced SIMD (NEON) defines 16 quad-word aliases
130let SubRegIndices = [dsub_0, dsub_1],
131 CompositeIndices = [(ssub_2 dsub_1, ssub_0),
132                     (ssub_3 dsub_1, ssub_1)] in {
133def Q0  : ARMReg< 0,  "q0", [D0,   D1]>;
134def Q1  : ARMReg< 1,  "q1", [D2,   D3]>;
135def Q2  : ARMReg< 2,  "q2", [D4,   D5]>;
136def Q3  : ARMReg< 3,  "q3", [D6,   D7]>;
137def Q4  : ARMReg< 4,  "q4", [D8,   D9]>;
138def Q5  : ARMReg< 5,  "q5", [D10, D11]>;
139def Q6  : ARMReg< 6,  "q6", [D12, D13]>;
140def Q7  : ARMReg< 7,  "q7", [D14, D15]>;
141}
142let SubRegIndices = [dsub_0, dsub_1] in {
143def Q8  : ARMReg< 8,  "q8", [D16, D17]>;
144def Q9  : ARMReg< 9,  "q9", [D18, D19]>;
145def Q10 : ARMReg<10, "q10", [D20, D21]>;
146def Q11 : ARMReg<11, "q11", [D22, D23]>;
147def Q12 : ARMReg<12, "q12", [D24, D25]>;
148def Q13 : ARMReg<13, "q13", [D26, D27]>;
149def Q14 : ARMReg<14, "q14", [D28, D29]>;
150def Q15 : ARMReg<15, "q15", [D30, D31]>;
151}
152
153// Pseudo 256-bit registers to represent pairs of Q registers. These should
154// never be present in the emitted code.
155// These are used for NEON load / store instructions, e.g., vld4, vst3.
156// NOTE: It's possible to define more QQ registers since technically the
157// starting D register number doesn't have to be multiple of 4, e.g.,
158// D1, D2, D3, D4 would be a legal quad, but that would make the subregister
159// stuff very messy.
160let SubRegIndices = [qsub_0, qsub_1],
161 CompositeIndices = [(dsub_2 qsub_1, dsub_0), (dsub_3 qsub_1, dsub_1)] in {
162def QQ0 : ARMReg<0, "qq0", [Q0,  Q1]>;
163def QQ1 : ARMReg<1, "qq1", [Q2,  Q3]>;
164def QQ2 : ARMReg<2, "qq2", [Q4,  Q5]>;
165def QQ3 : ARMReg<3, "qq3", [Q6,  Q7]>;
166def QQ4 : ARMReg<4, "qq4", [Q8,  Q9]>;
167def QQ5 : ARMReg<5, "qq5", [Q10, Q11]>;
168def QQ6 : ARMReg<6, "qq6", [Q12, Q13]>;
169def QQ7 : ARMReg<7, "qq7", [Q14, Q15]>;
170}
171
172// Pseudo 512-bit registers to represent four consecutive Q registers.
173let SubRegIndices = [qqsub_0, qqsub_1],
174 CompositeIndices = [(qsub_2  qqsub_1, qsub_0), (qsub_3  qqsub_1, qsub_1),
175                     (dsub_4  qqsub_1, dsub_0), (dsub_5  qqsub_1, dsub_1),
176                     (dsub_6  qqsub_1, dsub_2), (dsub_7  qqsub_1, dsub_3)] in {
177def QQQQ0 : ARMReg<0, "qqqq0", [QQ0, QQ1]>;
178def QQQQ1 : ARMReg<1, "qqqq1", [QQ2, QQ3]>;
179def QQQQ2 : ARMReg<2, "qqqq2", [QQ4, QQ5]>;
180def QQQQ3 : ARMReg<3, "qqqq3", [QQ6, QQ7]>;
181}
182
183// Current Program Status Register.
184def CPSR    : ARMReg<0, "cpsr">;
185def FPSCR   : ARMReg<1, "fpscr">;
186def ITSTATE : ARMReg<2, "itstate">;
187
188// Special Registers - only available in privileged mode.
189def FPSID   : ARMReg<0, "fpsid">;
190def FPEXC   : ARMReg<8, "fpexc">;
191
192// Register classes.
193//
194// pc  == Program Counter
195// lr  == Link Register
196// sp  == Stack Pointer
197// r12 == ip (scratch)
198// r7  == Frame Pointer (thumb-style backtraces)
199// r9  == May be reserved as Thread Register
200// r11 == Frame Pointer (arm-style backtraces)
201// r10 == Stack Limit
202//
203def GPR : RegisterClass<"ARM", [i32], 32, [R0, R1, R2, R3, R4, R5, R6,
204                                           R7, R8, R9, R10, R11, R12,
205                                           SP, LR, PC]> {
206  let MethodProtos = [{
207    iterator allocation_order_begin(const MachineFunction &MF) const;
208    iterator allocation_order_end(const MachineFunction &MF) const;
209  }];
210  let MethodBodies = [{
211    static const unsigned ARM_GPR_AO[] = {
212      ARM::R0, ARM::R1, ARM::R2, ARM::R3,
213      ARM::R12,ARM::LR,
214      ARM::R4, ARM::R5, ARM::R6, ARM::R7,
215      ARM::R8, ARM::R9, ARM::R10, ARM::R11 };
216
217    // For Thumb1 mode, we don't want to allocate hi regs at all, as we
218    // don't know how to spill them. If we make our prologue/epilogue code
219    // smarter at some point, we can go back to using the above allocation
220    // orders for the Thumb1 instructions that know how to use hi regs.
221    static const unsigned THUMB_GPR_AO[] = {
222      ARM::R0, ARM::R1, ARM::R2, ARM::R3,
223      ARM::R4, ARM::R5, ARM::R6, ARM::R7 };
224
225    GPRClass::iterator
226    GPRClass::allocation_order_begin(const MachineFunction &MF) const {
227      const TargetMachine &TM = MF.getTarget();
228      const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
229      if (Subtarget.isThumb1Only())
230        return THUMB_GPR_AO;
231      return ARM_GPR_AO;
232    }
233
234    GPRClass::iterator
235    GPRClass::allocation_order_end(const MachineFunction &MF) const {
236      const TargetMachine &TM = MF.getTarget();
237      const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
238      if (Subtarget.isThumb1Only())
239        return THUMB_GPR_AO + (sizeof(THUMB_GPR_AO)/sizeof(unsigned));
240      return ARM_GPR_AO + (sizeof(ARM_GPR_AO)/sizeof(unsigned));
241    }
242  }];
243}
244
245// restricted GPR register class. Many Thumb2 instructions allow the full
246// register range for operands, but have undefined behaviours when PC
247// or SP (R13 or R15) are used. The ARM ISA refers to these operands
248// via the BadReg() pseudo-code description.
249def rGPR : RegisterClass<"ARM", [i32], 32, [R0, R1, R2, R3, R4, R5, R6,
250                                            R7, R8, R9, R10, R11, R12, LR]> {
251  let MethodProtos = [{
252    iterator allocation_order_begin(const MachineFunction &MF) const;
253    iterator allocation_order_end(const MachineFunction &MF) const;
254  }];
255  let MethodBodies = [{
256    static const unsigned ARM_rGPR_AO[] = {
257      ARM::R0, ARM::R1, ARM::R2, ARM::R3,
258      ARM::R12,ARM::LR,
259      ARM::R4, ARM::R5, ARM::R6, ARM::R7,
260      ARM::R8, ARM::R9, ARM::R10,
261      ARM::R11 };
262
263    // For Thumb1 mode, we don't want to allocate hi regs at all, as we
264    // don't know how to spill them. If we make our prologue/epilogue code
265    // smarter at some point, we can go back to using the above allocation
266    // orders for the Thumb1 instructions that know how to use hi regs.
267    static const unsigned THUMB_rGPR_AO[] = {
268      ARM::R0, ARM::R1, ARM::R2, ARM::R3,
269      ARM::R4, ARM::R5, ARM::R6, ARM::R7 };
270
271    rGPRClass::iterator
272    rGPRClass::allocation_order_begin(const MachineFunction &MF) const {
273      const TargetMachine &TM = MF.getTarget();
274      const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
275      if (Subtarget.isThumb1Only())
276        return THUMB_rGPR_AO;
277      return ARM_rGPR_AO;
278    }
279
280    rGPRClass::iterator
281    rGPRClass::allocation_order_end(const MachineFunction &MF) const {
282      const TargetMachine &TM = MF.getTarget();
283      const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
284
285      if (Subtarget.isThumb1Only())
286        return THUMB_rGPR_AO + (sizeof(THUMB_rGPR_AO)/sizeof(unsigned));
287      return ARM_rGPR_AO + (sizeof(ARM_rGPR_AO)/sizeof(unsigned));
288    }
289  }];
290}
291
292// Thumb registers are R0-R7 normally. Some instructions can still use
293// the general GPR register class above (MOV, e.g.)
294def tGPR : RegisterClass<"ARM", [i32], 32, [R0, R1, R2, R3, R4, R5, R6, R7]> {}
295
296// For tail calls, we can't use callee-saved registers, as they are restored
297// to the saved value before the tail call, which would clobber a call address.
298// Note, getMinimalPhysRegClass(R0) returns tGPR because of the names of
299// this class and the preceding one(!)  This is what we want.
300def tcGPR : RegisterClass<"ARM", [i32], 32, [R0, R1, R2, R3, R9, R12]> {
301  let MethodProtos = [{
302    iterator allocation_order_begin(const MachineFunction &MF) const;
303    iterator allocation_order_end(const MachineFunction &MF) const;
304  }];
305  let MethodBodies = [{
306    // R9 is available.
307    static const unsigned ARM_GPR_R9_TC[] = {
308      ARM::R0, ARM::R1, ARM::R2, ARM::R3,
309      ARM::R9, ARM::R12 };
310    // R9 is not available.
311    static const unsigned ARM_GPR_NOR9_TC[] = {
312      ARM::R0, ARM::R1, ARM::R2, ARM::R3,
313      ARM::R12 };
314
315    // For Thumb1 mode, we don't want to allocate hi regs at all, as we
316    // don't know how to spill them. If we make our prologue/epilogue code
317    // smarter at some point, we can go back to using the above allocation
318    // orders for the Thumb1 instructions that know how to use hi regs.
319    static const unsigned THUMB_GPR_AO_TC[] = {
320      ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
321
322    tcGPRClass::iterator
323    tcGPRClass::allocation_order_begin(const MachineFunction &MF) const {
324      const TargetMachine &TM = MF.getTarget();
325      const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
326      if (Subtarget.isThumb1Only())
327        return THUMB_GPR_AO_TC;
328      return Subtarget.isTargetDarwin() ? ARM_GPR_R9_TC : ARM_GPR_NOR9_TC;
329    }
330
331    tcGPRClass::iterator
332    tcGPRClass::allocation_order_end(const MachineFunction &MF) const {
333      const TargetMachine &TM = MF.getTarget();
334      const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
335
336      if (Subtarget.isThumb1Only())
337        return THUMB_GPR_AO_TC + (sizeof(THUMB_GPR_AO_TC)/sizeof(unsigned));
338
339      return Subtarget.isTargetDarwin() ?
340        ARM_GPR_R9_TC + (sizeof(ARM_GPR_R9_TC)/sizeof(unsigned)) :
341        ARM_GPR_NOR9_TC + (sizeof(ARM_GPR_NOR9_TC)/sizeof(unsigned));
342    }
343  }];
344}
345
346
347// Scalar single precision floating point register class..
348def SPR : RegisterClass<"ARM", [f32], 32, [S0, S1, S2, S3, S4, S5, S6, S7, S8,
349  S9, S10, S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, S22,
350  S23, S24, S25, S26, S27, S28, S29, S30, S31]>;
351
352// Subset of SPR which can be used as a source of NEON scalars for 16-bit
353// operations
354def SPR_8 : RegisterClass<"ARM", [f32], 32,
355                          [S0, S1,  S2,  S3,  S4,  S5,  S6,  S7,
356                           S8, S9, S10, S11, S12, S13, S14, S15]>;
357
358// Scalar double precision floating point / generic 64-bit vector register
359// class.
360// ARM requires only word alignment for double. It's more performant if it
361// is double-word alignment though.
362def DPR : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64,
363                        [D0,  D1,  D2,  D3,  D4,  D5,  D6,  D7,
364                         D8,  D9,  D10, D11, D12, D13, D14, D15,
365                         D16, D17, D18, D19, D20, D21, D22, D23,
366                         D24, D25, D26, D27, D28, D29, D30, D31]> {
367  let MethodProtos = [{
368    iterator allocation_order_begin(const MachineFunction &MF) const;
369    iterator allocation_order_end(const MachineFunction &MF) const;
370  }];
371  let MethodBodies = [{
372    // VFP2 / VFPv3-D16
373    static const unsigned ARM_DPR_VFP2[] = {
374      ARM::D0,  ARM::D1,  ARM::D2,  ARM::D3,
375      ARM::D4,  ARM::D5,  ARM::D6,  ARM::D7,
376      ARM::D8,  ARM::D9,  ARM::D10, ARM::D11,
377      ARM::D12, ARM::D13, ARM::D14, ARM::D15 };
378    // VFP3: D8-D15 are callee saved and should be allocated last.
379    // Save other low registers for use as DPR_VFP2 and DPR_8 classes.
380    static const unsigned ARM_DPR_VFP3[] = {
381      ARM::D16, ARM::D17, ARM::D18, ARM::D19,
382      ARM::D20, ARM::D21, ARM::D22, ARM::D23,
383      ARM::D24, ARM::D25, ARM::D26, ARM::D27,
384      ARM::D28, ARM::D29, ARM::D30, ARM::D31,
385      ARM::D0,  ARM::D1,  ARM::D2,  ARM::D3,
386      ARM::D4,  ARM::D5,  ARM::D6,  ARM::D7,
387      ARM::D8,  ARM::D9,  ARM::D10, ARM::D11,
388      ARM::D12, ARM::D13, ARM::D14, ARM::D15 };
389
390    DPRClass::iterator
391    DPRClass::allocation_order_begin(const MachineFunction &MF) const {
392      const TargetMachine &TM = MF.getTarget();
393      const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
394      if (Subtarget.hasVFP3() && !Subtarget.hasD16())
395        return ARM_DPR_VFP3;
396      return ARM_DPR_VFP2;
397    }
398
399    DPRClass::iterator
400    DPRClass::allocation_order_end(const MachineFunction &MF) const {
401      const TargetMachine &TM = MF.getTarget();
402      const ARMSubtarget &Subtarget = TM.getSubtarget<ARMSubtarget>();
403      if (Subtarget.hasVFP3() && !Subtarget.hasD16())
404        return ARM_DPR_VFP3 + (sizeof(ARM_DPR_VFP3)/sizeof(unsigned));
405      else
406        return ARM_DPR_VFP2 + (sizeof(ARM_DPR_VFP2)/sizeof(unsigned));
407    }
408  }];
409}
410
411// Subset of DPR that are accessible with VFP2 (and so that also have
412// 32-bit SPR subregs).
413def DPR_VFP2 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64,
414                             [D0,  D1,  D2,  D3,  D4,  D5,  D6,  D7,
415                              D8,  D9,  D10, D11, D12, D13, D14, D15]> {
416  let SubRegClasses = [(SPR ssub_0, ssub_1)];
417}
418
419// Subset of DPR which can be used as a source of NEON scalars for 16-bit
420// operations
421def DPR_8 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64,
422                          [D0,  D1,  D2,  D3,  D4,  D5,  D6,  D7]> {
423  let SubRegClasses = [(SPR_8 ssub_0, ssub_1)];
424}
425
426// Generic 128-bit vector register class.
427def QPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 128,
428                        [Q0,  Q1,  Q2,  Q3,  Q4,  Q5,  Q6,  Q7,
429                         Q8,  Q9,  Q10, Q11, Q12, Q13, Q14, Q15]> {
430  let SubRegClasses = [(DPR dsub_0, dsub_1)];
431  let MethodProtos = [{
432    iterator allocation_order_begin(const MachineFunction &MF) const;
433    iterator allocation_order_end(const MachineFunction &MF) const;
434  }];
435  let MethodBodies = [{
436    // Q4-Q7 are callee saved and should be allocated last.
437    // Save other low registers for use as QPR_VFP2 and QPR_8 classes.
438    static const unsigned ARM_QPR[] = {
439      ARM::Q8,  ARM::Q9,  ARM::Q10, ARM::Q11,
440      ARM::Q12, ARM::Q13, ARM::Q14, ARM::Q15,
441      ARM::Q0,  ARM::Q1,  ARM::Q2,  ARM::Q3,
442      ARM::Q4,  ARM::Q5,  ARM::Q6,  ARM::Q7 };
443
444    QPRClass::iterator
445    QPRClass::allocation_order_begin(const MachineFunction &MF) const {
446      return ARM_QPR;
447    }
448
449    QPRClass::iterator
450    QPRClass::allocation_order_end(const MachineFunction &MF) const {
451      return ARM_QPR + (sizeof(ARM_QPR)/sizeof(unsigned));
452    }
453  }];
454}
455
456// Subset of QPR that have 32-bit SPR subregs.
457def QPR_VFP2 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
458                             128,
459                             [Q0,  Q1,  Q2,  Q3,  Q4,  Q5,  Q6,  Q7]> {
460  let SubRegClasses = [(SPR      ssub_0, ssub_1, ssub_2, ssub_3),
461                       (DPR_VFP2 dsub_0, dsub_1)];
462}
463
464// Subset of QPR that have DPR_8 and SPR_8 subregs.
465def QPR_8 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
466                           128,
467                           [Q0,  Q1,  Q2,  Q3]> {
468  let SubRegClasses = [(SPR_8 ssub_0, ssub_1, ssub_2, ssub_3),
469                       (DPR_8 dsub_0, dsub_1)];
470}
471
472// Pseudo 256-bit vector register class to model pairs of Q registers
473// (4 consecutive D registers).
474def QQPR : RegisterClass<"ARM", [v4i64],
475                         256,
476                         [QQ0, QQ1, QQ2, QQ3, QQ4, QQ5, QQ6, QQ7]> {
477  let SubRegClasses = [(DPR dsub_0, dsub_1, dsub_2, dsub_3),
478                       (QPR qsub_0, qsub_1)];
479  let MethodProtos = [{
480    iterator allocation_order_begin(const MachineFunction &MF) const;
481    iterator allocation_order_end(const MachineFunction &MF) const;
482  }];
483  let MethodBodies = [{
484    // QQ2-QQ3 are callee saved and should be allocated last.
485    // Save other low registers for use as QPR_VFP2 and QPR_8 classes.
486    static const unsigned ARM_QQPR[] = {
487      ARM::QQ4, ARM::QQ5, ARM::QQ6, ARM::QQ7,
488      ARM::QQ0, ARM::QQ1, ARM::QQ2, ARM::QQ3 };
489
490    QQPRClass::iterator
491    QQPRClass::allocation_order_begin(const MachineFunction &MF) const {
492      return ARM_QQPR;
493    }
494
495    QQPRClass::iterator
496    QQPRClass::allocation_order_end(const MachineFunction &MF) const {
497      return ARM_QQPR + (sizeof(ARM_QQPR)/sizeof(unsigned));
498    }
499  }];
500}
501
502// Subset of QQPR that have 32-bit SPR subregs.
503def QQPR_VFP2 : RegisterClass<"ARM", [v4i64],
504                              256,
505                              [QQ0, QQ1, QQ2, QQ3]> {
506  let SubRegClasses = [(SPR      ssub_0, ssub_1, ssub_2, ssub_3),
507                       (DPR_VFP2 dsub_0, dsub_1, dsub_2, dsub_3),
508                       (QPR_VFP2 qsub_0, qsub_1)];
509
510}
511
512// Pseudo 512-bit vector register class to model 4 consecutive Q registers
513// (8 consecutive D registers).
514def QQQQPR : RegisterClass<"ARM", [v8i64],
515                         256,
516                         [QQQQ0, QQQQ1, QQQQ2, QQQQ3]> {
517  let SubRegClasses = [(DPR dsub_0, dsub_1, dsub_2, dsub_3,
518                            dsub_4, dsub_5, dsub_6, dsub_7),
519                       (QPR qsub_0, qsub_1, qsub_2, qsub_3)];
520  let MethodProtos = [{
521    iterator allocation_order_begin(const MachineFunction &MF) const;
522    iterator allocation_order_end(const MachineFunction &MF) const;
523  }];
524  let MethodBodies = [{
525    // QQQQ1 is callee saved and should be allocated last.
526    // Save QQQQ0 for use as QPR_VFP2 and QPR_8 classes.
527    static const unsigned ARM_QQQQPR[] = {
528      ARM::QQQQ2, ARM::QQQQ3, ARM::QQQQ0, ARM::QQQQ1 };
529
530    QQQQPRClass::iterator
531    QQQQPRClass::allocation_order_begin(const MachineFunction &MF) const {
532      return ARM_QQQQPR;
533    }
534
535    QQQQPRClass::iterator
536    QQQQPRClass::allocation_order_end(const MachineFunction &MF) const {
537      return ARM_QQQQPR + (sizeof(ARM_QQQQPR)/sizeof(unsigned));
538    }
539  }];
540}
541
542// Condition code registers.
543def CCR : RegisterClass<"ARM", [i32], 32, [CPSR]>;
544