ARMTargetTransformInfo.cpp revision 5193e4ebe216dd5a07ab9cc58d40de5aafaa990c
1//===-- ARMTargetTransformInfo.cpp - ARM specific TTI pass ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements a TargetTransformInfo analysis pass specific to the
11/// ARM target machine. It uses the target's detailed information to provide
12/// more precise answers to certain TTI queries, while letting the target
13/// independent and default TTI implementations handle the rest.
14///
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "armtti"
18#include "ARM.h"
19#include "ARMTargetMachine.h"
20#include "llvm/Analysis/TargetTransformInfo.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/CostTable.h"
24using namespace llvm;
25
26// Declare the pass initialization routine locally as target-specific passes
27// don't havve a target-wide initialization entry point, and so we rely on the
28// pass constructor initialization.
29namespace llvm {
30void initializeARMTTIPass(PassRegistry &);
31}
32
33namespace {
34
35class ARMTTI : public ImmutablePass, public TargetTransformInfo {
36  const ARMBaseTargetMachine *TM;
37  const ARMSubtarget *ST;
38  const ARMTargetLowering *TLI;
39
40  /// Estimate the overhead of scalarizing an instruction. Insert and Extract
41  /// are set if the result needs to be inserted and/or extracted from vectors.
42  unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
43
44public:
45  ARMTTI() : ImmutablePass(ID), TM(0), ST(0), TLI(0) {
46    llvm_unreachable("This pass cannot be directly constructed");
47  }
48
49  ARMTTI(const ARMBaseTargetMachine *TM)
50      : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
51        TLI(TM->getTargetLowering()) {
52    initializeARMTTIPass(*PassRegistry::getPassRegistry());
53  }
54
55  virtual void initializePass() {
56    pushTTIStack(this);
57  }
58
59  virtual void finalizePass() {
60    popTTIStack();
61  }
62
63  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
64    TargetTransformInfo::getAnalysisUsage(AU);
65  }
66
67  /// Pass identification.
68  static char ID;
69
70  /// Provide necessary pointer adjustments for the two base classes.
71  virtual void *getAdjustedAnalysisPointer(const void *ID) {
72    if (ID == &TargetTransformInfo::ID)
73      return (TargetTransformInfo*)this;
74    return this;
75  }
76
77  /// \name Scalar TTI Implementations
78  /// @{
79
80  virtual unsigned getIntImmCost(const APInt &Imm, Type *Ty) const;
81
82  /// @}
83
84
85  /// \name Vector TTI Implementations
86  /// @{
87
88  unsigned getNumberOfRegisters(bool Vector) const {
89    if (Vector) {
90      if (ST->hasNEON())
91        return 16;
92      return 0;
93    }
94
95    if (ST->isThumb1Only())
96      return 8;
97    return 16;
98  }
99
100  unsigned getRegisterBitWidth(bool Vector) const {
101    if (Vector) {
102      if (ST->hasNEON())
103        return 128;
104      return 0;
105    }
106
107    return 32;
108  }
109
110  unsigned getMaximumUnrollFactor() const {
111    // These are out of order CPUs:
112    if (ST->isCortexA15() || ST->isSwift())
113      return 2;
114    return 1;
115  }
116
117  unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
118                          int Index, Type *SubTp) const;
119
120  unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
121                                      Type *Src) const;
122
123  unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) const;
124
125  unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) const;
126
127  unsigned getAddressComputationCost(Type *Val) const;
128  /// @}
129};
130
131} // end anonymous namespace
132
133INITIALIZE_AG_PASS(ARMTTI, TargetTransformInfo, "armtti",
134                   "ARM Target Transform Info", true, true, false)
135char ARMTTI::ID = 0;
136
137ImmutablePass *
138llvm::createARMTargetTransformInfoPass(const ARMBaseTargetMachine *TM) {
139  return new ARMTTI(TM);
140}
141
142
143unsigned ARMTTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
144  assert(Ty->isIntegerTy());
145
146  unsigned Bits = Ty->getPrimitiveSizeInBits();
147  if (Bits == 0 || Bits > 32)
148    return 4;
149
150  int32_t SImmVal = Imm.getSExtValue();
151  uint32_t ZImmVal = Imm.getZExtValue();
152  if (!ST->isThumb()) {
153    if ((SImmVal >= 0 && SImmVal < 65536) ||
154        (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
155        (ARM_AM::getSOImmVal(~ZImmVal) != -1))
156      return 1;
157    return ST->hasV6T2Ops() ? 2 : 3;
158  } else if (ST->isThumb2()) {
159    if ((SImmVal >= 0 && SImmVal < 65536) ||
160        (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
161        (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
162      return 1;
163    return ST->hasV6T2Ops() ? 2 : 3;
164  } else /*Thumb1*/ {
165    if (SImmVal >= 0 && SImmVal < 256)
166      return 1;
167    if ((~ZImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
168      return 2;
169    // Load from constantpool.
170    return 3;
171  }
172  return 2;
173}
174
175unsigned ARMTTI::getCastInstrCost(unsigned Opcode, Type *Dst,
176                                    Type *Src) const {
177  int ISD = TLI->InstructionOpcodeToISD(Opcode);
178  assert(ISD && "Invalid opcode");
179
180  // Single to/from double precision conversions.
181  static const CostTblEntry<MVT> NEONFltDblTbl[] = {
182    // Vector fptrunc/fpext conversions.
183    { ISD::FP_ROUND,   MVT::v2f64, 2 },
184    { ISD::FP_EXTEND,  MVT::v2f32, 2 },
185    { ISD::FP_EXTEND,  MVT::v4f32, 4 }
186  };
187
188  if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND ||
189                                          ISD == ISD::FP_EXTEND)) {
190    std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
191    int Idx = CostTableLookup<MVT>(NEONFltDblTbl, array_lengthof(NEONFltDblTbl),
192                                ISD, LT.second);
193    if (Idx != -1)
194      return LT.first * NEONFltDblTbl[Idx].Cost;
195  }
196
197  EVT SrcTy = TLI->getValueType(Src);
198  EVT DstTy = TLI->getValueType(Dst);
199
200  if (!SrcTy.isSimple() || !DstTy.isSimple())
201    return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
202
203  // Some arithmetic, load and store operations have specific instructions
204  // to cast up/down their types automatically at no extra cost.
205  // TODO: Get these tables to know at least what the related operations are.
206  static const TypeConversionCostTblEntry<MVT> NEONVectorConversionTbl[] = {
207    { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
208    { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
209    { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
210    { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
211    { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 0 },
212    { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i32, 1 },
213
214    // Operations that we legalize using load/stores to the stack.
215    { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 16*2 + 4*4 },
216    { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 16*2 + 4*3 },
217    { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 8*2 + 2*4 },
218    { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 8*2 + 2*3 },
219    { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i32, 4*1 + 16*2 + 2*1 },
220    { ISD::TRUNCATE,    MVT::v8i8, MVT::v8i32, 2*1 + 8*2 + 1 },
221
222    // Vector float <-> i32 conversions.
223    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
224    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
225    { ISD::FP_TO_SINT,  MVT::v4i32, MVT::v4f32, 1 },
226    { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f32, 1 },
227
228    // Vector double <-> i32 conversions.
229    { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
230    { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
231    { ISD::FP_TO_SINT,  MVT::v2i32, MVT::v2f64, 2 },
232    { ISD::FP_TO_UINT,  MVT::v2i32, MVT::v2f64, 2 }
233  };
234
235  if (SrcTy.isVector() && ST->hasNEON()) {
236    int Idx = ConvertCostTableLookup<MVT>(NEONVectorConversionTbl,
237                                array_lengthof(NEONVectorConversionTbl),
238                                ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT());
239    if (Idx != -1)
240      return NEONVectorConversionTbl[Idx].Cost;
241  }
242
243  // Scalar float to integer conversions.
244  static const TypeConversionCostTblEntry<MVT> NEONFloatConversionTbl[] = {
245    { ISD::FP_TO_SINT,  MVT::i1, MVT::f32, 2 },
246    { ISD::FP_TO_UINT,  MVT::i1, MVT::f32, 2 },
247    { ISD::FP_TO_SINT,  MVT::i1, MVT::f64, 2 },
248    { ISD::FP_TO_UINT,  MVT::i1, MVT::f64, 2 },
249    { ISD::FP_TO_SINT,  MVT::i8, MVT::f32, 2 },
250    { ISD::FP_TO_UINT,  MVT::i8, MVT::f32, 2 },
251    { ISD::FP_TO_SINT,  MVT::i8, MVT::f64, 2 },
252    { ISD::FP_TO_UINT,  MVT::i8, MVT::f64, 2 },
253    { ISD::FP_TO_SINT,  MVT::i16, MVT::f32, 2 },
254    { ISD::FP_TO_UINT,  MVT::i16, MVT::f32, 2 },
255    { ISD::FP_TO_SINT,  MVT::i16, MVT::f64, 2 },
256    { ISD::FP_TO_UINT,  MVT::i16, MVT::f64, 2 },
257    { ISD::FP_TO_SINT,  MVT::i32, MVT::f32, 2 },
258    { ISD::FP_TO_UINT,  MVT::i32, MVT::f32, 2 },
259    { ISD::FP_TO_SINT,  MVT::i32, MVT::f64, 2 },
260    { ISD::FP_TO_UINT,  MVT::i32, MVT::f64, 2 },
261    { ISD::FP_TO_SINT,  MVT::i64, MVT::f32, 10 },
262    { ISD::FP_TO_UINT,  MVT::i64, MVT::f32, 10 },
263    { ISD::FP_TO_SINT,  MVT::i64, MVT::f64, 10 },
264    { ISD::FP_TO_UINT,  MVT::i64, MVT::f64, 10 }
265  };
266  if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
267    int Idx = ConvertCostTableLookup<MVT>(NEONFloatConversionTbl,
268                                        array_lengthof(NEONFloatConversionTbl),
269                                        ISD, DstTy.getSimpleVT(),
270                                        SrcTy.getSimpleVT());
271    if (Idx != -1)
272        return NEONFloatConversionTbl[Idx].Cost;
273  }
274
275  // Scalar integer to float conversions.
276  static const TypeConversionCostTblEntry<MVT> NEONIntegerConversionTbl[] = {
277    { ISD::SINT_TO_FP,  MVT::f32, MVT::i1, 2 },
278    { ISD::UINT_TO_FP,  MVT::f32, MVT::i1, 2 },
279    { ISD::SINT_TO_FP,  MVT::f64, MVT::i1, 2 },
280    { ISD::UINT_TO_FP,  MVT::f64, MVT::i1, 2 },
281    { ISD::SINT_TO_FP,  MVT::f32, MVT::i8, 2 },
282    { ISD::UINT_TO_FP,  MVT::f32, MVT::i8, 2 },
283    { ISD::SINT_TO_FP,  MVT::f64, MVT::i8, 2 },
284    { ISD::UINT_TO_FP,  MVT::f64, MVT::i8, 2 },
285    { ISD::SINT_TO_FP,  MVT::f32, MVT::i16, 2 },
286    { ISD::UINT_TO_FP,  MVT::f32, MVT::i16, 2 },
287    { ISD::SINT_TO_FP,  MVT::f64, MVT::i16, 2 },
288    { ISD::UINT_TO_FP,  MVT::f64, MVT::i16, 2 },
289    { ISD::SINT_TO_FP,  MVT::f32, MVT::i32, 2 },
290    { ISD::UINT_TO_FP,  MVT::f32, MVT::i32, 2 },
291    { ISD::SINT_TO_FP,  MVT::f64, MVT::i32, 2 },
292    { ISD::UINT_TO_FP,  MVT::f64, MVT::i32, 2 },
293    { ISD::SINT_TO_FP,  MVT::f32, MVT::i64, 10 },
294    { ISD::UINT_TO_FP,  MVT::f32, MVT::i64, 10 },
295    { ISD::SINT_TO_FP,  MVT::f64, MVT::i64, 10 },
296    { ISD::UINT_TO_FP,  MVT::f64, MVT::i64, 10 }
297  };
298
299  if (SrcTy.isInteger() && ST->hasNEON()) {
300    int Idx = ConvertCostTableLookup<MVT>(NEONIntegerConversionTbl,
301                                       array_lengthof(NEONIntegerConversionTbl),
302                                       ISD, DstTy.getSimpleVT(),
303                                       SrcTy.getSimpleVT());
304    if (Idx != -1)
305      return NEONIntegerConversionTbl[Idx].Cost;
306  }
307
308  // Scalar integer conversion costs.
309  static const TypeConversionCostTblEntry<MVT> ARMIntegerConversionTbl[] = {
310    // i16 -> i64 requires two dependent operations.
311    { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
312
313    // Truncates on i64 are assumed to be free.
314    { ISD::TRUNCATE,    MVT::i32, MVT::i64, 0 },
315    { ISD::TRUNCATE,    MVT::i16, MVT::i64, 0 },
316    { ISD::TRUNCATE,    MVT::i8,  MVT::i64, 0 },
317    { ISD::TRUNCATE,    MVT::i1,  MVT::i64, 0 }
318  };
319
320  if (SrcTy.isInteger()) {
321    int Idx =
322      ConvertCostTableLookup<MVT>(ARMIntegerConversionTbl,
323                                  array_lengthof(ARMIntegerConversionTbl),
324                                  ISD, DstTy.getSimpleVT(),
325                                  SrcTy.getSimpleVT());
326    if (Idx != -1)
327      return ARMIntegerConversionTbl[Idx].Cost;
328  }
329
330  return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
331}
332
333unsigned ARMTTI::getVectorInstrCost(unsigned Opcode, Type *ValTy,
334                                    unsigned Index) const {
335  // Penalize inserting into an D-subregister. We end up with a three times
336  // lower estimated throughput on swift.
337  if (ST->isSwift() &&
338      Opcode == Instruction::InsertElement &&
339      ValTy->isVectorTy() &&
340      ValTy->getScalarSizeInBits() <= 32)
341    return 3;
342
343  return TargetTransformInfo::getVectorInstrCost(Opcode, ValTy, Index);
344}
345
346unsigned ARMTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
347                                    Type *CondTy) const {
348
349  int ISD = TLI->InstructionOpcodeToISD(Opcode);
350  // On NEON a a vector select gets lowered to vbsl.
351  if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) {
352    // Lowering of some vector selects is currently far from perfect.
353    static const TypeConversionCostTblEntry<MVT> NEONVectorSelectTbl[] = {
354      { ISD::SELECT, MVT::v16i1, MVT::v16i16, 2*16 + 1 + 3*1 + 4*1 },
355      { ISD::SELECT, MVT::v8i1, MVT::v8i32, 4*8 + 1*3 + 1*4 + 1*2 },
356      { ISD::SELECT, MVT::v16i1, MVT::v16i32, 4*16 + 1*6 + 1*8 + 1*4 },
357      { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
358      { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
359      { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
360    };
361
362    EVT SelCondTy = TLI->getValueType(CondTy);
363    EVT SelValTy = TLI->getValueType(ValTy);
364    int Idx = ConvertCostTableLookup<MVT>(NEONVectorSelectTbl,
365                                          array_lengthof(NEONVectorSelectTbl),
366                                          ISD, SelCondTy.getSimpleVT(),
367                                          SelValTy.getSimpleVT());
368    if (Idx != -1)
369      return NEONVectorSelectTbl[Idx].Cost;
370
371    std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
372    return LT.first;
373  }
374
375  return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
376}
377
378unsigned ARMTTI::getAddressComputationCost(Type *Ty) const {
379  // In many cases the address computation is not merged into the instruction
380  // addressing mode.
381  return 1;
382}
383
384unsigned ARMTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
385                                Type *SubTp) const {
386  // We only handle costs of reverse shuffles for now.
387  if (Kind != SK_Reverse)
388    return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
389
390  static const CostTblEntry<MVT> NEONShuffleTbl[] = {
391    // Reverse shuffle cost one instruction if we are shuffling within a double
392    // word (vrev) or two if we shuffle a quad word (vrev, vext).
393    { ISD::VECTOR_SHUFFLE, MVT::v2i32, 1 },
394    { ISD::VECTOR_SHUFFLE, MVT::v2f32, 1 },
395    { ISD::VECTOR_SHUFFLE, MVT::v2i64, 1 },
396    { ISD::VECTOR_SHUFFLE, MVT::v2f64, 1 },
397
398    { ISD::VECTOR_SHUFFLE, MVT::v4i32, 2 },
399    { ISD::VECTOR_SHUFFLE, MVT::v4f32, 2 },
400    { ISD::VECTOR_SHUFFLE, MVT::v8i16, 2 },
401    { ISD::VECTOR_SHUFFLE, MVT::v16i8, 2 }
402  };
403
404  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
405
406  int Idx = CostTableLookup<MVT>(NEONShuffleTbl, array_lengthof(NEONShuffleTbl),
407                                 ISD::VECTOR_SHUFFLE, LT.second);
408  if (Idx == -1)
409    return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
410
411  return LT.first * NEONShuffleTbl[Idx].Cost;
412}
413