ARMAsmParser.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "ARMFPUName.h"
11#include "ARMFeatures.h"
12#include "MCTargetDesc/ARMAddressingModes.h"
13#include "MCTargetDesc/ARMArchName.h"
14#include "MCTargetDesc/ARMBaseInfo.h"
15#include "MCTargetDesc/ARMMCExpr.h"
16#include "llvm/ADT/OwningPtr.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/StringExtras.h"
20#include "llvm/ADT/StringSwitch.h"
21#include "llvm/ADT/Twine.h"
22#include "llvm/MC/MCAsmInfo.h"
23#include "llvm/MC/MCAssembler.h"
24#include "llvm/MC/MCContext.h"
25#include "llvm/MC/MCDisassembler.h"
26#include "llvm/MC/MCELF.h"
27#include "llvm/MC/MCELFStreamer.h"
28#include "llvm/MC/MCELFSymbolFlags.h"
29#include "llvm/MC/MCExpr.h"
30#include "llvm/MC/MCInst.h"
31#include "llvm/MC/MCInstrDesc.h"
32#include "llvm/MC/MCInstrInfo.h"
33#include "llvm/MC/MCObjectFileInfo.h"
34#include "llvm/MC/MCParser/MCAsmLexer.h"
35#include "llvm/MC/MCParser/MCAsmParser.h"
36#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
37#include "llvm/MC/MCRegisterInfo.h"
38#include "llvm/MC/MCSection.h"
39#include "llvm/MC/MCStreamer.h"
40#include "llvm/MC/MCSubtargetInfo.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/MC/MCTargetAsmParser.h"
43#include "llvm/Support/ARMBuildAttributes.h"
44#include "llvm/Support/ARMEHABI.h"
45#include "llvm/Support/COFF.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/ELF.h"
48#include "llvm/Support/MathExtras.h"
49#include "llvm/Support/SourceMgr.h"
50#include "llvm/Support/TargetRegistry.h"
51#include "llvm/Support/raw_ostream.h"
52
53using namespace llvm;
54
55namespace {
56
57class ARMOperand;
58
59enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
60
61class UnwindContext {
62  MCAsmParser &Parser;
63
64  typedef SmallVector<SMLoc, 4> Locs;
65
66  Locs FnStartLocs;
67  Locs CantUnwindLocs;
68  Locs PersonalityLocs;
69  Locs PersonalityIndexLocs;
70  Locs HandlerDataLocs;
71  int FPReg;
72
73public:
74  UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {}
75
76  bool hasFnStart() const { return !FnStartLocs.empty(); }
77  bool cantUnwind() const { return !CantUnwindLocs.empty(); }
78  bool hasHandlerData() const { return !HandlerDataLocs.empty(); }
79  bool hasPersonality() const {
80    return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty());
81  }
82
83  void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); }
84  void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); }
85  void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); }
86  void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); }
87  void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); }
88
89  void saveFPReg(int Reg) { FPReg = Reg; }
90  int getFPReg() const { return FPReg; }
91
92  void emitFnStartLocNotes() const {
93    for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end();
94         FI != FE; ++FI)
95      Parser.Note(*FI, ".fnstart was specified here");
96  }
97  void emitCantUnwindLocNotes() const {
98    for (Locs::const_iterator UI = CantUnwindLocs.begin(),
99                              UE = CantUnwindLocs.end(); UI != UE; ++UI)
100      Parser.Note(*UI, ".cantunwind was specified here");
101  }
102  void emitHandlerDataLocNotes() const {
103    for (Locs::const_iterator HI = HandlerDataLocs.begin(),
104                              HE = HandlerDataLocs.end(); HI != HE; ++HI)
105      Parser.Note(*HI, ".handlerdata was specified here");
106  }
107  void emitPersonalityLocNotes() const {
108    for (Locs::const_iterator PI = PersonalityLocs.begin(),
109                              PE = PersonalityLocs.end(),
110                              PII = PersonalityIndexLocs.begin(),
111                              PIE = PersonalityIndexLocs.end();
112         PI != PE || PII != PIE;) {
113      if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer()))
114        Parser.Note(*PI++, ".personality was specified here");
115      else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer()))
116        Parser.Note(*PII++, ".personalityindex was specified here");
117      else
118        llvm_unreachable(".personality and .personalityindex cannot be "
119                         "at the same location");
120    }
121  }
122
123  void reset() {
124    FnStartLocs = Locs();
125    CantUnwindLocs = Locs();
126    PersonalityLocs = Locs();
127    HandlerDataLocs = Locs();
128    PersonalityIndexLocs = Locs();
129    FPReg = ARM::SP;
130  }
131};
132
133class ARMAsmParser : public MCTargetAsmParser {
134  MCSubtargetInfo &STI;
135  MCAsmParser &Parser;
136  const MCInstrInfo &MII;
137  const MCRegisterInfo *MRI;
138  UnwindContext UC;
139
140  ARMTargetStreamer &getTargetStreamer() {
141    MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
142    return static_cast<ARMTargetStreamer &>(TS);
143  }
144
145  // Map of register aliases registers via the .req directive.
146  StringMap<unsigned> RegisterReqs;
147
148  bool NextSymbolIsThumb;
149
150  struct {
151    ARMCC::CondCodes Cond;    // Condition for IT block.
152    unsigned Mask:4;          // Condition mask for instructions.
153                              // Starting at first 1 (from lsb).
154                              //   '1'  condition as indicated in IT.
155                              //   '0'  inverse of condition (else).
156                              // Count of instructions in IT block is
157                              // 4 - trailingzeroes(mask)
158
159    bool FirstCond;           // Explicit flag for when we're parsing the
160                              // First instruction in the IT block. It's
161                              // implied in the mask, so needs special
162                              // handling.
163
164    unsigned CurPosition;     // Current position in parsing of IT
165                              // block. In range [0,3]. Initialized
166                              // according to count of instructions in block.
167                              // ~0U if no active IT block.
168  } ITState;
169  bool inITBlock() { return ITState.CurPosition != ~0U;}
170  void forwardITPosition() {
171    if (!inITBlock()) return;
172    // Move to the next instruction in the IT block, if there is one. If not,
173    // mark the block as done.
174    unsigned TZ = countTrailingZeros(ITState.Mask);
175    if (++ITState.CurPosition == 5 - TZ)
176      ITState.CurPosition = ~0U; // Done with the IT block after this.
177  }
178
179
180  MCAsmParser &getParser() const { return Parser; }
181  MCAsmLexer &getLexer() const { return Parser.getLexer(); }
182
183  void Note(SMLoc L, const Twine &Msg, ArrayRef<SMRange> Ranges = None) {
184    return Parser.Note(L, Msg, Ranges);
185  }
186  bool Warning(SMLoc L, const Twine &Msg,
187               ArrayRef<SMRange> Ranges = None) {
188    return Parser.Warning(L, Msg, Ranges);
189  }
190  bool Error(SMLoc L, const Twine &Msg,
191             ArrayRef<SMRange> Ranges = None) {
192    return Parser.Error(L, Msg, Ranges);
193  }
194
195  int tryParseRegister();
196  bool tryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &);
197  int tryParseShiftRegister(SmallVectorImpl<MCParsedAsmOperand*> &);
198  bool parseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &);
199  bool parseMemory(SmallVectorImpl<MCParsedAsmOperand*> &);
200  bool parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &, StringRef Mnemonic);
201  bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
202  bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
203                              unsigned &ShiftAmount);
204  bool parseLiteralValues(unsigned Size, SMLoc L);
205  bool parseDirectiveThumb(SMLoc L);
206  bool parseDirectiveARM(SMLoc L);
207  bool parseDirectiveThumbFunc(SMLoc L);
208  bool parseDirectiveCode(SMLoc L);
209  bool parseDirectiveSyntax(SMLoc L);
210  bool parseDirectiveReq(StringRef Name, SMLoc L);
211  bool parseDirectiveUnreq(SMLoc L);
212  bool parseDirectiveArch(SMLoc L);
213  bool parseDirectiveEabiAttr(SMLoc L);
214  bool parseDirectiveCPU(SMLoc L);
215  bool parseDirectiveFPU(SMLoc L);
216  bool parseDirectiveFnStart(SMLoc L);
217  bool parseDirectiveFnEnd(SMLoc L);
218  bool parseDirectiveCantUnwind(SMLoc L);
219  bool parseDirectivePersonality(SMLoc L);
220  bool parseDirectiveHandlerData(SMLoc L);
221  bool parseDirectiveSetFP(SMLoc L);
222  bool parseDirectivePad(SMLoc L);
223  bool parseDirectiveRegSave(SMLoc L, bool IsVector);
224  bool parseDirectiveInst(SMLoc L, char Suffix = '\0');
225  bool parseDirectiveLtorg(SMLoc L);
226  bool parseDirectiveEven(SMLoc L);
227  bool parseDirectivePersonalityIndex(SMLoc L);
228  bool parseDirectiveUnwindRaw(SMLoc L);
229  bool parseDirectiveTLSDescSeq(SMLoc L);
230  bool parseDirectiveMovSP(SMLoc L);
231  bool parseDirectiveObjectArch(SMLoc L);
232  bool parseDirectiveArchExtension(SMLoc L);
233  bool parseDirectiveAlign(SMLoc L);
234  bool parseDirectiveThumbSet(SMLoc L);
235
236  StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode,
237                          bool &CarrySetting, unsigned &ProcessorIMod,
238                          StringRef &ITMask);
239  void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst,
240                             bool &CanAcceptCarrySet,
241                             bool &CanAcceptPredicationCode);
242
243  bool isThumb() const {
244    // FIXME: Can tablegen auto-generate this?
245    return (STI.getFeatureBits() & ARM::ModeThumb) != 0;
246  }
247  bool isThumbOne() const {
248    return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2) == 0;
249  }
250  bool isThumbTwo() const {
251    return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2);
252  }
253  bool hasThumb() const {
254    return STI.getFeatureBits() & ARM::HasV4TOps;
255  }
256  bool hasV6Ops() const {
257    return STI.getFeatureBits() & ARM::HasV6Ops;
258  }
259  bool hasV6MOps() const {
260    return STI.getFeatureBits() & ARM::HasV6MOps;
261  }
262  bool hasV7Ops() const {
263    return STI.getFeatureBits() & ARM::HasV7Ops;
264  }
265  bool hasV8Ops() const {
266    return STI.getFeatureBits() & ARM::HasV8Ops;
267  }
268  bool hasARM() const {
269    return !(STI.getFeatureBits() & ARM::FeatureNoARM);
270  }
271
272  void SwitchMode() {
273    unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
274    setAvailableFeatures(FB);
275  }
276  bool isMClass() const {
277    return STI.getFeatureBits() & ARM::FeatureMClass;
278  }
279
280  /// @name Auto-generated Match Functions
281  /// {
282
283#define GET_ASSEMBLER_HEADER
284#include "ARMGenAsmMatcher.inc"
285
286  /// }
287
288  OperandMatchResultTy parseITCondCode(SmallVectorImpl<MCParsedAsmOperand*>&);
289  OperandMatchResultTy parseCoprocNumOperand(
290    SmallVectorImpl<MCParsedAsmOperand*>&);
291  OperandMatchResultTy parseCoprocRegOperand(
292    SmallVectorImpl<MCParsedAsmOperand*>&);
293  OperandMatchResultTy parseCoprocOptionOperand(
294    SmallVectorImpl<MCParsedAsmOperand*>&);
295  OperandMatchResultTy parseMemBarrierOptOperand(
296    SmallVectorImpl<MCParsedAsmOperand*>&);
297  OperandMatchResultTy parseInstSyncBarrierOptOperand(
298    SmallVectorImpl<MCParsedAsmOperand*>&);
299  OperandMatchResultTy parseProcIFlagsOperand(
300    SmallVectorImpl<MCParsedAsmOperand*>&);
301  OperandMatchResultTy parseMSRMaskOperand(
302    SmallVectorImpl<MCParsedAsmOperand*>&);
303  OperandMatchResultTy parsePKHImm(SmallVectorImpl<MCParsedAsmOperand*> &O,
304                                   StringRef Op, int Low, int High);
305  OperandMatchResultTy parsePKHLSLImm(SmallVectorImpl<MCParsedAsmOperand*> &O) {
306    return parsePKHImm(O, "lsl", 0, 31);
307  }
308  OperandMatchResultTy parsePKHASRImm(SmallVectorImpl<MCParsedAsmOperand*> &O) {
309    return parsePKHImm(O, "asr", 1, 32);
310  }
311  OperandMatchResultTy parseSetEndImm(SmallVectorImpl<MCParsedAsmOperand*>&);
312  OperandMatchResultTy parseShifterImm(SmallVectorImpl<MCParsedAsmOperand*>&);
313  OperandMatchResultTy parseRotImm(SmallVectorImpl<MCParsedAsmOperand*>&);
314  OperandMatchResultTy parseBitfield(SmallVectorImpl<MCParsedAsmOperand*>&);
315  OperandMatchResultTy parsePostIdxReg(SmallVectorImpl<MCParsedAsmOperand*>&);
316  OperandMatchResultTy parseAM3Offset(SmallVectorImpl<MCParsedAsmOperand*>&);
317  OperandMatchResultTy parseFPImm(SmallVectorImpl<MCParsedAsmOperand*>&);
318  OperandMatchResultTy parseVectorList(SmallVectorImpl<MCParsedAsmOperand*>&);
319  OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index,
320                                       SMLoc &EndLoc);
321
322  // Asm Match Converter Methods
323  void cvtThumbMultiply(MCInst &Inst,
324                        const SmallVectorImpl<MCParsedAsmOperand*> &);
325  void cvtThumbBranches(MCInst &Inst,
326                        const SmallVectorImpl<MCParsedAsmOperand*> &);
327
328  bool validateInstruction(MCInst &Inst,
329                           const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
330  bool processInstruction(MCInst &Inst,
331                          const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
332  bool shouldOmitCCOutOperand(StringRef Mnemonic,
333                              SmallVectorImpl<MCParsedAsmOperand*> &Operands);
334  bool shouldOmitPredicateOperand(StringRef Mnemonic,
335                              SmallVectorImpl<MCParsedAsmOperand*> &Operands);
336public:
337  enum ARMMatchResultTy {
338    Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
339    Match_RequiresNotITBlock,
340    Match_RequiresV6,
341    Match_RequiresThumb2,
342#define GET_OPERAND_DIAGNOSTIC_TYPES
343#include "ARMGenAsmMatcher.inc"
344
345  };
346
347  ARMAsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser,
348               const MCInstrInfo &MII)
349      : MCTargetAsmParser(), STI(_STI), Parser(_Parser), MII(MII), UC(_Parser) {
350    MCAsmParserExtension::Initialize(_Parser);
351
352    // Cache the MCRegisterInfo.
353    MRI = getContext().getRegisterInfo();
354
355    // Initialize the set of available features.
356    setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
357
358    // Not in an ITBlock to start with.
359    ITState.CurPosition = ~0U;
360
361    NextSymbolIsThumb = false;
362  }
363
364  // Implementation of the MCTargetAsmParser interface:
365  bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
366  bool
367  ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
368                   SMLoc NameLoc,
369                   SmallVectorImpl<MCParsedAsmOperand*> &Operands) override;
370  bool ParseDirective(AsmToken DirectiveID) override;
371
372  unsigned validateTargetOperandClass(MCParsedAsmOperand *Op,
373                                      unsigned Kind) override;
374  unsigned checkTargetMatchPredicate(MCInst &Inst) override;
375
376  bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
377                               SmallVectorImpl<MCParsedAsmOperand*> &Operands,
378                               MCStreamer &Out, unsigned &ErrorInfo,
379                               bool MatchingInlineAsm) override;
380  void onLabelParsed(MCSymbol *Symbol) override;
381};
382} // end anonymous namespace
383
384namespace {
385
386/// ARMOperand - Instances of this class represent a parsed ARM machine
387/// operand.
388class ARMOperand : public MCParsedAsmOperand {
389  enum KindTy {
390    k_CondCode,
391    k_CCOut,
392    k_ITCondMask,
393    k_CoprocNum,
394    k_CoprocReg,
395    k_CoprocOption,
396    k_Immediate,
397    k_MemBarrierOpt,
398    k_InstSyncBarrierOpt,
399    k_Memory,
400    k_PostIndexRegister,
401    k_MSRMask,
402    k_ProcIFlags,
403    k_VectorIndex,
404    k_Register,
405    k_RegisterList,
406    k_DPRRegisterList,
407    k_SPRRegisterList,
408    k_VectorList,
409    k_VectorListAllLanes,
410    k_VectorListIndexed,
411    k_ShiftedRegister,
412    k_ShiftedImmediate,
413    k_ShifterImmediate,
414    k_RotateImmediate,
415    k_BitfieldDescriptor,
416    k_Token
417  } Kind;
418
419  SMLoc StartLoc, EndLoc;
420  SmallVector<unsigned, 8> Registers;
421
422  struct CCOp {
423    ARMCC::CondCodes Val;
424  };
425
426  struct CopOp {
427    unsigned Val;
428  };
429
430  struct CoprocOptionOp {
431    unsigned Val;
432  };
433
434  struct ITMaskOp {
435    unsigned Mask:4;
436  };
437
438  struct MBOptOp {
439    ARM_MB::MemBOpt Val;
440  };
441
442  struct ISBOptOp {
443    ARM_ISB::InstSyncBOpt Val;
444  };
445
446  struct IFlagsOp {
447    ARM_PROC::IFlags Val;
448  };
449
450  struct MMaskOp {
451    unsigned Val;
452  };
453
454  struct TokOp {
455    const char *Data;
456    unsigned Length;
457  };
458
459  struct RegOp {
460    unsigned RegNum;
461  };
462
463  // A vector register list is a sequential list of 1 to 4 registers.
464  struct VectorListOp {
465    unsigned RegNum;
466    unsigned Count;
467    unsigned LaneIndex;
468    bool isDoubleSpaced;
469  };
470
471  struct VectorIndexOp {
472    unsigned Val;
473  };
474
475  struct ImmOp {
476    const MCExpr *Val;
477  };
478
479  /// Combined record for all forms of ARM address expressions.
480  struct MemoryOp {
481    unsigned BaseRegNum;
482    // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
483    // was specified.
484    const MCConstantExpr *OffsetImm;  // Offset immediate value
485    unsigned OffsetRegNum;    // Offset register num, when OffsetImm == NULL
486    ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
487    unsigned ShiftImm;        // shift for OffsetReg.
488    unsigned Alignment;       // 0 = no alignment specified
489    // n = alignment in bytes (2, 4, 8, 16, or 32)
490    unsigned isNegative : 1;  // Negated OffsetReg? (~'U' bit)
491  };
492
493  struct PostIdxRegOp {
494    unsigned RegNum;
495    bool isAdd;
496    ARM_AM::ShiftOpc ShiftTy;
497    unsigned ShiftImm;
498  };
499
500  struct ShifterImmOp {
501    bool isASR;
502    unsigned Imm;
503  };
504
505  struct RegShiftedRegOp {
506    ARM_AM::ShiftOpc ShiftTy;
507    unsigned SrcReg;
508    unsigned ShiftReg;
509    unsigned ShiftImm;
510  };
511
512  struct RegShiftedImmOp {
513    ARM_AM::ShiftOpc ShiftTy;
514    unsigned SrcReg;
515    unsigned ShiftImm;
516  };
517
518  struct RotImmOp {
519    unsigned Imm;
520  };
521
522  struct BitfieldOp {
523    unsigned LSB;
524    unsigned Width;
525  };
526
527  union {
528    struct CCOp CC;
529    struct CopOp Cop;
530    struct CoprocOptionOp CoprocOption;
531    struct MBOptOp MBOpt;
532    struct ISBOptOp ISBOpt;
533    struct ITMaskOp ITMask;
534    struct IFlagsOp IFlags;
535    struct MMaskOp MMask;
536    struct TokOp Tok;
537    struct RegOp Reg;
538    struct VectorListOp VectorList;
539    struct VectorIndexOp VectorIndex;
540    struct ImmOp Imm;
541    struct MemoryOp Memory;
542    struct PostIdxRegOp PostIdxReg;
543    struct ShifterImmOp ShifterImm;
544    struct RegShiftedRegOp RegShiftedReg;
545    struct RegShiftedImmOp RegShiftedImm;
546    struct RotImmOp RotImm;
547    struct BitfieldOp Bitfield;
548  };
549
550  ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
551public:
552  ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() {
553    Kind = o.Kind;
554    StartLoc = o.StartLoc;
555    EndLoc = o.EndLoc;
556    switch (Kind) {
557    case k_CondCode:
558      CC = o.CC;
559      break;
560    case k_ITCondMask:
561      ITMask = o.ITMask;
562      break;
563    case k_Token:
564      Tok = o.Tok;
565      break;
566    case k_CCOut:
567    case k_Register:
568      Reg = o.Reg;
569      break;
570    case k_RegisterList:
571    case k_DPRRegisterList:
572    case k_SPRRegisterList:
573      Registers = o.Registers;
574      break;
575    case k_VectorList:
576    case k_VectorListAllLanes:
577    case k_VectorListIndexed:
578      VectorList = o.VectorList;
579      break;
580    case k_CoprocNum:
581    case k_CoprocReg:
582      Cop = o.Cop;
583      break;
584    case k_CoprocOption:
585      CoprocOption = o.CoprocOption;
586      break;
587    case k_Immediate:
588      Imm = o.Imm;
589      break;
590    case k_MemBarrierOpt:
591      MBOpt = o.MBOpt;
592      break;
593    case k_InstSyncBarrierOpt:
594      ISBOpt = o.ISBOpt;
595    case k_Memory:
596      Memory = o.Memory;
597      break;
598    case k_PostIndexRegister:
599      PostIdxReg = o.PostIdxReg;
600      break;
601    case k_MSRMask:
602      MMask = o.MMask;
603      break;
604    case k_ProcIFlags:
605      IFlags = o.IFlags;
606      break;
607    case k_ShifterImmediate:
608      ShifterImm = o.ShifterImm;
609      break;
610    case k_ShiftedRegister:
611      RegShiftedReg = o.RegShiftedReg;
612      break;
613    case k_ShiftedImmediate:
614      RegShiftedImm = o.RegShiftedImm;
615      break;
616    case k_RotateImmediate:
617      RotImm = o.RotImm;
618      break;
619    case k_BitfieldDescriptor:
620      Bitfield = o.Bitfield;
621      break;
622    case k_VectorIndex:
623      VectorIndex = o.VectorIndex;
624      break;
625    }
626  }
627
628  /// getStartLoc - Get the location of the first token of this operand.
629  SMLoc getStartLoc() const override { return StartLoc; }
630  /// getEndLoc - Get the location of the last token of this operand.
631  SMLoc getEndLoc() const override { return EndLoc; }
632  /// getLocRange - Get the range between the first and last token of this
633  /// operand.
634  SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
635
636  ARMCC::CondCodes getCondCode() const {
637    assert(Kind == k_CondCode && "Invalid access!");
638    return CC.Val;
639  }
640
641  unsigned getCoproc() const {
642    assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
643    return Cop.Val;
644  }
645
646  StringRef getToken() const {
647    assert(Kind == k_Token && "Invalid access!");
648    return StringRef(Tok.Data, Tok.Length);
649  }
650
651  unsigned getReg() const override {
652    assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
653    return Reg.RegNum;
654  }
655
656  const SmallVectorImpl<unsigned> &getRegList() const {
657    assert((Kind == k_RegisterList || Kind == k_DPRRegisterList ||
658            Kind == k_SPRRegisterList) && "Invalid access!");
659    return Registers;
660  }
661
662  const MCExpr *getImm() const {
663    assert(isImm() && "Invalid access!");
664    return Imm.Val;
665  }
666
667  unsigned getVectorIndex() const {
668    assert(Kind == k_VectorIndex && "Invalid access!");
669    return VectorIndex.Val;
670  }
671
672  ARM_MB::MemBOpt getMemBarrierOpt() const {
673    assert(Kind == k_MemBarrierOpt && "Invalid access!");
674    return MBOpt.Val;
675  }
676
677  ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const {
678    assert(Kind == k_InstSyncBarrierOpt && "Invalid access!");
679    return ISBOpt.Val;
680  }
681
682  ARM_PROC::IFlags getProcIFlags() const {
683    assert(Kind == k_ProcIFlags && "Invalid access!");
684    return IFlags.Val;
685  }
686
687  unsigned getMSRMask() const {
688    assert(Kind == k_MSRMask && "Invalid access!");
689    return MMask.Val;
690  }
691
692  bool isCoprocNum() const { return Kind == k_CoprocNum; }
693  bool isCoprocReg() const { return Kind == k_CoprocReg; }
694  bool isCoprocOption() const { return Kind == k_CoprocOption; }
695  bool isCondCode() const { return Kind == k_CondCode; }
696  bool isCCOut() const { return Kind == k_CCOut; }
697  bool isITMask() const { return Kind == k_ITCondMask; }
698  bool isITCondCode() const { return Kind == k_CondCode; }
699  bool isImm() const override { return Kind == k_Immediate; }
700  // checks whether this operand is an unsigned offset which fits is a field
701  // of specified width and scaled by a specific number of bits
702  template<unsigned width, unsigned scale>
703  bool isUnsignedOffset() const {
704    if (!isImm()) return false;
705    if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
706    if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
707      int64_t Val = CE->getValue();
708      int64_t Align = 1LL << scale;
709      int64_t Max = Align * ((1LL << width) - 1);
710      return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max);
711    }
712    return false;
713  }
714  // checks whether this operand is an signed offset which fits is a field
715  // of specified width and scaled by a specific number of bits
716  template<unsigned width, unsigned scale>
717  bool isSignedOffset() const {
718    if (!isImm()) return false;
719    if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
720    if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
721      int64_t Val = CE->getValue();
722      int64_t Align = 1LL << scale;
723      int64_t Max = Align * ((1LL << (width-1)) - 1);
724      int64_t Min = -Align * (1LL << (width-1));
725      return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max);
726    }
727    return false;
728  }
729
730  // checks whether this operand is a memory operand computed as an offset
731  // applied to PC. the offset may have 8 bits of magnitude and is represented
732  // with two bits of shift. textually it may be either [pc, #imm], #imm or
733  // relocable expression...
734  bool isThumbMemPC() const {
735    int64_t Val = 0;
736    if (isImm()) {
737      if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
738      const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val);
739      if (!CE) return false;
740      Val = CE->getValue();
741    }
742    else if (isMem()) {
743      if(!Memory.OffsetImm || Memory.OffsetRegNum) return false;
744      if(Memory.BaseRegNum != ARM::PC) return false;
745      Val = Memory.OffsetImm->getValue();
746    }
747    else return false;
748    return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020);
749  }
750  bool isFPImm() const {
751    if (!isImm()) return false;
752    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
753    if (!CE) return false;
754    int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
755    return Val != -1;
756  }
757  bool isFBits16() const {
758    if (!isImm()) return false;
759    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
760    if (!CE) return false;
761    int64_t Value = CE->getValue();
762    return Value >= 0 && Value <= 16;
763  }
764  bool isFBits32() const {
765    if (!isImm()) return false;
766    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
767    if (!CE) return false;
768    int64_t Value = CE->getValue();
769    return Value >= 1 && Value <= 32;
770  }
771  bool isImm8s4() const {
772    if (!isImm()) return false;
773    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
774    if (!CE) return false;
775    int64_t Value = CE->getValue();
776    return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020;
777  }
778  bool isImm0_1020s4() const {
779    if (!isImm()) return false;
780    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
781    if (!CE) return false;
782    int64_t Value = CE->getValue();
783    return ((Value & 3) == 0) && Value >= 0 && Value <= 1020;
784  }
785  bool isImm0_508s4() const {
786    if (!isImm()) return false;
787    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
788    if (!CE) return false;
789    int64_t Value = CE->getValue();
790    return ((Value & 3) == 0) && Value >= 0 && Value <= 508;
791  }
792  bool isImm0_508s4Neg() const {
793    if (!isImm()) return false;
794    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
795    if (!CE) return false;
796    int64_t Value = -CE->getValue();
797    // explicitly exclude zero. we want that to use the normal 0_508 version.
798    return ((Value & 3) == 0) && Value > 0 && Value <= 508;
799  }
800  bool isImm0_239() const {
801    if (!isImm()) return false;
802    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
803    if (!CE) return false;
804    int64_t Value = CE->getValue();
805    return Value >= 0 && Value < 240;
806  }
807  bool isImm0_255() const {
808    if (!isImm()) return false;
809    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
810    if (!CE) return false;
811    int64_t Value = CE->getValue();
812    return Value >= 0 && Value < 256;
813  }
814  bool isImm0_4095() const {
815    if (!isImm()) return false;
816    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
817    if (!CE) return false;
818    int64_t Value = CE->getValue();
819    return Value >= 0 && Value < 4096;
820  }
821  bool isImm0_4095Neg() const {
822    if (!isImm()) return false;
823    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
824    if (!CE) return false;
825    int64_t Value = -CE->getValue();
826    return Value > 0 && Value < 4096;
827  }
828  bool isImm0_1() const {
829    if (!isImm()) return false;
830    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
831    if (!CE) return false;
832    int64_t Value = CE->getValue();
833    return Value >= 0 && Value < 2;
834  }
835  bool isImm0_3() const {
836    if (!isImm()) return false;
837    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
838    if (!CE) return false;
839    int64_t Value = CE->getValue();
840    return Value >= 0 && Value < 4;
841  }
842  bool isImm0_7() const {
843    if (!isImm()) return false;
844    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
845    if (!CE) return false;
846    int64_t Value = CE->getValue();
847    return Value >= 0 && Value < 8;
848  }
849  bool isImm0_15() const {
850    if (!isImm()) return false;
851    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
852    if (!CE) return false;
853    int64_t Value = CE->getValue();
854    return Value >= 0 && Value < 16;
855  }
856  bool isImm0_31() const {
857    if (!isImm()) return false;
858    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
859    if (!CE) return false;
860    int64_t Value = CE->getValue();
861    return Value >= 0 && Value < 32;
862  }
863  bool isImm0_63() const {
864    if (!isImm()) return false;
865    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
866    if (!CE) return false;
867    int64_t Value = CE->getValue();
868    return Value >= 0 && Value < 64;
869  }
870  bool isImm8() const {
871    if (!isImm()) return false;
872    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
873    if (!CE) return false;
874    int64_t Value = CE->getValue();
875    return Value == 8;
876  }
877  bool isImm16() const {
878    if (!isImm()) return false;
879    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
880    if (!CE) return false;
881    int64_t Value = CE->getValue();
882    return Value == 16;
883  }
884  bool isImm32() const {
885    if (!isImm()) return false;
886    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
887    if (!CE) return false;
888    int64_t Value = CE->getValue();
889    return Value == 32;
890  }
891  bool isShrImm8() const {
892    if (!isImm()) return false;
893    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
894    if (!CE) return false;
895    int64_t Value = CE->getValue();
896    return Value > 0 && Value <= 8;
897  }
898  bool isShrImm16() const {
899    if (!isImm()) return false;
900    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
901    if (!CE) return false;
902    int64_t Value = CE->getValue();
903    return Value > 0 && Value <= 16;
904  }
905  bool isShrImm32() const {
906    if (!isImm()) return false;
907    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
908    if (!CE) return false;
909    int64_t Value = CE->getValue();
910    return Value > 0 && Value <= 32;
911  }
912  bool isShrImm64() const {
913    if (!isImm()) return false;
914    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
915    if (!CE) return false;
916    int64_t Value = CE->getValue();
917    return Value > 0 && Value <= 64;
918  }
919  bool isImm1_7() const {
920    if (!isImm()) return false;
921    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
922    if (!CE) return false;
923    int64_t Value = CE->getValue();
924    return Value > 0 && Value < 8;
925  }
926  bool isImm1_15() const {
927    if (!isImm()) return false;
928    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
929    if (!CE) return false;
930    int64_t Value = CE->getValue();
931    return Value > 0 && Value < 16;
932  }
933  bool isImm1_31() const {
934    if (!isImm()) return false;
935    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
936    if (!CE) return false;
937    int64_t Value = CE->getValue();
938    return Value > 0 && Value < 32;
939  }
940  bool isImm1_16() const {
941    if (!isImm()) return false;
942    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
943    if (!CE) return false;
944    int64_t Value = CE->getValue();
945    return Value > 0 && Value < 17;
946  }
947  bool isImm1_32() const {
948    if (!isImm()) return false;
949    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
950    if (!CE) return false;
951    int64_t Value = CE->getValue();
952    return Value > 0 && Value < 33;
953  }
954  bool isImm0_32() const {
955    if (!isImm()) return false;
956    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
957    if (!CE) return false;
958    int64_t Value = CE->getValue();
959    return Value >= 0 && Value < 33;
960  }
961  bool isImm0_65535() const {
962    if (!isImm()) return false;
963    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
964    if (!CE) return false;
965    int64_t Value = CE->getValue();
966    return Value >= 0 && Value < 65536;
967  }
968  bool isImm256_65535Expr() const {
969    if (!isImm()) return false;
970    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
971    // If it's not a constant expression, it'll generate a fixup and be
972    // handled later.
973    if (!CE) return true;
974    int64_t Value = CE->getValue();
975    return Value >= 256 && Value < 65536;
976  }
977  bool isImm0_65535Expr() const {
978    if (!isImm()) return false;
979    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
980    // If it's not a constant expression, it'll generate a fixup and be
981    // handled later.
982    if (!CE) return true;
983    int64_t Value = CE->getValue();
984    return Value >= 0 && Value < 65536;
985  }
986  bool isImm24bit() const {
987    if (!isImm()) return false;
988    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
989    if (!CE) return false;
990    int64_t Value = CE->getValue();
991    return Value >= 0 && Value <= 0xffffff;
992  }
993  bool isImmThumbSR() const {
994    if (!isImm()) return false;
995    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
996    if (!CE) return false;
997    int64_t Value = CE->getValue();
998    return Value > 0 && Value < 33;
999  }
1000  bool isPKHLSLImm() const {
1001    if (!isImm()) return false;
1002    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1003    if (!CE) return false;
1004    int64_t Value = CE->getValue();
1005    return Value >= 0 && Value < 32;
1006  }
1007  bool isPKHASRImm() const {
1008    if (!isImm()) return false;
1009    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1010    if (!CE) return false;
1011    int64_t Value = CE->getValue();
1012    return Value > 0 && Value <= 32;
1013  }
1014  bool isAdrLabel() const {
1015    // If we have an immediate that's not a constant, treat it as a label
1016    // reference needing a fixup. If it is a constant, but it can't fit
1017    // into shift immediate encoding, we reject it.
1018    if (isImm() && !isa<MCConstantExpr>(getImm())) return true;
1019    else return (isARMSOImm() || isARMSOImmNeg());
1020  }
1021  bool isARMSOImm() const {
1022    if (!isImm()) return false;
1023    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1024    if (!CE) return false;
1025    int64_t Value = CE->getValue();
1026    return ARM_AM::getSOImmVal(Value) != -1;
1027  }
1028  bool isARMSOImmNot() const {
1029    if (!isImm()) return false;
1030    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1031    if (!CE) return false;
1032    int64_t Value = CE->getValue();
1033    return ARM_AM::getSOImmVal(~Value) != -1;
1034  }
1035  bool isARMSOImmNeg() const {
1036    if (!isImm()) return false;
1037    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1038    if (!CE) return false;
1039    int64_t Value = CE->getValue();
1040    // Only use this when not representable as a plain so_imm.
1041    return ARM_AM::getSOImmVal(Value) == -1 &&
1042      ARM_AM::getSOImmVal(-Value) != -1;
1043  }
1044  bool isT2SOImm() const {
1045    if (!isImm()) return false;
1046    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1047    if (!CE) return false;
1048    int64_t Value = CE->getValue();
1049    return ARM_AM::getT2SOImmVal(Value) != -1;
1050  }
1051  bool isT2SOImmNot() const {
1052    if (!isImm()) return false;
1053    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1054    if (!CE) return false;
1055    int64_t Value = CE->getValue();
1056    return ARM_AM::getT2SOImmVal(Value) == -1 &&
1057      ARM_AM::getT2SOImmVal(~Value) != -1;
1058  }
1059  bool isT2SOImmNeg() const {
1060    if (!isImm()) return false;
1061    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1062    if (!CE) return false;
1063    int64_t Value = CE->getValue();
1064    // Only use this when not representable as a plain so_imm.
1065    return ARM_AM::getT2SOImmVal(Value) == -1 &&
1066      ARM_AM::getT2SOImmVal(-Value) != -1;
1067  }
1068  bool isSetEndImm() const {
1069    if (!isImm()) return false;
1070    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1071    if (!CE) return false;
1072    int64_t Value = CE->getValue();
1073    return Value == 1 || Value == 0;
1074  }
1075  bool isReg() const override { return Kind == k_Register; }
1076  bool isRegList() const { return Kind == k_RegisterList; }
1077  bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
1078  bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
1079  bool isToken() const override { return Kind == k_Token; }
1080  bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
1081  bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; }
1082  bool isMem() const override { return Kind == k_Memory; }
1083  bool isShifterImm() const { return Kind == k_ShifterImmediate; }
1084  bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; }
1085  bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; }
1086  bool isRotImm() const { return Kind == k_RotateImmediate; }
1087  bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
1088  bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; }
1089  bool isPostIdxReg() const {
1090    return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift;
1091  }
1092  bool isMemNoOffset(bool alignOK = false) const {
1093    if (!isMem())
1094      return false;
1095    // No offset of any kind.
1096    return Memory.OffsetRegNum == 0 && Memory.OffsetImm == 0 &&
1097     (alignOK || Memory.Alignment == 0);
1098  }
1099  bool isMemPCRelImm12() const {
1100    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1101      return false;
1102    // Base register must be PC.
1103    if (Memory.BaseRegNum != ARM::PC)
1104      return false;
1105    // Immediate offset in range [-4095, 4095].
1106    if (!Memory.OffsetImm) return true;
1107    int64_t Val = Memory.OffsetImm->getValue();
1108    return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
1109  }
1110  bool isAlignedMemory() const {
1111    return isMemNoOffset(true);
1112  }
1113  bool isAddrMode2() const {
1114    if (!isMem() || Memory.Alignment != 0) return false;
1115    // Check for register offset.
1116    if (Memory.OffsetRegNum) return true;
1117    // Immediate offset in range [-4095, 4095].
1118    if (!Memory.OffsetImm) return true;
1119    int64_t Val = Memory.OffsetImm->getValue();
1120    return Val > -4096 && Val < 4096;
1121  }
1122  bool isAM2OffsetImm() const {
1123    if (!isImm()) return false;
1124    // Immediate offset in range [-4095, 4095].
1125    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1126    if (!CE) return false;
1127    int64_t Val = CE->getValue();
1128    return (Val == INT32_MIN) || (Val > -4096 && Val < 4096);
1129  }
1130  bool isAddrMode3() const {
1131    // If we have an immediate that's not a constant, treat it as a label
1132    // reference needing a fixup. If it is a constant, it's something else
1133    // and we reject it.
1134    if (isImm() && !isa<MCConstantExpr>(getImm()))
1135      return true;
1136    if (!isMem() || Memory.Alignment != 0) return false;
1137    // No shifts are legal for AM3.
1138    if (Memory.ShiftType != ARM_AM::no_shift) return false;
1139    // Check for register offset.
1140    if (Memory.OffsetRegNum) return true;
1141    // Immediate offset in range [-255, 255].
1142    if (!Memory.OffsetImm) return true;
1143    int64_t Val = Memory.OffsetImm->getValue();
1144    // The #-0 offset is encoded as INT32_MIN, and we have to check
1145    // for this too.
1146    return (Val > -256 && Val < 256) || Val == INT32_MIN;
1147  }
1148  bool isAM3Offset() const {
1149    if (Kind != k_Immediate && Kind != k_PostIndexRegister)
1150      return false;
1151    if (Kind == k_PostIndexRegister)
1152      return PostIdxReg.ShiftTy == ARM_AM::no_shift;
1153    // Immediate offset in range [-255, 255].
1154    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1155    if (!CE) return false;
1156    int64_t Val = CE->getValue();
1157    // Special case, #-0 is INT32_MIN.
1158    return (Val > -256 && Val < 256) || Val == INT32_MIN;
1159  }
1160  bool isAddrMode5() const {
1161    // If we have an immediate that's not a constant, treat it as a label
1162    // reference needing a fixup. If it is a constant, it's something else
1163    // and we reject it.
1164    if (isImm() && !isa<MCConstantExpr>(getImm()))
1165      return true;
1166    if (!isMem() || Memory.Alignment != 0) return false;
1167    // Check for register offset.
1168    if (Memory.OffsetRegNum) return false;
1169    // Immediate offset in range [-1020, 1020] and a multiple of 4.
1170    if (!Memory.OffsetImm) return true;
1171    int64_t Val = Memory.OffsetImm->getValue();
1172    return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
1173      Val == INT32_MIN;
1174  }
1175  bool isMemTBB() const {
1176    if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1177        Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1178      return false;
1179    return true;
1180  }
1181  bool isMemTBH() const {
1182    if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1183        Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
1184        Memory.Alignment != 0 )
1185      return false;
1186    return true;
1187  }
1188  bool isMemRegOffset() const {
1189    if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0)
1190      return false;
1191    return true;
1192  }
1193  bool isT2MemRegOffset() const {
1194    if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1195        Memory.Alignment != 0)
1196      return false;
1197    // Only lsl #{0, 1, 2, 3} allowed.
1198    if (Memory.ShiftType == ARM_AM::no_shift)
1199      return true;
1200    if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
1201      return false;
1202    return true;
1203  }
1204  bool isMemThumbRR() const {
1205    // Thumb reg+reg addressing is simple. Just two registers, a base and
1206    // an offset. No shifts, negations or any other complicating factors.
1207    if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1208        Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1209      return false;
1210    return isARMLowRegister(Memory.BaseRegNum) &&
1211      (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
1212  }
1213  bool isMemThumbRIs4() const {
1214    if (!isMem() || Memory.OffsetRegNum != 0 ||
1215        !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1216      return false;
1217    // Immediate offset, multiple of 4 in range [0, 124].
1218    if (!Memory.OffsetImm) return true;
1219    int64_t Val = Memory.OffsetImm->getValue();
1220    return Val >= 0 && Val <= 124 && (Val % 4) == 0;
1221  }
1222  bool isMemThumbRIs2() const {
1223    if (!isMem() || Memory.OffsetRegNum != 0 ||
1224        !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1225      return false;
1226    // Immediate offset, multiple of 4 in range [0, 62].
1227    if (!Memory.OffsetImm) return true;
1228    int64_t Val = Memory.OffsetImm->getValue();
1229    return Val >= 0 && Val <= 62 && (Val % 2) == 0;
1230  }
1231  bool isMemThumbRIs1() const {
1232    if (!isMem() || Memory.OffsetRegNum != 0 ||
1233        !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1234      return false;
1235    // Immediate offset in range [0, 31].
1236    if (!Memory.OffsetImm) return true;
1237    int64_t Val = Memory.OffsetImm->getValue();
1238    return Val >= 0 && Val <= 31;
1239  }
1240  bool isMemThumbSPI() const {
1241    if (!isMem() || Memory.OffsetRegNum != 0 ||
1242        Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
1243      return false;
1244    // Immediate offset, multiple of 4 in range [0, 1020].
1245    if (!Memory.OffsetImm) return true;
1246    int64_t Val = Memory.OffsetImm->getValue();
1247    return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
1248  }
1249  bool isMemImm8s4Offset() const {
1250    // If we have an immediate that's not a constant, treat it as a label
1251    // reference needing a fixup. If it is a constant, it's something else
1252    // and we reject it.
1253    if (isImm() && !isa<MCConstantExpr>(getImm()))
1254      return true;
1255    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1256      return false;
1257    // Immediate offset a multiple of 4 in range [-1020, 1020].
1258    if (!Memory.OffsetImm) return true;
1259    int64_t Val = Memory.OffsetImm->getValue();
1260    // Special case, #-0 is INT32_MIN.
1261    return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN;
1262  }
1263  bool isMemImm0_1020s4Offset() const {
1264    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1265      return false;
1266    // Immediate offset a multiple of 4 in range [0, 1020].
1267    if (!Memory.OffsetImm) return true;
1268    int64_t Val = Memory.OffsetImm->getValue();
1269    return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
1270  }
1271  bool isMemImm8Offset() const {
1272    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1273      return false;
1274    // Base reg of PC isn't allowed for these encodings.
1275    if (Memory.BaseRegNum == ARM::PC) return false;
1276    // Immediate offset in range [-255, 255].
1277    if (!Memory.OffsetImm) return true;
1278    int64_t Val = Memory.OffsetImm->getValue();
1279    return (Val == INT32_MIN) || (Val > -256 && Val < 256);
1280  }
1281  bool isMemPosImm8Offset() const {
1282    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1283      return false;
1284    // Immediate offset in range [0, 255].
1285    if (!Memory.OffsetImm) return true;
1286    int64_t Val = Memory.OffsetImm->getValue();
1287    return Val >= 0 && Val < 256;
1288  }
1289  bool isMemNegImm8Offset() const {
1290    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1291      return false;
1292    // Base reg of PC isn't allowed for these encodings.
1293    if (Memory.BaseRegNum == ARM::PC) return false;
1294    // Immediate offset in range [-255, -1].
1295    if (!Memory.OffsetImm) return false;
1296    int64_t Val = Memory.OffsetImm->getValue();
1297    return (Val == INT32_MIN) || (Val > -256 && Val < 0);
1298  }
1299  bool isMemUImm12Offset() const {
1300    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1301      return false;
1302    // Immediate offset in range [0, 4095].
1303    if (!Memory.OffsetImm) return true;
1304    int64_t Val = Memory.OffsetImm->getValue();
1305    return (Val >= 0 && Val < 4096);
1306  }
1307  bool isMemImm12Offset() const {
1308    // If we have an immediate that's not a constant, treat it as a label
1309    // reference needing a fixup. If it is a constant, it's something else
1310    // and we reject it.
1311    if (isImm() && !isa<MCConstantExpr>(getImm()))
1312      return true;
1313
1314    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1315      return false;
1316    // Immediate offset in range [-4095, 4095].
1317    if (!Memory.OffsetImm) return true;
1318    int64_t Val = Memory.OffsetImm->getValue();
1319    return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
1320  }
1321  bool isPostIdxImm8() const {
1322    if (!isImm()) return false;
1323    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1324    if (!CE) return false;
1325    int64_t Val = CE->getValue();
1326    return (Val > -256 && Val < 256) || (Val == INT32_MIN);
1327  }
1328  bool isPostIdxImm8s4() const {
1329    if (!isImm()) return false;
1330    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1331    if (!CE) return false;
1332    int64_t Val = CE->getValue();
1333    return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
1334      (Val == INT32_MIN);
1335  }
1336
1337  bool isMSRMask() const { return Kind == k_MSRMask; }
1338  bool isProcIFlags() const { return Kind == k_ProcIFlags; }
1339
1340  // NEON operands.
1341  bool isSingleSpacedVectorList() const {
1342    return Kind == k_VectorList && !VectorList.isDoubleSpaced;
1343  }
1344  bool isDoubleSpacedVectorList() const {
1345    return Kind == k_VectorList && VectorList.isDoubleSpaced;
1346  }
1347  bool isVecListOneD() const {
1348    if (!isSingleSpacedVectorList()) return false;
1349    return VectorList.Count == 1;
1350  }
1351
1352  bool isVecListDPair() const {
1353    if (!isSingleSpacedVectorList()) return false;
1354    return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1355              .contains(VectorList.RegNum));
1356  }
1357
1358  bool isVecListThreeD() const {
1359    if (!isSingleSpacedVectorList()) return false;
1360    return VectorList.Count == 3;
1361  }
1362
1363  bool isVecListFourD() const {
1364    if (!isSingleSpacedVectorList()) return false;
1365    return VectorList.Count == 4;
1366  }
1367
1368  bool isVecListDPairSpaced() const {
1369    if (Kind != k_VectorList) return false;
1370    if (isSingleSpacedVectorList()) return false;
1371    return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
1372              .contains(VectorList.RegNum));
1373  }
1374
1375  bool isVecListThreeQ() const {
1376    if (!isDoubleSpacedVectorList()) return false;
1377    return VectorList.Count == 3;
1378  }
1379
1380  bool isVecListFourQ() const {
1381    if (!isDoubleSpacedVectorList()) return false;
1382    return VectorList.Count == 4;
1383  }
1384
1385  bool isSingleSpacedVectorAllLanes() const {
1386    return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
1387  }
1388  bool isDoubleSpacedVectorAllLanes() const {
1389    return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
1390  }
1391  bool isVecListOneDAllLanes() const {
1392    if (!isSingleSpacedVectorAllLanes()) return false;
1393    return VectorList.Count == 1;
1394  }
1395
1396  bool isVecListDPairAllLanes() const {
1397    if (!isSingleSpacedVectorAllLanes()) return false;
1398    return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1399              .contains(VectorList.RegNum));
1400  }
1401
1402  bool isVecListDPairSpacedAllLanes() const {
1403    if (!isDoubleSpacedVectorAllLanes()) return false;
1404    return VectorList.Count == 2;
1405  }
1406
1407  bool isVecListThreeDAllLanes() const {
1408    if (!isSingleSpacedVectorAllLanes()) return false;
1409    return VectorList.Count == 3;
1410  }
1411
1412  bool isVecListThreeQAllLanes() const {
1413    if (!isDoubleSpacedVectorAllLanes()) return false;
1414    return VectorList.Count == 3;
1415  }
1416
1417  bool isVecListFourDAllLanes() const {
1418    if (!isSingleSpacedVectorAllLanes()) return false;
1419    return VectorList.Count == 4;
1420  }
1421
1422  bool isVecListFourQAllLanes() const {
1423    if (!isDoubleSpacedVectorAllLanes()) return false;
1424    return VectorList.Count == 4;
1425  }
1426
1427  bool isSingleSpacedVectorIndexed() const {
1428    return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
1429  }
1430  bool isDoubleSpacedVectorIndexed() const {
1431    return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
1432  }
1433  bool isVecListOneDByteIndexed() const {
1434    if (!isSingleSpacedVectorIndexed()) return false;
1435    return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
1436  }
1437
1438  bool isVecListOneDHWordIndexed() const {
1439    if (!isSingleSpacedVectorIndexed()) return false;
1440    return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
1441  }
1442
1443  bool isVecListOneDWordIndexed() const {
1444    if (!isSingleSpacedVectorIndexed()) return false;
1445    return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
1446  }
1447
1448  bool isVecListTwoDByteIndexed() const {
1449    if (!isSingleSpacedVectorIndexed()) return false;
1450    return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
1451  }
1452
1453  bool isVecListTwoDHWordIndexed() const {
1454    if (!isSingleSpacedVectorIndexed()) return false;
1455    return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
1456  }
1457
1458  bool isVecListTwoQWordIndexed() const {
1459    if (!isDoubleSpacedVectorIndexed()) return false;
1460    return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
1461  }
1462
1463  bool isVecListTwoQHWordIndexed() const {
1464    if (!isDoubleSpacedVectorIndexed()) return false;
1465    return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
1466  }
1467
1468  bool isVecListTwoDWordIndexed() const {
1469    if (!isSingleSpacedVectorIndexed()) return false;
1470    return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
1471  }
1472
1473  bool isVecListThreeDByteIndexed() const {
1474    if (!isSingleSpacedVectorIndexed()) return false;
1475    return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
1476  }
1477
1478  bool isVecListThreeDHWordIndexed() const {
1479    if (!isSingleSpacedVectorIndexed()) return false;
1480    return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
1481  }
1482
1483  bool isVecListThreeQWordIndexed() const {
1484    if (!isDoubleSpacedVectorIndexed()) return false;
1485    return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
1486  }
1487
1488  bool isVecListThreeQHWordIndexed() const {
1489    if (!isDoubleSpacedVectorIndexed()) return false;
1490    return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
1491  }
1492
1493  bool isVecListThreeDWordIndexed() const {
1494    if (!isSingleSpacedVectorIndexed()) return false;
1495    return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
1496  }
1497
1498  bool isVecListFourDByteIndexed() const {
1499    if (!isSingleSpacedVectorIndexed()) return false;
1500    return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
1501  }
1502
1503  bool isVecListFourDHWordIndexed() const {
1504    if (!isSingleSpacedVectorIndexed()) return false;
1505    return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
1506  }
1507
1508  bool isVecListFourQWordIndexed() const {
1509    if (!isDoubleSpacedVectorIndexed()) return false;
1510    return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
1511  }
1512
1513  bool isVecListFourQHWordIndexed() const {
1514    if (!isDoubleSpacedVectorIndexed()) return false;
1515    return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
1516  }
1517
1518  bool isVecListFourDWordIndexed() const {
1519    if (!isSingleSpacedVectorIndexed()) return false;
1520    return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
1521  }
1522
1523  bool isVectorIndex8() const {
1524    if (Kind != k_VectorIndex) return false;
1525    return VectorIndex.Val < 8;
1526  }
1527  bool isVectorIndex16() const {
1528    if (Kind != k_VectorIndex) return false;
1529    return VectorIndex.Val < 4;
1530  }
1531  bool isVectorIndex32() const {
1532    if (Kind != k_VectorIndex) return false;
1533    return VectorIndex.Val < 2;
1534  }
1535
1536  bool isNEONi8splat() const {
1537    if (!isImm()) return false;
1538    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1539    // Must be a constant.
1540    if (!CE) return false;
1541    int64_t Value = CE->getValue();
1542    // i8 value splatted across 8 bytes. The immediate is just the 8 byte
1543    // value.
1544    return Value >= 0 && Value < 256;
1545  }
1546
1547  bool isNEONi16splat() const {
1548    if (!isImm()) return false;
1549    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1550    // Must be a constant.
1551    if (!CE) return false;
1552    int64_t Value = CE->getValue();
1553    // i16 value in the range [0,255] or [0x0100, 0xff00]
1554    return (Value >= 0 && Value < 256) || (Value >= 0x0100 && Value <= 0xff00);
1555  }
1556
1557  bool isNEONi32splat() const {
1558    if (!isImm()) return false;
1559    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1560    // Must be a constant.
1561    if (!CE) return false;
1562    int64_t Value = CE->getValue();
1563    // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
1564    return (Value >= 0 && Value < 256) ||
1565      (Value >= 0x0100 && Value <= 0xff00) ||
1566      (Value >= 0x010000 && Value <= 0xff0000) ||
1567      (Value >= 0x01000000 && Value <= 0xff000000);
1568  }
1569
1570  bool isNEONi32vmov() const {
1571    if (!isImm()) return false;
1572    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1573    // Must be a constant.
1574    if (!CE) return false;
1575    int64_t Value = CE->getValue();
1576    // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
1577    // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
1578    return (Value >= 0 && Value < 256) ||
1579      (Value >= 0x0100 && Value <= 0xff00) ||
1580      (Value >= 0x010000 && Value <= 0xff0000) ||
1581      (Value >= 0x01000000 && Value <= 0xff000000) ||
1582      (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
1583      (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
1584  }
1585  bool isNEONi32vmovNeg() const {
1586    if (!isImm()) return false;
1587    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1588    // Must be a constant.
1589    if (!CE) return false;
1590    int64_t Value = ~CE->getValue();
1591    // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
1592    // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
1593    return (Value >= 0 && Value < 256) ||
1594      (Value >= 0x0100 && Value <= 0xff00) ||
1595      (Value >= 0x010000 && Value <= 0xff0000) ||
1596      (Value >= 0x01000000 && Value <= 0xff000000) ||
1597      (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
1598      (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
1599  }
1600
1601  bool isNEONi64splat() const {
1602    if (!isImm()) return false;
1603    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1604    // Must be a constant.
1605    if (!CE) return false;
1606    uint64_t Value = CE->getValue();
1607    // i64 value with each byte being either 0 or 0xff.
1608    for (unsigned i = 0; i < 8; ++i)
1609      if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
1610    return true;
1611  }
1612
1613  void addExpr(MCInst &Inst, const MCExpr *Expr) const {
1614    // Add as immediates when possible.  Null MCExpr = 0.
1615    if (Expr == 0)
1616      Inst.addOperand(MCOperand::CreateImm(0));
1617    else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
1618      Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
1619    else
1620      Inst.addOperand(MCOperand::CreateExpr(Expr));
1621  }
1622
1623  void addCondCodeOperands(MCInst &Inst, unsigned N) const {
1624    assert(N == 2 && "Invalid number of operands!");
1625    Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
1626    unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
1627    Inst.addOperand(MCOperand::CreateReg(RegNum));
1628  }
1629
1630  void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
1631    assert(N == 1 && "Invalid number of operands!");
1632    Inst.addOperand(MCOperand::CreateImm(getCoproc()));
1633  }
1634
1635  void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
1636    assert(N == 1 && "Invalid number of operands!");
1637    Inst.addOperand(MCOperand::CreateImm(getCoproc()));
1638  }
1639
1640  void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
1641    assert(N == 1 && "Invalid number of operands!");
1642    Inst.addOperand(MCOperand::CreateImm(CoprocOption.Val));
1643  }
1644
1645  void addITMaskOperands(MCInst &Inst, unsigned N) const {
1646    assert(N == 1 && "Invalid number of operands!");
1647    Inst.addOperand(MCOperand::CreateImm(ITMask.Mask));
1648  }
1649
1650  void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
1651    assert(N == 1 && "Invalid number of operands!");
1652    Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
1653  }
1654
1655  void addCCOutOperands(MCInst &Inst, unsigned N) const {
1656    assert(N == 1 && "Invalid number of operands!");
1657    Inst.addOperand(MCOperand::CreateReg(getReg()));
1658  }
1659
1660  void addRegOperands(MCInst &Inst, unsigned N) const {
1661    assert(N == 1 && "Invalid number of operands!");
1662    Inst.addOperand(MCOperand::CreateReg(getReg()));
1663  }
1664
1665  void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
1666    assert(N == 3 && "Invalid number of operands!");
1667    assert(isRegShiftedReg() &&
1668           "addRegShiftedRegOperands() on non-RegShiftedReg!");
1669    Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.SrcReg));
1670    Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.ShiftReg));
1671    Inst.addOperand(MCOperand::CreateImm(
1672      ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
1673  }
1674
1675  void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
1676    assert(N == 2 && "Invalid number of operands!");
1677    assert(isRegShiftedImm() &&
1678           "addRegShiftedImmOperands() on non-RegShiftedImm!");
1679    Inst.addOperand(MCOperand::CreateReg(RegShiftedImm.SrcReg));
1680    // Shift of #32 is encoded as 0 where permitted
1681    unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
1682    Inst.addOperand(MCOperand::CreateImm(
1683      ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
1684  }
1685
1686  void addShifterImmOperands(MCInst &Inst, unsigned N) const {
1687    assert(N == 1 && "Invalid number of operands!");
1688    Inst.addOperand(MCOperand::CreateImm((ShifterImm.isASR << 5) |
1689                                         ShifterImm.Imm));
1690  }
1691
1692  void addRegListOperands(MCInst &Inst, unsigned N) const {
1693    assert(N == 1 && "Invalid number of operands!");
1694    const SmallVectorImpl<unsigned> &RegList = getRegList();
1695    for (SmallVectorImpl<unsigned>::const_iterator
1696           I = RegList.begin(), E = RegList.end(); I != E; ++I)
1697      Inst.addOperand(MCOperand::CreateReg(*I));
1698  }
1699
1700  void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
1701    addRegListOperands(Inst, N);
1702  }
1703
1704  void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
1705    addRegListOperands(Inst, N);
1706  }
1707
1708  void addRotImmOperands(MCInst &Inst, unsigned N) const {
1709    assert(N == 1 && "Invalid number of operands!");
1710    // Encoded as val>>3. The printer handles display as 8, 16, 24.
1711    Inst.addOperand(MCOperand::CreateImm(RotImm.Imm >> 3));
1712  }
1713
1714  void addBitfieldOperands(MCInst &Inst, unsigned N) const {
1715    assert(N == 1 && "Invalid number of operands!");
1716    // Munge the lsb/width into a bitfield mask.
1717    unsigned lsb = Bitfield.LSB;
1718    unsigned width = Bitfield.Width;
1719    // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
1720    uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
1721                      (32 - (lsb + width)));
1722    Inst.addOperand(MCOperand::CreateImm(Mask));
1723  }
1724
1725  void addImmOperands(MCInst &Inst, unsigned N) const {
1726    assert(N == 1 && "Invalid number of operands!");
1727    addExpr(Inst, getImm());
1728  }
1729
1730  void addFBits16Operands(MCInst &Inst, unsigned N) const {
1731    assert(N == 1 && "Invalid number of operands!");
1732    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1733    Inst.addOperand(MCOperand::CreateImm(16 - CE->getValue()));
1734  }
1735
1736  void addFBits32Operands(MCInst &Inst, unsigned N) const {
1737    assert(N == 1 && "Invalid number of operands!");
1738    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1739    Inst.addOperand(MCOperand::CreateImm(32 - CE->getValue()));
1740  }
1741
1742  void addFPImmOperands(MCInst &Inst, unsigned N) const {
1743    assert(N == 1 && "Invalid number of operands!");
1744    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1745    int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
1746    Inst.addOperand(MCOperand::CreateImm(Val));
1747  }
1748
1749  void addImm8s4Operands(MCInst &Inst, unsigned N) const {
1750    assert(N == 1 && "Invalid number of operands!");
1751    // FIXME: We really want to scale the value here, but the LDRD/STRD
1752    // instruction don't encode operands that way yet.
1753    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1754    Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
1755  }
1756
1757  void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
1758    assert(N == 1 && "Invalid number of operands!");
1759    // The immediate is scaled by four in the encoding and is stored
1760    // in the MCInst as such. Lop off the low two bits here.
1761    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1762    Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
1763  }
1764
1765  void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
1766    assert(N == 1 && "Invalid number of operands!");
1767    // The immediate is scaled by four in the encoding and is stored
1768    // in the MCInst as such. Lop off the low two bits here.
1769    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1770    Inst.addOperand(MCOperand::CreateImm(-(CE->getValue() / 4)));
1771  }
1772
1773  void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
1774    assert(N == 1 && "Invalid number of operands!");
1775    // The immediate is scaled by four in the encoding and is stored
1776    // in the MCInst as such. Lop off the low two bits here.
1777    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1778    Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
1779  }
1780
1781  void addImm1_16Operands(MCInst &Inst, unsigned N) const {
1782    assert(N == 1 && "Invalid number of operands!");
1783    // The constant encodes as the immediate-1, and we store in the instruction
1784    // the bits as encoded, so subtract off one here.
1785    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1786    Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
1787  }
1788
1789  void addImm1_32Operands(MCInst &Inst, unsigned N) const {
1790    assert(N == 1 && "Invalid number of operands!");
1791    // The constant encodes as the immediate-1, and we store in the instruction
1792    // the bits as encoded, so subtract off one here.
1793    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1794    Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
1795  }
1796
1797  void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
1798    assert(N == 1 && "Invalid number of operands!");
1799    // The constant encodes as the immediate, except for 32, which encodes as
1800    // zero.
1801    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1802    unsigned Imm = CE->getValue();
1803    Inst.addOperand(MCOperand::CreateImm((Imm == 32 ? 0 : Imm)));
1804  }
1805
1806  void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
1807    assert(N == 1 && "Invalid number of operands!");
1808    // An ASR value of 32 encodes as 0, so that's how we want to add it to
1809    // the instruction as well.
1810    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1811    int Val = CE->getValue();
1812    Inst.addOperand(MCOperand::CreateImm(Val == 32 ? 0 : Val));
1813  }
1814
1815  void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
1816    assert(N == 1 && "Invalid number of operands!");
1817    // The operand is actually a t2_so_imm, but we have its bitwise
1818    // negation in the assembly source, so twiddle it here.
1819    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1820    Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
1821  }
1822
1823  void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
1824    assert(N == 1 && "Invalid number of operands!");
1825    // The operand is actually a t2_so_imm, but we have its
1826    // negation in the assembly source, so twiddle it here.
1827    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1828    Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
1829  }
1830
1831  void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
1832    assert(N == 1 && "Invalid number of operands!");
1833    // The operand is actually an imm0_4095, but we have its
1834    // negation in the assembly source, so twiddle it here.
1835    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1836    Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
1837  }
1838
1839  void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const {
1840    if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) {
1841      Inst.addOperand(MCOperand::CreateImm(CE->getValue() >> 2));
1842      return;
1843    }
1844
1845    const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
1846    assert(SR && "Unknown value type!");
1847    Inst.addOperand(MCOperand::CreateExpr(SR));
1848  }
1849
1850  void addThumbMemPCOperands(MCInst &Inst, unsigned N) const {
1851    assert(N == 1 && "Invalid number of operands!");
1852    if (isImm()) {
1853      const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1854      if (CE) {
1855        Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
1856        return;
1857      }
1858
1859      const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
1860      assert(SR && "Unknown value type!");
1861      Inst.addOperand(MCOperand::CreateExpr(SR));
1862      return;
1863    }
1864
1865    assert(isMem()  && "Unknown value type!");
1866    assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!");
1867    Inst.addOperand(MCOperand::CreateImm(Memory.OffsetImm->getValue()));
1868  }
1869
1870  void addARMSOImmNotOperands(MCInst &Inst, unsigned N) const {
1871    assert(N == 1 && "Invalid number of operands!");
1872    // The operand is actually a so_imm, but we have its bitwise
1873    // negation in the assembly source, so twiddle it here.
1874    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1875    Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
1876  }
1877
1878  void addARMSOImmNegOperands(MCInst &Inst, unsigned N) const {
1879    assert(N == 1 && "Invalid number of operands!");
1880    // The operand is actually a so_imm, but we have its
1881    // negation in the assembly source, so twiddle it here.
1882    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1883    Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
1884  }
1885
1886  void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
1887    assert(N == 1 && "Invalid number of operands!");
1888    Inst.addOperand(MCOperand::CreateImm(unsigned(getMemBarrierOpt())));
1889  }
1890
1891  void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
1892    assert(N == 1 && "Invalid number of operands!");
1893    Inst.addOperand(MCOperand::CreateImm(unsigned(getInstSyncBarrierOpt())));
1894  }
1895
1896  void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
1897    assert(N == 1 && "Invalid number of operands!");
1898    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1899  }
1900
1901  void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
1902    assert(N == 1 && "Invalid number of operands!");
1903    int32_t Imm = Memory.OffsetImm->getValue();
1904    Inst.addOperand(MCOperand::CreateImm(Imm));
1905  }
1906
1907  void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
1908    assert(N == 1 && "Invalid number of operands!");
1909    assert(isImm() && "Not an immediate!");
1910
1911    // If we have an immediate that's not a constant, treat it as a label
1912    // reference needing a fixup.
1913    if (!isa<MCConstantExpr>(getImm())) {
1914      Inst.addOperand(MCOperand::CreateExpr(getImm()));
1915      return;
1916    }
1917
1918    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1919    int Val = CE->getValue();
1920    Inst.addOperand(MCOperand::CreateImm(Val));
1921  }
1922
1923  void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
1924    assert(N == 2 && "Invalid number of operands!");
1925    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1926    Inst.addOperand(MCOperand::CreateImm(Memory.Alignment));
1927  }
1928
1929  void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
1930    assert(N == 3 && "Invalid number of operands!");
1931    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1932    if (!Memory.OffsetRegNum) {
1933      ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1934      // Special case for #-0
1935      if (Val == INT32_MIN) Val = 0;
1936      if (Val < 0) Val = -Val;
1937      Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
1938    } else {
1939      // For register offset, we encode the shift type and negation flag
1940      // here.
1941      Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
1942                              Memory.ShiftImm, Memory.ShiftType);
1943    }
1944    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1945    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1946    Inst.addOperand(MCOperand::CreateImm(Val));
1947  }
1948
1949  void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
1950    assert(N == 2 && "Invalid number of operands!");
1951    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1952    assert(CE && "non-constant AM2OffsetImm operand!");
1953    int32_t Val = CE->getValue();
1954    ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1955    // Special case for #-0
1956    if (Val == INT32_MIN) Val = 0;
1957    if (Val < 0) Val = -Val;
1958    Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
1959    Inst.addOperand(MCOperand::CreateReg(0));
1960    Inst.addOperand(MCOperand::CreateImm(Val));
1961  }
1962
1963  void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
1964    assert(N == 3 && "Invalid number of operands!");
1965    // If we have an immediate that's not a constant, treat it as a label
1966    // reference needing a fixup. If it is a constant, it's something else
1967    // and we reject it.
1968    if (isImm()) {
1969      Inst.addOperand(MCOperand::CreateExpr(getImm()));
1970      Inst.addOperand(MCOperand::CreateReg(0));
1971      Inst.addOperand(MCOperand::CreateImm(0));
1972      return;
1973    }
1974
1975    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1976    if (!Memory.OffsetRegNum) {
1977      ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1978      // Special case for #-0
1979      if (Val == INT32_MIN) Val = 0;
1980      if (Val < 0) Val = -Val;
1981      Val = ARM_AM::getAM3Opc(AddSub, Val);
1982    } else {
1983      // For register offset, we encode the shift type and negation flag
1984      // here.
1985      Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
1986    }
1987    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1988    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1989    Inst.addOperand(MCOperand::CreateImm(Val));
1990  }
1991
1992  void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
1993    assert(N == 2 && "Invalid number of operands!");
1994    if (Kind == k_PostIndexRegister) {
1995      int32_t Val =
1996        ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
1997      Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
1998      Inst.addOperand(MCOperand::CreateImm(Val));
1999      return;
2000    }
2001
2002    // Constant offset.
2003    const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
2004    int32_t Val = CE->getValue();
2005    ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2006    // Special case for #-0
2007    if (Val == INT32_MIN) Val = 0;
2008    if (Val < 0) Val = -Val;
2009    Val = ARM_AM::getAM3Opc(AddSub, Val);
2010    Inst.addOperand(MCOperand::CreateReg(0));
2011    Inst.addOperand(MCOperand::CreateImm(Val));
2012  }
2013
2014  void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
2015    assert(N == 2 && "Invalid number of operands!");
2016    // If we have an immediate that's not a constant, treat it as a label
2017    // reference needing a fixup. If it is a constant, it's something else
2018    // and we reject it.
2019    if (isImm()) {
2020      Inst.addOperand(MCOperand::CreateExpr(getImm()));
2021      Inst.addOperand(MCOperand::CreateImm(0));
2022      return;
2023    }
2024
2025    // The lower two bits are always zero and as such are not encoded.
2026    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
2027    ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2028    // Special case for #-0
2029    if (Val == INT32_MIN) Val = 0;
2030    if (Val < 0) Val = -Val;
2031    Val = ARM_AM::getAM5Opc(AddSub, Val);
2032    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2033    Inst.addOperand(MCOperand::CreateImm(Val));
2034  }
2035
2036  void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
2037    assert(N == 2 && "Invalid number of operands!");
2038    // If we have an immediate that's not a constant, treat it as a label
2039    // reference needing a fixup. If it is a constant, it's something else
2040    // and we reject it.
2041    if (isImm()) {
2042      Inst.addOperand(MCOperand::CreateExpr(getImm()));
2043      Inst.addOperand(MCOperand::CreateImm(0));
2044      return;
2045    }
2046
2047    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2048    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2049    Inst.addOperand(MCOperand::CreateImm(Val));
2050  }
2051
2052  void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
2053    assert(N == 2 && "Invalid number of operands!");
2054    // The lower two bits are always zero and as such are not encoded.
2055    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
2056    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2057    Inst.addOperand(MCOperand::CreateImm(Val));
2058  }
2059
2060  void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const {
2061    assert(N == 2 && "Invalid number of operands!");
2062    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2063    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2064    Inst.addOperand(MCOperand::CreateImm(Val));
2065  }
2066
2067  void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const {
2068    addMemImm8OffsetOperands(Inst, N);
2069  }
2070
2071  void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const {
2072    addMemImm8OffsetOperands(Inst, N);
2073  }
2074
2075  void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
2076    assert(N == 2 && "Invalid number of operands!");
2077    // If this is an immediate, it's a label reference.
2078    if (isImm()) {
2079      addExpr(Inst, getImm());
2080      Inst.addOperand(MCOperand::CreateImm(0));
2081      return;
2082    }
2083
2084    // Otherwise, it's a normal memory reg+offset.
2085    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2086    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2087    Inst.addOperand(MCOperand::CreateImm(Val));
2088  }
2089
2090  void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
2091    assert(N == 2 && "Invalid number of operands!");
2092    // If this is an immediate, it's a label reference.
2093    if (isImm()) {
2094      addExpr(Inst, getImm());
2095      Inst.addOperand(MCOperand::CreateImm(0));
2096      return;
2097    }
2098
2099    // Otherwise, it's a normal memory reg+offset.
2100    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2101    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2102    Inst.addOperand(MCOperand::CreateImm(Val));
2103  }
2104
2105  void addMemTBBOperands(MCInst &Inst, unsigned N) const {
2106    assert(N == 2 && "Invalid number of operands!");
2107    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2108    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
2109  }
2110
2111  void addMemTBHOperands(MCInst &Inst, unsigned N) const {
2112    assert(N == 2 && "Invalid number of operands!");
2113    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2114    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
2115  }
2116
2117  void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
2118    assert(N == 3 && "Invalid number of operands!");
2119    unsigned Val =
2120      ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
2121                        Memory.ShiftImm, Memory.ShiftType);
2122    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2123    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
2124    Inst.addOperand(MCOperand::CreateImm(Val));
2125  }
2126
2127  void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
2128    assert(N == 3 && "Invalid number of operands!");
2129    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2130    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
2131    Inst.addOperand(MCOperand::CreateImm(Memory.ShiftImm));
2132  }
2133
2134  void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
2135    assert(N == 2 && "Invalid number of operands!");
2136    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2137    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
2138  }
2139
2140  void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
2141    assert(N == 2 && "Invalid number of operands!");
2142    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
2143    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2144    Inst.addOperand(MCOperand::CreateImm(Val));
2145  }
2146
2147  void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
2148    assert(N == 2 && "Invalid number of operands!");
2149    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0;
2150    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2151    Inst.addOperand(MCOperand::CreateImm(Val));
2152  }
2153
2154  void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
2155    assert(N == 2 && "Invalid number of operands!");
2156    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0;
2157    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2158    Inst.addOperand(MCOperand::CreateImm(Val));
2159  }
2160
2161  void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
2162    assert(N == 2 && "Invalid number of operands!");
2163    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
2164    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2165    Inst.addOperand(MCOperand::CreateImm(Val));
2166  }
2167
2168  void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
2169    assert(N == 1 && "Invalid number of operands!");
2170    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2171    assert(CE && "non-constant post-idx-imm8 operand!");
2172    int Imm = CE->getValue();
2173    bool isAdd = Imm >= 0;
2174    if (Imm == INT32_MIN) Imm = 0;
2175    Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
2176    Inst.addOperand(MCOperand::CreateImm(Imm));
2177  }
2178
2179  void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
2180    assert(N == 1 && "Invalid number of operands!");
2181    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2182    assert(CE && "non-constant post-idx-imm8s4 operand!");
2183    int Imm = CE->getValue();
2184    bool isAdd = Imm >= 0;
2185    if (Imm == INT32_MIN) Imm = 0;
2186    // Immediate is scaled by 4.
2187    Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
2188    Inst.addOperand(MCOperand::CreateImm(Imm));
2189  }
2190
2191  void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
2192    assert(N == 2 && "Invalid number of operands!");
2193    Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
2194    Inst.addOperand(MCOperand::CreateImm(PostIdxReg.isAdd));
2195  }
2196
2197  void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
2198    assert(N == 2 && "Invalid number of operands!");
2199    Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
2200    // The sign, shift type, and shift amount are encoded in a single operand
2201    // using the AM2 encoding helpers.
2202    ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
2203    unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
2204                                     PostIdxReg.ShiftTy);
2205    Inst.addOperand(MCOperand::CreateImm(Imm));
2206  }
2207
2208  void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
2209    assert(N == 1 && "Invalid number of operands!");
2210    Inst.addOperand(MCOperand::CreateImm(unsigned(getMSRMask())));
2211  }
2212
2213  void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
2214    assert(N == 1 && "Invalid number of operands!");
2215    Inst.addOperand(MCOperand::CreateImm(unsigned(getProcIFlags())));
2216  }
2217
2218  void addVecListOperands(MCInst &Inst, unsigned N) const {
2219    assert(N == 1 && "Invalid number of operands!");
2220    Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
2221  }
2222
2223  void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
2224    assert(N == 2 && "Invalid number of operands!");
2225    Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
2226    Inst.addOperand(MCOperand::CreateImm(VectorList.LaneIndex));
2227  }
2228
2229  void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
2230    assert(N == 1 && "Invalid number of operands!");
2231    Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
2232  }
2233
2234  void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
2235    assert(N == 1 && "Invalid number of operands!");
2236    Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
2237  }
2238
2239  void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
2240    assert(N == 1 && "Invalid number of operands!");
2241    Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
2242  }
2243
2244  void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
2245    assert(N == 1 && "Invalid number of operands!");
2246    // The immediate encodes the type of constant as well as the value.
2247    // Mask in that this is an i8 splat.
2248    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2249    Inst.addOperand(MCOperand::CreateImm(CE->getValue() | 0xe00));
2250  }
2251
2252  void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
2253    assert(N == 1 && "Invalid number of operands!");
2254    // The immediate encodes the type of constant as well as the value.
2255    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2256    unsigned Value = CE->getValue();
2257    if (Value >= 256)
2258      Value = (Value >> 8) | 0xa00;
2259    else
2260      Value |= 0x800;
2261    Inst.addOperand(MCOperand::CreateImm(Value));
2262  }
2263
2264  void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
2265    assert(N == 1 && "Invalid number of operands!");
2266    // The immediate encodes the type of constant as well as the value.
2267    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2268    unsigned Value = CE->getValue();
2269    if (Value >= 256 && Value <= 0xff00)
2270      Value = (Value >> 8) | 0x200;
2271    else if (Value > 0xffff && Value <= 0xff0000)
2272      Value = (Value >> 16) | 0x400;
2273    else if (Value > 0xffffff)
2274      Value = (Value >> 24) | 0x600;
2275    Inst.addOperand(MCOperand::CreateImm(Value));
2276  }
2277
2278  void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
2279    assert(N == 1 && "Invalid number of operands!");
2280    // The immediate encodes the type of constant as well as the value.
2281    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2282    unsigned Value = CE->getValue();
2283    if (Value >= 256 && Value <= 0xffff)
2284      Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
2285    else if (Value > 0xffff && Value <= 0xffffff)
2286      Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
2287    else if (Value > 0xffffff)
2288      Value = (Value >> 24) | 0x600;
2289    Inst.addOperand(MCOperand::CreateImm(Value));
2290  }
2291
2292  void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
2293    assert(N == 1 && "Invalid number of operands!");
2294    // The immediate encodes the type of constant as well as the value.
2295    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2296    unsigned Value = ~CE->getValue();
2297    if (Value >= 256 && Value <= 0xffff)
2298      Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
2299    else if (Value > 0xffff && Value <= 0xffffff)
2300      Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
2301    else if (Value > 0xffffff)
2302      Value = (Value >> 24) | 0x600;
2303    Inst.addOperand(MCOperand::CreateImm(Value));
2304  }
2305
2306  void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
2307    assert(N == 1 && "Invalid number of operands!");
2308    // The immediate encodes the type of constant as well as the value.
2309    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2310    uint64_t Value = CE->getValue();
2311    unsigned Imm = 0;
2312    for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
2313      Imm |= (Value & 1) << i;
2314    }
2315    Inst.addOperand(MCOperand::CreateImm(Imm | 0x1e00));
2316  }
2317
2318  void print(raw_ostream &OS) const override;
2319
2320  static ARMOperand *CreateITMask(unsigned Mask, SMLoc S) {
2321    ARMOperand *Op = new ARMOperand(k_ITCondMask);
2322    Op->ITMask.Mask = Mask;
2323    Op->StartLoc = S;
2324    Op->EndLoc = S;
2325    return Op;
2326  }
2327
2328  static ARMOperand *CreateCondCode(ARMCC::CondCodes CC, SMLoc S) {
2329    ARMOperand *Op = new ARMOperand(k_CondCode);
2330    Op->CC.Val = CC;
2331    Op->StartLoc = S;
2332    Op->EndLoc = S;
2333    return Op;
2334  }
2335
2336  static ARMOperand *CreateCoprocNum(unsigned CopVal, SMLoc S) {
2337    ARMOperand *Op = new ARMOperand(k_CoprocNum);
2338    Op->Cop.Val = CopVal;
2339    Op->StartLoc = S;
2340    Op->EndLoc = S;
2341    return Op;
2342  }
2343
2344  static ARMOperand *CreateCoprocReg(unsigned CopVal, SMLoc S) {
2345    ARMOperand *Op = new ARMOperand(k_CoprocReg);
2346    Op->Cop.Val = CopVal;
2347    Op->StartLoc = S;
2348    Op->EndLoc = S;
2349    return Op;
2350  }
2351
2352  static ARMOperand *CreateCoprocOption(unsigned Val, SMLoc S, SMLoc E) {
2353    ARMOperand *Op = new ARMOperand(k_CoprocOption);
2354    Op->Cop.Val = Val;
2355    Op->StartLoc = S;
2356    Op->EndLoc = E;
2357    return Op;
2358  }
2359
2360  static ARMOperand *CreateCCOut(unsigned RegNum, SMLoc S) {
2361    ARMOperand *Op = new ARMOperand(k_CCOut);
2362    Op->Reg.RegNum = RegNum;
2363    Op->StartLoc = S;
2364    Op->EndLoc = S;
2365    return Op;
2366  }
2367
2368  static ARMOperand *CreateToken(StringRef Str, SMLoc S) {
2369    ARMOperand *Op = new ARMOperand(k_Token);
2370    Op->Tok.Data = Str.data();
2371    Op->Tok.Length = Str.size();
2372    Op->StartLoc = S;
2373    Op->EndLoc = S;
2374    return Op;
2375  }
2376
2377  static ARMOperand *CreateReg(unsigned RegNum, SMLoc S, SMLoc E) {
2378    ARMOperand *Op = new ARMOperand(k_Register);
2379    Op->Reg.RegNum = RegNum;
2380    Op->StartLoc = S;
2381    Op->EndLoc = E;
2382    return Op;
2383  }
2384
2385  static ARMOperand *CreateShiftedRegister(ARM_AM::ShiftOpc ShTy,
2386                                           unsigned SrcReg,
2387                                           unsigned ShiftReg,
2388                                           unsigned ShiftImm,
2389                                           SMLoc S, SMLoc E) {
2390    ARMOperand *Op = new ARMOperand(k_ShiftedRegister);
2391    Op->RegShiftedReg.ShiftTy = ShTy;
2392    Op->RegShiftedReg.SrcReg = SrcReg;
2393    Op->RegShiftedReg.ShiftReg = ShiftReg;
2394    Op->RegShiftedReg.ShiftImm = ShiftImm;
2395    Op->StartLoc = S;
2396    Op->EndLoc = E;
2397    return Op;
2398  }
2399
2400  static ARMOperand *CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy,
2401                                            unsigned SrcReg,
2402                                            unsigned ShiftImm,
2403                                            SMLoc S, SMLoc E) {
2404    ARMOperand *Op = new ARMOperand(k_ShiftedImmediate);
2405    Op->RegShiftedImm.ShiftTy = ShTy;
2406    Op->RegShiftedImm.SrcReg = SrcReg;
2407    Op->RegShiftedImm.ShiftImm = ShiftImm;
2408    Op->StartLoc = S;
2409    Op->EndLoc = E;
2410    return Op;
2411  }
2412
2413  static ARMOperand *CreateShifterImm(bool isASR, unsigned Imm,
2414                                   SMLoc S, SMLoc E) {
2415    ARMOperand *Op = new ARMOperand(k_ShifterImmediate);
2416    Op->ShifterImm.isASR = isASR;
2417    Op->ShifterImm.Imm = Imm;
2418    Op->StartLoc = S;
2419    Op->EndLoc = E;
2420    return Op;
2421  }
2422
2423  static ARMOperand *CreateRotImm(unsigned Imm, SMLoc S, SMLoc E) {
2424    ARMOperand *Op = new ARMOperand(k_RotateImmediate);
2425    Op->RotImm.Imm = Imm;
2426    Op->StartLoc = S;
2427    Op->EndLoc = E;
2428    return Op;
2429  }
2430
2431  static ARMOperand *CreateBitfield(unsigned LSB, unsigned Width,
2432                                    SMLoc S, SMLoc E) {
2433    ARMOperand *Op = new ARMOperand(k_BitfieldDescriptor);
2434    Op->Bitfield.LSB = LSB;
2435    Op->Bitfield.Width = Width;
2436    Op->StartLoc = S;
2437    Op->EndLoc = E;
2438    return Op;
2439  }
2440
2441  static ARMOperand *
2442  CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned> > &Regs,
2443                SMLoc StartLoc, SMLoc EndLoc) {
2444    assert (Regs.size() > 0 && "RegList contains no registers?");
2445    KindTy Kind = k_RegisterList;
2446
2447    if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second))
2448      Kind = k_DPRRegisterList;
2449    else if (ARMMCRegisterClasses[ARM::SPRRegClassID].
2450             contains(Regs.front().second))
2451      Kind = k_SPRRegisterList;
2452
2453    // Sort based on the register encoding values.
2454    array_pod_sort(Regs.begin(), Regs.end());
2455
2456    ARMOperand *Op = new ARMOperand(Kind);
2457    for (SmallVectorImpl<std::pair<unsigned, unsigned> >::const_iterator
2458           I = Regs.begin(), E = Regs.end(); I != E; ++I)
2459      Op->Registers.push_back(I->second);
2460    Op->StartLoc = StartLoc;
2461    Op->EndLoc = EndLoc;
2462    return Op;
2463  }
2464
2465  static ARMOperand *CreateVectorList(unsigned RegNum, unsigned Count,
2466                                      bool isDoubleSpaced, SMLoc S, SMLoc E) {
2467    ARMOperand *Op = new ARMOperand(k_VectorList);
2468    Op->VectorList.RegNum = RegNum;
2469    Op->VectorList.Count = Count;
2470    Op->VectorList.isDoubleSpaced = isDoubleSpaced;
2471    Op->StartLoc = S;
2472    Op->EndLoc = E;
2473    return Op;
2474  }
2475
2476  static ARMOperand *CreateVectorListAllLanes(unsigned RegNum, unsigned Count,
2477                                              bool isDoubleSpaced,
2478                                              SMLoc S, SMLoc E) {
2479    ARMOperand *Op = new ARMOperand(k_VectorListAllLanes);
2480    Op->VectorList.RegNum = RegNum;
2481    Op->VectorList.Count = Count;
2482    Op->VectorList.isDoubleSpaced = isDoubleSpaced;
2483    Op->StartLoc = S;
2484    Op->EndLoc = E;
2485    return Op;
2486  }
2487
2488  static ARMOperand *CreateVectorListIndexed(unsigned RegNum, unsigned Count,
2489                                             unsigned Index,
2490                                             bool isDoubleSpaced,
2491                                             SMLoc S, SMLoc E) {
2492    ARMOperand *Op = new ARMOperand(k_VectorListIndexed);
2493    Op->VectorList.RegNum = RegNum;
2494    Op->VectorList.Count = Count;
2495    Op->VectorList.LaneIndex = Index;
2496    Op->VectorList.isDoubleSpaced = isDoubleSpaced;
2497    Op->StartLoc = S;
2498    Op->EndLoc = E;
2499    return Op;
2500  }
2501
2502  static ARMOperand *CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E,
2503                                       MCContext &Ctx) {
2504    ARMOperand *Op = new ARMOperand(k_VectorIndex);
2505    Op->VectorIndex.Val = Idx;
2506    Op->StartLoc = S;
2507    Op->EndLoc = E;
2508    return Op;
2509  }
2510
2511  static ARMOperand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) {
2512    ARMOperand *Op = new ARMOperand(k_Immediate);
2513    Op->Imm.Val = Val;
2514    Op->StartLoc = S;
2515    Op->EndLoc = E;
2516    return Op;
2517  }
2518
2519  static ARMOperand *CreateMem(unsigned BaseRegNum,
2520                               const MCConstantExpr *OffsetImm,
2521                               unsigned OffsetRegNum,
2522                               ARM_AM::ShiftOpc ShiftType,
2523                               unsigned ShiftImm,
2524                               unsigned Alignment,
2525                               bool isNegative,
2526                               SMLoc S, SMLoc E) {
2527    ARMOperand *Op = new ARMOperand(k_Memory);
2528    Op->Memory.BaseRegNum = BaseRegNum;
2529    Op->Memory.OffsetImm = OffsetImm;
2530    Op->Memory.OffsetRegNum = OffsetRegNum;
2531    Op->Memory.ShiftType = ShiftType;
2532    Op->Memory.ShiftImm = ShiftImm;
2533    Op->Memory.Alignment = Alignment;
2534    Op->Memory.isNegative = isNegative;
2535    Op->StartLoc = S;
2536    Op->EndLoc = E;
2537    return Op;
2538  }
2539
2540  static ARMOperand *CreatePostIdxReg(unsigned RegNum, bool isAdd,
2541                                      ARM_AM::ShiftOpc ShiftTy,
2542                                      unsigned ShiftImm,
2543                                      SMLoc S, SMLoc E) {
2544    ARMOperand *Op = new ARMOperand(k_PostIndexRegister);
2545    Op->PostIdxReg.RegNum = RegNum;
2546    Op->PostIdxReg.isAdd = isAdd;
2547    Op->PostIdxReg.ShiftTy = ShiftTy;
2548    Op->PostIdxReg.ShiftImm = ShiftImm;
2549    Op->StartLoc = S;
2550    Op->EndLoc = E;
2551    return Op;
2552  }
2553
2554  static ARMOperand *CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, SMLoc S) {
2555    ARMOperand *Op = new ARMOperand(k_MemBarrierOpt);
2556    Op->MBOpt.Val = Opt;
2557    Op->StartLoc = S;
2558    Op->EndLoc = S;
2559    return Op;
2560  }
2561
2562  static ARMOperand *CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt,
2563                                              SMLoc S) {
2564    ARMOperand *Op = new ARMOperand(k_InstSyncBarrierOpt);
2565    Op->ISBOpt.Val = Opt;
2566    Op->StartLoc = S;
2567    Op->EndLoc = S;
2568    return Op;
2569  }
2570
2571  static ARMOperand *CreateProcIFlags(ARM_PROC::IFlags IFlags, SMLoc S) {
2572    ARMOperand *Op = new ARMOperand(k_ProcIFlags);
2573    Op->IFlags.Val = IFlags;
2574    Op->StartLoc = S;
2575    Op->EndLoc = S;
2576    return Op;
2577  }
2578
2579  static ARMOperand *CreateMSRMask(unsigned MMask, SMLoc S) {
2580    ARMOperand *Op = new ARMOperand(k_MSRMask);
2581    Op->MMask.Val = MMask;
2582    Op->StartLoc = S;
2583    Op->EndLoc = S;
2584    return Op;
2585  }
2586};
2587
2588} // end anonymous namespace.
2589
2590void ARMOperand::print(raw_ostream &OS) const {
2591  switch (Kind) {
2592  case k_CondCode:
2593    OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
2594    break;
2595  case k_CCOut:
2596    OS << "<ccout " << getReg() << ">";
2597    break;
2598  case k_ITCondMask: {
2599    static const char *const MaskStr[] = {
2600      "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)",
2601      "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)"
2602    };
2603    assert((ITMask.Mask & 0xf) == ITMask.Mask);
2604    OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
2605    break;
2606  }
2607  case k_CoprocNum:
2608    OS << "<coprocessor number: " << getCoproc() << ">";
2609    break;
2610  case k_CoprocReg:
2611    OS << "<coprocessor register: " << getCoproc() << ">";
2612    break;
2613  case k_CoprocOption:
2614    OS << "<coprocessor option: " << CoprocOption.Val << ">";
2615    break;
2616  case k_MSRMask:
2617    OS << "<mask: " << getMSRMask() << ">";
2618    break;
2619  case k_Immediate:
2620    getImm()->print(OS);
2621    break;
2622  case k_MemBarrierOpt:
2623    OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">";
2624    break;
2625  case k_InstSyncBarrierOpt:
2626    OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
2627    break;
2628  case k_Memory:
2629    OS << "<memory "
2630       << " base:" << Memory.BaseRegNum;
2631    OS << ">";
2632    break;
2633  case k_PostIndexRegister:
2634    OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
2635       << PostIdxReg.RegNum;
2636    if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
2637      OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
2638         << PostIdxReg.ShiftImm;
2639    OS << ">";
2640    break;
2641  case k_ProcIFlags: {
2642    OS << "<ARM_PROC::";
2643    unsigned IFlags = getProcIFlags();
2644    for (int i=2; i >= 0; --i)
2645      if (IFlags & (1 << i))
2646        OS << ARM_PROC::IFlagsToString(1 << i);
2647    OS << ">";
2648    break;
2649  }
2650  case k_Register:
2651    OS << "<register " << getReg() << ">";
2652    break;
2653  case k_ShifterImmediate:
2654    OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
2655       << " #" << ShifterImm.Imm << ">";
2656    break;
2657  case k_ShiftedRegister:
2658    OS << "<so_reg_reg "
2659       << RegShiftedReg.SrcReg << " "
2660       << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy)
2661       << " " << RegShiftedReg.ShiftReg << ">";
2662    break;
2663  case k_ShiftedImmediate:
2664    OS << "<so_reg_imm "
2665       << RegShiftedImm.SrcReg << " "
2666       << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy)
2667       << " #" << RegShiftedImm.ShiftImm << ">";
2668    break;
2669  case k_RotateImmediate:
2670    OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
2671    break;
2672  case k_BitfieldDescriptor:
2673    OS << "<bitfield " << "lsb: " << Bitfield.LSB
2674       << ", width: " << Bitfield.Width << ">";
2675    break;
2676  case k_RegisterList:
2677  case k_DPRRegisterList:
2678  case k_SPRRegisterList: {
2679    OS << "<register_list ";
2680
2681    const SmallVectorImpl<unsigned> &RegList = getRegList();
2682    for (SmallVectorImpl<unsigned>::const_iterator
2683           I = RegList.begin(), E = RegList.end(); I != E; ) {
2684      OS << *I;
2685      if (++I < E) OS << ", ";
2686    }
2687
2688    OS << ">";
2689    break;
2690  }
2691  case k_VectorList:
2692    OS << "<vector_list " << VectorList.Count << " * "
2693       << VectorList.RegNum << ">";
2694    break;
2695  case k_VectorListAllLanes:
2696    OS << "<vector_list(all lanes) " << VectorList.Count << " * "
2697       << VectorList.RegNum << ">";
2698    break;
2699  case k_VectorListIndexed:
2700    OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
2701       << VectorList.Count << " * " << VectorList.RegNum << ">";
2702    break;
2703  case k_Token:
2704    OS << "'" << getToken() << "'";
2705    break;
2706  case k_VectorIndex:
2707    OS << "<vectorindex " << getVectorIndex() << ">";
2708    break;
2709  }
2710}
2711
2712/// @name Auto-generated Match Functions
2713/// {
2714
2715static unsigned MatchRegisterName(StringRef Name);
2716
2717/// }
2718
2719bool ARMAsmParser::ParseRegister(unsigned &RegNo,
2720                                 SMLoc &StartLoc, SMLoc &EndLoc) {
2721  StartLoc = Parser.getTok().getLoc();
2722  EndLoc = Parser.getTok().getEndLoc();
2723  RegNo = tryParseRegister();
2724
2725  return (RegNo == (unsigned)-1);
2726}
2727
2728/// Try to parse a register name.  The token must be an Identifier when called,
2729/// and if it is a register name the token is eaten and the register number is
2730/// returned.  Otherwise return -1.
2731///
2732int ARMAsmParser::tryParseRegister() {
2733  const AsmToken &Tok = Parser.getTok();
2734  if (Tok.isNot(AsmToken::Identifier)) return -1;
2735
2736  std::string lowerCase = Tok.getString().lower();
2737  unsigned RegNum = MatchRegisterName(lowerCase);
2738  if (!RegNum) {
2739    RegNum = StringSwitch<unsigned>(lowerCase)
2740      .Case("r13", ARM::SP)
2741      .Case("r14", ARM::LR)
2742      .Case("r15", ARM::PC)
2743      .Case("ip", ARM::R12)
2744      // Additional register name aliases for 'gas' compatibility.
2745      .Case("a1", ARM::R0)
2746      .Case("a2", ARM::R1)
2747      .Case("a3", ARM::R2)
2748      .Case("a4", ARM::R3)
2749      .Case("v1", ARM::R4)
2750      .Case("v2", ARM::R5)
2751      .Case("v3", ARM::R6)
2752      .Case("v4", ARM::R7)
2753      .Case("v5", ARM::R8)
2754      .Case("v6", ARM::R9)
2755      .Case("v7", ARM::R10)
2756      .Case("v8", ARM::R11)
2757      .Case("sb", ARM::R9)
2758      .Case("sl", ARM::R10)
2759      .Case("fp", ARM::R11)
2760      .Default(0);
2761  }
2762  if (!RegNum) {
2763    // Check for aliases registered via .req. Canonicalize to lower case.
2764    // That's more consistent since register names are case insensitive, and
2765    // it's how the original entry was passed in from MC/MCParser/AsmParser.
2766    StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
2767    // If no match, return failure.
2768    if (Entry == RegisterReqs.end())
2769      return -1;
2770    Parser.Lex(); // Eat identifier token.
2771    return Entry->getValue();
2772  }
2773
2774  Parser.Lex(); // Eat identifier token.
2775
2776  return RegNum;
2777}
2778
2779// Try to parse a shifter  (e.g., "lsl <amt>"). On success, return 0.
2780// If a recoverable error occurs, return 1. If an irrecoverable error
2781// occurs, return -1. An irrecoverable error is one where tokens have been
2782// consumed in the process of trying to parse the shifter (i.e., when it is
2783// indeed a shifter operand, but malformed).
2784int ARMAsmParser::tryParseShiftRegister(
2785                               SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2786  SMLoc S = Parser.getTok().getLoc();
2787  const AsmToken &Tok = Parser.getTok();
2788  if (Tok.isNot(AsmToken::Identifier))
2789    return -1;
2790
2791  std::string lowerCase = Tok.getString().lower();
2792  ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
2793      .Case("asl", ARM_AM::lsl)
2794      .Case("lsl", ARM_AM::lsl)
2795      .Case("lsr", ARM_AM::lsr)
2796      .Case("asr", ARM_AM::asr)
2797      .Case("ror", ARM_AM::ror)
2798      .Case("rrx", ARM_AM::rrx)
2799      .Default(ARM_AM::no_shift);
2800
2801  if (ShiftTy == ARM_AM::no_shift)
2802    return 1;
2803
2804  Parser.Lex(); // Eat the operator.
2805
2806  // The source register for the shift has already been added to the
2807  // operand list, so we need to pop it off and combine it into the shifted
2808  // register operand instead.
2809  OwningPtr<ARMOperand> PrevOp((ARMOperand*)Operands.pop_back_val());
2810  if (!PrevOp->isReg())
2811    return Error(PrevOp->getStartLoc(), "shift must be of a register");
2812  int SrcReg = PrevOp->getReg();
2813
2814  SMLoc EndLoc;
2815  int64_t Imm = 0;
2816  int ShiftReg = 0;
2817  if (ShiftTy == ARM_AM::rrx) {
2818    // RRX Doesn't have an explicit shift amount. The encoder expects
2819    // the shift register to be the same as the source register. Seems odd,
2820    // but OK.
2821    ShiftReg = SrcReg;
2822  } else {
2823    // Figure out if this is shifted by a constant or a register (for non-RRX).
2824    if (Parser.getTok().is(AsmToken::Hash) ||
2825        Parser.getTok().is(AsmToken::Dollar)) {
2826      Parser.Lex(); // Eat hash.
2827      SMLoc ImmLoc = Parser.getTok().getLoc();
2828      const MCExpr *ShiftExpr = 0;
2829      if (getParser().parseExpression(ShiftExpr, EndLoc)) {
2830        Error(ImmLoc, "invalid immediate shift value");
2831        return -1;
2832      }
2833      // The expression must be evaluatable as an immediate.
2834      const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
2835      if (!CE) {
2836        Error(ImmLoc, "invalid immediate shift value");
2837        return -1;
2838      }
2839      // Range check the immediate.
2840      // lsl, ror: 0 <= imm <= 31
2841      // lsr, asr: 0 <= imm <= 32
2842      Imm = CE->getValue();
2843      if (Imm < 0 ||
2844          ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
2845          ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
2846        Error(ImmLoc, "immediate shift value out of range");
2847        return -1;
2848      }
2849      // shift by zero is a nop. Always send it through as lsl.
2850      // ('as' compatibility)
2851      if (Imm == 0)
2852        ShiftTy = ARM_AM::lsl;
2853    } else if (Parser.getTok().is(AsmToken::Identifier)) {
2854      SMLoc L = Parser.getTok().getLoc();
2855      EndLoc = Parser.getTok().getEndLoc();
2856      ShiftReg = tryParseRegister();
2857      if (ShiftReg == -1) {
2858        Error (L, "expected immediate or register in shift operand");
2859        return -1;
2860      }
2861    } else {
2862      Error (Parser.getTok().getLoc(),
2863                    "expected immediate or register in shift operand");
2864      return -1;
2865    }
2866  }
2867
2868  if (ShiftReg && ShiftTy != ARM_AM::rrx)
2869    Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
2870                                                         ShiftReg, Imm,
2871                                                         S, EndLoc));
2872  else
2873    Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
2874                                                          S, EndLoc));
2875
2876  return 0;
2877}
2878
2879
2880/// Try to parse a register name.  The token must be an Identifier when called.
2881/// If it's a register, an AsmOperand is created. Another AsmOperand is created
2882/// if there is a "writeback". 'true' if it's not a register.
2883///
2884/// TODO this is likely to change to allow different register types and or to
2885/// parse for a specific register type.
2886bool ARMAsmParser::
2887tryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2888  const AsmToken &RegTok = Parser.getTok();
2889  int RegNo = tryParseRegister();
2890  if (RegNo == -1)
2891    return true;
2892
2893  Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(),
2894                                           RegTok.getEndLoc()));
2895
2896  const AsmToken &ExclaimTok = Parser.getTok();
2897  if (ExclaimTok.is(AsmToken::Exclaim)) {
2898    Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
2899                                               ExclaimTok.getLoc()));
2900    Parser.Lex(); // Eat exclaim token
2901    return false;
2902  }
2903
2904  // Also check for an index operand. This is only legal for vector registers,
2905  // but that'll get caught OK in operand matching, so we don't need to
2906  // explicitly filter everything else out here.
2907  if (Parser.getTok().is(AsmToken::LBrac)) {
2908    SMLoc SIdx = Parser.getTok().getLoc();
2909    Parser.Lex(); // Eat left bracket token.
2910
2911    const MCExpr *ImmVal;
2912    if (getParser().parseExpression(ImmVal))
2913      return true;
2914    const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
2915    if (!MCE)
2916      return TokError("immediate value expected for vector index");
2917
2918    if (Parser.getTok().isNot(AsmToken::RBrac))
2919      return Error(Parser.getTok().getLoc(), "']' expected");
2920
2921    SMLoc E = Parser.getTok().getEndLoc();
2922    Parser.Lex(); // Eat right bracket token.
2923
2924    Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
2925                                                     SIdx, E,
2926                                                     getContext()));
2927  }
2928
2929  return false;
2930}
2931
2932/// MatchCoprocessorOperandName - Try to parse an coprocessor related
2933/// instruction with a symbolic operand name. Example: "p1", "p7", "c3",
2934/// "c5", ...
2935static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
2936  // Use the same layout as the tablegen'erated register name matcher. Ugly,
2937  // but efficient.
2938  switch (Name.size()) {
2939  default: return -1;
2940  case 2:
2941    if (Name[0] != CoprocOp)
2942      return -1;
2943    switch (Name[1]) {
2944    default:  return -1;
2945    case '0': return 0;
2946    case '1': return 1;
2947    case '2': return 2;
2948    case '3': return 3;
2949    case '4': return 4;
2950    case '5': return 5;
2951    case '6': return 6;
2952    case '7': return 7;
2953    case '8': return 8;
2954    case '9': return 9;
2955    }
2956  case 3:
2957    if (Name[0] != CoprocOp || Name[1] != '1')
2958      return -1;
2959    switch (Name[2]) {
2960    default:  return -1;
2961    // p10 and p11 are invalid for coproc instructions (reserved for FP/NEON)
2962    case '0': return CoprocOp == 'p'? -1: 10;
2963    case '1': return CoprocOp == 'p'? -1: 11;
2964    case '2': return 12;
2965    case '3': return 13;
2966    case '4': return 14;
2967    case '5': return 15;
2968    }
2969  }
2970}
2971
2972/// parseITCondCode - Try to parse a condition code for an IT instruction.
2973ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2974parseITCondCode(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2975  SMLoc S = Parser.getTok().getLoc();
2976  const AsmToken &Tok = Parser.getTok();
2977  if (!Tok.is(AsmToken::Identifier))
2978    return MatchOperand_NoMatch;
2979  unsigned CC = StringSwitch<unsigned>(Tok.getString().lower())
2980    .Case("eq", ARMCC::EQ)
2981    .Case("ne", ARMCC::NE)
2982    .Case("hs", ARMCC::HS)
2983    .Case("cs", ARMCC::HS)
2984    .Case("lo", ARMCC::LO)
2985    .Case("cc", ARMCC::LO)
2986    .Case("mi", ARMCC::MI)
2987    .Case("pl", ARMCC::PL)
2988    .Case("vs", ARMCC::VS)
2989    .Case("vc", ARMCC::VC)
2990    .Case("hi", ARMCC::HI)
2991    .Case("ls", ARMCC::LS)
2992    .Case("ge", ARMCC::GE)
2993    .Case("lt", ARMCC::LT)
2994    .Case("gt", ARMCC::GT)
2995    .Case("le", ARMCC::LE)
2996    .Case("al", ARMCC::AL)
2997    .Default(~0U);
2998  if (CC == ~0U)
2999    return MatchOperand_NoMatch;
3000  Parser.Lex(); // Eat the token.
3001
3002  Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
3003
3004  return MatchOperand_Success;
3005}
3006
3007/// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
3008/// token must be an Identifier when called, and if it is a coprocessor
3009/// number, the token is eaten and the operand is added to the operand list.
3010ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3011parseCoprocNumOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3012  SMLoc S = Parser.getTok().getLoc();
3013  const AsmToken &Tok = Parser.getTok();
3014  if (Tok.isNot(AsmToken::Identifier))
3015    return MatchOperand_NoMatch;
3016
3017  int Num = MatchCoprocessorOperandName(Tok.getString(), 'p');
3018  if (Num == -1)
3019    return MatchOperand_NoMatch;
3020
3021  Parser.Lex(); // Eat identifier token.
3022  Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
3023  return MatchOperand_Success;
3024}
3025
3026/// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
3027/// token must be an Identifier when called, and if it is a coprocessor
3028/// number, the token is eaten and the operand is added to the operand list.
3029ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3030parseCoprocRegOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3031  SMLoc S = Parser.getTok().getLoc();
3032  const AsmToken &Tok = Parser.getTok();
3033  if (Tok.isNot(AsmToken::Identifier))
3034    return MatchOperand_NoMatch;
3035
3036  int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c');
3037  if (Reg == -1)
3038    return MatchOperand_NoMatch;
3039
3040  Parser.Lex(); // Eat identifier token.
3041  Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
3042  return MatchOperand_Success;
3043}
3044
3045/// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
3046/// coproc_option : '{' imm0_255 '}'
3047ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3048parseCoprocOptionOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3049  SMLoc S = Parser.getTok().getLoc();
3050
3051  // If this isn't a '{', this isn't a coprocessor immediate operand.
3052  if (Parser.getTok().isNot(AsmToken::LCurly))
3053    return MatchOperand_NoMatch;
3054  Parser.Lex(); // Eat the '{'
3055
3056  const MCExpr *Expr;
3057  SMLoc Loc = Parser.getTok().getLoc();
3058  if (getParser().parseExpression(Expr)) {
3059    Error(Loc, "illegal expression");
3060    return MatchOperand_ParseFail;
3061  }
3062  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
3063  if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
3064    Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
3065    return MatchOperand_ParseFail;
3066  }
3067  int Val = CE->getValue();
3068
3069  // Check for and consume the closing '}'
3070  if (Parser.getTok().isNot(AsmToken::RCurly))
3071    return MatchOperand_ParseFail;
3072  SMLoc E = Parser.getTok().getEndLoc();
3073  Parser.Lex(); // Eat the '}'
3074
3075  Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
3076  return MatchOperand_Success;
3077}
3078
3079// For register list parsing, we need to map from raw GPR register numbering
3080// to the enumeration values. The enumeration values aren't sorted by
3081// register number due to our using "sp", "lr" and "pc" as canonical names.
3082static unsigned getNextRegister(unsigned Reg) {
3083  // If this is a GPR, we need to do it manually, otherwise we can rely
3084  // on the sort ordering of the enumeration since the other reg-classes
3085  // are sane.
3086  if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
3087    return Reg + 1;
3088  switch(Reg) {
3089  default: llvm_unreachable("Invalid GPR number!");
3090  case ARM::R0:  return ARM::R1;  case ARM::R1:  return ARM::R2;
3091  case ARM::R2:  return ARM::R3;  case ARM::R3:  return ARM::R4;
3092  case ARM::R4:  return ARM::R5;  case ARM::R5:  return ARM::R6;
3093  case ARM::R6:  return ARM::R7;  case ARM::R7:  return ARM::R8;
3094  case ARM::R8:  return ARM::R9;  case ARM::R9:  return ARM::R10;
3095  case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
3096  case ARM::R12: return ARM::SP;  case ARM::SP:  return ARM::LR;
3097  case ARM::LR:  return ARM::PC;  case ARM::PC:  return ARM::R0;
3098  }
3099}
3100
3101// Return the low-subreg of a given Q register.
3102static unsigned getDRegFromQReg(unsigned QReg) {
3103  switch (QReg) {
3104  default: llvm_unreachable("expected a Q register!");
3105  case ARM::Q0:  return ARM::D0;
3106  case ARM::Q1:  return ARM::D2;
3107  case ARM::Q2:  return ARM::D4;
3108  case ARM::Q3:  return ARM::D6;
3109  case ARM::Q4:  return ARM::D8;
3110  case ARM::Q5:  return ARM::D10;
3111  case ARM::Q6:  return ARM::D12;
3112  case ARM::Q7:  return ARM::D14;
3113  case ARM::Q8:  return ARM::D16;
3114  case ARM::Q9:  return ARM::D18;
3115  case ARM::Q10: return ARM::D20;
3116  case ARM::Q11: return ARM::D22;
3117  case ARM::Q12: return ARM::D24;
3118  case ARM::Q13: return ARM::D26;
3119  case ARM::Q14: return ARM::D28;
3120  case ARM::Q15: return ARM::D30;
3121  }
3122}
3123
3124/// Parse a register list.
3125bool ARMAsmParser::
3126parseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3127  assert(Parser.getTok().is(AsmToken::LCurly) &&
3128         "Token is not a Left Curly Brace");
3129  SMLoc S = Parser.getTok().getLoc();
3130  Parser.Lex(); // Eat '{' token.
3131  SMLoc RegLoc = Parser.getTok().getLoc();
3132
3133  // Check the first register in the list to see what register class
3134  // this is a list of.
3135  int Reg = tryParseRegister();
3136  if (Reg == -1)
3137    return Error(RegLoc, "register expected");
3138
3139  // The reglist instructions have at most 16 registers, so reserve
3140  // space for that many.
3141  int EReg = 0;
3142  SmallVector<std::pair<unsigned, unsigned>, 16> Registers;
3143
3144  // Allow Q regs and just interpret them as the two D sub-registers.
3145  if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3146    Reg = getDRegFromQReg(Reg);
3147    EReg = MRI->getEncodingValue(Reg);
3148    Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3149    ++Reg;
3150  }
3151  const MCRegisterClass *RC;
3152  if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
3153    RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
3154  else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
3155    RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
3156  else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
3157    RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
3158  else
3159    return Error(RegLoc, "invalid register in register list");
3160
3161  // Store the register.
3162  EReg = MRI->getEncodingValue(Reg);
3163  Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3164
3165  // This starts immediately after the first register token in the list,
3166  // so we can see either a comma or a minus (range separator) as a legal
3167  // next token.
3168  while (Parser.getTok().is(AsmToken::Comma) ||
3169         Parser.getTok().is(AsmToken::Minus)) {
3170    if (Parser.getTok().is(AsmToken::Minus)) {
3171      Parser.Lex(); // Eat the minus.
3172      SMLoc AfterMinusLoc = Parser.getTok().getLoc();
3173      int EndReg = tryParseRegister();
3174      if (EndReg == -1)
3175        return Error(AfterMinusLoc, "register expected");
3176      // Allow Q regs and just interpret them as the two D sub-registers.
3177      if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
3178        EndReg = getDRegFromQReg(EndReg) + 1;
3179      // If the register is the same as the start reg, there's nothing
3180      // more to do.
3181      if (Reg == EndReg)
3182        continue;
3183      // The register must be in the same register class as the first.
3184      if (!RC->contains(EndReg))
3185        return Error(AfterMinusLoc, "invalid register in register list");
3186      // Ranges must go from low to high.
3187      if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
3188        return Error(AfterMinusLoc, "bad range in register list");
3189
3190      // Add all the registers in the range to the register list.
3191      while (Reg != EndReg) {
3192        Reg = getNextRegister(Reg);
3193        EReg = MRI->getEncodingValue(Reg);
3194        Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3195      }
3196      continue;
3197    }
3198    Parser.Lex(); // Eat the comma.
3199    RegLoc = Parser.getTok().getLoc();
3200    int OldReg = Reg;
3201    const AsmToken RegTok = Parser.getTok();
3202    Reg = tryParseRegister();
3203    if (Reg == -1)
3204      return Error(RegLoc, "register expected");
3205    // Allow Q regs and just interpret them as the two D sub-registers.
3206    bool isQReg = false;
3207    if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3208      Reg = getDRegFromQReg(Reg);
3209      isQReg = true;
3210    }
3211    // The register must be in the same register class as the first.
3212    if (!RC->contains(Reg))
3213      return Error(RegLoc, "invalid register in register list");
3214    // List must be monotonically increasing.
3215    if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
3216      if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
3217        Warning(RegLoc, "register list not in ascending order");
3218      else
3219        return Error(RegLoc, "register list not in ascending order");
3220    }
3221    if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) {
3222      Warning(RegLoc, "duplicated register (" + RegTok.getString() +
3223              ") in register list");
3224      continue;
3225    }
3226    // VFP register lists must also be contiguous.
3227    if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
3228        Reg != OldReg + 1)
3229      return Error(RegLoc, "non-contiguous register range");
3230    EReg = MRI->getEncodingValue(Reg);
3231    Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3232    if (isQReg) {
3233      EReg = MRI->getEncodingValue(++Reg);
3234      Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3235    }
3236  }
3237
3238  if (Parser.getTok().isNot(AsmToken::RCurly))
3239    return Error(Parser.getTok().getLoc(), "'}' expected");
3240  SMLoc E = Parser.getTok().getEndLoc();
3241  Parser.Lex(); // Eat '}' token.
3242
3243  // Push the register list operand.
3244  Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
3245
3246  // The ARM system instruction variants for LDM/STM have a '^' token here.
3247  if (Parser.getTok().is(AsmToken::Caret)) {
3248    Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
3249    Parser.Lex(); // Eat '^' token.
3250  }
3251
3252  return false;
3253}
3254
3255// Helper function to parse the lane index for vector lists.
3256ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3257parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
3258  Index = 0; // Always return a defined index value.
3259  if (Parser.getTok().is(AsmToken::LBrac)) {
3260    Parser.Lex(); // Eat the '['.
3261    if (Parser.getTok().is(AsmToken::RBrac)) {
3262      // "Dn[]" is the 'all lanes' syntax.
3263      LaneKind = AllLanes;
3264      EndLoc = Parser.getTok().getEndLoc();
3265      Parser.Lex(); // Eat the ']'.
3266      return MatchOperand_Success;
3267    }
3268
3269    // There's an optional '#' token here. Normally there wouldn't be, but
3270    // inline assemble puts one in, and it's friendly to accept that.
3271    if (Parser.getTok().is(AsmToken::Hash))
3272      Parser.Lex(); // Eat '#' or '$'.
3273
3274    const MCExpr *LaneIndex;
3275    SMLoc Loc = Parser.getTok().getLoc();
3276    if (getParser().parseExpression(LaneIndex)) {
3277      Error(Loc, "illegal expression");
3278      return MatchOperand_ParseFail;
3279    }
3280    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
3281    if (!CE) {
3282      Error(Loc, "lane index must be empty or an integer");
3283      return MatchOperand_ParseFail;
3284    }
3285    if (Parser.getTok().isNot(AsmToken::RBrac)) {
3286      Error(Parser.getTok().getLoc(), "']' expected");
3287      return MatchOperand_ParseFail;
3288    }
3289    EndLoc = Parser.getTok().getEndLoc();
3290    Parser.Lex(); // Eat the ']'.
3291    int64_t Val = CE->getValue();
3292
3293    // FIXME: Make this range check context sensitive for .8, .16, .32.
3294    if (Val < 0 || Val > 7) {
3295      Error(Parser.getTok().getLoc(), "lane index out of range");
3296      return MatchOperand_ParseFail;
3297    }
3298    Index = Val;
3299    LaneKind = IndexedLane;
3300    return MatchOperand_Success;
3301  }
3302  LaneKind = NoLanes;
3303  return MatchOperand_Success;
3304}
3305
3306// parse a vector register list
3307ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3308parseVectorList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3309  VectorLaneTy LaneKind;
3310  unsigned LaneIndex;
3311  SMLoc S = Parser.getTok().getLoc();
3312  // As an extension (to match gas), support a plain D register or Q register
3313  // (without encosing curly braces) as a single or double entry list,
3314  // respectively.
3315  if (Parser.getTok().is(AsmToken::Identifier)) {
3316    SMLoc E = Parser.getTok().getEndLoc();
3317    int Reg = tryParseRegister();
3318    if (Reg == -1)
3319      return MatchOperand_NoMatch;
3320    if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
3321      OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
3322      if (Res != MatchOperand_Success)
3323        return Res;
3324      switch (LaneKind) {
3325      case NoLanes:
3326        Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
3327        break;
3328      case AllLanes:
3329        Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
3330                                                                S, E));
3331        break;
3332      case IndexedLane:
3333        Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
3334                                                               LaneIndex,
3335                                                               false, S, E));
3336        break;
3337      }
3338      return MatchOperand_Success;
3339    }
3340    if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3341      Reg = getDRegFromQReg(Reg);
3342      OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
3343      if (Res != MatchOperand_Success)
3344        return Res;
3345      switch (LaneKind) {
3346      case NoLanes:
3347        Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
3348                                   &ARMMCRegisterClasses[ARM::DPairRegClassID]);
3349        Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
3350        break;
3351      case AllLanes:
3352        Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
3353                                   &ARMMCRegisterClasses[ARM::DPairRegClassID]);
3354        Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
3355                                                                S, E));
3356        break;
3357      case IndexedLane:
3358        Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
3359                                                               LaneIndex,
3360                                                               false, S, E));
3361        break;
3362      }
3363      return MatchOperand_Success;
3364    }
3365    Error(S, "vector register expected");
3366    return MatchOperand_ParseFail;
3367  }
3368
3369  if (Parser.getTok().isNot(AsmToken::LCurly))
3370    return MatchOperand_NoMatch;
3371
3372  Parser.Lex(); // Eat '{' token.
3373  SMLoc RegLoc = Parser.getTok().getLoc();
3374
3375  int Reg = tryParseRegister();
3376  if (Reg == -1) {
3377    Error(RegLoc, "register expected");
3378    return MatchOperand_ParseFail;
3379  }
3380  unsigned Count = 1;
3381  int Spacing = 0;
3382  unsigned FirstReg = Reg;
3383  // The list is of D registers, but we also allow Q regs and just interpret
3384  // them as the two D sub-registers.
3385  if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3386    FirstReg = Reg = getDRegFromQReg(Reg);
3387    Spacing = 1; // double-spacing requires explicit D registers, otherwise
3388                 // it's ambiguous with four-register single spaced.
3389    ++Reg;
3390    ++Count;
3391  }
3392
3393  SMLoc E;
3394  if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success)
3395    return MatchOperand_ParseFail;
3396
3397  while (Parser.getTok().is(AsmToken::Comma) ||
3398         Parser.getTok().is(AsmToken::Minus)) {
3399    if (Parser.getTok().is(AsmToken::Minus)) {
3400      if (!Spacing)
3401        Spacing = 1; // Register range implies a single spaced list.
3402      else if (Spacing == 2) {
3403        Error(Parser.getTok().getLoc(),
3404              "sequential registers in double spaced list");
3405        return MatchOperand_ParseFail;
3406      }
3407      Parser.Lex(); // Eat the minus.
3408      SMLoc AfterMinusLoc = Parser.getTok().getLoc();
3409      int EndReg = tryParseRegister();
3410      if (EndReg == -1) {
3411        Error(AfterMinusLoc, "register expected");
3412        return MatchOperand_ParseFail;
3413      }
3414      // Allow Q regs and just interpret them as the two D sub-registers.
3415      if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
3416        EndReg = getDRegFromQReg(EndReg) + 1;
3417      // If the register is the same as the start reg, there's nothing
3418      // more to do.
3419      if (Reg == EndReg)
3420        continue;
3421      // The register must be in the same register class as the first.
3422      if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) {
3423        Error(AfterMinusLoc, "invalid register in register list");
3424        return MatchOperand_ParseFail;
3425      }
3426      // Ranges must go from low to high.
3427      if (Reg > EndReg) {
3428        Error(AfterMinusLoc, "bad range in register list");
3429        return MatchOperand_ParseFail;
3430      }
3431      // Parse the lane specifier if present.
3432      VectorLaneTy NextLaneKind;
3433      unsigned NextLaneIndex;
3434      if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
3435          MatchOperand_Success)
3436        return MatchOperand_ParseFail;
3437      if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
3438        Error(AfterMinusLoc, "mismatched lane index in register list");
3439        return MatchOperand_ParseFail;
3440      }
3441
3442      // Add all the registers in the range to the register list.
3443      Count += EndReg - Reg;
3444      Reg = EndReg;
3445      continue;
3446    }
3447    Parser.Lex(); // Eat the comma.
3448    RegLoc = Parser.getTok().getLoc();
3449    int OldReg = Reg;
3450    Reg = tryParseRegister();
3451    if (Reg == -1) {
3452      Error(RegLoc, "register expected");
3453      return MatchOperand_ParseFail;
3454    }
3455    // vector register lists must be contiguous.
3456    // It's OK to use the enumeration values directly here rather, as the
3457    // VFP register classes have the enum sorted properly.
3458    //
3459    // The list is of D registers, but we also allow Q regs and just interpret
3460    // them as the two D sub-registers.
3461    if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3462      if (!Spacing)
3463        Spacing = 1; // Register range implies a single spaced list.
3464      else if (Spacing == 2) {
3465        Error(RegLoc,
3466              "invalid register in double-spaced list (must be 'D' register')");
3467        return MatchOperand_ParseFail;
3468      }
3469      Reg = getDRegFromQReg(Reg);
3470      if (Reg != OldReg + 1) {
3471        Error(RegLoc, "non-contiguous register range");
3472        return MatchOperand_ParseFail;
3473      }
3474      ++Reg;
3475      Count += 2;
3476      // Parse the lane specifier if present.
3477      VectorLaneTy NextLaneKind;
3478      unsigned NextLaneIndex;
3479      SMLoc LaneLoc = Parser.getTok().getLoc();
3480      if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
3481          MatchOperand_Success)
3482        return MatchOperand_ParseFail;
3483      if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
3484        Error(LaneLoc, "mismatched lane index in register list");
3485        return MatchOperand_ParseFail;
3486      }
3487      continue;
3488    }
3489    // Normal D register.
3490    // Figure out the register spacing (single or double) of the list if
3491    // we don't know it already.
3492    if (!Spacing)
3493      Spacing = 1 + (Reg == OldReg + 2);
3494
3495    // Just check that it's contiguous and keep going.
3496    if (Reg != OldReg + Spacing) {
3497      Error(RegLoc, "non-contiguous register range");
3498      return MatchOperand_ParseFail;
3499    }
3500    ++Count;
3501    // Parse the lane specifier if present.
3502    VectorLaneTy NextLaneKind;
3503    unsigned NextLaneIndex;
3504    SMLoc EndLoc = Parser.getTok().getLoc();
3505    if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success)
3506      return MatchOperand_ParseFail;
3507    if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
3508      Error(EndLoc, "mismatched lane index in register list");
3509      return MatchOperand_ParseFail;
3510    }
3511  }
3512
3513  if (Parser.getTok().isNot(AsmToken::RCurly)) {
3514    Error(Parser.getTok().getLoc(), "'}' expected");
3515    return MatchOperand_ParseFail;
3516  }
3517  E = Parser.getTok().getEndLoc();
3518  Parser.Lex(); // Eat '}' token.
3519
3520  switch (LaneKind) {
3521  case NoLanes:
3522    // Two-register operands have been converted to the
3523    // composite register classes.
3524    if (Count == 2) {
3525      const MCRegisterClass *RC = (Spacing == 1) ?
3526        &ARMMCRegisterClasses[ARM::DPairRegClassID] :
3527        &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
3528      FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
3529    }
3530
3531    Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count,
3532                                                    (Spacing == 2), S, E));
3533    break;
3534  case AllLanes:
3535    // Two-register operands have been converted to the
3536    // composite register classes.
3537    if (Count == 2) {
3538      const MCRegisterClass *RC = (Spacing == 1) ?
3539        &ARMMCRegisterClasses[ARM::DPairRegClassID] :
3540        &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
3541      FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
3542    }
3543    Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count,
3544                                                            (Spacing == 2),
3545                                                            S, E));
3546    break;
3547  case IndexedLane:
3548    Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
3549                                                           LaneIndex,
3550                                                           (Spacing == 2),
3551                                                           S, E));
3552    break;
3553  }
3554  return MatchOperand_Success;
3555}
3556
3557/// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
3558ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3559parseMemBarrierOptOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3560  SMLoc S = Parser.getTok().getLoc();
3561  const AsmToken &Tok = Parser.getTok();
3562  unsigned Opt;
3563
3564  if (Tok.is(AsmToken::Identifier)) {
3565    StringRef OptStr = Tok.getString();
3566
3567    Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
3568      .Case("sy",    ARM_MB::SY)
3569      .Case("st",    ARM_MB::ST)
3570      .Case("ld",    ARM_MB::LD)
3571      .Case("sh",    ARM_MB::ISH)
3572      .Case("ish",   ARM_MB::ISH)
3573      .Case("shst",  ARM_MB::ISHST)
3574      .Case("ishst", ARM_MB::ISHST)
3575      .Case("ishld", ARM_MB::ISHLD)
3576      .Case("nsh",   ARM_MB::NSH)
3577      .Case("un",    ARM_MB::NSH)
3578      .Case("nshst", ARM_MB::NSHST)
3579      .Case("nshld", ARM_MB::NSHLD)
3580      .Case("unst",  ARM_MB::NSHST)
3581      .Case("osh",   ARM_MB::OSH)
3582      .Case("oshst", ARM_MB::OSHST)
3583      .Case("oshld", ARM_MB::OSHLD)
3584      .Default(~0U);
3585
3586    // ishld, oshld, nshld and ld are only available from ARMv8.
3587    if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD ||
3588                        Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD))
3589      Opt = ~0U;
3590
3591    if (Opt == ~0U)
3592      return MatchOperand_NoMatch;
3593
3594    Parser.Lex(); // Eat identifier token.
3595  } else if (Tok.is(AsmToken::Hash) ||
3596             Tok.is(AsmToken::Dollar) ||
3597             Tok.is(AsmToken::Integer)) {
3598    if (Parser.getTok().isNot(AsmToken::Integer))
3599      Parser.Lex(); // Eat '#' or '$'.
3600    SMLoc Loc = Parser.getTok().getLoc();
3601
3602    const MCExpr *MemBarrierID;
3603    if (getParser().parseExpression(MemBarrierID)) {
3604      Error(Loc, "illegal expression");
3605      return MatchOperand_ParseFail;
3606    }
3607
3608    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
3609    if (!CE) {
3610      Error(Loc, "constant expression expected");
3611      return MatchOperand_ParseFail;
3612    }
3613
3614    int Val = CE->getValue();
3615    if (Val & ~0xf) {
3616      Error(Loc, "immediate value out of range");
3617      return MatchOperand_ParseFail;
3618    }
3619
3620    Opt = ARM_MB::RESERVED_0 + Val;
3621  } else
3622    return MatchOperand_ParseFail;
3623
3624  Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
3625  return MatchOperand_Success;
3626}
3627
3628/// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
3629ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3630parseInstSyncBarrierOptOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3631  SMLoc S = Parser.getTok().getLoc();
3632  const AsmToken &Tok = Parser.getTok();
3633  unsigned Opt;
3634
3635  if (Tok.is(AsmToken::Identifier)) {
3636    StringRef OptStr = Tok.getString();
3637
3638    if (OptStr.equals_lower("sy"))
3639      Opt = ARM_ISB::SY;
3640    else
3641      return MatchOperand_NoMatch;
3642
3643    Parser.Lex(); // Eat identifier token.
3644  } else if (Tok.is(AsmToken::Hash) ||
3645             Tok.is(AsmToken::Dollar) ||
3646             Tok.is(AsmToken::Integer)) {
3647    if (Parser.getTok().isNot(AsmToken::Integer))
3648      Parser.Lex(); // Eat '#' or '$'.
3649    SMLoc Loc = Parser.getTok().getLoc();
3650
3651    const MCExpr *ISBarrierID;
3652    if (getParser().parseExpression(ISBarrierID)) {
3653      Error(Loc, "illegal expression");
3654      return MatchOperand_ParseFail;
3655    }
3656
3657    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID);
3658    if (!CE) {
3659      Error(Loc, "constant expression expected");
3660      return MatchOperand_ParseFail;
3661    }
3662
3663    int Val = CE->getValue();
3664    if (Val & ~0xf) {
3665      Error(Loc, "immediate value out of range");
3666      return MatchOperand_ParseFail;
3667    }
3668
3669    Opt = ARM_ISB::RESERVED_0 + Val;
3670  } else
3671    return MatchOperand_ParseFail;
3672
3673  Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt(
3674          (ARM_ISB::InstSyncBOpt)Opt, S));
3675  return MatchOperand_Success;
3676}
3677
3678
3679/// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
3680ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3681parseProcIFlagsOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3682  SMLoc S = Parser.getTok().getLoc();
3683  const AsmToken &Tok = Parser.getTok();
3684  if (!Tok.is(AsmToken::Identifier))
3685    return MatchOperand_NoMatch;
3686  StringRef IFlagsStr = Tok.getString();
3687
3688  // An iflags string of "none" is interpreted to mean that none of the AIF
3689  // bits are set.  Not a terribly useful instruction, but a valid encoding.
3690  unsigned IFlags = 0;
3691  if (IFlagsStr != "none") {
3692        for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
3693      unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1))
3694        .Case("a", ARM_PROC::A)
3695        .Case("i", ARM_PROC::I)
3696        .Case("f", ARM_PROC::F)
3697        .Default(~0U);
3698
3699      // If some specific iflag is already set, it means that some letter is
3700      // present more than once, this is not acceptable.
3701      if (Flag == ~0U || (IFlags & Flag))
3702        return MatchOperand_NoMatch;
3703
3704      IFlags |= Flag;
3705    }
3706  }
3707
3708  Parser.Lex(); // Eat identifier token.
3709  Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
3710  return MatchOperand_Success;
3711}
3712
3713/// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
3714ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3715parseMSRMaskOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3716  SMLoc S = Parser.getTok().getLoc();
3717  const AsmToken &Tok = Parser.getTok();
3718  if (!Tok.is(AsmToken::Identifier))
3719    return MatchOperand_NoMatch;
3720  StringRef Mask = Tok.getString();
3721
3722  if (isMClass()) {
3723    // See ARMv6-M 10.1.1
3724    std::string Name = Mask.lower();
3725    unsigned FlagsVal = StringSwitch<unsigned>(Name)
3726      // Note: in the documentation:
3727      //  ARM deprecates using MSR APSR without a _<bits> qualifier as an alias
3728      //  for MSR APSR_nzcvq.
3729      // but we do make it an alias here.  This is so to get the "mask encoding"
3730      // bits correct on MSR APSR writes.
3731      //
3732      // FIXME: Note the 0xc00 "mask encoding" bits version of the registers
3733      // should really only be allowed when writing a special register.  Note
3734      // they get dropped in the MRS instruction reading a special register as
3735      // the SYSm field is only 8 bits.
3736      //
3737      // FIXME: the _g and _nzcvqg versions are only allowed if the processor
3738      // includes the DSP extension but that is not checked.
3739      .Case("apsr", 0x800)
3740      .Case("apsr_nzcvq", 0x800)
3741      .Case("apsr_g", 0x400)
3742      .Case("apsr_nzcvqg", 0xc00)
3743      .Case("iapsr", 0x801)
3744      .Case("iapsr_nzcvq", 0x801)
3745      .Case("iapsr_g", 0x401)
3746      .Case("iapsr_nzcvqg", 0xc01)
3747      .Case("eapsr", 0x802)
3748      .Case("eapsr_nzcvq", 0x802)
3749      .Case("eapsr_g", 0x402)
3750      .Case("eapsr_nzcvqg", 0xc02)
3751      .Case("xpsr", 0x803)
3752      .Case("xpsr_nzcvq", 0x803)
3753      .Case("xpsr_g", 0x403)
3754      .Case("xpsr_nzcvqg", 0xc03)
3755      .Case("ipsr", 0x805)
3756      .Case("epsr", 0x806)
3757      .Case("iepsr", 0x807)
3758      .Case("msp", 0x808)
3759      .Case("psp", 0x809)
3760      .Case("primask", 0x810)
3761      .Case("basepri", 0x811)
3762      .Case("basepri_max", 0x812)
3763      .Case("faultmask", 0x813)
3764      .Case("control", 0x814)
3765      .Default(~0U);
3766
3767    if (FlagsVal == ~0U)
3768      return MatchOperand_NoMatch;
3769
3770    if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813)
3771      // basepri, basepri_max and faultmask only valid for V7m.
3772      return MatchOperand_NoMatch;
3773
3774    Parser.Lex(); // Eat identifier token.
3775    Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
3776    return MatchOperand_Success;
3777  }
3778
3779  // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
3780  size_t Start = 0, Next = Mask.find('_');
3781  StringRef Flags = "";
3782  std::string SpecReg = Mask.slice(Start, Next).lower();
3783  if (Next != StringRef::npos)
3784    Flags = Mask.slice(Next+1, Mask.size());
3785
3786  // FlagsVal contains the complete mask:
3787  // 3-0: Mask
3788  // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
3789  unsigned FlagsVal = 0;
3790
3791  if (SpecReg == "apsr") {
3792    FlagsVal = StringSwitch<unsigned>(Flags)
3793    .Case("nzcvq",  0x8) // same as CPSR_f
3794    .Case("g",      0x4) // same as CPSR_s
3795    .Case("nzcvqg", 0xc) // same as CPSR_fs
3796    .Default(~0U);
3797
3798    if (FlagsVal == ~0U) {
3799      if (!Flags.empty())
3800        return MatchOperand_NoMatch;
3801      else
3802        FlagsVal = 8; // No flag
3803    }
3804  } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
3805    // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
3806    if (Flags == "all" || Flags == "")
3807      Flags = "fc";
3808    for (int i = 0, e = Flags.size(); i != e; ++i) {
3809      unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
3810      .Case("c", 1)
3811      .Case("x", 2)
3812      .Case("s", 4)
3813      .Case("f", 8)
3814      .Default(~0U);
3815
3816      // If some specific flag is already set, it means that some letter is
3817      // present more than once, this is not acceptable.
3818      if (FlagsVal == ~0U || (FlagsVal & Flag))
3819        return MatchOperand_NoMatch;
3820      FlagsVal |= Flag;
3821    }
3822  } else // No match for special register.
3823    return MatchOperand_NoMatch;
3824
3825  // Special register without flags is NOT equivalent to "fc" flags.
3826  // NOTE: This is a divergence from gas' behavior.  Uncommenting the following
3827  // two lines would enable gas compatibility at the expense of breaking
3828  // round-tripping.
3829  //
3830  // if (!FlagsVal)
3831  //  FlagsVal = 0x9;
3832
3833  // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
3834  if (SpecReg == "spsr")
3835    FlagsVal |= 16;
3836
3837  Parser.Lex(); // Eat identifier token.
3838  Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
3839  return MatchOperand_Success;
3840}
3841
3842ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3843parsePKHImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands, StringRef Op,
3844            int Low, int High) {
3845  const AsmToken &Tok = Parser.getTok();
3846  if (Tok.isNot(AsmToken::Identifier)) {
3847    Error(Parser.getTok().getLoc(), Op + " operand expected.");
3848    return MatchOperand_ParseFail;
3849  }
3850  StringRef ShiftName = Tok.getString();
3851  std::string LowerOp = Op.lower();
3852  std::string UpperOp = Op.upper();
3853  if (ShiftName != LowerOp && ShiftName != UpperOp) {
3854    Error(Parser.getTok().getLoc(), Op + " operand expected.");
3855    return MatchOperand_ParseFail;
3856  }
3857  Parser.Lex(); // Eat shift type token.
3858
3859  // There must be a '#' and a shift amount.
3860  if (Parser.getTok().isNot(AsmToken::Hash) &&
3861      Parser.getTok().isNot(AsmToken::Dollar)) {
3862    Error(Parser.getTok().getLoc(), "'#' expected");
3863    return MatchOperand_ParseFail;
3864  }
3865  Parser.Lex(); // Eat hash token.
3866
3867  const MCExpr *ShiftAmount;
3868  SMLoc Loc = Parser.getTok().getLoc();
3869  SMLoc EndLoc;
3870  if (getParser().parseExpression(ShiftAmount, EndLoc)) {
3871    Error(Loc, "illegal expression");
3872    return MatchOperand_ParseFail;
3873  }
3874  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
3875  if (!CE) {
3876    Error(Loc, "constant expression expected");
3877    return MatchOperand_ParseFail;
3878  }
3879  int Val = CE->getValue();
3880  if (Val < Low || Val > High) {
3881    Error(Loc, "immediate value out of range");
3882    return MatchOperand_ParseFail;
3883  }
3884
3885  Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc));
3886
3887  return MatchOperand_Success;
3888}
3889
3890ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3891parseSetEndImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3892  const AsmToken &Tok = Parser.getTok();
3893  SMLoc S = Tok.getLoc();
3894  if (Tok.isNot(AsmToken::Identifier)) {
3895    Error(S, "'be' or 'le' operand expected");
3896    return MatchOperand_ParseFail;
3897  }
3898  int Val = StringSwitch<int>(Tok.getString().lower())
3899    .Case("be", 1)
3900    .Case("le", 0)
3901    .Default(-1);
3902  Parser.Lex(); // Eat the token.
3903
3904  if (Val == -1) {
3905    Error(S, "'be' or 'le' operand expected");
3906    return MatchOperand_ParseFail;
3907  }
3908  Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::Create(Val,
3909                                                                  getContext()),
3910                                           S, Tok.getEndLoc()));
3911  return MatchOperand_Success;
3912}
3913
3914/// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
3915/// instructions. Legal values are:
3916///     lsl #n  'n' in [0,31]
3917///     asr #n  'n' in [1,32]
3918///             n == 32 encoded as n == 0.
3919ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3920parseShifterImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3921  const AsmToken &Tok = Parser.getTok();
3922  SMLoc S = Tok.getLoc();
3923  if (Tok.isNot(AsmToken::Identifier)) {
3924    Error(S, "shift operator 'asr' or 'lsl' expected");
3925    return MatchOperand_ParseFail;
3926  }
3927  StringRef ShiftName = Tok.getString();
3928  bool isASR;
3929  if (ShiftName == "lsl" || ShiftName == "LSL")
3930    isASR = false;
3931  else if (ShiftName == "asr" || ShiftName == "ASR")
3932    isASR = true;
3933  else {
3934    Error(S, "shift operator 'asr' or 'lsl' expected");
3935    return MatchOperand_ParseFail;
3936  }
3937  Parser.Lex(); // Eat the operator.
3938
3939  // A '#' and a shift amount.
3940  if (Parser.getTok().isNot(AsmToken::Hash) &&
3941      Parser.getTok().isNot(AsmToken::Dollar)) {
3942    Error(Parser.getTok().getLoc(), "'#' expected");
3943    return MatchOperand_ParseFail;
3944  }
3945  Parser.Lex(); // Eat hash token.
3946  SMLoc ExLoc = Parser.getTok().getLoc();
3947
3948  const MCExpr *ShiftAmount;
3949  SMLoc EndLoc;
3950  if (getParser().parseExpression(ShiftAmount, EndLoc)) {
3951    Error(ExLoc, "malformed shift expression");
3952    return MatchOperand_ParseFail;
3953  }
3954  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
3955  if (!CE) {
3956    Error(ExLoc, "shift amount must be an immediate");
3957    return MatchOperand_ParseFail;
3958  }
3959
3960  int64_t Val = CE->getValue();
3961  if (isASR) {
3962    // Shift amount must be in [1,32]
3963    if (Val < 1 || Val > 32) {
3964      Error(ExLoc, "'asr' shift amount must be in range [1,32]");
3965      return MatchOperand_ParseFail;
3966    }
3967    // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
3968    if (isThumb() && Val == 32) {
3969      Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode");
3970      return MatchOperand_ParseFail;
3971    }
3972    if (Val == 32) Val = 0;
3973  } else {
3974    // Shift amount must be in [1,32]
3975    if (Val < 0 || Val > 31) {
3976      Error(ExLoc, "'lsr' shift amount must be in range [0,31]");
3977      return MatchOperand_ParseFail;
3978    }
3979  }
3980
3981  Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc));
3982
3983  return MatchOperand_Success;
3984}
3985
3986/// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
3987/// of instructions. Legal values are:
3988///     ror #n  'n' in {0, 8, 16, 24}
3989ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3990parseRotImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3991  const AsmToken &Tok = Parser.getTok();
3992  SMLoc S = Tok.getLoc();
3993  if (Tok.isNot(AsmToken::Identifier))
3994    return MatchOperand_NoMatch;
3995  StringRef ShiftName = Tok.getString();
3996  if (ShiftName != "ror" && ShiftName != "ROR")
3997    return MatchOperand_NoMatch;
3998  Parser.Lex(); // Eat the operator.
3999
4000  // A '#' and a rotate amount.
4001  if (Parser.getTok().isNot(AsmToken::Hash) &&
4002      Parser.getTok().isNot(AsmToken::Dollar)) {
4003    Error(Parser.getTok().getLoc(), "'#' expected");
4004    return MatchOperand_ParseFail;
4005  }
4006  Parser.Lex(); // Eat hash token.
4007  SMLoc ExLoc = Parser.getTok().getLoc();
4008
4009  const MCExpr *ShiftAmount;
4010  SMLoc EndLoc;
4011  if (getParser().parseExpression(ShiftAmount, EndLoc)) {
4012    Error(ExLoc, "malformed rotate expression");
4013    return MatchOperand_ParseFail;
4014  }
4015  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
4016  if (!CE) {
4017    Error(ExLoc, "rotate amount must be an immediate");
4018    return MatchOperand_ParseFail;
4019  }
4020
4021  int64_t Val = CE->getValue();
4022  // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
4023  // normally, zero is represented in asm by omitting the rotate operand
4024  // entirely.
4025  if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
4026    Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24");
4027    return MatchOperand_ParseFail;
4028  }
4029
4030  Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc));
4031
4032  return MatchOperand_Success;
4033}
4034
4035ARMAsmParser::OperandMatchResultTy ARMAsmParser::
4036parseBitfield(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4037  SMLoc S = Parser.getTok().getLoc();
4038  // The bitfield descriptor is really two operands, the LSB and the width.
4039  if (Parser.getTok().isNot(AsmToken::Hash) &&
4040      Parser.getTok().isNot(AsmToken::Dollar)) {
4041    Error(Parser.getTok().getLoc(), "'#' expected");
4042    return MatchOperand_ParseFail;
4043  }
4044  Parser.Lex(); // Eat hash token.
4045
4046  const MCExpr *LSBExpr;
4047  SMLoc E = Parser.getTok().getLoc();
4048  if (getParser().parseExpression(LSBExpr)) {
4049    Error(E, "malformed immediate expression");
4050    return MatchOperand_ParseFail;
4051  }
4052  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
4053  if (!CE) {
4054    Error(E, "'lsb' operand must be an immediate");
4055    return MatchOperand_ParseFail;
4056  }
4057
4058  int64_t LSB = CE->getValue();
4059  // The LSB must be in the range [0,31]
4060  if (LSB < 0 || LSB > 31) {
4061    Error(E, "'lsb' operand must be in the range [0,31]");
4062    return MatchOperand_ParseFail;
4063  }
4064  E = Parser.getTok().getLoc();
4065
4066  // Expect another immediate operand.
4067  if (Parser.getTok().isNot(AsmToken::Comma)) {
4068    Error(Parser.getTok().getLoc(), "too few operands");
4069    return MatchOperand_ParseFail;
4070  }
4071  Parser.Lex(); // Eat hash token.
4072  if (Parser.getTok().isNot(AsmToken::Hash) &&
4073      Parser.getTok().isNot(AsmToken::Dollar)) {
4074    Error(Parser.getTok().getLoc(), "'#' expected");
4075    return MatchOperand_ParseFail;
4076  }
4077  Parser.Lex(); // Eat hash token.
4078
4079  const MCExpr *WidthExpr;
4080  SMLoc EndLoc;
4081  if (getParser().parseExpression(WidthExpr, EndLoc)) {
4082    Error(E, "malformed immediate expression");
4083    return MatchOperand_ParseFail;
4084  }
4085  CE = dyn_cast<MCConstantExpr>(WidthExpr);
4086  if (!CE) {
4087    Error(E, "'width' operand must be an immediate");
4088    return MatchOperand_ParseFail;
4089  }
4090
4091  int64_t Width = CE->getValue();
4092  // The LSB must be in the range [1,32-lsb]
4093  if (Width < 1 || Width > 32 - LSB) {
4094    Error(E, "'width' operand must be in the range [1,32-lsb]");
4095    return MatchOperand_ParseFail;
4096  }
4097
4098  Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc));
4099
4100  return MatchOperand_Success;
4101}
4102
4103ARMAsmParser::OperandMatchResultTy ARMAsmParser::
4104parsePostIdxReg(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4105  // Check for a post-index addressing register operand. Specifically:
4106  // postidx_reg := '+' register {, shift}
4107  //              | '-' register {, shift}
4108  //              | register {, shift}
4109
4110  // This method must return MatchOperand_NoMatch without consuming any tokens
4111  // in the case where there is no match, as other alternatives take other
4112  // parse methods.
4113  AsmToken Tok = Parser.getTok();
4114  SMLoc S = Tok.getLoc();
4115  bool haveEaten = false;
4116  bool isAdd = true;
4117  if (Tok.is(AsmToken::Plus)) {
4118    Parser.Lex(); // Eat the '+' token.
4119    haveEaten = true;
4120  } else if (Tok.is(AsmToken::Minus)) {
4121    Parser.Lex(); // Eat the '-' token.
4122    isAdd = false;
4123    haveEaten = true;
4124  }
4125
4126  SMLoc E = Parser.getTok().getEndLoc();
4127  int Reg = tryParseRegister();
4128  if (Reg == -1) {
4129    if (!haveEaten)
4130      return MatchOperand_NoMatch;
4131    Error(Parser.getTok().getLoc(), "register expected");
4132    return MatchOperand_ParseFail;
4133  }
4134
4135  ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
4136  unsigned ShiftImm = 0;
4137  if (Parser.getTok().is(AsmToken::Comma)) {
4138    Parser.Lex(); // Eat the ','.
4139    if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
4140      return MatchOperand_ParseFail;
4141
4142    // FIXME: Only approximates end...may include intervening whitespace.
4143    E = Parser.getTok().getLoc();
4144  }
4145
4146  Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
4147                                                  ShiftImm, S, E));
4148
4149  return MatchOperand_Success;
4150}
4151
4152ARMAsmParser::OperandMatchResultTy ARMAsmParser::
4153parseAM3Offset(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4154  // Check for a post-index addressing register operand. Specifically:
4155  // am3offset := '+' register
4156  //              | '-' register
4157  //              | register
4158  //              | # imm
4159  //              | # + imm
4160  //              | # - imm
4161
4162  // This method must return MatchOperand_NoMatch without consuming any tokens
4163  // in the case where there is no match, as other alternatives take other
4164  // parse methods.
4165  AsmToken Tok = Parser.getTok();
4166  SMLoc S = Tok.getLoc();
4167
4168  // Do immediates first, as we always parse those if we have a '#'.
4169  if (Parser.getTok().is(AsmToken::Hash) ||
4170      Parser.getTok().is(AsmToken::Dollar)) {
4171    Parser.Lex(); // Eat '#' or '$'.
4172    // Explicitly look for a '-', as we need to encode negative zero
4173    // differently.
4174    bool isNegative = Parser.getTok().is(AsmToken::Minus);
4175    const MCExpr *Offset;
4176    SMLoc E;
4177    if (getParser().parseExpression(Offset, E))
4178      return MatchOperand_ParseFail;
4179    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
4180    if (!CE) {
4181      Error(S, "constant expression expected");
4182      return MatchOperand_ParseFail;
4183    }
4184    // Negative zero is encoded as the flag value INT32_MIN.
4185    int32_t Val = CE->getValue();
4186    if (isNegative && Val == 0)
4187      Val = INT32_MIN;
4188
4189    Operands.push_back(
4190      ARMOperand::CreateImm(MCConstantExpr::Create(Val, getContext()), S, E));
4191
4192    return MatchOperand_Success;
4193  }
4194
4195
4196  bool haveEaten = false;
4197  bool isAdd = true;
4198  if (Tok.is(AsmToken::Plus)) {
4199    Parser.Lex(); // Eat the '+' token.
4200    haveEaten = true;
4201  } else if (Tok.is(AsmToken::Minus)) {
4202    Parser.Lex(); // Eat the '-' token.
4203    isAdd = false;
4204    haveEaten = true;
4205  }
4206
4207  Tok = Parser.getTok();
4208  int Reg = tryParseRegister();
4209  if (Reg == -1) {
4210    if (!haveEaten)
4211      return MatchOperand_NoMatch;
4212    Error(Tok.getLoc(), "register expected");
4213    return MatchOperand_ParseFail;
4214  }
4215
4216  Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
4217                                                  0, S, Tok.getEndLoc()));
4218
4219  return MatchOperand_Success;
4220}
4221
4222/// Convert parsed operands to MCInst.  Needed here because this instruction
4223/// only has two register operands, but multiplication is commutative so
4224/// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN".
4225void ARMAsmParser::
4226cvtThumbMultiply(MCInst &Inst,
4227           const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4228  ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
4229  ((ARMOperand*)Operands[1])->addCCOutOperands(Inst, 1);
4230  // If we have a three-operand form, make sure to set Rn to be the operand
4231  // that isn't the same as Rd.
4232  unsigned RegOp = 4;
4233  if (Operands.size() == 6 &&
4234      ((ARMOperand*)Operands[4])->getReg() ==
4235        ((ARMOperand*)Operands[3])->getReg())
4236    RegOp = 5;
4237  ((ARMOperand*)Operands[RegOp])->addRegOperands(Inst, 1);
4238  Inst.addOperand(Inst.getOperand(0));
4239  ((ARMOperand*)Operands[2])->addCondCodeOperands(Inst, 2);
4240}
4241
4242void ARMAsmParser::
4243cvtThumbBranches(MCInst &Inst,
4244           const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4245  int CondOp = -1, ImmOp = -1;
4246  switch(Inst.getOpcode()) {
4247    case ARM::tB:
4248    case ARM::tBcc:  CondOp = 1; ImmOp = 2; break;
4249
4250    case ARM::t2B:
4251    case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break;
4252
4253    default: llvm_unreachable("Unexpected instruction in cvtThumbBranches");
4254  }
4255  // first decide whether or not the branch should be conditional
4256  // by looking at it's location relative to an IT block
4257  if(inITBlock()) {
4258    // inside an IT block we cannot have any conditional branches. any
4259    // such instructions needs to be converted to unconditional form
4260    switch(Inst.getOpcode()) {
4261      case ARM::tBcc: Inst.setOpcode(ARM::tB); break;
4262      case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break;
4263    }
4264  } else {
4265    // outside IT blocks we can only have unconditional branches with AL
4266    // condition code or conditional branches with non-AL condition code
4267    unsigned Cond = static_cast<ARMOperand*>(Operands[CondOp])->getCondCode();
4268    switch(Inst.getOpcode()) {
4269      case ARM::tB:
4270      case ARM::tBcc:
4271        Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc);
4272        break;
4273      case ARM::t2B:
4274      case ARM::t2Bcc:
4275        Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc);
4276        break;
4277    }
4278  }
4279
4280  // now decide on encoding size based on branch target range
4281  switch(Inst.getOpcode()) {
4282    // classify tB as either t2B or t1B based on range of immediate operand
4283    case ARM::tB: {
4284      ARMOperand* op = static_cast<ARMOperand*>(Operands[ImmOp]);
4285      if(!op->isSignedOffset<11, 1>() && isThumbTwo())
4286        Inst.setOpcode(ARM::t2B);
4287      break;
4288    }
4289    // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand
4290    case ARM::tBcc: {
4291      ARMOperand* op = static_cast<ARMOperand*>(Operands[ImmOp]);
4292      if(!op->isSignedOffset<8, 1>() && isThumbTwo())
4293        Inst.setOpcode(ARM::t2Bcc);
4294      break;
4295    }
4296  }
4297  ((ARMOperand*)Operands[ImmOp])->addImmOperands(Inst, 1);
4298  ((ARMOperand*)Operands[CondOp])->addCondCodeOperands(Inst, 2);
4299}
4300
4301/// Parse an ARM memory expression, return false if successful else return true
4302/// or an error.  The first token must be a '[' when called.
4303bool ARMAsmParser::
4304parseMemory(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4305  SMLoc S, E;
4306  assert(Parser.getTok().is(AsmToken::LBrac) &&
4307         "Token is not a Left Bracket");
4308  S = Parser.getTok().getLoc();
4309  Parser.Lex(); // Eat left bracket token.
4310
4311  const AsmToken &BaseRegTok = Parser.getTok();
4312  int BaseRegNum = tryParseRegister();
4313  if (BaseRegNum == -1)
4314    return Error(BaseRegTok.getLoc(), "register expected");
4315
4316  // The next token must either be a comma, a colon or a closing bracket.
4317  const AsmToken &Tok = Parser.getTok();
4318  if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) &&
4319      !Tok.is(AsmToken::RBrac))
4320    return Error(Tok.getLoc(), "malformed memory operand");
4321
4322  if (Tok.is(AsmToken::RBrac)) {
4323    E = Tok.getEndLoc();
4324    Parser.Lex(); // Eat right bracket token.
4325
4326    Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, 0, ARM_AM::no_shift,
4327                                             0, 0, false, S, E));
4328
4329    // If there's a pre-indexing writeback marker, '!', just add it as a token
4330    // operand. It's rather odd, but syntactically valid.
4331    if (Parser.getTok().is(AsmToken::Exclaim)) {
4332      Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4333      Parser.Lex(); // Eat the '!'.
4334    }
4335
4336    return false;
4337  }
4338
4339  assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) &&
4340         "Lost colon or comma in memory operand?!");
4341  if (Tok.is(AsmToken::Comma)) {
4342    Parser.Lex(); // Eat the comma.
4343  }
4344
4345  // If we have a ':', it's an alignment specifier.
4346  if (Parser.getTok().is(AsmToken::Colon)) {
4347    Parser.Lex(); // Eat the ':'.
4348    E = Parser.getTok().getLoc();
4349
4350    const MCExpr *Expr;
4351    if (getParser().parseExpression(Expr))
4352     return true;
4353
4354    // The expression has to be a constant. Memory references with relocations
4355    // don't come through here, as they use the <label> forms of the relevant
4356    // instructions.
4357    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
4358    if (!CE)
4359      return Error (E, "constant expression expected");
4360
4361    unsigned Align = 0;
4362    switch (CE->getValue()) {
4363    default:
4364      return Error(E,
4365                   "alignment specifier must be 16, 32, 64, 128, or 256 bits");
4366    case 16:  Align = 2; break;
4367    case 32:  Align = 4; break;
4368    case 64:  Align = 8; break;
4369    case 128: Align = 16; break;
4370    case 256: Align = 32; break;
4371    }
4372
4373    // Now we should have the closing ']'
4374    if (Parser.getTok().isNot(AsmToken::RBrac))
4375      return Error(Parser.getTok().getLoc(), "']' expected");
4376    E = Parser.getTok().getEndLoc();
4377    Parser.Lex(); // Eat right bracket token.
4378
4379    // Don't worry about range checking the value here. That's handled by
4380    // the is*() predicates.
4381    Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, 0,
4382                                             ARM_AM::no_shift, 0, Align,
4383                                             false, S, E));
4384
4385    // If there's a pre-indexing writeback marker, '!', just add it as a token
4386    // operand.
4387    if (Parser.getTok().is(AsmToken::Exclaim)) {
4388      Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4389      Parser.Lex(); // Eat the '!'.
4390    }
4391
4392    return false;
4393  }
4394
4395  // If we have a '#', it's an immediate offset, else assume it's a register
4396  // offset. Be friendly and also accept a plain integer (without a leading
4397  // hash) for gas compatibility.
4398  if (Parser.getTok().is(AsmToken::Hash) ||
4399      Parser.getTok().is(AsmToken::Dollar) ||
4400      Parser.getTok().is(AsmToken::Integer)) {
4401    if (Parser.getTok().isNot(AsmToken::Integer))
4402      Parser.Lex(); // Eat '#' or '$'.
4403    E = Parser.getTok().getLoc();
4404
4405    bool isNegative = getParser().getTok().is(AsmToken::Minus);
4406    const MCExpr *Offset;
4407    if (getParser().parseExpression(Offset))
4408     return true;
4409
4410    // The expression has to be a constant. Memory references with relocations
4411    // don't come through here, as they use the <label> forms of the relevant
4412    // instructions.
4413    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
4414    if (!CE)
4415      return Error (E, "constant expression expected");
4416
4417    // If the constant was #-0, represent it as INT32_MIN.
4418    int32_t Val = CE->getValue();
4419    if (isNegative && Val == 0)
4420      CE = MCConstantExpr::Create(INT32_MIN, getContext());
4421
4422    // Now we should have the closing ']'
4423    if (Parser.getTok().isNot(AsmToken::RBrac))
4424      return Error(Parser.getTok().getLoc(), "']' expected");
4425    E = Parser.getTok().getEndLoc();
4426    Parser.Lex(); // Eat right bracket token.
4427
4428    // Don't worry about range checking the value here. That's handled by
4429    // the is*() predicates.
4430    Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0,
4431                                             ARM_AM::no_shift, 0, 0,
4432                                             false, S, E));
4433
4434    // If there's a pre-indexing writeback marker, '!', just add it as a token
4435    // operand.
4436    if (Parser.getTok().is(AsmToken::Exclaim)) {
4437      Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4438      Parser.Lex(); // Eat the '!'.
4439    }
4440
4441    return false;
4442  }
4443
4444  // The register offset is optionally preceded by a '+' or '-'
4445  bool isNegative = false;
4446  if (Parser.getTok().is(AsmToken::Minus)) {
4447    isNegative = true;
4448    Parser.Lex(); // Eat the '-'.
4449  } else if (Parser.getTok().is(AsmToken::Plus)) {
4450    // Nothing to do.
4451    Parser.Lex(); // Eat the '+'.
4452  }
4453
4454  E = Parser.getTok().getLoc();
4455  int OffsetRegNum = tryParseRegister();
4456  if (OffsetRegNum == -1)
4457    return Error(E, "register expected");
4458
4459  // If there's a shift operator, handle it.
4460  ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
4461  unsigned ShiftImm = 0;
4462  if (Parser.getTok().is(AsmToken::Comma)) {
4463    Parser.Lex(); // Eat the ','.
4464    if (parseMemRegOffsetShift(ShiftType, ShiftImm))
4465      return true;
4466  }
4467
4468  // Now we should have the closing ']'
4469  if (Parser.getTok().isNot(AsmToken::RBrac))
4470    return Error(Parser.getTok().getLoc(), "']' expected");
4471  E = Parser.getTok().getEndLoc();
4472  Parser.Lex(); // Eat right bracket token.
4473
4474  Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, OffsetRegNum,
4475                                           ShiftType, ShiftImm, 0, isNegative,
4476                                           S, E));
4477
4478  // If there's a pre-indexing writeback marker, '!', just add it as a token
4479  // operand.
4480  if (Parser.getTok().is(AsmToken::Exclaim)) {
4481    Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4482    Parser.Lex(); // Eat the '!'.
4483  }
4484
4485  return false;
4486}
4487
4488/// parseMemRegOffsetShift - one of these two:
4489///   ( lsl | lsr | asr | ror ) , # shift_amount
4490///   rrx
4491/// return true if it parses a shift otherwise it returns false.
4492bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
4493                                          unsigned &Amount) {
4494  SMLoc Loc = Parser.getTok().getLoc();
4495  const AsmToken &Tok = Parser.getTok();
4496  if (Tok.isNot(AsmToken::Identifier))
4497    return true;
4498  StringRef ShiftName = Tok.getString();
4499  if (ShiftName == "lsl" || ShiftName == "LSL" ||
4500      ShiftName == "asl" || ShiftName == "ASL")
4501    St = ARM_AM::lsl;
4502  else if (ShiftName == "lsr" || ShiftName == "LSR")
4503    St = ARM_AM::lsr;
4504  else if (ShiftName == "asr" || ShiftName == "ASR")
4505    St = ARM_AM::asr;
4506  else if (ShiftName == "ror" || ShiftName == "ROR")
4507    St = ARM_AM::ror;
4508  else if (ShiftName == "rrx" || ShiftName == "RRX")
4509    St = ARM_AM::rrx;
4510  else
4511    return Error(Loc, "illegal shift operator");
4512  Parser.Lex(); // Eat shift type token.
4513
4514  // rrx stands alone.
4515  Amount = 0;
4516  if (St != ARM_AM::rrx) {
4517    Loc = Parser.getTok().getLoc();
4518    // A '#' and a shift amount.
4519    const AsmToken &HashTok = Parser.getTok();
4520    if (HashTok.isNot(AsmToken::Hash) &&
4521        HashTok.isNot(AsmToken::Dollar))
4522      return Error(HashTok.getLoc(), "'#' expected");
4523    Parser.Lex(); // Eat hash token.
4524
4525    const MCExpr *Expr;
4526    if (getParser().parseExpression(Expr))
4527      return true;
4528    // Range check the immediate.
4529    // lsl, ror: 0 <= imm <= 31
4530    // lsr, asr: 0 <= imm <= 32
4531    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
4532    if (!CE)
4533      return Error(Loc, "shift amount must be an immediate");
4534    int64_t Imm = CE->getValue();
4535    if (Imm < 0 ||
4536        ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
4537        ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
4538      return Error(Loc, "immediate shift value out of range");
4539    // If <ShiftTy> #0, turn it into a no_shift.
4540    if (Imm == 0)
4541      St = ARM_AM::lsl;
4542    // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
4543    if (Imm == 32)
4544      Imm = 0;
4545    Amount = Imm;
4546  }
4547
4548  return false;
4549}
4550
4551/// parseFPImm - A floating point immediate expression operand.
4552ARMAsmParser::OperandMatchResultTy ARMAsmParser::
4553parseFPImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4554  // Anything that can accept a floating point constant as an operand
4555  // needs to go through here, as the regular parseExpression is
4556  // integer only.
4557  //
4558  // This routine still creates a generic Immediate operand, containing
4559  // a bitcast of the 64-bit floating point value. The various operands
4560  // that accept floats can check whether the value is valid for them
4561  // via the standard is*() predicates.
4562
4563  SMLoc S = Parser.getTok().getLoc();
4564
4565  if (Parser.getTok().isNot(AsmToken::Hash) &&
4566      Parser.getTok().isNot(AsmToken::Dollar))
4567    return MatchOperand_NoMatch;
4568
4569  // Disambiguate the VMOV forms that can accept an FP immediate.
4570  // vmov.f32 <sreg>, #imm
4571  // vmov.f64 <dreg>, #imm
4572  // vmov.f32 <dreg>, #imm  @ vector f32x2
4573  // vmov.f32 <qreg>, #imm  @ vector f32x4
4574  //
4575  // There are also the NEON VMOV instructions which expect an
4576  // integer constant. Make sure we don't try to parse an FPImm
4577  // for these:
4578  // vmov.i{8|16|32|64} <dreg|qreg>, #imm
4579  ARMOperand *TyOp = static_cast<ARMOperand*>(Operands[2]);
4580  bool isVmovf = TyOp->isToken() && (TyOp->getToken() == ".f32" ||
4581                                     TyOp->getToken() == ".f64");
4582  ARMOperand *Mnemonic = static_cast<ARMOperand*>(Operands[0]);
4583  bool isFconst = Mnemonic->isToken() && (Mnemonic->getToken() == "fconstd" ||
4584                                          Mnemonic->getToken() == "fconsts");
4585  if (!(isVmovf || isFconst))
4586    return MatchOperand_NoMatch;
4587
4588  Parser.Lex(); // Eat '#' or '$'.
4589
4590  // Handle negation, as that still comes through as a separate token.
4591  bool isNegative = false;
4592  if (Parser.getTok().is(AsmToken::Minus)) {
4593    isNegative = true;
4594    Parser.Lex();
4595  }
4596  const AsmToken &Tok = Parser.getTok();
4597  SMLoc Loc = Tok.getLoc();
4598  if (Tok.is(AsmToken::Real) && isVmovf) {
4599    APFloat RealVal(APFloat::IEEEsingle, Tok.getString());
4600    uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
4601    // If we had a '-' in front, toggle the sign bit.
4602    IntVal ^= (uint64_t)isNegative << 31;
4603    Parser.Lex(); // Eat the token.
4604    Operands.push_back(ARMOperand::CreateImm(
4605          MCConstantExpr::Create(IntVal, getContext()),
4606          S, Parser.getTok().getLoc()));
4607    return MatchOperand_Success;
4608  }
4609  // Also handle plain integers. Instructions which allow floating point
4610  // immediates also allow a raw encoded 8-bit value.
4611  if (Tok.is(AsmToken::Integer) && isFconst) {
4612    int64_t Val = Tok.getIntVal();
4613    Parser.Lex(); // Eat the token.
4614    if (Val > 255 || Val < 0) {
4615      Error(Loc, "encoded floating point value out of range");
4616      return MatchOperand_ParseFail;
4617    }
4618    float RealVal = ARM_AM::getFPImmFloat(Val);
4619    Val = APFloat(RealVal).bitcastToAPInt().getZExtValue();
4620
4621    Operands.push_back(ARMOperand::CreateImm(
4622        MCConstantExpr::Create(Val, getContext()), S,
4623        Parser.getTok().getLoc()));
4624    return MatchOperand_Success;
4625  }
4626
4627  Error(Loc, "invalid floating point immediate");
4628  return MatchOperand_ParseFail;
4629}
4630
4631/// Parse a arm instruction operand.  For now this parses the operand regardless
4632/// of the mnemonic.
4633bool ARMAsmParser::parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
4634                                StringRef Mnemonic) {
4635  SMLoc S, E;
4636
4637  // Check if the current operand has a custom associated parser, if so, try to
4638  // custom parse the operand, or fallback to the general approach.
4639  OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
4640  if (ResTy == MatchOperand_Success)
4641    return false;
4642  // If there wasn't a custom match, try the generic matcher below. Otherwise,
4643  // there was a match, but an error occurred, in which case, just return that
4644  // the operand parsing failed.
4645  if (ResTy == MatchOperand_ParseFail)
4646    return true;
4647
4648  switch (getLexer().getKind()) {
4649  default:
4650    Error(Parser.getTok().getLoc(), "unexpected token in operand");
4651    return true;
4652  case AsmToken::Identifier: {
4653    // If we've seen a branch mnemonic, the next operand must be a label.  This
4654    // is true even if the label is a register name.  So "br r1" means branch to
4655    // label "r1".
4656    bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl";
4657    if (!ExpectLabel) {
4658      if (!tryParseRegisterWithWriteBack(Operands))
4659        return false;
4660      int Res = tryParseShiftRegister(Operands);
4661      if (Res == 0) // success
4662        return false;
4663      else if (Res == -1) // irrecoverable error
4664        return true;
4665      // If this is VMRS, check for the apsr_nzcv operand.
4666      if (Mnemonic == "vmrs" &&
4667          Parser.getTok().getString().equals_lower("apsr_nzcv")) {
4668        S = Parser.getTok().getLoc();
4669        Parser.Lex();
4670        Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
4671        return false;
4672      }
4673    }
4674
4675    // Fall though for the Identifier case that is not a register or a
4676    // special name.
4677  }
4678  case AsmToken::LParen:  // parenthesized expressions like (_strcmp-4)
4679  case AsmToken::Integer: // things like 1f and 2b as a branch targets
4680  case AsmToken::String:  // quoted label names.
4681  case AsmToken::Dot: {   // . as a branch target
4682    // This was not a register so parse other operands that start with an
4683    // identifier (like labels) as expressions and create them as immediates.
4684    const MCExpr *IdVal;
4685    S = Parser.getTok().getLoc();
4686    if (getParser().parseExpression(IdVal))
4687      return true;
4688    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
4689    Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
4690    return false;
4691  }
4692  case AsmToken::LBrac:
4693    return parseMemory(Operands);
4694  case AsmToken::LCurly:
4695    return parseRegisterList(Operands);
4696  case AsmToken::Dollar:
4697  case AsmToken::Hash: {
4698    // #42 -> immediate.
4699    S = Parser.getTok().getLoc();
4700    Parser.Lex();
4701
4702    if (Parser.getTok().isNot(AsmToken::Colon)) {
4703      bool isNegative = Parser.getTok().is(AsmToken::Minus);
4704      const MCExpr *ImmVal;
4705      if (getParser().parseExpression(ImmVal))
4706        return true;
4707      const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
4708      if (CE) {
4709        int32_t Val = CE->getValue();
4710        if (isNegative && Val == 0)
4711          ImmVal = MCConstantExpr::Create(INT32_MIN, getContext());
4712      }
4713      E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
4714      Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
4715
4716      // There can be a trailing '!' on operands that we want as a separate
4717      // '!' Token operand. Handle that here. For example, the compatibility
4718      // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
4719      if (Parser.getTok().is(AsmToken::Exclaim)) {
4720        Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(),
4721                                                   Parser.getTok().getLoc()));
4722        Parser.Lex(); // Eat exclaim token
4723      }
4724      return false;
4725    }
4726    // w/ a ':' after the '#', it's just like a plain ':'.
4727    // FALLTHROUGH
4728  }
4729  case AsmToken::Colon: {
4730    // ":lower16:" and ":upper16:" expression prefixes
4731    // FIXME: Check it's an expression prefix,
4732    // e.g. (FOO - :lower16:BAR) isn't legal.
4733    ARMMCExpr::VariantKind RefKind;
4734    if (parsePrefix(RefKind))
4735      return true;
4736
4737    const MCExpr *SubExprVal;
4738    if (getParser().parseExpression(SubExprVal))
4739      return true;
4740
4741    const MCExpr *ExprVal = ARMMCExpr::Create(RefKind, SubExprVal,
4742                                              getContext());
4743    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
4744    Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
4745    return false;
4746  }
4747  case AsmToken::Equal: {
4748    if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val)
4749      return Error(Parser.getTok().getLoc(), "unexpected token in operand");
4750
4751    Parser.Lex(); // Eat '='
4752    const MCExpr *SubExprVal;
4753    if (getParser().parseExpression(SubExprVal))
4754      return true;
4755    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
4756
4757    const MCExpr *CPLoc = getTargetStreamer().addConstantPoolEntry(SubExprVal);
4758    Operands.push_back(ARMOperand::CreateImm(CPLoc, S, E));
4759    return false;
4760  }
4761  }
4762}
4763
4764// parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
4765//  :lower16: and :upper16:.
4766bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
4767  RefKind = ARMMCExpr::VK_ARM_None;
4768
4769  // consume an optional '#' (GNU compatibility)
4770  if (getLexer().is(AsmToken::Hash))
4771    Parser.Lex();
4772
4773  // :lower16: and :upper16: modifiers
4774  assert(getLexer().is(AsmToken::Colon) && "expected a :");
4775  Parser.Lex(); // Eat ':'
4776
4777  if (getLexer().isNot(AsmToken::Identifier)) {
4778    Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
4779    return true;
4780  }
4781
4782  StringRef IDVal = Parser.getTok().getIdentifier();
4783  if (IDVal == "lower16") {
4784    RefKind = ARMMCExpr::VK_ARM_LO16;
4785  } else if (IDVal == "upper16") {
4786    RefKind = ARMMCExpr::VK_ARM_HI16;
4787  } else {
4788    Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
4789    return true;
4790  }
4791  Parser.Lex();
4792
4793  if (getLexer().isNot(AsmToken::Colon)) {
4794    Error(Parser.getTok().getLoc(), "unexpected token after prefix");
4795    return true;
4796  }
4797  Parser.Lex(); // Eat the last ':'
4798  return false;
4799}
4800
4801/// \brief Given a mnemonic, split out possible predication code and carry
4802/// setting letters to form a canonical mnemonic and flags.
4803//
4804// FIXME: Would be nice to autogen this.
4805// FIXME: This is a bit of a maze of special cases.
4806StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
4807                                      unsigned &PredicationCode,
4808                                      bool &CarrySetting,
4809                                      unsigned &ProcessorIMod,
4810                                      StringRef &ITMask) {
4811  PredicationCode = ARMCC::AL;
4812  CarrySetting = false;
4813  ProcessorIMod = 0;
4814
4815  // Ignore some mnemonics we know aren't predicated forms.
4816  //
4817  // FIXME: Would be nice to autogen this.
4818  if ((Mnemonic == "movs" && isThumb()) ||
4819      Mnemonic == "teq"   || Mnemonic == "vceq"   || Mnemonic == "svc"   ||
4820      Mnemonic == "mls"   || Mnemonic == "smmls"  || Mnemonic == "vcls"  ||
4821      Mnemonic == "vmls"  || Mnemonic == "vnmls"  || Mnemonic == "vacge" ||
4822      Mnemonic == "vcge"  || Mnemonic == "vclt"   || Mnemonic == "vacgt" ||
4823      Mnemonic == "vaclt" || Mnemonic == "vacle"  || Mnemonic == "hlt" ||
4824      Mnemonic == "vcgt"  || Mnemonic == "vcle"   || Mnemonic == "smlal" ||
4825      Mnemonic == "umaal" || Mnemonic == "umlal"  || Mnemonic == "vabal" ||
4826      Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
4827      Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" ||
4828      Mnemonic == "vcvta" || Mnemonic == "vcvtn"  || Mnemonic == "vcvtp" ||
4829      Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" ||
4830      Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic.startswith("vsel"))
4831    return Mnemonic;
4832
4833  // First, split out any predication code. Ignore mnemonics we know aren't
4834  // predicated but do have a carry-set and so weren't caught above.
4835  if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
4836      Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
4837      Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
4838      Mnemonic != "sbcs" && Mnemonic != "rscs") {
4839    unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2))
4840      .Case("eq", ARMCC::EQ)
4841      .Case("ne", ARMCC::NE)
4842      .Case("hs", ARMCC::HS)
4843      .Case("cs", ARMCC::HS)
4844      .Case("lo", ARMCC::LO)
4845      .Case("cc", ARMCC::LO)
4846      .Case("mi", ARMCC::MI)
4847      .Case("pl", ARMCC::PL)
4848      .Case("vs", ARMCC::VS)
4849      .Case("vc", ARMCC::VC)
4850      .Case("hi", ARMCC::HI)
4851      .Case("ls", ARMCC::LS)
4852      .Case("ge", ARMCC::GE)
4853      .Case("lt", ARMCC::LT)
4854      .Case("gt", ARMCC::GT)
4855      .Case("le", ARMCC::LE)
4856      .Case("al", ARMCC::AL)
4857      .Default(~0U);
4858    if (CC != ~0U) {
4859      Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
4860      PredicationCode = CC;
4861    }
4862  }
4863
4864  // Next, determine if we have a carry setting bit. We explicitly ignore all
4865  // the instructions we know end in 's'.
4866  if (Mnemonic.endswith("s") &&
4867      !(Mnemonic == "cps" || Mnemonic == "mls" ||
4868        Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
4869        Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
4870        Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
4871        Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
4872        Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
4873        Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
4874        Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
4875        Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" ||
4876        (Mnemonic == "movs" && isThumb()))) {
4877    Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
4878    CarrySetting = true;
4879  }
4880
4881  // The "cps" instruction can have a interrupt mode operand which is glued into
4882  // the mnemonic. Check if this is the case, split it and parse the imod op
4883  if (Mnemonic.startswith("cps")) {
4884    // Split out any imod code.
4885    unsigned IMod =
4886      StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
4887      .Case("ie", ARM_PROC::IE)
4888      .Case("id", ARM_PROC::ID)
4889      .Default(~0U);
4890    if (IMod != ~0U) {
4891      Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
4892      ProcessorIMod = IMod;
4893    }
4894  }
4895
4896  // The "it" instruction has the condition mask on the end of the mnemonic.
4897  if (Mnemonic.startswith("it")) {
4898    ITMask = Mnemonic.slice(2, Mnemonic.size());
4899    Mnemonic = Mnemonic.slice(0, 2);
4900  }
4901
4902  return Mnemonic;
4903}
4904
4905/// \brief Given a canonical mnemonic, determine if the instruction ever allows
4906/// inclusion of carry set or predication code operands.
4907//
4908// FIXME: It would be nice to autogen this.
4909void ARMAsmParser::
4910getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst,
4911                     bool &CanAcceptCarrySet, bool &CanAcceptPredicationCode) {
4912  if (Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
4913      Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
4914      Mnemonic == "add" || Mnemonic == "adc" ||
4915      Mnemonic == "mul" || Mnemonic == "bic" || Mnemonic == "asr" ||
4916      Mnemonic == "orr" || Mnemonic == "mvn" ||
4917      Mnemonic == "rsb" || Mnemonic == "rsc" || Mnemonic == "orn" ||
4918      Mnemonic == "sbc" || Mnemonic == "eor" || Mnemonic == "neg" ||
4919      Mnemonic == "vfm" || Mnemonic == "vfnm" ||
4920      (!isThumb() && (Mnemonic == "smull" || Mnemonic == "mov" ||
4921                      Mnemonic == "mla" || Mnemonic == "smlal" ||
4922                      Mnemonic == "umlal" || Mnemonic == "umull"))) {
4923    CanAcceptCarrySet = true;
4924  } else
4925    CanAcceptCarrySet = false;
4926
4927  if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" ||
4928      Mnemonic == "cps" ||  Mnemonic == "it" ||  Mnemonic == "cbz" ||
4929      Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic.startswith("crc32") ||
4930      Mnemonic.startswith("cps") || Mnemonic.startswith("vsel") ||
4931      Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || Mnemonic == "vcvta" ||
4932      Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || Mnemonic == "vcvtm" ||
4933      Mnemonic == "vrinta" || Mnemonic == "vrintn" || Mnemonic == "vrintp" ||
4934      Mnemonic == "vrintm" || Mnemonic.startswith("aes") ||
4935      Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") ||
4936      (FullInst.startswith("vmull") && FullInst.endswith(".p64"))) {
4937    // These mnemonics are never predicable
4938    CanAcceptPredicationCode = false;
4939  } else if (!isThumb()) {
4940    // Some instructions are only predicable in Thumb mode
4941    CanAcceptPredicationCode
4942      = Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" &&
4943        Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" &&
4944        Mnemonic != "dmb" && Mnemonic != "dsb" && Mnemonic != "isb" &&
4945        Mnemonic != "pld" && Mnemonic != "pli" && Mnemonic != "pldw" &&
4946        Mnemonic != "ldc2" && Mnemonic != "ldc2l" &&
4947        Mnemonic != "stc2" && Mnemonic != "stc2l" &&
4948        !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs");
4949  } else if (isThumbOne()) {
4950    if (hasV6MOps())
4951      CanAcceptPredicationCode = Mnemonic != "movs";
4952    else
4953      CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs";
4954  } else
4955    CanAcceptPredicationCode = true;
4956}
4957
4958bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
4959                               SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4960  // FIXME: This is all horribly hacky. We really need a better way to deal
4961  // with optional operands like this in the matcher table.
4962
4963  // The 'mov' mnemonic is special. One variant has a cc_out operand, while
4964  // another does not. Specifically, the MOVW instruction does not. So we
4965  // special case it here and remove the defaulted (non-setting) cc_out
4966  // operand if that's the instruction we're trying to match.
4967  //
4968  // We do this as post-processing of the explicit operands rather than just
4969  // conditionally adding the cc_out in the first place because we need
4970  // to check the type of the parsed immediate operand.
4971  if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
4972      !static_cast<ARMOperand*>(Operands[4])->isARMSOImm() &&
4973      static_cast<ARMOperand*>(Operands[4])->isImm0_65535Expr() &&
4974      static_cast<ARMOperand*>(Operands[1])->getReg() == 0)
4975    return true;
4976
4977  // Register-register 'add' for thumb does not have a cc_out operand
4978  // when there are only two register operands.
4979  if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
4980      static_cast<ARMOperand*>(Operands[3])->isReg() &&
4981      static_cast<ARMOperand*>(Operands[4])->isReg() &&
4982      static_cast<ARMOperand*>(Operands[1])->getReg() == 0)
4983    return true;
4984  // Register-register 'add' for thumb does not have a cc_out operand
4985  // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
4986  // have to check the immediate range here since Thumb2 has a variant
4987  // that can handle a different range and has a cc_out operand.
4988  if (((isThumb() && Mnemonic == "add") ||
4989       (isThumbTwo() && Mnemonic == "sub")) &&
4990      Operands.size() == 6 &&
4991      static_cast<ARMOperand*>(Operands[3])->isReg() &&
4992      static_cast<ARMOperand*>(Operands[4])->isReg() &&
4993      static_cast<ARMOperand*>(Operands[4])->getReg() == ARM::SP &&
4994      static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
4995      ((Mnemonic == "add" &&static_cast<ARMOperand*>(Operands[5])->isReg()) ||
4996       static_cast<ARMOperand*>(Operands[5])->isImm0_1020s4()))
4997    return true;
4998  // For Thumb2, add/sub immediate does not have a cc_out operand for the
4999  // imm0_4095 variant. That's the least-preferred variant when
5000  // selecting via the generic "add" mnemonic, so to know that we
5001  // should remove the cc_out operand, we have to explicitly check that
5002  // it's not one of the other variants. Ugh.
5003  if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
5004      Operands.size() == 6 &&
5005      static_cast<ARMOperand*>(Operands[3])->isReg() &&
5006      static_cast<ARMOperand*>(Operands[4])->isReg() &&
5007      static_cast<ARMOperand*>(Operands[5])->isImm()) {
5008    // Nest conditions rather than one big 'if' statement for readability.
5009    //
5010    // If both registers are low, we're in an IT block, and the immediate is
5011    // in range, we should use encoding T1 instead, which has a cc_out.
5012    if (inITBlock() &&
5013        isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) &&
5014        isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) &&
5015        static_cast<ARMOperand*>(Operands[5])->isImm0_7())
5016      return false;
5017    // Check against T3. If the second register is the PC, this is an
5018    // alternate form of ADR, which uses encoding T4, so check for that too.
5019    if (static_cast<ARMOperand*>(Operands[4])->getReg() != ARM::PC &&
5020        static_cast<ARMOperand*>(Operands[5])->isT2SOImm())
5021      return false;
5022
5023    // Otherwise, we use encoding T4, which does not have a cc_out
5024    // operand.
5025    return true;
5026  }
5027
5028  // The thumb2 multiply instruction doesn't have a CCOut register, so
5029  // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
5030  // use the 16-bit encoding or not.
5031  if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
5032      static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
5033      static_cast<ARMOperand*>(Operands[3])->isReg() &&
5034      static_cast<ARMOperand*>(Operands[4])->isReg() &&
5035      static_cast<ARMOperand*>(Operands[5])->isReg() &&
5036      // If the registers aren't low regs, the destination reg isn't the
5037      // same as one of the source regs, or the cc_out operand is zero
5038      // outside of an IT block, we have to use the 32-bit encoding, so
5039      // remove the cc_out operand.
5040      (!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
5041       !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) ||
5042       !isARMLowRegister(static_cast<ARMOperand*>(Operands[5])->getReg()) ||
5043       !inITBlock() ||
5044       (static_cast<ARMOperand*>(Operands[3])->getReg() !=
5045        static_cast<ARMOperand*>(Operands[5])->getReg() &&
5046        static_cast<ARMOperand*>(Operands[3])->getReg() !=
5047        static_cast<ARMOperand*>(Operands[4])->getReg())))
5048    return true;
5049
5050  // Also check the 'mul' syntax variant that doesn't specify an explicit
5051  // destination register.
5052  if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
5053      static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
5054      static_cast<ARMOperand*>(Operands[3])->isReg() &&
5055      static_cast<ARMOperand*>(Operands[4])->isReg() &&
5056      // If the registers aren't low regs  or the cc_out operand is zero
5057      // outside of an IT block, we have to use the 32-bit encoding, so
5058      // remove the cc_out operand.
5059      (!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
5060       !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) ||
5061       !inITBlock()))
5062    return true;
5063
5064
5065
5066  // Register-register 'add/sub' for thumb does not have a cc_out operand
5067  // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
5068  // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
5069  // right, this will result in better diagnostics (which operand is off)
5070  // anyway.
5071  if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
5072      (Operands.size() == 5 || Operands.size() == 6) &&
5073      static_cast<ARMOperand*>(Operands[3])->isReg() &&
5074      static_cast<ARMOperand*>(Operands[3])->getReg() == ARM::SP &&
5075      static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
5076      (static_cast<ARMOperand*>(Operands[4])->isImm() ||
5077       (Operands.size() == 6 &&
5078        static_cast<ARMOperand*>(Operands[5])->isImm())))
5079    return true;
5080
5081  return false;
5082}
5083
5084bool ARMAsmParser::shouldOmitPredicateOperand(
5085    StringRef Mnemonic, SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
5086  // VRINT{Z, R, X} have a predicate operand in VFP, but not in NEON
5087  unsigned RegIdx = 3;
5088  if ((Mnemonic == "vrintz" || Mnemonic == "vrintx" || Mnemonic == "vrintr") &&
5089      static_cast<ARMOperand *>(Operands[2])->getToken() == ".f32") {
5090    if (static_cast<ARMOperand *>(Operands[3])->isToken() &&
5091        static_cast<ARMOperand *>(Operands[3])->getToken() == ".f32")
5092      RegIdx = 4;
5093
5094    if (static_cast<ARMOperand *>(Operands[RegIdx])->isReg() &&
5095        (ARMMCRegisterClasses[ARM::DPRRegClassID]
5096             .contains(static_cast<ARMOperand *>(Operands[RegIdx])->getReg()) ||
5097         ARMMCRegisterClasses[ARM::QPRRegClassID]
5098             .contains(static_cast<ARMOperand *>(Operands[RegIdx])->getReg())))
5099      return true;
5100  }
5101  return false;
5102}
5103
5104static bool isDataTypeToken(StringRef Tok) {
5105  return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
5106    Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
5107    Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
5108    Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
5109    Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
5110    Tok == ".f" || Tok == ".d";
5111}
5112
5113// FIXME: This bit should probably be handled via an explicit match class
5114// in the .td files that matches the suffix instead of having it be
5115// a literal string token the way it is now.
5116static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
5117  return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
5118}
5119static void applyMnemonicAliases(StringRef &Mnemonic, unsigned Features,
5120                                 unsigned VariantID);
5121
5122static bool RequiresVFPRegListValidation(StringRef Inst,
5123                                         bool &AcceptSinglePrecisionOnly,
5124                                         bool &AcceptDoublePrecisionOnly) {
5125  if (Inst.size() < 7)
5126    return false;
5127
5128  if (Inst.startswith("fldm") || Inst.startswith("fstm")) {
5129    StringRef AddressingMode = Inst.substr(4, 2);
5130    if (AddressingMode == "ia" || AddressingMode == "db" ||
5131        AddressingMode == "ea" || AddressingMode == "fd") {
5132      AcceptSinglePrecisionOnly = Inst[6] == 's';
5133      AcceptDoublePrecisionOnly = Inst[6] == 'd' || Inst[6] == 'x';
5134      return true;
5135    }
5136  }
5137
5138  return false;
5139}
5140
5141/// Parse an arm instruction mnemonic followed by its operands.
5142bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
5143                                    SMLoc NameLoc,
5144                               SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
5145  // FIXME: Can this be done via tablegen in some fashion?
5146  bool RequireVFPRegisterListCheck;
5147  bool AcceptSinglePrecisionOnly;
5148  bool AcceptDoublePrecisionOnly;
5149  RequireVFPRegisterListCheck =
5150    RequiresVFPRegListValidation(Name, AcceptSinglePrecisionOnly,
5151                                 AcceptDoublePrecisionOnly);
5152
5153  // Apply mnemonic aliases before doing anything else, as the destination
5154  // mnemonic may include suffices and we want to handle them normally.
5155  // The generic tblgen'erated code does this later, at the start of
5156  // MatchInstructionImpl(), but that's too late for aliases that include
5157  // any sort of suffix.
5158  unsigned AvailableFeatures = getAvailableFeatures();
5159  unsigned AssemblerDialect = getParser().getAssemblerDialect();
5160  applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect);
5161
5162  // First check for the ARM-specific .req directive.
5163  if (Parser.getTok().is(AsmToken::Identifier) &&
5164      Parser.getTok().getIdentifier() == ".req") {
5165    parseDirectiveReq(Name, NameLoc);
5166    // We always return 'error' for this, as we're done with this
5167    // statement and don't need to match the 'instruction."
5168    return true;
5169  }
5170
5171  // Create the leading tokens for the mnemonic, split by '.' characters.
5172  size_t Start = 0, Next = Name.find('.');
5173  StringRef Mnemonic = Name.slice(Start, Next);
5174
5175  // Split out the predication code and carry setting flag from the mnemonic.
5176  unsigned PredicationCode;
5177  unsigned ProcessorIMod;
5178  bool CarrySetting;
5179  StringRef ITMask;
5180  Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting,
5181                           ProcessorIMod, ITMask);
5182
5183  // In Thumb1, only the branch (B) instruction can be predicated.
5184  if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
5185    Parser.eatToEndOfStatement();
5186    return Error(NameLoc, "conditional execution not supported in Thumb1");
5187  }
5188
5189  Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
5190
5191  // Handle the IT instruction ITMask. Convert it to a bitmask. This
5192  // is the mask as it will be for the IT encoding if the conditional
5193  // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case
5194  // where the conditional bit0 is zero, the instruction post-processing
5195  // will adjust the mask accordingly.
5196  if (Mnemonic == "it") {
5197    SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2);
5198    if (ITMask.size() > 3) {
5199      Parser.eatToEndOfStatement();
5200      return Error(Loc, "too many conditions on IT instruction");
5201    }
5202    unsigned Mask = 8;
5203    for (unsigned i = ITMask.size(); i != 0; --i) {
5204      char pos = ITMask[i - 1];
5205      if (pos != 't' && pos != 'e') {
5206        Parser.eatToEndOfStatement();
5207        return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
5208      }
5209      Mask >>= 1;
5210      if (ITMask[i - 1] == 't')
5211        Mask |= 8;
5212    }
5213    Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
5214  }
5215
5216  // FIXME: This is all a pretty gross hack. We should automatically handle
5217  // optional operands like this via tblgen.
5218
5219  // Next, add the CCOut and ConditionCode operands, if needed.
5220  //
5221  // For mnemonics which can ever incorporate a carry setting bit or predication
5222  // code, our matching model involves us always generating CCOut and
5223  // ConditionCode operands to match the mnemonic "as written" and then we let
5224  // the matcher deal with finding the right instruction or generating an
5225  // appropriate error.
5226  bool CanAcceptCarrySet, CanAcceptPredicationCode;
5227  getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode);
5228
5229  // If we had a carry-set on an instruction that can't do that, issue an
5230  // error.
5231  if (!CanAcceptCarrySet && CarrySetting) {
5232    Parser.eatToEndOfStatement();
5233    return Error(NameLoc, "instruction '" + Mnemonic +
5234                 "' can not set flags, but 's' suffix specified");
5235  }
5236  // If we had a predication code on an instruction that can't do that, issue an
5237  // error.
5238  if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
5239    Parser.eatToEndOfStatement();
5240    return Error(NameLoc, "instruction '" + Mnemonic +
5241                 "' is not predicable, but condition code specified");
5242  }
5243
5244  // Add the carry setting operand, if necessary.
5245  if (CanAcceptCarrySet) {
5246    SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
5247    Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
5248                                               Loc));
5249  }
5250
5251  // Add the predication code operand, if necessary.
5252  if (CanAcceptPredicationCode) {
5253    SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
5254                                      CarrySetting);
5255    Operands.push_back(ARMOperand::CreateCondCode(
5256                         ARMCC::CondCodes(PredicationCode), Loc));
5257  }
5258
5259  // Add the processor imod operand, if necessary.
5260  if (ProcessorIMod) {
5261    Operands.push_back(ARMOperand::CreateImm(
5262          MCConstantExpr::Create(ProcessorIMod, getContext()),
5263                                 NameLoc, NameLoc));
5264  }
5265
5266  // Add the remaining tokens in the mnemonic.
5267  while (Next != StringRef::npos) {
5268    Start = Next;
5269    Next = Name.find('.', Start + 1);
5270    StringRef ExtraToken = Name.slice(Start, Next);
5271
5272    // Some NEON instructions have an optional datatype suffix that is
5273    // completely ignored. Check for that.
5274    if (isDataTypeToken(ExtraToken) &&
5275        doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
5276      continue;
5277
5278    // For for ARM mode generate an error if the .n qualifier is used.
5279    if (ExtraToken == ".n" && !isThumb()) {
5280      SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
5281      Parser.eatToEndOfStatement();
5282      return Error(Loc, "instruction with .n (narrow) qualifier not allowed in "
5283                   "arm mode");
5284    }
5285
5286    // The .n qualifier is always discarded as that is what the tables
5287    // and matcher expect.  In ARM mode the .w qualifier has no effect,
5288    // so discard it to avoid errors that can be caused by the matcher.
5289    if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) {
5290      SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
5291      Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
5292    }
5293  }
5294
5295  // Read the remaining operands.
5296  if (getLexer().isNot(AsmToken::EndOfStatement)) {
5297    // Read the first operand.
5298    if (parseOperand(Operands, Mnemonic)) {
5299      Parser.eatToEndOfStatement();
5300      return true;
5301    }
5302
5303    while (getLexer().is(AsmToken::Comma)) {
5304      Parser.Lex();  // Eat the comma.
5305
5306      // Parse and remember the operand.
5307      if (parseOperand(Operands, Mnemonic)) {
5308        Parser.eatToEndOfStatement();
5309        return true;
5310      }
5311    }
5312  }
5313
5314  if (getLexer().isNot(AsmToken::EndOfStatement)) {
5315    SMLoc Loc = getLexer().getLoc();
5316    Parser.eatToEndOfStatement();
5317    return Error(Loc, "unexpected token in argument list");
5318  }
5319
5320  Parser.Lex(); // Consume the EndOfStatement
5321
5322  if (RequireVFPRegisterListCheck) {
5323    ARMOperand *Op = static_cast<ARMOperand*>(Operands.back());
5324    if (AcceptSinglePrecisionOnly && !Op->isSPRRegList())
5325      return Error(Op->getStartLoc(),
5326                   "VFP/Neon single precision register expected");
5327    if (AcceptDoublePrecisionOnly && !Op->isDPRRegList())
5328      return Error(Op->getStartLoc(),
5329                   "VFP/Neon double precision register expected");
5330  }
5331
5332  // Some instructions, mostly Thumb, have forms for the same mnemonic that
5333  // do and don't have a cc_out optional-def operand. With some spot-checks
5334  // of the operand list, we can figure out which variant we're trying to
5335  // parse and adjust accordingly before actually matching. We shouldn't ever
5336  // try to remove a cc_out operand that was explicitly set on the the
5337  // mnemonic, of course (CarrySetting == true). Reason number #317 the
5338  // table driven matcher doesn't fit well with the ARM instruction set.
5339  if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) {
5340    ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
5341    Operands.erase(Operands.begin() + 1);
5342    delete Op;
5343  }
5344
5345  // Some instructions have the same mnemonic, but don't always
5346  // have a predicate. Distinguish them here and delete the
5347  // predicate if needed.
5348  if (shouldOmitPredicateOperand(Mnemonic, Operands)) {
5349    ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
5350    Operands.erase(Operands.begin() + 1);
5351    delete Op;
5352  }
5353
5354  // ARM mode 'blx' need special handling, as the register operand version
5355  // is predicable, but the label operand version is not. So, we can't rely
5356  // on the Mnemonic based checking to correctly figure out when to put
5357  // a k_CondCode operand in the list. If we're trying to match the label
5358  // version, remove the k_CondCode operand here.
5359  if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
5360      static_cast<ARMOperand*>(Operands[2])->isImm()) {
5361    ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
5362    Operands.erase(Operands.begin() + 1);
5363    delete Op;
5364  }
5365
5366  // Adjust operands of ldrexd/strexd to MCK_GPRPair.
5367  // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
5368  // a single GPRPair reg operand is used in the .td file to replace the two
5369  // GPRs. However, when parsing from asm, the two GRPs cannot be automatically
5370  // expressed as a GPRPair, so we have to manually merge them.
5371  // FIXME: We would really like to be able to tablegen'erate this.
5372  if (!isThumb() && Operands.size() > 4 &&
5373      (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" ||
5374       Mnemonic == "stlexd")) {
5375    bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd");
5376    unsigned Idx = isLoad ? 2 : 3;
5377    ARMOperand* Op1 = static_cast<ARMOperand*>(Operands[Idx]);
5378    ARMOperand* Op2 = static_cast<ARMOperand*>(Operands[Idx+1]);
5379
5380    const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID);
5381    // Adjust only if Op1 and Op2 are GPRs.
5382    if (Op1->isReg() && Op2->isReg() && MRC.contains(Op1->getReg()) &&
5383        MRC.contains(Op2->getReg())) {
5384      unsigned Reg1 = Op1->getReg();
5385      unsigned Reg2 = Op2->getReg();
5386      unsigned Rt = MRI->getEncodingValue(Reg1);
5387      unsigned Rt2 = MRI->getEncodingValue(Reg2);
5388
5389      // Rt2 must be Rt + 1 and Rt must be even.
5390      if (Rt + 1 != Rt2 || (Rt & 1)) {
5391        Error(Op2->getStartLoc(), isLoad ?
5392            "destination operands must be sequential" :
5393            "source operands must be sequential");
5394        return true;
5395      }
5396      unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0,
5397          &(MRI->getRegClass(ARM::GPRPairRegClassID)));
5398      Operands.erase(Operands.begin() + Idx, Operands.begin() + Idx + 2);
5399      Operands.insert(Operands.begin() + Idx, ARMOperand::CreateReg(
5400            NewReg, Op1->getStartLoc(), Op2->getEndLoc()));
5401      delete Op1;
5402      delete Op2;
5403    }
5404  }
5405
5406  // GNU Assembler extension (compatibility)
5407  if ((Mnemonic == "ldrd" || Mnemonic == "strd") && !isThumb() &&
5408      Operands.size() == 4) {
5409    ARMOperand *Op = static_cast<ARMOperand *>(Operands[2]);
5410    assert(Op->isReg() && "expected register argument");
5411
5412    unsigned SuperReg = MRI->getMatchingSuperReg(
5413        Op->getReg(), ARM::gsub_0, &MRI->getRegClass(ARM::GPRPairRegClassID));
5414
5415    assert(SuperReg && "expected register pair");
5416
5417    unsigned PairedReg = MRI->getSubReg(SuperReg, ARM::gsub_1);
5418
5419    Operands.insert(Operands.begin() + 3,
5420                    ARMOperand::CreateReg(PairedReg, Op->getStartLoc(),
5421                                          Op->getEndLoc()));
5422  }
5423
5424  // FIXME: As said above, this is all a pretty gross hack.  This instruction
5425  // does not fit with other "subs" and tblgen.
5426  // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction
5427  // so the Mnemonic is the original name "subs" and delete the predicate
5428  // operand so it will match the table entry.
5429  if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 &&
5430      static_cast<ARMOperand*>(Operands[3])->isReg() &&
5431      static_cast<ARMOperand*>(Operands[3])->getReg() == ARM::PC &&
5432      static_cast<ARMOperand*>(Operands[4])->isReg() &&
5433      static_cast<ARMOperand*>(Operands[4])->getReg() == ARM::LR &&
5434      static_cast<ARMOperand*>(Operands[5])->isImm()) {
5435    ARMOperand *Op0 = static_cast<ARMOperand*>(Operands[0]);
5436    Operands.erase(Operands.begin());
5437    delete Op0;
5438    Operands.insert(Operands.begin(), ARMOperand::CreateToken(Name, NameLoc));
5439
5440    ARMOperand *Op1 = static_cast<ARMOperand*>(Operands[1]);
5441    Operands.erase(Operands.begin() + 1);
5442    delete Op1;
5443  }
5444  return false;
5445}
5446
5447// Validate context-sensitive operand constraints.
5448
5449// return 'true' if register list contains non-low GPR registers,
5450// 'false' otherwise. If Reg is in the register list or is HiReg, set
5451// 'containsReg' to true.
5452static bool checkLowRegisterList(MCInst Inst, unsigned OpNo, unsigned Reg,
5453                                 unsigned HiReg, bool &containsReg) {
5454  containsReg = false;
5455  for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
5456    unsigned OpReg = Inst.getOperand(i).getReg();
5457    if (OpReg == Reg)
5458      containsReg = true;
5459    // Anything other than a low register isn't legal here.
5460    if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
5461      return true;
5462  }
5463  return false;
5464}
5465
5466// Check if the specified regisgter is in the register list of the inst,
5467// starting at the indicated operand number.
5468static bool listContainsReg(MCInst &Inst, unsigned OpNo, unsigned Reg) {
5469  for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
5470    unsigned OpReg = Inst.getOperand(i).getReg();
5471    if (OpReg == Reg)
5472      return true;
5473  }
5474  return false;
5475}
5476
5477// Return true if instruction has the interesting property of being
5478// allowed in IT blocks, but not being predicable.
5479static bool instIsBreakpoint(const MCInst &Inst) {
5480    return Inst.getOpcode() == ARM::tBKPT ||
5481           Inst.getOpcode() == ARM::BKPT ||
5482           Inst.getOpcode() == ARM::tHLT ||
5483           Inst.getOpcode() == ARM::HLT;
5484
5485}
5486
5487// FIXME: We would really like to be able to tablegen'erate this.
5488bool ARMAsmParser::
5489validateInstruction(MCInst &Inst,
5490                    const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
5491  const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
5492  SMLoc Loc = Operands[0]->getStartLoc();
5493
5494  // Check the IT block state first.
5495  // NOTE: BKPT and HLT instructions have the interesting property of being
5496  // allowed in IT blocks, but not being predicable. They just always execute.
5497  if (inITBlock() && !instIsBreakpoint(Inst)) {
5498    unsigned Bit = 1;
5499    if (ITState.FirstCond)
5500      ITState.FirstCond = false;
5501    else
5502      Bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1;
5503    // The instruction must be predicable.
5504    if (!MCID.isPredicable())
5505      return Error(Loc, "instructions in IT block must be predicable");
5506    unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm();
5507    unsigned ITCond = Bit ? ITState.Cond :
5508      ARMCC::getOppositeCondition(ITState.Cond);
5509    if (Cond != ITCond) {
5510      // Find the condition code Operand to get its SMLoc information.
5511      SMLoc CondLoc;
5512      for (unsigned I = 1; I < Operands.size(); ++I)
5513        if (static_cast<ARMOperand*>(Operands[I])->isCondCode())
5514          CondLoc = Operands[I]->getStartLoc();
5515      return Error(CondLoc, "incorrect condition in IT block; got '" +
5516                   StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) +
5517                   "', but expected '" +
5518                   ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'");
5519    }
5520  // Check for non-'al' condition codes outside of the IT block.
5521  } else if (isThumbTwo() && MCID.isPredicable() &&
5522             Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
5523             ARMCC::AL && Inst.getOpcode() != ARM::tBcc &&
5524             Inst.getOpcode() != ARM::t2Bcc)
5525    return Error(Loc, "predicated instructions must be in IT block");
5526
5527  const unsigned Opcode = Inst.getOpcode();
5528  switch (Opcode) {
5529  case ARM::LDRD:
5530  case ARM::LDRD_PRE:
5531  case ARM::LDRD_POST: {
5532    const unsigned RtReg = Inst.getOperand(0).getReg();
5533
5534    // Rt can't be R14.
5535    if (RtReg == ARM::LR)
5536      return Error(Operands[3]->getStartLoc(),
5537                   "Rt can't be R14");
5538
5539    const unsigned Rt = MRI->getEncodingValue(RtReg);
5540    // Rt must be even-numbered.
5541    if ((Rt & 1) == 1)
5542      return Error(Operands[3]->getStartLoc(),
5543                   "Rt must be even-numbered");
5544
5545    // Rt2 must be Rt + 1.
5546    const unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
5547    if (Rt2 != Rt + 1)
5548      return Error(Operands[3]->getStartLoc(),
5549                   "destination operands must be sequential");
5550
5551    if (Opcode == ARM::LDRD_PRE || Opcode == ARM::LDRD_POST) {
5552      const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg());
5553      // For addressing modes with writeback, the base register needs to be
5554      // different from the destination registers.
5555      if (Rn == Rt || Rn == Rt2)
5556        return Error(Operands[3]->getStartLoc(),
5557                     "base register needs to be different from destination "
5558                     "registers");
5559    }
5560
5561    return false;
5562  }
5563  case ARM::t2LDRDi8:
5564  case ARM::t2LDRD_PRE:
5565  case ARM::t2LDRD_POST: {
5566    // Rt2 must be different from Rt.
5567    unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
5568    unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
5569    if (Rt2 == Rt)
5570      return Error(Operands[3]->getStartLoc(),
5571                   "destination operands can't be identical");
5572    return false;
5573  }
5574  case ARM::STRD: {
5575    // Rt2 must be Rt + 1.
5576    unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
5577    unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
5578    if (Rt2 != Rt + 1)
5579      return Error(Operands[3]->getStartLoc(),
5580                   "source operands must be sequential");
5581    return false;
5582  }
5583  case ARM::STRD_PRE:
5584  case ARM::STRD_POST: {
5585    // Rt2 must be Rt + 1.
5586    unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
5587    unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg());
5588    if (Rt2 != Rt + 1)
5589      return Error(Operands[3]->getStartLoc(),
5590                   "source operands must be sequential");
5591    return false;
5592  }
5593  case ARM::SBFX:
5594  case ARM::UBFX: {
5595    // Width must be in range [1, 32-lsb].
5596    unsigned LSB = Inst.getOperand(2).getImm();
5597    unsigned Widthm1 = Inst.getOperand(3).getImm();
5598    if (Widthm1 >= 32 - LSB)
5599      return Error(Operands[5]->getStartLoc(),
5600                   "bitfield width must be in range [1,32-lsb]");
5601    return false;
5602  }
5603  // Notionally handles ARM::tLDMIA_UPD too.
5604  case ARM::tLDMIA: {
5605    // If we're parsing Thumb2, the .w variant is available and handles
5606    // most cases that are normally illegal for a Thumb1 LDM instruction.
5607    // We'll make the transformation in processInstruction() if necessary.
5608    //
5609    // Thumb LDM instructions are writeback iff the base register is not
5610    // in the register list.
5611    unsigned Rn = Inst.getOperand(0).getReg();
5612    bool HasWritebackToken =
5613      (static_cast<ARMOperand*>(Operands[3])->isToken() &&
5614       static_cast<ARMOperand*>(Operands[3])->getToken() == "!");
5615    bool ListContainsBase;
5616    if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo())
5617      return Error(Operands[3 + HasWritebackToken]->getStartLoc(),
5618                   "registers must be in range r0-r7");
5619    // If we should have writeback, then there should be a '!' token.
5620    if (!ListContainsBase && !HasWritebackToken && !isThumbTwo())
5621      return Error(Operands[2]->getStartLoc(),
5622                   "writeback operator '!' expected");
5623    // If we should not have writeback, there must not be a '!'. This is
5624    // true even for the 32-bit wide encodings.
5625    if (ListContainsBase && HasWritebackToken)
5626      return Error(Operands[3]->getStartLoc(),
5627                   "writeback operator '!' not allowed when base register "
5628                   "in register list");
5629
5630    break;
5631  }
5632  case ARM::LDMIA_UPD:
5633  case ARM::LDMDB_UPD:
5634  case ARM::LDMIB_UPD:
5635  case ARM::LDMDA_UPD:
5636    // ARM variants loading and updating the same register are only officially
5637    // UNPREDICTABLE on v7 upwards. Goodness knows what they did before.
5638    if (!hasV7Ops())
5639      break;
5640    // Fallthrough
5641  case ARM::t2LDMIA_UPD:
5642  case ARM::t2LDMDB_UPD:
5643  case ARM::t2STMIA_UPD:
5644  case ARM::t2STMDB_UPD: {
5645    if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
5646      return Error(Operands.back()->getStartLoc(),
5647                   "writeback register not allowed in register list");
5648    break;
5649  }
5650  case ARM::sysLDMIA_UPD:
5651  case ARM::sysLDMDA_UPD:
5652  case ARM::sysLDMDB_UPD:
5653  case ARM::sysLDMIB_UPD:
5654    if (!listContainsReg(Inst, 3, ARM::PC))
5655      return Error(Operands[4]->getStartLoc(),
5656                   "writeback register only allowed on system LDM "
5657                   "if PC in register-list");
5658    break;
5659  case ARM::sysSTMIA_UPD:
5660  case ARM::sysSTMDA_UPD:
5661  case ARM::sysSTMDB_UPD:
5662  case ARM::sysSTMIB_UPD:
5663    return Error(Operands[2]->getStartLoc(),
5664                 "system STM cannot have writeback register");
5665  case ARM::tMUL: {
5666    // The second source operand must be the same register as the destination
5667    // operand.
5668    //
5669    // In this case, we must directly check the parsed operands because the
5670    // cvtThumbMultiply() function is written in such a way that it guarantees
5671    // this first statement is always true for the new Inst.  Essentially, the
5672    // destination is unconditionally copied into the second source operand
5673    // without checking to see if it matches what we actually parsed.
5674    if (Operands.size() == 6 &&
5675        (((ARMOperand*)Operands[3])->getReg() !=
5676         ((ARMOperand*)Operands[5])->getReg()) &&
5677        (((ARMOperand*)Operands[3])->getReg() !=
5678         ((ARMOperand*)Operands[4])->getReg())) {
5679      return Error(Operands[3]->getStartLoc(),
5680                   "destination register must match source register");
5681    }
5682    break;
5683  }
5684  // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
5685  // so only issue a diagnostic for thumb1. The instructions will be
5686  // switched to the t2 encodings in processInstruction() if necessary.
5687  case ARM::tPOP: {
5688    bool ListContainsBase;
5689    if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) &&
5690        !isThumbTwo())
5691      return Error(Operands[2]->getStartLoc(),
5692                   "registers must be in range r0-r7 or pc");
5693    break;
5694  }
5695  case ARM::tPUSH: {
5696    bool ListContainsBase;
5697    if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) &&
5698        !isThumbTwo())
5699      return Error(Operands[2]->getStartLoc(),
5700                   "registers must be in range r0-r7 or lr");
5701    break;
5702  }
5703  case ARM::tSTMIA_UPD: {
5704    bool ListContainsBase, InvalidLowList;
5705    InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(),
5706                                          0, ListContainsBase);
5707    if (InvalidLowList && !isThumbTwo())
5708      return Error(Operands[4]->getStartLoc(),
5709                   "registers must be in range r0-r7");
5710
5711    // This would be converted to a 32-bit stm, but that's not valid if the
5712    // writeback register is in the list.
5713    if (InvalidLowList && ListContainsBase)
5714      return Error(Operands[4]->getStartLoc(),
5715                   "writeback operator '!' not allowed when base register "
5716                   "in register list");
5717    break;
5718  }
5719  case ARM::tADDrSP: {
5720    // If the non-SP source operand and the destination operand are not the
5721    // same, we need thumb2 (for the wide encoding), or we have an error.
5722    if (!isThumbTwo() &&
5723        Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
5724      return Error(Operands[4]->getStartLoc(),
5725                   "source register must be the same as destination");
5726    }
5727    break;
5728  }
5729  // Final range checking for Thumb unconditional branch instructions.
5730  case ARM::tB:
5731    if (!(static_cast<ARMOperand*>(Operands[2]))->isSignedOffset<11, 1>())
5732      return Error(Operands[2]->getStartLoc(), "branch target out of range");
5733    break;
5734  case ARM::t2B: {
5735    int op = (Operands[2]->isImm()) ? 2 : 3;
5736    if (!(static_cast<ARMOperand*>(Operands[op]))->isSignedOffset<24, 1>())
5737      return Error(Operands[op]->getStartLoc(), "branch target out of range");
5738    break;
5739  }
5740  // Final range checking for Thumb conditional branch instructions.
5741  case ARM::tBcc:
5742    if (!(static_cast<ARMOperand*>(Operands[2]))->isSignedOffset<8, 1>())
5743      return Error(Operands[2]->getStartLoc(), "branch target out of range");
5744    break;
5745  case ARM::t2Bcc: {
5746    int Op = (Operands[2]->isImm()) ? 2 : 3;
5747    if (!(static_cast<ARMOperand*>(Operands[Op]))->isSignedOffset<20, 1>())
5748      return Error(Operands[Op]->getStartLoc(), "branch target out of range");
5749    break;
5750  }
5751  }
5752
5753  return false;
5754}
5755
5756static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
5757  switch(Opc) {
5758  default: llvm_unreachable("unexpected opcode!");
5759  // VST1LN
5760  case ARM::VST1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
5761  case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
5762  case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
5763  case ARM::VST1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
5764  case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
5765  case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
5766  case ARM::VST1LNdAsm_8:  Spacing = 1; return ARM::VST1LNd8;
5767  case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
5768  case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
5769
5770  // VST2LN
5771  case ARM::VST2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
5772  case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
5773  case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
5774  case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
5775  case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
5776
5777  case ARM::VST2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
5778  case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
5779  case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
5780  case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
5781  case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
5782
5783  case ARM::VST2LNdAsm_8:  Spacing = 1; return ARM::VST2LNd8;
5784  case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
5785  case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
5786  case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
5787  case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
5788
5789  // VST3LN
5790  case ARM::VST3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
5791  case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
5792  case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
5793  case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
5794  case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
5795  case ARM::VST3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
5796  case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
5797  case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
5798  case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
5799  case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
5800  case ARM::VST3LNdAsm_8:  Spacing = 1; return ARM::VST3LNd8;
5801  case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
5802  case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
5803  case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
5804  case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
5805
5806  // VST3
5807  case ARM::VST3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
5808  case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
5809  case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
5810  case ARM::VST3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
5811  case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
5812  case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
5813  case ARM::VST3dWB_register_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
5814  case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
5815  case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
5816  case ARM::VST3qWB_register_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
5817  case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
5818  case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
5819  case ARM::VST3dAsm_8:  Spacing = 1; return ARM::VST3d8;
5820  case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
5821  case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
5822  case ARM::VST3qAsm_8:  Spacing = 2; return ARM::VST3q8;
5823  case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
5824  case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
5825
5826  // VST4LN
5827  case ARM::VST4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
5828  case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
5829  case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
5830  case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
5831  case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
5832  case ARM::VST4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
5833  case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
5834  case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
5835  case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
5836  case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
5837  case ARM::VST4LNdAsm_8:  Spacing = 1; return ARM::VST4LNd8;
5838  case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
5839  case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
5840  case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
5841  case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
5842
5843  // VST4
5844  case ARM::VST4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
5845  case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
5846  case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
5847  case ARM::VST4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
5848  case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
5849  case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
5850  case ARM::VST4dWB_register_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
5851  case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
5852  case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
5853  case ARM::VST4qWB_register_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
5854  case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
5855  case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
5856  case ARM::VST4dAsm_8:  Spacing = 1; return ARM::VST4d8;
5857  case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
5858  case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
5859  case ARM::VST4qAsm_8:  Spacing = 2; return ARM::VST4q8;
5860  case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
5861  case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
5862  }
5863}
5864
5865static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
5866  switch(Opc) {
5867  default: llvm_unreachable("unexpected opcode!");
5868  // VLD1LN
5869  case ARM::VLD1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
5870  case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
5871  case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
5872  case ARM::VLD1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
5873  case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
5874  case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
5875  case ARM::VLD1LNdAsm_8:  Spacing = 1; return ARM::VLD1LNd8;
5876  case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
5877  case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
5878
5879  // VLD2LN
5880  case ARM::VLD2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
5881  case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
5882  case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
5883  case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
5884  case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
5885  case ARM::VLD2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
5886  case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
5887  case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
5888  case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
5889  case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
5890  case ARM::VLD2LNdAsm_8:  Spacing = 1; return ARM::VLD2LNd8;
5891  case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
5892  case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
5893  case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
5894  case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
5895
5896  // VLD3DUP
5897  case ARM::VLD3DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
5898  case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
5899  case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
5900  case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
5901  case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPq16_UPD;
5902  case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
5903  case ARM::VLD3DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
5904  case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
5905  case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
5906  case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
5907  case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
5908  case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
5909  case ARM::VLD3DUPdAsm_8:  Spacing = 1; return ARM::VLD3DUPd8;
5910  case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
5911  case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
5912  case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
5913  case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
5914  case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
5915
5916  // VLD3LN
5917  case ARM::VLD3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
5918  case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
5919  case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
5920  case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
5921  case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
5922  case ARM::VLD3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
5923  case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
5924  case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
5925  case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
5926  case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
5927  case ARM::VLD3LNdAsm_8:  Spacing = 1; return ARM::VLD3LNd8;
5928  case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
5929  case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
5930  case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
5931  case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
5932
5933  // VLD3
5934  case ARM::VLD3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
5935  case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
5936  case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
5937  case ARM::VLD3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
5938  case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
5939  case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
5940  case ARM::VLD3dWB_register_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
5941  case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
5942  case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
5943  case ARM::VLD3qWB_register_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
5944  case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
5945  case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
5946  case ARM::VLD3dAsm_8:  Spacing = 1; return ARM::VLD3d8;
5947  case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
5948  case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
5949  case ARM::VLD3qAsm_8:  Spacing = 2; return ARM::VLD3q8;
5950  case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
5951  case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
5952
5953  // VLD4LN
5954  case ARM::VLD4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
5955  case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
5956  case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
5957  case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
5958  case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
5959  case ARM::VLD4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
5960  case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
5961  case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
5962  case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
5963  case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
5964  case ARM::VLD4LNdAsm_8:  Spacing = 1; return ARM::VLD4LNd8;
5965  case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
5966  case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
5967  case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
5968  case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
5969
5970  // VLD4DUP
5971  case ARM::VLD4DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
5972  case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
5973  case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
5974  case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
5975  case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
5976  case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
5977  case ARM::VLD4DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
5978  case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
5979  case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
5980  case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
5981  case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
5982  case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
5983  case ARM::VLD4DUPdAsm_8:  Spacing = 1; return ARM::VLD4DUPd8;
5984  case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
5985  case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
5986  case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
5987  case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
5988  case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
5989
5990  // VLD4
5991  case ARM::VLD4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
5992  case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
5993  case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
5994  case ARM::VLD4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
5995  case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
5996  case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
5997  case ARM::VLD4dWB_register_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
5998  case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
5999  case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
6000  case ARM::VLD4qWB_register_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
6001  case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
6002  case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
6003  case ARM::VLD4dAsm_8:  Spacing = 1; return ARM::VLD4d8;
6004  case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
6005  case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
6006  case ARM::VLD4qAsm_8:  Spacing = 2; return ARM::VLD4q8;
6007  case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
6008  case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
6009  }
6010}
6011
6012bool ARMAsmParser::
6013processInstruction(MCInst &Inst,
6014                   const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
6015  switch (Inst.getOpcode()) {
6016  // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction.
6017  case ARM::LDRT_POST:
6018  case ARM::LDRBT_POST: {
6019    const unsigned Opcode =
6020      (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM
6021                                           : ARM::LDRBT_POST_IMM;
6022    MCInst TmpInst;
6023    TmpInst.setOpcode(Opcode);
6024    TmpInst.addOperand(Inst.getOperand(0));
6025    TmpInst.addOperand(Inst.getOperand(1));
6026    TmpInst.addOperand(Inst.getOperand(1));
6027    TmpInst.addOperand(MCOperand::CreateReg(0));
6028    TmpInst.addOperand(MCOperand::CreateImm(0));
6029    TmpInst.addOperand(Inst.getOperand(2));
6030    TmpInst.addOperand(Inst.getOperand(3));
6031    Inst = TmpInst;
6032    return true;
6033  }
6034  // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction.
6035  case ARM::STRT_POST:
6036  case ARM::STRBT_POST: {
6037    const unsigned Opcode =
6038      (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM
6039                                           : ARM::STRBT_POST_IMM;
6040    MCInst TmpInst;
6041    TmpInst.setOpcode(Opcode);
6042    TmpInst.addOperand(Inst.getOperand(1));
6043    TmpInst.addOperand(Inst.getOperand(0));
6044    TmpInst.addOperand(Inst.getOperand(1));
6045    TmpInst.addOperand(MCOperand::CreateReg(0));
6046    TmpInst.addOperand(MCOperand::CreateImm(0));
6047    TmpInst.addOperand(Inst.getOperand(2));
6048    TmpInst.addOperand(Inst.getOperand(3));
6049    Inst = TmpInst;
6050    return true;
6051  }
6052  // Alias for alternate form of 'ADR Rd, #imm' instruction.
6053  case ARM::ADDri: {
6054    if (Inst.getOperand(1).getReg() != ARM::PC ||
6055        Inst.getOperand(5).getReg() != 0)
6056      return false;
6057    MCInst TmpInst;
6058    TmpInst.setOpcode(ARM::ADR);
6059    TmpInst.addOperand(Inst.getOperand(0));
6060    TmpInst.addOperand(Inst.getOperand(2));
6061    TmpInst.addOperand(Inst.getOperand(3));
6062    TmpInst.addOperand(Inst.getOperand(4));
6063    Inst = TmpInst;
6064    return true;
6065  }
6066  // Aliases for alternate PC+imm syntax of LDR instructions.
6067  case ARM::t2LDRpcrel:
6068    // Select the narrow version if the immediate will fit.
6069    if (Inst.getOperand(1).getImm() > 0 &&
6070        Inst.getOperand(1).getImm() <= 0xff &&
6071        !(static_cast<ARMOperand*>(Operands[2])->isToken() &&
6072         static_cast<ARMOperand*>(Operands[2])->getToken() == ".w"))
6073      Inst.setOpcode(ARM::tLDRpci);
6074    else
6075      Inst.setOpcode(ARM::t2LDRpci);
6076    return true;
6077  case ARM::t2LDRBpcrel:
6078    Inst.setOpcode(ARM::t2LDRBpci);
6079    return true;
6080  case ARM::t2LDRHpcrel:
6081    Inst.setOpcode(ARM::t2LDRHpci);
6082    return true;
6083  case ARM::t2LDRSBpcrel:
6084    Inst.setOpcode(ARM::t2LDRSBpci);
6085    return true;
6086  case ARM::t2LDRSHpcrel:
6087    Inst.setOpcode(ARM::t2LDRSHpci);
6088    return true;
6089  // Handle NEON VST complex aliases.
6090  case ARM::VST1LNdWB_register_Asm_8:
6091  case ARM::VST1LNdWB_register_Asm_16:
6092  case ARM::VST1LNdWB_register_Asm_32: {
6093    MCInst TmpInst;
6094    // Shuffle the operands around so the lane index operand is in the
6095    // right place.
6096    unsigned Spacing;
6097    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6098    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6099    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6100    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6101    TmpInst.addOperand(Inst.getOperand(4)); // Rm
6102    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6103    TmpInst.addOperand(Inst.getOperand(1)); // lane
6104    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6105    TmpInst.addOperand(Inst.getOperand(6));
6106    Inst = TmpInst;
6107    return true;
6108  }
6109
6110  case ARM::VST2LNdWB_register_Asm_8:
6111  case ARM::VST2LNdWB_register_Asm_16:
6112  case ARM::VST2LNdWB_register_Asm_32:
6113  case ARM::VST2LNqWB_register_Asm_16:
6114  case ARM::VST2LNqWB_register_Asm_32: {
6115    MCInst TmpInst;
6116    // Shuffle the operands around so the lane index operand is in the
6117    // right place.
6118    unsigned Spacing;
6119    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6120    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6121    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6122    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6123    TmpInst.addOperand(Inst.getOperand(4)); // Rm
6124    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6125    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6126                                            Spacing));
6127    TmpInst.addOperand(Inst.getOperand(1)); // lane
6128    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6129    TmpInst.addOperand(Inst.getOperand(6));
6130    Inst = TmpInst;
6131    return true;
6132  }
6133
6134  case ARM::VST3LNdWB_register_Asm_8:
6135  case ARM::VST3LNdWB_register_Asm_16:
6136  case ARM::VST3LNdWB_register_Asm_32:
6137  case ARM::VST3LNqWB_register_Asm_16:
6138  case ARM::VST3LNqWB_register_Asm_32: {
6139    MCInst TmpInst;
6140    // Shuffle the operands around so the lane index operand is in the
6141    // right place.
6142    unsigned Spacing;
6143    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6144    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6145    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6146    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6147    TmpInst.addOperand(Inst.getOperand(4)); // Rm
6148    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6149    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6150                                            Spacing));
6151    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6152                                            Spacing * 2));
6153    TmpInst.addOperand(Inst.getOperand(1)); // lane
6154    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6155    TmpInst.addOperand(Inst.getOperand(6));
6156    Inst = TmpInst;
6157    return true;
6158  }
6159
6160  case ARM::VST4LNdWB_register_Asm_8:
6161  case ARM::VST4LNdWB_register_Asm_16:
6162  case ARM::VST4LNdWB_register_Asm_32:
6163  case ARM::VST4LNqWB_register_Asm_16:
6164  case ARM::VST4LNqWB_register_Asm_32: {
6165    MCInst TmpInst;
6166    // Shuffle the operands around so the lane index operand is in the
6167    // right place.
6168    unsigned Spacing;
6169    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6170    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6171    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6172    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6173    TmpInst.addOperand(Inst.getOperand(4)); // Rm
6174    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6175    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6176                                            Spacing));
6177    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6178                                            Spacing * 2));
6179    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6180                                            Spacing * 3));
6181    TmpInst.addOperand(Inst.getOperand(1)); // lane
6182    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6183    TmpInst.addOperand(Inst.getOperand(6));
6184    Inst = TmpInst;
6185    return true;
6186  }
6187
6188  case ARM::VST1LNdWB_fixed_Asm_8:
6189  case ARM::VST1LNdWB_fixed_Asm_16:
6190  case ARM::VST1LNdWB_fixed_Asm_32: {
6191    MCInst TmpInst;
6192    // Shuffle the operands around so the lane index operand is in the
6193    // right place.
6194    unsigned Spacing;
6195    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6196    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6197    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6198    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6199    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6200    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6201    TmpInst.addOperand(Inst.getOperand(1)); // lane
6202    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6203    TmpInst.addOperand(Inst.getOperand(5));
6204    Inst = TmpInst;
6205    return true;
6206  }
6207
6208  case ARM::VST2LNdWB_fixed_Asm_8:
6209  case ARM::VST2LNdWB_fixed_Asm_16:
6210  case ARM::VST2LNdWB_fixed_Asm_32:
6211  case ARM::VST2LNqWB_fixed_Asm_16:
6212  case ARM::VST2LNqWB_fixed_Asm_32: {
6213    MCInst TmpInst;
6214    // Shuffle the operands around so the lane index operand is in the
6215    // right place.
6216    unsigned Spacing;
6217    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6218    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6219    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6220    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6221    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6222    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6223    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6224                                            Spacing));
6225    TmpInst.addOperand(Inst.getOperand(1)); // lane
6226    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6227    TmpInst.addOperand(Inst.getOperand(5));
6228    Inst = TmpInst;
6229    return true;
6230  }
6231
6232  case ARM::VST3LNdWB_fixed_Asm_8:
6233  case ARM::VST3LNdWB_fixed_Asm_16:
6234  case ARM::VST3LNdWB_fixed_Asm_32:
6235  case ARM::VST3LNqWB_fixed_Asm_16:
6236  case ARM::VST3LNqWB_fixed_Asm_32: {
6237    MCInst TmpInst;
6238    // Shuffle the operands around so the lane index operand is in the
6239    // right place.
6240    unsigned Spacing;
6241    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6242    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6243    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6244    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6245    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6246    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6247    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6248                                            Spacing));
6249    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6250                                            Spacing * 2));
6251    TmpInst.addOperand(Inst.getOperand(1)); // lane
6252    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6253    TmpInst.addOperand(Inst.getOperand(5));
6254    Inst = TmpInst;
6255    return true;
6256  }
6257
6258  case ARM::VST4LNdWB_fixed_Asm_8:
6259  case ARM::VST4LNdWB_fixed_Asm_16:
6260  case ARM::VST4LNdWB_fixed_Asm_32:
6261  case ARM::VST4LNqWB_fixed_Asm_16:
6262  case ARM::VST4LNqWB_fixed_Asm_32: {
6263    MCInst TmpInst;
6264    // Shuffle the operands around so the lane index operand is in the
6265    // right place.
6266    unsigned Spacing;
6267    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6268    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6269    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6270    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6271    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6272    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6273    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6274                                            Spacing));
6275    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6276                                            Spacing * 2));
6277    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6278                                            Spacing * 3));
6279    TmpInst.addOperand(Inst.getOperand(1)); // lane
6280    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6281    TmpInst.addOperand(Inst.getOperand(5));
6282    Inst = TmpInst;
6283    return true;
6284  }
6285
6286  case ARM::VST1LNdAsm_8:
6287  case ARM::VST1LNdAsm_16:
6288  case ARM::VST1LNdAsm_32: {
6289    MCInst TmpInst;
6290    // Shuffle the operands around so the lane index operand is in the
6291    // right place.
6292    unsigned Spacing;
6293    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6294    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6295    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6296    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6297    TmpInst.addOperand(Inst.getOperand(1)); // lane
6298    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6299    TmpInst.addOperand(Inst.getOperand(5));
6300    Inst = TmpInst;
6301    return true;
6302  }
6303
6304  case ARM::VST2LNdAsm_8:
6305  case ARM::VST2LNdAsm_16:
6306  case ARM::VST2LNdAsm_32:
6307  case ARM::VST2LNqAsm_16:
6308  case ARM::VST2LNqAsm_32: {
6309    MCInst TmpInst;
6310    // Shuffle the operands around so the lane index operand is in the
6311    // right place.
6312    unsigned Spacing;
6313    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6314    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6315    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6316    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6317    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6318                                            Spacing));
6319    TmpInst.addOperand(Inst.getOperand(1)); // lane
6320    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6321    TmpInst.addOperand(Inst.getOperand(5));
6322    Inst = TmpInst;
6323    return true;
6324  }
6325
6326  case ARM::VST3LNdAsm_8:
6327  case ARM::VST3LNdAsm_16:
6328  case ARM::VST3LNdAsm_32:
6329  case ARM::VST3LNqAsm_16:
6330  case ARM::VST3LNqAsm_32: {
6331    MCInst TmpInst;
6332    // Shuffle the operands around so the lane index operand is in the
6333    // right place.
6334    unsigned Spacing;
6335    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6336    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6337    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6338    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6339    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6340                                            Spacing));
6341    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6342                                            Spacing * 2));
6343    TmpInst.addOperand(Inst.getOperand(1)); // lane
6344    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6345    TmpInst.addOperand(Inst.getOperand(5));
6346    Inst = TmpInst;
6347    return true;
6348  }
6349
6350  case ARM::VST4LNdAsm_8:
6351  case ARM::VST4LNdAsm_16:
6352  case ARM::VST4LNdAsm_32:
6353  case ARM::VST4LNqAsm_16:
6354  case ARM::VST4LNqAsm_32: {
6355    MCInst TmpInst;
6356    // Shuffle the operands around so the lane index operand is in the
6357    // right place.
6358    unsigned Spacing;
6359    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6360    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6361    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6362    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6363    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6364                                            Spacing));
6365    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6366                                            Spacing * 2));
6367    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6368                                            Spacing * 3));
6369    TmpInst.addOperand(Inst.getOperand(1)); // lane
6370    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6371    TmpInst.addOperand(Inst.getOperand(5));
6372    Inst = TmpInst;
6373    return true;
6374  }
6375
6376  // Handle NEON VLD complex aliases.
6377  case ARM::VLD1LNdWB_register_Asm_8:
6378  case ARM::VLD1LNdWB_register_Asm_16:
6379  case ARM::VLD1LNdWB_register_Asm_32: {
6380    MCInst TmpInst;
6381    // Shuffle the operands around so the lane index operand is in the
6382    // right place.
6383    unsigned Spacing;
6384    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6385    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6386    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6387    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6388    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6389    TmpInst.addOperand(Inst.getOperand(4)); // Rm
6390    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6391    TmpInst.addOperand(Inst.getOperand(1)); // lane
6392    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6393    TmpInst.addOperand(Inst.getOperand(6));
6394    Inst = TmpInst;
6395    return true;
6396  }
6397
6398  case ARM::VLD2LNdWB_register_Asm_8:
6399  case ARM::VLD2LNdWB_register_Asm_16:
6400  case ARM::VLD2LNdWB_register_Asm_32:
6401  case ARM::VLD2LNqWB_register_Asm_16:
6402  case ARM::VLD2LNqWB_register_Asm_32: {
6403    MCInst TmpInst;
6404    // Shuffle the operands around so the lane index operand is in the
6405    // right place.
6406    unsigned Spacing;
6407    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6408    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6409    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6410                                            Spacing));
6411    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6412    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6413    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6414    TmpInst.addOperand(Inst.getOperand(4)); // Rm
6415    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6416    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6417                                            Spacing));
6418    TmpInst.addOperand(Inst.getOperand(1)); // lane
6419    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6420    TmpInst.addOperand(Inst.getOperand(6));
6421    Inst = TmpInst;
6422    return true;
6423  }
6424
6425  case ARM::VLD3LNdWB_register_Asm_8:
6426  case ARM::VLD3LNdWB_register_Asm_16:
6427  case ARM::VLD3LNdWB_register_Asm_32:
6428  case ARM::VLD3LNqWB_register_Asm_16:
6429  case ARM::VLD3LNqWB_register_Asm_32: {
6430    MCInst TmpInst;
6431    // Shuffle the operands around so the lane index operand is in the
6432    // right place.
6433    unsigned Spacing;
6434    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6435    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6436    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6437                                            Spacing));
6438    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6439                                            Spacing * 2));
6440    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6441    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6442    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6443    TmpInst.addOperand(Inst.getOperand(4)); // Rm
6444    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6445    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6446                                            Spacing));
6447    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6448                                            Spacing * 2));
6449    TmpInst.addOperand(Inst.getOperand(1)); // lane
6450    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6451    TmpInst.addOperand(Inst.getOperand(6));
6452    Inst = TmpInst;
6453    return true;
6454  }
6455
6456  case ARM::VLD4LNdWB_register_Asm_8:
6457  case ARM::VLD4LNdWB_register_Asm_16:
6458  case ARM::VLD4LNdWB_register_Asm_32:
6459  case ARM::VLD4LNqWB_register_Asm_16:
6460  case ARM::VLD4LNqWB_register_Asm_32: {
6461    MCInst TmpInst;
6462    // Shuffle the operands around so the lane index operand is in the
6463    // right place.
6464    unsigned Spacing;
6465    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6466    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6467    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6468                                            Spacing));
6469    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6470                                            Spacing * 2));
6471    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6472                                            Spacing * 3));
6473    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6474    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6475    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6476    TmpInst.addOperand(Inst.getOperand(4)); // Rm
6477    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6478    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6479                                            Spacing));
6480    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6481                                            Spacing * 2));
6482    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6483                                            Spacing * 3));
6484    TmpInst.addOperand(Inst.getOperand(1)); // lane
6485    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6486    TmpInst.addOperand(Inst.getOperand(6));
6487    Inst = TmpInst;
6488    return true;
6489  }
6490
6491  case ARM::VLD1LNdWB_fixed_Asm_8:
6492  case ARM::VLD1LNdWB_fixed_Asm_16:
6493  case ARM::VLD1LNdWB_fixed_Asm_32: {
6494    MCInst TmpInst;
6495    // Shuffle the operands around so the lane index operand is in the
6496    // right place.
6497    unsigned Spacing;
6498    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6499    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6500    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6501    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6502    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6503    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6504    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6505    TmpInst.addOperand(Inst.getOperand(1)); // lane
6506    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6507    TmpInst.addOperand(Inst.getOperand(5));
6508    Inst = TmpInst;
6509    return true;
6510  }
6511
6512  case ARM::VLD2LNdWB_fixed_Asm_8:
6513  case ARM::VLD2LNdWB_fixed_Asm_16:
6514  case ARM::VLD2LNdWB_fixed_Asm_32:
6515  case ARM::VLD2LNqWB_fixed_Asm_16:
6516  case ARM::VLD2LNqWB_fixed_Asm_32: {
6517    MCInst TmpInst;
6518    // Shuffle the operands around so the lane index operand is in the
6519    // right place.
6520    unsigned Spacing;
6521    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6522    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6523    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6524                                            Spacing));
6525    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6526    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6527    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6528    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6529    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6530    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6531                                            Spacing));
6532    TmpInst.addOperand(Inst.getOperand(1)); // lane
6533    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6534    TmpInst.addOperand(Inst.getOperand(5));
6535    Inst = TmpInst;
6536    return true;
6537  }
6538
6539  case ARM::VLD3LNdWB_fixed_Asm_8:
6540  case ARM::VLD3LNdWB_fixed_Asm_16:
6541  case ARM::VLD3LNdWB_fixed_Asm_32:
6542  case ARM::VLD3LNqWB_fixed_Asm_16:
6543  case ARM::VLD3LNqWB_fixed_Asm_32: {
6544    MCInst TmpInst;
6545    // Shuffle the operands around so the lane index operand is in the
6546    // right place.
6547    unsigned Spacing;
6548    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6549    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6550    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6551                                            Spacing));
6552    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6553                                            Spacing * 2));
6554    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6555    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6556    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6557    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6558    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6559    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6560                                            Spacing));
6561    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6562                                            Spacing * 2));
6563    TmpInst.addOperand(Inst.getOperand(1)); // lane
6564    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6565    TmpInst.addOperand(Inst.getOperand(5));
6566    Inst = TmpInst;
6567    return true;
6568  }
6569
6570  case ARM::VLD4LNdWB_fixed_Asm_8:
6571  case ARM::VLD4LNdWB_fixed_Asm_16:
6572  case ARM::VLD4LNdWB_fixed_Asm_32:
6573  case ARM::VLD4LNqWB_fixed_Asm_16:
6574  case ARM::VLD4LNqWB_fixed_Asm_32: {
6575    MCInst TmpInst;
6576    // Shuffle the operands around so the lane index operand is in the
6577    // right place.
6578    unsigned Spacing;
6579    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6580    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6581    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6582                                            Spacing));
6583    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6584                                            Spacing * 2));
6585    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6586                                            Spacing * 3));
6587    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6588    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6589    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6590    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6591    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6592    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6593                                            Spacing));
6594    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6595                                            Spacing * 2));
6596    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6597                                            Spacing * 3));
6598    TmpInst.addOperand(Inst.getOperand(1)); // lane
6599    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6600    TmpInst.addOperand(Inst.getOperand(5));
6601    Inst = TmpInst;
6602    return true;
6603  }
6604
6605  case ARM::VLD1LNdAsm_8:
6606  case ARM::VLD1LNdAsm_16:
6607  case ARM::VLD1LNdAsm_32: {
6608    MCInst TmpInst;
6609    // Shuffle the operands around so the lane index operand is in the
6610    // right place.
6611    unsigned Spacing;
6612    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6613    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6614    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6615    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6616    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6617    TmpInst.addOperand(Inst.getOperand(1)); // lane
6618    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6619    TmpInst.addOperand(Inst.getOperand(5));
6620    Inst = TmpInst;
6621    return true;
6622  }
6623
6624  case ARM::VLD2LNdAsm_8:
6625  case ARM::VLD2LNdAsm_16:
6626  case ARM::VLD2LNdAsm_32:
6627  case ARM::VLD2LNqAsm_16:
6628  case ARM::VLD2LNqAsm_32: {
6629    MCInst TmpInst;
6630    // Shuffle the operands around so the lane index operand is in the
6631    // right place.
6632    unsigned Spacing;
6633    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6634    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6635    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6636                                            Spacing));
6637    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6638    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6639    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6640    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6641                                            Spacing));
6642    TmpInst.addOperand(Inst.getOperand(1)); // lane
6643    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6644    TmpInst.addOperand(Inst.getOperand(5));
6645    Inst = TmpInst;
6646    return true;
6647  }
6648
6649  case ARM::VLD3LNdAsm_8:
6650  case ARM::VLD3LNdAsm_16:
6651  case ARM::VLD3LNdAsm_32:
6652  case ARM::VLD3LNqAsm_16:
6653  case ARM::VLD3LNqAsm_32: {
6654    MCInst TmpInst;
6655    // Shuffle the operands around so the lane index operand is in the
6656    // right place.
6657    unsigned Spacing;
6658    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6659    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6660    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6661                                            Spacing));
6662    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6663                                            Spacing * 2));
6664    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6665    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6666    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6667    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6668                                            Spacing));
6669    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6670                                            Spacing * 2));
6671    TmpInst.addOperand(Inst.getOperand(1)); // lane
6672    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6673    TmpInst.addOperand(Inst.getOperand(5));
6674    Inst = TmpInst;
6675    return true;
6676  }
6677
6678  case ARM::VLD4LNdAsm_8:
6679  case ARM::VLD4LNdAsm_16:
6680  case ARM::VLD4LNdAsm_32:
6681  case ARM::VLD4LNqAsm_16:
6682  case ARM::VLD4LNqAsm_32: {
6683    MCInst TmpInst;
6684    // Shuffle the operands around so the lane index operand is in the
6685    // right place.
6686    unsigned Spacing;
6687    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6688    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6689    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6690                                            Spacing));
6691    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6692                                            Spacing * 2));
6693    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6694                                            Spacing * 3));
6695    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6696    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6697    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6698    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6699                                            Spacing));
6700    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6701                                            Spacing * 2));
6702    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6703                                            Spacing * 3));
6704    TmpInst.addOperand(Inst.getOperand(1)); // lane
6705    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6706    TmpInst.addOperand(Inst.getOperand(5));
6707    Inst = TmpInst;
6708    return true;
6709  }
6710
6711  // VLD3DUP single 3-element structure to all lanes instructions.
6712  case ARM::VLD3DUPdAsm_8:
6713  case ARM::VLD3DUPdAsm_16:
6714  case ARM::VLD3DUPdAsm_32:
6715  case ARM::VLD3DUPqAsm_8:
6716  case ARM::VLD3DUPqAsm_16:
6717  case ARM::VLD3DUPqAsm_32: {
6718    MCInst TmpInst;
6719    unsigned Spacing;
6720    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6721    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6722    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6723                                            Spacing));
6724    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6725                                            Spacing * 2));
6726    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6727    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6728    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6729    TmpInst.addOperand(Inst.getOperand(4));
6730    Inst = TmpInst;
6731    return true;
6732  }
6733
6734  case ARM::VLD3DUPdWB_fixed_Asm_8:
6735  case ARM::VLD3DUPdWB_fixed_Asm_16:
6736  case ARM::VLD3DUPdWB_fixed_Asm_32:
6737  case ARM::VLD3DUPqWB_fixed_Asm_8:
6738  case ARM::VLD3DUPqWB_fixed_Asm_16:
6739  case ARM::VLD3DUPqWB_fixed_Asm_32: {
6740    MCInst TmpInst;
6741    unsigned Spacing;
6742    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6743    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6744    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6745                                            Spacing));
6746    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6747                                            Spacing * 2));
6748    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6749    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6750    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6751    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6752    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6753    TmpInst.addOperand(Inst.getOperand(4));
6754    Inst = TmpInst;
6755    return true;
6756  }
6757
6758  case ARM::VLD3DUPdWB_register_Asm_8:
6759  case ARM::VLD3DUPdWB_register_Asm_16:
6760  case ARM::VLD3DUPdWB_register_Asm_32:
6761  case ARM::VLD3DUPqWB_register_Asm_8:
6762  case ARM::VLD3DUPqWB_register_Asm_16:
6763  case ARM::VLD3DUPqWB_register_Asm_32: {
6764    MCInst TmpInst;
6765    unsigned Spacing;
6766    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6767    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6768    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6769                                            Spacing));
6770    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6771                                            Spacing * 2));
6772    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6773    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6774    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6775    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6776    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6777    TmpInst.addOperand(Inst.getOperand(5));
6778    Inst = TmpInst;
6779    return true;
6780  }
6781
6782  // VLD3 multiple 3-element structure instructions.
6783  case ARM::VLD3dAsm_8:
6784  case ARM::VLD3dAsm_16:
6785  case ARM::VLD3dAsm_32:
6786  case ARM::VLD3qAsm_8:
6787  case ARM::VLD3qAsm_16:
6788  case ARM::VLD3qAsm_32: {
6789    MCInst TmpInst;
6790    unsigned Spacing;
6791    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6792    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6793    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6794                                            Spacing));
6795    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6796                                            Spacing * 2));
6797    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6798    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6799    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6800    TmpInst.addOperand(Inst.getOperand(4));
6801    Inst = TmpInst;
6802    return true;
6803  }
6804
6805  case ARM::VLD3dWB_fixed_Asm_8:
6806  case ARM::VLD3dWB_fixed_Asm_16:
6807  case ARM::VLD3dWB_fixed_Asm_32:
6808  case ARM::VLD3qWB_fixed_Asm_8:
6809  case ARM::VLD3qWB_fixed_Asm_16:
6810  case ARM::VLD3qWB_fixed_Asm_32: {
6811    MCInst TmpInst;
6812    unsigned Spacing;
6813    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6814    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6815    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6816                                            Spacing));
6817    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6818                                            Spacing * 2));
6819    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6820    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6821    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6822    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6823    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6824    TmpInst.addOperand(Inst.getOperand(4));
6825    Inst = TmpInst;
6826    return true;
6827  }
6828
6829  case ARM::VLD3dWB_register_Asm_8:
6830  case ARM::VLD3dWB_register_Asm_16:
6831  case ARM::VLD3dWB_register_Asm_32:
6832  case ARM::VLD3qWB_register_Asm_8:
6833  case ARM::VLD3qWB_register_Asm_16:
6834  case ARM::VLD3qWB_register_Asm_32: {
6835    MCInst TmpInst;
6836    unsigned Spacing;
6837    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6838    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6839    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6840                                            Spacing));
6841    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6842                                            Spacing * 2));
6843    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6844    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6845    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6846    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6847    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6848    TmpInst.addOperand(Inst.getOperand(5));
6849    Inst = TmpInst;
6850    return true;
6851  }
6852
6853  // VLD4DUP single 3-element structure to all lanes instructions.
6854  case ARM::VLD4DUPdAsm_8:
6855  case ARM::VLD4DUPdAsm_16:
6856  case ARM::VLD4DUPdAsm_32:
6857  case ARM::VLD4DUPqAsm_8:
6858  case ARM::VLD4DUPqAsm_16:
6859  case ARM::VLD4DUPqAsm_32: {
6860    MCInst TmpInst;
6861    unsigned Spacing;
6862    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6863    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6864    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6865                                            Spacing));
6866    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6867                                            Spacing * 2));
6868    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6869                                            Spacing * 3));
6870    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6871    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6872    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6873    TmpInst.addOperand(Inst.getOperand(4));
6874    Inst = TmpInst;
6875    return true;
6876  }
6877
6878  case ARM::VLD4DUPdWB_fixed_Asm_8:
6879  case ARM::VLD4DUPdWB_fixed_Asm_16:
6880  case ARM::VLD4DUPdWB_fixed_Asm_32:
6881  case ARM::VLD4DUPqWB_fixed_Asm_8:
6882  case ARM::VLD4DUPqWB_fixed_Asm_16:
6883  case ARM::VLD4DUPqWB_fixed_Asm_32: {
6884    MCInst TmpInst;
6885    unsigned Spacing;
6886    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6887    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6888    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6889                                            Spacing));
6890    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6891                                            Spacing * 2));
6892    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6893                                            Spacing * 3));
6894    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6895    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6896    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6897    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6898    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6899    TmpInst.addOperand(Inst.getOperand(4));
6900    Inst = TmpInst;
6901    return true;
6902  }
6903
6904  case ARM::VLD4DUPdWB_register_Asm_8:
6905  case ARM::VLD4DUPdWB_register_Asm_16:
6906  case ARM::VLD4DUPdWB_register_Asm_32:
6907  case ARM::VLD4DUPqWB_register_Asm_8:
6908  case ARM::VLD4DUPqWB_register_Asm_16:
6909  case ARM::VLD4DUPqWB_register_Asm_32: {
6910    MCInst TmpInst;
6911    unsigned Spacing;
6912    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6913    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6914    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6915                                            Spacing));
6916    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6917                                            Spacing * 2));
6918    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6919                                            Spacing * 3));
6920    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6921    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6922    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6923    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6924    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6925    TmpInst.addOperand(Inst.getOperand(5));
6926    Inst = TmpInst;
6927    return true;
6928  }
6929
6930  // VLD4 multiple 4-element structure instructions.
6931  case ARM::VLD4dAsm_8:
6932  case ARM::VLD4dAsm_16:
6933  case ARM::VLD4dAsm_32:
6934  case ARM::VLD4qAsm_8:
6935  case ARM::VLD4qAsm_16:
6936  case ARM::VLD4qAsm_32: {
6937    MCInst TmpInst;
6938    unsigned Spacing;
6939    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6940    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6941    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6942                                            Spacing));
6943    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6944                                            Spacing * 2));
6945    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6946                                            Spacing * 3));
6947    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6948    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6949    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6950    TmpInst.addOperand(Inst.getOperand(4));
6951    Inst = TmpInst;
6952    return true;
6953  }
6954
6955  case ARM::VLD4dWB_fixed_Asm_8:
6956  case ARM::VLD4dWB_fixed_Asm_16:
6957  case ARM::VLD4dWB_fixed_Asm_32:
6958  case ARM::VLD4qWB_fixed_Asm_8:
6959  case ARM::VLD4qWB_fixed_Asm_16:
6960  case ARM::VLD4qWB_fixed_Asm_32: {
6961    MCInst TmpInst;
6962    unsigned Spacing;
6963    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6964    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6965    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6966                                            Spacing));
6967    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6968                                            Spacing * 2));
6969    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6970                                            Spacing * 3));
6971    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6972    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6973    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6974    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6975    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6976    TmpInst.addOperand(Inst.getOperand(4));
6977    Inst = TmpInst;
6978    return true;
6979  }
6980
6981  case ARM::VLD4dWB_register_Asm_8:
6982  case ARM::VLD4dWB_register_Asm_16:
6983  case ARM::VLD4dWB_register_Asm_32:
6984  case ARM::VLD4qWB_register_Asm_8:
6985  case ARM::VLD4qWB_register_Asm_16:
6986  case ARM::VLD4qWB_register_Asm_32: {
6987    MCInst TmpInst;
6988    unsigned Spacing;
6989    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6990    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6991    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6992                                            Spacing));
6993    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6994                                            Spacing * 2));
6995    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6996                                            Spacing * 3));
6997    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6998    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6999    TmpInst.addOperand(Inst.getOperand(2)); // alignment
7000    TmpInst.addOperand(Inst.getOperand(3)); // Rm
7001    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7002    TmpInst.addOperand(Inst.getOperand(5));
7003    Inst = TmpInst;
7004    return true;
7005  }
7006
7007  // VST3 multiple 3-element structure instructions.
7008  case ARM::VST3dAsm_8:
7009  case ARM::VST3dAsm_16:
7010  case ARM::VST3dAsm_32:
7011  case ARM::VST3qAsm_8:
7012  case ARM::VST3qAsm_16:
7013  case ARM::VST3qAsm_32: {
7014    MCInst TmpInst;
7015    unsigned Spacing;
7016    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7017    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7018    TmpInst.addOperand(Inst.getOperand(2)); // alignment
7019    TmpInst.addOperand(Inst.getOperand(0)); // Vd
7020    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7021                                            Spacing));
7022    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7023                                            Spacing * 2));
7024    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7025    TmpInst.addOperand(Inst.getOperand(4));
7026    Inst = TmpInst;
7027    return true;
7028  }
7029
7030  case ARM::VST3dWB_fixed_Asm_8:
7031  case ARM::VST3dWB_fixed_Asm_16:
7032  case ARM::VST3dWB_fixed_Asm_32:
7033  case ARM::VST3qWB_fixed_Asm_8:
7034  case ARM::VST3qWB_fixed_Asm_16:
7035  case ARM::VST3qWB_fixed_Asm_32: {
7036    MCInst TmpInst;
7037    unsigned Spacing;
7038    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7039    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7040    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
7041    TmpInst.addOperand(Inst.getOperand(2)); // alignment
7042    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
7043    TmpInst.addOperand(Inst.getOperand(0)); // Vd
7044    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7045                                            Spacing));
7046    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7047                                            Spacing * 2));
7048    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7049    TmpInst.addOperand(Inst.getOperand(4));
7050    Inst = TmpInst;
7051    return true;
7052  }
7053
7054  case ARM::VST3dWB_register_Asm_8:
7055  case ARM::VST3dWB_register_Asm_16:
7056  case ARM::VST3dWB_register_Asm_32:
7057  case ARM::VST3qWB_register_Asm_8:
7058  case ARM::VST3qWB_register_Asm_16:
7059  case ARM::VST3qWB_register_Asm_32: {
7060    MCInst TmpInst;
7061    unsigned Spacing;
7062    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7063    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7064    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
7065    TmpInst.addOperand(Inst.getOperand(2)); // alignment
7066    TmpInst.addOperand(Inst.getOperand(3)); // Rm
7067    TmpInst.addOperand(Inst.getOperand(0)); // Vd
7068    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7069                                            Spacing));
7070    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7071                                            Spacing * 2));
7072    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7073    TmpInst.addOperand(Inst.getOperand(5));
7074    Inst = TmpInst;
7075    return true;
7076  }
7077
7078  // VST4 multiple 3-element structure instructions.
7079  case ARM::VST4dAsm_8:
7080  case ARM::VST4dAsm_16:
7081  case ARM::VST4dAsm_32:
7082  case ARM::VST4qAsm_8:
7083  case ARM::VST4qAsm_16:
7084  case ARM::VST4qAsm_32: {
7085    MCInst TmpInst;
7086    unsigned Spacing;
7087    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7088    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7089    TmpInst.addOperand(Inst.getOperand(2)); // alignment
7090    TmpInst.addOperand(Inst.getOperand(0)); // Vd
7091    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7092                                            Spacing));
7093    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7094                                            Spacing * 2));
7095    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7096                                            Spacing * 3));
7097    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7098    TmpInst.addOperand(Inst.getOperand(4));
7099    Inst = TmpInst;
7100    return true;
7101  }
7102
7103  case ARM::VST4dWB_fixed_Asm_8:
7104  case ARM::VST4dWB_fixed_Asm_16:
7105  case ARM::VST4dWB_fixed_Asm_32:
7106  case ARM::VST4qWB_fixed_Asm_8:
7107  case ARM::VST4qWB_fixed_Asm_16:
7108  case ARM::VST4qWB_fixed_Asm_32: {
7109    MCInst TmpInst;
7110    unsigned Spacing;
7111    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7112    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7113    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
7114    TmpInst.addOperand(Inst.getOperand(2)); // alignment
7115    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
7116    TmpInst.addOperand(Inst.getOperand(0)); // Vd
7117    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7118                                            Spacing));
7119    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7120                                            Spacing * 2));
7121    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7122                                            Spacing * 3));
7123    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7124    TmpInst.addOperand(Inst.getOperand(4));
7125    Inst = TmpInst;
7126    return true;
7127  }
7128
7129  case ARM::VST4dWB_register_Asm_8:
7130  case ARM::VST4dWB_register_Asm_16:
7131  case ARM::VST4dWB_register_Asm_32:
7132  case ARM::VST4qWB_register_Asm_8:
7133  case ARM::VST4qWB_register_Asm_16:
7134  case ARM::VST4qWB_register_Asm_32: {
7135    MCInst TmpInst;
7136    unsigned Spacing;
7137    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7138    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7139    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
7140    TmpInst.addOperand(Inst.getOperand(2)); // alignment
7141    TmpInst.addOperand(Inst.getOperand(3)); // Rm
7142    TmpInst.addOperand(Inst.getOperand(0)); // Vd
7143    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7144                                            Spacing));
7145    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7146                                            Spacing * 2));
7147    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
7148                                            Spacing * 3));
7149    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7150    TmpInst.addOperand(Inst.getOperand(5));
7151    Inst = TmpInst;
7152    return true;
7153  }
7154
7155  // Handle encoding choice for the shift-immediate instructions.
7156  case ARM::t2LSLri:
7157  case ARM::t2LSRri:
7158  case ARM::t2ASRri: {
7159    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7160        Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
7161        Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
7162        !(static_cast<ARMOperand*>(Operands[3])->isToken() &&
7163         static_cast<ARMOperand*>(Operands[3])->getToken() == ".w")) {
7164      unsigned NewOpc;
7165      switch (Inst.getOpcode()) {
7166      default: llvm_unreachable("unexpected opcode");
7167      case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
7168      case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
7169      case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
7170      }
7171      // The Thumb1 operands aren't in the same order. Awesome, eh?
7172      MCInst TmpInst;
7173      TmpInst.setOpcode(NewOpc);
7174      TmpInst.addOperand(Inst.getOperand(0));
7175      TmpInst.addOperand(Inst.getOperand(5));
7176      TmpInst.addOperand(Inst.getOperand(1));
7177      TmpInst.addOperand(Inst.getOperand(2));
7178      TmpInst.addOperand(Inst.getOperand(3));
7179      TmpInst.addOperand(Inst.getOperand(4));
7180      Inst = TmpInst;
7181      return true;
7182    }
7183    return false;
7184  }
7185
7186  // Handle the Thumb2 mode MOV complex aliases.
7187  case ARM::t2MOVsr:
7188  case ARM::t2MOVSsr: {
7189    // Which instruction to expand to depends on the CCOut operand and
7190    // whether we're in an IT block if the register operands are low
7191    // registers.
7192    bool isNarrow = false;
7193    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7194        isARMLowRegister(Inst.getOperand(1).getReg()) &&
7195        isARMLowRegister(Inst.getOperand(2).getReg()) &&
7196        Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
7197        inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr))
7198      isNarrow = true;
7199    MCInst TmpInst;
7200    unsigned newOpc;
7201    switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
7202    default: llvm_unreachable("unexpected opcode!");
7203    case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
7204    case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
7205    case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
7206    case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR   : ARM::t2RORrr; break;
7207    }
7208    TmpInst.setOpcode(newOpc);
7209    TmpInst.addOperand(Inst.getOperand(0)); // Rd
7210    if (isNarrow)
7211      TmpInst.addOperand(MCOperand::CreateReg(
7212          Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
7213    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7214    TmpInst.addOperand(Inst.getOperand(2)); // Rm
7215    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7216    TmpInst.addOperand(Inst.getOperand(5));
7217    if (!isNarrow)
7218      TmpInst.addOperand(MCOperand::CreateReg(
7219          Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
7220    Inst = TmpInst;
7221    return true;
7222  }
7223  case ARM::t2MOVsi:
7224  case ARM::t2MOVSsi: {
7225    // Which instruction to expand to depends on the CCOut operand and
7226    // whether we're in an IT block if the register operands are low
7227    // registers.
7228    bool isNarrow = false;
7229    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7230        isARMLowRegister(Inst.getOperand(1).getReg()) &&
7231        inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi))
7232      isNarrow = true;
7233    MCInst TmpInst;
7234    unsigned newOpc;
7235    switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) {
7236    default: llvm_unreachable("unexpected opcode!");
7237    case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
7238    case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
7239    case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
7240    case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
7241    case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
7242    }
7243    unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
7244    if (Amount == 32) Amount = 0;
7245    TmpInst.setOpcode(newOpc);
7246    TmpInst.addOperand(Inst.getOperand(0)); // Rd
7247    if (isNarrow)
7248      TmpInst.addOperand(MCOperand::CreateReg(
7249          Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
7250    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7251    if (newOpc != ARM::t2RRX)
7252      TmpInst.addOperand(MCOperand::CreateImm(Amount));
7253    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7254    TmpInst.addOperand(Inst.getOperand(4));
7255    if (!isNarrow)
7256      TmpInst.addOperand(MCOperand::CreateReg(
7257          Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
7258    Inst = TmpInst;
7259    return true;
7260  }
7261  // Handle the ARM mode MOV complex aliases.
7262  case ARM::ASRr:
7263  case ARM::LSRr:
7264  case ARM::LSLr:
7265  case ARM::RORr: {
7266    ARM_AM::ShiftOpc ShiftTy;
7267    switch(Inst.getOpcode()) {
7268    default: llvm_unreachable("unexpected opcode!");
7269    case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
7270    case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
7271    case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
7272    case ARM::RORr: ShiftTy = ARM_AM::ror; break;
7273    }
7274    unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
7275    MCInst TmpInst;
7276    TmpInst.setOpcode(ARM::MOVsr);
7277    TmpInst.addOperand(Inst.getOperand(0)); // Rd
7278    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7279    TmpInst.addOperand(Inst.getOperand(2)); // Rm
7280    TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
7281    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7282    TmpInst.addOperand(Inst.getOperand(4));
7283    TmpInst.addOperand(Inst.getOperand(5)); // cc_out
7284    Inst = TmpInst;
7285    return true;
7286  }
7287  case ARM::ASRi:
7288  case ARM::LSRi:
7289  case ARM::LSLi:
7290  case ARM::RORi: {
7291    ARM_AM::ShiftOpc ShiftTy;
7292    switch(Inst.getOpcode()) {
7293    default: llvm_unreachable("unexpected opcode!");
7294    case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
7295    case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
7296    case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
7297    case ARM::RORi: ShiftTy = ARM_AM::ror; break;
7298    }
7299    // A shift by zero is a plain MOVr, not a MOVsi.
7300    unsigned Amt = Inst.getOperand(2).getImm();
7301    unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
7302    // A shift by 32 should be encoded as 0 when permitted
7303    if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
7304      Amt = 0;
7305    unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
7306    MCInst TmpInst;
7307    TmpInst.setOpcode(Opc);
7308    TmpInst.addOperand(Inst.getOperand(0)); // Rd
7309    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7310    if (Opc == ARM::MOVsi)
7311      TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
7312    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7313    TmpInst.addOperand(Inst.getOperand(4));
7314    TmpInst.addOperand(Inst.getOperand(5)); // cc_out
7315    Inst = TmpInst;
7316    return true;
7317  }
7318  case ARM::RRXi: {
7319    unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
7320    MCInst TmpInst;
7321    TmpInst.setOpcode(ARM::MOVsi);
7322    TmpInst.addOperand(Inst.getOperand(0)); // Rd
7323    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7324    TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
7325    TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7326    TmpInst.addOperand(Inst.getOperand(3));
7327    TmpInst.addOperand(Inst.getOperand(4)); // cc_out
7328    Inst = TmpInst;
7329    return true;
7330  }
7331  case ARM::t2LDMIA_UPD: {
7332    // If this is a load of a single register, then we should use
7333    // a post-indexed LDR instruction instead, per the ARM ARM.
7334    if (Inst.getNumOperands() != 5)
7335      return false;
7336    MCInst TmpInst;
7337    TmpInst.setOpcode(ARM::t2LDR_POST);
7338    TmpInst.addOperand(Inst.getOperand(4)); // Rt
7339    TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
7340    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7341    TmpInst.addOperand(MCOperand::CreateImm(4));
7342    TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7343    TmpInst.addOperand(Inst.getOperand(3));
7344    Inst = TmpInst;
7345    return true;
7346  }
7347  case ARM::t2STMDB_UPD: {
7348    // If this is a store of a single register, then we should use
7349    // a pre-indexed STR instruction instead, per the ARM ARM.
7350    if (Inst.getNumOperands() != 5)
7351      return false;
7352    MCInst TmpInst;
7353    TmpInst.setOpcode(ARM::t2STR_PRE);
7354    TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
7355    TmpInst.addOperand(Inst.getOperand(4)); // Rt
7356    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7357    TmpInst.addOperand(MCOperand::CreateImm(-4));
7358    TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7359    TmpInst.addOperand(Inst.getOperand(3));
7360    Inst = TmpInst;
7361    return true;
7362  }
7363  case ARM::LDMIA_UPD:
7364    // If this is a load of a single register via a 'pop', then we should use
7365    // a post-indexed LDR instruction instead, per the ARM ARM.
7366    if (static_cast<ARMOperand*>(Operands[0])->getToken() == "pop" &&
7367        Inst.getNumOperands() == 5) {
7368      MCInst TmpInst;
7369      TmpInst.setOpcode(ARM::LDR_POST_IMM);
7370      TmpInst.addOperand(Inst.getOperand(4)); // Rt
7371      TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
7372      TmpInst.addOperand(Inst.getOperand(1)); // Rn
7373      TmpInst.addOperand(MCOperand::CreateReg(0));  // am2offset
7374      TmpInst.addOperand(MCOperand::CreateImm(4));
7375      TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7376      TmpInst.addOperand(Inst.getOperand(3));
7377      Inst = TmpInst;
7378      return true;
7379    }
7380    break;
7381  case ARM::STMDB_UPD:
7382    // If this is a store of a single register via a 'push', then we should use
7383    // a pre-indexed STR instruction instead, per the ARM ARM.
7384    if (static_cast<ARMOperand*>(Operands[0])->getToken() == "push" &&
7385        Inst.getNumOperands() == 5) {
7386      MCInst TmpInst;
7387      TmpInst.setOpcode(ARM::STR_PRE_IMM);
7388      TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
7389      TmpInst.addOperand(Inst.getOperand(4)); // Rt
7390      TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
7391      TmpInst.addOperand(MCOperand::CreateImm(-4));
7392      TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7393      TmpInst.addOperand(Inst.getOperand(3));
7394      Inst = TmpInst;
7395    }
7396    break;
7397  case ARM::t2ADDri12:
7398    // If the immediate fits for encoding T3 (t2ADDri) and the generic "add"
7399    // mnemonic was used (not "addw"), encoding T3 is preferred.
7400    if (static_cast<ARMOperand*>(Operands[0])->getToken() != "add" ||
7401        ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
7402      break;
7403    Inst.setOpcode(ARM::t2ADDri);
7404    Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
7405    break;
7406  case ARM::t2SUBri12:
7407    // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub"
7408    // mnemonic was used (not "subw"), encoding T3 is preferred.
7409    if (static_cast<ARMOperand*>(Operands[0])->getToken() != "sub" ||
7410        ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
7411      break;
7412    Inst.setOpcode(ARM::t2SUBri);
7413    Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
7414    break;
7415  case ARM::tADDi8:
7416    // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
7417    // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
7418    // to encoding T2 if <Rd> is specified and encoding T2 is preferred
7419    // to encoding T1 if <Rd> is omitted."
7420    if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
7421      Inst.setOpcode(ARM::tADDi3);
7422      return true;
7423    }
7424    break;
7425  case ARM::tSUBi8:
7426    // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
7427    // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
7428    // to encoding T2 if <Rd> is specified and encoding T2 is preferred
7429    // to encoding T1 if <Rd> is omitted."
7430    if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
7431      Inst.setOpcode(ARM::tSUBi3);
7432      return true;
7433    }
7434    break;
7435  case ARM::t2ADDri:
7436  case ARM::t2SUBri: {
7437    // If the destination and first source operand are the same, and
7438    // the flags are compatible with the current IT status, use encoding T2
7439    // instead of T3. For compatibility with the system 'as'. Make sure the
7440    // wide encoding wasn't explicit.
7441    if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
7442        !isARMLowRegister(Inst.getOperand(0).getReg()) ||
7443        (unsigned)Inst.getOperand(2).getImm() > 255 ||
7444        ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) ||
7445        (inITBlock() && Inst.getOperand(5).getReg() != 0)) ||
7446        (static_cast<ARMOperand*>(Operands[3])->isToken() &&
7447         static_cast<ARMOperand*>(Operands[3])->getToken() == ".w"))
7448      break;
7449    MCInst TmpInst;
7450    TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
7451                      ARM::tADDi8 : ARM::tSUBi8);
7452    TmpInst.addOperand(Inst.getOperand(0));
7453    TmpInst.addOperand(Inst.getOperand(5));
7454    TmpInst.addOperand(Inst.getOperand(0));
7455    TmpInst.addOperand(Inst.getOperand(2));
7456    TmpInst.addOperand(Inst.getOperand(3));
7457    TmpInst.addOperand(Inst.getOperand(4));
7458    Inst = TmpInst;
7459    return true;
7460  }
7461  case ARM::t2ADDrr: {
7462    // If the destination and first source operand are the same, and
7463    // there's no setting of the flags, use encoding T2 instead of T3.
7464    // Note that this is only for ADD, not SUB. This mirrors the system
7465    // 'as' behaviour. Make sure the wide encoding wasn't explicit.
7466    if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
7467        Inst.getOperand(5).getReg() != 0 ||
7468        (static_cast<ARMOperand*>(Operands[3])->isToken() &&
7469         static_cast<ARMOperand*>(Operands[3])->getToken() == ".w"))
7470      break;
7471    MCInst TmpInst;
7472    TmpInst.setOpcode(ARM::tADDhirr);
7473    TmpInst.addOperand(Inst.getOperand(0));
7474    TmpInst.addOperand(Inst.getOperand(0));
7475    TmpInst.addOperand(Inst.getOperand(2));
7476    TmpInst.addOperand(Inst.getOperand(3));
7477    TmpInst.addOperand(Inst.getOperand(4));
7478    Inst = TmpInst;
7479    return true;
7480  }
7481  case ARM::tADDrSP: {
7482    // If the non-SP source operand and the destination operand are not the
7483    // same, we need to use the 32-bit encoding if it's available.
7484    if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
7485      Inst.setOpcode(ARM::t2ADDrr);
7486      Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
7487      return true;
7488    }
7489    break;
7490  }
7491  case ARM::tB:
7492    // A Thumb conditional branch outside of an IT block is a tBcc.
7493    if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
7494      Inst.setOpcode(ARM::tBcc);
7495      return true;
7496    }
7497    break;
7498  case ARM::t2B:
7499    // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
7500    if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
7501      Inst.setOpcode(ARM::t2Bcc);
7502      return true;
7503    }
7504    break;
7505  case ARM::t2Bcc:
7506    // If the conditional is AL or we're in an IT block, we really want t2B.
7507    if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
7508      Inst.setOpcode(ARM::t2B);
7509      return true;
7510    }
7511    break;
7512  case ARM::tBcc:
7513    // If the conditional is AL, we really want tB.
7514    if (Inst.getOperand(1).getImm() == ARMCC::AL) {
7515      Inst.setOpcode(ARM::tB);
7516      return true;
7517    }
7518    break;
7519  case ARM::tLDMIA: {
7520    // If the register list contains any high registers, or if the writeback
7521    // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
7522    // instead if we're in Thumb2. Otherwise, this should have generated
7523    // an error in validateInstruction().
7524    unsigned Rn = Inst.getOperand(0).getReg();
7525    bool hasWritebackToken =
7526      (static_cast<ARMOperand*>(Operands[3])->isToken() &&
7527       static_cast<ARMOperand*>(Operands[3])->getToken() == "!");
7528    bool listContainsBase;
7529    if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
7530        (!listContainsBase && !hasWritebackToken) ||
7531        (listContainsBase && hasWritebackToken)) {
7532      // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
7533      assert (isThumbTwo());
7534      Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
7535      // If we're switching to the updating version, we need to insert
7536      // the writeback tied operand.
7537      if (hasWritebackToken)
7538        Inst.insert(Inst.begin(),
7539                    MCOperand::CreateReg(Inst.getOperand(0).getReg()));
7540      return true;
7541    }
7542    break;
7543  }
7544  case ARM::tSTMIA_UPD: {
7545    // If the register list contains any high registers, we need to use
7546    // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
7547    // should have generated an error in validateInstruction().
7548    unsigned Rn = Inst.getOperand(0).getReg();
7549    bool listContainsBase;
7550    if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
7551      // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
7552      assert (isThumbTwo());
7553      Inst.setOpcode(ARM::t2STMIA_UPD);
7554      return true;
7555    }
7556    break;
7557  }
7558  case ARM::tPOP: {
7559    bool listContainsBase;
7560    // If the register list contains any high registers, we need to use
7561    // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
7562    // should have generated an error in validateInstruction().
7563    if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
7564      return false;
7565    assert (isThumbTwo());
7566    Inst.setOpcode(ARM::t2LDMIA_UPD);
7567    // Add the base register and writeback operands.
7568    Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7569    Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7570    return true;
7571  }
7572  case ARM::tPUSH: {
7573    bool listContainsBase;
7574    if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
7575      return false;
7576    assert (isThumbTwo());
7577    Inst.setOpcode(ARM::t2STMDB_UPD);
7578    // Add the base register and writeback operands.
7579    Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7580    Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7581    return true;
7582  }
7583  case ARM::t2MOVi: {
7584    // If we can use the 16-bit encoding and the user didn't explicitly
7585    // request the 32-bit variant, transform it here.
7586    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7587        (unsigned)Inst.getOperand(1).getImm() <= 255 &&
7588        ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL &&
7589         Inst.getOperand(4).getReg() == ARM::CPSR) ||
7590        (inITBlock() && Inst.getOperand(4).getReg() == 0)) &&
7591        (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
7592         static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
7593      // The operands aren't in the same order for tMOVi8...
7594      MCInst TmpInst;
7595      TmpInst.setOpcode(ARM::tMOVi8);
7596      TmpInst.addOperand(Inst.getOperand(0));
7597      TmpInst.addOperand(Inst.getOperand(4));
7598      TmpInst.addOperand(Inst.getOperand(1));
7599      TmpInst.addOperand(Inst.getOperand(2));
7600      TmpInst.addOperand(Inst.getOperand(3));
7601      Inst = TmpInst;
7602      return true;
7603    }
7604    break;
7605  }
7606  case ARM::t2MOVr: {
7607    // If we can use the 16-bit encoding and the user didn't explicitly
7608    // request the 32-bit variant, transform it here.
7609    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7610        isARMLowRegister(Inst.getOperand(1).getReg()) &&
7611        Inst.getOperand(2).getImm() == ARMCC::AL &&
7612        Inst.getOperand(4).getReg() == ARM::CPSR &&
7613        (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
7614         static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
7615      // The operands aren't the same for tMOV[S]r... (no cc_out)
7616      MCInst TmpInst;
7617      TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr);
7618      TmpInst.addOperand(Inst.getOperand(0));
7619      TmpInst.addOperand(Inst.getOperand(1));
7620      TmpInst.addOperand(Inst.getOperand(2));
7621      TmpInst.addOperand(Inst.getOperand(3));
7622      Inst = TmpInst;
7623      return true;
7624    }
7625    break;
7626  }
7627  case ARM::t2SXTH:
7628  case ARM::t2SXTB:
7629  case ARM::t2UXTH:
7630  case ARM::t2UXTB: {
7631    // If we can use the 16-bit encoding and the user didn't explicitly
7632    // request the 32-bit variant, transform it here.
7633    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7634        isARMLowRegister(Inst.getOperand(1).getReg()) &&
7635        Inst.getOperand(2).getImm() == 0 &&
7636        (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
7637         static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
7638      unsigned NewOpc;
7639      switch (Inst.getOpcode()) {
7640      default: llvm_unreachable("Illegal opcode!");
7641      case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
7642      case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
7643      case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
7644      case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
7645      }
7646      // The operands aren't the same for thumb1 (no rotate operand).
7647      MCInst TmpInst;
7648      TmpInst.setOpcode(NewOpc);
7649      TmpInst.addOperand(Inst.getOperand(0));
7650      TmpInst.addOperand(Inst.getOperand(1));
7651      TmpInst.addOperand(Inst.getOperand(3));
7652      TmpInst.addOperand(Inst.getOperand(4));
7653      Inst = TmpInst;
7654      return true;
7655    }
7656    break;
7657  }
7658  case ARM::MOVsi: {
7659    ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
7660    // rrx shifts and asr/lsr of #32 is encoded as 0
7661    if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr)
7662      return false;
7663    if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
7664      // Shifting by zero is accepted as a vanilla 'MOVr'
7665      MCInst TmpInst;
7666      TmpInst.setOpcode(ARM::MOVr);
7667      TmpInst.addOperand(Inst.getOperand(0));
7668      TmpInst.addOperand(Inst.getOperand(1));
7669      TmpInst.addOperand(Inst.getOperand(3));
7670      TmpInst.addOperand(Inst.getOperand(4));
7671      TmpInst.addOperand(Inst.getOperand(5));
7672      Inst = TmpInst;
7673      return true;
7674    }
7675    return false;
7676  }
7677  case ARM::ANDrsi:
7678  case ARM::ORRrsi:
7679  case ARM::EORrsi:
7680  case ARM::BICrsi:
7681  case ARM::SUBrsi:
7682  case ARM::ADDrsi: {
7683    unsigned newOpc;
7684    ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
7685    if (SOpc == ARM_AM::rrx) return false;
7686    switch (Inst.getOpcode()) {
7687    default: llvm_unreachable("unexpected opcode!");
7688    case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
7689    case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
7690    case ARM::EORrsi: newOpc = ARM::EORrr; break;
7691    case ARM::BICrsi: newOpc = ARM::BICrr; break;
7692    case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
7693    case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
7694    }
7695    // If the shift is by zero, use the non-shifted instruction definition.
7696    // The exception is for right shifts, where 0 == 32
7697    if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
7698        !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
7699      MCInst TmpInst;
7700      TmpInst.setOpcode(newOpc);
7701      TmpInst.addOperand(Inst.getOperand(0));
7702      TmpInst.addOperand(Inst.getOperand(1));
7703      TmpInst.addOperand(Inst.getOperand(2));
7704      TmpInst.addOperand(Inst.getOperand(4));
7705      TmpInst.addOperand(Inst.getOperand(5));
7706      TmpInst.addOperand(Inst.getOperand(6));
7707      Inst = TmpInst;
7708      return true;
7709    }
7710    return false;
7711  }
7712  case ARM::ITasm:
7713  case ARM::t2IT: {
7714    // The mask bits for all but the first condition are represented as
7715    // the low bit of the condition code value implies 't'. We currently
7716    // always have 1 implies 't', so XOR toggle the bits if the low bit
7717    // of the condition code is zero.
7718    MCOperand &MO = Inst.getOperand(1);
7719    unsigned Mask = MO.getImm();
7720    unsigned OrigMask = Mask;
7721    unsigned TZ = countTrailingZeros(Mask);
7722    if ((Inst.getOperand(0).getImm() & 1) == 0) {
7723      assert(Mask && TZ <= 3 && "illegal IT mask value!");
7724      Mask ^= (0xE << TZ) & 0xF;
7725    }
7726    MO.setImm(Mask);
7727
7728    // Set up the IT block state according to the IT instruction we just
7729    // matched.
7730    assert(!inITBlock() && "nested IT blocks?!");
7731    ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm());
7732    ITState.Mask = OrigMask; // Use the original mask, not the updated one.
7733    ITState.CurPosition = 0;
7734    ITState.FirstCond = true;
7735    break;
7736  }
7737  case ARM::t2LSLrr:
7738  case ARM::t2LSRrr:
7739  case ARM::t2ASRrr:
7740  case ARM::t2SBCrr:
7741  case ARM::t2RORrr:
7742  case ARM::t2BICrr:
7743  {
7744    // Assemblers should use the narrow encodings of these instructions when permissible.
7745    if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
7746         isARMLowRegister(Inst.getOperand(2).getReg())) &&
7747        Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
7748        ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
7749         (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) &&
7750        (!static_cast<ARMOperand*>(Operands[3])->isToken() ||
7751         !static_cast<ARMOperand*>(Operands[3])->getToken().equals_lower(".w"))) {
7752      unsigned NewOpc;
7753      switch (Inst.getOpcode()) {
7754        default: llvm_unreachable("unexpected opcode");
7755        case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
7756        case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
7757        case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
7758        case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
7759        case ARM::t2RORrr: NewOpc = ARM::tROR; break;
7760        case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
7761      }
7762      MCInst TmpInst;
7763      TmpInst.setOpcode(NewOpc);
7764      TmpInst.addOperand(Inst.getOperand(0));
7765      TmpInst.addOperand(Inst.getOperand(5));
7766      TmpInst.addOperand(Inst.getOperand(1));
7767      TmpInst.addOperand(Inst.getOperand(2));
7768      TmpInst.addOperand(Inst.getOperand(3));
7769      TmpInst.addOperand(Inst.getOperand(4));
7770      Inst = TmpInst;
7771      return true;
7772    }
7773    return false;
7774  }
7775  case ARM::t2ANDrr:
7776  case ARM::t2EORrr:
7777  case ARM::t2ADCrr:
7778  case ARM::t2ORRrr:
7779  {
7780    // Assemblers should use the narrow encodings of these instructions when permissible.
7781    // These instructions are special in that they are commutable, so shorter encodings
7782    // are available more often.
7783    if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
7784         isARMLowRegister(Inst.getOperand(2).getReg())) &&
7785        (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
7786         Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
7787        ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
7788         (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) &&
7789        (!static_cast<ARMOperand*>(Operands[3])->isToken() ||
7790         !static_cast<ARMOperand*>(Operands[3])->getToken().equals_lower(".w"))) {
7791      unsigned NewOpc;
7792      switch (Inst.getOpcode()) {
7793        default: llvm_unreachable("unexpected opcode");
7794        case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
7795        case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
7796        case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
7797        case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
7798      }
7799      MCInst TmpInst;
7800      TmpInst.setOpcode(NewOpc);
7801      TmpInst.addOperand(Inst.getOperand(0));
7802      TmpInst.addOperand(Inst.getOperand(5));
7803      if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
7804        TmpInst.addOperand(Inst.getOperand(1));
7805        TmpInst.addOperand(Inst.getOperand(2));
7806      } else {
7807        TmpInst.addOperand(Inst.getOperand(2));
7808        TmpInst.addOperand(Inst.getOperand(1));
7809      }
7810      TmpInst.addOperand(Inst.getOperand(3));
7811      TmpInst.addOperand(Inst.getOperand(4));
7812      Inst = TmpInst;
7813      return true;
7814    }
7815    return false;
7816  }
7817  }
7818  return false;
7819}
7820
7821unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
7822  // 16-bit thumb arithmetic instructions either require or preclude the 'S'
7823  // suffix depending on whether they're in an IT block or not.
7824  unsigned Opc = Inst.getOpcode();
7825  const MCInstrDesc &MCID = MII.get(Opc);
7826  if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
7827    assert(MCID.hasOptionalDef() &&
7828           "optionally flag setting instruction missing optional def operand");
7829    assert(MCID.NumOperands == Inst.getNumOperands() &&
7830           "operand count mismatch!");
7831    // Find the optional-def operand (cc_out).
7832    unsigned OpNo;
7833    for (OpNo = 0;
7834         !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
7835         ++OpNo)
7836      ;
7837    // If we're parsing Thumb1, reject it completely.
7838    if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
7839      return Match_MnemonicFail;
7840    // If we're parsing Thumb2, which form is legal depends on whether we're
7841    // in an IT block.
7842    if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
7843        !inITBlock())
7844      return Match_RequiresITBlock;
7845    if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
7846        inITBlock())
7847      return Match_RequiresNotITBlock;
7848  }
7849  // Some high-register supporting Thumb1 encodings only allow both registers
7850  // to be from r0-r7 when in Thumb2.
7851  else if (Opc == ARM::tADDhirr && isThumbOne() &&
7852           isARMLowRegister(Inst.getOperand(1).getReg()) &&
7853           isARMLowRegister(Inst.getOperand(2).getReg()))
7854    return Match_RequiresThumb2;
7855  // Others only require ARMv6 or later.
7856  else if (Opc == ARM::tMOVr && isThumbOne() && !hasV6Ops() &&
7857           isARMLowRegister(Inst.getOperand(0).getReg()) &&
7858           isARMLowRegister(Inst.getOperand(1).getReg()))
7859    return Match_RequiresV6;
7860  return Match_Success;
7861}
7862
7863template<> inline bool IsCPSRDead<MCInst>(MCInst* Instr) {
7864  return true; // In an assembly source, no need to second-guess
7865}
7866
7867static const char *getSubtargetFeatureName(unsigned Val);
7868bool ARMAsmParser::
7869MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
7870                        SmallVectorImpl<MCParsedAsmOperand*> &Operands,
7871                        MCStreamer &Out, unsigned &ErrorInfo,
7872                        bool MatchingInlineAsm) {
7873  MCInst Inst;
7874  unsigned MatchResult;
7875
7876  MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
7877                                     MatchingInlineAsm);
7878  switch (MatchResult) {
7879  default: break;
7880  case Match_Success:
7881    // Context sensitive operand constraints aren't handled by the matcher,
7882    // so check them here.
7883    if (validateInstruction(Inst, Operands)) {
7884      // Still progress the IT block, otherwise one wrong condition causes
7885      // nasty cascading errors.
7886      forwardITPosition();
7887      return true;
7888    }
7889
7890    { // processInstruction() updates inITBlock state, we need to save it away
7891      bool wasInITBlock = inITBlock();
7892
7893      // Some instructions need post-processing to, for example, tweak which
7894      // encoding is selected. Loop on it while changes happen so the
7895      // individual transformations can chain off each other. E.g.,
7896      // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
7897      while (processInstruction(Inst, Operands))
7898        ;
7899
7900      // Only after the instruction is fully processed, we can validate it
7901      if (wasInITBlock && hasV8Ops() && isThumb() &&
7902          !isV8EligibleForIT(&Inst)) {
7903        Warning(IDLoc, "deprecated instruction in IT block");
7904      }
7905    }
7906
7907    // Only move forward at the very end so that everything in validate
7908    // and process gets a consistent answer about whether we're in an IT
7909    // block.
7910    forwardITPosition();
7911
7912    // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
7913    // doesn't actually encode.
7914    if (Inst.getOpcode() == ARM::ITasm)
7915      return false;
7916
7917    Inst.setLoc(IDLoc);
7918    Out.EmitInstruction(Inst, STI);
7919    return false;
7920  case Match_MissingFeature: {
7921    assert(ErrorInfo && "Unknown missing feature!");
7922    // Special case the error message for the very common case where only
7923    // a single subtarget feature is missing (Thumb vs. ARM, e.g.).
7924    std::string Msg = "instruction requires:";
7925    unsigned Mask = 1;
7926    for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
7927      if (ErrorInfo & Mask) {
7928        Msg += " ";
7929        Msg += getSubtargetFeatureName(ErrorInfo & Mask);
7930      }
7931      Mask <<= 1;
7932    }
7933    return Error(IDLoc, Msg);
7934  }
7935  case Match_InvalidOperand: {
7936    SMLoc ErrorLoc = IDLoc;
7937    if (ErrorInfo != ~0U) {
7938      if (ErrorInfo >= Operands.size())
7939        return Error(IDLoc, "too few operands for instruction");
7940
7941      ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
7942      if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
7943    }
7944
7945    return Error(ErrorLoc, "invalid operand for instruction");
7946  }
7947  case Match_MnemonicFail:
7948    return Error(IDLoc, "invalid instruction",
7949                 ((ARMOperand*)Operands[0])->getLocRange());
7950  case Match_RequiresNotITBlock:
7951    return Error(IDLoc, "flag setting instruction only valid outside IT block");
7952  case Match_RequiresITBlock:
7953    return Error(IDLoc, "instruction only valid inside IT block");
7954  case Match_RequiresV6:
7955    return Error(IDLoc, "instruction variant requires ARMv6 or later");
7956  case Match_RequiresThumb2:
7957    return Error(IDLoc, "instruction variant requires Thumb2");
7958  case Match_ImmRange0_15: {
7959    SMLoc ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
7960    if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
7961    return Error(ErrorLoc, "immediate operand must be in the range [0,15]");
7962  }
7963  case Match_ImmRange0_239: {
7964    SMLoc ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
7965    if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
7966    return Error(ErrorLoc, "immediate operand must be in the range [0,239]");
7967  }
7968  }
7969
7970  llvm_unreachable("Implement any new match types added!");
7971}
7972
7973/// parseDirective parses the arm specific directives
7974bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
7975  StringRef IDVal = DirectiveID.getIdentifier();
7976  if (IDVal == ".word")
7977    return parseLiteralValues(4, DirectiveID.getLoc());
7978  else if (IDVal == ".short" || IDVal == ".hword")
7979    return parseLiteralValues(2, DirectiveID.getLoc());
7980  else if (IDVal == ".thumb")
7981    return parseDirectiveThumb(DirectiveID.getLoc());
7982  else if (IDVal == ".arm")
7983    return parseDirectiveARM(DirectiveID.getLoc());
7984  else if (IDVal == ".thumb_func")
7985    return parseDirectiveThumbFunc(DirectiveID.getLoc());
7986  else if (IDVal == ".code")
7987    return parseDirectiveCode(DirectiveID.getLoc());
7988  else if (IDVal == ".syntax")
7989    return parseDirectiveSyntax(DirectiveID.getLoc());
7990  else if (IDVal == ".unreq")
7991    return parseDirectiveUnreq(DirectiveID.getLoc());
7992  else if (IDVal == ".arch")
7993    return parseDirectiveArch(DirectiveID.getLoc());
7994  else if (IDVal == ".eabi_attribute")
7995    return parseDirectiveEabiAttr(DirectiveID.getLoc());
7996  else if (IDVal == ".cpu")
7997    return parseDirectiveCPU(DirectiveID.getLoc());
7998  else if (IDVal == ".fpu")
7999    return parseDirectiveFPU(DirectiveID.getLoc());
8000  else if (IDVal == ".fnstart")
8001    return parseDirectiveFnStart(DirectiveID.getLoc());
8002  else if (IDVal == ".fnend")
8003    return parseDirectiveFnEnd(DirectiveID.getLoc());
8004  else if (IDVal == ".cantunwind")
8005    return parseDirectiveCantUnwind(DirectiveID.getLoc());
8006  else if (IDVal == ".personality")
8007    return parseDirectivePersonality(DirectiveID.getLoc());
8008  else if (IDVal == ".handlerdata")
8009    return parseDirectiveHandlerData(DirectiveID.getLoc());
8010  else if (IDVal == ".setfp")
8011    return parseDirectiveSetFP(DirectiveID.getLoc());
8012  else if (IDVal == ".pad")
8013    return parseDirectivePad(DirectiveID.getLoc());
8014  else if (IDVal == ".save")
8015    return parseDirectiveRegSave(DirectiveID.getLoc(), false);
8016  else if (IDVal == ".vsave")
8017    return parseDirectiveRegSave(DirectiveID.getLoc(), true);
8018  else if (IDVal == ".inst")
8019    return parseDirectiveInst(DirectiveID.getLoc());
8020  else if (IDVal == ".inst.n")
8021    return parseDirectiveInst(DirectiveID.getLoc(), 'n');
8022  else if (IDVal == ".inst.w")
8023    return parseDirectiveInst(DirectiveID.getLoc(), 'w');
8024  else if (IDVal == ".ltorg" || IDVal == ".pool")
8025    return parseDirectiveLtorg(DirectiveID.getLoc());
8026  else if (IDVal == ".even")
8027    return parseDirectiveEven(DirectiveID.getLoc());
8028  else if (IDVal == ".personalityindex")
8029    return parseDirectivePersonalityIndex(DirectiveID.getLoc());
8030  else if (IDVal == ".unwind_raw")
8031    return parseDirectiveUnwindRaw(DirectiveID.getLoc());
8032  else if (IDVal == ".tlsdescseq")
8033    return parseDirectiveTLSDescSeq(DirectiveID.getLoc());
8034  else if (IDVal == ".movsp")
8035    return parseDirectiveMovSP(DirectiveID.getLoc());
8036  else if (IDVal == ".object_arch")
8037    return parseDirectiveObjectArch(DirectiveID.getLoc());
8038  else if (IDVal == ".arch_extension")
8039    return parseDirectiveArchExtension(DirectiveID.getLoc());
8040  else if (IDVal == ".align")
8041    return parseDirectiveAlign(DirectiveID.getLoc());
8042  else if (IDVal == ".thumb_set")
8043    return parseDirectiveThumbSet(DirectiveID.getLoc());
8044  return true;
8045}
8046
8047/// parseLiteralValues
8048///  ::= .hword expression [, expression]*
8049///  ::= .short expression [, expression]*
8050///  ::= .word expression [, expression]*
8051bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) {
8052  if (getLexer().isNot(AsmToken::EndOfStatement)) {
8053    for (;;) {
8054      const MCExpr *Value;
8055      if (getParser().parseExpression(Value)) {
8056        Parser.eatToEndOfStatement();
8057        return false;
8058      }
8059
8060      getParser().getStreamer().EmitValue(Value, Size);
8061
8062      if (getLexer().is(AsmToken::EndOfStatement))
8063        break;
8064
8065      // FIXME: Improve diagnostic.
8066      if (getLexer().isNot(AsmToken::Comma)) {
8067        Error(L, "unexpected token in directive");
8068        return false;
8069      }
8070      Parser.Lex();
8071    }
8072  }
8073
8074  Parser.Lex();
8075  return false;
8076}
8077
8078/// parseDirectiveThumb
8079///  ::= .thumb
8080bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
8081  if (getLexer().isNot(AsmToken::EndOfStatement)) {
8082    Error(L, "unexpected token in directive");
8083    return false;
8084  }
8085  Parser.Lex();
8086
8087  if (!hasThumb()) {
8088    Error(L, "target does not support Thumb mode");
8089    return false;
8090  }
8091
8092  if (!isThumb())
8093    SwitchMode();
8094
8095  getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
8096  return false;
8097}
8098
8099/// parseDirectiveARM
8100///  ::= .arm
8101bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
8102  if (getLexer().isNot(AsmToken::EndOfStatement)) {
8103    Error(L, "unexpected token in directive");
8104    return false;
8105  }
8106  Parser.Lex();
8107
8108  if (!hasARM()) {
8109    Error(L, "target does not support ARM mode");
8110    return false;
8111  }
8112
8113  if (isThumb())
8114    SwitchMode();
8115
8116  getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
8117  return false;
8118}
8119
8120void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) {
8121  if (NextSymbolIsThumb) {
8122    getParser().getStreamer().EmitThumbFunc(Symbol);
8123    NextSymbolIsThumb = false;
8124    return;
8125  }
8126
8127  if (!isThumb())
8128    return;
8129
8130  const MCObjectFileInfo::Environment Format =
8131    getContext().getObjectFileInfo()->getObjectFileType();
8132  switch (Format) {
8133  case MCObjectFileInfo::IsCOFF: {
8134    const MCSymbolData &SD =
8135      getParser().getStreamer().getOrCreateSymbolData(Symbol);
8136    char Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT;
8137    if (SD.getFlags() & (Type << COFF::SF_TypeShift))
8138      getParser().getStreamer().EmitThumbFunc(Symbol);
8139    break;
8140  }
8141  case MCObjectFileInfo::IsELF: {
8142    const MCSymbolData &SD =
8143      getParser().getStreamer().getOrCreateSymbolData(Symbol);
8144    if (MCELF::GetType(SD) & (ELF::STT_FUNC << ELF_STT_Shift))
8145      getParser().getStreamer().EmitThumbFunc(Symbol);
8146    break;
8147  }
8148  case MCObjectFileInfo::IsMachO:
8149    break;
8150  }
8151}
8152
8153/// parseDirectiveThumbFunc
8154///  ::= .thumbfunc symbol_name
8155bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
8156  const MCAsmInfo *MAI = getParser().getStreamer().getContext().getAsmInfo();
8157  bool isMachO = MAI->hasSubsectionsViaSymbols();
8158
8159  // Darwin asm has (optionally) function name after .thumb_func direction
8160  // ELF doesn't
8161  if (isMachO) {
8162    const AsmToken &Tok = Parser.getTok();
8163    if (Tok.isNot(AsmToken::EndOfStatement)) {
8164      if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String)) {
8165        Error(L, "unexpected token in .thumb_func directive");
8166        return false;
8167      }
8168
8169      MCSymbol *Func =
8170          getParser().getContext().GetOrCreateSymbol(Tok.getIdentifier());
8171      getParser().getStreamer().EmitThumbFunc(Func);
8172      Parser.Lex(); // Consume the identifier token.
8173      return false;
8174    }
8175  }
8176
8177  if (getLexer().isNot(AsmToken::EndOfStatement)) {
8178    Error(L, "unexpected token in directive");
8179    return false;
8180  }
8181
8182  NextSymbolIsThumb = true;
8183  return false;
8184}
8185
8186/// parseDirectiveSyntax
8187///  ::= .syntax unified | divided
8188bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
8189  const AsmToken &Tok = Parser.getTok();
8190  if (Tok.isNot(AsmToken::Identifier)) {
8191    Error(L, "unexpected token in .syntax directive");
8192    return false;
8193  }
8194
8195  StringRef Mode = Tok.getString();
8196  if (Mode == "unified" || Mode == "UNIFIED") {
8197    Parser.Lex();
8198  } else if (Mode == "divided" || Mode == "DIVIDED") {
8199    Error(L, "'.syntax divided' arm asssembly not supported");
8200    return false;
8201  } else {
8202    Error(L, "unrecognized syntax mode in .syntax directive");
8203    return false;
8204  }
8205
8206  if (getLexer().isNot(AsmToken::EndOfStatement)) {
8207    Error(Parser.getTok().getLoc(), "unexpected token in directive");
8208    return false;
8209  }
8210  Parser.Lex();
8211
8212  // TODO tell the MC streamer the mode
8213  // getParser().getStreamer().Emit???();
8214  return false;
8215}
8216
8217/// parseDirectiveCode
8218///  ::= .code 16 | 32
8219bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
8220  const AsmToken &Tok = Parser.getTok();
8221  if (Tok.isNot(AsmToken::Integer)) {
8222    Error(L, "unexpected token in .code directive");
8223    return false;
8224  }
8225  int64_t Val = Parser.getTok().getIntVal();
8226  if (Val != 16 && Val != 32) {
8227    Error(L, "invalid operand to .code directive");
8228    return false;
8229  }
8230  Parser.Lex();
8231
8232  if (getLexer().isNot(AsmToken::EndOfStatement)) {
8233    Error(Parser.getTok().getLoc(), "unexpected token in directive");
8234    return false;
8235  }
8236  Parser.Lex();
8237
8238  if (Val == 16) {
8239    if (!hasThumb()) {
8240      Error(L, "target does not support Thumb mode");
8241      return false;
8242    }
8243
8244    if (!isThumb())
8245      SwitchMode();
8246    getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
8247  } else {
8248    if (!hasARM()) {
8249      Error(L, "target does not support ARM mode");
8250      return false;
8251    }
8252
8253    if (isThumb())
8254      SwitchMode();
8255    getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
8256  }
8257
8258  return false;
8259}
8260
8261/// parseDirectiveReq
8262///  ::= name .req registername
8263bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
8264  Parser.Lex(); // Eat the '.req' token.
8265  unsigned Reg;
8266  SMLoc SRegLoc, ERegLoc;
8267  if (ParseRegister(Reg, SRegLoc, ERegLoc)) {
8268    Parser.eatToEndOfStatement();
8269    Error(SRegLoc, "register name expected");
8270    return false;
8271  }
8272
8273  // Shouldn't be anything else.
8274  if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
8275    Parser.eatToEndOfStatement();
8276    Error(Parser.getTok().getLoc(), "unexpected input in .req directive.");
8277    return false;
8278  }
8279
8280  Parser.Lex(); // Consume the EndOfStatement
8281
8282  if (RegisterReqs.GetOrCreateValue(Name, Reg).getValue() != Reg) {
8283    Error(SRegLoc, "redefinition of '" + Name + "' does not match original.");
8284    return false;
8285  }
8286
8287  return false;
8288}
8289
8290/// parseDirectiveUneq
8291///  ::= .unreq registername
8292bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
8293  if (Parser.getTok().isNot(AsmToken::Identifier)) {
8294    Parser.eatToEndOfStatement();
8295    Error(L, "unexpected input in .unreq directive.");
8296    return false;
8297  }
8298  RegisterReqs.erase(Parser.getTok().getIdentifier().lower());
8299  Parser.Lex(); // Eat the identifier.
8300  return false;
8301}
8302
8303/// parseDirectiveArch
8304///  ::= .arch token
8305bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
8306  const MCAsmInfo *MAI = getParser().getStreamer().getContext().getAsmInfo();
8307  bool isMachO = MAI->hasSubsectionsViaSymbols();
8308  if (isMachO) {
8309    Error(L, ".arch directive not valid for Mach-O");
8310    Parser.eatToEndOfStatement();
8311    return false;
8312  }
8313
8314  StringRef Arch = getParser().parseStringToEndOfStatement().trim();
8315
8316  unsigned ID = StringSwitch<unsigned>(Arch)
8317#define ARM_ARCH_NAME(NAME, ID, DEFAULT_CPU_NAME, DEFAULT_CPU_ARCH) \
8318    .Case(NAME, ARM::ID)
8319#define ARM_ARCH_ALIAS(NAME, ID) \
8320    .Case(NAME, ARM::ID)
8321#include "MCTargetDesc/ARMArchName.def"
8322    .Default(ARM::INVALID_ARCH);
8323
8324  if (ID == ARM::INVALID_ARCH) {
8325    Error(L, "Unknown arch name");
8326    return false;
8327  }
8328
8329  getTargetStreamer().emitArch(ID);
8330  return false;
8331}
8332
8333/// parseDirectiveEabiAttr
8334///  ::= .eabi_attribute int, int [, "str"]
8335///  ::= .eabi_attribute Tag_name, int [, "str"]
8336bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
8337  const MCAsmInfo *MAI = getParser().getStreamer().getContext().getAsmInfo();
8338  bool isMachO = MAI->hasSubsectionsViaSymbols();
8339  if (isMachO) {
8340    Error(L, ".eabi_attribute directive not valid for Mach-O");
8341    Parser.eatToEndOfStatement();
8342    return false;
8343  }
8344
8345  int64_t Tag;
8346  SMLoc TagLoc;
8347  TagLoc = Parser.getTok().getLoc();
8348  if (Parser.getTok().is(AsmToken::Identifier)) {
8349    StringRef Name = Parser.getTok().getIdentifier();
8350    Tag = ARMBuildAttrs::AttrTypeFromString(Name);
8351    if (Tag == -1) {
8352      Error(TagLoc, "attribute name not recognised: " + Name);
8353      Parser.eatToEndOfStatement();
8354      return false;
8355    }
8356    Parser.Lex();
8357  } else {
8358    const MCExpr *AttrExpr;
8359
8360    TagLoc = Parser.getTok().getLoc();
8361    if (Parser.parseExpression(AttrExpr)) {
8362      Parser.eatToEndOfStatement();
8363      return false;
8364    }
8365
8366    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
8367    if (!CE) {
8368      Error(TagLoc, "expected numeric constant");
8369      Parser.eatToEndOfStatement();
8370      return false;
8371    }
8372
8373    Tag = CE->getValue();
8374  }
8375
8376  if (Parser.getTok().isNot(AsmToken::Comma)) {
8377    Error(Parser.getTok().getLoc(), "comma expected");
8378    Parser.eatToEndOfStatement();
8379    return false;
8380  }
8381  Parser.Lex(); // skip comma
8382
8383  StringRef StringValue = "";
8384  bool IsStringValue = false;
8385
8386  int64_t IntegerValue = 0;
8387  bool IsIntegerValue = false;
8388
8389  if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name)
8390    IsStringValue = true;
8391  else if (Tag == ARMBuildAttrs::compatibility) {
8392    IsStringValue = true;
8393    IsIntegerValue = true;
8394  } else if (Tag < 32 || Tag % 2 == 0)
8395    IsIntegerValue = true;
8396  else if (Tag % 2 == 1)
8397    IsStringValue = true;
8398  else
8399    llvm_unreachable("invalid tag type");
8400
8401  if (IsIntegerValue) {
8402    const MCExpr *ValueExpr;
8403    SMLoc ValueExprLoc = Parser.getTok().getLoc();
8404    if (Parser.parseExpression(ValueExpr)) {
8405      Parser.eatToEndOfStatement();
8406      return false;
8407    }
8408
8409    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
8410    if (!CE) {
8411      Error(ValueExprLoc, "expected numeric constant");
8412      Parser.eatToEndOfStatement();
8413      return false;
8414    }
8415
8416    IntegerValue = CE->getValue();
8417  }
8418
8419  if (Tag == ARMBuildAttrs::compatibility) {
8420    if (Parser.getTok().isNot(AsmToken::Comma))
8421      IsStringValue = false;
8422    else
8423      Parser.Lex();
8424  }
8425
8426  if (IsStringValue) {
8427    if (Parser.getTok().isNot(AsmToken::String)) {
8428      Error(Parser.getTok().getLoc(), "bad string constant");
8429      Parser.eatToEndOfStatement();
8430      return false;
8431    }
8432
8433    StringValue = Parser.getTok().getStringContents();
8434    Parser.Lex();
8435  }
8436
8437  if (IsIntegerValue && IsStringValue) {
8438    assert(Tag == ARMBuildAttrs::compatibility);
8439    getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue);
8440  } else if (IsIntegerValue)
8441    getTargetStreamer().emitAttribute(Tag, IntegerValue);
8442  else if (IsStringValue)
8443    getTargetStreamer().emitTextAttribute(Tag, StringValue);
8444  return false;
8445}
8446
8447/// parseDirectiveCPU
8448///  ::= .cpu str
8449bool ARMAsmParser::parseDirectiveCPU(SMLoc L) {
8450  const MCAsmInfo *MAI = getParser().getStreamer().getContext().getAsmInfo();
8451  bool isMachO = MAI->hasSubsectionsViaSymbols();
8452  if (isMachO) {
8453    Error(L, ".cpu directive not valid for Mach-O");
8454    Parser.eatToEndOfStatement();
8455    return false;
8456  }
8457
8458  StringRef CPU = getParser().parseStringToEndOfStatement().trim();
8459  getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU);
8460  return false;
8461}
8462
8463/// parseDirectiveFPU
8464///  ::= .fpu str
8465bool ARMAsmParser::parseDirectiveFPU(SMLoc L) {
8466  const MCAsmInfo *MAI = getParser().getStreamer().getContext().getAsmInfo();
8467  bool isMachO = MAI->hasSubsectionsViaSymbols();
8468  if (isMachO) {
8469    Error(L, ".fpu directive not valid for Mach-O");
8470    Parser.eatToEndOfStatement();
8471    return false;
8472  }
8473
8474  StringRef FPU = getParser().parseStringToEndOfStatement().trim();
8475
8476  unsigned ID = StringSwitch<unsigned>(FPU)
8477#define ARM_FPU_NAME(NAME, ID) .Case(NAME, ARM::ID)
8478#include "ARMFPUName.def"
8479    .Default(ARM::INVALID_FPU);
8480
8481  if (ID == ARM::INVALID_FPU) {
8482    Error(L, "Unknown FPU name");
8483    return false;
8484  }
8485
8486  getTargetStreamer().emitFPU(ID);
8487  return false;
8488}
8489
8490/// parseDirectiveFnStart
8491///  ::= .fnstart
8492bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) {
8493  const MCAsmInfo *MAI = getParser().getStreamer().getContext().getAsmInfo();
8494  bool isMachO = MAI->hasSubsectionsViaSymbols();
8495  if (isMachO) {
8496    Error(L, ".fnstart directive not valid for Mach-O");
8497    Parser.eatToEndOfStatement();
8498    return false;
8499  }
8500
8501  if (UC.hasFnStart()) {
8502    Error(L, ".fnstart starts before the end of previous one");
8503    UC.emitFnStartLocNotes();
8504    return false;
8505  }
8506
8507  // Reset the unwind directives parser state
8508  UC.reset();
8509
8510  getTargetStreamer().emitFnStart();
8511
8512  UC.recordFnStart(L);
8513  return false;
8514}
8515
8516/// parseDirectiveFnEnd
8517///  ::= .fnend
8518bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) {
8519  // Check the ordering of unwind directives
8520  if (!UC.hasFnStart()) {
8521    Error(L, ".fnstart must precede .fnend directive");
8522    return false;
8523  }
8524
8525  // Reset the unwind directives parser state
8526  getTargetStreamer().emitFnEnd();
8527
8528  UC.reset();
8529  return false;
8530}
8531
8532/// parseDirectiveCantUnwind
8533///  ::= .cantunwind
8534bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) {
8535  UC.recordCantUnwind(L);
8536
8537  // Check the ordering of unwind directives
8538  if (!UC.hasFnStart()) {
8539    Error(L, ".fnstart must precede .cantunwind directive");
8540    return false;
8541  }
8542  if (UC.hasHandlerData()) {
8543    Error(L, ".cantunwind can't be used with .handlerdata directive");
8544    UC.emitHandlerDataLocNotes();
8545    return false;
8546  }
8547  if (UC.hasPersonality()) {
8548    Error(L, ".cantunwind can't be used with .personality directive");
8549    UC.emitPersonalityLocNotes();
8550    return false;
8551  }
8552
8553  getTargetStreamer().emitCantUnwind();
8554  return false;
8555}
8556
8557/// parseDirectivePersonality
8558///  ::= .personality name
8559bool ARMAsmParser::parseDirectivePersonality(SMLoc L) {
8560  bool HasExistingPersonality = UC.hasPersonality();
8561
8562  UC.recordPersonality(L);
8563
8564  // Check the ordering of unwind directives
8565  if (!UC.hasFnStart()) {
8566    Error(L, ".fnstart must precede .personality directive");
8567    return false;
8568  }
8569  if (UC.cantUnwind()) {
8570    Error(L, ".personality can't be used with .cantunwind directive");
8571    UC.emitCantUnwindLocNotes();
8572    return false;
8573  }
8574  if (UC.hasHandlerData()) {
8575    Error(L, ".personality must precede .handlerdata directive");
8576    UC.emitHandlerDataLocNotes();
8577    return false;
8578  }
8579  if (HasExistingPersonality) {
8580    Parser.eatToEndOfStatement();
8581    Error(L, "multiple personality directives");
8582    UC.emitPersonalityLocNotes();
8583    return false;
8584  }
8585
8586  // Parse the name of the personality routine
8587  if (Parser.getTok().isNot(AsmToken::Identifier)) {
8588    Parser.eatToEndOfStatement();
8589    Error(L, "unexpected input in .personality directive.");
8590    return false;
8591  }
8592  StringRef Name(Parser.getTok().getIdentifier());
8593  Parser.Lex();
8594
8595  MCSymbol *PR = getParser().getContext().GetOrCreateSymbol(Name);
8596  getTargetStreamer().emitPersonality(PR);
8597  return false;
8598}
8599
8600/// parseDirectiveHandlerData
8601///  ::= .handlerdata
8602bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) {
8603  UC.recordHandlerData(L);
8604
8605  // Check the ordering of unwind directives
8606  if (!UC.hasFnStart()) {
8607    Error(L, ".fnstart must precede .personality directive");
8608    return false;
8609  }
8610  if (UC.cantUnwind()) {
8611    Error(L, ".handlerdata can't be used with .cantunwind directive");
8612    UC.emitCantUnwindLocNotes();
8613    return false;
8614  }
8615
8616  getTargetStreamer().emitHandlerData();
8617  return false;
8618}
8619
8620/// parseDirectiveSetFP
8621///  ::= .setfp fpreg, spreg [, offset]
8622bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) {
8623  // Check the ordering of unwind directives
8624  if (!UC.hasFnStart()) {
8625    Error(L, ".fnstart must precede .setfp directive");
8626    return false;
8627  }
8628  if (UC.hasHandlerData()) {
8629    Error(L, ".setfp must precede .handlerdata directive");
8630    return false;
8631  }
8632
8633  // Parse fpreg
8634  SMLoc FPRegLoc = Parser.getTok().getLoc();
8635  int FPReg = tryParseRegister();
8636  if (FPReg == -1) {
8637    Error(FPRegLoc, "frame pointer register expected");
8638    return false;
8639  }
8640
8641  // Consume comma
8642  if (Parser.getTok().isNot(AsmToken::Comma)) {
8643    Error(Parser.getTok().getLoc(), "comma expected");
8644    return false;
8645  }
8646  Parser.Lex(); // skip comma
8647
8648  // Parse spreg
8649  SMLoc SPRegLoc = Parser.getTok().getLoc();
8650  int SPReg = tryParseRegister();
8651  if (SPReg == -1) {
8652    Error(SPRegLoc, "stack pointer register expected");
8653    return false;
8654  }
8655
8656  if (SPReg != ARM::SP && SPReg != UC.getFPReg()) {
8657    Error(SPRegLoc, "register should be either $sp or the latest fp register");
8658    return false;
8659  }
8660
8661  // Update the frame pointer register
8662  UC.saveFPReg(FPReg);
8663
8664  // Parse offset
8665  int64_t Offset = 0;
8666  if (Parser.getTok().is(AsmToken::Comma)) {
8667    Parser.Lex(); // skip comma
8668
8669    if (Parser.getTok().isNot(AsmToken::Hash) &&
8670        Parser.getTok().isNot(AsmToken::Dollar)) {
8671      Error(Parser.getTok().getLoc(), "'#' expected");
8672      return false;
8673    }
8674    Parser.Lex(); // skip hash token.
8675
8676    const MCExpr *OffsetExpr;
8677    SMLoc ExLoc = Parser.getTok().getLoc();
8678    SMLoc EndLoc;
8679    if (getParser().parseExpression(OffsetExpr, EndLoc)) {
8680      Error(ExLoc, "malformed setfp offset");
8681      return false;
8682    }
8683    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
8684    if (!CE) {
8685      Error(ExLoc, "setfp offset must be an immediate");
8686      return false;
8687    }
8688
8689    Offset = CE->getValue();
8690  }
8691
8692  getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg),
8693                                static_cast<unsigned>(SPReg), Offset);
8694  return false;
8695}
8696
8697/// parseDirective
8698///  ::= .pad offset
8699bool ARMAsmParser::parseDirectivePad(SMLoc L) {
8700  // Check the ordering of unwind directives
8701  if (!UC.hasFnStart()) {
8702    Error(L, ".fnstart must precede .pad directive");
8703    return false;
8704  }
8705  if (UC.hasHandlerData()) {
8706    Error(L, ".pad must precede .handlerdata directive");
8707    return false;
8708  }
8709
8710  // Parse the offset
8711  if (Parser.getTok().isNot(AsmToken::Hash) &&
8712      Parser.getTok().isNot(AsmToken::Dollar)) {
8713    Error(Parser.getTok().getLoc(), "'#' expected");
8714    return false;
8715  }
8716  Parser.Lex(); // skip hash token.
8717
8718  const MCExpr *OffsetExpr;
8719  SMLoc ExLoc = Parser.getTok().getLoc();
8720  SMLoc EndLoc;
8721  if (getParser().parseExpression(OffsetExpr, EndLoc)) {
8722    Error(ExLoc, "malformed pad offset");
8723    return false;
8724  }
8725  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
8726  if (!CE) {
8727    Error(ExLoc, "pad offset must be an immediate");
8728    return false;
8729  }
8730
8731  getTargetStreamer().emitPad(CE->getValue());
8732  return false;
8733}
8734
8735/// parseDirectiveRegSave
8736///  ::= .save  { registers }
8737///  ::= .vsave { registers }
8738bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) {
8739  // Check the ordering of unwind directives
8740  if (!UC.hasFnStart()) {
8741    Error(L, ".fnstart must precede .save or .vsave directives");
8742    return false;
8743  }
8744  if (UC.hasHandlerData()) {
8745    Error(L, ".save or .vsave must precede .handlerdata directive");
8746    return false;
8747  }
8748
8749  // RAII object to make sure parsed operands are deleted.
8750  struct CleanupObject {
8751    SmallVector<MCParsedAsmOperand *, 1> Operands;
8752    ~CleanupObject() {
8753      for (unsigned I = 0, E = Operands.size(); I != E; ++I)
8754        delete Operands[I];
8755    }
8756  } CO;
8757
8758  // Parse the register list
8759  if (parseRegisterList(CO.Operands))
8760    return false;
8761  ARMOperand *Op = (ARMOperand*)CO.Operands[0];
8762  if (!IsVector && !Op->isRegList()) {
8763    Error(L, ".save expects GPR registers");
8764    return false;
8765  }
8766  if (IsVector && !Op->isDPRRegList()) {
8767    Error(L, ".vsave expects DPR registers");
8768    return false;
8769  }
8770
8771  getTargetStreamer().emitRegSave(Op->getRegList(), IsVector);
8772  return false;
8773}
8774
8775/// parseDirectiveInst
8776///  ::= .inst opcode [, ...]
8777///  ::= .inst.n opcode [, ...]
8778///  ::= .inst.w opcode [, ...]
8779bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) {
8780  const MCAsmInfo *MAI = getParser().getStreamer().getContext().getAsmInfo();
8781  bool isMachO = MAI->hasSubsectionsViaSymbols();
8782  if (isMachO) {
8783    Error(Loc, ".inst directive not valid for Mach-O");
8784    Parser.eatToEndOfStatement();
8785    return false;
8786  }
8787
8788  int Width;
8789
8790  if (isThumb()) {
8791    switch (Suffix) {
8792    case 'n':
8793      Width = 2;
8794      break;
8795    case 'w':
8796      Width = 4;
8797      break;
8798    default:
8799      Parser.eatToEndOfStatement();
8800      Error(Loc, "cannot determine Thumb instruction size, "
8801                 "use inst.n/inst.w instead");
8802      return false;
8803    }
8804  } else {
8805    if (Suffix) {
8806      Parser.eatToEndOfStatement();
8807      Error(Loc, "width suffixes are invalid in ARM mode");
8808      return false;
8809    }
8810    Width = 4;
8811  }
8812
8813  if (getLexer().is(AsmToken::EndOfStatement)) {
8814    Parser.eatToEndOfStatement();
8815    Error(Loc, "expected expression following directive");
8816    return false;
8817  }
8818
8819  for (;;) {
8820    const MCExpr *Expr;
8821
8822    if (getParser().parseExpression(Expr)) {
8823      Error(Loc, "expected expression");
8824      return false;
8825    }
8826
8827    const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr);
8828    if (!Value) {
8829      Error(Loc, "expected constant expression");
8830      return false;
8831    }
8832
8833    switch (Width) {
8834    case 2:
8835      if (Value->getValue() > 0xffff) {
8836        Error(Loc, "inst.n operand is too big, use inst.w instead");
8837        return false;
8838      }
8839      break;
8840    case 4:
8841      if (Value->getValue() > 0xffffffff) {
8842        Error(Loc,
8843              StringRef(Suffix ? "inst.w" : "inst") + " operand is too big");
8844        return false;
8845      }
8846      break;
8847    default:
8848      llvm_unreachable("only supported widths are 2 and 4");
8849    }
8850
8851    getTargetStreamer().emitInst(Value->getValue(), Suffix);
8852
8853    if (getLexer().is(AsmToken::EndOfStatement))
8854      break;
8855
8856    if (getLexer().isNot(AsmToken::Comma)) {
8857      Error(Loc, "unexpected token in directive");
8858      return false;
8859    }
8860
8861    Parser.Lex();
8862  }
8863
8864  Parser.Lex();
8865  return false;
8866}
8867
8868/// parseDirectiveLtorg
8869///  ::= .ltorg | .pool
8870bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) {
8871  getTargetStreamer().emitCurrentConstantPool();
8872  return false;
8873}
8874
8875bool ARMAsmParser::parseDirectiveEven(SMLoc L) {
8876  const MCSection *Section = getStreamer().getCurrentSection().first;
8877
8878  if (getLexer().isNot(AsmToken::EndOfStatement)) {
8879    TokError("unexpected token in directive");
8880    return false;
8881  }
8882
8883  if (!Section) {
8884    getStreamer().InitSections();
8885    Section = getStreamer().getCurrentSection().first;
8886  }
8887
8888  assert(Section && "must have section to emit alignment");
8889  if (Section->UseCodeAlign())
8890    getStreamer().EmitCodeAlignment(2);
8891  else
8892    getStreamer().EmitValueToAlignment(2);
8893
8894  return false;
8895}
8896
8897/// parseDirectivePersonalityIndex
8898///   ::= .personalityindex index
8899bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) {
8900  bool HasExistingPersonality = UC.hasPersonality();
8901
8902  UC.recordPersonalityIndex(L);
8903
8904  if (!UC.hasFnStart()) {
8905    Parser.eatToEndOfStatement();
8906    Error(L, ".fnstart must precede .personalityindex directive");
8907    return false;
8908  }
8909  if (UC.cantUnwind()) {
8910    Parser.eatToEndOfStatement();
8911    Error(L, ".personalityindex cannot be used with .cantunwind");
8912    UC.emitCantUnwindLocNotes();
8913    return false;
8914  }
8915  if (UC.hasHandlerData()) {
8916    Parser.eatToEndOfStatement();
8917    Error(L, ".personalityindex must precede .handlerdata directive");
8918    UC.emitHandlerDataLocNotes();
8919    return false;
8920  }
8921  if (HasExistingPersonality) {
8922    Parser.eatToEndOfStatement();
8923    Error(L, "multiple personality directives");
8924    UC.emitPersonalityLocNotes();
8925    return false;
8926  }
8927
8928  const MCExpr *IndexExpression;
8929  SMLoc IndexLoc = Parser.getTok().getLoc();
8930  if (Parser.parseExpression(IndexExpression)) {
8931    Parser.eatToEndOfStatement();
8932    return false;
8933  }
8934
8935  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression);
8936  if (!CE) {
8937    Parser.eatToEndOfStatement();
8938    Error(IndexLoc, "index must be a constant number");
8939    return false;
8940  }
8941  if (CE->getValue() < 0 ||
8942      CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) {
8943    Parser.eatToEndOfStatement();
8944    Error(IndexLoc, "personality routine index should be in range [0-3]");
8945    return false;
8946  }
8947
8948  getTargetStreamer().emitPersonalityIndex(CE->getValue());
8949  return false;
8950}
8951
8952/// parseDirectiveUnwindRaw
8953///   ::= .unwind_raw offset, opcode [, opcode...]
8954bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) {
8955  if (!UC.hasFnStart()) {
8956    Parser.eatToEndOfStatement();
8957    Error(L, ".fnstart must precede .unwind_raw directives");
8958    return false;
8959  }
8960
8961  int64_t StackOffset;
8962
8963  const MCExpr *OffsetExpr;
8964  SMLoc OffsetLoc = getLexer().getLoc();
8965  if (getLexer().is(AsmToken::EndOfStatement) ||
8966      getParser().parseExpression(OffsetExpr)) {
8967    Error(OffsetLoc, "expected expression");
8968    Parser.eatToEndOfStatement();
8969    return false;
8970  }
8971
8972  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
8973  if (!CE) {
8974    Error(OffsetLoc, "offset must be a constant");
8975    Parser.eatToEndOfStatement();
8976    return false;
8977  }
8978
8979  StackOffset = CE->getValue();
8980
8981  if (getLexer().isNot(AsmToken::Comma)) {
8982    Error(getLexer().getLoc(), "expected comma");
8983    Parser.eatToEndOfStatement();
8984    return false;
8985  }
8986  Parser.Lex();
8987
8988  SmallVector<uint8_t, 16> Opcodes;
8989  for (;;) {
8990    const MCExpr *OE;
8991
8992    SMLoc OpcodeLoc = getLexer().getLoc();
8993    if (getLexer().is(AsmToken::EndOfStatement) || Parser.parseExpression(OE)) {
8994      Error(OpcodeLoc, "expected opcode expression");
8995      Parser.eatToEndOfStatement();
8996      return false;
8997    }
8998
8999    const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE);
9000    if (!OC) {
9001      Error(OpcodeLoc, "opcode value must be a constant");
9002      Parser.eatToEndOfStatement();
9003      return false;
9004    }
9005
9006    const int64_t Opcode = OC->getValue();
9007    if (Opcode & ~0xff) {
9008      Error(OpcodeLoc, "invalid opcode");
9009      Parser.eatToEndOfStatement();
9010      return false;
9011    }
9012
9013    Opcodes.push_back(uint8_t(Opcode));
9014
9015    if (getLexer().is(AsmToken::EndOfStatement))
9016      break;
9017
9018    if (getLexer().isNot(AsmToken::Comma)) {
9019      Error(getLexer().getLoc(), "unexpected token in directive");
9020      Parser.eatToEndOfStatement();
9021      return false;
9022    }
9023
9024    Parser.Lex();
9025  }
9026
9027  getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes);
9028
9029  Parser.Lex();
9030  return false;
9031}
9032
9033/// parseDirectiveTLSDescSeq
9034///   ::= .tlsdescseq tls-variable
9035bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) {
9036  const MCAsmInfo *MAI = getParser().getStreamer().getContext().getAsmInfo();
9037  bool isMachO = MAI->hasSubsectionsViaSymbols();
9038  if (isMachO) {
9039    Error(L, ".tlsdescseq directive not valid for Mach-O");
9040    Parser.eatToEndOfStatement();
9041    return false;
9042  }
9043
9044  if (getLexer().isNot(AsmToken::Identifier)) {
9045    TokError("expected variable after '.tlsdescseq' directive");
9046    Parser.eatToEndOfStatement();
9047    return false;
9048  }
9049
9050  const MCSymbolRefExpr *SRE =
9051    MCSymbolRefExpr::Create(Parser.getTok().getIdentifier(),
9052                            MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext());
9053  Lex();
9054
9055  if (getLexer().isNot(AsmToken::EndOfStatement)) {
9056    Error(Parser.getTok().getLoc(), "unexpected token");
9057    Parser.eatToEndOfStatement();
9058    return false;
9059  }
9060
9061  getTargetStreamer().AnnotateTLSDescriptorSequence(SRE);
9062  return false;
9063}
9064
9065/// parseDirectiveMovSP
9066///  ::= .movsp reg [, #offset]
9067bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) {
9068  if (!UC.hasFnStart()) {
9069    Parser.eatToEndOfStatement();
9070    Error(L, ".fnstart must precede .movsp directives");
9071    return false;
9072  }
9073  if (UC.getFPReg() != ARM::SP) {
9074    Parser.eatToEndOfStatement();
9075    Error(L, "unexpected .movsp directive");
9076    return false;
9077  }
9078
9079  SMLoc SPRegLoc = Parser.getTok().getLoc();
9080  int SPReg = tryParseRegister();
9081  if (SPReg == -1) {
9082    Parser.eatToEndOfStatement();
9083    Error(SPRegLoc, "register expected");
9084    return false;
9085  }
9086
9087  if (SPReg == ARM::SP || SPReg == ARM::PC) {
9088    Parser.eatToEndOfStatement();
9089    Error(SPRegLoc, "sp and pc are not permitted in .movsp directive");
9090    return false;
9091  }
9092
9093  int64_t Offset = 0;
9094  if (Parser.getTok().is(AsmToken::Comma)) {
9095    Parser.Lex();
9096
9097    if (Parser.getTok().isNot(AsmToken::Hash)) {
9098      Error(Parser.getTok().getLoc(), "expected #constant");
9099      Parser.eatToEndOfStatement();
9100      return false;
9101    }
9102    Parser.Lex();
9103
9104    const MCExpr *OffsetExpr;
9105    SMLoc OffsetLoc = Parser.getTok().getLoc();
9106    if (Parser.parseExpression(OffsetExpr)) {
9107      Parser.eatToEndOfStatement();
9108      Error(OffsetLoc, "malformed offset expression");
9109      return false;
9110    }
9111
9112    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
9113    if (!CE) {
9114      Parser.eatToEndOfStatement();
9115      Error(OffsetLoc, "offset must be an immediate constant");
9116      return false;
9117    }
9118
9119    Offset = CE->getValue();
9120  }
9121
9122  getTargetStreamer().emitMovSP(SPReg, Offset);
9123  UC.saveFPReg(SPReg);
9124
9125  return false;
9126}
9127
9128/// parseDirectiveObjectArch
9129///   ::= .object_arch name
9130bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) {
9131  const MCAsmInfo *MAI = getParser().getStreamer().getContext().getAsmInfo();
9132  bool isMachO = MAI->hasSubsectionsViaSymbols();
9133  if (isMachO) {
9134    Error(L, ".object_arch directive not valid for Mach-O");
9135    Parser.eatToEndOfStatement();
9136    return false;
9137  }
9138
9139  if (getLexer().isNot(AsmToken::Identifier)) {
9140    Error(getLexer().getLoc(), "unexpected token");
9141    Parser.eatToEndOfStatement();
9142    return false;
9143  }
9144
9145  StringRef Arch = Parser.getTok().getString();
9146  SMLoc ArchLoc = Parser.getTok().getLoc();
9147  getLexer().Lex();
9148
9149  unsigned ID = StringSwitch<unsigned>(Arch)
9150#define ARM_ARCH_NAME(NAME, ID, DEFAULT_CPU_NAME, DEFAULT_CPU_ARCH) \
9151    .Case(NAME, ARM::ID)
9152#define ARM_ARCH_ALIAS(NAME, ID) \
9153    .Case(NAME, ARM::ID)
9154#include "MCTargetDesc/ARMArchName.def"
9155#undef ARM_ARCH_NAME
9156#undef ARM_ARCH_ALIAS
9157    .Default(ARM::INVALID_ARCH);
9158
9159  if (ID == ARM::INVALID_ARCH) {
9160    Error(ArchLoc, "unknown architecture '" + Arch + "'");
9161    Parser.eatToEndOfStatement();
9162    return false;
9163  }
9164
9165  getTargetStreamer().emitObjectArch(ID);
9166
9167  if (getLexer().isNot(AsmToken::EndOfStatement)) {
9168    Error(getLexer().getLoc(), "unexpected token");
9169    Parser.eatToEndOfStatement();
9170  }
9171
9172  return false;
9173}
9174
9175/// parseDirectiveAlign
9176///   ::= .align
9177bool ARMAsmParser::parseDirectiveAlign(SMLoc L) {
9178  // NOTE: if this is not the end of the statement, fall back to the target
9179  // agnostic handling for this directive which will correctly handle this.
9180  if (getLexer().isNot(AsmToken::EndOfStatement))
9181    return true;
9182
9183  // '.align' is target specifically handled to mean 2**2 byte alignment.
9184  if (getStreamer().getCurrentSection().first->UseCodeAlign())
9185    getStreamer().EmitCodeAlignment(4, 0);
9186  else
9187    getStreamer().EmitValueToAlignment(4, 0, 1, 0);
9188
9189  return false;
9190}
9191
9192/// parseDirectiveThumbSet
9193///  ::= .thumb_set name, value
9194bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) {
9195  StringRef Name;
9196  if (Parser.parseIdentifier(Name)) {
9197    TokError("expected identifier after '.thumb_set'");
9198    Parser.eatToEndOfStatement();
9199    return false;
9200  }
9201
9202  if (getLexer().isNot(AsmToken::Comma)) {
9203    TokError("expected comma after name '" + Name + "'");
9204    Parser.eatToEndOfStatement();
9205    return false;
9206  }
9207  Lex();
9208
9209  const MCExpr *Value;
9210  if (Parser.parseExpression(Value)) {
9211    TokError("missing expression");
9212    Parser.eatToEndOfStatement();
9213    return false;
9214  }
9215
9216  if (getLexer().isNot(AsmToken::EndOfStatement)) {
9217    TokError("unexpected token");
9218    Parser.eatToEndOfStatement();
9219    return false;
9220  }
9221  Lex();
9222
9223  MCSymbol *Alias = getContext().GetOrCreateSymbol(Name);
9224  if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Value)) {
9225    MCSymbol *Sym = getContext().LookupSymbol(SRE->getSymbol().getName());
9226    if (!Sym->isDefined()) {
9227      getStreamer().EmitSymbolAttribute(Sym, MCSA_Global);
9228      getStreamer().EmitAssignment(Alias, Value);
9229      return false;
9230    }
9231
9232    const MCObjectFileInfo::Environment Format =
9233      getContext().getObjectFileInfo()->getObjectFileType();
9234    switch (Format) {
9235    case MCObjectFileInfo::IsCOFF: {
9236      char Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT;
9237      getStreamer().EmitCOFFSymbolType(Type);
9238      // .set values are always local in COFF
9239      getStreamer().EmitSymbolAttribute(Alias, MCSA_Local);
9240      break;
9241    }
9242    case MCObjectFileInfo::IsELF:
9243      getStreamer().EmitSymbolAttribute(Alias, MCSA_ELF_TypeFunction);
9244      break;
9245    case MCObjectFileInfo::IsMachO:
9246      break;
9247    }
9248  }
9249
9250  // FIXME: set the function as being a thumb function via the assembler
9251  getStreamer().EmitThumbFunc(Alias);
9252  getStreamer().EmitAssignment(Alias, Value);
9253
9254  return false;
9255}
9256
9257/// Force static initialization.
9258extern "C" void LLVMInitializeARMAsmParser() {
9259  RegisterMCAsmParser<ARMAsmParser> X(TheARMLETarget);
9260  RegisterMCAsmParser<ARMAsmParser> Y(TheARMBETarget);
9261  RegisterMCAsmParser<ARMAsmParser> A(TheThumbLETarget);
9262  RegisterMCAsmParser<ARMAsmParser> B(TheThumbBETarget);
9263}
9264
9265#define GET_REGISTER_MATCHER
9266#define GET_SUBTARGET_FEATURE_NAME
9267#define GET_MATCHER_IMPLEMENTATION
9268#include "ARMGenAsmMatcher.inc"
9269
9270static const struct ExtMapEntry {
9271  const char *Extension;
9272  const unsigned ArchCheck;
9273  const uint64_t Features;
9274} Extensions[] = {
9275  { "crc", Feature_HasV8, ARM::FeatureCRC },
9276  { "crypto",  Feature_HasV8,
9277    ARM::FeatureCrypto | ARM::FeatureNEON | ARM::FeatureFPARMv8 },
9278  { "fp", Feature_HasV8, ARM::FeatureFPARMv8 },
9279  { "idiv", Feature_HasV7 | Feature_IsNotMClass,
9280    ARM::FeatureHWDiv | ARM::FeatureHWDivARM },
9281  // FIXME: iWMMXT not supported
9282  { "iwmmxt", Feature_None, 0 },
9283  // FIXME: iWMMXT2 not supported
9284  { "iwmmxt2", Feature_None, 0 },
9285  // FIXME: Maverick not supported
9286  { "maverick", Feature_None, 0 },
9287  { "mp", Feature_HasV7 | Feature_IsNotMClass, ARM::FeatureMP },
9288  // FIXME: ARMv6-m OS Extensions feature not checked
9289  { "os", Feature_None, 0 },
9290  // FIXME: Also available in ARMv6-K
9291  { "sec", Feature_HasV7, ARM::FeatureTrustZone },
9292  { "simd", Feature_HasV8, ARM::FeatureNEON | ARM::FeatureFPARMv8 },
9293  // FIXME: Only available in A-class, isel not predicated
9294  { "virt", Feature_HasV7, ARM::FeatureVirtualization },
9295  // FIXME: xscale not supported
9296  { "xscale", Feature_None, 0 },
9297};
9298
9299/// parseDirectiveArchExtension
9300///   ::= .arch_extension [no]feature
9301bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) {
9302  if (getLexer().isNot(AsmToken::Identifier)) {
9303    Error(getLexer().getLoc(), "unexpected token");
9304    Parser.eatToEndOfStatement();
9305    return false;
9306  }
9307
9308  StringRef Extension = Parser.getTok().getString();
9309  SMLoc ExtLoc = Parser.getTok().getLoc();
9310  getLexer().Lex();
9311
9312  bool EnableFeature = true;
9313  if (Extension.startswith_lower("no")) {
9314    EnableFeature = false;
9315    Extension = Extension.substr(2);
9316  }
9317
9318  for (unsigned EI = 0, EE = array_lengthof(Extensions); EI != EE; ++EI) {
9319    if (Extensions[EI].Extension != Extension)
9320      continue;
9321
9322    unsigned FB = getAvailableFeatures();
9323    if ((FB & Extensions[EI].ArchCheck) != Extensions[EI].ArchCheck) {
9324      Error(ExtLoc, "architectural extension '" + Extension + "' is not "
9325            "allowed for the current base architecture");
9326      return false;
9327    }
9328
9329    if (!Extensions[EI].Features)
9330      report_fatal_error("unsupported architectural extension: " + Extension);
9331
9332    if (EnableFeature)
9333      FB |= ComputeAvailableFeatures(Extensions[EI].Features);
9334    else
9335      FB &= ~ComputeAvailableFeatures(Extensions[EI].Features);
9336
9337    setAvailableFeatures(FB);
9338    return false;
9339  }
9340
9341  Error(ExtLoc, "unknown architectural extension: " + Extension);
9342  Parser.eatToEndOfStatement();
9343  return false;
9344}
9345
9346// Define this matcher function after the auto-generated include so we
9347// have the match class enum definitions.
9348unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand *AsmOp,
9349                                                  unsigned Kind) {
9350  ARMOperand *Op = static_cast<ARMOperand*>(AsmOp);
9351  // If the kind is a token for a literal immediate, check if our asm
9352  // operand matches. This is for InstAliases which have a fixed-value
9353  // immediate in the syntax.
9354  switch (Kind) {
9355  default: break;
9356  case MCK__35_0:
9357    if (Op->isImm())
9358      if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op->getImm()))
9359        if (CE->getValue() == 0)
9360          return Match_Success;
9361    break;
9362  case MCK_ARMSOImm:
9363    if (Op->isImm()) {
9364      const MCExpr *SOExpr = Op->getImm();
9365      int64_t Value;
9366      if (!SOExpr->EvaluateAsAbsolute(Value))
9367        return Match_Success;
9368      assert((Value >= INT32_MIN && Value <= INT32_MAX) &&
9369             "expression value must be representiable in 32 bits");
9370    }
9371    break;
9372  case MCK_GPRPair:
9373    if (Op->isReg() &&
9374        MRI->getRegClass(ARM::GPRRegClassID).contains(Op->getReg()))
9375      return Match_Success;
9376    break;
9377  }
9378  return Match_InvalidOperand;
9379}
9380