ARMSubtarget.cpp revision 929bdb23794b615dc6b0cc59db21f0450c3ce33b
1//===-- ARMSubtarget.cpp - ARM Subtarget Information ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the ARM specific subclass of TargetSubtargetInfo.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ARMSubtarget.h"
15#include "ARMBaseInstrInfo.h"
16#include "ARMBaseRegisterInfo.h"
17#include "llvm/IR/Attributes.h"
18#include "llvm/IR/GlobalValue.h"
19#include "llvm/IR/Function.h"
20#include "llvm/Support/CommandLine.h"
21#include "llvm/Target/TargetInstrInfo.h"
22#include "llvm/Target/TargetOptions.h"
23
24#define GET_SUBTARGETINFO_TARGET_DESC
25#define GET_SUBTARGETINFO_CTOR
26#include "ARMGenSubtargetInfo.inc"
27
28using namespace llvm;
29
30static cl::opt<bool>
31ReserveR9("arm-reserve-r9", cl::Hidden,
32          cl::desc("Reserve R9, making it unavailable as GPR"));
33
34static cl::opt<bool>
35ArmUseMOVT("arm-use-movt", cl::init(true), cl::Hidden);
36
37static cl::opt<bool>
38UseFusedMulOps("arm-use-mulops",
39               cl::init(true), cl::Hidden);
40
41enum AlignMode {
42  DefaultAlign,
43  StrictAlign,
44  NoStrictAlign
45};
46
47static cl::opt<AlignMode>
48Align(cl::desc("Load/store alignment support"),
49      cl::Hidden, cl::init(DefaultAlign),
50      cl::values(
51          clEnumValN(DefaultAlign,  "arm-default-align",
52                     "Generate unaligned accesses only on hardware/OS "
53                     "combinations that are known to support them"),
54          clEnumValN(StrictAlign,   "arm-strict-align",
55                     "Disallow all unaligned memory accesses"),
56          clEnumValN(NoStrictAlign, "arm-no-strict-align",
57                     "Allow unaligned memory accesses"),
58          clEnumValEnd));
59
60enum ITMode {
61  DefaultIT,
62  RestrictedIT,
63  NoRestrictedIT
64};
65
66static cl::opt<ITMode>
67IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT),
68   cl::ZeroOrMore,
69   cl::values(clEnumValN(DefaultIT, "arm-default-it",
70                         "Generate IT block based on arch"),
71              clEnumValN(RestrictedIT, "arm-restrict-it",
72                         "Disallow deprecated IT based on ARMv8"),
73              clEnumValN(NoRestrictedIT, "arm-no-restrict-it",
74                         "Allow IT blocks based on ARMv7"),
75              clEnumValEnd));
76
77ARMSubtarget::ARMSubtarget(const std::string &TT, const std::string &CPU,
78                           const std::string &FS, const TargetOptions &Options)
79  : ARMGenSubtargetInfo(TT, CPU, FS)
80  , ARMProcFamily(Others)
81  , ARMProcClass(None)
82  , stackAlignment(4)
83  , CPUString(CPU)
84  , TargetTriple(TT)
85  , Options(Options)
86  , TargetABI(ARM_ABI_APCS) {
87  initializeEnvironment();
88  resetSubtargetFeatures(CPU, FS);
89}
90
91void ARMSubtarget::initializeEnvironment() {
92  HasV4TOps = false;
93  HasV5TOps = false;
94  HasV5TEOps = false;
95  HasV6Ops = false;
96  HasV6MOps = false;
97  HasV6T2Ops = false;
98  HasV7Ops = false;
99  HasV8Ops = false;
100  HasVFPv2 = false;
101  HasVFPv3 = false;
102  HasVFPv4 = false;
103  HasFPARMv8 = false;
104  HasNEON = false;
105  UseNEONForSinglePrecisionFP = false;
106  UseMulOps = UseFusedMulOps;
107  SlowFPVMLx = false;
108  HasVMLxForwarding = false;
109  SlowFPBrcc = false;
110  InThumbMode = false;
111  HasThumb2 = false;
112  NoARM = false;
113  PostRAScheduler = false;
114  IsR9Reserved = ReserveR9;
115  UseMovt = false;
116  SupportsTailCall = false;
117  HasFP16 = false;
118  HasD16 = false;
119  HasHardwareDivide = false;
120  HasHardwareDivideInARM = false;
121  HasT2ExtractPack = false;
122  HasDataBarrier = false;
123  Pref32BitThumb = false;
124  AvoidCPSRPartialUpdate = false;
125  AvoidMOVsShifterOperand = false;
126  HasRAS = false;
127  HasMPExtension = false;
128  HasVirtualization = false;
129  FPOnlySP = false;
130  HasPerfMon = false;
131  HasTrustZone = false;
132  HasCrypto = false;
133  HasCRC = false;
134  AllowsUnalignedMem = false;
135  Thumb2DSP = false;
136  UseNaClTrap = false;
137  UnsafeFPMath = false;
138}
139
140void ARMSubtarget::resetSubtargetFeatures(const MachineFunction *MF) {
141  AttributeSet FnAttrs = MF->getFunction()->getAttributes();
142  Attribute CPUAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex,
143                                           "target-cpu");
144  Attribute FSAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex,
145                                          "target-features");
146  std::string CPU =
147    !CPUAttr.hasAttribute(Attribute::None) ?CPUAttr.getValueAsString() : "";
148  std::string FS =
149    !FSAttr.hasAttribute(Attribute::None) ? FSAttr.getValueAsString() : "";
150  if (!FS.empty()) {
151    initializeEnvironment();
152    resetSubtargetFeatures(CPU, FS);
153  }
154}
155
156void ARMSubtarget::resetSubtargetFeatures(StringRef CPU, StringRef FS) {
157  if (CPUString.empty()) {
158    if (isTargetIOS() && TargetTriple.getArchName().endswith("v7s"))
159      // Default to the Swift CPU when targeting armv7s/thumbv7s.
160      CPUString = "swift";
161    else
162      CPUString = "generic";
163  }
164
165  // Insert the architecture feature derived from the target triple into the
166  // feature string. This is important for setting features that are implied
167  // based on the architecture version.
168  std::string ArchFS = ARM_MC::ParseARMTriple(TargetTriple.getTriple(),
169                                              CPUString);
170  if (!FS.empty()) {
171    if (!ArchFS.empty())
172      ArchFS = ArchFS + "," + FS.str();
173    else
174      ArchFS = FS;
175  }
176  ParseSubtargetFeatures(CPUString, ArchFS);
177
178  // Thumb2 implies at least V6T2. FIXME: Fix tests to explicitly specify a
179  // ARM version or CPU and then remove this.
180  if (!HasV6T2Ops && hasThumb2())
181    HasV4TOps = HasV5TOps = HasV5TEOps = HasV6Ops = HasV6MOps = HasV6T2Ops = true;
182
183  // Keep a pointer to static instruction cost data for the specified CPU.
184  SchedModel = getSchedModelForCPU(CPUString);
185
186  // Initialize scheduling itinerary for the specified CPU.
187  InstrItins = getInstrItineraryForCPU(CPUString);
188
189  if ((TargetTriple.getTriple().find("eabi") != std::string::npos) ||
190      (isTargetIOS() && isMClass()))
191    // FIXME: We might want to separate AAPCS and EABI. Some systems, e.g.
192    // Darwin-EABI conforms to AACPS but not the rest of EABI.
193    TargetABI = ARM_ABI_AAPCS;
194
195  if (isAAPCS_ABI())
196    stackAlignment = 8;
197
198  UseMovt = hasV6T2Ops() && ArmUseMOVT;
199
200  if (!isTargetIOS()) {
201    IsR9Reserved = ReserveR9;
202  } else {
203    IsR9Reserved = ReserveR9 | !HasV6Ops;
204    SupportsTailCall = !getTargetTriple().isOSVersionLT(5, 0);
205  }
206
207  if (!isThumb() || hasThumb2())
208    PostRAScheduler = true;
209
210  switch (Align) {
211    case DefaultAlign:
212      // Assume pre-ARMv6 doesn't support unaligned accesses.
213      //
214      // ARMv6 may or may not support unaligned accesses depending on the
215      // SCTLR.U bit, which is architecture-specific. We assume ARMv6
216      // Darwin targets support unaligned accesses, and others don't.
217      //
218      // ARMv7 always has SCTLR.U set to 1, but it has a new SCTLR.A bit
219      // which raises an alignment fault on unaligned accesses. Linux
220      // defaults this bit to 0 and handles it as a system-wide (not
221      // per-process) setting. It is therefore safe to assume that ARMv7+
222      // Linux targets support unaligned accesses. The same goes for NaCl.
223      //
224      // The above behavior is consistent with GCC.
225      AllowsUnalignedMem = (
226          (hasV7Ops() && (isTargetLinux() || isTargetNaCl())) ||
227          (hasV6Ops() && isTargetDarwin()));
228      break;
229    case StrictAlign:
230      AllowsUnalignedMem = false;
231      break;
232    case NoStrictAlign:
233      AllowsUnalignedMem = true;
234      break;
235  }
236
237  switch (IT) {
238  case DefaultIT:
239    RestrictIT = hasV8Ops() ? true : false;
240    break;
241  case RestrictedIT:
242    RestrictIT = true;
243    break;
244  case NoRestrictedIT:
245    RestrictIT = false;
246    break;
247  }
248
249  // NEON f32 ops are non-IEEE 754 compliant. Darwin is ok with it by default.
250  uint64_t Bits = getFeatureBits();
251  if ((Bits & ARM::ProcA5 || Bits & ARM::ProcA8) && // Where this matters
252      (Options.UnsafeFPMath || isTargetDarwin()))
253    UseNEONForSinglePrecisionFP = true;
254}
255
256/// GVIsIndirectSymbol - true if the GV will be accessed via an indirect symbol.
257bool
258ARMSubtarget::GVIsIndirectSymbol(const GlobalValue *GV,
259                                 Reloc::Model RelocM) const {
260  if (RelocM == Reloc::Static)
261    return false;
262
263  // Materializable GVs (in JIT lazy compilation mode) do not require an extra
264  // load from stub.
265  bool isDecl = GV->hasAvailableExternallyLinkage();
266  if (GV->isDeclaration() && !GV->isMaterializable())
267    isDecl = true;
268
269  if (!isTargetDarwin()) {
270    // Extra load is needed for all externally visible.
271    if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
272      return false;
273    return true;
274  } else {
275    if (RelocM == Reloc::PIC_) {
276      // If this is a strong reference to a definition, it is definitely not
277      // through a stub.
278      if (!isDecl && !GV->isWeakForLinker())
279        return false;
280
281      // Unless we have a symbol with hidden visibility, we have to go through a
282      // normal $non_lazy_ptr stub because this symbol might be resolved late.
283      if (!GV->hasHiddenVisibility())  // Non-hidden $non_lazy_ptr reference.
284        return true;
285
286      // If symbol visibility is hidden, we have a stub for common symbol
287      // references and external declarations.
288      if (isDecl || GV->hasCommonLinkage())
289        // Hidden $non_lazy_ptr reference.
290        return true;
291
292      return false;
293    } else {
294      // If this is a strong reference to a definition, it is definitely not
295      // through a stub.
296      if (!isDecl && !GV->isWeakForLinker())
297        return false;
298
299      // Unless we have a symbol with hidden visibility, we have to go through a
300      // normal $non_lazy_ptr stub because this symbol might be resolved late.
301      if (!GV->hasHiddenVisibility())  // Non-hidden $non_lazy_ptr reference.
302        return true;
303    }
304  }
305
306  return false;
307}
308
309unsigned ARMSubtarget::getMispredictionPenalty() const {
310  return SchedModel->MispredictPenalty;
311}
312
313bool ARMSubtarget::hasSinCos() const {
314  return getTargetTriple().getOS() == Triple::IOS &&
315    !getTargetTriple().isOSVersionLT(7, 0);
316}
317
318bool ARMSubtarget::enablePostRAScheduler(
319           CodeGenOpt::Level OptLevel,
320           TargetSubtargetInfo::AntiDepBreakMode& Mode,
321           RegClassVector& CriticalPathRCs) const {
322  Mode = TargetSubtargetInfo::ANTIDEP_NONE;
323  return PostRAScheduler && OptLevel >= CodeGenOpt::Default;
324}
325