ARMTargetTransformInfo.cpp revision cd81d94322a39503e4a3e87b6ee03d4fcb3465fb
1//===-- ARMTargetTransformInfo.cpp - ARM specific TTI pass ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements a TargetTransformInfo analysis pass specific to the
11/// ARM target machine. It uses the target's detailed information to provide
12/// more precise answers to certain TTI queries, while letting the target
13/// independent and default TTI implementations handle the rest.
14///
15//===----------------------------------------------------------------------===//
16
17#include "ARM.h"
18#include "ARMTargetMachine.h"
19#include "llvm/Analysis/TargetTransformInfo.h"
20#include "llvm/Support/Debug.h"
21#include "llvm/Target/CostTable.h"
22#include "llvm/Target/TargetLowering.h"
23using namespace llvm;
24
25#define DEBUG_TYPE "armtti"
26
27// Declare the pass initialization routine locally as target-specific passes
28// don't have a target-wide initialization entry point, and so we rely on the
29// pass constructor initialization.
30namespace llvm {
31void initializeARMTTIPass(PassRegistry &);
32}
33
34namespace {
35
36class ARMTTI final : public ImmutablePass, public TargetTransformInfo {
37  const ARMBaseTargetMachine *TM;
38  const ARMSubtarget *ST;
39  const ARMTargetLowering *TLI;
40
41  /// Estimate the overhead of scalarizing an instruction. Insert and Extract
42  /// are set if the result needs to be inserted and/or extracted from vectors.
43  unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
44
45public:
46  ARMTTI() : ImmutablePass(ID), TM(nullptr), ST(nullptr), TLI(nullptr) {
47    llvm_unreachable("This pass cannot be directly constructed");
48  }
49
50  ARMTTI(const ARMBaseTargetMachine *TM)
51      : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
52        TLI(TM->getTargetLowering()) {
53    initializeARMTTIPass(*PassRegistry::getPassRegistry());
54  }
55
56  void initializePass() override {
57    pushTTIStack(this);
58  }
59
60  void getAnalysisUsage(AnalysisUsage &AU) const override {
61    TargetTransformInfo::getAnalysisUsage(AU);
62  }
63
64  /// Pass identification.
65  static char ID;
66
67  /// Provide necessary pointer adjustments for the two base classes.
68  void *getAdjustedAnalysisPointer(const void *ID) override {
69    if (ID == &TargetTransformInfo::ID)
70      return (TargetTransformInfo*)this;
71    return this;
72  }
73
74  /// \name Scalar TTI Implementations
75  /// @{
76  using TargetTransformInfo::getIntImmCost;
77  unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override;
78
79  /// @}
80
81
82  /// \name Vector TTI Implementations
83  /// @{
84
85  unsigned getNumberOfRegisters(bool Vector) const override {
86    if (Vector) {
87      if (ST->hasNEON())
88        return 16;
89      return 0;
90    }
91
92    if (ST->isThumb1Only())
93      return 8;
94    return 13;
95  }
96
97  unsigned getRegisterBitWidth(bool Vector) const override {
98    if (Vector) {
99      if (ST->hasNEON())
100        return 128;
101      return 0;
102    }
103
104    return 32;
105  }
106
107  unsigned getMaximumUnrollFactor() const override {
108    // These are out of order CPUs:
109    if (ST->isCortexA15() || ST->isSwift())
110      return 2;
111    return 1;
112  }
113
114  unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
115                          int Index, Type *SubTp) const override;
116
117  unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
118                            Type *Src) const override;
119
120  unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
121                              Type *CondTy) const override;
122
123  unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
124                              unsigned Index) const override;
125
126  unsigned getAddressComputationCost(Type *Val,
127                                     bool IsComplex) const override;
128
129  unsigned
130  getArithmeticInstrCost(unsigned Opcode, Type *Ty,
131                         OperandValueKind Op1Info = OK_AnyValue,
132                         OperandValueKind Op2Info = OK_AnyValue) const override;
133
134  unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
135                           unsigned AddressSpace) const override;
136  /// @}
137};
138
139} // end anonymous namespace
140
141INITIALIZE_AG_PASS(ARMTTI, TargetTransformInfo, "armtti",
142                   "ARM Target Transform Info", true, true, false)
143char ARMTTI::ID = 0;
144
145ImmutablePass *
146llvm::createARMTargetTransformInfoPass(const ARMBaseTargetMachine *TM) {
147  return new ARMTTI(TM);
148}
149
150
151unsigned ARMTTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
152  assert(Ty->isIntegerTy());
153
154  unsigned Bits = Ty->getPrimitiveSizeInBits();
155  if (Bits == 0 || Bits > 32)
156    return 4;
157
158  int32_t SImmVal = Imm.getSExtValue();
159  uint32_t ZImmVal = Imm.getZExtValue();
160  if (!ST->isThumb()) {
161    if ((SImmVal >= 0 && SImmVal < 65536) ||
162        (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
163        (ARM_AM::getSOImmVal(~ZImmVal) != -1))
164      return 1;
165    return ST->hasV6T2Ops() ? 2 : 3;
166  }
167  if (ST->isThumb2()) {
168    if ((SImmVal >= 0 && SImmVal < 65536) ||
169        (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
170        (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
171      return 1;
172    return ST->hasV6T2Ops() ? 2 : 3;
173  }
174  // Thumb1.
175  if (SImmVal >= 0 && SImmVal < 256)
176    return 1;
177  if ((~ZImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
178    return 2;
179  // Load from constantpool.
180  return 3;
181}
182
183unsigned ARMTTI::getCastInstrCost(unsigned Opcode, Type *Dst,
184                                  Type *Src) const {
185  int ISD = TLI->InstructionOpcodeToISD(Opcode);
186  assert(ISD && "Invalid opcode");
187
188  // Single to/from double precision conversions.
189  static const CostTblEntry<MVT::SimpleValueType> NEONFltDblTbl[] = {
190    // Vector fptrunc/fpext conversions.
191    { ISD::FP_ROUND,   MVT::v2f64, 2 },
192    { ISD::FP_EXTEND,  MVT::v2f32, 2 },
193    { ISD::FP_EXTEND,  MVT::v4f32, 4 }
194  };
195
196  if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND ||
197                                          ISD == ISD::FP_EXTEND)) {
198    std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
199    int Idx = CostTableLookup(NEONFltDblTbl, ISD, LT.second);
200    if (Idx != -1)
201      return LT.first * NEONFltDblTbl[Idx].Cost;
202  }
203
204  EVT SrcTy = TLI->getValueType(Src);
205  EVT DstTy = TLI->getValueType(Dst);
206
207  if (!SrcTy.isSimple() || !DstTy.isSimple())
208    return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
209
210  // Some arithmetic, load and store operations have specific instructions
211  // to cast up/down their types automatically at no extra cost.
212  // TODO: Get these tables to know at least what the related operations are.
213  static const TypeConversionCostTblEntry<MVT::SimpleValueType>
214  NEONVectorConversionTbl[] = {
215    { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
216    { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
217    { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
218    { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
219    { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 0 },
220    { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i32, 1 },
221
222    // The number of vmovl instructions for the extension.
223    { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
224    { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
225    { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
226    { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
227    { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
228    { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
229    { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
230    { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
231    { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
232    { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
233
234    // Operations that we legalize using splitting.
235    { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i32, 6 },
236    { ISD::TRUNCATE,    MVT::v8i8, MVT::v8i32, 3 },
237
238    // Vector float <-> i32 conversions.
239    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
240    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
241
242    { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
243    { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i8, 3 },
244    { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
245    { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i16, 2 },
246    { ISD::SINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
247    { ISD::UINT_TO_FP,  MVT::v2f32, MVT::v2i32, 1 },
248    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
249    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1, 3 },
250    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
251    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8, 3 },
252    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
253    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
254    { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
255    { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 4 },
256    { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
257    { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 2 },
258    { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
259    { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 8 },
260    { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
261    { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 4 },
262
263    { ISD::FP_TO_SINT,  MVT::v4i32, MVT::v4f32, 1 },
264    { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f32, 1 },
265    { ISD::FP_TO_SINT,  MVT::v4i8, MVT::v4f32, 3 },
266    { ISD::FP_TO_UINT,  MVT::v4i8, MVT::v4f32, 3 },
267    { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f32, 2 },
268    { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f32, 2 },
269
270    // Vector double <-> i32 conversions.
271    { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
272    { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
273
274    { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
275    { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i8, 4 },
276    { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
277    { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i16, 3 },
278    { ISD::SINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
279    { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 2 },
280
281    { ISD::FP_TO_SINT,  MVT::v2i32, MVT::v2f64, 2 },
282    { ISD::FP_TO_UINT,  MVT::v2i32, MVT::v2f64, 2 },
283    { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 4 },
284    { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 4 },
285    { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 8 },
286    { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 8 }
287  };
288
289  if (SrcTy.isVector() && ST->hasNEON()) {
290    int Idx = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
291                                     DstTy.getSimpleVT(), SrcTy.getSimpleVT());
292    if (Idx != -1)
293      return NEONVectorConversionTbl[Idx].Cost;
294  }
295
296  // Scalar float to integer conversions.
297  static const TypeConversionCostTblEntry<MVT::SimpleValueType>
298  NEONFloatConversionTbl[] = {
299    { ISD::FP_TO_SINT,  MVT::i1, MVT::f32, 2 },
300    { ISD::FP_TO_UINT,  MVT::i1, MVT::f32, 2 },
301    { ISD::FP_TO_SINT,  MVT::i1, MVT::f64, 2 },
302    { ISD::FP_TO_UINT,  MVT::i1, MVT::f64, 2 },
303    { ISD::FP_TO_SINT,  MVT::i8, MVT::f32, 2 },
304    { ISD::FP_TO_UINT,  MVT::i8, MVT::f32, 2 },
305    { ISD::FP_TO_SINT,  MVT::i8, MVT::f64, 2 },
306    { ISD::FP_TO_UINT,  MVT::i8, MVT::f64, 2 },
307    { ISD::FP_TO_SINT,  MVT::i16, MVT::f32, 2 },
308    { ISD::FP_TO_UINT,  MVT::i16, MVT::f32, 2 },
309    { ISD::FP_TO_SINT,  MVT::i16, MVT::f64, 2 },
310    { ISD::FP_TO_UINT,  MVT::i16, MVT::f64, 2 },
311    { ISD::FP_TO_SINT,  MVT::i32, MVT::f32, 2 },
312    { ISD::FP_TO_UINT,  MVT::i32, MVT::f32, 2 },
313    { ISD::FP_TO_SINT,  MVT::i32, MVT::f64, 2 },
314    { ISD::FP_TO_UINT,  MVT::i32, MVT::f64, 2 },
315    { ISD::FP_TO_SINT,  MVT::i64, MVT::f32, 10 },
316    { ISD::FP_TO_UINT,  MVT::i64, MVT::f32, 10 },
317    { ISD::FP_TO_SINT,  MVT::i64, MVT::f64, 10 },
318    { ISD::FP_TO_UINT,  MVT::i64, MVT::f64, 10 }
319  };
320  if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
321    int Idx = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
322                                     DstTy.getSimpleVT(), SrcTy.getSimpleVT());
323    if (Idx != -1)
324        return NEONFloatConversionTbl[Idx].Cost;
325  }
326
327  // Scalar integer to float conversions.
328  static const TypeConversionCostTblEntry<MVT::SimpleValueType>
329  NEONIntegerConversionTbl[] = {
330    { ISD::SINT_TO_FP,  MVT::f32, MVT::i1, 2 },
331    { ISD::UINT_TO_FP,  MVT::f32, MVT::i1, 2 },
332    { ISD::SINT_TO_FP,  MVT::f64, MVT::i1, 2 },
333    { ISD::UINT_TO_FP,  MVT::f64, MVT::i1, 2 },
334    { ISD::SINT_TO_FP,  MVT::f32, MVT::i8, 2 },
335    { ISD::UINT_TO_FP,  MVT::f32, MVT::i8, 2 },
336    { ISD::SINT_TO_FP,  MVT::f64, MVT::i8, 2 },
337    { ISD::UINT_TO_FP,  MVT::f64, MVT::i8, 2 },
338    { ISD::SINT_TO_FP,  MVT::f32, MVT::i16, 2 },
339    { ISD::UINT_TO_FP,  MVT::f32, MVT::i16, 2 },
340    { ISD::SINT_TO_FP,  MVT::f64, MVT::i16, 2 },
341    { ISD::UINT_TO_FP,  MVT::f64, MVT::i16, 2 },
342    { ISD::SINT_TO_FP,  MVT::f32, MVT::i32, 2 },
343    { ISD::UINT_TO_FP,  MVT::f32, MVT::i32, 2 },
344    { ISD::SINT_TO_FP,  MVT::f64, MVT::i32, 2 },
345    { ISD::UINT_TO_FP,  MVT::f64, MVT::i32, 2 },
346    { ISD::SINT_TO_FP,  MVT::f32, MVT::i64, 10 },
347    { ISD::UINT_TO_FP,  MVT::f32, MVT::i64, 10 },
348    { ISD::SINT_TO_FP,  MVT::f64, MVT::i64, 10 },
349    { ISD::UINT_TO_FP,  MVT::f64, MVT::i64, 10 }
350  };
351
352  if (SrcTy.isInteger() && ST->hasNEON()) {
353    int Idx = ConvertCostTableLookup(NEONIntegerConversionTbl, ISD,
354                                     DstTy.getSimpleVT(), SrcTy.getSimpleVT());
355    if (Idx != -1)
356      return NEONIntegerConversionTbl[Idx].Cost;
357  }
358
359  // Scalar integer conversion costs.
360  static const TypeConversionCostTblEntry<MVT::SimpleValueType>
361  ARMIntegerConversionTbl[] = {
362    // i16 -> i64 requires two dependent operations.
363    { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
364
365    // Truncates on i64 are assumed to be free.
366    { ISD::TRUNCATE,    MVT::i32, MVT::i64, 0 },
367    { ISD::TRUNCATE,    MVT::i16, MVT::i64, 0 },
368    { ISD::TRUNCATE,    MVT::i8,  MVT::i64, 0 },
369    { ISD::TRUNCATE,    MVT::i1,  MVT::i64, 0 }
370  };
371
372  if (SrcTy.isInteger()) {
373    int Idx = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
374                                     DstTy.getSimpleVT(), SrcTy.getSimpleVT());
375    if (Idx != -1)
376      return ARMIntegerConversionTbl[Idx].Cost;
377  }
378
379  return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
380}
381
382unsigned ARMTTI::getVectorInstrCost(unsigned Opcode, Type *ValTy,
383                                    unsigned Index) const {
384  // Penalize inserting into an D-subregister. We end up with a three times
385  // lower estimated throughput on swift.
386  if (ST->isSwift() &&
387      Opcode == Instruction::InsertElement &&
388      ValTy->isVectorTy() &&
389      ValTy->getScalarSizeInBits() <= 32)
390    return 3;
391
392  return TargetTransformInfo::getVectorInstrCost(Opcode, ValTy, Index);
393}
394
395unsigned ARMTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
396                                    Type *CondTy) const {
397
398  int ISD = TLI->InstructionOpcodeToISD(Opcode);
399  // On NEON a a vector select gets lowered to vbsl.
400  if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) {
401    // Lowering of some vector selects is currently far from perfect.
402    static const TypeConversionCostTblEntry<MVT::SimpleValueType>
403    NEONVectorSelectTbl[] = {
404      { ISD::SELECT, MVT::v16i1, MVT::v16i16, 2*16 + 1 + 3*1 + 4*1 },
405      { ISD::SELECT, MVT::v8i1, MVT::v8i32, 4*8 + 1*3 + 1*4 + 1*2 },
406      { ISD::SELECT, MVT::v16i1, MVT::v16i32, 4*16 + 1*6 + 1*8 + 1*4 },
407      { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
408      { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
409      { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
410    };
411
412    EVT SelCondTy = TLI->getValueType(CondTy);
413    EVT SelValTy = TLI->getValueType(ValTy);
414    if (SelCondTy.isSimple() && SelValTy.isSimple()) {
415      int Idx = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
416                                       SelCondTy.getSimpleVT(),
417                                       SelValTy.getSimpleVT());
418      if (Idx != -1)
419        return NEONVectorSelectTbl[Idx].Cost;
420    }
421
422    std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
423    return LT.first;
424  }
425
426  return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
427}
428
429unsigned ARMTTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
430  // Address computations in vectorized code with non-consecutive addresses will
431  // likely result in more instructions compared to scalar code where the
432  // computation can more often be merged into the index mode. The resulting
433  // extra micro-ops can significantly decrease throughput.
434  unsigned NumVectorInstToHideOverhead = 10;
435
436  if (Ty->isVectorTy() && IsComplex)
437    return NumVectorInstToHideOverhead;
438
439  // In many cases the address computation is not merged into the instruction
440  // addressing mode.
441  return 1;
442}
443
444unsigned ARMTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
445                                Type *SubTp) const {
446  // We only handle costs of reverse and alternate shuffles for now.
447  if (Kind != SK_Reverse && Kind != SK_Alternate)
448    return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
449
450  if (Kind == SK_Reverse) {
451    static const CostTblEntry<MVT::SimpleValueType> NEONShuffleTbl[] = {
452        // Reverse shuffle cost one instruction if we are shuffling within a
453        // double word (vrev) or two if we shuffle a quad word (vrev, vext).
454        {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
455        {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
456        {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
457        {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
458
459        {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
460        {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
461        {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2},
462        {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}};
463
464    std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
465
466    int Idx = CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
467    if (Idx == -1)
468      return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
469
470    return LT.first * NEONShuffleTbl[Idx].Cost;
471  }
472  if (Kind == SK_Alternate) {
473    static const CostTblEntry<MVT::SimpleValueType> NEONAltShuffleTbl[] = {
474        // Alt shuffle cost table for ARM. Cost is the number of instructions
475        // required to create the shuffled vector.
476
477        {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
478        {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
479        {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
480        {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
481
482        {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
483        {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
484        {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2},
485
486        {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16},
487
488        {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}};
489
490    std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
491    int Idx =
492        CostTableLookup(NEONAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
493    if (Idx == -1)
494      return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
495    return LT.first * NEONAltShuffleTbl[Idx].Cost;
496  }
497  return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
498}
499
500unsigned ARMTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
501                                        OperandValueKind Op1Info,
502                                        OperandValueKind Op2Info) const {
503
504  int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
505  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
506
507  const unsigned FunctionCallDivCost = 20;
508  const unsigned ReciprocalDivCost = 10;
509  static const CostTblEntry<MVT::SimpleValueType> CostTbl[] = {
510    // Division.
511    // These costs are somewhat random. Choose a cost of 20 to indicate that
512    // vectorizing devision (added function call) is going to be very expensive.
513    // Double registers types.
514    { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
515    { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
516    { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
517    { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
518    { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
519    { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
520    { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
521    { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
522    { ISD::SDIV, MVT::v4i16,     ReciprocalDivCost},
523    { ISD::UDIV, MVT::v4i16,     ReciprocalDivCost},
524    { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
525    { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
526    { ISD::SDIV, MVT::v8i8,      ReciprocalDivCost},
527    { ISD::UDIV, MVT::v8i8,      ReciprocalDivCost},
528    { ISD::SREM, MVT::v8i8,  8 * FunctionCallDivCost},
529    { ISD::UREM, MVT::v8i8,  8 * FunctionCallDivCost},
530    // Quad register types.
531    { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
532    { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
533    { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
534    { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
535    { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
536    { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
537    { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
538    { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
539    { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
540    { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
541    { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
542    { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
543    { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
544    { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
545    { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
546    { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
547    // Multiplication.
548  };
549
550  int Idx = -1;
551
552  if (ST->hasNEON())
553    Idx = CostTableLookup(CostTbl, ISDOpcode, LT.second);
554
555  if (Idx != -1)
556    return LT.first * CostTbl[Idx].Cost;
557
558  unsigned Cost =
559      TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
560
561  // This is somewhat of a hack. The problem that we are facing is that SROA
562  // creates a sequence of shift, and, or instructions to construct values.
563  // These sequences are recognized by the ISel and have zero-cost. Not so for
564  // the vectorized code. Because we have support for v2i64 but not i64 those
565  // sequences look particularly beneficial to vectorize.
566  // To work around this we increase the cost of v2i64 operations to make them
567  // seem less beneficial.
568  if (LT.second == MVT::v2i64 &&
569      Op2Info == TargetTransformInfo::OK_UniformConstantValue)
570    Cost += 4;
571
572  return Cost;
573}
574
575unsigned ARMTTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
576                                 unsigned AddressSpace) const {
577  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
578
579  if (Src->isVectorTy() && Alignment != 16 &&
580      Src->getVectorElementType()->isDoubleTy()) {
581    // Unaligned loads/stores are extremely inefficient.
582    // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
583    return LT.first * 4;
584  }
585  return LT.first;
586}
587