ARMTargetTransformInfo.cpp revision c0a11edba6ea46c782672ab3fb4e4ab3dc267a22
1//===-- ARMTargetTransformInfo.cpp - ARM specific TTI pass ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements a TargetTransformInfo analysis pass specific to the
11/// ARM target machine. It uses the target's detailed information to provide
12/// more precise answers to certain TTI queries, while letting the target
13/// independent and default TTI implementations handle the rest.
14///
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "armtti"
18#include "ARM.h"
19#include "ARMTargetMachine.h"
20#include "llvm/Analysis/TargetTransformInfo.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/CostTable.h"
24using namespace llvm;
25
26// Declare the pass initialization routine locally as target-specific passes
27// don't havve a target-wide initialization entry point, and so we rely on the
28// pass constructor initialization.
29namespace llvm {
30void initializeARMTTIPass(PassRegistry &);
31}
32
33namespace {
34
35class ARMTTI : public ImmutablePass, public TargetTransformInfo {
36  const ARMBaseTargetMachine *TM;
37  const ARMSubtarget *ST;
38  const ARMTargetLowering *TLI;
39
40  /// Estimate the overhead of scalarizing an instruction. Insert and Extract
41  /// are set if the result needs to be inserted and/or extracted from vectors.
42  unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
43
44public:
45  ARMTTI() : ImmutablePass(ID), TM(0), ST(0), TLI(0) {
46    llvm_unreachable("This pass cannot be directly constructed");
47  }
48
49  ARMTTI(const ARMBaseTargetMachine *TM)
50      : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
51        TLI(TM->getTargetLowering()) {
52    initializeARMTTIPass(*PassRegistry::getPassRegistry());
53  }
54
55  virtual void initializePass() {
56    pushTTIStack(this);
57  }
58
59  virtual void finalizePass() {
60    popTTIStack();
61  }
62
63  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
64    TargetTransformInfo::getAnalysisUsage(AU);
65  }
66
67  /// Pass identification.
68  static char ID;
69
70  /// Provide necessary pointer adjustments for the two base classes.
71  virtual void *getAdjustedAnalysisPointer(const void *ID) {
72    if (ID == &TargetTransformInfo::ID)
73      return (TargetTransformInfo*)this;
74    return this;
75  }
76
77  /// \name Scalar TTI Implementations
78  /// @{
79
80  virtual unsigned getIntImmCost(const APInt &Imm, Type *Ty) const;
81
82  /// @}
83
84
85  /// \name Vector TTI Implementations
86  /// @{
87
88  unsigned getNumberOfRegisters(bool Vector) const {
89    if (Vector) {
90      if (ST->hasNEON())
91        return 16;
92      return 0;
93    }
94
95    if (ST->isThumb1Only())
96      return 8;
97    return 16;
98  }
99
100  unsigned getRegisterBitWidth(bool Vector) const {
101    if (Vector) {
102      if (ST->hasNEON())
103        return 128;
104      return 0;
105    }
106
107    return 32;
108  }
109
110  unsigned getMaximumUnrollFactor() const {
111    // These are out of order CPUs:
112    if (ST->isCortexA15() || ST->isSwift())
113      return 2;
114    return 1;
115  }
116
117  unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
118                          int Index, Type *SubTp) const;
119
120  unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
121                                      Type *Src) const;
122
123  unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) const;
124
125  unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) const;
126
127  unsigned getAddressComputationCost(Type *Val, bool IsComplex) const;
128
129  unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
130                                  OperandValueKind Op1Info = OK_AnyValue,
131                                  OperandValueKind Op2Info = OK_AnyValue) const;
132  /// @}
133};
134
135} // end anonymous namespace
136
137INITIALIZE_AG_PASS(ARMTTI, TargetTransformInfo, "armtti",
138                   "ARM Target Transform Info", true, true, false)
139char ARMTTI::ID = 0;
140
141ImmutablePass *
142llvm::createARMTargetTransformInfoPass(const ARMBaseTargetMachine *TM) {
143  return new ARMTTI(TM);
144}
145
146
147unsigned ARMTTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
148  assert(Ty->isIntegerTy());
149
150  unsigned Bits = Ty->getPrimitiveSizeInBits();
151  if (Bits == 0 || Bits > 32)
152    return 4;
153
154  int32_t SImmVal = Imm.getSExtValue();
155  uint32_t ZImmVal = Imm.getZExtValue();
156  if (!ST->isThumb()) {
157    if ((SImmVal >= 0 && SImmVal < 65536) ||
158        (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
159        (ARM_AM::getSOImmVal(~ZImmVal) != -1))
160      return 1;
161    return ST->hasV6T2Ops() ? 2 : 3;
162  } else if (ST->isThumb2()) {
163    if ((SImmVal >= 0 && SImmVal < 65536) ||
164        (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
165        (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
166      return 1;
167    return ST->hasV6T2Ops() ? 2 : 3;
168  } else /*Thumb1*/ {
169    if (SImmVal >= 0 && SImmVal < 256)
170      return 1;
171    if ((~ZImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
172      return 2;
173    // Load from constantpool.
174    return 3;
175  }
176  return 2;
177}
178
179unsigned ARMTTI::getCastInstrCost(unsigned Opcode, Type *Dst,
180                                    Type *Src) const {
181  int ISD = TLI->InstructionOpcodeToISD(Opcode);
182  assert(ISD && "Invalid opcode");
183
184  // Single to/from double precision conversions.
185  static const CostTblEntry<MVT> NEONFltDblTbl[] = {
186    // Vector fptrunc/fpext conversions.
187    { ISD::FP_ROUND,   MVT::v2f64, 2 },
188    { ISD::FP_EXTEND,  MVT::v2f32, 2 },
189    { ISD::FP_EXTEND,  MVT::v4f32, 4 }
190  };
191
192  if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND ||
193                                          ISD == ISD::FP_EXTEND)) {
194    std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
195    int Idx = CostTableLookup<MVT>(NEONFltDblTbl, array_lengthof(NEONFltDblTbl),
196                                ISD, LT.second);
197    if (Idx != -1)
198      return LT.first * NEONFltDblTbl[Idx].Cost;
199  }
200
201  EVT SrcTy = TLI->getValueType(Src);
202  EVT DstTy = TLI->getValueType(Dst);
203
204  if (!SrcTy.isSimple() || !DstTy.isSimple())
205    return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
206
207  // Some arithmetic, load and store operations have specific instructions
208  // to cast up/down their types automatically at no extra cost.
209  // TODO: Get these tables to know at least what the related operations are.
210  static const TypeConversionCostTblEntry<MVT> NEONVectorConversionTbl[] = {
211    { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
212    { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
213    { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
214    { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
215    { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 0 },
216    { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i32, 1 },
217
218    // The number of vmovl instructions for the extension.
219    { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
220    { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
221    { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
222    { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
223    { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
224    { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
225    { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
226    { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
227    { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
228    { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
229
230    // Operations that we legalize using splitting.
231    { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i32, 6 },
232    { ISD::TRUNCATE,    MVT::v8i8, MVT::v8i32, 3 },
233
234    // Vector float <-> i32 conversions.
235    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
236    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
237
238    { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
239    { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
240    { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
241    { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
242    { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
243    { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
244    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
245    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
246    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
247    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
248    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
249    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
250    { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
251    { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
252    { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
253    { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
254    { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
255    { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
256    { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
257    { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
258
259    { ISD::FP_TO_SINT,  MVT::v4i32, MVT::v4f32, 1 },
260    { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f32, 1 },
261    { ISD::FP_TO_SINT,  MVT::v4i8, MVT::v4f32, 3 },
262    { ISD::FP_TO_UINT,  MVT::v4i8, MVT::v4f32, 3 },
263    { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f32, 2 },
264    { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f32, 2 },
265
266    // Vector double <-> i32 conversions.
267    { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
268    { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
269
270    { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
271    { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
272    { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
273    { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
274    { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
275    { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
276
277    { ISD::FP_TO_SINT,  MVT::v2i32, MVT::v2f64, 2 },
278    { ISD::FP_TO_UINT,  MVT::v2i32, MVT::v2f64, 2 },
279    { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 4 },
280    { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 4 },
281    { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 8 },
282    { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 8 }
283  };
284
285  if (SrcTy.isVector() && ST->hasNEON()) {
286    int Idx = ConvertCostTableLookup<MVT>(NEONVectorConversionTbl,
287                                array_lengthof(NEONVectorConversionTbl),
288                                ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT());
289    if (Idx != -1)
290      return NEONVectorConversionTbl[Idx].Cost;
291  }
292
293  // Scalar float to integer conversions.
294  static const TypeConversionCostTblEntry<MVT> NEONFloatConversionTbl[] = {
295    { ISD::FP_TO_SINT,  MVT::i1, MVT::f32, 2 },
296    { ISD::FP_TO_UINT,  MVT::i1, MVT::f32, 2 },
297    { ISD::FP_TO_SINT,  MVT::i1, MVT::f64, 2 },
298    { ISD::FP_TO_UINT,  MVT::i1, MVT::f64, 2 },
299    { ISD::FP_TO_SINT,  MVT::i8, MVT::f32, 2 },
300    { ISD::FP_TO_UINT,  MVT::i8, MVT::f32, 2 },
301    { ISD::FP_TO_SINT,  MVT::i8, MVT::f64, 2 },
302    { ISD::FP_TO_UINT,  MVT::i8, MVT::f64, 2 },
303    { ISD::FP_TO_SINT,  MVT::i16, MVT::f32, 2 },
304    { ISD::FP_TO_UINT,  MVT::i16, MVT::f32, 2 },
305    { ISD::FP_TO_SINT,  MVT::i16, MVT::f64, 2 },
306    { ISD::FP_TO_UINT,  MVT::i16, MVT::f64, 2 },
307    { ISD::FP_TO_SINT,  MVT::i32, MVT::f32, 2 },
308    { ISD::FP_TO_UINT,  MVT::i32, MVT::f32, 2 },
309    { ISD::FP_TO_SINT,  MVT::i32, MVT::f64, 2 },
310    { ISD::FP_TO_UINT,  MVT::i32, MVT::f64, 2 },
311    { ISD::FP_TO_SINT,  MVT::i64, MVT::f32, 10 },
312    { ISD::FP_TO_UINT,  MVT::i64, MVT::f32, 10 },
313    { ISD::FP_TO_SINT,  MVT::i64, MVT::f64, 10 },
314    { ISD::FP_TO_UINT,  MVT::i64, MVT::f64, 10 }
315  };
316  if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
317    int Idx = ConvertCostTableLookup<MVT>(NEONFloatConversionTbl,
318                                        array_lengthof(NEONFloatConversionTbl),
319                                        ISD, DstTy.getSimpleVT(),
320                                        SrcTy.getSimpleVT());
321    if (Idx != -1)
322        return NEONFloatConversionTbl[Idx].Cost;
323  }
324
325  // Scalar integer to float conversions.
326  static const TypeConversionCostTblEntry<MVT> NEONIntegerConversionTbl[] = {
327    { ISD::SINT_TO_FP,  MVT::f32, MVT::i1, 2 },
328    { ISD::UINT_TO_FP,  MVT::f32, MVT::i1, 2 },
329    { ISD::SINT_TO_FP,  MVT::f64, MVT::i1, 2 },
330    { ISD::UINT_TO_FP,  MVT::f64, MVT::i1, 2 },
331    { ISD::SINT_TO_FP,  MVT::f32, MVT::i8, 2 },
332    { ISD::UINT_TO_FP,  MVT::f32, MVT::i8, 2 },
333    { ISD::SINT_TO_FP,  MVT::f64, MVT::i8, 2 },
334    { ISD::UINT_TO_FP,  MVT::f64, MVT::i8, 2 },
335    { ISD::SINT_TO_FP,  MVT::f32, MVT::i16, 2 },
336    { ISD::UINT_TO_FP,  MVT::f32, MVT::i16, 2 },
337    { ISD::SINT_TO_FP,  MVT::f64, MVT::i16, 2 },
338    { ISD::UINT_TO_FP,  MVT::f64, MVT::i16, 2 },
339    { ISD::SINT_TO_FP,  MVT::f32, MVT::i32, 2 },
340    { ISD::UINT_TO_FP,  MVT::f32, MVT::i32, 2 },
341    { ISD::SINT_TO_FP,  MVT::f64, MVT::i32, 2 },
342    { ISD::UINT_TO_FP,  MVT::f64, MVT::i32, 2 },
343    { ISD::SINT_TO_FP,  MVT::f32, MVT::i64, 10 },
344    { ISD::UINT_TO_FP,  MVT::f32, MVT::i64, 10 },
345    { ISD::SINT_TO_FP,  MVT::f64, MVT::i64, 10 },
346    { ISD::UINT_TO_FP,  MVT::f64, MVT::i64, 10 }
347  };
348
349  if (SrcTy.isInteger() && ST->hasNEON()) {
350    int Idx = ConvertCostTableLookup<MVT>(NEONIntegerConversionTbl,
351                                       array_lengthof(NEONIntegerConversionTbl),
352                                       ISD, DstTy.getSimpleVT(),
353                                       SrcTy.getSimpleVT());
354    if (Idx != -1)
355      return NEONIntegerConversionTbl[Idx].Cost;
356  }
357
358  // Scalar integer conversion costs.
359  static const TypeConversionCostTblEntry<MVT> ARMIntegerConversionTbl[] = {
360    // i16 -> i64 requires two dependent operations.
361    { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
362
363    // Truncates on i64 are assumed to be free.
364    { ISD::TRUNCATE,    MVT::i32, MVT::i64, 0 },
365    { ISD::TRUNCATE,    MVT::i16, MVT::i64, 0 },
366    { ISD::TRUNCATE,    MVT::i8,  MVT::i64, 0 },
367    { ISD::TRUNCATE,    MVT::i1,  MVT::i64, 0 }
368  };
369
370  if (SrcTy.isInteger()) {
371    int Idx =
372      ConvertCostTableLookup<MVT>(ARMIntegerConversionTbl,
373                                  array_lengthof(ARMIntegerConversionTbl),
374                                  ISD, DstTy.getSimpleVT(),
375                                  SrcTy.getSimpleVT());
376    if (Idx != -1)
377      return ARMIntegerConversionTbl[Idx].Cost;
378  }
379
380  return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
381}
382
383unsigned ARMTTI::getVectorInstrCost(unsigned Opcode, Type *ValTy,
384                                    unsigned Index) const {
385  // Penalize inserting into an D-subregister. We end up with a three times
386  // lower estimated throughput on swift.
387  if (ST->isSwift() &&
388      Opcode == Instruction::InsertElement &&
389      ValTy->isVectorTy() &&
390      ValTy->getScalarSizeInBits() <= 32)
391    return 3;
392
393  return TargetTransformInfo::getVectorInstrCost(Opcode, ValTy, Index);
394}
395
396unsigned ARMTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
397                                    Type *CondTy) const {
398
399  int ISD = TLI->InstructionOpcodeToISD(Opcode);
400  // On NEON a a vector select gets lowered to vbsl.
401  if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) {
402    // Lowering of some vector selects is currently far from perfect.
403    static const TypeConversionCostTblEntry<MVT> NEONVectorSelectTbl[] = {
404      { ISD::SELECT, MVT::v16i1, MVT::v16i16, 2*16 + 1 + 3*1 + 4*1 },
405      { ISD::SELECT, MVT::v8i1, MVT::v8i32, 4*8 + 1*3 + 1*4 + 1*2 },
406      { ISD::SELECT, MVT::v16i1, MVT::v16i32, 4*16 + 1*6 + 1*8 + 1*4 },
407      { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
408      { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
409      { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
410    };
411
412    EVT SelCondTy = TLI->getValueType(CondTy);
413    EVT SelValTy = TLI->getValueType(ValTy);
414    int Idx = ConvertCostTableLookup<MVT>(NEONVectorSelectTbl,
415                                          array_lengthof(NEONVectorSelectTbl),
416                                          ISD, SelCondTy.getSimpleVT(),
417                                          SelValTy.getSimpleVT());
418    if (Idx != -1)
419      return NEONVectorSelectTbl[Idx].Cost;
420
421    std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
422    return LT.first;
423  }
424
425  return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
426}
427
428unsigned ARMTTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
429  // In many cases the address computation is not merged into the instruction
430  // addressing mode.
431  return 1;
432}
433
434unsigned ARMTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
435                                Type *SubTp) const {
436  // We only handle costs of reverse shuffles for now.
437  if (Kind != SK_Reverse)
438    return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
439
440  static const CostTblEntry<MVT> NEONShuffleTbl[] = {
441    // Reverse shuffle cost one instruction if we are shuffling within a double
442    // word (vrev) or two if we shuffle a quad word (vrev, vext).
443    { ISD::VECTOR_SHUFFLE, MVT::v2i32, 1 },
444    { ISD::VECTOR_SHUFFLE, MVT::v2f32, 1 },
445    { ISD::VECTOR_SHUFFLE, MVT::v2i64, 1 },
446    { ISD::VECTOR_SHUFFLE, MVT::v2f64, 1 },
447
448    { ISD::VECTOR_SHUFFLE, MVT::v4i32, 2 },
449    { ISD::VECTOR_SHUFFLE, MVT::v4f32, 2 },
450    { ISD::VECTOR_SHUFFLE, MVT::v8i16, 2 },
451    { ISD::VECTOR_SHUFFLE, MVT::v16i8, 2 }
452  };
453
454  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
455
456  int Idx = CostTableLookup<MVT>(NEONShuffleTbl, array_lengthof(NEONShuffleTbl),
457                                 ISD::VECTOR_SHUFFLE, LT.second);
458  if (Idx == -1)
459    return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
460
461  return LT.first * NEONShuffleTbl[Idx].Cost;
462}
463
464unsigned ARMTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Op1Info,
465                                        OperandValueKind Op2Info) const {
466
467  int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
468  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
469
470  const unsigned FunctionCallDivCost = 20;
471  const unsigned ReciprocalDivCost = 10;
472  static const CostTblEntry<MVT> CostTbl[] = {
473    // Division.
474    // These costs are somewhat random. Choose a cost of 20 to indicate that
475    // vectorizing devision (added function call) is going to be very expensive.
476    // Double registers types.
477    { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
478    { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
479    { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
480    { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
481    { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
482    { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
483    { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
484    { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
485    { ISD::SDIV, MVT::v4i16,     ReciprocalDivCost},
486    { ISD::UDIV, MVT::v4i16,     ReciprocalDivCost},
487    { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
488    { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
489    { ISD::SDIV, MVT::v8i8,      ReciprocalDivCost},
490    { ISD::UDIV, MVT::v8i8,      ReciprocalDivCost},
491    { ISD::SREM, MVT::v8i8,  8 * FunctionCallDivCost},
492    { ISD::UREM, MVT::v8i8,  8 * FunctionCallDivCost},
493    // Quad register types.
494    { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
495    { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
496    { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
497    { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
498    { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
499    { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
500    { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
501    { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
502    { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
503    { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
504    { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
505    { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
506    { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
507    { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
508    { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
509    { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
510    // Multiplication.
511  };
512
513  int Idx = -1;
514
515  if (ST->hasNEON())
516    Idx = CostTableLookup<MVT>(CostTbl, array_lengthof(CostTbl), ISDOpcode,
517                               LT.second);
518
519  if (Idx != -1)
520    return LT.first * CostTbl[Idx].Cost;
521
522
523  return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Op1Info,
524                                                     Op2Info);
525}
526
527