ARMAsmParser.cpp revision 580f9c85fd7a3c90884ed7ee7c2d613923a53bb3
1//===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "llvm/MC/MCTargetAsmParser.h"
11#include "MCTargetDesc/ARMAddressingModes.h"
12#include "MCTargetDesc/ARMBaseInfo.h"
13#include "MCTargetDesc/ARMMCExpr.h"
14#include "llvm/ADT/BitVector.h"
15#include "llvm/ADT/OwningPtr.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/StringSwitch.h"
19#include "llvm/ADT/Twine.h"
20#include "llvm/MC/MCAsmInfo.h"
21#include "llvm/MC/MCAssembler.h"
22#include "llvm/MC/MCContext.h"
23#include "llvm/MC/MCELFStreamer.h"
24#include "llvm/MC/MCExpr.h"
25#include "llvm/MC/MCInst.h"
26#include "llvm/MC/MCInstrDesc.h"
27#include "llvm/MC/MCParser/MCAsmLexer.h"
28#include "llvm/MC/MCParser/MCAsmParser.h"
29#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
30#include "llvm/MC/MCRegisterInfo.h"
31#include "llvm/MC/MCStreamer.h"
32#include "llvm/MC/MCSubtargetInfo.h"
33#include "llvm/Support/ELF.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/SourceMgr.h"
36#include "llvm/Support/TargetRegistry.h"
37#include "llvm/Support/raw_ostream.h"
38
39using namespace llvm;
40
41namespace {
42
43class ARMOperand;
44
45enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
46
47class ARMAsmParser : public MCTargetAsmParser {
48  MCSubtargetInfo &STI;
49  MCAsmParser &Parser;
50  const MCRegisterInfo *MRI;
51
52  // Map of register aliases registers via the .req directive.
53  StringMap<unsigned> RegisterReqs;
54
55  struct {
56    ARMCC::CondCodes Cond;    // Condition for IT block.
57    unsigned Mask:4;          // Condition mask for instructions.
58                              // Starting at first 1 (from lsb).
59                              //   '1'  condition as indicated in IT.
60                              //   '0'  inverse of condition (else).
61                              // Count of instructions in IT block is
62                              // 4 - trailingzeroes(mask)
63
64    bool FirstCond;           // Explicit flag for when we're parsing the
65                              // First instruction in the IT block. It's
66                              // implied in the mask, so needs special
67                              // handling.
68
69    unsigned CurPosition;     // Current position in parsing of IT
70                              // block. In range [0,3]. Initialized
71                              // according to count of instructions in block.
72                              // ~0U if no active IT block.
73  } ITState;
74  bool inITBlock() { return ITState.CurPosition != ~0U;}
75  void forwardITPosition() {
76    if (!inITBlock()) return;
77    // Move to the next instruction in the IT block, if there is one. If not,
78    // mark the block as done.
79    unsigned TZ = CountTrailingZeros_32(ITState.Mask);
80    if (++ITState.CurPosition == 5 - TZ)
81      ITState.CurPosition = ~0U; // Done with the IT block after this.
82  }
83
84
85  MCAsmParser &getParser() const { return Parser; }
86  MCAsmLexer &getLexer() const { return Parser.getLexer(); }
87
88  bool Warning(SMLoc L, const Twine &Msg,
89               ArrayRef<SMRange> Ranges = ArrayRef<SMRange>()) {
90    return Parser.Warning(L, Msg, Ranges);
91  }
92  bool Error(SMLoc L, const Twine &Msg,
93             ArrayRef<SMRange> Ranges = ArrayRef<SMRange>()) {
94    return Parser.Error(L, Msg, Ranges);
95  }
96
97  int tryParseRegister();
98  bool tryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &);
99  int tryParseShiftRegister(SmallVectorImpl<MCParsedAsmOperand*> &);
100  bool parseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &);
101  bool parseMemory(SmallVectorImpl<MCParsedAsmOperand*> &);
102  bool parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &, StringRef Mnemonic);
103  bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
104  bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
105                              unsigned &ShiftAmount);
106  bool parseDirectiveWord(unsigned Size, SMLoc L);
107  bool parseDirectiveThumb(SMLoc L);
108  bool parseDirectiveARM(SMLoc L);
109  bool parseDirectiveThumbFunc(SMLoc L);
110  bool parseDirectiveCode(SMLoc L);
111  bool parseDirectiveSyntax(SMLoc L);
112  bool parseDirectiveReq(StringRef Name, SMLoc L);
113  bool parseDirectiveUnreq(SMLoc L);
114  bool parseDirectiveArch(SMLoc L);
115  bool parseDirectiveEabiAttr(SMLoc L);
116
117  StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode,
118                          bool &CarrySetting, unsigned &ProcessorIMod,
119                          StringRef &ITMask);
120  void getMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
121                             bool &CanAcceptPredicationCode);
122
123  bool isThumb() const {
124    // FIXME: Can tablegen auto-generate this?
125    return (STI.getFeatureBits() & ARM::ModeThumb) != 0;
126  }
127  bool isThumbOne() const {
128    return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2) == 0;
129  }
130  bool isThumbTwo() const {
131    return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2);
132  }
133  bool hasV6Ops() const {
134    return STI.getFeatureBits() & ARM::HasV6Ops;
135  }
136  bool hasV7Ops() const {
137    return STI.getFeatureBits() & ARM::HasV7Ops;
138  }
139  void SwitchMode() {
140    unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
141    setAvailableFeatures(FB);
142  }
143  bool isMClass() const {
144    return STI.getFeatureBits() & ARM::FeatureMClass;
145  }
146
147  /// @name Auto-generated Match Functions
148  /// {
149
150#define GET_ASSEMBLER_HEADER
151#include "ARMGenAsmMatcher.inc"
152
153  /// }
154
155  OperandMatchResultTy parseITCondCode(SmallVectorImpl<MCParsedAsmOperand*>&);
156  OperandMatchResultTy parseCoprocNumOperand(
157    SmallVectorImpl<MCParsedAsmOperand*>&);
158  OperandMatchResultTy parseCoprocRegOperand(
159    SmallVectorImpl<MCParsedAsmOperand*>&);
160  OperandMatchResultTy parseCoprocOptionOperand(
161    SmallVectorImpl<MCParsedAsmOperand*>&);
162  OperandMatchResultTy parseMemBarrierOptOperand(
163    SmallVectorImpl<MCParsedAsmOperand*>&);
164  OperandMatchResultTy parseProcIFlagsOperand(
165    SmallVectorImpl<MCParsedAsmOperand*>&);
166  OperandMatchResultTy parseMSRMaskOperand(
167    SmallVectorImpl<MCParsedAsmOperand*>&);
168  OperandMatchResultTy parsePKHImm(SmallVectorImpl<MCParsedAsmOperand*> &O,
169                                   StringRef Op, int Low, int High);
170  OperandMatchResultTy parsePKHLSLImm(SmallVectorImpl<MCParsedAsmOperand*> &O) {
171    return parsePKHImm(O, "lsl", 0, 31);
172  }
173  OperandMatchResultTy parsePKHASRImm(SmallVectorImpl<MCParsedAsmOperand*> &O) {
174    return parsePKHImm(O, "asr", 1, 32);
175  }
176  OperandMatchResultTy parseSetEndImm(SmallVectorImpl<MCParsedAsmOperand*>&);
177  OperandMatchResultTy parseShifterImm(SmallVectorImpl<MCParsedAsmOperand*>&);
178  OperandMatchResultTy parseRotImm(SmallVectorImpl<MCParsedAsmOperand*>&);
179  OperandMatchResultTy parseBitfield(SmallVectorImpl<MCParsedAsmOperand*>&);
180  OperandMatchResultTy parsePostIdxReg(SmallVectorImpl<MCParsedAsmOperand*>&);
181  OperandMatchResultTy parseAM3Offset(SmallVectorImpl<MCParsedAsmOperand*>&);
182  OperandMatchResultTy parseFPImm(SmallVectorImpl<MCParsedAsmOperand*>&);
183  OperandMatchResultTy parseVectorList(SmallVectorImpl<MCParsedAsmOperand*>&);
184  OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index,
185                                       SMLoc &EndLoc);
186
187  // Asm Match Converter Methods
188  void cvtT2LdrdPre(MCInst &Inst, const SmallVectorImpl<MCParsedAsmOperand*> &);
189  void cvtT2StrdPre(MCInst &Inst, const SmallVectorImpl<MCParsedAsmOperand*> &);
190  void cvtLdWriteBackRegT2AddrModeImm8(MCInst &Inst,
191                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
192  void cvtStWriteBackRegT2AddrModeImm8(MCInst &Inst,
193                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
194  void cvtLdWriteBackRegAddrMode2(MCInst &Inst,
195                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
196  void cvtLdWriteBackRegAddrModeImm12(MCInst &Inst,
197                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
198  void cvtStWriteBackRegAddrModeImm12(MCInst &Inst,
199                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
200  void cvtStWriteBackRegAddrMode2(MCInst &Inst,
201                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
202  void cvtStWriteBackRegAddrMode3(MCInst &Inst,
203                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
204  void cvtLdExtTWriteBackImm(MCInst &Inst,
205                             const SmallVectorImpl<MCParsedAsmOperand*> &);
206  void cvtLdExtTWriteBackReg(MCInst &Inst,
207                             const SmallVectorImpl<MCParsedAsmOperand*> &);
208  void cvtStExtTWriteBackImm(MCInst &Inst,
209                             const SmallVectorImpl<MCParsedAsmOperand*> &);
210  void cvtStExtTWriteBackReg(MCInst &Inst,
211                             const SmallVectorImpl<MCParsedAsmOperand*> &);
212  void cvtLdrdPre(MCInst &Inst, const SmallVectorImpl<MCParsedAsmOperand*> &);
213  void cvtStrdPre(MCInst &Inst, const SmallVectorImpl<MCParsedAsmOperand*> &);
214  void cvtLdWriteBackRegAddrMode3(MCInst &Inst,
215                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
216  void cvtThumbMultiply(MCInst &Inst,
217                        const SmallVectorImpl<MCParsedAsmOperand*> &);
218  void cvtVLDwbFixed(MCInst &Inst,
219                     const SmallVectorImpl<MCParsedAsmOperand*> &);
220  void cvtVLDwbRegister(MCInst &Inst,
221                        const SmallVectorImpl<MCParsedAsmOperand*> &);
222  void cvtVSTwbFixed(MCInst &Inst,
223                     const SmallVectorImpl<MCParsedAsmOperand*> &);
224  void cvtVSTwbRegister(MCInst &Inst,
225                        const SmallVectorImpl<MCParsedAsmOperand*> &);
226  bool validateInstruction(MCInst &Inst,
227                           const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
228  bool processInstruction(MCInst &Inst,
229                          const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
230  bool shouldOmitCCOutOperand(StringRef Mnemonic,
231                              SmallVectorImpl<MCParsedAsmOperand*> &Operands);
232
233public:
234  enum ARMMatchResultTy {
235    Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
236    Match_RequiresNotITBlock,
237    Match_RequiresV6,
238    Match_RequiresThumb2,
239#define GET_OPERAND_DIAGNOSTIC_TYPES
240#include "ARMGenAsmMatcher.inc"
241
242  };
243
244  ARMAsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser)
245    : MCTargetAsmParser(), STI(_STI), Parser(_Parser) {
246    MCAsmParserExtension::Initialize(_Parser);
247
248    // Cache the MCRegisterInfo.
249    MRI = &getContext().getRegisterInfo();
250
251    // Initialize the set of available features.
252    setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
253
254    // Not in an ITBlock to start with.
255    ITState.CurPosition = ~0U;
256
257    // Set ELF header flags.
258    // FIXME: This should eventually end up somewhere else where more
259    // intelligent flag decisions can be made. For now we are just maintaining
260    // the statu/parseDirects quo for ARM and setting EF_ARM_EABI_VER5 as the default.
261    if (MCELFStreamer *MES = dyn_cast<MCELFStreamer>(&Parser.getStreamer()))
262      MES->getAssembler().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5);
263  }
264
265  // Implementation of the MCTargetAsmParser interface:
266  bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
267  bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
268                        SMLoc NameLoc,
269                        SmallVectorImpl<MCParsedAsmOperand*> &Operands);
270  bool ParseDirective(AsmToken DirectiveID);
271
272  unsigned validateTargetOperandClass(MCParsedAsmOperand *Op, unsigned Kind);
273  unsigned checkTargetMatchPredicate(MCInst &Inst);
274
275  bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
276                               SmallVectorImpl<MCParsedAsmOperand*> &Operands,
277                               MCStreamer &Out, unsigned &ErrorInfo,
278                               bool MatchingInlineAsm);
279};
280} // end anonymous namespace
281
282namespace {
283
284/// ARMOperand - Instances of this class represent a parsed ARM machine
285/// operand.
286class ARMOperand : public MCParsedAsmOperand {
287  enum KindTy {
288    k_CondCode,
289    k_CCOut,
290    k_ITCondMask,
291    k_CoprocNum,
292    k_CoprocReg,
293    k_CoprocOption,
294    k_Immediate,
295    k_MemBarrierOpt,
296    k_Memory,
297    k_PostIndexRegister,
298    k_MSRMask,
299    k_ProcIFlags,
300    k_VectorIndex,
301    k_Register,
302    k_RegisterList,
303    k_DPRRegisterList,
304    k_SPRRegisterList,
305    k_VectorList,
306    k_VectorListAllLanes,
307    k_VectorListIndexed,
308    k_ShiftedRegister,
309    k_ShiftedImmediate,
310    k_ShifterImmediate,
311    k_RotateImmediate,
312    k_BitfieldDescriptor,
313    k_Token
314  } Kind;
315
316  SMLoc StartLoc, EndLoc;
317  SmallVector<unsigned, 8> Registers;
318
319  struct CCOp {
320    ARMCC::CondCodes Val;
321  };
322
323  struct CopOp {
324    unsigned Val;
325  };
326
327  struct CoprocOptionOp {
328    unsigned Val;
329  };
330
331  struct ITMaskOp {
332    unsigned Mask:4;
333  };
334
335  struct MBOptOp {
336    ARM_MB::MemBOpt Val;
337  };
338
339  struct IFlagsOp {
340    ARM_PROC::IFlags Val;
341  };
342
343  struct MMaskOp {
344    unsigned Val;
345  };
346
347  struct TokOp {
348    const char *Data;
349    unsigned Length;
350  };
351
352  struct RegOp {
353    unsigned RegNum;
354  };
355
356  // A vector register list is a sequential list of 1 to 4 registers.
357  struct VectorListOp {
358    unsigned RegNum;
359    unsigned Count;
360    unsigned LaneIndex;
361    bool isDoubleSpaced;
362  };
363
364  struct VectorIndexOp {
365    unsigned Val;
366  };
367
368  struct ImmOp {
369    const MCExpr *Val;
370  };
371
372  /// Combined record for all forms of ARM address expressions.
373  struct MemoryOp {
374    unsigned BaseRegNum;
375    // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
376    // was specified.
377    const MCConstantExpr *OffsetImm;  // Offset immediate value
378    unsigned OffsetRegNum;    // Offset register num, when OffsetImm == NULL
379    ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
380    unsigned ShiftImm;        // shift for OffsetReg.
381    unsigned Alignment;       // 0 = no alignment specified
382    // n = alignment in bytes (2, 4, 8, 16, or 32)
383    unsigned isNegative : 1;  // Negated OffsetReg? (~'U' bit)
384  };
385
386  struct PostIdxRegOp {
387    unsigned RegNum;
388    bool isAdd;
389    ARM_AM::ShiftOpc ShiftTy;
390    unsigned ShiftImm;
391  };
392
393  struct ShifterImmOp {
394    bool isASR;
395    unsigned Imm;
396  };
397
398  struct RegShiftedRegOp {
399    ARM_AM::ShiftOpc ShiftTy;
400    unsigned SrcReg;
401    unsigned ShiftReg;
402    unsigned ShiftImm;
403  };
404
405  struct RegShiftedImmOp {
406    ARM_AM::ShiftOpc ShiftTy;
407    unsigned SrcReg;
408    unsigned ShiftImm;
409  };
410
411  struct RotImmOp {
412    unsigned Imm;
413  };
414
415  struct BitfieldOp {
416    unsigned LSB;
417    unsigned Width;
418  };
419
420  union {
421    struct CCOp CC;
422    struct CopOp Cop;
423    struct CoprocOptionOp CoprocOption;
424    struct MBOptOp MBOpt;
425    struct ITMaskOp ITMask;
426    struct IFlagsOp IFlags;
427    struct MMaskOp MMask;
428    struct TokOp Tok;
429    struct RegOp Reg;
430    struct VectorListOp VectorList;
431    struct VectorIndexOp VectorIndex;
432    struct ImmOp Imm;
433    struct MemoryOp Memory;
434    struct PostIdxRegOp PostIdxReg;
435    struct ShifterImmOp ShifterImm;
436    struct RegShiftedRegOp RegShiftedReg;
437    struct RegShiftedImmOp RegShiftedImm;
438    struct RotImmOp RotImm;
439    struct BitfieldOp Bitfield;
440  };
441
442  ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
443public:
444  ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() {
445    Kind = o.Kind;
446    StartLoc = o.StartLoc;
447    EndLoc = o.EndLoc;
448    switch (Kind) {
449    case k_CondCode:
450      CC = o.CC;
451      break;
452    case k_ITCondMask:
453      ITMask = o.ITMask;
454      break;
455    case k_Token:
456      Tok = o.Tok;
457      break;
458    case k_CCOut:
459    case k_Register:
460      Reg = o.Reg;
461      break;
462    case k_RegisterList:
463    case k_DPRRegisterList:
464    case k_SPRRegisterList:
465      Registers = o.Registers;
466      break;
467    case k_VectorList:
468    case k_VectorListAllLanes:
469    case k_VectorListIndexed:
470      VectorList = o.VectorList;
471      break;
472    case k_CoprocNum:
473    case k_CoprocReg:
474      Cop = o.Cop;
475      break;
476    case k_CoprocOption:
477      CoprocOption = o.CoprocOption;
478      break;
479    case k_Immediate:
480      Imm = o.Imm;
481      break;
482    case k_MemBarrierOpt:
483      MBOpt = o.MBOpt;
484      break;
485    case k_Memory:
486      Memory = o.Memory;
487      break;
488    case k_PostIndexRegister:
489      PostIdxReg = o.PostIdxReg;
490      break;
491    case k_MSRMask:
492      MMask = o.MMask;
493      break;
494    case k_ProcIFlags:
495      IFlags = o.IFlags;
496      break;
497    case k_ShifterImmediate:
498      ShifterImm = o.ShifterImm;
499      break;
500    case k_ShiftedRegister:
501      RegShiftedReg = o.RegShiftedReg;
502      break;
503    case k_ShiftedImmediate:
504      RegShiftedImm = o.RegShiftedImm;
505      break;
506    case k_RotateImmediate:
507      RotImm = o.RotImm;
508      break;
509    case k_BitfieldDescriptor:
510      Bitfield = o.Bitfield;
511      break;
512    case k_VectorIndex:
513      VectorIndex = o.VectorIndex;
514      break;
515    }
516  }
517
518  /// getStartLoc - Get the location of the first token of this operand.
519  SMLoc getStartLoc() const { return StartLoc; }
520  /// getEndLoc - Get the location of the last token of this operand.
521  SMLoc getEndLoc() const { return EndLoc; }
522  /// getLocRange - Get the range between the first and last token of this
523  /// operand.
524  SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
525
526  ARMCC::CondCodes getCondCode() const {
527    assert(Kind == k_CondCode && "Invalid access!");
528    return CC.Val;
529  }
530
531  unsigned getCoproc() const {
532    assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
533    return Cop.Val;
534  }
535
536  StringRef getToken() const {
537    assert(Kind == k_Token && "Invalid access!");
538    return StringRef(Tok.Data, Tok.Length);
539  }
540
541  unsigned getReg() const {
542    assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
543    return Reg.RegNum;
544  }
545
546  const SmallVectorImpl<unsigned> &getRegList() const {
547    assert((Kind == k_RegisterList || Kind == k_DPRRegisterList ||
548            Kind == k_SPRRegisterList) && "Invalid access!");
549    return Registers;
550  }
551
552  const MCExpr *getImm() const {
553    assert(isImm() && "Invalid access!");
554    return Imm.Val;
555  }
556
557  unsigned getVectorIndex() const {
558    assert(Kind == k_VectorIndex && "Invalid access!");
559    return VectorIndex.Val;
560  }
561
562  ARM_MB::MemBOpt getMemBarrierOpt() const {
563    assert(Kind == k_MemBarrierOpt && "Invalid access!");
564    return MBOpt.Val;
565  }
566
567  ARM_PROC::IFlags getProcIFlags() const {
568    assert(Kind == k_ProcIFlags && "Invalid access!");
569    return IFlags.Val;
570  }
571
572  unsigned getMSRMask() const {
573    assert(Kind == k_MSRMask && "Invalid access!");
574    return MMask.Val;
575  }
576
577  bool isCoprocNum() const { return Kind == k_CoprocNum; }
578  bool isCoprocReg() const { return Kind == k_CoprocReg; }
579  bool isCoprocOption() const { return Kind == k_CoprocOption; }
580  bool isCondCode() const { return Kind == k_CondCode; }
581  bool isCCOut() const { return Kind == k_CCOut; }
582  bool isITMask() const { return Kind == k_ITCondMask; }
583  bool isITCondCode() const { return Kind == k_CondCode; }
584  bool isImm() const { return Kind == k_Immediate; }
585  bool isFPImm() const {
586    if (!isImm()) return false;
587    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
588    if (!CE) return false;
589    int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
590    return Val != -1;
591  }
592  bool isFBits16() const {
593    if (!isImm()) return false;
594    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
595    if (!CE) return false;
596    int64_t Value = CE->getValue();
597    return Value >= 0 && Value <= 16;
598  }
599  bool isFBits32() const {
600    if (!isImm()) return false;
601    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
602    if (!CE) return false;
603    int64_t Value = CE->getValue();
604    return Value >= 1 && Value <= 32;
605  }
606  bool isImm8s4() const {
607    if (!isImm()) return false;
608    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
609    if (!CE) return false;
610    int64_t Value = CE->getValue();
611    return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020;
612  }
613  bool isImm0_1020s4() const {
614    if (!isImm()) return false;
615    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
616    if (!CE) return false;
617    int64_t Value = CE->getValue();
618    return ((Value & 3) == 0) && Value >= 0 && Value <= 1020;
619  }
620  bool isImm0_508s4() const {
621    if (!isImm()) return false;
622    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
623    if (!CE) return false;
624    int64_t Value = CE->getValue();
625    return ((Value & 3) == 0) && Value >= 0 && Value <= 508;
626  }
627  bool isImm0_508s4Neg() const {
628    if (!isImm()) return false;
629    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
630    if (!CE) return false;
631    int64_t Value = -CE->getValue();
632    // explicitly exclude zero. we want that to use the normal 0_508 version.
633    return ((Value & 3) == 0) && Value > 0 && Value <= 508;
634  }
635  bool isImm0_255() const {
636    if (!isImm()) return false;
637    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
638    if (!CE) return false;
639    int64_t Value = CE->getValue();
640    return Value >= 0 && Value < 256;
641  }
642  bool isImm0_4095() const {
643    if (!isImm()) return false;
644    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
645    if (!CE) return false;
646    int64_t Value = CE->getValue();
647    return Value >= 0 && Value < 4096;
648  }
649  bool isImm0_4095Neg() const {
650    if (!isImm()) return false;
651    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
652    if (!CE) return false;
653    int64_t Value = -CE->getValue();
654    return Value > 0 && Value < 4096;
655  }
656  bool isImm0_1() const {
657    if (!isImm()) return false;
658    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
659    if (!CE) return false;
660    int64_t Value = CE->getValue();
661    return Value >= 0 && Value < 2;
662  }
663  bool isImm0_3() const {
664    if (!isImm()) return false;
665    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
666    if (!CE) return false;
667    int64_t Value = CE->getValue();
668    return Value >= 0 && Value < 4;
669  }
670  bool isImm0_7() const {
671    if (!isImm()) return false;
672    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
673    if (!CE) return false;
674    int64_t Value = CE->getValue();
675    return Value >= 0 && Value < 8;
676  }
677  bool isImm0_15() const {
678    if (!isImm()) return false;
679    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
680    if (!CE) return false;
681    int64_t Value = CE->getValue();
682    return Value >= 0 && Value < 16;
683  }
684  bool isImm0_31() const {
685    if (!isImm()) return false;
686    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
687    if (!CE) return false;
688    int64_t Value = CE->getValue();
689    return Value >= 0 && Value < 32;
690  }
691  bool isImm0_63() const {
692    if (!isImm()) return false;
693    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
694    if (!CE) return false;
695    int64_t Value = CE->getValue();
696    return Value >= 0 && Value < 64;
697  }
698  bool isImm8() const {
699    if (!isImm()) return false;
700    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
701    if (!CE) return false;
702    int64_t Value = CE->getValue();
703    return Value == 8;
704  }
705  bool isImm16() const {
706    if (!isImm()) return false;
707    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
708    if (!CE) return false;
709    int64_t Value = CE->getValue();
710    return Value == 16;
711  }
712  bool isImm32() const {
713    if (!isImm()) return false;
714    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
715    if (!CE) return false;
716    int64_t Value = CE->getValue();
717    return Value == 32;
718  }
719  bool isShrImm8() const {
720    if (!isImm()) return false;
721    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
722    if (!CE) return false;
723    int64_t Value = CE->getValue();
724    return Value > 0 && Value <= 8;
725  }
726  bool isShrImm16() const {
727    if (!isImm()) return false;
728    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
729    if (!CE) return false;
730    int64_t Value = CE->getValue();
731    return Value > 0 && Value <= 16;
732  }
733  bool isShrImm32() const {
734    if (!isImm()) return false;
735    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
736    if (!CE) return false;
737    int64_t Value = CE->getValue();
738    return Value > 0 && Value <= 32;
739  }
740  bool isShrImm64() const {
741    if (!isImm()) return false;
742    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
743    if (!CE) return false;
744    int64_t Value = CE->getValue();
745    return Value > 0 && Value <= 64;
746  }
747  bool isImm1_7() const {
748    if (!isImm()) return false;
749    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
750    if (!CE) return false;
751    int64_t Value = CE->getValue();
752    return Value > 0 && Value < 8;
753  }
754  bool isImm1_15() const {
755    if (!isImm()) return false;
756    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
757    if (!CE) return false;
758    int64_t Value = CE->getValue();
759    return Value > 0 && Value < 16;
760  }
761  bool isImm1_31() const {
762    if (!isImm()) return false;
763    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
764    if (!CE) return false;
765    int64_t Value = CE->getValue();
766    return Value > 0 && Value < 32;
767  }
768  bool isImm1_16() const {
769    if (!isImm()) return false;
770    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
771    if (!CE) return false;
772    int64_t Value = CE->getValue();
773    return Value > 0 && Value < 17;
774  }
775  bool isImm1_32() const {
776    if (!isImm()) return false;
777    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
778    if (!CE) return false;
779    int64_t Value = CE->getValue();
780    return Value > 0 && Value < 33;
781  }
782  bool isImm0_32() const {
783    if (!isImm()) return false;
784    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
785    if (!CE) return false;
786    int64_t Value = CE->getValue();
787    return Value >= 0 && Value < 33;
788  }
789  bool isImm0_65535() const {
790    if (!isImm()) return false;
791    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
792    if (!CE) return false;
793    int64_t Value = CE->getValue();
794    return Value >= 0 && Value < 65536;
795  }
796  bool isImm0_65535Expr() const {
797    if (!isImm()) return false;
798    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
799    // If it's not a constant expression, it'll generate a fixup and be
800    // handled later.
801    if (!CE) return true;
802    int64_t Value = CE->getValue();
803    return Value >= 0 && Value < 65536;
804  }
805  bool isImm24bit() const {
806    if (!isImm()) return false;
807    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
808    if (!CE) return false;
809    int64_t Value = CE->getValue();
810    return Value >= 0 && Value <= 0xffffff;
811  }
812  bool isImmThumbSR() const {
813    if (!isImm()) return false;
814    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
815    if (!CE) return false;
816    int64_t Value = CE->getValue();
817    return Value > 0 && Value < 33;
818  }
819  bool isPKHLSLImm() const {
820    if (!isImm()) return false;
821    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
822    if (!CE) return false;
823    int64_t Value = CE->getValue();
824    return Value >= 0 && Value < 32;
825  }
826  bool isPKHASRImm() const {
827    if (!isImm()) return false;
828    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
829    if (!CE) return false;
830    int64_t Value = CE->getValue();
831    return Value > 0 && Value <= 32;
832  }
833  bool isAdrLabel() const {
834    // If we have an immediate that's not a constant, treat it as a label
835    // reference needing a fixup. If it is a constant, but it can't fit
836    // into shift immediate encoding, we reject it.
837    if (isImm() && !isa<MCConstantExpr>(getImm())) return true;
838    else return (isARMSOImm() || isARMSOImmNeg());
839  }
840  bool isARMSOImm() const {
841    if (!isImm()) return false;
842    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
843    if (!CE) return false;
844    int64_t Value = CE->getValue();
845    return ARM_AM::getSOImmVal(Value) != -1;
846  }
847  bool isARMSOImmNot() const {
848    if (!isImm()) return false;
849    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
850    if (!CE) return false;
851    int64_t Value = CE->getValue();
852    return ARM_AM::getSOImmVal(~Value) != -1;
853  }
854  bool isARMSOImmNeg() const {
855    if (!isImm()) return false;
856    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
857    if (!CE) return false;
858    int64_t Value = CE->getValue();
859    // Only use this when not representable as a plain so_imm.
860    return ARM_AM::getSOImmVal(Value) == -1 &&
861      ARM_AM::getSOImmVal(-Value) != -1;
862  }
863  bool isT2SOImm() const {
864    if (!isImm()) return false;
865    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
866    if (!CE) return false;
867    int64_t Value = CE->getValue();
868    return ARM_AM::getT2SOImmVal(Value) != -1;
869  }
870  bool isT2SOImmNot() const {
871    if (!isImm()) return false;
872    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
873    if (!CE) return false;
874    int64_t Value = CE->getValue();
875    return ARM_AM::getT2SOImmVal(~Value) != -1;
876  }
877  bool isT2SOImmNeg() const {
878    if (!isImm()) return false;
879    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
880    if (!CE) return false;
881    int64_t Value = CE->getValue();
882    // Only use this when not representable as a plain so_imm.
883    return ARM_AM::getT2SOImmVal(Value) == -1 &&
884      ARM_AM::getT2SOImmVal(-Value) != -1;
885  }
886  bool isSetEndImm() const {
887    if (!isImm()) return false;
888    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
889    if (!CE) return false;
890    int64_t Value = CE->getValue();
891    return Value == 1 || Value == 0;
892  }
893  bool isReg() const { return Kind == k_Register; }
894  bool isRegList() const { return Kind == k_RegisterList; }
895  bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
896  bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
897  bool isToken() const { return Kind == k_Token; }
898  bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
899  bool isMem() const { return Kind == k_Memory; }
900  bool isShifterImm() const { return Kind == k_ShifterImmediate; }
901  bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; }
902  bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; }
903  bool isRotImm() const { return Kind == k_RotateImmediate; }
904  bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
905  bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; }
906  bool isPostIdxReg() const {
907    return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift;
908  }
909  bool isMemNoOffset(bool alignOK = false) const {
910    if (!isMem())
911      return false;
912    // No offset of any kind.
913    return Memory.OffsetRegNum == 0 && Memory.OffsetImm == 0 &&
914     (alignOK || Memory.Alignment == 0);
915  }
916  bool isMemPCRelImm12() const {
917    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
918      return false;
919    // Base register must be PC.
920    if (Memory.BaseRegNum != ARM::PC)
921      return false;
922    // Immediate offset in range [-4095, 4095].
923    if (!Memory.OffsetImm) return true;
924    int64_t Val = Memory.OffsetImm->getValue();
925    return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
926  }
927  bool isAlignedMemory() const {
928    return isMemNoOffset(true);
929  }
930  bool isAddrMode2() const {
931    if (!isMem() || Memory.Alignment != 0) return false;
932    // Check for register offset.
933    if (Memory.OffsetRegNum) return true;
934    // Immediate offset in range [-4095, 4095].
935    if (!Memory.OffsetImm) return true;
936    int64_t Val = Memory.OffsetImm->getValue();
937    return Val > -4096 && Val < 4096;
938  }
939  bool isAM2OffsetImm() const {
940    if (!isImm()) return false;
941    // Immediate offset in range [-4095, 4095].
942    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
943    if (!CE) return false;
944    int64_t Val = CE->getValue();
945    return Val > -4096 && Val < 4096;
946  }
947  bool isAddrMode3() const {
948    // If we have an immediate that's not a constant, treat it as a label
949    // reference needing a fixup. If it is a constant, it's something else
950    // and we reject it.
951    if (isImm() && !isa<MCConstantExpr>(getImm()))
952      return true;
953    if (!isMem() || Memory.Alignment != 0) return false;
954    // No shifts are legal for AM3.
955    if (Memory.ShiftType != ARM_AM::no_shift) return false;
956    // Check for register offset.
957    if (Memory.OffsetRegNum) return true;
958    // Immediate offset in range [-255, 255].
959    if (!Memory.OffsetImm) return true;
960    int64_t Val = Memory.OffsetImm->getValue();
961    // The #-0 offset is encoded as INT32_MIN, and we have to check
962    // for this too.
963    return (Val > -256 && Val < 256) || Val == INT32_MIN;
964  }
965  bool isAM3Offset() const {
966    if (Kind != k_Immediate && Kind != k_PostIndexRegister)
967      return false;
968    if (Kind == k_PostIndexRegister)
969      return PostIdxReg.ShiftTy == ARM_AM::no_shift;
970    // Immediate offset in range [-255, 255].
971    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
972    if (!CE) return false;
973    int64_t Val = CE->getValue();
974    // Special case, #-0 is INT32_MIN.
975    return (Val > -256 && Val < 256) || Val == INT32_MIN;
976  }
977  bool isAddrMode5() const {
978    // If we have an immediate that's not a constant, treat it as a label
979    // reference needing a fixup. If it is a constant, it's something else
980    // and we reject it.
981    if (isImm() && !isa<MCConstantExpr>(getImm()))
982      return true;
983    if (!isMem() || Memory.Alignment != 0) return false;
984    // Check for register offset.
985    if (Memory.OffsetRegNum) return false;
986    // Immediate offset in range [-1020, 1020] and a multiple of 4.
987    if (!Memory.OffsetImm) return true;
988    int64_t Val = Memory.OffsetImm->getValue();
989    return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
990      Val == INT32_MIN;
991  }
992  bool isMemTBB() const {
993    if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
994        Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
995      return false;
996    return true;
997  }
998  bool isMemTBH() const {
999    if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1000        Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
1001        Memory.Alignment != 0 )
1002      return false;
1003    return true;
1004  }
1005  bool isMemRegOffset() const {
1006    if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0)
1007      return false;
1008    return true;
1009  }
1010  bool isT2MemRegOffset() const {
1011    if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1012        Memory.Alignment != 0)
1013      return false;
1014    // Only lsl #{0, 1, 2, 3} allowed.
1015    if (Memory.ShiftType == ARM_AM::no_shift)
1016      return true;
1017    if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
1018      return false;
1019    return true;
1020  }
1021  bool isMemThumbRR() const {
1022    // Thumb reg+reg addressing is simple. Just two registers, a base and
1023    // an offset. No shifts, negations or any other complicating factors.
1024    if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1025        Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1026      return false;
1027    return isARMLowRegister(Memory.BaseRegNum) &&
1028      (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
1029  }
1030  bool isMemThumbRIs4() const {
1031    if (!isMem() || Memory.OffsetRegNum != 0 ||
1032        !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1033      return false;
1034    // Immediate offset, multiple of 4 in range [0, 124].
1035    if (!Memory.OffsetImm) return true;
1036    int64_t Val = Memory.OffsetImm->getValue();
1037    return Val >= 0 && Val <= 124 && (Val % 4) == 0;
1038  }
1039  bool isMemThumbRIs2() const {
1040    if (!isMem() || Memory.OffsetRegNum != 0 ||
1041        !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1042      return false;
1043    // Immediate offset, multiple of 4 in range [0, 62].
1044    if (!Memory.OffsetImm) return true;
1045    int64_t Val = Memory.OffsetImm->getValue();
1046    return Val >= 0 && Val <= 62 && (Val % 2) == 0;
1047  }
1048  bool isMemThumbRIs1() const {
1049    if (!isMem() || Memory.OffsetRegNum != 0 ||
1050        !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1051      return false;
1052    // Immediate offset in range [0, 31].
1053    if (!Memory.OffsetImm) return true;
1054    int64_t Val = Memory.OffsetImm->getValue();
1055    return Val >= 0 && Val <= 31;
1056  }
1057  bool isMemThumbSPI() const {
1058    if (!isMem() || Memory.OffsetRegNum != 0 ||
1059        Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
1060      return false;
1061    // Immediate offset, multiple of 4 in range [0, 1020].
1062    if (!Memory.OffsetImm) return true;
1063    int64_t Val = Memory.OffsetImm->getValue();
1064    return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
1065  }
1066  bool isMemImm8s4Offset() const {
1067    // If we have an immediate that's not a constant, treat it as a label
1068    // reference needing a fixup. If it is a constant, it's something else
1069    // and we reject it.
1070    if (isImm() && !isa<MCConstantExpr>(getImm()))
1071      return true;
1072    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1073      return false;
1074    // Immediate offset a multiple of 4 in range [-1020, 1020].
1075    if (!Memory.OffsetImm) return true;
1076    int64_t Val = Memory.OffsetImm->getValue();
1077    // Special case, #-0 is INT32_MIN.
1078    return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN;
1079  }
1080  bool isMemImm0_1020s4Offset() const {
1081    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1082      return false;
1083    // Immediate offset a multiple of 4 in range [0, 1020].
1084    if (!Memory.OffsetImm) return true;
1085    int64_t Val = Memory.OffsetImm->getValue();
1086    return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
1087  }
1088  bool isMemImm8Offset() const {
1089    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1090      return false;
1091    // Base reg of PC isn't allowed for these encodings.
1092    if (Memory.BaseRegNum == ARM::PC) return false;
1093    // Immediate offset in range [-255, 255].
1094    if (!Memory.OffsetImm) return true;
1095    int64_t Val = Memory.OffsetImm->getValue();
1096    return (Val == INT32_MIN) || (Val > -256 && Val < 256);
1097  }
1098  bool isMemPosImm8Offset() const {
1099    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1100      return false;
1101    // Immediate offset in range [0, 255].
1102    if (!Memory.OffsetImm) return true;
1103    int64_t Val = Memory.OffsetImm->getValue();
1104    return Val >= 0 && Val < 256;
1105  }
1106  bool isMemNegImm8Offset() const {
1107    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1108      return false;
1109    // Base reg of PC isn't allowed for these encodings.
1110    if (Memory.BaseRegNum == ARM::PC) return false;
1111    // Immediate offset in range [-255, -1].
1112    if (!Memory.OffsetImm) return false;
1113    int64_t Val = Memory.OffsetImm->getValue();
1114    return (Val == INT32_MIN) || (Val > -256 && Val < 0);
1115  }
1116  bool isMemUImm12Offset() const {
1117    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1118      return false;
1119    // Immediate offset in range [0, 4095].
1120    if (!Memory.OffsetImm) return true;
1121    int64_t Val = Memory.OffsetImm->getValue();
1122    return (Val >= 0 && Val < 4096);
1123  }
1124  bool isMemImm12Offset() const {
1125    // If we have an immediate that's not a constant, treat it as a label
1126    // reference needing a fixup. If it is a constant, it's something else
1127    // and we reject it.
1128    if (isImm() && !isa<MCConstantExpr>(getImm()))
1129      return true;
1130
1131    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1132      return false;
1133    // Immediate offset in range [-4095, 4095].
1134    if (!Memory.OffsetImm) return true;
1135    int64_t Val = Memory.OffsetImm->getValue();
1136    return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
1137  }
1138  bool isPostIdxImm8() const {
1139    if (!isImm()) return false;
1140    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1141    if (!CE) return false;
1142    int64_t Val = CE->getValue();
1143    return (Val > -256 && Val < 256) || (Val == INT32_MIN);
1144  }
1145  bool isPostIdxImm8s4() const {
1146    if (!isImm()) return false;
1147    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1148    if (!CE) return false;
1149    int64_t Val = CE->getValue();
1150    return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
1151      (Val == INT32_MIN);
1152  }
1153
1154  bool isMSRMask() const { return Kind == k_MSRMask; }
1155  bool isProcIFlags() const { return Kind == k_ProcIFlags; }
1156
1157  // NEON operands.
1158  bool isSingleSpacedVectorList() const {
1159    return Kind == k_VectorList && !VectorList.isDoubleSpaced;
1160  }
1161  bool isDoubleSpacedVectorList() const {
1162    return Kind == k_VectorList && VectorList.isDoubleSpaced;
1163  }
1164  bool isVecListOneD() const {
1165    if (!isSingleSpacedVectorList()) return false;
1166    return VectorList.Count == 1;
1167  }
1168
1169  bool isVecListDPair() const {
1170    if (!isSingleSpacedVectorList()) return false;
1171    return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1172              .contains(VectorList.RegNum));
1173  }
1174
1175  bool isVecListThreeD() const {
1176    if (!isSingleSpacedVectorList()) return false;
1177    return VectorList.Count == 3;
1178  }
1179
1180  bool isVecListFourD() const {
1181    if (!isSingleSpacedVectorList()) return false;
1182    return VectorList.Count == 4;
1183  }
1184
1185  bool isVecListDPairSpaced() const {
1186    if (isSingleSpacedVectorList()) return false;
1187    return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
1188              .contains(VectorList.RegNum));
1189  }
1190
1191  bool isVecListThreeQ() const {
1192    if (!isDoubleSpacedVectorList()) return false;
1193    return VectorList.Count == 3;
1194  }
1195
1196  bool isVecListFourQ() const {
1197    if (!isDoubleSpacedVectorList()) return false;
1198    return VectorList.Count == 4;
1199  }
1200
1201  bool isSingleSpacedVectorAllLanes() const {
1202    return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
1203  }
1204  bool isDoubleSpacedVectorAllLanes() const {
1205    return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
1206  }
1207  bool isVecListOneDAllLanes() const {
1208    if (!isSingleSpacedVectorAllLanes()) return false;
1209    return VectorList.Count == 1;
1210  }
1211
1212  bool isVecListDPairAllLanes() const {
1213    if (!isSingleSpacedVectorAllLanes()) return false;
1214    return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1215              .contains(VectorList.RegNum));
1216  }
1217
1218  bool isVecListDPairSpacedAllLanes() const {
1219    if (!isDoubleSpacedVectorAllLanes()) return false;
1220    return VectorList.Count == 2;
1221  }
1222
1223  bool isVecListThreeDAllLanes() const {
1224    if (!isSingleSpacedVectorAllLanes()) return false;
1225    return VectorList.Count == 3;
1226  }
1227
1228  bool isVecListThreeQAllLanes() const {
1229    if (!isDoubleSpacedVectorAllLanes()) return false;
1230    return VectorList.Count == 3;
1231  }
1232
1233  bool isVecListFourDAllLanes() const {
1234    if (!isSingleSpacedVectorAllLanes()) return false;
1235    return VectorList.Count == 4;
1236  }
1237
1238  bool isVecListFourQAllLanes() const {
1239    if (!isDoubleSpacedVectorAllLanes()) return false;
1240    return VectorList.Count == 4;
1241  }
1242
1243  bool isSingleSpacedVectorIndexed() const {
1244    return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
1245  }
1246  bool isDoubleSpacedVectorIndexed() const {
1247    return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
1248  }
1249  bool isVecListOneDByteIndexed() const {
1250    if (!isSingleSpacedVectorIndexed()) return false;
1251    return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
1252  }
1253
1254  bool isVecListOneDHWordIndexed() const {
1255    if (!isSingleSpacedVectorIndexed()) return false;
1256    return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
1257  }
1258
1259  bool isVecListOneDWordIndexed() const {
1260    if (!isSingleSpacedVectorIndexed()) return false;
1261    return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
1262  }
1263
1264  bool isVecListTwoDByteIndexed() const {
1265    if (!isSingleSpacedVectorIndexed()) return false;
1266    return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
1267  }
1268
1269  bool isVecListTwoDHWordIndexed() const {
1270    if (!isSingleSpacedVectorIndexed()) return false;
1271    return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
1272  }
1273
1274  bool isVecListTwoQWordIndexed() const {
1275    if (!isDoubleSpacedVectorIndexed()) return false;
1276    return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
1277  }
1278
1279  bool isVecListTwoQHWordIndexed() const {
1280    if (!isDoubleSpacedVectorIndexed()) return false;
1281    return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
1282  }
1283
1284  bool isVecListTwoDWordIndexed() const {
1285    if (!isSingleSpacedVectorIndexed()) return false;
1286    return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
1287  }
1288
1289  bool isVecListThreeDByteIndexed() const {
1290    if (!isSingleSpacedVectorIndexed()) return false;
1291    return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
1292  }
1293
1294  bool isVecListThreeDHWordIndexed() const {
1295    if (!isSingleSpacedVectorIndexed()) return false;
1296    return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
1297  }
1298
1299  bool isVecListThreeQWordIndexed() const {
1300    if (!isDoubleSpacedVectorIndexed()) return false;
1301    return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
1302  }
1303
1304  bool isVecListThreeQHWordIndexed() const {
1305    if (!isDoubleSpacedVectorIndexed()) return false;
1306    return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
1307  }
1308
1309  bool isVecListThreeDWordIndexed() const {
1310    if (!isSingleSpacedVectorIndexed()) return false;
1311    return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
1312  }
1313
1314  bool isVecListFourDByteIndexed() const {
1315    if (!isSingleSpacedVectorIndexed()) return false;
1316    return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
1317  }
1318
1319  bool isVecListFourDHWordIndexed() const {
1320    if (!isSingleSpacedVectorIndexed()) return false;
1321    return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
1322  }
1323
1324  bool isVecListFourQWordIndexed() const {
1325    if (!isDoubleSpacedVectorIndexed()) return false;
1326    return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
1327  }
1328
1329  bool isVecListFourQHWordIndexed() const {
1330    if (!isDoubleSpacedVectorIndexed()) return false;
1331    return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
1332  }
1333
1334  bool isVecListFourDWordIndexed() const {
1335    if (!isSingleSpacedVectorIndexed()) return false;
1336    return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
1337  }
1338
1339  bool isVectorIndex8() const {
1340    if (Kind != k_VectorIndex) return false;
1341    return VectorIndex.Val < 8;
1342  }
1343  bool isVectorIndex16() const {
1344    if (Kind != k_VectorIndex) return false;
1345    return VectorIndex.Val < 4;
1346  }
1347  bool isVectorIndex32() const {
1348    if (Kind != k_VectorIndex) return false;
1349    return VectorIndex.Val < 2;
1350  }
1351
1352  bool isNEONi8splat() const {
1353    if (!isImm()) return false;
1354    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1355    // Must be a constant.
1356    if (!CE) return false;
1357    int64_t Value = CE->getValue();
1358    // i8 value splatted across 8 bytes. The immediate is just the 8 byte
1359    // value.
1360    return Value >= 0 && Value < 256;
1361  }
1362
1363  bool isNEONi16splat() const {
1364    if (!isImm()) return false;
1365    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1366    // Must be a constant.
1367    if (!CE) return false;
1368    int64_t Value = CE->getValue();
1369    // i16 value in the range [0,255] or [0x0100, 0xff00]
1370    return (Value >= 0 && Value < 256) || (Value >= 0x0100 && Value <= 0xff00);
1371  }
1372
1373  bool isNEONi32splat() const {
1374    if (!isImm()) return false;
1375    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1376    // Must be a constant.
1377    if (!CE) return false;
1378    int64_t Value = CE->getValue();
1379    // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
1380    return (Value >= 0 && Value < 256) ||
1381      (Value >= 0x0100 && Value <= 0xff00) ||
1382      (Value >= 0x010000 && Value <= 0xff0000) ||
1383      (Value >= 0x01000000 && Value <= 0xff000000);
1384  }
1385
1386  bool isNEONi32vmov() const {
1387    if (!isImm()) return false;
1388    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1389    // Must be a constant.
1390    if (!CE) return false;
1391    int64_t Value = CE->getValue();
1392    // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
1393    // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
1394    return (Value >= 0 && Value < 256) ||
1395      (Value >= 0x0100 && Value <= 0xff00) ||
1396      (Value >= 0x010000 && Value <= 0xff0000) ||
1397      (Value >= 0x01000000 && Value <= 0xff000000) ||
1398      (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
1399      (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
1400  }
1401  bool isNEONi32vmovNeg() const {
1402    if (!isImm()) return false;
1403    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1404    // Must be a constant.
1405    if (!CE) return false;
1406    int64_t Value = ~CE->getValue();
1407    // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
1408    // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
1409    return (Value >= 0 && Value < 256) ||
1410      (Value >= 0x0100 && Value <= 0xff00) ||
1411      (Value >= 0x010000 && Value <= 0xff0000) ||
1412      (Value >= 0x01000000 && Value <= 0xff000000) ||
1413      (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
1414      (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
1415  }
1416
1417  bool isNEONi64splat() const {
1418    if (!isImm()) return false;
1419    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1420    // Must be a constant.
1421    if (!CE) return false;
1422    uint64_t Value = CE->getValue();
1423    // i64 value with each byte being either 0 or 0xff.
1424    for (unsigned i = 0; i < 8; ++i)
1425      if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
1426    return true;
1427  }
1428
1429  void addExpr(MCInst &Inst, const MCExpr *Expr) const {
1430    // Add as immediates when possible.  Null MCExpr = 0.
1431    if (Expr == 0)
1432      Inst.addOperand(MCOperand::CreateImm(0));
1433    else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
1434      Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
1435    else
1436      Inst.addOperand(MCOperand::CreateExpr(Expr));
1437  }
1438
1439  void addCondCodeOperands(MCInst &Inst, unsigned N) const {
1440    assert(N == 2 && "Invalid number of operands!");
1441    Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
1442    unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
1443    Inst.addOperand(MCOperand::CreateReg(RegNum));
1444  }
1445
1446  void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
1447    assert(N == 1 && "Invalid number of operands!");
1448    Inst.addOperand(MCOperand::CreateImm(getCoproc()));
1449  }
1450
1451  void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
1452    assert(N == 1 && "Invalid number of operands!");
1453    Inst.addOperand(MCOperand::CreateImm(getCoproc()));
1454  }
1455
1456  void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
1457    assert(N == 1 && "Invalid number of operands!");
1458    Inst.addOperand(MCOperand::CreateImm(CoprocOption.Val));
1459  }
1460
1461  void addITMaskOperands(MCInst &Inst, unsigned N) const {
1462    assert(N == 1 && "Invalid number of operands!");
1463    Inst.addOperand(MCOperand::CreateImm(ITMask.Mask));
1464  }
1465
1466  void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
1467    assert(N == 1 && "Invalid number of operands!");
1468    Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
1469  }
1470
1471  void addCCOutOperands(MCInst &Inst, unsigned N) const {
1472    assert(N == 1 && "Invalid number of operands!");
1473    Inst.addOperand(MCOperand::CreateReg(getReg()));
1474  }
1475
1476  void addRegOperands(MCInst &Inst, unsigned N) const {
1477    assert(N == 1 && "Invalid number of operands!");
1478    Inst.addOperand(MCOperand::CreateReg(getReg()));
1479  }
1480
1481  void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
1482    assert(N == 3 && "Invalid number of operands!");
1483    assert(isRegShiftedReg() &&
1484           "addRegShiftedRegOperands() on non RegShiftedReg!");
1485    Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.SrcReg));
1486    Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.ShiftReg));
1487    Inst.addOperand(MCOperand::CreateImm(
1488      ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
1489  }
1490
1491  void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
1492    assert(N == 2 && "Invalid number of operands!");
1493    assert(isRegShiftedImm() &&
1494           "addRegShiftedImmOperands() on non RegShiftedImm!");
1495    Inst.addOperand(MCOperand::CreateReg(RegShiftedImm.SrcReg));
1496    // Shift of #32 is encoded as 0 where permitted
1497    unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
1498    Inst.addOperand(MCOperand::CreateImm(
1499      ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
1500  }
1501
1502  void addShifterImmOperands(MCInst &Inst, unsigned N) const {
1503    assert(N == 1 && "Invalid number of operands!");
1504    Inst.addOperand(MCOperand::CreateImm((ShifterImm.isASR << 5) |
1505                                         ShifterImm.Imm));
1506  }
1507
1508  void addRegListOperands(MCInst &Inst, unsigned N) const {
1509    assert(N == 1 && "Invalid number of operands!");
1510    const SmallVectorImpl<unsigned> &RegList = getRegList();
1511    for (SmallVectorImpl<unsigned>::const_iterator
1512           I = RegList.begin(), E = RegList.end(); I != E; ++I)
1513      Inst.addOperand(MCOperand::CreateReg(*I));
1514  }
1515
1516  void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
1517    addRegListOperands(Inst, N);
1518  }
1519
1520  void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
1521    addRegListOperands(Inst, N);
1522  }
1523
1524  void addRotImmOperands(MCInst &Inst, unsigned N) const {
1525    assert(N == 1 && "Invalid number of operands!");
1526    // Encoded as val>>3. The printer handles display as 8, 16, 24.
1527    Inst.addOperand(MCOperand::CreateImm(RotImm.Imm >> 3));
1528  }
1529
1530  void addBitfieldOperands(MCInst &Inst, unsigned N) const {
1531    assert(N == 1 && "Invalid number of operands!");
1532    // Munge the lsb/width into a bitfield mask.
1533    unsigned lsb = Bitfield.LSB;
1534    unsigned width = Bitfield.Width;
1535    // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
1536    uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
1537                      (32 - (lsb + width)));
1538    Inst.addOperand(MCOperand::CreateImm(Mask));
1539  }
1540
1541  void addImmOperands(MCInst &Inst, unsigned N) const {
1542    assert(N == 1 && "Invalid number of operands!");
1543    addExpr(Inst, getImm());
1544  }
1545
1546  void addFBits16Operands(MCInst &Inst, unsigned N) const {
1547    assert(N == 1 && "Invalid number of operands!");
1548    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1549    Inst.addOperand(MCOperand::CreateImm(16 - CE->getValue()));
1550  }
1551
1552  void addFBits32Operands(MCInst &Inst, unsigned N) const {
1553    assert(N == 1 && "Invalid number of operands!");
1554    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1555    Inst.addOperand(MCOperand::CreateImm(32 - CE->getValue()));
1556  }
1557
1558  void addFPImmOperands(MCInst &Inst, unsigned N) const {
1559    assert(N == 1 && "Invalid number of operands!");
1560    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1561    int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
1562    Inst.addOperand(MCOperand::CreateImm(Val));
1563  }
1564
1565  void addImm8s4Operands(MCInst &Inst, unsigned N) const {
1566    assert(N == 1 && "Invalid number of operands!");
1567    // FIXME: We really want to scale the value here, but the LDRD/STRD
1568    // instruction don't encode operands that way yet.
1569    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1570    Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
1571  }
1572
1573  void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
1574    assert(N == 1 && "Invalid number of operands!");
1575    // The immediate is scaled by four in the encoding and is stored
1576    // in the MCInst as such. Lop off the low two bits here.
1577    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1578    Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
1579  }
1580
1581  void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
1582    assert(N == 1 && "Invalid number of operands!");
1583    // The immediate is scaled by four in the encoding and is stored
1584    // in the MCInst as such. Lop off the low two bits here.
1585    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1586    Inst.addOperand(MCOperand::CreateImm(-(CE->getValue() / 4)));
1587  }
1588
1589  void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
1590    assert(N == 1 && "Invalid number of operands!");
1591    // The immediate is scaled by four in the encoding and is stored
1592    // in the MCInst as such. Lop off the low two bits here.
1593    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1594    Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
1595  }
1596
1597  void addImm1_16Operands(MCInst &Inst, unsigned N) const {
1598    assert(N == 1 && "Invalid number of operands!");
1599    // The constant encodes as the immediate-1, and we store in the instruction
1600    // the bits as encoded, so subtract off one here.
1601    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1602    Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
1603  }
1604
1605  void addImm1_32Operands(MCInst &Inst, unsigned N) const {
1606    assert(N == 1 && "Invalid number of operands!");
1607    // The constant encodes as the immediate-1, and we store in the instruction
1608    // the bits as encoded, so subtract off one here.
1609    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1610    Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
1611  }
1612
1613  void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
1614    assert(N == 1 && "Invalid number of operands!");
1615    // The constant encodes as the immediate, except for 32, which encodes as
1616    // zero.
1617    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1618    unsigned Imm = CE->getValue();
1619    Inst.addOperand(MCOperand::CreateImm((Imm == 32 ? 0 : Imm)));
1620  }
1621
1622  void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
1623    assert(N == 1 && "Invalid number of operands!");
1624    // An ASR value of 32 encodes as 0, so that's how we want to add it to
1625    // the instruction as well.
1626    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1627    int Val = CE->getValue();
1628    Inst.addOperand(MCOperand::CreateImm(Val == 32 ? 0 : Val));
1629  }
1630
1631  void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
1632    assert(N == 1 && "Invalid number of operands!");
1633    // The operand is actually a t2_so_imm, but we have its bitwise
1634    // negation in the assembly source, so twiddle it here.
1635    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1636    Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
1637  }
1638
1639  void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
1640    assert(N == 1 && "Invalid number of operands!");
1641    // The operand is actually a t2_so_imm, but we have its
1642    // negation in the assembly source, so twiddle it here.
1643    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1644    Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
1645  }
1646
1647  void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
1648    assert(N == 1 && "Invalid number of operands!");
1649    // The operand is actually an imm0_4095, but we have its
1650    // negation in the assembly source, so twiddle it here.
1651    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1652    Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
1653  }
1654
1655  void addARMSOImmNotOperands(MCInst &Inst, unsigned N) const {
1656    assert(N == 1 && "Invalid number of operands!");
1657    // The operand is actually a so_imm, but we have its bitwise
1658    // negation in the assembly source, so twiddle it here.
1659    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1660    Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
1661  }
1662
1663  void addARMSOImmNegOperands(MCInst &Inst, unsigned N) const {
1664    assert(N == 1 && "Invalid number of operands!");
1665    // The operand is actually a so_imm, but we have its
1666    // negation in the assembly source, so twiddle it here.
1667    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1668    Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
1669  }
1670
1671  void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
1672    assert(N == 1 && "Invalid number of operands!");
1673    Inst.addOperand(MCOperand::CreateImm(unsigned(getMemBarrierOpt())));
1674  }
1675
1676  void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
1677    assert(N == 1 && "Invalid number of operands!");
1678    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1679  }
1680
1681  void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
1682    assert(N == 1 && "Invalid number of operands!");
1683    int32_t Imm = Memory.OffsetImm->getValue();
1684    // FIXME: Handle #-0
1685    if (Imm == INT32_MIN) Imm = 0;
1686    Inst.addOperand(MCOperand::CreateImm(Imm));
1687  }
1688
1689  void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
1690    assert(N == 1 && "Invalid number of operands!");
1691    assert(isImm() && "Not an immediate!");
1692
1693    // If we have an immediate that's not a constant, treat it as a label
1694    // reference needing a fixup.
1695    if (!isa<MCConstantExpr>(getImm())) {
1696      Inst.addOperand(MCOperand::CreateExpr(getImm()));
1697      return;
1698    }
1699
1700    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1701    int Val = CE->getValue();
1702    Inst.addOperand(MCOperand::CreateImm(Val));
1703  }
1704
1705  void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
1706    assert(N == 2 && "Invalid number of operands!");
1707    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1708    Inst.addOperand(MCOperand::CreateImm(Memory.Alignment));
1709  }
1710
1711  void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
1712    assert(N == 3 && "Invalid number of operands!");
1713    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1714    if (!Memory.OffsetRegNum) {
1715      ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1716      // Special case for #-0
1717      if (Val == INT32_MIN) Val = 0;
1718      if (Val < 0) Val = -Val;
1719      Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
1720    } else {
1721      // For register offset, we encode the shift type and negation flag
1722      // here.
1723      Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
1724                              Memory.ShiftImm, Memory.ShiftType);
1725    }
1726    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1727    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1728    Inst.addOperand(MCOperand::CreateImm(Val));
1729  }
1730
1731  void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
1732    assert(N == 2 && "Invalid number of operands!");
1733    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1734    assert(CE && "non-constant AM2OffsetImm operand!");
1735    int32_t Val = CE->getValue();
1736    ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1737    // Special case for #-0
1738    if (Val == INT32_MIN) Val = 0;
1739    if (Val < 0) Val = -Val;
1740    Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
1741    Inst.addOperand(MCOperand::CreateReg(0));
1742    Inst.addOperand(MCOperand::CreateImm(Val));
1743  }
1744
1745  void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
1746    assert(N == 3 && "Invalid number of operands!");
1747    // If we have an immediate that's not a constant, treat it as a label
1748    // reference needing a fixup. If it is a constant, it's something else
1749    // and we reject it.
1750    if (isImm()) {
1751      Inst.addOperand(MCOperand::CreateExpr(getImm()));
1752      Inst.addOperand(MCOperand::CreateReg(0));
1753      Inst.addOperand(MCOperand::CreateImm(0));
1754      return;
1755    }
1756
1757    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1758    if (!Memory.OffsetRegNum) {
1759      ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1760      // Special case for #-0
1761      if (Val == INT32_MIN) Val = 0;
1762      if (Val < 0) Val = -Val;
1763      Val = ARM_AM::getAM3Opc(AddSub, Val);
1764    } else {
1765      // For register offset, we encode the shift type and negation flag
1766      // here.
1767      Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
1768    }
1769    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1770    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1771    Inst.addOperand(MCOperand::CreateImm(Val));
1772  }
1773
1774  void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
1775    assert(N == 2 && "Invalid number of operands!");
1776    if (Kind == k_PostIndexRegister) {
1777      int32_t Val =
1778        ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
1779      Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
1780      Inst.addOperand(MCOperand::CreateImm(Val));
1781      return;
1782    }
1783
1784    // Constant offset.
1785    const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
1786    int32_t Val = CE->getValue();
1787    ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1788    // Special case for #-0
1789    if (Val == INT32_MIN) Val = 0;
1790    if (Val < 0) Val = -Val;
1791    Val = ARM_AM::getAM3Opc(AddSub, Val);
1792    Inst.addOperand(MCOperand::CreateReg(0));
1793    Inst.addOperand(MCOperand::CreateImm(Val));
1794  }
1795
1796  void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
1797    assert(N == 2 && "Invalid number of operands!");
1798    // If we have an immediate that's not a constant, treat it as a label
1799    // reference needing a fixup. If it is a constant, it's something else
1800    // and we reject it.
1801    if (isImm()) {
1802      Inst.addOperand(MCOperand::CreateExpr(getImm()));
1803      Inst.addOperand(MCOperand::CreateImm(0));
1804      return;
1805    }
1806
1807    // The lower two bits are always zero and as such are not encoded.
1808    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
1809    ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1810    // Special case for #-0
1811    if (Val == INT32_MIN) Val = 0;
1812    if (Val < 0) Val = -Val;
1813    Val = ARM_AM::getAM5Opc(AddSub, Val);
1814    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1815    Inst.addOperand(MCOperand::CreateImm(Val));
1816  }
1817
1818  void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
1819    assert(N == 2 && "Invalid number of operands!");
1820    // If we have an immediate that's not a constant, treat it as a label
1821    // reference needing a fixup. If it is a constant, it's something else
1822    // and we reject it.
1823    if (isImm()) {
1824      Inst.addOperand(MCOperand::CreateExpr(getImm()));
1825      Inst.addOperand(MCOperand::CreateImm(0));
1826      return;
1827    }
1828
1829    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1830    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1831    Inst.addOperand(MCOperand::CreateImm(Val));
1832  }
1833
1834  void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
1835    assert(N == 2 && "Invalid number of operands!");
1836    // The lower two bits are always zero and as such are not encoded.
1837    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
1838    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1839    Inst.addOperand(MCOperand::CreateImm(Val));
1840  }
1841
1842  void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const {
1843    assert(N == 2 && "Invalid number of operands!");
1844    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1845    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1846    Inst.addOperand(MCOperand::CreateImm(Val));
1847  }
1848
1849  void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const {
1850    addMemImm8OffsetOperands(Inst, N);
1851  }
1852
1853  void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const {
1854    addMemImm8OffsetOperands(Inst, N);
1855  }
1856
1857  void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
1858    assert(N == 2 && "Invalid number of operands!");
1859    // If this is an immediate, it's a label reference.
1860    if (isImm()) {
1861      addExpr(Inst, getImm());
1862      Inst.addOperand(MCOperand::CreateImm(0));
1863      return;
1864    }
1865
1866    // Otherwise, it's a normal memory reg+offset.
1867    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1868    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1869    Inst.addOperand(MCOperand::CreateImm(Val));
1870  }
1871
1872  void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
1873    assert(N == 2 && "Invalid number of operands!");
1874    // If this is an immediate, it's a label reference.
1875    if (isImm()) {
1876      addExpr(Inst, getImm());
1877      Inst.addOperand(MCOperand::CreateImm(0));
1878      return;
1879    }
1880
1881    // Otherwise, it's a normal memory reg+offset.
1882    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1883    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1884    Inst.addOperand(MCOperand::CreateImm(Val));
1885  }
1886
1887  void addMemTBBOperands(MCInst &Inst, unsigned N) const {
1888    assert(N == 2 && "Invalid number of operands!");
1889    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1890    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1891  }
1892
1893  void addMemTBHOperands(MCInst &Inst, unsigned N) const {
1894    assert(N == 2 && "Invalid number of operands!");
1895    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1896    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1897  }
1898
1899  void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
1900    assert(N == 3 && "Invalid number of operands!");
1901    unsigned Val =
1902      ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
1903                        Memory.ShiftImm, Memory.ShiftType);
1904    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1905    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1906    Inst.addOperand(MCOperand::CreateImm(Val));
1907  }
1908
1909  void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
1910    assert(N == 3 && "Invalid number of operands!");
1911    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1912    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1913    Inst.addOperand(MCOperand::CreateImm(Memory.ShiftImm));
1914  }
1915
1916  void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
1917    assert(N == 2 && "Invalid number of operands!");
1918    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1919    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1920  }
1921
1922  void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
1923    assert(N == 2 && "Invalid number of operands!");
1924    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
1925    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1926    Inst.addOperand(MCOperand::CreateImm(Val));
1927  }
1928
1929  void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
1930    assert(N == 2 && "Invalid number of operands!");
1931    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0;
1932    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1933    Inst.addOperand(MCOperand::CreateImm(Val));
1934  }
1935
1936  void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
1937    assert(N == 2 && "Invalid number of operands!");
1938    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0;
1939    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1940    Inst.addOperand(MCOperand::CreateImm(Val));
1941  }
1942
1943  void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
1944    assert(N == 2 && "Invalid number of operands!");
1945    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
1946    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1947    Inst.addOperand(MCOperand::CreateImm(Val));
1948  }
1949
1950  void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
1951    assert(N == 1 && "Invalid number of operands!");
1952    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1953    assert(CE && "non-constant post-idx-imm8 operand!");
1954    int Imm = CE->getValue();
1955    bool isAdd = Imm >= 0;
1956    if (Imm == INT32_MIN) Imm = 0;
1957    Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
1958    Inst.addOperand(MCOperand::CreateImm(Imm));
1959  }
1960
1961  void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
1962    assert(N == 1 && "Invalid number of operands!");
1963    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1964    assert(CE && "non-constant post-idx-imm8s4 operand!");
1965    int Imm = CE->getValue();
1966    bool isAdd = Imm >= 0;
1967    if (Imm == INT32_MIN) Imm = 0;
1968    // Immediate is scaled by 4.
1969    Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
1970    Inst.addOperand(MCOperand::CreateImm(Imm));
1971  }
1972
1973  void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
1974    assert(N == 2 && "Invalid number of operands!");
1975    Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
1976    Inst.addOperand(MCOperand::CreateImm(PostIdxReg.isAdd));
1977  }
1978
1979  void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
1980    assert(N == 2 && "Invalid number of operands!");
1981    Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
1982    // The sign, shift type, and shift amount are encoded in a single operand
1983    // using the AM2 encoding helpers.
1984    ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
1985    unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
1986                                     PostIdxReg.ShiftTy);
1987    Inst.addOperand(MCOperand::CreateImm(Imm));
1988  }
1989
1990  void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
1991    assert(N == 1 && "Invalid number of operands!");
1992    Inst.addOperand(MCOperand::CreateImm(unsigned(getMSRMask())));
1993  }
1994
1995  void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
1996    assert(N == 1 && "Invalid number of operands!");
1997    Inst.addOperand(MCOperand::CreateImm(unsigned(getProcIFlags())));
1998  }
1999
2000  void addVecListOperands(MCInst &Inst, unsigned N) const {
2001    assert(N == 1 && "Invalid number of operands!");
2002    Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
2003  }
2004
2005  void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
2006    assert(N == 2 && "Invalid number of operands!");
2007    Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
2008    Inst.addOperand(MCOperand::CreateImm(VectorList.LaneIndex));
2009  }
2010
2011  void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
2012    assert(N == 1 && "Invalid number of operands!");
2013    Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
2014  }
2015
2016  void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
2017    assert(N == 1 && "Invalid number of operands!");
2018    Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
2019  }
2020
2021  void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
2022    assert(N == 1 && "Invalid number of operands!");
2023    Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
2024  }
2025
2026  void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
2027    assert(N == 1 && "Invalid number of operands!");
2028    // The immediate encodes the type of constant as well as the value.
2029    // Mask in that this is an i8 splat.
2030    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2031    Inst.addOperand(MCOperand::CreateImm(CE->getValue() | 0xe00));
2032  }
2033
2034  void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
2035    assert(N == 1 && "Invalid number of operands!");
2036    // The immediate encodes the type of constant as well as the value.
2037    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2038    unsigned Value = CE->getValue();
2039    if (Value >= 256)
2040      Value = (Value >> 8) | 0xa00;
2041    else
2042      Value |= 0x800;
2043    Inst.addOperand(MCOperand::CreateImm(Value));
2044  }
2045
2046  void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
2047    assert(N == 1 && "Invalid number of operands!");
2048    // The immediate encodes the type of constant as well as the value.
2049    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2050    unsigned Value = CE->getValue();
2051    if (Value >= 256 && Value <= 0xff00)
2052      Value = (Value >> 8) | 0x200;
2053    else if (Value > 0xffff && Value <= 0xff0000)
2054      Value = (Value >> 16) | 0x400;
2055    else if (Value > 0xffffff)
2056      Value = (Value >> 24) | 0x600;
2057    Inst.addOperand(MCOperand::CreateImm(Value));
2058  }
2059
2060  void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
2061    assert(N == 1 && "Invalid number of operands!");
2062    // The immediate encodes the type of constant as well as the value.
2063    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2064    unsigned Value = CE->getValue();
2065    if (Value >= 256 && Value <= 0xffff)
2066      Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
2067    else if (Value > 0xffff && Value <= 0xffffff)
2068      Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
2069    else if (Value > 0xffffff)
2070      Value = (Value >> 24) | 0x600;
2071    Inst.addOperand(MCOperand::CreateImm(Value));
2072  }
2073
2074  void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
2075    assert(N == 1 && "Invalid number of operands!");
2076    // The immediate encodes the type of constant as well as the value.
2077    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2078    unsigned Value = ~CE->getValue();
2079    if (Value >= 256 && Value <= 0xffff)
2080      Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
2081    else if (Value > 0xffff && Value <= 0xffffff)
2082      Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
2083    else if (Value > 0xffffff)
2084      Value = (Value >> 24) | 0x600;
2085    Inst.addOperand(MCOperand::CreateImm(Value));
2086  }
2087
2088  void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
2089    assert(N == 1 && "Invalid number of operands!");
2090    // The immediate encodes the type of constant as well as the value.
2091    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2092    uint64_t Value = CE->getValue();
2093    unsigned Imm = 0;
2094    for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
2095      Imm |= (Value & 1) << i;
2096    }
2097    Inst.addOperand(MCOperand::CreateImm(Imm | 0x1e00));
2098  }
2099
2100  virtual void print(raw_ostream &OS) const;
2101
2102  static ARMOperand *CreateITMask(unsigned Mask, SMLoc S) {
2103    ARMOperand *Op = new ARMOperand(k_ITCondMask);
2104    Op->ITMask.Mask = Mask;
2105    Op->StartLoc = S;
2106    Op->EndLoc = S;
2107    return Op;
2108  }
2109
2110  static ARMOperand *CreateCondCode(ARMCC::CondCodes CC, SMLoc S) {
2111    ARMOperand *Op = new ARMOperand(k_CondCode);
2112    Op->CC.Val = CC;
2113    Op->StartLoc = S;
2114    Op->EndLoc = S;
2115    return Op;
2116  }
2117
2118  static ARMOperand *CreateCoprocNum(unsigned CopVal, SMLoc S) {
2119    ARMOperand *Op = new ARMOperand(k_CoprocNum);
2120    Op->Cop.Val = CopVal;
2121    Op->StartLoc = S;
2122    Op->EndLoc = S;
2123    return Op;
2124  }
2125
2126  static ARMOperand *CreateCoprocReg(unsigned CopVal, SMLoc S) {
2127    ARMOperand *Op = new ARMOperand(k_CoprocReg);
2128    Op->Cop.Val = CopVal;
2129    Op->StartLoc = S;
2130    Op->EndLoc = S;
2131    return Op;
2132  }
2133
2134  static ARMOperand *CreateCoprocOption(unsigned Val, SMLoc S, SMLoc E) {
2135    ARMOperand *Op = new ARMOperand(k_CoprocOption);
2136    Op->Cop.Val = Val;
2137    Op->StartLoc = S;
2138    Op->EndLoc = E;
2139    return Op;
2140  }
2141
2142  static ARMOperand *CreateCCOut(unsigned RegNum, SMLoc S) {
2143    ARMOperand *Op = new ARMOperand(k_CCOut);
2144    Op->Reg.RegNum = RegNum;
2145    Op->StartLoc = S;
2146    Op->EndLoc = S;
2147    return Op;
2148  }
2149
2150  static ARMOperand *CreateToken(StringRef Str, SMLoc S) {
2151    ARMOperand *Op = new ARMOperand(k_Token);
2152    Op->Tok.Data = Str.data();
2153    Op->Tok.Length = Str.size();
2154    Op->StartLoc = S;
2155    Op->EndLoc = S;
2156    return Op;
2157  }
2158
2159  static ARMOperand *CreateReg(unsigned RegNum, SMLoc S, SMLoc E) {
2160    ARMOperand *Op = new ARMOperand(k_Register);
2161    Op->Reg.RegNum = RegNum;
2162    Op->StartLoc = S;
2163    Op->EndLoc = E;
2164    return Op;
2165  }
2166
2167  static ARMOperand *CreateShiftedRegister(ARM_AM::ShiftOpc ShTy,
2168                                           unsigned SrcReg,
2169                                           unsigned ShiftReg,
2170                                           unsigned ShiftImm,
2171                                           SMLoc S, SMLoc E) {
2172    ARMOperand *Op = new ARMOperand(k_ShiftedRegister);
2173    Op->RegShiftedReg.ShiftTy = ShTy;
2174    Op->RegShiftedReg.SrcReg = SrcReg;
2175    Op->RegShiftedReg.ShiftReg = ShiftReg;
2176    Op->RegShiftedReg.ShiftImm = ShiftImm;
2177    Op->StartLoc = S;
2178    Op->EndLoc = E;
2179    return Op;
2180  }
2181
2182  static ARMOperand *CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy,
2183                                            unsigned SrcReg,
2184                                            unsigned ShiftImm,
2185                                            SMLoc S, SMLoc E) {
2186    ARMOperand *Op = new ARMOperand(k_ShiftedImmediate);
2187    Op->RegShiftedImm.ShiftTy = ShTy;
2188    Op->RegShiftedImm.SrcReg = SrcReg;
2189    Op->RegShiftedImm.ShiftImm = ShiftImm;
2190    Op->StartLoc = S;
2191    Op->EndLoc = E;
2192    return Op;
2193  }
2194
2195  static ARMOperand *CreateShifterImm(bool isASR, unsigned Imm,
2196                                   SMLoc S, SMLoc E) {
2197    ARMOperand *Op = new ARMOperand(k_ShifterImmediate);
2198    Op->ShifterImm.isASR = isASR;
2199    Op->ShifterImm.Imm = Imm;
2200    Op->StartLoc = S;
2201    Op->EndLoc = E;
2202    return Op;
2203  }
2204
2205  static ARMOperand *CreateRotImm(unsigned Imm, SMLoc S, SMLoc E) {
2206    ARMOperand *Op = new ARMOperand(k_RotateImmediate);
2207    Op->RotImm.Imm = Imm;
2208    Op->StartLoc = S;
2209    Op->EndLoc = E;
2210    return Op;
2211  }
2212
2213  static ARMOperand *CreateBitfield(unsigned LSB, unsigned Width,
2214                                    SMLoc S, SMLoc E) {
2215    ARMOperand *Op = new ARMOperand(k_BitfieldDescriptor);
2216    Op->Bitfield.LSB = LSB;
2217    Op->Bitfield.Width = Width;
2218    Op->StartLoc = S;
2219    Op->EndLoc = E;
2220    return Op;
2221  }
2222
2223  static ARMOperand *
2224  CreateRegList(const SmallVectorImpl<std::pair<unsigned, SMLoc> > &Regs,
2225                SMLoc StartLoc, SMLoc EndLoc) {
2226    KindTy Kind = k_RegisterList;
2227
2228    if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().first))
2229      Kind = k_DPRRegisterList;
2230    else if (ARMMCRegisterClasses[ARM::SPRRegClassID].
2231             contains(Regs.front().first))
2232      Kind = k_SPRRegisterList;
2233
2234    ARMOperand *Op = new ARMOperand(Kind);
2235    for (SmallVectorImpl<std::pair<unsigned, SMLoc> >::const_iterator
2236           I = Regs.begin(), E = Regs.end(); I != E; ++I)
2237      Op->Registers.push_back(I->first);
2238    array_pod_sort(Op->Registers.begin(), Op->Registers.end());
2239    Op->StartLoc = StartLoc;
2240    Op->EndLoc = EndLoc;
2241    return Op;
2242  }
2243
2244  static ARMOperand *CreateVectorList(unsigned RegNum, unsigned Count,
2245                                      bool isDoubleSpaced, SMLoc S, SMLoc E) {
2246    ARMOperand *Op = new ARMOperand(k_VectorList);
2247    Op->VectorList.RegNum = RegNum;
2248    Op->VectorList.Count = Count;
2249    Op->VectorList.isDoubleSpaced = isDoubleSpaced;
2250    Op->StartLoc = S;
2251    Op->EndLoc = E;
2252    return Op;
2253  }
2254
2255  static ARMOperand *CreateVectorListAllLanes(unsigned RegNum, unsigned Count,
2256                                              bool isDoubleSpaced,
2257                                              SMLoc S, SMLoc E) {
2258    ARMOperand *Op = new ARMOperand(k_VectorListAllLanes);
2259    Op->VectorList.RegNum = RegNum;
2260    Op->VectorList.Count = Count;
2261    Op->VectorList.isDoubleSpaced = isDoubleSpaced;
2262    Op->StartLoc = S;
2263    Op->EndLoc = E;
2264    return Op;
2265  }
2266
2267  static ARMOperand *CreateVectorListIndexed(unsigned RegNum, unsigned Count,
2268                                             unsigned Index,
2269                                             bool isDoubleSpaced,
2270                                             SMLoc S, SMLoc E) {
2271    ARMOperand *Op = new ARMOperand(k_VectorListIndexed);
2272    Op->VectorList.RegNum = RegNum;
2273    Op->VectorList.Count = Count;
2274    Op->VectorList.LaneIndex = Index;
2275    Op->VectorList.isDoubleSpaced = isDoubleSpaced;
2276    Op->StartLoc = S;
2277    Op->EndLoc = E;
2278    return Op;
2279  }
2280
2281  static ARMOperand *CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E,
2282                                       MCContext &Ctx) {
2283    ARMOperand *Op = new ARMOperand(k_VectorIndex);
2284    Op->VectorIndex.Val = Idx;
2285    Op->StartLoc = S;
2286    Op->EndLoc = E;
2287    return Op;
2288  }
2289
2290  static ARMOperand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) {
2291    ARMOperand *Op = new ARMOperand(k_Immediate);
2292    Op->Imm.Val = Val;
2293    Op->StartLoc = S;
2294    Op->EndLoc = E;
2295    return Op;
2296  }
2297
2298  static ARMOperand *CreateMem(unsigned BaseRegNum,
2299                               const MCConstantExpr *OffsetImm,
2300                               unsigned OffsetRegNum,
2301                               ARM_AM::ShiftOpc ShiftType,
2302                               unsigned ShiftImm,
2303                               unsigned Alignment,
2304                               bool isNegative,
2305                               SMLoc S, SMLoc E) {
2306    ARMOperand *Op = new ARMOperand(k_Memory);
2307    Op->Memory.BaseRegNum = BaseRegNum;
2308    Op->Memory.OffsetImm = OffsetImm;
2309    Op->Memory.OffsetRegNum = OffsetRegNum;
2310    Op->Memory.ShiftType = ShiftType;
2311    Op->Memory.ShiftImm = ShiftImm;
2312    Op->Memory.Alignment = Alignment;
2313    Op->Memory.isNegative = isNegative;
2314    Op->StartLoc = S;
2315    Op->EndLoc = E;
2316    return Op;
2317  }
2318
2319  static ARMOperand *CreatePostIdxReg(unsigned RegNum, bool isAdd,
2320                                      ARM_AM::ShiftOpc ShiftTy,
2321                                      unsigned ShiftImm,
2322                                      SMLoc S, SMLoc E) {
2323    ARMOperand *Op = new ARMOperand(k_PostIndexRegister);
2324    Op->PostIdxReg.RegNum = RegNum;
2325    Op->PostIdxReg.isAdd = isAdd;
2326    Op->PostIdxReg.ShiftTy = ShiftTy;
2327    Op->PostIdxReg.ShiftImm = ShiftImm;
2328    Op->StartLoc = S;
2329    Op->EndLoc = E;
2330    return Op;
2331  }
2332
2333  static ARMOperand *CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, SMLoc S) {
2334    ARMOperand *Op = new ARMOperand(k_MemBarrierOpt);
2335    Op->MBOpt.Val = Opt;
2336    Op->StartLoc = S;
2337    Op->EndLoc = S;
2338    return Op;
2339  }
2340
2341  static ARMOperand *CreateProcIFlags(ARM_PROC::IFlags IFlags, SMLoc S) {
2342    ARMOperand *Op = new ARMOperand(k_ProcIFlags);
2343    Op->IFlags.Val = IFlags;
2344    Op->StartLoc = S;
2345    Op->EndLoc = S;
2346    return Op;
2347  }
2348
2349  static ARMOperand *CreateMSRMask(unsigned MMask, SMLoc S) {
2350    ARMOperand *Op = new ARMOperand(k_MSRMask);
2351    Op->MMask.Val = MMask;
2352    Op->StartLoc = S;
2353    Op->EndLoc = S;
2354    return Op;
2355  }
2356};
2357
2358} // end anonymous namespace.
2359
2360void ARMOperand::print(raw_ostream &OS) const {
2361  switch (Kind) {
2362  case k_CondCode:
2363    OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
2364    break;
2365  case k_CCOut:
2366    OS << "<ccout " << getReg() << ">";
2367    break;
2368  case k_ITCondMask: {
2369    static const char *const MaskStr[] = {
2370      "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)",
2371      "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)"
2372    };
2373    assert((ITMask.Mask & 0xf) == ITMask.Mask);
2374    OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
2375    break;
2376  }
2377  case k_CoprocNum:
2378    OS << "<coprocessor number: " << getCoproc() << ">";
2379    break;
2380  case k_CoprocReg:
2381    OS << "<coprocessor register: " << getCoproc() << ">";
2382    break;
2383  case k_CoprocOption:
2384    OS << "<coprocessor option: " << CoprocOption.Val << ">";
2385    break;
2386  case k_MSRMask:
2387    OS << "<mask: " << getMSRMask() << ">";
2388    break;
2389  case k_Immediate:
2390    getImm()->print(OS);
2391    break;
2392  case k_MemBarrierOpt:
2393    OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt()) << ">";
2394    break;
2395  case k_Memory:
2396    OS << "<memory "
2397       << " base:" << Memory.BaseRegNum;
2398    OS << ">";
2399    break;
2400  case k_PostIndexRegister:
2401    OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
2402       << PostIdxReg.RegNum;
2403    if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
2404      OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
2405         << PostIdxReg.ShiftImm;
2406    OS << ">";
2407    break;
2408  case k_ProcIFlags: {
2409    OS << "<ARM_PROC::";
2410    unsigned IFlags = getProcIFlags();
2411    for (int i=2; i >= 0; --i)
2412      if (IFlags & (1 << i))
2413        OS << ARM_PROC::IFlagsToString(1 << i);
2414    OS << ">";
2415    break;
2416  }
2417  case k_Register:
2418    OS << "<register " << getReg() << ">";
2419    break;
2420  case k_ShifterImmediate:
2421    OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
2422       << " #" << ShifterImm.Imm << ">";
2423    break;
2424  case k_ShiftedRegister:
2425    OS << "<so_reg_reg "
2426       << RegShiftedReg.SrcReg << " "
2427       << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy)
2428       << " " << RegShiftedReg.ShiftReg << ">";
2429    break;
2430  case k_ShiftedImmediate:
2431    OS << "<so_reg_imm "
2432       << RegShiftedImm.SrcReg << " "
2433       << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy)
2434       << " #" << RegShiftedImm.ShiftImm << ">";
2435    break;
2436  case k_RotateImmediate:
2437    OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
2438    break;
2439  case k_BitfieldDescriptor:
2440    OS << "<bitfield " << "lsb: " << Bitfield.LSB
2441       << ", width: " << Bitfield.Width << ">";
2442    break;
2443  case k_RegisterList:
2444  case k_DPRRegisterList:
2445  case k_SPRRegisterList: {
2446    OS << "<register_list ";
2447
2448    const SmallVectorImpl<unsigned> &RegList = getRegList();
2449    for (SmallVectorImpl<unsigned>::const_iterator
2450           I = RegList.begin(), E = RegList.end(); I != E; ) {
2451      OS << *I;
2452      if (++I < E) OS << ", ";
2453    }
2454
2455    OS << ">";
2456    break;
2457  }
2458  case k_VectorList:
2459    OS << "<vector_list " << VectorList.Count << " * "
2460       << VectorList.RegNum << ">";
2461    break;
2462  case k_VectorListAllLanes:
2463    OS << "<vector_list(all lanes) " << VectorList.Count << " * "
2464       << VectorList.RegNum << ">";
2465    break;
2466  case k_VectorListIndexed:
2467    OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
2468       << VectorList.Count << " * " << VectorList.RegNum << ">";
2469    break;
2470  case k_Token:
2471    OS << "'" << getToken() << "'";
2472    break;
2473  case k_VectorIndex:
2474    OS << "<vectorindex " << getVectorIndex() << ">";
2475    break;
2476  }
2477}
2478
2479/// @name Auto-generated Match Functions
2480/// {
2481
2482static unsigned MatchRegisterName(StringRef Name);
2483
2484/// }
2485
2486bool ARMAsmParser::ParseRegister(unsigned &RegNo,
2487                                 SMLoc &StartLoc, SMLoc &EndLoc) {
2488  StartLoc = Parser.getTok().getLoc();
2489  EndLoc = Parser.getTok().getEndLoc();
2490  RegNo = tryParseRegister();
2491
2492  return (RegNo == (unsigned)-1);
2493}
2494
2495/// Try to parse a register name.  The token must be an Identifier when called,
2496/// and if it is a register name the token is eaten and the register number is
2497/// returned.  Otherwise return -1.
2498///
2499int ARMAsmParser::tryParseRegister() {
2500  const AsmToken &Tok = Parser.getTok();
2501  if (Tok.isNot(AsmToken::Identifier)) return -1;
2502
2503  std::string lowerCase = Tok.getString().lower();
2504  unsigned RegNum = MatchRegisterName(lowerCase);
2505  if (!RegNum) {
2506    RegNum = StringSwitch<unsigned>(lowerCase)
2507      .Case("r13", ARM::SP)
2508      .Case("r14", ARM::LR)
2509      .Case("r15", ARM::PC)
2510      .Case("ip", ARM::R12)
2511      // Additional register name aliases for 'gas' compatibility.
2512      .Case("a1", ARM::R0)
2513      .Case("a2", ARM::R1)
2514      .Case("a3", ARM::R2)
2515      .Case("a4", ARM::R3)
2516      .Case("v1", ARM::R4)
2517      .Case("v2", ARM::R5)
2518      .Case("v3", ARM::R6)
2519      .Case("v4", ARM::R7)
2520      .Case("v5", ARM::R8)
2521      .Case("v6", ARM::R9)
2522      .Case("v7", ARM::R10)
2523      .Case("v8", ARM::R11)
2524      .Case("sb", ARM::R9)
2525      .Case("sl", ARM::R10)
2526      .Case("fp", ARM::R11)
2527      .Default(0);
2528  }
2529  if (!RegNum) {
2530    // Check for aliases registered via .req. Canonicalize to lower case.
2531    // That's more consistent since register names are case insensitive, and
2532    // it's how the original entry was passed in from MC/MCParser/AsmParser.
2533    StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
2534    // If no match, return failure.
2535    if (Entry == RegisterReqs.end())
2536      return -1;
2537    Parser.Lex(); // Eat identifier token.
2538    return Entry->getValue();
2539  }
2540
2541  Parser.Lex(); // Eat identifier token.
2542
2543  return RegNum;
2544}
2545
2546// Try to parse a shifter  (e.g., "lsl <amt>"). On success, return 0.
2547// If a recoverable error occurs, return 1. If an irrecoverable error
2548// occurs, return -1. An irrecoverable error is one where tokens have been
2549// consumed in the process of trying to parse the shifter (i.e., when it is
2550// indeed a shifter operand, but malformed).
2551int ARMAsmParser::tryParseShiftRegister(
2552                               SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2553  SMLoc S = Parser.getTok().getLoc();
2554  const AsmToken &Tok = Parser.getTok();
2555  assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
2556
2557  std::string lowerCase = Tok.getString().lower();
2558  ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
2559      .Case("asl", ARM_AM::lsl)
2560      .Case("lsl", ARM_AM::lsl)
2561      .Case("lsr", ARM_AM::lsr)
2562      .Case("asr", ARM_AM::asr)
2563      .Case("ror", ARM_AM::ror)
2564      .Case("rrx", ARM_AM::rrx)
2565      .Default(ARM_AM::no_shift);
2566
2567  if (ShiftTy == ARM_AM::no_shift)
2568    return 1;
2569
2570  Parser.Lex(); // Eat the operator.
2571
2572  // The source register for the shift has already been added to the
2573  // operand list, so we need to pop it off and combine it into the shifted
2574  // register operand instead.
2575  OwningPtr<ARMOperand> PrevOp((ARMOperand*)Operands.pop_back_val());
2576  if (!PrevOp->isReg())
2577    return Error(PrevOp->getStartLoc(), "shift must be of a register");
2578  int SrcReg = PrevOp->getReg();
2579
2580  SMLoc EndLoc;
2581  int64_t Imm = 0;
2582  int ShiftReg = 0;
2583  if (ShiftTy == ARM_AM::rrx) {
2584    // RRX Doesn't have an explicit shift amount. The encoder expects
2585    // the shift register to be the same as the source register. Seems odd,
2586    // but OK.
2587    ShiftReg = SrcReg;
2588  } else {
2589    // Figure out if this is shifted by a constant or a register (for non-RRX).
2590    if (Parser.getTok().is(AsmToken::Hash) ||
2591        Parser.getTok().is(AsmToken::Dollar)) {
2592      Parser.Lex(); // Eat hash.
2593      SMLoc ImmLoc = Parser.getTok().getLoc();
2594      const MCExpr *ShiftExpr = 0;
2595      if (getParser().parseExpression(ShiftExpr, EndLoc)) {
2596        Error(ImmLoc, "invalid immediate shift value");
2597        return -1;
2598      }
2599      // The expression must be evaluatable as an immediate.
2600      const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
2601      if (!CE) {
2602        Error(ImmLoc, "invalid immediate shift value");
2603        return -1;
2604      }
2605      // Range check the immediate.
2606      // lsl, ror: 0 <= imm <= 31
2607      // lsr, asr: 0 <= imm <= 32
2608      Imm = CE->getValue();
2609      if (Imm < 0 ||
2610          ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
2611          ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
2612        Error(ImmLoc, "immediate shift value out of range");
2613        return -1;
2614      }
2615      // shift by zero is a nop. Always send it through as lsl.
2616      // ('as' compatibility)
2617      if (Imm == 0)
2618        ShiftTy = ARM_AM::lsl;
2619    } else if (Parser.getTok().is(AsmToken::Identifier)) {
2620      SMLoc L = Parser.getTok().getLoc();
2621      EndLoc = Parser.getTok().getEndLoc();
2622      ShiftReg = tryParseRegister();
2623      if (ShiftReg == -1) {
2624        Error (L, "expected immediate or register in shift operand");
2625        return -1;
2626      }
2627    } else {
2628      Error (Parser.getTok().getLoc(),
2629                    "expected immediate or register in shift operand");
2630      return -1;
2631    }
2632  }
2633
2634  if (ShiftReg && ShiftTy != ARM_AM::rrx)
2635    Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
2636                                                         ShiftReg, Imm,
2637                                                         S, EndLoc));
2638  else
2639    Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
2640                                                          S, EndLoc));
2641
2642  return 0;
2643}
2644
2645
2646/// Try to parse a register name.  The token must be an Identifier when called.
2647/// If it's a register, an AsmOperand is created. Another AsmOperand is created
2648/// if there is a "writeback". 'true' if it's not a register.
2649///
2650/// TODO this is likely to change to allow different register types and or to
2651/// parse for a specific register type.
2652bool ARMAsmParser::
2653tryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2654  const AsmToken &RegTok = Parser.getTok();
2655  int RegNo = tryParseRegister();
2656  if (RegNo == -1)
2657    return true;
2658
2659  Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(),
2660                                           RegTok.getEndLoc()));
2661
2662  const AsmToken &ExclaimTok = Parser.getTok();
2663  if (ExclaimTok.is(AsmToken::Exclaim)) {
2664    Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
2665                                               ExclaimTok.getLoc()));
2666    Parser.Lex(); // Eat exclaim token
2667    return false;
2668  }
2669
2670  // Also check for an index operand. This is only legal for vector registers,
2671  // but that'll get caught OK in operand matching, so we don't need to
2672  // explicitly filter everything else out here.
2673  if (Parser.getTok().is(AsmToken::LBrac)) {
2674    SMLoc SIdx = Parser.getTok().getLoc();
2675    Parser.Lex(); // Eat left bracket token.
2676
2677    const MCExpr *ImmVal;
2678    if (getParser().parseExpression(ImmVal))
2679      return true;
2680    const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
2681    if (!MCE)
2682      return TokError("immediate value expected for vector index");
2683
2684    if (Parser.getTok().isNot(AsmToken::RBrac))
2685      return Error(Parser.getTok().getLoc(), "']' expected");
2686
2687    SMLoc E = Parser.getTok().getEndLoc();
2688    Parser.Lex(); // Eat right bracket token.
2689
2690    Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
2691                                                     SIdx, E,
2692                                                     getContext()));
2693  }
2694
2695  return false;
2696}
2697
2698/// MatchCoprocessorOperandName - Try to parse an coprocessor related
2699/// instruction with a symbolic operand name. Example: "p1", "p7", "c3",
2700/// "c5", ...
2701static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
2702  // Use the same layout as the tablegen'erated register name matcher. Ugly,
2703  // but efficient.
2704  switch (Name.size()) {
2705  default: return -1;
2706  case 2:
2707    if (Name[0] != CoprocOp)
2708      return -1;
2709    switch (Name[1]) {
2710    default:  return -1;
2711    case '0': return 0;
2712    case '1': return 1;
2713    case '2': return 2;
2714    case '3': return 3;
2715    case '4': return 4;
2716    case '5': return 5;
2717    case '6': return 6;
2718    case '7': return 7;
2719    case '8': return 8;
2720    case '9': return 9;
2721    }
2722  case 3:
2723    if (Name[0] != CoprocOp || Name[1] != '1')
2724      return -1;
2725    switch (Name[2]) {
2726    default:  return -1;
2727    case '0': return 10;
2728    case '1': return 11;
2729    case '2': return 12;
2730    case '3': return 13;
2731    case '4': return 14;
2732    case '5': return 15;
2733    }
2734  }
2735}
2736
2737/// parseITCondCode - Try to parse a condition code for an IT instruction.
2738ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2739parseITCondCode(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2740  SMLoc S = Parser.getTok().getLoc();
2741  const AsmToken &Tok = Parser.getTok();
2742  if (!Tok.is(AsmToken::Identifier))
2743    return MatchOperand_NoMatch;
2744  unsigned CC = StringSwitch<unsigned>(Tok.getString().lower())
2745    .Case("eq", ARMCC::EQ)
2746    .Case("ne", ARMCC::NE)
2747    .Case("hs", ARMCC::HS)
2748    .Case("cs", ARMCC::HS)
2749    .Case("lo", ARMCC::LO)
2750    .Case("cc", ARMCC::LO)
2751    .Case("mi", ARMCC::MI)
2752    .Case("pl", ARMCC::PL)
2753    .Case("vs", ARMCC::VS)
2754    .Case("vc", ARMCC::VC)
2755    .Case("hi", ARMCC::HI)
2756    .Case("ls", ARMCC::LS)
2757    .Case("ge", ARMCC::GE)
2758    .Case("lt", ARMCC::LT)
2759    .Case("gt", ARMCC::GT)
2760    .Case("le", ARMCC::LE)
2761    .Case("al", ARMCC::AL)
2762    .Default(~0U);
2763  if (CC == ~0U)
2764    return MatchOperand_NoMatch;
2765  Parser.Lex(); // Eat the token.
2766
2767  Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
2768
2769  return MatchOperand_Success;
2770}
2771
2772/// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
2773/// token must be an Identifier when called, and if it is a coprocessor
2774/// number, the token is eaten and the operand is added to the operand list.
2775ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2776parseCoprocNumOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2777  SMLoc S = Parser.getTok().getLoc();
2778  const AsmToken &Tok = Parser.getTok();
2779  if (Tok.isNot(AsmToken::Identifier))
2780    return MatchOperand_NoMatch;
2781
2782  int Num = MatchCoprocessorOperandName(Tok.getString(), 'p');
2783  if (Num == -1)
2784    return MatchOperand_NoMatch;
2785
2786  Parser.Lex(); // Eat identifier token.
2787  Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
2788  return MatchOperand_Success;
2789}
2790
2791/// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
2792/// token must be an Identifier when called, and if it is a coprocessor
2793/// number, the token is eaten and the operand is added to the operand list.
2794ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2795parseCoprocRegOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2796  SMLoc S = Parser.getTok().getLoc();
2797  const AsmToken &Tok = Parser.getTok();
2798  if (Tok.isNot(AsmToken::Identifier))
2799    return MatchOperand_NoMatch;
2800
2801  int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c');
2802  if (Reg == -1)
2803    return MatchOperand_NoMatch;
2804
2805  Parser.Lex(); // Eat identifier token.
2806  Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
2807  return MatchOperand_Success;
2808}
2809
2810/// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
2811/// coproc_option : '{' imm0_255 '}'
2812ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2813parseCoprocOptionOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2814  SMLoc S = Parser.getTok().getLoc();
2815
2816  // If this isn't a '{', this isn't a coprocessor immediate operand.
2817  if (Parser.getTok().isNot(AsmToken::LCurly))
2818    return MatchOperand_NoMatch;
2819  Parser.Lex(); // Eat the '{'
2820
2821  const MCExpr *Expr;
2822  SMLoc Loc = Parser.getTok().getLoc();
2823  if (getParser().parseExpression(Expr)) {
2824    Error(Loc, "illegal expression");
2825    return MatchOperand_ParseFail;
2826  }
2827  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
2828  if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
2829    Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
2830    return MatchOperand_ParseFail;
2831  }
2832  int Val = CE->getValue();
2833
2834  // Check for and consume the closing '}'
2835  if (Parser.getTok().isNot(AsmToken::RCurly))
2836    return MatchOperand_ParseFail;
2837  SMLoc E = Parser.getTok().getEndLoc();
2838  Parser.Lex(); // Eat the '}'
2839
2840  Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
2841  return MatchOperand_Success;
2842}
2843
2844// For register list parsing, we need to map from raw GPR register numbering
2845// to the enumeration values. The enumeration values aren't sorted by
2846// register number due to our using "sp", "lr" and "pc" as canonical names.
2847static unsigned getNextRegister(unsigned Reg) {
2848  // If this is a GPR, we need to do it manually, otherwise we can rely
2849  // on the sort ordering of the enumeration since the other reg-classes
2850  // are sane.
2851  if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
2852    return Reg + 1;
2853  switch(Reg) {
2854  default: llvm_unreachable("Invalid GPR number!");
2855  case ARM::R0:  return ARM::R1;  case ARM::R1:  return ARM::R2;
2856  case ARM::R2:  return ARM::R3;  case ARM::R3:  return ARM::R4;
2857  case ARM::R4:  return ARM::R5;  case ARM::R5:  return ARM::R6;
2858  case ARM::R6:  return ARM::R7;  case ARM::R7:  return ARM::R8;
2859  case ARM::R8:  return ARM::R9;  case ARM::R9:  return ARM::R10;
2860  case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
2861  case ARM::R12: return ARM::SP;  case ARM::SP:  return ARM::LR;
2862  case ARM::LR:  return ARM::PC;  case ARM::PC:  return ARM::R0;
2863  }
2864}
2865
2866// Return the low-subreg of a given Q register.
2867static unsigned getDRegFromQReg(unsigned QReg) {
2868  switch (QReg) {
2869  default: llvm_unreachable("expected a Q register!");
2870  case ARM::Q0:  return ARM::D0;
2871  case ARM::Q1:  return ARM::D2;
2872  case ARM::Q2:  return ARM::D4;
2873  case ARM::Q3:  return ARM::D6;
2874  case ARM::Q4:  return ARM::D8;
2875  case ARM::Q5:  return ARM::D10;
2876  case ARM::Q6:  return ARM::D12;
2877  case ARM::Q7:  return ARM::D14;
2878  case ARM::Q8:  return ARM::D16;
2879  case ARM::Q9:  return ARM::D18;
2880  case ARM::Q10: return ARM::D20;
2881  case ARM::Q11: return ARM::D22;
2882  case ARM::Q12: return ARM::D24;
2883  case ARM::Q13: return ARM::D26;
2884  case ARM::Q14: return ARM::D28;
2885  case ARM::Q15: return ARM::D30;
2886  }
2887}
2888
2889/// Parse a register list.
2890bool ARMAsmParser::
2891parseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2892  assert(Parser.getTok().is(AsmToken::LCurly) &&
2893         "Token is not a Left Curly Brace");
2894  SMLoc S = Parser.getTok().getLoc();
2895  Parser.Lex(); // Eat '{' token.
2896  SMLoc RegLoc = Parser.getTok().getLoc();
2897
2898  // Check the first register in the list to see what register class
2899  // this is a list of.
2900  int Reg = tryParseRegister();
2901  if (Reg == -1)
2902    return Error(RegLoc, "register expected");
2903
2904  // The reglist instructions have at most 16 registers, so reserve
2905  // space for that many.
2906  SmallVector<std::pair<unsigned, SMLoc>, 16> Registers;
2907
2908  // Allow Q regs and just interpret them as the two D sub-registers.
2909  if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
2910    Reg = getDRegFromQReg(Reg);
2911    Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
2912    ++Reg;
2913  }
2914  const MCRegisterClass *RC;
2915  if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
2916    RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
2917  else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
2918    RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
2919  else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
2920    RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
2921  else
2922    return Error(RegLoc, "invalid register in register list");
2923
2924  // Store the register.
2925  Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
2926
2927  // This starts immediately after the first register token in the list,
2928  // so we can see either a comma or a minus (range separator) as a legal
2929  // next token.
2930  while (Parser.getTok().is(AsmToken::Comma) ||
2931         Parser.getTok().is(AsmToken::Minus)) {
2932    if (Parser.getTok().is(AsmToken::Minus)) {
2933      Parser.Lex(); // Eat the minus.
2934      SMLoc AfterMinusLoc = Parser.getTok().getLoc();
2935      int EndReg = tryParseRegister();
2936      if (EndReg == -1)
2937        return Error(AfterMinusLoc, "register expected");
2938      // Allow Q regs and just interpret them as the two D sub-registers.
2939      if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
2940        EndReg = getDRegFromQReg(EndReg) + 1;
2941      // If the register is the same as the start reg, there's nothing
2942      // more to do.
2943      if (Reg == EndReg)
2944        continue;
2945      // The register must be in the same register class as the first.
2946      if (!RC->contains(EndReg))
2947        return Error(AfterMinusLoc, "invalid register in register list");
2948      // Ranges must go from low to high.
2949      if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
2950        return Error(AfterMinusLoc, "bad range in register list");
2951
2952      // Add all the registers in the range to the register list.
2953      while (Reg != EndReg) {
2954        Reg = getNextRegister(Reg);
2955        Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
2956      }
2957      continue;
2958    }
2959    Parser.Lex(); // Eat the comma.
2960    RegLoc = Parser.getTok().getLoc();
2961    int OldReg = Reg;
2962    const AsmToken RegTok = Parser.getTok();
2963    Reg = tryParseRegister();
2964    if (Reg == -1)
2965      return Error(RegLoc, "register expected");
2966    // Allow Q regs and just interpret them as the two D sub-registers.
2967    bool isQReg = false;
2968    if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
2969      Reg = getDRegFromQReg(Reg);
2970      isQReg = true;
2971    }
2972    // The register must be in the same register class as the first.
2973    if (!RC->contains(Reg))
2974      return Error(RegLoc, "invalid register in register list");
2975    // List must be monotonically increasing.
2976    if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
2977      if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
2978        Warning(RegLoc, "register list not in ascending order");
2979      else
2980        return Error(RegLoc, "register list not in ascending order");
2981    }
2982    if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) {
2983      Warning(RegLoc, "duplicated register (" + RegTok.getString() +
2984              ") in register list");
2985      continue;
2986    }
2987    // VFP register lists must also be contiguous.
2988    // It's OK to use the enumeration values directly here rather, as the
2989    // VFP register classes have the enum sorted properly.
2990    if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
2991        Reg != OldReg + 1)
2992      return Error(RegLoc, "non-contiguous register range");
2993    Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
2994    if (isQReg)
2995      Registers.push_back(std::pair<unsigned, SMLoc>(++Reg, RegLoc));
2996  }
2997
2998  if (Parser.getTok().isNot(AsmToken::RCurly))
2999    return Error(Parser.getTok().getLoc(), "'}' expected");
3000  SMLoc E = Parser.getTok().getEndLoc();
3001  Parser.Lex(); // Eat '}' token.
3002
3003  // Push the register list operand.
3004  Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
3005
3006  // The ARM system instruction variants for LDM/STM have a '^' token here.
3007  if (Parser.getTok().is(AsmToken::Caret)) {
3008    Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
3009    Parser.Lex(); // Eat '^' token.
3010  }
3011
3012  return false;
3013}
3014
3015// Helper function to parse the lane index for vector lists.
3016ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3017parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
3018  Index = 0; // Always return a defined index value.
3019  if (Parser.getTok().is(AsmToken::LBrac)) {
3020    Parser.Lex(); // Eat the '['.
3021    if (Parser.getTok().is(AsmToken::RBrac)) {
3022      // "Dn[]" is the 'all lanes' syntax.
3023      LaneKind = AllLanes;
3024      EndLoc = Parser.getTok().getEndLoc();
3025      Parser.Lex(); // Eat the ']'.
3026      return MatchOperand_Success;
3027    }
3028
3029    // There's an optional '#' token here. Normally there wouldn't be, but
3030    // inline assemble puts one in, and it's friendly to accept that.
3031    if (Parser.getTok().is(AsmToken::Hash))
3032      Parser.Lex(); // Eat the '#'
3033
3034    const MCExpr *LaneIndex;
3035    SMLoc Loc = Parser.getTok().getLoc();
3036    if (getParser().parseExpression(LaneIndex)) {
3037      Error(Loc, "illegal expression");
3038      return MatchOperand_ParseFail;
3039    }
3040    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
3041    if (!CE) {
3042      Error(Loc, "lane index must be empty or an integer");
3043      return MatchOperand_ParseFail;
3044    }
3045    if (Parser.getTok().isNot(AsmToken::RBrac)) {
3046      Error(Parser.getTok().getLoc(), "']' expected");
3047      return MatchOperand_ParseFail;
3048    }
3049    EndLoc = Parser.getTok().getEndLoc();
3050    Parser.Lex(); // Eat the ']'.
3051    int64_t Val = CE->getValue();
3052
3053    // FIXME: Make this range check context sensitive for .8, .16, .32.
3054    if (Val < 0 || Val > 7) {
3055      Error(Parser.getTok().getLoc(), "lane index out of range");
3056      return MatchOperand_ParseFail;
3057    }
3058    Index = Val;
3059    LaneKind = IndexedLane;
3060    return MatchOperand_Success;
3061  }
3062  LaneKind = NoLanes;
3063  return MatchOperand_Success;
3064}
3065
3066// parse a vector register list
3067ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3068parseVectorList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3069  VectorLaneTy LaneKind;
3070  unsigned LaneIndex;
3071  SMLoc S = Parser.getTok().getLoc();
3072  // As an extension (to match gas), support a plain D register or Q register
3073  // (without encosing curly braces) as a single or double entry list,
3074  // respectively.
3075  if (Parser.getTok().is(AsmToken::Identifier)) {
3076    SMLoc E = Parser.getTok().getEndLoc();
3077    int Reg = tryParseRegister();
3078    if (Reg == -1)
3079      return MatchOperand_NoMatch;
3080    if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
3081      OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
3082      if (Res != MatchOperand_Success)
3083        return Res;
3084      switch (LaneKind) {
3085      case NoLanes:
3086        Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
3087        break;
3088      case AllLanes:
3089        Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
3090                                                                S, E));
3091        break;
3092      case IndexedLane:
3093        Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
3094                                                               LaneIndex,
3095                                                               false, S, E));
3096        break;
3097      }
3098      return MatchOperand_Success;
3099    }
3100    if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3101      Reg = getDRegFromQReg(Reg);
3102      OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
3103      if (Res != MatchOperand_Success)
3104        return Res;
3105      switch (LaneKind) {
3106      case NoLanes:
3107        Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
3108                                   &ARMMCRegisterClasses[ARM::DPairRegClassID]);
3109        Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
3110        break;
3111      case AllLanes:
3112        Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
3113                                   &ARMMCRegisterClasses[ARM::DPairRegClassID]);
3114        Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
3115                                                                S, E));
3116        break;
3117      case IndexedLane:
3118        Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
3119                                                               LaneIndex,
3120                                                               false, S, E));
3121        break;
3122      }
3123      return MatchOperand_Success;
3124    }
3125    Error(S, "vector register expected");
3126    return MatchOperand_ParseFail;
3127  }
3128
3129  if (Parser.getTok().isNot(AsmToken::LCurly))
3130    return MatchOperand_NoMatch;
3131
3132  Parser.Lex(); // Eat '{' token.
3133  SMLoc RegLoc = Parser.getTok().getLoc();
3134
3135  int Reg = tryParseRegister();
3136  if (Reg == -1) {
3137    Error(RegLoc, "register expected");
3138    return MatchOperand_ParseFail;
3139  }
3140  unsigned Count = 1;
3141  int Spacing = 0;
3142  unsigned FirstReg = Reg;
3143  // The list is of D registers, but we also allow Q regs and just interpret
3144  // them as the two D sub-registers.
3145  if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3146    FirstReg = Reg = getDRegFromQReg(Reg);
3147    Spacing = 1; // double-spacing requires explicit D registers, otherwise
3148                 // it's ambiguous with four-register single spaced.
3149    ++Reg;
3150    ++Count;
3151  }
3152
3153  SMLoc E;
3154  if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success)
3155    return MatchOperand_ParseFail;
3156
3157  while (Parser.getTok().is(AsmToken::Comma) ||
3158         Parser.getTok().is(AsmToken::Minus)) {
3159    if (Parser.getTok().is(AsmToken::Minus)) {
3160      if (!Spacing)
3161        Spacing = 1; // Register range implies a single spaced list.
3162      else if (Spacing == 2) {
3163        Error(Parser.getTok().getLoc(),
3164              "sequential registers in double spaced list");
3165        return MatchOperand_ParseFail;
3166      }
3167      Parser.Lex(); // Eat the minus.
3168      SMLoc AfterMinusLoc = Parser.getTok().getLoc();
3169      int EndReg = tryParseRegister();
3170      if (EndReg == -1) {
3171        Error(AfterMinusLoc, "register expected");
3172        return MatchOperand_ParseFail;
3173      }
3174      // Allow Q regs and just interpret them as the two D sub-registers.
3175      if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
3176        EndReg = getDRegFromQReg(EndReg) + 1;
3177      // If the register is the same as the start reg, there's nothing
3178      // more to do.
3179      if (Reg == EndReg)
3180        continue;
3181      // The register must be in the same register class as the first.
3182      if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) {
3183        Error(AfterMinusLoc, "invalid register in register list");
3184        return MatchOperand_ParseFail;
3185      }
3186      // Ranges must go from low to high.
3187      if (Reg > EndReg) {
3188        Error(AfterMinusLoc, "bad range in register list");
3189        return MatchOperand_ParseFail;
3190      }
3191      // Parse the lane specifier if present.
3192      VectorLaneTy NextLaneKind;
3193      unsigned NextLaneIndex;
3194      if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
3195          MatchOperand_Success)
3196        return MatchOperand_ParseFail;
3197      if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
3198        Error(AfterMinusLoc, "mismatched lane index in register list");
3199        return MatchOperand_ParseFail;
3200      }
3201
3202      // Add all the registers in the range to the register list.
3203      Count += EndReg - Reg;
3204      Reg = EndReg;
3205      continue;
3206    }
3207    Parser.Lex(); // Eat the comma.
3208    RegLoc = Parser.getTok().getLoc();
3209    int OldReg = Reg;
3210    Reg = tryParseRegister();
3211    if (Reg == -1) {
3212      Error(RegLoc, "register expected");
3213      return MatchOperand_ParseFail;
3214    }
3215    // vector register lists must be contiguous.
3216    // It's OK to use the enumeration values directly here rather, as the
3217    // VFP register classes have the enum sorted properly.
3218    //
3219    // The list is of D registers, but we also allow Q regs and just interpret
3220    // them as the two D sub-registers.
3221    if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3222      if (!Spacing)
3223        Spacing = 1; // Register range implies a single spaced list.
3224      else if (Spacing == 2) {
3225        Error(RegLoc,
3226              "invalid register in double-spaced list (must be 'D' register')");
3227        return MatchOperand_ParseFail;
3228      }
3229      Reg = getDRegFromQReg(Reg);
3230      if (Reg != OldReg + 1) {
3231        Error(RegLoc, "non-contiguous register range");
3232        return MatchOperand_ParseFail;
3233      }
3234      ++Reg;
3235      Count += 2;
3236      // Parse the lane specifier if present.
3237      VectorLaneTy NextLaneKind;
3238      unsigned NextLaneIndex;
3239      SMLoc LaneLoc = Parser.getTok().getLoc();
3240      if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
3241          MatchOperand_Success)
3242        return MatchOperand_ParseFail;
3243      if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
3244        Error(LaneLoc, "mismatched lane index in register list");
3245        return MatchOperand_ParseFail;
3246      }
3247      continue;
3248    }
3249    // Normal D register.
3250    // Figure out the register spacing (single or double) of the list if
3251    // we don't know it already.
3252    if (!Spacing)
3253      Spacing = 1 + (Reg == OldReg + 2);
3254
3255    // Just check that it's contiguous and keep going.
3256    if (Reg != OldReg + Spacing) {
3257      Error(RegLoc, "non-contiguous register range");
3258      return MatchOperand_ParseFail;
3259    }
3260    ++Count;
3261    // Parse the lane specifier if present.
3262    VectorLaneTy NextLaneKind;
3263    unsigned NextLaneIndex;
3264    SMLoc EndLoc = Parser.getTok().getLoc();
3265    if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success)
3266      return MatchOperand_ParseFail;
3267    if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
3268      Error(EndLoc, "mismatched lane index in register list");
3269      return MatchOperand_ParseFail;
3270    }
3271  }
3272
3273  if (Parser.getTok().isNot(AsmToken::RCurly)) {
3274    Error(Parser.getTok().getLoc(), "'}' expected");
3275    return MatchOperand_ParseFail;
3276  }
3277  E = Parser.getTok().getEndLoc();
3278  Parser.Lex(); // Eat '}' token.
3279
3280  switch (LaneKind) {
3281  case NoLanes:
3282    // Two-register operands have been converted to the
3283    // composite register classes.
3284    if (Count == 2) {
3285      const MCRegisterClass *RC = (Spacing == 1) ?
3286        &ARMMCRegisterClasses[ARM::DPairRegClassID] :
3287        &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
3288      FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
3289    }
3290
3291    Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count,
3292                                                    (Spacing == 2), S, E));
3293    break;
3294  case AllLanes:
3295    // Two-register operands have been converted to the
3296    // composite register classes.
3297    if (Count == 2) {
3298      const MCRegisterClass *RC = (Spacing == 1) ?
3299        &ARMMCRegisterClasses[ARM::DPairRegClassID] :
3300        &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
3301      FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
3302    }
3303    Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count,
3304                                                            (Spacing == 2),
3305                                                            S, E));
3306    break;
3307  case IndexedLane:
3308    Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
3309                                                           LaneIndex,
3310                                                           (Spacing == 2),
3311                                                           S, E));
3312    break;
3313  }
3314  return MatchOperand_Success;
3315}
3316
3317/// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
3318ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3319parseMemBarrierOptOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3320  SMLoc S = Parser.getTok().getLoc();
3321  const AsmToken &Tok = Parser.getTok();
3322  unsigned Opt;
3323
3324  if (Tok.is(AsmToken::Identifier)) {
3325    StringRef OptStr = Tok.getString();
3326
3327    Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
3328      .Case("sy",    ARM_MB::SY)
3329      .Case("st",    ARM_MB::ST)
3330      .Case("sh",    ARM_MB::ISH)
3331      .Case("ish",   ARM_MB::ISH)
3332      .Case("shst",  ARM_MB::ISHST)
3333      .Case("ishst", ARM_MB::ISHST)
3334      .Case("nsh",   ARM_MB::NSH)
3335      .Case("un",    ARM_MB::NSH)
3336      .Case("nshst", ARM_MB::NSHST)
3337      .Case("unst",  ARM_MB::NSHST)
3338      .Case("osh",   ARM_MB::OSH)
3339      .Case("oshst", ARM_MB::OSHST)
3340      .Default(~0U);
3341
3342    if (Opt == ~0U)
3343      return MatchOperand_NoMatch;
3344
3345    Parser.Lex(); // Eat identifier token.
3346  } else if (Tok.is(AsmToken::Hash) ||
3347             Tok.is(AsmToken::Dollar) ||
3348             Tok.is(AsmToken::Integer)) {
3349    if (Parser.getTok().isNot(AsmToken::Integer))
3350      Parser.Lex(); // Eat the '#'.
3351    SMLoc Loc = Parser.getTok().getLoc();
3352
3353    const MCExpr *MemBarrierID;
3354    if (getParser().parseExpression(MemBarrierID)) {
3355      Error(Loc, "illegal expression");
3356      return MatchOperand_ParseFail;
3357    }
3358
3359    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
3360    if (!CE) {
3361      Error(Loc, "constant expression expected");
3362      return MatchOperand_ParseFail;
3363    }
3364
3365    int Val = CE->getValue();
3366    if (Val & ~0xf) {
3367      Error(Loc, "immediate value out of range");
3368      return MatchOperand_ParseFail;
3369    }
3370
3371    Opt = ARM_MB::RESERVED_0 + Val;
3372  } else
3373    return MatchOperand_ParseFail;
3374
3375  Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
3376  return MatchOperand_Success;
3377}
3378
3379/// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
3380ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3381parseProcIFlagsOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3382  SMLoc S = Parser.getTok().getLoc();
3383  const AsmToken &Tok = Parser.getTok();
3384  if (!Tok.is(AsmToken::Identifier))
3385    return MatchOperand_NoMatch;
3386  StringRef IFlagsStr = Tok.getString();
3387
3388  // An iflags string of "none" is interpreted to mean that none of the AIF
3389  // bits are set.  Not a terribly useful instruction, but a valid encoding.
3390  unsigned IFlags = 0;
3391  if (IFlagsStr != "none") {
3392        for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
3393      unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1))
3394        .Case("a", ARM_PROC::A)
3395        .Case("i", ARM_PROC::I)
3396        .Case("f", ARM_PROC::F)
3397        .Default(~0U);
3398
3399      // If some specific iflag is already set, it means that some letter is
3400      // present more than once, this is not acceptable.
3401      if (Flag == ~0U || (IFlags & Flag))
3402        return MatchOperand_NoMatch;
3403
3404      IFlags |= Flag;
3405    }
3406  }
3407
3408  Parser.Lex(); // Eat identifier token.
3409  Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
3410  return MatchOperand_Success;
3411}
3412
3413/// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
3414ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3415parseMSRMaskOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3416  SMLoc S = Parser.getTok().getLoc();
3417  const AsmToken &Tok = Parser.getTok();
3418  if (!Tok.is(AsmToken::Identifier))
3419    return MatchOperand_NoMatch;
3420  StringRef Mask = Tok.getString();
3421
3422  if (isMClass()) {
3423    // See ARMv6-M 10.1.1
3424    std::string Name = Mask.lower();
3425    unsigned FlagsVal = StringSwitch<unsigned>(Name)
3426      // Note: in the documentation:
3427      //  ARM deprecates using MSR APSR without a _<bits> qualifier as an alias
3428      //  for MSR APSR_nzcvq.
3429      // but we do make it an alias here.  This is so to get the "mask encoding"
3430      // bits correct on MSR APSR writes.
3431      //
3432      // FIXME: Note the 0xc00 "mask encoding" bits version of the registers
3433      // should really only be allowed when writing a special register.  Note
3434      // they get dropped in the MRS instruction reading a special register as
3435      // the SYSm field is only 8 bits.
3436      //
3437      // FIXME: the _g and _nzcvqg versions are only allowed if the processor
3438      // includes the DSP extension but that is not checked.
3439      .Case("apsr", 0x800)
3440      .Case("apsr_nzcvq", 0x800)
3441      .Case("apsr_g", 0x400)
3442      .Case("apsr_nzcvqg", 0xc00)
3443      .Case("iapsr", 0x801)
3444      .Case("iapsr_nzcvq", 0x801)
3445      .Case("iapsr_g", 0x401)
3446      .Case("iapsr_nzcvqg", 0xc01)
3447      .Case("eapsr", 0x802)
3448      .Case("eapsr_nzcvq", 0x802)
3449      .Case("eapsr_g", 0x402)
3450      .Case("eapsr_nzcvqg", 0xc02)
3451      .Case("xpsr", 0x803)
3452      .Case("xpsr_nzcvq", 0x803)
3453      .Case("xpsr_g", 0x403)
3454      .Case("xpsr_nzcvqg", 0xc03)
3455      .Case("ipsr", 0x805)
3456      .Case("epsr", 0x806)
3457      .Case("iepsr", 0x807)
3458      .Case("msp", 0x808)
3459      .Case("psp", 0x809)
3460      .Case("primask", 0x810)
3461      .Case("basepri", 0x811)
3462      .Case("basepri_max", 0x812)
3463      .Case("faultmask", 0x813)
3464      .Case("control", 0x814)
3465      .Default(~0U);
3466
3467    if (FlagsVal == ~0U)
3468      return MatchOperand_NoMatch;
3469
3470    if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813)
3471      // basepri, basepri_max and faultmask only valid for V7m.
3472      return MatchOperand_NoMatch;
3473
3474    Parser.Lex(); // Eat identifier token.
3475    Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
3476    return MatchOperand_Success;
3477  }
3478
3479  // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
3480  size_t Start = 0, Next = Mask.find('_');
3481  StringRef Flags = "";
3482  std::string SpecReg = Mask.slice(Start, Next).lower();
3483  if (Next != StringRef::npos)
3484    Flags = Mask.slice(Next+1, Mask.size());
3485
3486  // FlagsVal contains the complete mask:
3487  // 3-0: Mask
3488  // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
3489  unsigned FlagsVal = 0;
3490
3491  if (SpecReg == "apsr") {
3492    FlagsVal = StringSwitch<unsigned>(Flags)
3493    .Case("nzcvq",  0x8) // same as CPSR_f
3494    .Case("g",      0x4) // same as CPSR_s
3495    .Case("nzcvqg", 0xc) // same as CPSR_fs
3496    .Default(~0U);
3497
3498    if (FlagsVal == ~0U) {
3499      if (!Flags.empty())
3500        return MatchOperand_NoMatch;
3501      else
3502        FlagsVal = 8; // No flag
3503    }
3504  } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
3505    // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
3506    if (Flags == "all" || Flags == "")
3507      Flags = "fc";
3508    for (int i = 0, e = Flags.size(); i != e; ++i) {
3509      unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
3510      .Case("c", 1)
3511      .Case("x", 2)
3512      .Case("s", 4)
3513      .Case("f", 8)
3514      .Default(~0U);
3515
3516      // If some specific flag is already set, it means that some letter is
3517      // present more than once, this is not acceptable.
3518      if (FlagsVal == ~0U || (FlagsVal & Flag))
3519        return MatchOperand_NoMatch;
3520      FlagsVal |= Flag;
3521    }
3522  } else // No match for special register.
3523    return MatchOperand_NoMatch;
3524
3525  // Special register without flags is NOT equivalent to "fc" flags.
3526  // NOTE: This is a divergence from gas' behavior.  Uncommenting the following
3527  // two lines would enable gas compatibility at the expense of breaking
3528  // round-tripping.
3529  //
3530  // if (!FlagsVal)
3531  //  FlagsVal = 0x9;
3532
3533  // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
3534  if (SpecReg == "spsr")
3535    FlagsVal |= 16;
3536
3537  Parser.Lex(); // Eat identifier token.
3538  Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
3539  return MatchOperand_Success;
3540}
3541
3542ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3543parsePKHImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands, StringRef Op,
3544            int Low, int High) {
3545  const AsmToken &Tok = Parser.getTok();
3546  if (Tok.isNot(AsmToken::Identifier)) {
3547    Error(Parser.getTok().getLoc(), Op + " operand expected.");
3548    return MatchOperand_ParseFail;
3549  }
3550  StringRef ShiftName = Tok.getString();
3551  std::string LowerOp = Op.lower();
3552  std::string UpperOp = Op.upper();
3553  if (ShiftName != LowerOp && ShiftName != UpperOp) {
3554    Error(Parser.getTok().getLoc(), Op + " operand expected.");
3555    return MatchOperand_ParseFail;
3556  }
3557  Parser.Lex(); // Eat shift type token.
3558
3559  // There must be a '#' and a shift amount.
3560  if (Parser.getTok().isNot(AsmToken::Hash) &&
3561      Parser.getTok().isNot(AsmToken::Dollar)) {
3562    Error(Parser.getTok().getLoc(), "'#' expected");
3563    return MatchOperand_ParseFail;
3564  }
3565  Parser.Lex(); // Eat hash token.
3566
3567  const MCExpr *ShiftAmount;
3568  SMLoc Loc = Parser.getTok().getLoc();
3569  SMLoc EndLoc;
3570  if (getParser().parseExpression(ShiftAmount, EndLoc)) {
3571    Error(Loc, "illegal expression");
3572    return MatchOperand_ParseFail;
3573  }
3574  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
3575  if (!CE) {
3576    Error(Loc, "constant expression expected");
3577    return MatchOperand_ParseFail;
3578  }
3579  int Val = CE->getValue();
3580  if (Val < Low || Val > High) {
3581    Error(Loc, "immediate value out of range");
3582    return MatchOperand_ParseFail;
3583  }
3584
3585  Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc));
3586
3587  return MatchOperand_Success;
3588}
3589
3590ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3591parseSetEndImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3592  const AsmToken &Tok = Parser.getTok();
3593  SMLoc S = Tok.getLoc();
3594  if (Tok.isNot(AsmToken::Identifier)) {
3595    Error(S, "'be' or 'le' operand expected");
3596    return MatchOperand_ParseFail;
3597  }
3598  int Val = StringSwitch<int>(Tok.getString())
3599    .Case("be", 1)
3600    .Case("le", 0)
3601    .Default(-1);
3602  Parser.Lex(); // Eat the token.
3603
3604  if (Val == -1) {
3605    Error(S, "'be' or 'le' operand expected");
3606    return MatchOperand_ParseFail;
3607  }
3608  Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::Create(Val,
3609                                                                  getContext()),
3610                                           S, Tok.getEndLoc()));
3611  return MatchOperand_Success;
3612}
3613
3614/// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
3615/// instructions. Legal values are:
3616///     lsl #n  'n' in [0,31]
3617///     asr #n  'n' in [1,32]
3618///             n == 32 encoded as n == 0.
3619ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3620parseShifterImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3621  const AsmToken &Tok = Parser.getTok();
3622  SMLoc S = Tok.getLoc();
3623  if (Tok.isNot(AsmToken::Identifier)) {
3624    Error(S, "shift operator 'asr' or 'lsl' expected");
3625    return MatchOperand_ParseFail;
3626  }
3627  StringRef ShiftName = Tok.getString();
3628  bool isASR;
3629  if (ShiftName == "lsl" || ShiftName == "LSL")
3630    isASR = false;
3631  else if (ShiftName == "asr" || ShiftName == "ASR")
3632    isASR = true;
3633  else {
3634    Error(S, "shift operator 'asr' or 'lsl' expected");
3635    return MatchOperand_ParseFail;
3636  }
3637  Parser.Lex(); // Eat the operator.
3638
3639  // A '#' and a shift amount.
3640  if (Parser.getTok().isNot(AsmToken::Hash) &&
3641      Parser.getTok().isNot(AsmToken::Dollar)) {
3642    Error(Parser.getTok().getLoc(), "'#' expected");
3643    return MatchOperand_ParseFail;
3644  }
3645  Parser.Lex(); // Eat hash token.
3646  SMLoc ExLoc = Parser.getTok().getLoc();
3647
3648  const MCExpr *ShiftAmount;
3649  SMLoc EndLoc;
3650  if (getParser().parseExpression(ShiftAmount, EndLoc)) {
3651    Error(ExLoc, "malformed shift expression");
3652    return MatchOperand_ParseFail;
3653  }
3654  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
3655  if (!CE) {
3656    Error(ExLoc, "shift amount must be an immediate");
3657    return MatchOperand_ParseFail;
3658  }
3659
3660  int64_t Val = CE->getValue();
3661  if (isASR) {
3662    // Shift amount must be in [1,32]
3663    if (Val < 1 || Val > 32) {
3664      Error(ExLoc, "'asr' shift amount must be in range [1,32]");
3665      return MatchOperand_ParseFail;
3666    }
3667    // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
3668    if (isThumb() && Val == 32) {
3669      Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode");
3670      return MatchOperand_ParseFail;
3671    }
3672    if (Val == 32) Val = 0;
3673  } else {
3674    // Shift amount must be in [1,32]
3675    if (Val < 0 || Val > 31) {
3676      Error(ExLoc, "'lsr' shift amount must be in range [0,31]");
3677      return MatchOperand_ParseFail;
3678    }
3679  }
3680
3681  Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc));
3682
3683  return MatchOperand_Success;
3684}
3685
3686/// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
3687/// of instructions. Legal values are:
3688///     ror #n  'n' in {0, 8, 16, 24}
3689ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3690parseRotImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3691  const AsmToken &Tok = Parser.getTok();
3692  SMLoc S = Tok.getLoc();
3693  if (Tok.isNot(AsmToken::Identifier))
3694    return MatchOperand_NoMatch;
3695  StringRef ShiftName = Tok.getString();
3696  if (ShiftName != "ror" && ShiftName != "ROR")
3697    return MatchOperand_NoMatch;
3698  Parser.Lex(); // Eat the operator.
3699
3700  // A '#' and a rotate amount.
3701  if (Parser.getTok().isNot(AsmToken::Hash) &&
3702      Parser.getTok().isNot(AsmToken::Dollar)) {
3703    Error(Parser.getTok().getLoc(), "'#' expected");
3704    return MatchOperand_ParseFail;
3705  }
3706  Parser.Lex(); // Eat hash token.
3707  SMLoc ExLoc = Parser.getTok().getLoc();
3708
3709  const MCExpr *ShiftAmount;
3710  SMLoc EndLoc;
3711  if (getParser().parseExpression(ShiftAmount, EndLoc)) {
3712    Error(ExLoc, "malformed rotate expression");
3713    return MatchOperand_ParseFail;
3714  }
3715  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
3716  if (!CE) {
3717    Error(ExLoc, "rotate amount must be an immediate");
3718    return MatchOperand_ParseFail;
3719  }
3720
3721  int64_t Val = CE->getValue();
3722  // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
3723  // normally, zero is represented in asm by omitting the rotate operand
3724  // entirely.
3725  if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
3726    Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24");
3727    return MatchOperand_ParseFail;
3728  }
3729
3730  Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc));
3731
3732  return MatchOperand_Success;
3733}
3734
3735ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3736parseBitfield(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3737  SMLoc S = Parser.getTok().getLoc();
3738  // The bitfield descriptor is really two operands, the LSB and the width.
3739  if (Parser.getTok().isNot(AsmToken::Hash) &&
3740      Parser.getTok().isNot(AsmToken::Dollar)) {
3741    Error(Parser.getTok().getLoc(), "'#' expected");
3742    return MatchOperand_ParseFail;
3743  }
3744  Parser.Lex(); // Eat hash token.
3745
3746  const MCExpr *LSBExpr;
3747  SMLoc E = Parser.getTok().getLoc();
3748  if (getParser().parseExpression(LSBExpr)) {
3749    Error(E, "malformed immediate expression");
3750    return MatchOperand_ParseFail;
3751  }
3752  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
3753  if (!CE) {
3754    Error(E, "'lsb' operand must be an immediate");
3755    return MatchOperand_ParseFail;
3756  }
3757
3758  int64_t LSB = CE->getValue();
3759  // The LSB must be in the range [0,31]
3760  if (LSB < 0 || LSB > 31) {
3761    Error(E, "'lsb' operand must be in the range [0,31]");
3762    return MatchOperand_ParseFail;
3763  }
3764  E = Parser.getTok().getLoc();
3765
3766  // Expect another immediate operand.
3767  if (Parser.getTok().isNot(AsmToken::Comma)) {
3768    Error(Parser.getTok().getLoc(), "too few operands");
3769    return MatchOperand_ParseFail;
3770  }
3771  Parser.Lex(); // Eat hash token.
3772  if (Parser.getTok().isNot(AsmToken::Hash) &&
3773      Parser.getTok().isNot(AsmToken::Dollar)) {
3774    Error(Parser.getTok().getLoc(), "'#' expected");
3775    return MatchOperand_ParseFail;
3776  }
3777  Parser.Lex(); // Eat hash token.
3778
3779  const MCExpr *WidthExpr;
3780  SMLoc EndLoc;
3781  if (getParser().parseExpression(WidthExpr, EndLoc)) {
3782    Error(E, "malformed immediate expression");
3783    return MatchOperand_ParseFail;
3784  }
3785  CE = dyn_cast<MCConstantExpr>(WidthExpr);
3786  if (!CE) {
3787    Error(E, "'width' operand must be an immediate");
3788    return MatchOperand_ParseFail;
3789  }
3790
3791  int64_t Width = CE->getValue();
3792  // The LSB must be in the range [1,32-lsb]
3793  if (Width < 1 || Width > 32 - LSB) {
3794    Error(E, "'width' operand must be in the range [1,32-lsb]");
3795    return MatchOperand_ParseFail;
3796  }
3797
3798  Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc));
3799
3800  return MatchOperand_Success;
3801}
3802
3803ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3804parsePostIdxReg(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3805  // Check for a post-index addressing register operand. Specifically:
3806  // postidx_reg := '+' register {, shift}
3807  //              | '-' register {, shift}
3808  //              | register {, shift}
3809
3810  // This method must return MatchOperand_NoMatch without consuming any tokens
3811  // in the case where there is no match, as other alternatives take other
3812  // parse methods.
3813  AsmToken Tok = Parser.getTok();
3814  SMLoc S = Tok.getLoc();
3815  bool haveEaten = false;
3816  bool isAdd = true;
3817  if (Tok.is(AsmToken::Plus)) {
3818    Parser.Lex(); // Eat the '+' token.
3819    haveEaten = true;
3820  } else if (Tok.is(AsmToken::Minus)) {
3821    Parser.Lex(); // Eat the '-' token.
3822    isAdd = false;
3823    haveEaten = true;
3824  }
3825
3826  SMLoc E = Parser.getTok().getEndLoc();
3827  int Reg = tryParseRegister();
3828  if (Reg == -1) {
3829    if (!haveEaten)
3830      return MatchOperand_NoMatch;
3831    Error(Parser.getTok().getLoc(), "register expected");
3832    return MatchOperand_ParseFail;
3833  }
3834
3835  ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
3836  unsigned ShiftImm = 0;
3837  if (Parser.getTok().is(AsmToken::Comma)) {
3838    Parser.Lex(); // Eat the ','.
3839    if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
3840      return MatchOperand_ParseFail;
3841
3842    // FIXME: Only approximates end...may include intervening whitespace.
3843    E = Parser.getTok().getLoc();
3844  }
3845
3846  Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
3847                                                  ShiftImm, S, E));
3848
3849  return MatchOperand_Success;
3850}
3851
3852ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3853parseAM3Offset(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3854  // Check for a post-index addressing register operand. Specifically:
3855  // am3offset := '+' register
3856  //              | '-' register
3857  //              | register
3858  //              | # imm
3859  //              | # + imm
3860  //              | # - imm
3861
3862  // This method must return MatchOperand_NoMatch without consuming any tokens
3863  // in the case where there is no match, as other alternatives take other
3864  // parse methods.
3865  AsmToken Tok = Parser.getTok();
3866  SMLoc S = Tok.getLoc();
3867
3868  // Do immediates first, as we always parse those if we have a '#'.
3869  if (Parser.getTok().is(AsmToken::Hash) ||
3870      Parser.getTok().is(AsmToken::Dollar)) {
3871    Parser.Lex(); // Eat the '#'.
3872    // Explicitly look for a '-', as we need to encode negative zero
3873    // differently.
3874    bool isNegative = Parser.getTok().is(AsmToken::Minus);
3875    const MCExpr *Offset;
3876    SMLoc E;
3877    if (getParser().parseExpression(Offset, E))
3878      return MatchOperand_ParseFail;
3879    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
3880    if (!CE) {
3881      Error(S, "constant expression expected");
3882      return MatchOperand_ParseFail;
3883    }
3884    // Negative zero is encoded as the flag value INT32_MIN.
3885    int32_t Val = CE->getValue();
3886    if (isNegative && Val == 0)
3887      Val = INT32_MIN;
3888
3889    Operands.push_back(
3890      ARMOperand::CreateImm(MCConstantExpr::Create(Val, getContext()), S, E));
3891
3892    return MatchOperand_Success;
3893  }
3894
3895
3896  bool haveEaten = false;
3897  bool isAdd = true;
3898  if (Tok.is(AsmToken::Plus)) {
3899    Parser.Lex(); // Eat the '+' token.
3900    haveEaten = true;
3901  } else if (Tok.is(AsmToken::Minus)) {
3902    Parser.Lex(); // Eat the '-' token.
3903    isAdd = false;
3904    haveEaten = true;
3905  }
3906
3907  Tok = Parser.getTok();
3908  int Reg = tryParseRegister();
3909  if (Reg == -1) {
3910    if (!haveEaten)
3911      return MatchOperand_NoMatch;
3912    Error(Tok.getLoc(), "register expected");
3913    return MatchOperand_ParseFail;
3914  }
3915
3916  Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
3917                                                  0, S, Tok.getEndLoc()));
3918
3919  return MatchOperand_Success;
3920}
3921
3922/// cvtT2LdrdPre - Convert parsed operands to MCInst.
3923/// Needed here because the Asm Gen Matcher can't handle properly tied operands
3924/// when they refer multiple MIOperands inside a single one.
3925void ARMAsmParser::
3926cvtT2LdrdPre(MCInst &Inst,
3927             const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3928  // Rt, Rt2
3929  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3930  ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
3931  // Create a writeback register dummy placeholder.
3932  Inst.addOperand(MCOperand::CreateReg(0));
3933  // addr
3934  ((ARMOperand*)Operands[4])->addMemImm8s4OffsetOperands(Inst, 2);
3935  // pred
3936  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3937}
3938
3939/// cvtT2StrdPre - Convert parsed operands to MCInst.
3940/// Needed here because the Asm Gen Matcher can't handle properly tied operands
3941/// when they refer multiple MIOperands inside a single one.
3942void ARMAsmParser::
3943cvtT2StrdPre(MCInst &Inst,
3944             const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3945  // Create a writeback register dummy placeholder.
3946  Inst.addOperand(MCOperand::CreateReg(0));
3947  // Rt, Rt2
3948  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3949  ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
3950  // addr
3951  ((ARMOperand*)Operands[4])->addMemImm8s4OffsetOperands(Inst, 2);
3952  // pred
3953  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3954}
3955
3956/// cvtLdWriteBackRegT2AddrModeImm8 - Convert parsed operands to MCInst.
3957/// Needed here because the Asm Gen Matcher can't handle properly tied operands
3958/// when they refer multiple MIOperands inside a single one.
3959void ARMAsmParser::
3960cvtLdWriteBackRegT2AddrModeImm8(MCInst &Inst,
3961                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3962  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3963
3964  // Create a writeback register dummy placeholder.
3965  Inst.addOperand(MCOperand::CreateImm(0));
3966
3967  ((ARMOperand*)Operands[3])->addMemImm8OffsetOperands(Inst, 2);
3968  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3969}
3970
3971/// cvtStWriteBackRegT2AddrModeImm8 - Convert parsed operands to MCInst.
3972/// Needed here because the Asm Gen Matcher can't handle properly tied operands
3973/// when they refer multiple MIOperands inside a single one.
3974void ARMAsmParser::
3975cvtStWriteBackRegT2AddrModeImm8(MCInst &Inst,
3976                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3977  // Create a writeback register dummy placeholder.
3978  Inst.addOperand(MCOperand::CreateImm(0));
3979  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3980  ((ARMOperand*)Operands[3])->addMemImm8OffsetOperands(Inst, 2);
3981  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3982}
3983
3984/// cvtLdWriteBackRegAddrMode2 - Convert parsed operands to MCInst.
3985/// Needed here because the Asm Gen Matcher can't handle properly tied operands
3986/// when they refer multiple MIOperands inside a single one.
3987void ARMAsmParser::
3988cvtLdWriteBackRegAddrMode2(MCInst &Inst,
3989                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3990  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3991
3992  // Create a writeback register dummy placeholder.
3993  Inst.addOperand(MCOperand::CreateImm(0));
3994
3995  ((ARMOperand*)Operands[3])->addAddrMode2Operands(Inst, 3);
3996  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3997}
3998
3999/// cvtLdWriteBackRegAddrModeImm12 - Convert parsed operands to MCInst.
4000/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4001/// when they refer multiple MIOperands inside a single one.
4002void ARMAsmParser::
4003cvtLdWriteBackRegAddrModeImm12(MCInst &Inst,
4004                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4005  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4006
4007  // Create a writeback register dummy placeholder.
4008  Inst.addOperand(MCOperand::CreateImm(0));
4009
4010  ((ARMOperand*)Operands[3])->addMemImm12OffsetOperands(Inst, 2);
4011  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4012}
4013
4014
4015/// cvtStWriteBackRegAddrModeImm12 - Convert parsed operands to MCInst.
4016/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4017/// when they refer multiple MIOperands inside a single one.
4018void ARMAsmParser::
4019cvtStWriteBackRegAddrModeImm12(MCInst &Inst,
4020                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4021  // Create a writeback register dummy placeholder.
4022  Inst.addOperand(MCOperand::CreateImm(0));
4023  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4024  ((ARMOperand*)Operands[3])->addMemImm12OffsetOperands(Inst, 2);
4025  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4026}
4027
4028/// cvtStWriteBackRegAddrMode2 - Convert parsed operands to MCInst.
4029/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4030/// when they refer multiple MIOperands inside a single one.
4031void ARMAsmParser::
4032cvtStWriteBackRegAddrMode2(MCInst &Inst,
4033                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4034  // Create a writeback register dummy placeholder.
4035  Inst.addOperand(MCOperand::CreateImm(0));
4036  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4037  ((ARMOperand*)Operands[3])->addAddrMode2Operands(Inst, 3);
4038  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4039}
4040
4041/// cvtStWriteBackRegAddrMode3 - Convert parsed operands to MCInst.
4042/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4043/// when they refer multiple MIOperands inside a single one.
4044void ARMAsmParser::
4045cvtStWriteBackRegAddrMode3(MCInst &Inst,
4046                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4047  // Create a writeback register dummy placeholder.
4048  Inst.addOperand(MCOperand::CreateImm(0));
4049  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4050  ((ARMOperand*)Operands[3])->addAddrMode3Operands(Inst, 3);
4051  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4052}
4053
4054/// cvtLdExtTWriteBackImm - Convert parsed operands to MCInst.
4055/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4056/// when they refer multiple MIOperands inside a single one.
4057void ARMAsmParser::
4058cvtLdExtTWriteBackImm(MCInst &Inst,
4059                      const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4060  // Rt
4061  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4062  // Create a writeback register dummy placeholder.
4063  Inst.addOperand(MCOperand::CreateImm(0));
4064  // addr
4065  ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
4066  // offset
4067  ((ARMOperand*)Operands[4])->addPostIdxImm8Operands(Inst, 1);
4068  // pred
4069  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4070}
4071
4072/// cvtLdExtTWriteBackReg - Convert parsed operands to MCInst.
4073/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4074/// when they refer multiple MIOperands inside a single one.
4075void ARMAsmParser::
4076cvtLdExtTWriteBackReg(MCInst &Inst,
4077                      const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4078  // Rt
4079  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4080  // Create a writeback register dummy placeholder.
4081  Inst.addOperand(MCOperand::CreateImm(0));
4082  // addr
4083  ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
4084  // offset
4085  ((ARMOperand*)Operands[4])->addPostIdxRegOperands(Inst, 2);
4086  // pred
4087  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4088}
4089
4090/// cvtStExtTWriteBackImm - Convert parsed operands to MCInst.
4091/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4092/// when they refer multiple MIOperands inside a single one.
4093void ARMAsmParser::
4094cvtStExtTWriteBackImm(MCInst &Inst,
4095                      const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4096  // Create a writeback register dummy placeholder.
4097  Inst.addOperand(MCOperand::CreateImm(0));
4098  // Rt
4099  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4100  // addr
4101  ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
4102  // offset
4103  ((ARMOperand*)Operands[4])->addPostIdxImm8Operands(Inst, 1);
4104  // pred
4105  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4106}
4107
4108/// cvtStExtTWriteBackReg - Convert parsed operands to MCInst.
4109/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4110/// when they refer multiple MIOperands inside a single one.
4111void ARMAsmParser::
4112cvtStExtTWriteBackReg(MCInst &Inst,
4113                      const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4114  // Create a writeback register dummy placeholder.
4115  Inst.addOperand(MCOperand::CreateImm(0));
4116  // Rt
4117  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4118  // addr
4119  ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
4120  // offset
4121  ((ARMOperand*)Operands[4])->addPostIdxRegOperands(Inst, 2);
4122  // pred
4123  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4124}
4125
4126/// cvtLdrdPre - Convert parsed operands to MCInst.
4127/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4128/// when they refer multiple MIOperands inside a single one.
4129void ARMAsmParser::
4130cvtLdrdPre(MCInst &Inst,
4131           const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4132  // Rt, Rt2
4133  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4134  ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
4135  // Create a writeback register dummy placeholder.
4136  Inst.addOperand(MCOperand::CreateImm(0));
4137  // addr
4138  ((ARMOperand*)Operands[4])->addAddrMode3Operands(Inst, 3);
4139  // pred
4140  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4141}
4142
4143/// cvtStrdPre - Convert parsed operands to MCInst.
4144/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4145/// when they refer multiple MIOperands inside a single one.
4146void ARMAsmParser::
4147cvtStrdPre(MCInst &Inst,
4148           const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4149  // Create a writeback register dummy placeholder.
4150  Inst.addOperand(MCOperand::CreateImm(0));
4151  // Rt, Rt2
4152  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4153  ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
4154  // addr
4155  ((ARMOperand*)Operands[4])->addAddrMode3Operands(Inst, 3);
4156  // pred
4157  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4158}
4159
4160/// cvtLdWriteBackRegAddrMode3 - Convert parsed operands to MCInst.
4161/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4162/// when they refer multiple MIOperands inside a single one.
4163void ARMAsmParser::
4164cvtLdWriteBackRegAddrMode3(MCInst &Inst,
4165                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4166  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4167  // Create a writeback register dummy placeholder.
4168  Inst.addOperand(MCOperand::CreateImm(0));
4169  ((ARMOperand*)Operands[3])->addAddrMode3Operands(Inst, 3);
4170  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4171}
4172
4173/// cvtThumbMultiply - Convert parsed operands to MCInst.
4174/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4175/// when they refer multiple MIOperands inside a single one.
4176void ARMAsmParser::
4177cvtThumbMultiply(MCInst &Inst,
4178           const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4179  ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
4180  ((ARMOperand*)Operands[1])->addCCOutOperands(Inst, 1);
4181  // If we have a three-operand form, make sure to set Rn to be the operand
4182  // that isn't the same as Rd.
4183  unsigned RegOp = 4;
4184  if (Operands.size() == 6 &&
4185      ((ARMOperand*)Operands[4])->getReg() ==
4186        ((ARMOperand*)Operands[3])->getReg())
4187    RegOp = 5;
4188  ((ARMOperand*)Operands[RegOp])->addRegOperands(Inst, 1);
4189  Inst.addOperand(Inst.getOperand(0));
4190  ((ARMOperand*)Operands[2])->addCondCodeOperands(Inst, 2);
4191}
4192
4193void ARMAsmParser::
4194cvtVLDwbFixed(MCInst &Inst,
4195              const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4196  // Vd
4197  ((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1);
4198  // Create a writeback register dummy placeholder.
4199  Inst.addOperand(MCOperand::CreateImm(0));
4200  // Vn
4201  ((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
4202  // pred
4203  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4204}
4205
4206void ARMAsmParser::
4207cvtVLDwbRegister(MCInst &Inst,
4208                 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4209  // Vd
4210  ((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1);
4211  // Create a writeback register dummy placeholder.
4212  Inst.addOperand(MCOperand::CreateImm(0));
4213  // Vn
4214  ((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
4215  // Vm
4216  ((ARMOperand*)Operands[5])->addRegOperands(Inst, 1);
4217  // pred
4218  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4219}
4220
4221void ARMAsmParser::
4222cvtVSTwbFixed(MCInst &Inst,
4223              const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4224  // Create a writeback register dummy placeholder.
4225  Inst.addOperand(MCOperand::CreateImm(0));
4226  // Vn
4227  ((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
4228  // Vt
4229  ((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1);
4230  // pred
4231  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4232}
4233
4234void ARMAsmParser::
4235cvtVSTwbRegister(MCInst &Inst,
4236                 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4237  // Create a writeback register dummy placeholder.
4238  Inst.addOperand(MCOperand::CreateImm(0));
4239  // Vn
4240  ((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
4241  // Vm
4242  ((ARMOperand*)Operands[5])->addRegOperands(Inst, 1);
4243  // Vt
4244  ((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1);
4245  // pred
4246  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4247}
4248
4249/// Parse an ARM memory expression, return false if successful else return true
4250/// or an error.  The first token must be a '[' when called.
4251bool ARMAsmParser::
4252parseMemory(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4253  SMLoc S, E;
4254  assert(Parser.getTok().is(AsmToken::LBrac) &&
4255         "Token is not a Left Bracket");
4256  S = Parser.getTok().getLoc();
4257  Parser.Lex(); // Eat left bracket token.
4258
4259  const AsmToken &BaseRegTok = Parser.getTok();
4260  int BaseRegNum = tryParseRegister();
4261  if (BaseRegNum == -1)
4262    return Error(BaseRegTok.getLoc(), "register expected");
4263
4264  // The next token must either be a comma, a colon or a closing bracket.
4265  const AsmToken &Tok = Parser.getTok();
4266  if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) &&
4267      !Tok.is(AsmToken::RBrac))
4268    return Error(Tok.getLoc(), "malformed memory operand");
4269
4270  if (Tok.is(AsmToken::RBrac)) {
4271    E = Tok.getEndLoc();
4272    Parser.Lex(); // Eat right bracket token.
4273
4274    Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, 0, ARM_AM::no_shift,
4275                                             0, 0, false, S, E));
4276
4277    // If there's a pre-indexing writeback marker, '!', just add it as a token
4278    // operand. It's rather odd, but syntactically valid.
4279    if (Parser.getTok().is(AsmToken::Exclaim)) {
4280      Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4281      Parser.Lex(); // Eat the '!'.
4282    }
4283
4284    return false;
4285  }
4286
4287  assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) &&
4288         "Lost colon or comma in memory operand?!");
4289  if (Tok.is(AsmToken::Comma)) {
4290    Parser.Lex(); // Eat the comma.
4291  }
4292
4293  // If we have a ':', it's an alignment specifier.
4294  if (Parser.getTok().is(AsmToken::Colon)) {
4295    Parser.Lex(); // Eat the ':'.
4296    E = Parser.getTok().getLoc();
4297
4298    const MCExpr *Expr;
4299    if (getParser().parseExpression(Expr))
4300     return true;
4301
4302    // The expression has to be a constant. Memory references with relocations
4303    // don't come through here, as they use the <label> forms of the relevant
4304    // instructions.
4305    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
4306    if (!CE)
4307      return Error (E, "constant expression expected");
4308
4309    unsigned Align = 0;
4310    switch (CE->getValue()) {
4311    default:
4312      return Error(E,
4313                   "alignment specifier must be 16, 32, 64, 128, or 256 bits");
4314    case 16:  Align = 2; break;
4315    case 32:  Align = 4; break;
4316    case 64:  Align = 8; break;
4317    case 128: Align = 16; break;
4318    case 256: Align = 32; break;
4319    }
4320
4321    // Now we should have the closing ']'
4322    if (Parser.getTok().isNot(AsmToken::RBrac))
4323      return Error(Parser.getTok().getLoc(), "']' expected");
4324    E = Parser.getTok().getEndLoc();
4325    Parser.Lex(); // Eat right bracket token.
4326
4327    // Don't worry about range checking the value here. That's handled by
4328    // the is*() predicates.
4329    Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, 0,
4330                                             ARM_AM::no_shift, 0, Align,
4331                                             false, S, E));
4332
4333    // If there's a pre-indexing writeback marker, '!', just add it as a token
4334    // operand.
4335    if (Parser.getTok().is(AsmToken::Exclaim)) {
4336      Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4337      Parser.Lex(); // Eat the '!'.
4338    }
4339
4340    return false;
4341  }
4342
4343  // If we have a '#', it's an immediate offset, else assume it's a register
4344  // offset. Be friendly and also accept a plain integer (without a leading
4345  // hash) for gas compatibility.
4346  if (Parser.getTok().is(AsmToken::Hash) ||
4347      Parser.getTok().is(AsmToken::Dollar) ||
4348      Parser.getTok().is(AsmToken::Integer)) {
4349    if (Parser.getTok().isNot(AsmToken::Integer))
4350      Parser.Lex(); // Eat the '#'.
4351    E = Parser.getTok().getLoc();
4352
4353    bool isNegative = getParser().getTok().is(AsmToken::Minus);
4354    const MCExpr *Offset;
4355    if (getParser().parseExpression(Offset))
4356     return true;
4357
4358    // The expression has to be a constant. Memory references with relocations
4359    // don't come through here, as they use the <label> forms of the relevant
4360    // instructions.
4361    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
4362    if (!CE)
4363      return Error (E, "constant expression expected");
4364
4365    // If the constant was #-0, represent it as INT32_MIN.
4366    int32_t Val = CE->getValue();
4367    if (isNegative && Val == 0)
4368      CE = MCConstantExpr::Create(INT32_MIN, getContext());
4369
4370    // Now we should have the closing ']'
4371    if (Parser.getTok().isNot(AsmToken::RBrac))
4372      return Error(Parser.getTok().getLoc(), "']' expected");
4373    E = Parser.getTok().getEndLoc();
4374    Parser.Lex(); // Eat right bracket token.
4375
4376    // Don't worry about range checking the value here. That's handled by
4377    // the is*() predicates.
4378    Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0,
4379                                             ARM_AM::no_shift, 0, 0,
4380                                             false, S, E));
4381
4382    // If there's a pre-indexing writeback marker, '!', just add it as a token
4383    // operand.
4384    if (Parser.getTok().is(AsmToken::Exclaim)) {
4385      Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4386      Parser.Lex(); // Eat the '!'.
4387    }
4388
4389    return false;
4390  }
4391
4392  // The register offset is optionally preceded by a '+' or '-'
4393  bool isNegative = false;
4394  if (Parser.getTok().is(AsmToken::Minus)) {
4395    isNegative = true;
4396    Parser.Lex(); // Eat the '-'.
4397  } else if (Parser.getTok().is(AsmToken::Plus)) {
4398    // Nothing to do.
4399    Parser.Lex(); // Eat the '+'.
4400  }
4401
4402  E = Parser.getTok().getLoc();
4403  int OffsetRegNum = tryParseRegister();
4404  if (OffsetRegNum == -1)
4405    return Error(E, "register expected");
4406
4407  // If there's a shift operator, handle it.
4408  ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
4409  unsigned ShiftImm = 0;
4410  if (Parser.getTok().is(AsmToken::Comma)) {
4411    Parser.Lex(); // Eat the ','.
4412    if (parseMemRegOffsetShift(ShiftType, ShiftImm))
4413      return true;
4414  }
4415
4416  // Now we should have the closing ']'
4417  if (Parser.getTok().isNot(AsmToken::RBrac))
4418    return Error(Parser.getTok().getLoc(), "']' expected");
4419  E = Parser.getTok().getEndLoc();
4420  Parser.Lex(); // Eat right bracket token.
4421
4422  Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, OffsetRegNum,
4423                                           ShiftType, ShiftImm, 0, isNegative,
4424                                           S, E));
4425
4426  // If there's a pre-indexing writeback marker, '!', just add it as a token
4427  // operand.
4428  if (Parser.getTok().is(AsmToken::Exclaim)) {
4429    Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4430    Parser.Lex(); // Eat the '!'.
4431  }
4432
4433  return false;
4434}
4435
4436/// parseMemRegOffsetShift - one of these two:
4437///   ( lsl | lsr | asr | ror ) , # shift_amount
4438///   rrx
4439/// return true if it parses a shift otherwise it returns false.
4440bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
4441                                          unsigned &Amount) {
4442  SMLoc Loc = Parser.getTok().getLoc();
4443  const AsmToken &Tok = Parser.getTok();
4444  if (Tok.isNot(AsmToken::Identifier))
4445    return true;
4446  StringRef ShiftName = Tok.getString();
4447  if (ShiftName == "lsl" || ShiftName == "LSL" ||
4448      ShiftName == "asl" || ShiftName == "ASL")
4449    St = ARM_AM::lsl;
4450  else if (ShiftName == "lsr" || ShiftName == "LSR")
4451    St = ARM_AM::lsr;
4452  else if (ShiftName == "asr" || ShiftName == "ASR")
4453    St = ARM_AM::asr;
4454  else if (ShiftName == "ror" || ShiftName == "ROR")
4455    St = ARM_AM::ror;
4456  else if (ShiftName == "rrx" || ShiftName == "RRX")
4457    St = ARM_AM::rrx;
4458  else
4459    return Error(Loc, "illegal shift operator");
4460  Parser.Lex(); // Eat shift type token.
4461
4462  // rrx stands alone.
4463  Amount = 0;
4464  if (St != ARM_AM::rrx) {
4465    Loc = Parser.getTok().getLoc();
4466    // A '#' and a shift amount.
4467    const AsmToken &HashTok = Parser.getTok();
4468    if (HashTok.isNot(AsmToken::Hash) &&
4469        HashTok.isNot(AsmToken::Dollar))
4470      return Error(HashTok.getLoc(), "'#' expected");
4471    Parser.Lex(); // Eat hash token.
4472
4473    const MCExpr *Expr;
4474    if (getParser().parseExpression(Expr))
4475      return true;
4476    // Range check the immediate.
4477    // lsl, ror: 0 <= imm <= 31
4478    // lsr, asr: 0 <= imm <= 32
4479    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
4480    if (!CE)
4481      return Error(Loc, "shift amount must be an immediate");
4482    int64_t Imm = CE->getValue();
4483    if (Imm < 0 ||
4484        ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
4485        ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
4486      return Error(Loc, "immediate shift value out of range");
4487    // If <ShiftTy> #0, turn it into a no_shift.
4488    if (Imm == 0)
4489      St = ARM_AM::lsl;
4490    // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
4491    if (Imm == 32)
4492      Imm = 0;
4493    Amount = Imm;
4494  }
4495
4496  return false;
4497}
4498
4499/// parseFPImm - A floating point immediate expression operand.
4500ARMAsmParser::OperandMatchResultTy ARMAsmParser::
4501parseFPImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4502  // Anything that can accept a floating point constant as an operand
4503  // needs to go through here, as the regular parseExpression is
4504  // integer only.
4505  //
4506  // This routine still creates a generic Immediate operand, containing
4507  // a bitcast of the 64-bit floating point value. The various operands
4508  // that accept floats can check whether the value is valid for them
4509  // via the standard is*() predicates.
4510
4511  SMLoc S = Parser.getTok().getLoc();
4512
4513  if (Parser.getTok().isNot(AsmToken::Hash) &&
4514      Parser.getTok().isNot(AsmToken::Dollar))
4515    return MatchOperand_NoMatch;
4516
4517  // Disambiguate the VMOV forms that can accept an FP immediate.
4518  // vmov.f32 <sreg>, #imm
4519  // vmov.f64 <dreg>, #imm
4520  // vmov.f32 <dreg>, #imm  @ vector f32x2
4521  // vmov.f32 <qreg>, #imm  @ vector f32x4
4522  //
4523  // There are also the NEON VMOV instructions which expect an
4524  // integer constant. Make sure we don't try to parse an FPImm
4525  // for these:
4526  // vmov.i{8|16|32|64} <dreg|qreg>, #imm
4527  ARMOperand *TyOp = static_cast<ARMOperand*>(Operands[2]);
4528  if (!TyOp->isToken() || (TyOp->getToken() != ".f32" &&
4529                           TyOp->getToken() != ".f64"))
4530    return MatchOperand_NoMatch;
4531
4532  Parser.Lex(); // Eat the '#'.
4533
4534  // Handle negation, as that still comes through as a separate token.
4535  bool isNegative = false;
4536  if (Parser.getTok().is(AsmToken::Minus)) {
4537    isNegative = true;
4538    Parser.Lex();
4539  }
4540  const AsmToken &Tok = Parser.getTok();
4541  SMLoc Loc = Tok.getLoc();
4542  if (Tok.is(AsmToken::Real)) {
4543    APFloat RealVal(APFloat::IEEEsingle, Tok.getString());
4544    uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
4545    // If we had a '-' in front, toggle the sign bit.
4546    IntVal ^= (uint64_t)isNegative << 31;
4547    Parser.Lex(); // Eat the token.
4548    Operands.push_back(ARMOperand::CreateImm(
4549          MCConstantExpr::Create(IntVal, getContext()),
4550          S, Parser.getTok().getLoc()));
4551    return MatchOperand_Success;
4552  }
4553  // Also handle plain integers. Instructions which allow floating point
4554  // immediates also allow a raw encoded 8-bit value.
4555  if (Tok.is(AsmToken::Integer)) {
4556    int64_t Val = Tok.getIntVal();
4557    Parser.Lex(); // Eat the token.
4558    if (Val > 255 || Val < 0) {
4559      Error(Loc, "encoded floating point value out of range");
4560      return MatchOperand_ParseFail;
4561    }
4562    double RealVal = ARM_AM::getFPImmFloat(Val);
4563    Val = APFloat(APFloat::IEEEdouble, RealVal).bitcastToAPInt().getZExtValue();
4564    Operands.push_back(ARMOperand::CreateImm(
4565        MCConstantExpr::Create(Val, getContext()), S,
4566        Parser.getTok().getLoc()));
4567    return MatchOperand_Success;
4568  }
4569
4570  Error(Loc, "invalid floating point immediate");
4571  return MatchOperand_ParseFail;
4572}
4573
4574/// Parse a arm instruction operand.  For now this parses the operand regardless
4575/// of the mnemonic.
4576bool ARMAsmParser::parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
4577                                StringRef Mnemonic) {
4578  SMLoc S, E;
4579
4580  // Check if the current operand has a custom associated parser, if so, try to
4581  // custom parse the operand, or fallback to the general approach.
4582  OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
4583  if (ResTy == MatchOperand_Success)
4584    return false;
4585  // If there wasn't a custom match, try the generic matcher below. Otherwise,
4586  // there was a match, but an error occurred, in which case, just return that
4587  // the operand parsing failed.
4588  if (ResTy == MatchOperand_ParseFail)
4589    return true;
4590
4591  switch (getLexer().getKind()) {
4592  default:
4593    Error(Parser.getTok().getLoc(), "unexpected token in operand");
4594    return true;
4595  case AsmToken::Identifier: {
4596    // If we've seen a branch mnemonic, the next operand must be a label.  This
4597    // is true even if the label is a register name.  So "br r1" means branch to
4598    // label "r1".
4599    bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl";
4600    if (!ExpectLabel) {
4601      if (!tryParseRegisterWithWriteBack(Operands))
4602        return false;
4603      int Res = tryParseShiftRegister(Operands);
4604      if (Res == 0) // success
4605        return false;
4606      else if (Res == -1) // irrecoverable error
4607        return true;
4608      // If this is VMRS, check for the apsr_nzcv operand.
4609      if (Mnemonic == "vmrs" &&
4610          Parser.getTok().getString().equals_lower("apsr_nzcv")) {
4611        S = Parser.getTok().getLoc();
4612        Parser.Lex();
4613        Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
4614        return false;
4615      }
4616    }
4617
4618    // Fall though for the Identifier case that is not a register or a
4619    // special name.
4620  }
4621  case AsmToken::LParen:  // parenthesized expressions like (_strcmp-4)
4622  case AsmToken::Integer: // things like 1f and 2b as a branch targets
4623  case AsmToken::String:  // quoted label names.
4624  case AsmToken::Dot: {   // . as a branch target
4625    // This was not a register so parse other operands that start with an
4626    // identifier (like labels) as expressions and create them as immediates.
4627    const MCExpr *IdVal;
4628    S = Parser.getTok().getLoc();
4629    if (getParser().parseExpression(IdVal))
4630      return true;
4631    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
4632    Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
4633    return false;
4634  }
4635  case AsmToken::LBrac:
4636    return parseMemory(Operands);
4637  case AsmToken::LCurly:
4638    return parseRegisterList(Operands);
4639  case AsmToken::Dollar:
4640  case AsmToken::Hash: {
4641    // #42 -> immediate.
4642    S = Parser.getTok().getLoc();
4643    Parser.Lex();
4644
4645    if (Parser.getTok().isNot(AsmToken::Colon)) {
4646      bool isNegative = Parser.getTok().is(AsmToken::Minus);
4647      const MCExpr *ImmVal;
4648      if (getParser().parseExpression(ImmVal))
4649        return true;
4650      const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
4651      if (CE) {
4652        int32_t Val = CE->getValue();
4653        if (isNegative && Val == 0)
4654          ImmVal = MCConstantExpr::Create(INT32_MIN, getContext());
4655      }
4656      E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
4657      Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
4658
4659      // There can be a trailing '!' on operands that we want as a separate
4660      // '!' Token operand. Handle that here. For example, the compatibilty
4661      // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
4662      if (Parser.getTok().is(AsmToken::Exclaim)) {
4663        Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(),
4664                                                   Parser.getTok().getLoc()));
4665        Parser.Lex(); // Eat exclaim token
4666      }
4667      return false;
4668    }
4669    // w/ a ':' after the '#', it's just like a plain ':'.
4670    // FALLTHROUGH
4671  }
4672  case AsmToken::Colon: {
4673    // ":lower16:" and ":upper16:" expression prefixes
4674    // FIXME: Check it's an expression prefix,
4675    // e.g. (FOO - :lower16:BAR) isn't legal.
4676    ARMMCExpr::VariantKind RefKind;
4677    if (parsePrefix(RefKind))
4678      return true;
4679
4680    const MCExpr *SubExprVal;
4681    if (getParser().parseExpression(SubExprVal))
4682      return true;
4683
4684    const MCExpr *ExprVal = ARMMCExpr::Create(RefKind, SubExprVal,
4685                                              getContext());
4686    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
4687    Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
4688    return false;
4689  }
4690  }
4691}
4692
4693// parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
4694//  :lower16: and :upper16:.
4695bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
4696  RefKind = ARMMCExpr::VK_ARM_None;
4697
4698  // :lower16: and :upper16: modifiers
4699  assert(getLexer().is(AsmToken::Colon) && "expected a :");
4700  Parser.Lex(); // Eat ':'
4701
4702  if (getLexer().isNot(AsmToken::Identifier)) {
4703    Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
4704    return true;
4705  }
4706
4707  StringRef IDVal = Parser.getTok().getIdentifier();
4708  if (IDVal == "lower16") {
4709    RefKind = ARMMCExpr::VK_ARM_LO16;
4710  } else if (IDVal == "upper16") {
4711    RefKind = ARMMCExpr::VK_ARM_HI16;
4712  } else {
4713    Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
4714    return true;
4715  }
4716  Parser.Lex();
4717
4718  if (getLexer().isNot(AsmToken::Colon)) {
4719    Error(Parser.getTok().getLoc(), "unexpected token after prefix");
4720    return true;
4721  }
4722  Parser.Lex(); // Eat the last ':'
4723  return false;
4724}
4725
4726/// \brief Given a mnemonic, split out possible predication code and carry
4727/// setting letters to form a canonical mnemonic and flags.
4728//
4729// FIXME: Would be nice to autogen this.
4730// FIXME: This is a bit of a maze of special cases.
4731StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
4732                                      unsigned &PredicationCode,
4733                                      bool &CarrySetting,
4734                                      unsigned &ProcessorIMod,
4735                                      StringRef &ITMask) {
4736  PredicationCode = ARMCC::AL;
4737  CarrySetting = false;
4738  ProcessorIMod = 0;
4739
4740  // Ignore some mnemonics we know aren't predicated forms.
4741  //
4742  // FIXME: Would be nice to autogen this.
4743  if ((Mnemonic == "movs" && isThumb()) ||
4744      Mnemonic == "teq"   || Mnemonic == "vceq"   || Mnemonic == "svc"   ||
4745      Mnemonic == "mls"   || Mnemonic == "smmls"  || Mnemonic == "vcls"  ||
4746      Mnemonic == "vmls"  || Mnemonic == "vnmls"  || Mnemonic == "vacge" ||
4747      Mnemonic == "vcge"  || Mnemonic == "vclt"   || Mnemonic == "vacgt" ||
4748      Mnemonic == "vcgt"  || Mnemonic == "vcle"   || Mnemonic == "smlal" ||
4749      Mnemonic == "umaal" || Mnemonic == "umlal"  || Mnemonic == "vabal" ||
4750      Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
4751      Mnemonic == "fmuls")
4752    return Mnemonic;
4753
4754  // First, split out any predication code. Ignore mnemonics we know aren't
4755  // predicated but do have a carry-set and so weren't caught above.
4756  if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
4757      Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
4758      Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
4759      Mnemonic != "sbcs" && Mnemonic != "rscs") {
4760    unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2))
4761      .Case("eq", ARMCC::EQ)
4762      .Case("ne", ARMCC::NE)
4763      .Case("hs", ARMCC::HS)
4764      .Case("cs", ARMCC::HS)
4765      .Case("lo", ARMCC::LO)
4766      .Case("cc", ARMCC::LO)
4767      .Case("mi", ARMCC::MI)
4768      .Case("pl", ARMCC::PL)
4769      .Case("vs", ARMCC::VS)
4770      .Case("vc", ARMCC::VC)
4771      .Case("hi", ARMCC::HI)
4772      .Case("ls", ARMCC::LS)
4773      .Case("ge", ARMCC::GE)
4774      .Case("lt", ARMCC::LT)
4775      .Case("gt", ARMCC::GT)
4776      .Case("le", ARMCC::LE)
4777      .Case("al", ARMCC::AL)
4778      .Default(~0U);
4779    if (CC != ~0U) {
4780      Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
4781      PredicationCode = CC;
4782    }
4783  }
4784
4785  // Next, determine if we have a carry setting bit. We explicitly ignore all
4786  // the instructions we know end in 's'.
4787  if (Mnemonic.endswith("s") &&
4788      !(Mnemonic == "cps" || Mnemonic == "mls" ||
4789        Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
4790        Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
4791        Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
4792        Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
4793        Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
4794        Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
4795        Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
4796        Mnemonic == "vfms" || Mnemonic == "vfnms" ||
4797        (Mnemonic == "movs" && isThumb()))) {
4798    Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
4799    CarrySetting = true;
4800  }
4801
4802  // The "cps" instruction can have a interrupt mode operand which is glued into
4803  // the mnemonic. Check if this is the case, split it and parse the imod op
4804  if (Mnemonic.startswith("cps")) {
4805    // Split out any imod code.
4806    unsigned IMod =
4807      StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
4808      .Case("ie", ARM_PROC::IE)
4809      .Case("id", ARM_PROC::ID)
4810      .Default(~0U);
4811    if (IMod != ~0U) {
4812      Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
4813      ProcessorIMod = IMod;
4814    }
4815  }
4816
4817  // The "it" instruction has the condition mask on the end of the mnemonic.
4818  if (Mnemonic.startswith("it")) {
4819    ITMask = Mnemonic.slice(2, Mnemonic.size());
4820    Mnemonic = Mnemonic.slice(0, 2);
4821  }
4822
4823  return Mnemonic;
4824}
4825
4826/// \brief Given a canonical mnemonic, determine if the instruction ever allows
4827/// inclusion of carry set or predication code operands.
4828//
4829// FIXME: It would be nice to autogen this.
4830void ARMAsmParser::
4831getMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
4832                      bool &CanAcceptPredicationCode) {
4833  if (Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
4834      Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
4835      Mnemonic == "add" || Mnemonic == "adc" ||
4836      Mnemonic == "mul" || Mnemonic == "bic" || Mnemonic == "asr" ||
4837      Mnemonic == "orr" || Mnemonic == "mvn" ||
4838      Mnemonic == "rsb" || Mnemonic == "rsc" || Mnemonic == "orn" ||
4839      Mnemonic == "sbc" || Mnemonic == "eor" || Mnemonic == "neg" ||
4840      Mnemonic == "vfm" || Mnemonic == "vfnm" ||
4841      (!isThumb() && (Mnemonic == "smull" || Mnemonic == "mov" ||
4842                      Mnemonic == "mla" || Mnemonic == "smlal" ||
4843                      Mnemonic == "umlal" || Mnemonic == "umull"))) {
4844    CanAcceptCarrySet = true;
4845  } else
4846    CanAcceptCarrySet = false;
4847
4848  if (Mnemonic == "cbnz" || Mnemonic == "setend" || Mnemonic == "dmb" ||
4849      Mnemonic == "cps" || Mnemonic == "mcr2" || Mnemonic == "it" ||
4850      Mnemonic == "mcrr2" || Mnemonic == "cbz" || Mnemonic == "cdp2" ||
4851      Mnemonic == "trap" || Mnemonic == "mrc2" || Mnemonic == "mrrc2" ||
4852      Mnemonic == "dsb" || Mnemonic == "isb" || Mnemonic == "setend" ||
4853      (Mnemonic == "clrex" && !isThumb()) ||
4854      (Mnemonic == "nop" && isThumbOne()) ||
4855      ((Mnemonic == "pld" || Mnemonic == "pli" || Mnemonic == "pldw" ||
4856        Mnemonic == "ldc2" || Mnemonic == "ldc2l" ||
4857        Mnemonic == "stc2" || Mnemonic == "stc2l") && !isThumb()) ||
4858      ((Mnemonic.startswith("rfe") || Mnemonic.startswith("srs")) &&
4859       !isThumb()) ||
4860      Mnemonic.startswith("cps") || (Mnemonic == "movs" && isThumbOne())) {
4861    CanAcceptPredicationCode = false;
4862  } else
4863    CanAcceptPredicationCode = true;
4864
4865  if (isThumb()) {
4866    if (Mnemonic == "bkpt" || Mnemonic == "mcr" || Mnemonic == "mcrr" ||
4867        Mnemonic == "mrc" || Mnemonic == "mrrc" || Mnemonic == "cdp")
4868      CanAcceptPredicationCode = false;
4869  }
4870}
4871
4872bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
4873                               SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4874  // FIXME: This is all horribly hacky. We really need a better way to deal
4875  // with optional operands like this in the matcher table.
4876
4877  // The 'mov' mnemonic is special. One variant has a cc_out operand, while
4878  // another does not. Specifically, the MOVW instruction does not. So we
4879  // special case it here and remove the defaulted (non-setting) cc_out
4880  // operand if that's the instruction we're trying to match.
4881  //
4882  // We do this as post-processing of the explicit operands rather than just
4883  // conditionally adding the cc_out in the first place because we need
4884  // to check the type of the parsed immediate operand.
4885  if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
4886      !static_cast<ARMOperand*>(Operands[4])->isARMSOImm() &&
4887      static_cast<ARMOperand*>(Operands[4])->isImm0_65535Expr() &&
4888      static_cast<ARMOperand*>(Operands[1])->getReg() == 0)
4889    return true;
4890
4891  // Register-register 'add' for thumb does not have a cc_out operand
4892  // when there are only two register operands.
4893  if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
4894      static_cast<ARMOperand*>(Operands[3])->isReg() &&
4895      static_cast<ARMOperand*>(Operands[4])->isReg() &&
4896      static_cast<ARMOperand*>(Operands[1])->getReg() == 0)
4897    return true;
4898  // Register-register 'add' for thumb does not have a cc_out operand
4899  // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
4900  // have to check the immediate range here since Thumb2 has a variant
4901  // that can handle a different range and has a cc_out operand.
4902  if (((isThumb() && Mnemonic == "add") ||
4903       (isThumbTwo() && Mnemonic == "sub")) &&
4904      Operands.size() == 6 &&
4905      static_cast<ARMOperand*>(Operands[3])->isReg() &&
4906      static_cast<ARMOperand*>(Operands[4])->isReg() &&
4907      static_cast<ARMOperand*>(Operands[4])->getReg() == ARM::SP &&
4908      static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
4909      ((Mnemonic == "add" &&static_cast<ARMOperand*>(Operands[5])->isReg()) ||
4910       static_cast<ARMOperand*>(Operands[5])->isImm0_1020s4()))
4911    return true;
4912  // For Thumb2, add/sub immediate does not have a cc_out operand for the
4913  // imm0_4095 variant. That's the least-preferred variant when
4914  // selecting via the generic "add" mnemonic, so to know that we
4915  // should remove the cc_out operand, we have to explicitly check that
4916  // it's not one of the other variants. Ugh.
4917  if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
4918      Operands.size() == 6 &&
4919      static_cast<ARMOperand*>(Operands[3])->isReg() &&
4920      static_cast<ARMOperand*>(Operands[4])->isReg() &&
4921      static_cast<ARMOperand*>(Operands[5])->isImm()) {
4922    // Nest conditions rather than one big 'if' statement for readability.
4923    //
4924    // If either register is a high reg, it's either one of the SP
4925    // variants (handled above) or a 32-bit encoding, so we just
4926    // check against T3. If the second register is the PC, this is an
4927    // alternate form of ADR, which uses encoding T4, so check for that too.
4928    if ((!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
4929         !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg())) &&
4930        static_cast<ARMOperand*>(Operands[4])->getReg() != ARM::PC &&
4931        static_cast<ARMOperand*>(Operands[5])->isT2SOImm())
4932      return false;
4933    // If both registers are low, we're in an IT block, and the immediate is
4934    // in range, we should use encoding T1 instead, which has a cc_out.
4935    if (inITBlock() &&
4936        isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) &&
4937        isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) &&
4938        static_cast<ARMOperand*>(Operands[5])->isImm0_7())
4939      return false;
4940
4941    // Otherwise, we use encoding T4, which does not have a cc_out
4942    // operand.
4943    return true;
4944  }
4945
4946  // The thumb2 multiply instruction doesn't have a CCOut register, so
4947  // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
4948  // use the 16-bit encoding or not.
4949  if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
4950      static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
4951      static_cast<ARMOperand*>(Operands[3])->isReg() &&
4952      static_cast<ARMOperand*>(Operands[4])->isReg() &&
4953      static_cast<ARMOperand*>(Operands[5])->isReg() &&
4954      // If the registers aren't low regs, the destination reg isn't the
4955      // same as one of the source regs, or the cc_out operand is zero
4956      // outside of an IT block, we have to use the 32-bit encoding, so
4957      // remove the cc_out operand.
4958      (!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
4959       !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) ||
4960       !isARMLowRegister(static_cast<ARMOperand*>(Operands[5])->getReg()) ||
4961       !inITBlock() ||
4962       (static_cast<ARMOperand*>(Operands[3])->getReg() !=
4963        static_cast<ARMOperand*>(Operands[5])->getReg() &&
4964        static_cast<ARMOperand*>(Operands[3])->getReg() !=
4965        static_cast<ARMOperand*>(Operands[4])->getReg())))
4966    return true;
4967
4968  // Also check the 'mul' syntax variant that doesn't specify an explicit
4969  // destination register.
4970  if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
4971      static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
4972      static_cast<ARMOperand*>(Operands[3])->isReg() &&
4973      static_cast<ARMOperand*>(Operands[4])->isReg() &&
4974      // If the registers aren't low regs  or the cc_out operand is zero
4975      // outside of an IT block, we have to use the 32-bit encoding, so
4976      // remove the cc_out operand.
4977      (!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
4978       !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) ||
4979       !inITBlock()))
4980    return true;
4981
4982
4983
4984  // Register-register 'add/sub' for thumb does not have a cc_out operand
4985  // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
4986  // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
4987  // right, this will result in better diagnostics (which operand is off)
4988  // anyway.
4989  if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
4990      (Operands.size() == 5 || Operands.size() == 6) &&
4991      static_cast<ARMOperand*>(Operands[3])->isReg() &&
4992      static_cast<ARMOperand*>(Operands[3])->getReg() == ARM::SP &&
4993      static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
4994      (static_cast<ARMOperand*>(Operands[4])->isImm() ||
4995       (Operands.size() == 6 &&
4996        static_cast<ARMOperand*>(Operands[5])->isImm())))
4997    return true;
4998
4999  return false;
5000}
5001
5002static bool isDataTypeToken(StringRef Tok) {
5003  return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
5004    Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
5005    Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
5006    Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
5007    Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
5008    Tok == ".f" || Tok == ".d";
5009}
5010
5011// FIXME: This bit should probably be handled via an explicit match class
5012// in the .td files that matches the suffix instead of having it be
5013// a literal string token the way it is now.
5014static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
5015  return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
5016}
5017
5018static void applyMnemonicAliases(StringRef &Mnemonic, unsigned Features);
5019/// Parse an arm instruction mnemonic followed by its operands.
5020bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
5021                                    SMLoc NameLoc,
5022                               SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
5023  // Apply mnemonic aliases before doing anything else, as the destination
5024  // mnemnonic may include suffices and we want to handle them normally.
5025  // The generic tblgen'erated code does this later, at the start of
5026  // MatchInstructionImpl(), but that's too late for aliases that include
5027  // any sort of suffix.
5028  unsigned AvailableFeatures = getAvailableFeatures();
5029  applyMnemonicAliases(Name, AvailableFeatures);
5030
5031  // First check for the ARM-specific .req directive.
5032  if (Parser.getTok().is(AsmToken::Identifier) &&
5033      Parser.getTok().getIdentifier() == ".req") {
5034    parseDirectiveReq(Name, NameLoc);
5035    // We always return 'error' for this, as we're done with this
5036    // statement and don't need to match the 'instruction."
5037    return true;
5038  }
5039
5040  // Create the leading tokens for the mnemonic, split by '.' characters.
5041  size_t Start = 0, Next = Name.find('.');
5042  StringRef Mnemonic = Name.slice(Start, Next);
5043
5044  // Split out the predication code and carry setting flag from the mnemonic.
5045  unsigned PredicationCode;
5046  unsigned ProcessorIMod;
5047  bool CarrySetting;
5048  StringRef ITMask;
5049  Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting,
5050                           ProcessorIMod, ITMask);
5051
5052  // In Thumb1, only the branch (B) instruction can be predicated.
5053  if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
5054    Parser.eatToEndOfStatement();
5055    return Error(NameLoc, "conditional execution not supported in Thumb1");
5056  }
5057
5058  Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
5059
5060  // Handle the IT instruction ITMask. Convert it to a bitmask. This
5061  // is the mask as it will be for the IT encoding if the conditional
5062  // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case
5063  // where the conditional bit0 is zero, the instruction post-processing
5064  // will adjust the mask accordingly.
5065  if (Mnemonic == "it") {
5066    SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2);
5067    if (ITMask.size() > 3) {
5068      Parser.eatToEndOfStatement();
5069      return Error(Loc, "too many conditions on IT instruction");
5070    }
5071    unsigned Mask = 8;
5072    for (unsigned i = ITMask.size(); i != 0; --i) {
5073      char pos = ITMask[i - 1];
5074      if (pos != 't' && pos != 'e') {
5075        Parser.eatToEndOfStatement();
5076        return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
5077      }
5078      Mask >>= 1;
5079      if (ITMask[i - 1] == 't')
5080        Mask |= 8;
5081    }
5082    Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
5083  }
5084
5085  // FIXME: This is all a pretty gross hack. We should automatically handle
5086  // optional operands like this via tblgen.
5087
5088  // Next, add the CCOut and ConditionCode operands, if needed.
5089  //
5090  // For mnemonics which can ever incorporate a carry setting bit or predication
5091  // code, our matching model involves us always generating CCOut and
5092  // ConditionCode operands to match the mnemonic "as written" and then we let
5093  // the matcher deal with finding the right instruction or generating an
5094  // appropriate error.
5095  bool CanAcceptCarrySet, CanAcceptPredicationCode;
5096  getMnemonicAcceptInfo(Mnemonic, CanAcceptCarrySet, CanAcceptPredicationCode);
5097
5098  // If we had a carry-set on an instruction that can't do that, issue an
5099  // error.
5100  if (!CanAcceptCarrySet && CarrySetting) {
5101    Parser.eatToEndOfStatement();
5102    return Error(NameLoc, "instruction '" + Mnemonic +
5103                 "' can not set flags, but 's' suffix specified");
5104  }
5105  // If we had a predication code on an instruction that can't do that, issue an
5106  // error.
5107  if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
5108    Parser.eatToEndOfStatement();
5109    return Error(NameLoc, "instruction '" + Mnemonic +
5110                 "' is not predicable, but condition code specified");
5111  }
5112
5113  // Add the carry setting operand, if necessary.
5114  if (CanAcceptCarrySet) {
5115    SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
5116    Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
5117                                               Loc));
5118  }
5119
5120  // Add the predication code operand, if necessary.
5121  if (CanAcceptPredicationCode) {
5122    SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
5123                                      CarrySetting);
5124    Operands.push_back(ARMOperand::CreateCondCode(
5125                         ARMCC::CondCodes(PredicationCode), Loc));
5126  }
5127
5128  // Add the processor imod operand, if necessary.
5129  if (ProcessorIMod) {
5130    Operands.push_back(ARMOperand::CreateImm(
5131          MCConstantExpr::Create(ProcessorIMod, getContext()),
5132                                 NameLoc, NameLoc));
5133  }
5134
5135  // Add the remaining tokens in the mnemonic.
5136  while (Next != StringRef::npos) {
5137    Start = Next;
5138    Next = Name.find('.', Start + 1);
5139    StringRef ExtraToken = Name.slice(Start, Next);
5140
5141    // Some NEON instructions have an optional datatype suffix that is
5142    // completely ignored. Check for that.
5143    if (isDataTypeToken(ExtraToken) &&
5144        doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
5145      continue;
5146
5147    if (ExtraToken != ".n") {
5148      SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
5149      Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
5150    }
5151  }
5152
5153  // Read the remaining operands.
5154  if (getLexer().isNot(AsmToken::EndOfStatement)) {
5155    // Read the first operand.
5156    if (parseOperand(Operands, Mnemonic)) {
5157      Parser.eatToEndOfStatement();
5158      return true;
5159    }
5160
5161    while (getLexer().is(AsmToken::Comma)) {
5162      Parser.Lex();  // Eat the comma.
5163
5164      // Parse and remember the operand.
5165      if (parseOperand(Operands, Mnemonic)) {
5166        Parser.eatToEndOfStatement();
5167        return true;
5168      }
5169    }
5170  }
5171
5172  if (getLexer().isNot(AsmToken::EndOfStatement)) {
5173    SMLoc Loc = getLexer().getLoc();
5174    Parser.eatToEndOfStatement();
5175    return Error(Loc, "unexpected token in argument list");
5176  }
5177
5178  Parser.Lex(); // Consume the EndOfStatement
5179
5180  // Some instructions, mostly Thumb, have forms for the same mnemonic that
5181  // do and don't have a cc_out optional-def operand. With some spot-checks
5182  // of the operand list, we can figure out which variant we're trying to
5183  // parse and adjust accordingly before actually matching. We shouldn't ever
5184  // try to remove a cc_out operand that was explicitly set on the the
5185  // mnemonic, of course (CarrySetting == true). Reason number #317 the
5186  // table driven matcher doesn't fit well with the ARM instruction set.
5187  if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) {
5188    ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
5189    Operands.erase(Operands.begin() + 1);
5190    delete Op;
5191  }
5192
5193  // ARM mode 'blx' need special handling, as the register operand version
5194  // is predicable, but the label operand version is not. So, we can't rely
5195  // on the Mnemonic based checking to correctly figure out when to put
5196  // a k_CondCode operand in the list. If we're trying to match the label
5197  // version, remove the k_CondCode operand here.
5198  if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
5199      static_cast<ARMOperand*>(Operands[2])->isImm()) {
5200    ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
5201    Operands.erase(Operands.begin() + 1);
5202    delete Op;
5203  }
5204
5205  // Adjust operands of ldrexd/strexd to MCK_GPRPair.
5206  // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
5207  // a single GPRPair reg operand is used in the .td file to replace the two
5208  // GPRs. However, when parsing from asm, the two GRPs cannot be automatically
5209  // expressed as a GPRPair, so we have to manually merge them.
5210  // FIXME: We would really like to be able to tablegen'erate this.
5211  if (!isThumb() && Operands.size() > 4 &&
5212      (Mnemonic == "ldrexd" || Mnemonic == "strexd")) {
5213    bool isLoad = (Mnemonic == "ldrexd");
5214    unsigned Idx = isLoad ? 2 : 3;
5215    ARMOperand* Op1 = static_cast<ARMOperand*>(Operands[Idx]);
5216    ARMOperand* Op2 = static_cast<ARMOperand*>(Operands[Idx+1]);
5217
5218    const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID);
5219    // Adjust only if Op1 and Op2 are GPRs.
5220    if (Op1->isReg() && Op2->isReg() && MRC.contains(Op1->getReg()) &&
5221        MRC.contains(Op2->getReg())) {
5222      unsigned Reg1 = Op1->getReg();
5223      unsigned Reg2 = Op2->getReg();
5224      unsigned Rt = MRI->getEncodingValue(Reg1);
5225      unsigned Rt2 = MRI->getEncodingValue(Reg2);
5226
5227      // Rt2 must be Rt + 1 and Rt must be even.
5228      if (Rt + 1 != Rt2 || (Rt & 1)) {
5229        Error(Op2->getStartLoc(), isLoad ?
5230            "destination operands must be sequential" :
5231            "source operands must be sequential");
5232        return true;
5233      }
5234      unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0,
5235          &(MRI->getRegClass(ARM::GPRPairRegClassID)));
5236      Operands.erase(Operands.begin() + Idx, Operands.begin() + Idx + 2);
5237      Operands.insert(Operands.begin() + Idx, ARMOperand::CreateReg(
5238            NewReg, Op1->getStartLoc(), Op2->getEndLoc()));
5239      delete Op1;
5240      delete Op2;
5241    }
5242  }
5243
5244  return false;
5245}
5246
5247// Validate context-sensitive operand constraints.
5248
5249// return 'true' if register list contains non-low GPR registers,
5250// 'false' otherwise. If Reg is in the register list or is HiReg, set
5251// 'containsReg' to true.
5252static bool checkLowRegisterList(MCInst Inst, unsigned OpNo, unsigned Reg,
5253                                 unsigned HiReg, bool &containsReg) {
5254  containsReg = false;
5255  for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
5256    unsigned OpReg = Inst.getOperand(i).getReg();
5257    if (OpReg == Reg)
5258      containsReg = true;
5259    // Anything other than a low register isn't legal here.
5260    if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
5261      return true;
5262  }
5263  return false;
5264}
5265
5266// Check if the specified regisgter is in the register list of the inst,
5267// starting at the indicated operand number.
5268static bool listContainsReg(MCInst &Inst, unsigned OpNo, unsigned Reg) {
5269  for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
5270    unsigned OpReg = Inst.getOperand(i).getReg();
5271    if (OpReg == Reg)
5272      return true;
5273  }
5274  return false;
5275}
5276
5277// FIXME: We would really prefer to have MCInstrInfo (the wrapper around
5278// the ARMInsts array) instead. Getting that here requires awkward
5279// API changes, though. Better way?
5280namespace llvm {
5281extern const MCInstrDesc ARMInsts[];
5282}
5283static const MCInstrDesc &getInstDesc(unsigned Opcode) {
5284  return ARMInsts[Opcode];
5285}
5286
5287// FIXME: We would really like to be able to tablegen'erate this.
5288bool ARMAsmParser::
5289validateInstruction(MCInst &Inst,
5290                    const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
5291  const MCInstrDesc &MCID = getInstDesc(Inst.getOpcode());
5292  SMLoc Loc = Operands[0]->getStartLoc();
5293  // Check the IT block state first.
5294  // NOTE: BKPT instruction has the interesting property of being
5295  // allowed in IT blocks, but not being predicable.  It just always
5296  // executes.
5297  if (inITBlock() && Inst.getOpcode() != ARM::tBKPT &&
5298      Inst.getOpcode() != ARM::BKPT) {
5299    unsigned bit = 1;
5300    if (ITState.FirstCond)
5301      ITState.FirstCond = false;
5302    else
5303      bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1;
5304    // The instruction must be predicable.
5305    if (!MCID.isPredicable())
5306      return Error(Loc, "instructions in IT block must be predicable");
5307    unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm();
5308    unsigned ITCond = bit ? ITState.Cond :
5309      ARMCC::getOppositeCondition(ITState.Cond);
5310    if (Cond != ITCond) {
5311      // Find the condition code Operand to get its SMLoc information.
5312      SMLoc CondLoc;
5313      for (unsigned i = 1; i < Operands.size(); ++i)
5314        if (static_cast<ARMOperand*>(Operands[i])->isCondCode())
5315          CondLoc = Operands[i]->getStartLoc();
5316      return Error(CondLoc, "incorrect condition in IT block; got '" +
5317                   StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) +
5318                   "', but expected '" +
5319                   ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'");
5320    }
5321  // Check for non-'al' condition codes outside of the IT block.
5322  } else if (isThumbTwo() && MCID.isPredicable() &&
5323             Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
5324             ARMCC::AL && Inst.getOpcode() != ARM::tB &&
5325             Inst.getOpcode() != ARM::t2B)
5326    return Error(Loc, "predicated instructions must be in IT block");
5327
5328  switch (Inst.getOpcode()) {
5329  case ARM::LDRD:
5330  case ARM::LDRD_PRE:
5331  case ARM::LDRD_POST: {
5332    // Rt2 must be Rt + 1.
5333    unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
5334    unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
5335    if (Rt2 != Rt + 1)
5336      return Error(Operands[3]->getStartLoc(),
5337                   "destination operands must be sequential");
5338    return false;
5339  }
5340  case ARM::STRD: {
5341    // Rt2 must be Rt + 1.
5342    unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
5343    unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
5344    if (Rt2 != Rt + 1)
5345      return Error(Operands[3]->getStartLoc(),
5346                   "source operands must be sequential");
5347    return false;
5348  }
5349  case ARM::STRD_PRE:
5350  case ARM::STRD_POST: {
5351    // Rt2 must be Rt + 1.
5352    unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
5353    unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg());
5354    if (Rt2 != Rt + 1)
5355      return Error(Operands[3]->getStartLoc(),
5356                   "source operands must be sequential");
5357    return false;
5358  }
5359  case ARM::SBFX:
5360  case ARM::UBFX: {
5361    // width must be in range [1, 32-lsb]
5362    unsigned lsb = Inst.getOperand(2).getImm();
5363    unsigned widthm1 = Inst.getOperand(3).getImm();
5364    if (widthm1 >= 32 - lsb)
5365      return Error(Operands[5]->getStartLoc(),
5366                   "bitfield width must be in range [1,32-lsb]");
5367    return false;
5368  }
5369  case ARM::tLDMIA: {
5370    // If we're parsing Thumb2, the .w variant is available and handles
5371    // most cases that are normally illegal for a Thumb1 LDM
5372    // instruction. We'll make the transformation in processInstruction()
5373    // if necessary.
5374    //
5375    // Thumb LDM instructions are writeback iff the base register is not
5376    // in the register list.
5377    unsigned Rn = Inst.getOperand(0).getReg();
5378    bool hasWritebackToken =
5379      (static_cast<ARMOperand*>(Operands[3])->isToken() &&
5380       static_cast<ARMOperand*>(Operands[3])->getToken() == "!");
5381    bool listContainsBase;
5382    if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) && !isThumbTwo())
5383      return Error(Operands[3 + hasWritebackToken]->getStartLoc(),
5384                   "registers must be in range r0-r7");
5385    // If we should have writeback, then there should be a '!' token.
5386    if (!listContainsBase && !hasWritebackToken && !isThumbTwo())
5387      return Error(Operands[2]->getStartLoc(),
5388                   "writeback operator '!' expected");
5389    // If we should not have writeback, there must not be a '!'. This is
5390    // true even for the 32-bit wide encodings.
5391    if (listContainsBase && hasWritebackToken)
5392      return Error(Operands[3]->getStartLoc(),
5393                   "writeback operator '!' not allowed when base register "
5394                   "in register list");
5395
5396    break;
5397  }
5398  case ARM::t2LDMIA_UPD: {
5399    if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
5400      return Error(Operands[4]->getStartLoc(),
5401                   "writeback operator '!' not allowed when base register "
5402                   "in register list");
5403    break;
5404  }
5405  case ARM::tMUL: {
5406    // The second source operand must be the same register as the destination
5407    // operand.
5408    //
5409    // In this case, we must directly check the parsed operands because the
5410    // cvtThumbMultiply() function is written in such a way that it guarantees
5411    // this first statement is always true for the new Inst.  Essentially, the
5412    // destination is unconditionally copied into the second source operand
5413    // without checking to see if it matches what we actually parsed.
5414    if (Operands.size() == 6 &&
5415        (((ARMOperand*)Operands[3])->getReg() !=
5416         ((ARMOperand*)Operands[5])->getReg()) &&
5417        (((ARMOperand*)Operands[3])->getReg() !=
5418         ((ARMOperand*)Operands[4])->getReg())) {
5419      return Error(Operands[3]->getStartLoc(),
5420                   "destination register must match source register");
5421    }
5422    break;
5423  }
5424  // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
5425  // so only issue a diagnostic for thumb1. The instructions will be
5426  // switched to the t2 encodings in processInstruction() if necessary.
5427  case ARM::tPOP: {
5428    bool listContainsBase;
5429    if (checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase) &&
5430        !isThumbTwo())
5431      return Error(Operands[2]->getStartLoc(),
5432                   "registers must be in range r0-r7 or pc");
5433    break;
5434  }
5435  case ARM::tPUSH: {
5436    bool listContainsBase;
5437    if (checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase) &&
5438        !isThumbTwo())
5439      return Error(Operands[2]->getStartLoc(),
5440                   "registers must be in range r0-r7 or lr");
5441    break;
5442  }
5443  case ARM::tSTMIA_UPD: {
5444    bool listContainsBase;
5445    if (checkLowRegisterList(Inst, 4, 0, 0, listContainsBase) && !isThumbTwo())
5446      return Error(Operands[4]->getStartLoc(),
5447                   "registers must be in range r0-r7");
5448    break;
5449  }
5450  case ARM::tADDrSP: {
5451    // If the non-SP source operand and the destination operand are not the
5452    // same, we need thumb2 (for the wide encoding), or we have an error.
5453    if (!isThumbTwo() &&
5454        Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
5455      return Error(Operands[4]->getStartLoc(),
5456                   "source register must be the same as destination");
5457    }
5458    break;
5459  }
5460  }
5461
5462  return false;
5463}
5464
5465static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
5466  switch(Opc) {
5467  default: llvm_unreachable("unexpected opcode!");
5468  // VST1LN
5469  case ARM::VST1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
5470  case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
5471  case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
5472  case ARM::VST1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
5473  case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
5474  case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
5475  case ARM::VST1LNdAsm_8:  Spacing = 1; return ARM::VST1LNd8;
5476  case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
5477  case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
5478
5479  // VST2LN
5480  case ARM::VST2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
5481  case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
5482  case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
5483  case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
5484  case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
5485
5486  case ARM::VST2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
5487  case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
5488  case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
5489  case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
5490  case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
5491
5492  case ARM::VST2LNdAsm_8:  Spacing = 1; return ARM::VST2LNd8;
5493  case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
5494  case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
5495  case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
5496  case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
5497
5498  // VST3LN
5499  case ARM::VST3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
5500  case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
5501  case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
5502  case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
5503  case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
5504  case ARM::VST3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
5505  case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
5506  case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
5507  case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
5508  case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
5509  case ARM::VST3LNdAsm_8:  Spacing = 1; return ARM::VST3LNd8;
5510  case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
5511  case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
5512  case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
5513  case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
5514
5515  // VST3
5516  case ARM::VST3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
5517  case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
5518  case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
5519  case ARM::VST3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
5520  case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
5521  case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
5522  case ARM::VST3dWB_register_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
5523  case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
5524  case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
5525  case ARM::VST3qWB_register_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
5526  case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
5527  case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
5528  case ARM::VST3dAsm_8:  Spacing = 1; return ARM::VST3d8;
5529  case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
5530  case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
5531  case ARM::VST3qAsm_8:  Spacing = 2; return ARM::VST3q8;
5532  case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
5533  case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
5534
5535  // VST4LN
5536  case ARM::VST4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
5537  case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
5538  case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
5539  case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
5540  case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
5541  case ARM::VST4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
5542  case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
5543  case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
5544  case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
5545  case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
5546  case ARM::VST4LNdAsm_8:  Spacing = 1; return ARM::VST4LNd8;
5547  case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
5548  case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
5549  case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
5550  case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
5551
5552  // VST4
5553  case ARM::VST4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
5554  case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
5555  case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
5556  case ARM::VST4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
5557  case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
5558  case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
5559  case ARM::VST4dWB_register_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
5560  case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
5561  case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
5562  case ARM::VST4qWB_register_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
5563  case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
5564  case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
5565  case ARM::VST4dAsm_8:  Spacing = 1; return ARM::VST4d8;
5566  case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
5567  case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
5568  case ARM::VST4qAsm_8:  Spacing = 2; return ARM::VST4q8;
5569  case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
5570  case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
5571  }
5572}
5573
5574static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
5575  switch(Opc) {
5576  default: llvm_unreachable("unexpected opcode!");
5577  // VLD1LN
5578  case ARM::VLD1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
5579  case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
5580  case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
5581  case ARM::VLD1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
5582  case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
5583  case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
5584  case ARM::VLD1LNdAsm_8:  Spacing = 1; return ARM::VLD1LNd8;
5585  case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
5586  case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
5587
5588  // VLD2LN
5589  case ARM::VLD2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
5590  case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
5591  case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
5592  case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
5593  case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
5594  case ARM::VLD2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
5595  case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
5596  case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
5597  case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
5598  case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
5599  case ARM::VLD2LNdAsm_8:  Spacing = 1; return ARM::VLD2LNd8;
5600  case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
5601  case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
5602  case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
5603  case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
5604
5605  // VLD3DUP
5606  case ARM::VLD3DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
5607  case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
5608  case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
5609  case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
5610  case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPq16_UPD;
5611  case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
5612  case ARM::VLD3DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
5613  case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
5614  case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
5615  case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
5616  case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
5617  case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
5618  case ARM::VLD3DUPdAsm_8:  Spacing = 1; return ARM::VLD3DUPd8;
5619  case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
5620  case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
5621  case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
5622  case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
5623  case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
5624
5625  // VLD3LN
5626  case ARM::VLD3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
5627  case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
5628  case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
5629  case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
5630  case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
5631  case ARM::VLD3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
5632  case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
5633  case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
5634  case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
5635  case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
5636  case ARM::VLD3LNdAsm_8:  Spacing = 1; return ARM::VLD3LNd8;
5637  case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
5638  case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
5639  case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
5640  case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
5641
5642  // VLD3
5643  case ARM::VLD3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
5644  case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
5645  case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
5646  case ARM::VLD3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
5647  case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
5648  case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
5649  case ARM::VLD3dWB_register_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
5650  case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
5651  case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
5652  case ARM::VLD3qWB_register_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
5653  case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
5654  case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
5655  case ARM::VLD3dAsm_8:  Spacing = 1; return ARM::VLD3d8;
5656  case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
5657  case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
5658  case ARM::VLD3qAsm_8:  Spacing = 2; return ARM::VLD3q8;
5659  case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
5660  case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
5661
5662  // VLD4LN
5663  case ARM::VLD4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
5664  case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
5665  case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
5666  case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNq16_UPD;
5667  case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
5668  case ARM::VLD4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
5669  case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
5670  case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
5671  case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
5672  case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
5673  case ARM::VLD4LNdAsm_8:  Spacing = 1; return ARM::VLD4LNd8;
5674  case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
5675  case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
5676  case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
5677  case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
5678
5679  // VLD4DUP
5680  case ARM::VLD4DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
5681  case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
5682  case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
5683  case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
5684  case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
5685  case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
5686  case ARM::VLD4DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
5687  case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
5688  case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
5689  case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
5690  case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
5691  case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
5692  case ARM::VLD4DUPdAsm_8:  Spacing = 1; return ARM::VLD4DUPd8;
5693  case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
5694  case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
5695  case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
5696  case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
5697  case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
5698
5699  // VLD4
5700  case ARM::VLD4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
5701  case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
5702  case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
5703  case ARM::VLD4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
5704  case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
5705  case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
5706  case ARM::VLD4dWB_register_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
5707  case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
5708  case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
5709  case ARM::VLD4qWB_register_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
5710  case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
5711  case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
5712  case ARM::VLD4dAsm_8:  Spacing = 1; return ARM::VLD4d8;
5713  case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
5714  case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
5715  case ARM::VLD4qAsm_8:  Spacing = 2; return ARM::VLD4q8;
5716  case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
5717  case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
5718  }
5719}
5720
5721bool ARMAsmParser::
5722processInstruction(MCInst &Inst,
5723                   const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
5724  switch (Inst.getOpcode()) {
5725  // Alias for alternate form of 'ADR Rd, #imm' instruction.
5726  case ARM::ADDri: {
5727    if (Inst.getOperand(1).getReg() != ARM::PC ||
5728        Inst.getOperand(5).getReg() != 0)
5729      return false;
5730    MCInst TmpInst;
5731    TmpInst.setOpcode(ARM::ADR);
5732    TmpInst.addOperand(Inst.getOperand(0));
5733    TmpInst.addOperand(Inst.getOperand(2));
5734    TmpInst.addOperand(Inst.getOperand(3));
5735    TmpInst.addOperand(Inst.getOperand(4));
5736    Inst = TmpInst;
5737    return true;
5738  }
5739  // Aliases for alternate PC+imm syntax of LDR instructions.
5740  case ARM::t2LDRpcrel:
5741    // Select the narrow version if the immediate will fit.
5742    if (Inst.getOperand(1).getImm() > 0 &&
5743        Inst.getOperand(1).getImm() <= 0xff)
5744      Inst.setOpcode(ARM::tLDRpci);
5745    else
5746      Inst.setOpcode(ARM::t2LDRpci);
5747    return true;
5748  case ARM::t2LDRBpcrel:
5749    Inst.setOpcode(ARM::t2LDRBpci);
5750    return true;
5751  case ARM::t2LDRHpcrel:
5752    Inst.setOpcode(ARM::t2LDRHpci);
5753    return true;
5754  case ARM::t2LDRSBpcrel:
5755    Inst.setOpcode(ARM::t2LDRSBpci);
5756    return true;
5757  case ARM::t2LDRSHpcrel:
5758    Inst.setOpcode(ARM::t2LDRSHpci);
5759    return true;
5760  // Handle NEON VST complex aliases.
5761  case ARM::VST1LNdWB_register_Asm_8:
5762  case ARM::VST1LNdWB_register_Asm_16:
5763  case ARM::VST1LNdWB_register_Asm_32: {
5764    MCInst TmpInst;
5765    // Shuffle the operands around so the lane index operand is in the
5766    // right place.
5767    unsigned Spacing;
5768    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5769    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5770    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5771    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5772    TmpInst.addOperand(Inst.getOperand(4)); // Rm
5773    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5774    TmpInst.addOperand(Inst.getOperand(1)); // lane
5775    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5776    TmpInst.addOperand(Inst.getOperand(6));
5777    Inst = TmpInst;
5778    return true;
5779  }
5780
5781  case ARM::VST2LNdWB_register_Asm_8:
5782  case ARM::VST2LNdWB_register_Asm_16:
5783  case ARM::VST2LNdWB_register_Asm_32:
5784  case ARM::VST2LNqWB_register_Asm_16:
5785  case ARM::VST2LNqWB_register_Asm_32: {
5786    MCInst TmpInst;
5787    // Shuffle the operands around so the lane index operand is in the
5788    // right place.
5789    unsigned Spacing;
5790    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5791    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5792    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5793    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5794    TmpInst.addOperand(Inst.getOperand(4)); // Rm
5795    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5796    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5797                                            Spacing));
5798    TmpInst.addOperand(Inst.getOperand(1)); // lane
5799    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5800    TmpInst.addOperand(Inst.getOperand(6));
5801    Inst = TmpInst;
5802    return true;
5803  }
5804
5805  case ARM::VST3LNdWB_register_Asm_8:
5806  case ARM::VST3LNdWB_register_Asm_16:
5807  case ARM::VST3LNdWB_register_Asm_32:
5808  case ARM::VST3LNqWB_register_Asm_16:
5809  case ARM::VST3LNqWB_register_Asm_32: {
5810    MCInst TmpInst;
5811    // Shuffle the operands around so the lane index operand is in the
5812    // right place.
5813    unsigned Spacing;
5814    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5815    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5816    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5817    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5818    TmpInst.addOperand(Inst.getOperand(4)); // Rm
5819    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5820    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5821                                            Spacing));
5822    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5823                                            Spacing * 2));
5824    TmpInst.addOperand(Inst.getOperand(1)); // lane
5825    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5826    TmpInst.addOperand(Inst.getOperand(6));
5827    Inst = TmpInst;
5828    return true;
5829  }
5830
5831  case ARM::VST4LNdWB_register_Asm_8:
5832  case ARM::VST4LNdWB_register_Asm_16:
5833  case ARM::VST4LNdWB_register_Asm_32:
5834  case ARM::VST4LNqWB_register_Asm_16:
5835  case ARM::VST4LNqWB_register_Asm_32: {
5836    MCInst TmpInst;
5837    // Shuffle the operands around so the lane index operand is in the
5838    // right place.
5839    unsigned Spacing;
5840    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5841    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5842    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5843    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5844    TmpInst.addOperand(Inst.getOperand(4)); // Rm
5845    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5846    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5847                                            Spacing));
5848    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5849                                            Spacing * 2));
5850    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5851                                            Spacing * 3));
5852    TmpInst.addOperand(Inst.getOperand(1)); // lane
5853    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5854    TmpInst.addOperand(Inst.getOperand(6));
5855    Inst = TmpInst;
5856    return true;
5857  }
5858
5859  case ARM::VST1LNdWB_fixed_Asm_8:
5860  case ARM::VST1LNdWB_fixed_Asm_16:
5861  case ARM::VST1LNdWB_fixed_Asm_32: {
5862    MCInst TmpInst;
5863    // Shuffle the operands around so the lane index operand is in the
5864    // right place.
5865    unsigned Spacing;
5866    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5867    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5868    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5869    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5870    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
5871    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5872    TmpInst.addOperand(Inst.getOperand(1)); // lane
5873    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5874    TmpInst.addOperand(Inst.getOperand(5));
5875    Inst = TmpInst;
5876    return true;
5877  }
5878
5879  case ARM::VST2LNdWB_fixed_Asm_8:
5880  case ARM::VST2LNdWB_fixed_Asm_16:
5881  case ARM::VST2LNdWB_fixed_Asm_32:
5882  case ARM::VST2LNqWB_fixed_Asm_16:
5883  case ARM::VST2LNqWB_fixed_Asm_32: {
5884    MCInst TmpInst;
5885    // Shuffle the operands around so the lane index operand is in the
5886    // right place.
5887    unsigned Spacing;
5888    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5889    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5890    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5891    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5892    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
5893    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5894    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5895                                            Spacing));
5896    TmpInst.addOperand(Inst.getOperand(1)); // lane
5897    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5898    TmpInst.addOperand(Inst.getOperand(5));
5899    Inst = TmpInst;
5900    return true;
5901  }
5902
5903  case ARM::VST3LNdWB_fixed_Asm_8:
5904  case ARM::VST3LNdWB_fixed_Asm_16:
5905  case ARM::VST3LNdWB_fixed_Asm_32:
5906  case ARM::VST3LNqWB_fixed_Asm_16:
5907  case ARM::VST3LNqWB_fixed_Asm_32: {
5908    MCInst TmpInst;
5909    // Shuffle the operands around so the lane index operand is in the
5910    // right place.
5911    unsigned Spacing;
5912    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5913    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5914    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5915    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5916    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
5917    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5918    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5919                                            Spacing));
5920    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5921                                            Spacing * 2));
5922    TmpInst.addOperand(Inst.getOperand(1)); // lane
5923    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5924    TmpInst.addOperand(Inst.getOperand(5));
5925    Inst = TmpInst;
5926    return true;
5927  }
5928
5929  case ARM::VST4LNdWB_fixed_Asm_8:
5930  case ARM::VST4LNdWB_fixed_Asm_16:
5931  case ARM::VST4LNdWB_fixed_Asm_32:
5932  case ARM::VST4LNqWB_fixed_Asm_16:
5933  case ARM::VST4LNqWB_fixed_Asm_32: {
5934    MCInst TmpInst;
5935    // Shuffle the operands around so the lane index operand is in the
5936    // right place.
5937    unsigned Spacing;
5938    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5939    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5940    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5941    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5942    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
5943    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5944    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5945                                            Spacing));
5946    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5947                                            Spacing * 2));
5948    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5949                                            Spacing * 3));
5950    TmpInst.addOperand(Inst.getOperand(1)); // lane
5951    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5952    TmpInst.addOperand(Inst.getOperand(5));
5953    Inst = TmpInst;
5954    return true;
5955  }
5956
5957  case ARM::VST1LNdAsm_8:
5958  case ARM::VST1LNdAsm_16:
5959  case ARM::VST1LNdAsm_32: {
5960    MCInst TmpInst;
5961    // Shuffle the operands around so the lane index operand is in the
5962    // right place.
5963    unsigned Spacing;
5964    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5965    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5966    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5967    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5968    TmpInst.addOperand(Inst.getOperand(1)); // lane
5969    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5970    TmpInst.addOperand(Inst.getOperand(5));
5971    Inst = TmpInst;
5972    return true;
5973  }
5974
5975  case ARM::VST2LNdAsm_8:
5976  case ARM::VST2LNdAsm_16:
5977  case ARM::VST2LNdAsm_32:
5978  case ARM::VST2LNqAsm_16:
5979  case ARM::VST2LNqAsm_32: {
5980    MCInst TmpInst;
5981    // Shuffle the operands around so the lane index operand is in the
5982    // right place.
5983    unsigned Spacing;
5984    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5985    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5986    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5987    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5988    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5989                                            Spacing));
5990    TmpInst.addOperand(Inst.getOperand(1)); // lane
5991    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5992    TmpInst.addOperand(Inst.getOperand(5));
5993    Inst = TmpInst;
5994    return true;
5995  }
5996
5997  case ARM::VST3LNdAsm_8:
5998  case ARM::VST3LNdAsm_16:
5999  case ARM::VST3LNdAsm_32:
6000  case ARM::VST3LNqAsm_16:
6001  case ARM::VST3LNqAsm_32: {
6002    MCInst TmpInst;
6003    // Shuffle the operands around so the lane index operand is in the
6004    // right place.
6005    unsigned Spacing;
6006    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6007    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6008    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6009    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6010    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6011                                            Spacing));
6012    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6013                                            Spacing * 2));
6014    TmpInst.addOperand(Inst.getOperand(1)); // lane
6015    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6016    TmpInst.addOperand(Inst.getOperand(5));
6017    Inst = TmpInst;
6018    return true;
6019  }
6020
6021  case ARM::VST4LNdAsm_8:
6022  case ARM::VST4LNdAsm_16:
6023  case ARM::VST4LNdAsm_32:
6024  case ARM::VST4LNqAsm_16:
6025  case ARM::VST4LNqAsm_32: {
6026    MCInst TmpInst;
6027    // Shuffle the operands around so the lane index operand is in the
6028    // right place.
6029    unsigned Spacing;
6030    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6031    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6032    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6033    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6034    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6035                                            Spacing));
6036    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6037                                            Spacing * 2));
6038    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6039                                            Spacing * 3));
6040    TmpInst.addOperand(Inst.getOperand(1)); // lane
6041    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6042    TmpInst.addOperand(Inst.getOperand(5));
6043    Inst = TmpInst;
6044    return true;
6045  }
6046
6047  // Handle NEON VLD complex aliases.
6048  case ARM::VLD1LNdWB_register_Asm_8:
6049  case ARM::VLD1LNdWB_register_Asm_16:
6050  case ARM::VLD1LNdWB_register_Asm_32: {
6051    MCInst TmpInst;
6052    // Shuffle the operands around so the lane index operand is in the
6053    // right place.
6054    unsigned Spacing;
6055    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6056    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6057    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6058    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6059    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6060    TmpInst.addOperand(Inst.getOperand(4)); // Rm
6061    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6062    TmpInst.addOperand(Inst.getOperand(1)); // lane
6063    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6064    TmpInst.addOperand(Inst.getOperand(6));
6065    Inst = TmpInst;
6066    return true;
6067  }
6068
6069  case ARM::VLD2LNdWB_register_Asm_8:
6070  case ARM::VLD2LNdWB_register_Asm_16:
6071  case ARM::VLD2LNdWB_register_Asm_32:
6072  case ARM::VLD2LNqWB_register_Asm_16:
6073  case ARM::VLD2LNqWB_register_Asm_32: {
6074    MCInst TmpInst;
6075    // Shuffle the operands around so the lane index operand is in the
6076    // right place.
6077    unsigned Spacing;
6078    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6079    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6080    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6081                                            Spacing));
6082    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6083    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6084    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6085    TmpInst.addOperand(Inst.getOperand(4)); // Rm
6086    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6087    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6088                                            Spacing));
6089    TmpInst.addOperand(Inst.getOperand(1)); // lane
6090    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6091    TmpInst.addOperand(Inst.getOperand(6));
6092    Inst = TmpInst;
6093    return true;
6094  }
6095
6096  case ARM::VLD3LNdWB_register_Asm_8:
6097  case ARM::VLD3LNdWB_register_Asm_16:
6098  case ARM::VLD3LNdWB_register_Asm_32:
6099  case ARM::VLD3LNqWB_register_Asm_16:
6100  case ARM::VLD3LNqWB_register_Asm_32: {
6101    MCInst TmpInst;
6102    // Shuffle the operands around so the lane index operand is in the
6103    // right place.
6104    unsigned Spacing;
6105    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6106    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6107    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6108                                            Spacing));
6109    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6110                                            Spacing * 2));
6111    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6112    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6113    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6114    TmpInst.addOperand(Inst.getOperand(4)); // Rm
6115    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6116    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6117                                            Spacing));
6118    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6119                                            Spacing * 2));
6120    TmpInst.addOperand(Inst.getOperand(1)); // lane
6121    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6122    TmpInst.addOperand(Inst.getOperand(6));
6123    Inst = TmpInst;
6124    return true;
6125  }
6126
6127  case ARM::VLD4LNdWB_register_Asm_8:
6128  case ARM::VLD4LNdWB_register_Asm_16:
6129  case ARM::VLD4LNdWB_register_Asm_32:
6130  case ARM::VLD4LNqWB_register_Asm_16:
6131  case ARM::VLD4LNqWB_register_Asm_32: {
6132    MCInst TmpInst;
6133    // Shuffle the operands around so the lane index operand is in the
6134    // right place.
6135    unsigned Spacing;
6136    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6137    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6138    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6139                                            Spacing));
6140    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6141                                            Spacing * 2));
6142    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6143                                            Spacing * 3));
6144    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6145    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6146    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6147    TmpInst.addOperand(Inst.getOperand(4)); // Rm
6148    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6149    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6150                                            Spacing));
6151    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6152                                            Spacing * 2));
6153    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6154                                            Spacing * 3));
6155    TmpInst.addOperand(Inst.getOperand(1)); // lane
6156    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6157    TmpInst.addOperand(Inst.getOperand(6));
6158    Inst = TmpInst;
6159    return true;
6160  }
6161
6162  case ARM::VLD1LNdWB_fixed_Asm_8:
6163  case ARM::VLD1LNdWB_fixed_Asm_16:
6164  case ARM::VLD1LNdWB_fixed_Asm_32: {
6165    MCInst TmpInst;
6166    // Shuffle the operands around so the lane index operand is in the
6167    // right place.
6168    unsigned Spacing;
6169    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6170    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6171    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6172    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6173    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6174    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6175    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6176    TmpInst.addOperand(Inst.getOperand(1)); // lane
6177    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6178    TmpInst.addOperand(Inst.getOperand(5));
6179    Inst = TmpInst;
6180    return true;
6181  }
6182
6183  case ARM::VLD2LNdWB_fixed_Asm_8:
6184  case ARM::VLD2LNdWB_fixed_Asm_16:
6185  case ARM::VLD2LNdWB_fixed_Asm_32:
6186  case ARM::VLD2LNqWB_fixed_Asm_16:
6187  case ARM::VLD2LNqWB_fixed_Asm_32: {
6188    MCInst TmpInst;
6189    // Shuffle the operands around so the lane index operand is in the
6190    // right place.
6191    unsigned Spacing;
6192    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6193    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6194    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6195                                            Spacing));
6196    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6197    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6198    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6199    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6200    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6201    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6202                                            Spacing));
6203    TmpInst.addOperand(Inst.getOperand(1)); // lane
6204    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6205    TmpInst.addOperand(Inst.getOperand(5));
6206    Inst = TmpInst;
6207    return true;
6208  }
6209
6210  case ARM::VLD3LNdWB_fixed_Asm_8:
6211  case ARM::VLD3LNdWB_fixed_Asm_16:
6212  case ARM::VLD3LNdWB_fixed_Asm_32:
6213  case ARM::VLD3LNqWB_fixed_Asm_16:
6214  case ARM::VLD3LNqWB_fixed_Asm_32: {
6215    MCInst TmpInst;
6216    // Shuffle the operands around so the lane index operand is in the
6217    // right place.
6218    unsigned Spacing;
6219    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6220    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6221    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6222                                            Spacing));
6223    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6224                                            Spacing * 2));
6225    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6226    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6227    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6228    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6229    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6230    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6231                                            Spacing));
6232    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6233                                            Spacing * 2));
6234    TmpInst.addOperand(Inst.getOperand(1)); // lane
6235    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6236    TmpInst.addOperand(Inst.getOperand(5));
6237    Inst = TmpInst;
6238    return true;
6239  }
6240
6241  case ARM::VLD4LNdWB_fixed_Asm_8:
6242  case ARM::VLD4LNdWB_fixed_Asm_16:
6243  case ARM::VLD4LNdWB_fixed_Asm_32:
6244  case ARM::VLD4LNqWB_fixed_Asm_16:
6245  case ARM::VLD4LNqWB_fixed_Asm_32: {
6246    MCInst TmpInst;
6247    // Shuffle the operands around so the lane index operand is in the
6248    // right place.
6249    unsigned Spacing;
6250    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6251    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6252    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6253                                            Spacing));
6254    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6255                                            Spacing * 2));
6256    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6257                                            Spacing * 3));
6258    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6259    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6260    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6261    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6262    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6263    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6264                                            Spacing));
6265    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6266                                            Spacing * 2));
6267    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6268                                            Spacing * 3));
6269    TmpInst.addOperand(Inst.getOperand(1)); // lane
6270    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6271    TmpInst.addOperand(Inst.getOperand(5));
6272    Inst = TmpInst;
6273    return true;
6274  }
6275
6276  case ARM::VLD1LNdAsm_8:
6277  case ARM::VLD1LNdAsm_16:
6278  case ARM::VLD1LNdAsm_32: {
6279    MCInst TmpInst;
6280    // Shuffle the operands around so the lane index operand is in the
6281    // right place.
6282    unsigned Spacing;
6283    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6284    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6285    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6286    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6287    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6288    TmpInst.addOperand(Inst.getOperand(1)); // lane
6289    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6290    TmpInst.addOperand(Inst.getOperand(5));
6291    Inst = TmpInst;
6292    return true;
6293  }
6294
6295  case ARM::VLD2LNdAsm_8:
6296  case ARM::VLD2LNdAsm_16:
6297  case ARM::VLD2LNdAsm_32:
6298  case ARM::VLD2LNqAsm_16:
6299  case ARM::VLD2LNqAsm_32: {
6300    MCInst TmpInst;
6301    // Shuffle the operands around so the lane index operand is in the
6302    // right place.
6303    unsigned Spacing;
6304    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6305    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6306    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6307                                            Spacing));
6308    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6309    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6310    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6311    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6312                                            Spacing));
6313    TmpInst.addOperand(Inst.getOperand(1)); // lane
6314    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6315    TmpInst.addOperand(Inst.getOperand(5));
6316    Inst = TmpInst;
6317    return true;
6318  }
6319
6320  case ARM::VLD3LNdAsm_8:
6321  case ARM::VLD3LNdAsm_16:
6322  case ARM::VLD3LNdAsm_32:
6323  case ARM::VLD3LNqAsm_16:
6324  case ARM::VLD3LNqAsm_32: {
6325    MCInst TmpInst;
6326    // Shuffle the operands around so the lane index operand is in the
6327    // right place.
6328    unsigned Spacing;
6329    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6330    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6331    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6332                                            Spacing));
6333    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6334                                            Spacing * 2));
6335    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6336    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6337    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6338    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6339                                            Spacing));
6340    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6341                                            Spacing * 2));
6342    TmpInst.addOperand(Inst.getOperand(1)); // lane
6343    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6344    TmpInst.addOperand(Inst.getOperand(5));
6345    Inst = TmpInst;
6346    return true;
6347  }
6348
6349  case ARM::VLD4LNdAsm_8:
6350  case ARM::VLD4LNdAsm_16:
6351  case ARM::VLD4LNdAsm_32:
6352  case ARM::VLD4LNqAsm_16:
6353  case ARM::VLD4LNqAsm_32: {
6354    MCInst TmpInst;
6355    // Shuffle the operands around so the lane index operand is in the
6356    // right place.
6357    unsigned Spacing;
6358    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6359    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6360    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6361                                            Spacing));
6362    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6363                                            Spacing * 2));
6364    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6365                                            Spacing * 3));
6366    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6367    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6368    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6369    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6370                                            Spacing));
6371    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6372                                            Spacing * 2));
6373    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6374                                            Spacing * 3));
6375    TmpInst.addOperand(Inst.getOperand(1)); // lane
6376    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6377    TmpInst.addOperand(Inst.getOperand(5));
6378    Inst = TmpInst;
6379    return true;
6380  }
6381
6382  // VLD3DUP single 3-element structure to all lanes instructions.
6383  case ARM::VLD3DUPdAsm_8:
6384  case ARM::VLD3DUPdAsm_16:
6385  case ARM::VLD3DUPdAsm_32:
6386  case ARM::VLD3DUPqAsm_8:
6387  case ARM::VLD3DUPqAsm_16:
6388  case ARM::VLD3DUPqAsm_32: {
6389    MCInst TmpInst;
6390    unsigned Spacing;
6391    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6392    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6393    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6394                                            Spacing));
6395    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6396                                            Spacing * 2));
6397    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6398    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6399    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6400    TmpInst.addOperand(Inst.getOperand(4));
6401    Inst = TmpInst;
6402    return true;
6403  }
6404
6405  case ARM::VLD3DUPdWB_fixed_Asm_8:
6406  case ARM::VLD3DUPdWB_fixed_Asm_16:
6407  case ARM::VLD3DUPdWB_fixed_Asm_32:
6408  case ARM::VLD3DUPqWB_fixed_Asm_8:
6409  case ARM::VLD3DUPqWB_fixed_Asm_16:
6410  case ARM::VLD3DUPqWB_fixed_Asm_32: {
6411    MCInst TmpInst;
6412    unsigned Spacing;
6413    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6414    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6415    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6416                                            Spacing));
6417    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6418                                            Spacing * 2));
6419    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6420    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6421    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6422    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6423    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6424    TmpInst.addOperand(Inst.getOperand(4));
6425    Inst = TmpInst;
6426    return true;
6427  }
6428
6429  case ARM::VLD3DUPdWB_register_Asm_8:
6430  case ARM::VLD3DUPdWB_register_Asm_16:
6431  case ARM::VLD3DUPdWB_register_Asm_32:
6432  case ARM::VLD3DUPqWB_register_Asm_8:
6433  case ARM::VLD3DUPqWB_register_Asm_16:
6434  case ARM::VLD3DUPqWB_register_Asm_32: {
6435    MCInst TmpInst;
6436    unsigned Spacing;
6437    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6438    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6439    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6440                                            Spacing));
6441    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6442                                            Spacing * 2));
6443    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6444    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6445    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6446    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6447    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6448    TmpInst.addOperand(Inst.getOperand(5));
6449    Inst = TmpInst;
6450    return true;
6451  }
6452
6453  // VLD3 multiple 3-element structure instructions.
6454  case ARM::VLD3dAsm_8:
6455  case ARM::VLD3dAsm_16:
6456  case ARM::VLD3dAsm_32:
6457  case ARM::VLD3qAsm_8:
6458  case ARM::VLD3qAsm_16:
6459  case ARM::VLD3qAsm_32: {
6460    MCInst TmpInst;
6461    unsigned Spacing;
6462    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6463    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6464    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6465                                            Spacing));
6466    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6467                                            Spacing * 2));
6468    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6469    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6470    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6471    TmpInst.addOperand(Inst.getOperand(4));
6472    Inst = TmpInst;
6473    return true;
6474  }
6475
6476  case ARM::VLD3dWB_fixed_Asm_8:
6477  case ARM::VLD3dWB_fixed_Asm_16:
6478  case ARM::VLD3dWB_fixed_Asm_32:
6479  case ARM::VLD3qWB_fixed_Asm_8:
6480  case ARM::VLD3qWB_fixed_Asm_16:
6481  case ARM::VLD3qWB_fixed_Asm_32: {
6482    MCInst TmpInst;
6483    unsigned Spacing;
6484    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6485    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6486    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6487                                            Spacing));
6488    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6489                                            Spacing * 2));
6490    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6491    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6492    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6493    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6494    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6495    TmpInst.addOperand(Inst.getOperand(4));
6496    Inst = TmpInst;
6497    return true;
6498  }
6499
6500  case ARM::VLD3dWB_register_Asm_8:
6501  case ARM::VLD3dWB_register_Asm_16:
6502  case ARM::VLD3dWB_register_Asm_32:
6503  case ARM::VLD3qWB_register_Asm_8:
6504  case ARM::VLD3qWB_register_Asm_16:
6505  case ARM::VLD3qWB_register_Asm_32: {
6506    MCInst TmpInst;
6507    unsigned Spacing;
6508    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6509    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6510    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6511                                            Spacing));
6512    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6513                                            Spacing * 2));
6514    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6515    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6516    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6517    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6518    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6519    TmpInst.addOperand(Inst.getOperand(5));
6520    Inst = TmpInst;
6521    return true;
6522  }
6523
6524  // VLD4DUP single 3-element structure to all lanes instructions.
6525  case ARM::VLD4DUPdAsm_8:
6526  case ARM::VLD4DUPdAsm_16:
6527  case ARM::VLD4DUPdAsm_32:
6528  case ARM::VLD4DUPqAsm_8:
6529  case ARM::VLD4DUPqAsm_16:
6530  case ARM::VLD4DUPqAsm_32: {
6531    MCInst TmpInst;
6532    unsigned Spacing;
6533    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6534    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6535    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6536                                            Spacing));
6537    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6538                                            Spacing * 2));
6539    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6540                                            Spacing * 3));
6541    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6542    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6543    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6544    TmpInst.addOperand(Inst.getOperand(4));
6545    Inst = TmpInst;
6546    return true;
6547  }
6548
6549  case ARM::VLD4DUPdWB_fixed_Asm_8:
6550  case ARM::VLD4DUPdWB_fixed_Asm_16:
6551  case ARM::VLD4DUPdWB_fixed_Asm_32:
6552  case ARM::VLD4DUPqWB_fixed_Asm_8:
6553  case ARM::VLD4DUPqWB_fixed_Asm_16:
6554  case ARM::VLD4DUPqWB_fixed_Asm_32: {
6555    MCInst TmpInst;
6556    unsigned Spacing;
6557    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6558    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6559    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6560                                            Spacing));
6561    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6562                                            Spacing * 2));
6563    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6564                                            Spacing * 3));
6565    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6566    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6567    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6568    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6569    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6570    TmpInst.addOperand(Inst.getOperand(4));
6571    Inst = TmpInst;
6572    return true;
6573  }
6574
6575  case ARM::VLD4DUPdWB_register_Asm_8:
6576  case ARM::VLD4DUPdWB_register_Asm_16:
6577  case ARM::VLD4DUPdWB_register_Asm_32:
6578  case ARM::VLD4DUPqWB_register_Asm_8:
6579  case ARM::VLD4DUPqWB_register_Asm_16:
6580  case ARM::VLD4DUPqWB_register_Asm_32: {
6581    MCInst TmpInst;
6582    unsigned Spacing;
6583    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6584    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6585    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6586                                            Spacing));
6587    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6588                                            Spacing * 2));
6589    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6590                                            Spacing * 3));
6591    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6592    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6593    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6594    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6595    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6596    TmpInst.addOperand(Inst.getOperand(5));
6597    Inst = TmpInst;
6598    return true;
6599  }
6600
6601  // VLD4 multiple 4-element structure instructions.
6602  case ARM::VLD4dAsm_8:
6603  case ARM::VLD4dAsm_16:
6604  case ARM::VLD4dAsm_32:
6605  case ARM::VLD4qAsm_8:
6606  case ARM::VLD4qAsm_16:
6607  case ARM::VLD4qAsm_32: {
6608    MCInst TmpInst;
6609    unsigned Spacing;
6610    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6611    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6612    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6613                                            Spacing));
6614    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6615                                            Spacing * 2));
6616    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6617                                            Spacing * 3));
6618    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6619    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6620    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6621    TmpInst.addOperand(Inst.getOperand(4));
6622    Inst = TmpInst;
6623    return true;
6624  }
6625
6626  case ARM::VLD4dWB_fixed_Asm_8:
6627  case ARM::VLD4dWB_fixed_Asm_16:
6628  case ARM::VLD4dWB_fixed_Asm_32:
6629  case ARM::VLD4qWB_fixed_Asm_8:
6630  case ARM::VLD4qWB_fixed_Asm_16:
6631  case ARM::VLD4qWB_fixed_Asm_32: {
6632    MCInst TmpInst;
6633    unsigned Spacing;
6634    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6635    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6636    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6637                                            Spacing));
6638    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6639                                            Spacing * 2));
6640    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6641                                            Spacing * 3));
6642    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6643    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6644    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6645    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6646    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6647    TmpInst.addOperand(Inst.getOperand(4));
6648    Inst = TmpInst;
6649    return true;
6650  }
6651
6652  case ARM::VLD4dWB_register_Asm_8:
6653  case ARM::VLD4dWB_register_Asm_16:
6654  case ARM::VLD4dWB_register_Asm_32:
6655  case ARM::VLD4qWB_register_Asm_8:
6656  case ARM::VLD4qWB_register_Asm_16:
6657  case ARM::VLD4qWB_register_Asm_32: {
6658    MCInst TmpInst;
6659    unsigned Spacing;
6660    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6661    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6662    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6663                                            Spacing));
6664    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6665                                            Spacing * 2));
6666    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6667                                            Spacing * 3));
6668    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6669    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6670    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6671    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6672    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6673    TmpInst.addOperand(Inst.getOperand(5));
6674    Inst = TmpInst;
6675    return true;
6676  }
6677
6678  // VST3 multiple 3-element structure instructions.
6679  case ARM::VST3dAsm_8:
6680  case ARM::VST3dAsm_16:
6681  case ARM::VST3dAsm_32:
6682  case ARM::VST3qAsm_8:
6683  case ARM::VST3qAsm_16:
6684  case ARM::VST3qAsm_32: {
6685    MCInst TmpInst;
6686    unsigned Spacing;
6687    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6688    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6689    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6690    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6691    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6692                                            Spacing));
6693    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6694                                            Spacing * 2));
6695    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6696    TmpInst.addOperand(Inst.getOperand(4));
6697    Inst = TmpInst;
6698    return true;
6699  }
6700
6701  case ARM::VST3dWB_fixed_Asm_8:
6702  case ARM::VST3dWB_fixed_Asm_16:
6703  case ARM::VST3dWB_fixed_Asm_32:
6704  case ARM::VST3qWB_fixed_Asm_8:
6705  case ARM::VST3qWB_fixed_Asm_16:
6706  case ARM::VST3qWB_fixed_Asm_32: {
6707    MCInst TmpInst;
6708    unsigned Spacing;
6709    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6710    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6711    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6712    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6713    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6714    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6715    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6716                                            Spacing));
6717    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6718                                            Spacing * 2));
6719    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6720    TmpInst.addOperand(Inst.getOperand(4));
6721    Inst = TmpInst;
6722    return true;
6723  }
6724
6725  case ARM::VST3dWB_register_Asm_8:
6726  case ARM::VST3dWB_register_Asm_16:
6727  case ARM::VST3dWB_register_Asm_32:
6728  case ARM::VST3qWB_register_Asm_8:
6729  case ARM::VST3qWB_register_Asm_16:
6730  case ARM::VST3qWB_register_Asm_32: {
6731    MCInst TmpInst;
6732    unsigned Spacing;
6733    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6734    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6735    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6736    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6737    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6738    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6739    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6740                                            Spacing));
6741    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6742                                            Spacing * 2));
6743    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6744    TmpInst.addOperand(Inst.getOperand(5));
6745    Inst = TmpInst;
6746    return true;
6747  }
6748
6749  // VST4 multiple 3-element structure instructions.
6750  case ARM::VST4dAsm_8:
6751  case ARM::VST4dAsm_16:
6752  case ARM::VST4dAsm_32:
6753  case ARM::VST4qAsm_8:
6754  case ARM::VST4qAsm_16:
6755  case ARM::VST4qAsm_32: {
6756    MCInst TmpInst;
6757    unsigned Spacing;
6758    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6759    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6760    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6761    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6762    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6763                                            Spacing));
6764    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6765                                            Spacing * 2));
6766    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6767                                            Spacing * 3));
6768    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6769    TmpInst.addOperand(Inst.getOperand(4));
6770    Inst = TmpInst;
6771    return true;
6772  }
6773
6774  case ARM::VST4dWB_fixed_Asm_8:
6775  case ARM::VST4dWB_fixed_Asm_16:
6776  case ARM::VST4dWB_fixed_Asm_32:
6777  case ARM::VST4qWB_fixed_Asm_8:
6778  case ARM::VST4qWB_fixed_Asm_16:
6779  case ARM::VST4qWB_fixed_Asm_32: {
6780    MCInst TmpInst;
6781    unsigned Spacing;
6782    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6783    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6784    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6785    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6786    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6787    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6788    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6789                                            Spacing));
6790    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6791                                            Spacing * 2));
6792    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6793                                            Spacing * 3));
6794    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6795    TmpInst.addOperand(Inst.getOperand(4));
6796    Inst = TmpInst;
6797    return true;
6798  }
6799
6800  case ARM::VST4dWB_register_Asm_8:
6801  case ARM::VST4dWB_register_Asm_16:
6802  case ARM::VST4dWB_register_Asm_32:
6803  case ARM::VST4qWB_register_Asm_8:
6804  case ARM::VST4qWB_register_Asm_16:
6805  case ARM::VST4qWB_register_Asm_32: {
6806    MCInst TmpInst;
6807    unsigned Spacing;
6808    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6809    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6810    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6811    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6812    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6813    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6814    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6815                                            Spacing));
6816    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6817                                            Spacing * 2));
6818    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6819                                            Spacing * 3));
6820    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6821    TmpInst.addOperand(Inst.getOperand(5));
6822    Inst = TmpInst;
6823    return true;
6824  }
6825
6826  // Handle encoding choice for the shift-immediate instructions.
6827  case ARM::t2LSLri:
6828  case ARM::t2LSRri:
6829  case ARM::t2ASRri: {
6830    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
6831        Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
6832        Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
6833        !(static_cast<ARMOperand*>(Operands[3])->isToken() &&
6834         static_cast<ARMOperand*>(Operands[3])->getToken() == ".w")) {
6835      unsigned NewOpc;
6836      switch (Inst.getOpcode()) {
6837      default: llvm_unreachable("unexpected opcode");
6838      case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
6839      case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
6840      case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
6841      }
6842      // The Thumb1 operands aren't in the same order. Awesome, eh?
6843      MCInst TmpInst;
6844      TmpInst.setOpcode(NewOpc);
6845      TmpInst.addOperand(Inst.getOperand(0));
6846      TmpInst.addOperand(Inst.getOperand(5));
6847      TmpInst.addOperand(Inst.getOperand(1));
6848      TmpInst.addOperand(Inst.getOperand(2));
6849      TmpInst.addOperand(Inst.getOperand(3));
6850      TmpInst.addOperand(Inst.getOperand(4));
6851      Inst = TmpInst;
6852      return true;
6853    }
6854    return false;
6855  }
6856
6857  // Handle the Thumb2 mode MOV complex aliases.
6858  case ARM::t2MOVsr:
6859  case ARM::t2MOVSsr: {
6860    // Which instruction to expand to depends on the CCOut operand and
6861    // whether we're in an IT block if the register operands are low
6862    // registers.
6863    bool isNarrow = false;
6864    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
6865        isARMLowRegister(Inst.getOperand(1).getReg()) &&
6866        isARMLowRegister(Inst.getOperand(2).getReg()) &&
6867        Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
6868        inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr))
6869      isNarrow = true;
6870    MCInst TmpInst;
6871    unsigned newOpc;
6872    switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
6873    default: llvm_unreachable("unexpected opcode!");
6874    case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
6875    case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
6876    case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
6877    case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR   : ARM::t2RORrr; break;
6878    }
6879    TmpInst.setOpcode(newOpc);
6880    TmpInst.addOperand(Inst.getOperand(0)); // Rd
6881    if (isNarrow)
6882      TmpInst.addOperand(MCOperand::CreateReg(
6883          Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
6884    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6885    TmpInst.addOperand(Inst.getOperand(2)); // Rm
6886    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6887    TmpInst.addOperand(Inst.getOperand(5));
6888    if (!isNarrow)
6889      TmpInst.addOperand(MCOperand::CreateReg(
6890          Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
6891    Inst = TmpInst;
6892    return true;
6893  }
6894  case ARM::t2MOVsi:
6895  case ARM::t2MOVSsi: {
6896    // Which instruction to expand to depends on the CCOut operand and
6897    // whether we're in an IT block if the register operands are low
6898    // registers.
6899    bool isNarrow = false;
6900    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
6901        isARMLowRegister(Inst.getOperand(1).getReg()) &&
6902        inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi))
6903      isNarrow = true;
6904    MCInst TmpInst;
6905    unsigned newOpc;
6906    switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) {
6907    default: llvm_unreachable("unexpected opcode!");
6908    case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
6909    case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
6910    case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
6911    case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
6912    case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
6913    }
6914    unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
6915    if (Amount == 32) Amount = 0;
6916    TmpInst.setOpcode(newOpc);
6917    TmpInst.addOperand(Inst.getOperand(0)); // Rd
6918    if (isNarrow)
6919      TmpInst.addOperand(MCOperand::CreateReg(
6920          Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
6921    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6922    if (newOpc != ARM::t2RRX)
6923      TmpInst.addOperand(MCOperand::CreateImm(Amount));
6924    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6925    TmpInst.addOperand(Inst.getOperand(4));
6926    if (!isNarrow)
6927      TmpInst.addOperand(MCOperand::CreateReg(
6928          Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
6929    Inst = TmpInst;
6930    return true;
6931  }
6932  // Handle the ARM mode MOV complex aliases.
6933  case ARM::ASRr:
6934  case ARM::LSRr:
6935  case ARM::LSLr:
6936  case ARM::RORr: {
6937    ARM_AM::ShiftOpc ShiftTy;
6938    switch(Inst.getOpcode()) {
6939    default: llvm_unreachable("unexpected opcode!");
6940    case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
6941    case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
6942    case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
6943    case ARM::RORr: ShiftTy = ARM_AM::ror; break;
6944    }
6945    unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
6946    MCInst TmpInst;
6947    TmpInst.setOpcode(ARM::MOVsr);
6948    TmpInst.addOperand(Inst.getOperand(0)); // Rd
6949    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6950    TmpInst.addOperand(Inst.getOperand(2)); // Rm
6951    TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
6952    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6953    TmpInst.addOperand(Inst.getOperand(4));
6954    TmpInst.addOperand(Inst.getOperand(5)); // cc_out
6955    Inst = TmpInst;
6956    return true;
6957  }
6958  case ARM::ASRi:
6959  case ARM::LSRi:
6960  case ARM::LSLi:
6961  case ARM::RORi: {
6962    ARM_AM::ShiftOpc ShiftTy;
6963    switch(Inst.getOpcode()) {
6964    default: llvm_unreachable("unexpected opcode!");
6965    case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
6966    case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
6967    case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
6968    case ARM::RORi: ShiftTy = ARM_AM::ror; break;
6969    }
6970    // A shift by zero is a plain MOVr, not a MOVsi.
6971    unsigned Amt = Inst.getOperand(2).getImm();
6972    unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
6973    // A shift by 32 should be encoded as 0 when permitted
6974    if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
6975      Amt = 0;
6976    unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
6977    MCInst TmpInst;
6978    TmpInst.setOpcode(Opc);
6979    TmpInst.addOperand(Inst.getOperand(0)); // Rd
6980    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6981    if (Opc == ARM::MOVsi)
6982      TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
6983    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6984    TmpInst.addOperand(Inst.getOperand(4));
6985    TmpInst.addOperand(Inst.getOperand(5)); // cc_out
6986    Inst = TmpInst;
6987    return true;
6988  }
6989  case ARM::RRXi: {
6990    unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
6991    MCInst TmpInst;
6992    TmpInst.setOpcode(ARM::MOVsi);
6993    TmpInst.addOperand(Inst.getOperand(0)); // Rd
6994    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6995    TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
6996    TmpInst.addOperand(Inst.getOperand(2)); // CondCode
6997    TmpInst.addOperand(Inst.getOperand(3));
6998    TmpInst.addOperand(Inst.getOperand(4)); // cc_out
6999    Inst = TmpInst;
7000    return true;
7001  }
7002  case ARM::t2LDMIA_UPD: {
7003    // If this is a load of a single register, then we should use
7004    // a post-indexed LDR instruction instead, per the ARM ARM.
7005    if (Inst.getNumOperands() != 5)
7006      return false;
7007    MCInst TmpInst;
7008    TmpInst.setOpcode(ARM::t2LDR_POST);
7009    TmpInst.addOperand(Inst.getOperand(4)); // Rt
7010    TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
7011    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7012    TmpInst.addOperand(MCOperand::CreateImm(4));
7013    TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7014    TmpInst.addOperand(Inst.getOperand(3));
7015    Inst = TmpInst;
7016    return true;
7017  }
7018  case ARM::t2STMDB_UPD: {
7019    // If this is a store of a single register, then we should use
7020    // a pre-indexed STR instruction instead, per the ARM ARM.
7021    if (Inst.getNumOperands() != 5)
7022      return false;
7023    MCInst TmpInst;
7024    TmpInst.setOpcode(ARM::t2STR_PRE);
7025    TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
7026    TmpInst.addOperand(Inst.getOperand(4)); // Rt
7027    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7028    TmpInst.addOperand(MCOperand::CreateImm(-4));
7029    TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7030    TmpInst.addOperand(Inst.getOperand(3));
7031    Inst = TmpInst;
7032    return true;
7033  }
7034  case ARM::LDMIA_UPD:
7035    // If this is a load of a single register via a 'pop', then we should use
7036    // a post-indexed LDR instruction instead, per the ARM ARM.
7037    if (static_cast<ARMOperand*>(Operands[0])->getToken() == "pop" &&
7038        Inst.getNumOperands() == 5) {
7039      MCInst TmpInst;
7040      TmpInst.setOpcode(ARM::LDR_POST_IMM);
7041      TmpInst.addOperand(Inst.getOperand(4)); // Rt
7042      TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
7043      TmpInst.addOperand(Inst.getOperand(1)); // Rn
7044      TmpInst.addOperand(MCOperand::CreateReg(0));  // am2offset
7045      TmpInst.addOperand(MCOperand::CreateImm(4));
7046      TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7047      TmpInst.addOperand(Inst.getOperand(3));
7048      Inst = TmpInst;
7049      return true;
7050    }
7051    break;
7052  case ARM::STMDB_UPD:
7053    // If this is a store of a single register via a 'push', then we should use
7054    // a pre-indexed STR instruction instead, per the ARM ARM.
7055    if (static_cast<ARMOperand*>(Operands[0])->getToken() == "push" &&
7056        Inst.getNumOperands() == 5) {
7057      MCInst TmpInst;
7058      TmpInst.setOpcode(ARM::STR_PRE_IMM);
7059      TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
7060      TmpInst.addOperand(Inst.getOperand(4)); // Rt
7061      TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
7062      TmpInst.addOperand(MCOperand::CreateImm(-4));
7063      TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7064      TmpInst.addOperand(Inst.getOperand(3));
7065      Inst = TmpInst;
7066    }
7067    break;
7068  case ARM::t2ADDri12:
7069    // If the immediate fits for encoding T3 (t2ADDri) and the generic "add"
7070    // mnemonic was used (not "addw"), encoding T3 is preferred.
7071    if (static_cast<ARMOperand*>(Operands[0])->getToken() != "add" ||
7072        ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
7073      break;
7074    Inst.setOpcode(ARM::t2ADDri);
7075    Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
7076    break;
7077  case ARM::t2SUBri12:
7078    // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub"
7079    // mnemonic was used (not "subw"), encoding T3 is preferred.
7080    if (static_cast<ARMOperand*>(Operands[0])->getToken() != "sub" ||
7081        ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
7082      break;
7083    Inst.setOpcode(ARM::t2SUBri);
7084    Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
7085    break;
7086  case ARM::tADDi8:
7087    // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
7088    // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
7089    // to encoding T2 if <Rd> is specified and encoding T2 is preferred
7090    // to encoding T1 if <Rd> is omitted."
7091    if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
7092      Inst.setOpcode(ARM::tADDi3);
7093      return true;
7094    }
7095    break;
7096  case ARM::tSUBi8:
7097    // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
7098    // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
7099    // to encoding T2 if <Rd> is specified and encoding T2 is preferred
7100    // to encoding T1 if <Rd> is omitted."
7101    if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
7102      Inst.setOpcode(ARM::tSUBi3);
7103      return true;
7104    }
7105    break;
7106  case ARM::t2ADDri:
7107  case ARM::t2SUBri: {
7108    // If the destination and first source operand are the same, and
7109    // the flags are compatible with the current IT status, use encoding T2
7110    // instead of T3. For compatibility with the system 'as'. Make sure the
7111    // wide encoding wasn't explicit.
7112    if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
7113        !isARMLowRegister(Inst.getOperand(0).getReg()) ||
7114        (unsigned)Inst.getOperand(2).getImm() > 255 ||
7115        ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) ||
7116        (inITBlock() && Inst.getOperand(5).getReg() != 0)) ||
7117        (static_cast<ARMOperand*>(Operands[3])->isToken() &&
7118         static_cast<ARMOperand*>(Operands[3])->getToken() == ".w"))
7119      break;
7120    MCInst TmpInst;
7121    TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
7122                      ARM::tADDi8 : ARM::tSUBi8);
7123    TmpInst.addOperand(Inst.getOperand(0));
7124    TmpInst.addOperand(Inst.getOperand(5));
7125    TmpInst.addOperand(Inst.getOperand(0));
7126    TmpInst.addOperand(Inst.getOperand(2));
7127    TmpInst.addOperand(Inst.getOperand(3));
7128    TmpInst.addOperand(Inst.getOperand(4));
7129    Inst = TmpInst;
7130    return true;
7131  }
7132  case ARM::t2ADDrr: {
7133    // If the destination and first source operand are the same, and
7134    // there's no setting of the flags, use encoding T2 instead of T3.
7135    // Note that this is only for ADD, not SUB. This mirrors the system
7136    // 'as' behaviour. Make sure the wide encoding wasn't explicit.
7137    if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
7138        Inst.getOperand(5).getReg() != 0 ||
7139        (static_cast<ARMOperand*>(Operands[3])->isToken() &&
7140         static_cast<ARMOperand*>(Operands[3])->getToken() == ".w"))
7141      break;
7142    MCInst TmpInst;
7143    TmpInst.setOpcode(ARM::tADDhirr);
7144    TmpInst.addOperand(Inst.getOperand(0));
7145    TmpInst.addOperand(Inst.getOperand(0));
7146    TmpInst.addOperand(Inst.getOperand(2));
7147    TmpInst.addOperand(Inst.getOperand(3));
7148    TmpInst.addOperand(Inst.getOperand(4));
7149    Inst = TmpInst;
7150    return true;
7151  }
7152  case ARM::tADDrSP: {
7153    // If the non-SP source operand and the destination operand are not the
7154    // same, we need to use the 32-bit encoding if it's available.
7155    if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
7156      Inst.setOpcode(ARM::t2ADDrr);
7157      Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
7158      return true;
7159    }
7160    break;
7161  }
7162  case ARM::tB:
7163    // A Thumb conditional branch outside of an IT block is a tBcc.
7164    if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
7165      Inst.setOpcode(ARM::tBcc);
7166      return true;
7167    }
7168    break;
7169  case ARM::t2B:
7170    // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
7171    if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
7172      Inst.setOpcode(ARM::t2Bcc);
7173      return true;
7174    }
7175    break;
7176  case ARM::t2Bcc:
7177    // If the conditional is AL or we're in an IT block, we really want t2B.
7178    if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
7179      Inst.setOpcode(ARM::t2B);
7180      return true;
7181    }
7182    break;
7183  case ARM::tBcc:
7184    // If the conditional is AL, we really want tB.
7185    if (Inst.getOperand(1).getImm() == ARMCC::AL) {
7186      Inst.setOpcode(ARM::tB);
7187      return true;
7188    }
7189    break;
7190  case ARM::tLDMIA: {
7191    // If the register list contains any high registers, or if the writeback
7192    // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
7193    // instead if we're in Thumb2. Otherwise, this should have generated
7194    // an error in validateInstruction().
7195    unsigned Rn = Inst.getOperand(0).getReg();
7196    bool hasWritebackToken =
7197      (static_cast<ARMOperand*>(Operands[3])->isToken() &&
7198       static_cast<ARMOperand*>(Operands[3])->getToken() == "!");
7199    bool listContainsBase;
7200    if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
7201        (!listContainsBase && !hasWritebackToken) ||
7202        (listContainsBase && hasWritebackToken)) {
7203      // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
7204      assert (isThumbTwo());
7205      Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
7206      // If we're switching to the updating version, we need to insert
7207      // the writeback tied operand.
7208      if (hasWritebackToken)
7209        Inst.insert(Inst.begin(),
7210                    MCOperand::CreateReg(Inst.getOperand(0).getReg()));
7211      return true;
7212    }
7213    break;
7214  }
7215  case ARM::tSTMIA_UPD: {
7216    // If the register list contains any high registers, we need to use
7217    // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
7218    // should have generated an error in validateInstruction().
7219    unsigned Rn = Inst.getOperand(0).getReg();
7220    bool listContainsBase;
7221    if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
7222      // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
7223      assert (isThumbTwo());
7224      Inst.setOpcode(ARM::t2STMIA_UPD);
7225      return true;
7226    }
7227    break;
7228  }
7229  case ARM::tPOP: {
7230    bool listContainsBase;
7231    // If the register list contains any high registers, we need to use
7232    // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
7233    // should have generated an error in validateInstruction().
7234    if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
7235      return false;
7236    assert (isThumbTwo());
7237    Inst.setOpcode(ARM::t2LDMIA_UPD);
7238    // Add the base register and writeback operands.
7239    Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7240    Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7241    return true;
7242  }
7243  case ARM::tPUSH: {
7244    bool listContainsBase;
7245    if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
7246      return false;
7247    assert (isThumbTwo());
7248    Inst.setOpcode(ARM::t2STMDB_UPD);
7249    // Add the base register and writeback operands.
7250    Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7251    Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7252    return true;
7253  }
7254  case ARM::t2MOVi: {
7255    // If we can use the 16-bit encoding and the user didn't explicitly
7256    // request the 32-bit variant, transform it here.
7257    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7258        (unsigned)Inst.getOperand(1).getImm() <= 255 &&
7259        ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL &&
7260         Inst.getOperand(4).getReg() == ARM::CPSR) ||
7261        (inITBlock() && Inst.getOperand(4).getReg() == 0)) &&
7262        (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
7263         static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
7264      // The operands aren't in the same order for tMOVi8...
7265      MCInst TmpInst;
7266      TmpInst.setOpcode(ARM::tMOVi8);
7267      TmpInst.addOperand(Inst.getOperand(0));
7268      TmpInst.addOperand(Inst.getOperand(4));
7269      TmpInst.addOperand(Inst.getOperand(1));
7270      TmpInst.addOperand(Inst.getOperand(2));
7271      TmpInst.addOperand(Inst.getOperand(3));
7272      Inst = TmpInst;
7273      return true;
7274    }
7275    break;
7276  }
7277  case ARM::t2MOVr: {
7278    // If we can use the 16-bit encoding and the user didn't explicitly
7279    // request the 32-bit variant, transform it here.
7280    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7281        isARMLowRegister(Inst.getOperand(1).getReg()) &&
7282        Inst.getOperand(2).getImm() == ARMCC::AL &&
7283        Inst.getOperand(4).getReg() == ARM::CPSR &&
7284        (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
7285         static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
7286      // The operands aren't the same for tMOV[S]r... (no cc_out)
7287      MCInst TmpInst;
7288      TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr);
7289      TmpInst.addOperand(Inst.getOperand(0));
7290      TmpInst.addOperand(Inst.getOperand(1));
7291      TmpInst.addOperand(Inst.getOperand(2));
7292      TmpInst.addOperand(Inst.getOperand(3));
7293      Inst = TmpInst;
7294      return true;
7295    }
7296    break;
7297  }
7298  case ARM::t2SXTH:
7299  case ARM::t2SXTB:
7300  case ARM::t2UXTH:
7301  case ARM::t2UXTB: {
7302    // If we can use the 16-bit encoding and the user didn't explicitly
7303    // request the 32-bit variant, transform it here.
7304    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7305        isARMLowRegister(Inst.getOperand(1).getReg()) &&
7306        Inst.getOperand(2).getImm() == 0 &&
7307        (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
7308         static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
7309      unsigned NewOpc;
7310      switch (Inst.getOpcode()) {
7311      default: llvm_unreachable("Illegal opcode!");
7312      case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
7313      case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
7314      case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
7315      case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
7316      }
7317      // The operands aren't the same for thumb1 (no rotate operand).
7318      MCInst TmpInst;
7319      TmpInst.setOpcode(NewOpc);
7320      TmpInst.addOperand(Inst.getOperand(0));
7321      TmpInst.addOperand(Inst.getOperand(1));
7322      TmpInst.addOperand(Inst.getOperand(3));
7323      TmpInst.addOperand(Inst.getOperand(4));
7324      Inst = TmpInst;
7325      return true;
7326    }
7327    break;
7328  }
7329  case ARM::MOVsi: {
7330    ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
7331    // rrx shifts and asr/lsr of #32 is encoded as 0
7332    if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr)
7333      return false;
7334    if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
7335      // Shifting by zero is accepted as a vanilla 'MOVr'
7336      MCInst TmpInst;
7337      TmpInst.setOpcode(ARM::MOVr);
7338      TmpInst.addOperand(Inst.getOperand(0));
7339      TmpInst.addOperand(Inst.getOperand(1));
7340      TmpInst.addOperand(Inst.getOperand(3));
7341      TmpInst.addOperand(Inst.getOperand(4));
7342      TmpInst.addOperand(Inst.getOperand(5));
7343      Inst = TmpInst;
7344      return true;
7345    }
7346    return false;
7347  }
7348  case ARM::ANDrsi:
7349  case ARM::ORRrsi:
7350  case ARM::EORrsi:
7351  case ARM::BICrsi:
7352  case ARM::SUBrsi:
7353  case ARM::ADDrsi: {
7354    unsigned newOpc;
7355    ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
7356    if (SOpc == ARM_AM::rrx) return false;
7357    switch (Inst.getOpcode()) {
7358    default: llvm_unreachable("unexpected opcode!");
7359    case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
7360    case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
7361    case ARM::EORrsi: newOpc = ARM::EORrr; break;
7362    case ARM::BICrsi: newOpc = ARM::BICrr; break;
7363    case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
7364    case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
7365    }
7366    // If the shift is by zero, use the non-shifted instruction definition.
7367    // The exception is for right shifts, where 0 == 32
7368    if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
7369        !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
7370      MCInst TmpInst;
7371      TmpInst.setOpcode(newOpc);
7372      TmpInst.addOperand(Inst.getOperand(0));
7373      TmpInst.addOperand(Inst.getOperand(1));
7374      TmpInst.addOperand(Inst.getOperand(2));
7375      TmpInst.addOperand(Inst.getOperand(4));
7376      TmpInst.addOperand(Inst.getOperand(5));
7377      TmpInst.addOperand(Inst.getOperand(6));
7378      Inst = TmpInst;
7379      return true;
7380    }
7381    return false;
7382  }
7383  case ARM::ITasm:
7384  case ARM::t2IT: {
7385    // The mask bits for all but the first condition are represented as
7386    // the low bit of the condition code value implies 't'. We currently
7387    // always have 1 implies 't', so XOR toggle the bits if the low bit
7388    // of the condition code is zero.
7389    MCOperand &MO = Inst.getOperand(1);
7390    unsigned Mask = MO.getImm();
7391    unsigned OrigMask = Mask;
7392    unsigned TZ = CountTrailingZeros_32(Mask);
7393    if ((Inst.getOperand(0).getImm() & 1) == 0) {
7394      assert(Mask && TZ <= 3 && "illegal IT mask value!");
7395      for (unsigned i = 3; i != TZ; --i)
7396        Mask ^= 1 << i;
7397    }
7398    MO.setImm(Mask);
7399
7400    // Set up the IT block state according to the IT instruction we just
7401    // matched.
7402    assert(!inITBlock() && "nested IT blocks?!");
7403    ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm());
7404    ITState.Mask = OrigMask; // Use the original mask, not the updated one.
7405    ITState.CurPosition = 0;
7406    ITState.FirstCond = true;
7407    break;
7408  }
7409  case ARM::t2LSLrr:
7410  case ARM::t2LSRrr:
7411  case ARM::t2ASRrr:
7412  case ARM::t2SBCrr:
7413  case ARM::t2RORrr:
7414  case ARM::t2BICrr:
7415  {
7416    // Assemblers should use the narrow encodings of these instructions when permissible.
7417    if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
7418         isARMLowRegister(Inst.getOperand(2).getReg())) &&
7419        Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
7420        ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
7421         (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) &&
7422        (!static_cast<ARMOperand*>(Operands[3])->isToken() ||
7423         !static_cast<ARMOperand*>(Operands[3])->getToken().equals_lower(".w"))) {
7424      unsigned NewOpc;
7425      switch (Inst.getOpcode()) {
7426        default: llvm_unreachable("unexpected opcode");
7427        case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
7428        case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
7429        case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
7430        case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
7431        case ARM::t2RORrr: NewOpc = ARM::tROR; break;
7432        case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
7433      }
7434      MCInst TmpInst;
7435      TmpInst.setOpcode(NewOpc);
7436      TmpInst.addOperand(Inst.getOperand(0));
7437      TmpInst.addOperand(Inst.getOperand(5));
7438      TmpInst.addOperand(Inst.getOperand(1));
7439      TmpInst.addOperand(Inst.getOperand(2));
7440      TmpInst.addOperand(Inst.getOperand(3));
7441      TmpInst.addOperand(Inst.getOperand(4));
7442      Inst = TmpInst;
7443      return true;
7444    }
7445    return false;
7446  }
7447  case ARM::t2ANDrr:
7448  case ARM::t2EORrr:
7449  case ARM::t2ADCrr:
7450  case ARM::t2ORRrr:
7451  {
7452    // Assemblers should use the narrow encodings of these instructions when permissible.
7453    // These instructions are special in that they are commutable, so shorter encodings
7454    // are available more often.
7455    if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
7456         isARMLowRegister(Inst.getOperand(2).getReg())) &&
7457        (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
7458         Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
7459        ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
7460         (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) &&
7461        (!static_cast<ARMOperand*>(Operands[3])->isToken() ||
7462         !static_cast<ARMOperand*>(Operands[3])->getToken().equals_lower(".w"))) {
7463      unsigned NewOpc;
7464      switch (Inst.getOpcode()) {
7465        default: llvm_unreachable("unexpected opcode");
7466        case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
7467        case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
7468        case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
7469        case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
7470      }
7471      MCInst TmpInst;
7472      TmpInst.setOpcode(NewOpc);
7473      TmpInst.addOperand(Inst.getOperand(0));
7474      TmpInst.addOperand(Inst.getOperand(5));
7475      if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
7476        TmpInst.addOperand(Inst.getOperand(1));
7477        TmpInst.addOperand(Inst.getOperand(2));
7478      } else {
7479        TmpInst.addOperand(Inst.getOperand(2));
7480        TmpInst.addOperand(Inst.getOperand(1));
7481      }
7482      TmpInst.addOperand(Inst.getOperand(3));
7483      TmpInst.addOperand(Inst.getOperand(4));
7484      Inst = TmpInst;
7485      return true;
7486    }
7487    return false;
7488  }
7489  }
7490  return false;
7491}
7492
7493unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
7494  // 16-bit thumb arithmetic instructions either require or preclude the 'S'
7495  // suffix depending on whether they're in an IT block or not.
7496  unsigned Opc = Inst.getOpcode();
7497  const MCInstrDesc &MCID = getInstDesc(Opc);
7498  if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
7499    assert(MCID.hasOptionalDef() &&
7500           "optionally flag setting instruction missing optional def operand");
7501    assert(MCID.NumOperands == Inst.getNumOperands() &&
7502           "operand count mismatch!");
7503    // Find the optional-def operand (cc_out).
7504    unsigned OpNo;
7505    for (OpNo = 0;
7506         !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
7507         ++OpNo)
7508      ;
7509    // If we're parsing Thumb1, reject it completely.
7510    if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
7511      return Match_MnemonicFail;
7512    // If we're parsing Thumb2, which form is legal depends on whether we're
7513    // in an IT block.
7514    if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
7515        !inITBlock())
7516      return Match_RequiresITBlock;
7517    if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
7518        inITBlock())
7519      return Match_RequiresNotITBlock;
7520  }
7521  // Some high-register supporting Thumb1 encodings only allow both registers
7522  // to be from r0-r7 when in Thumb2.
7523  else if (Opc == ARM::tADDhirr && isThumbOne() &&
7524           isARMLowRegister(Inst.getOperand(1).getReg()) &&
7525           isARMLowRegister(Inst.getOperand(2).getReg()))
7526    return Match_RequiresThumb2;
7527  // Others only require ARMv6 or later.
7528  else if (Opc == ARM::tMOVr && isThumbOne() && !hasV6Ops() &&
7529           isARMLowRegister(Inst.getOperand(0).getReg()) &&
7530           isARMLowRegister(Inst.getOperand(1).getReg()))
7531    return Match_RequiresV6;
7532  return Match_Success;
7533}
7534
7535static const char *getSubtargetFeatureName(unsigned Val);
7536bool ARMAsmParser::
7537MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
7538                        SmallVectorImpl<MCParsedAsmOperand*> &Operands,
7539                        MCStreamer &Out, unsigned &ErrorInfo,
7540                        bool MatchingInlineAsm) {
7541  MCInst Inst;
7542  unsigned MatchResult;
7543
7544  MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
7545                                     MatchingInlineAsm);
7546  switch (MatchResult) {
7547  default: break;
7548  case Match_Success:
7549    // Context sensitive operand constraints aren't handled by the matcher,
7550    // so check them here.
7551    if (validateInstruction(Inst, Operands)) {
7552      // Still progress the IT block, otherwise one wrong condition causes
7553      // nasty cascading errors.
7554      forwardITPosition();
7555      return true;
7556    }
7557
7558    // Some instructions need post-processing to, for example, tweak which
7559    // encoding is selected. Loop on it while changes happen so the
7560    // individual transformations can chain off each other. E.g.,
7561    // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
7562    while (processInstruction(Inst, Operands))
7563      ;
7564
7565    // Only move forward at the very end so that everything in validate
7566    // and process gets a consistent answer about whether we're in an IT
7567    // block.
7568    forwardITPosition();
7569
7570    // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
7571    // doesn't actually encode.
7572    if (Inst.getOpcode() == ARM::ITasm)
7573      return false;
7574
7575    Inst.setLoc(IDLoc);
7576    Out.EmitInstruction(Inst);
7577    return false;
7578  case Match_MissingFeature: {
7579    assert(ErrorInfo && "Unknown missing feature!");
7580    // Special case the error message for the very common case where only
7581    // a single subtarget feature is missing (Thumb vs. ARM, e.g.).
7582    std::string Msg = "instruction requires:";
7583    unsigned Mask = 1;
7584    for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
7585      if (ErrorInfo & Mask) {
7586        Msg += " ";
7587        Msg += getSubtargetFeatureName(ErrorInfo & Mask);
7588      }
7589      Mask <<= 1;
7590    }
7591    return Error(IDLoc, Msg);
7592  }
7593  case Match_InvalidOperand: {
7594    SMLoc ErrorLoc = IDLoc;
7595    if (ErrorInfo != ~0U) {
7596      if (ErrorInfo >= Operands.size())
7597        return Error(IDLoc, "too few operands for instruction");
7598
7599      ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
7600      if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
7601    }
7602
7603    return Error(ErrorLoc, "invalid operand for instruction");
7604  }
7605  case Match_MnemonicFail:
7606    return Error(IDLoc, "invalid instruction",
7607                 ((ARMOperand*)Operands[0])->getLocRange());
7608  case Match_RequiresNotITBlock:
7609    return Error(IDLoc, "flag setting instruction only valid outside IT block");
7610  case Match_RequiresITBlock:
7611    return Error(IDLoc, "instruction only valid inside IT block");
7612  case Match_RequiresV6:
7613    return Error(IDLoc, "instruction variant requires ARMv6 or later");
7614  case Match_RequiresThumb2:
7615    return Error(IDLoc, "instruction variant requires Thumb2");
7616  case Match_ImmRange0_15: {
7617    SMLoc ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
7618    if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
7619    return Error(ErrorLoc, "immediate operand must be in the range [0,15]");
7620  }
7621  }
7622
7623  llvm_unreachable("Implement any new match types added!");
7624}
7625
7626/// parseDirective parses the arm specific directives
7627bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
7628  StringRef IDVal = DirectiveID.getIdentifier();
7629  if (IDVal == ".word")
7630    return parseDirectiveWord(4, DirectiveID.getLoc());
7631  else if (IDVal == ".thumb")
7632    return parseDirectiveThumb(DirectiveID.getLoc());
7633  else if (IDVal == ".arm")
7634    return parseDirectiveARM(DirectiveID.getLoc());
7635  else if (IDVal == ".thumb_func")
7636    return parseDirectiveThumbFunc(DirectiveID.getLoc());
7637  else if (IDVal == ".code")
7638    return parseDirectiveCode(DirectiveID.getLoc());
7639  else if (IDVal == ".syntax")
7640    return parseDirectiveSyntax(DirectiveID.getLoc());
7641  else if (IDVal == ".unreq")
7642    return parseDirectiveUnreq(DirectiveID.getLoc());
7643  else if (IDVal == ".arch")
7644    return parseDirectiveArch(DirectiveID.getLoc());
7645  else if (IDVal == ".eabi_attribute")
7646    return parseDirectiveEabiAttr(DirectiveID.getLoc());
7647  return true;
7648}
7649
7650/// parseDirectiveWord
7651///  ::= .word [ expression (, expression)* ]
7652bool ARMAsmParser::parseDirectiveWord(unsigned Size, SMLoc L) {
7653  if (getLexer().isNot(AsmToken::EndOfStatement)) {
7654    for (;;) {
7655      const MCExpr *Value;
7656      if (getParser().parseExpression(Value))
7657        return true;
7658
7659      getParser().getStreamer().EmitValue(Value, Size);
7660
7661      if (getLexer().is(AsmToken::EndOfStatement))
7662        break;
7663
7664      // FIXME: Improve diagnostic.
7665      if (getLexer().isNot(AsmToken::Comma))
7666        return Error(L, "unexpected token in directive");
7667      Parser.Lex();
7668    }
7669  }
7670
7671  Parser.Lex();
7672  return false;
7673}
7674
7675/// parseDirectiveThumb
7676///  ::= .thumb
7677bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
7678  if (getLexer().isNot(AsmToken::EndOfStatement))
7679    return Error(L, "unexpected token in directive");
7680  Parser.Lex();
7681
7682  if (!isThumb())
7683    SwitchMode();
7684  getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
7685  return false;
7686}
7687
7688/// parseDirectiveARM
7689///  ::= .arm
7690bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
7691  if (getLexer().isNot(AsmToken::EndOfStatement))
7692    return Error(L, "unexpected token in directive");
7693  Parser.Lex();
7694
7695  if (isThumb())
7696    SwitchMode();
7697  getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
7698  return false;
7699}
7700
7701/// parseDirectiveThumbFunc
7702///  ::= .thumbfunc symbol_name
7703bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
7704  const MCAsmInfo &MAI = getParser().getStreamer().getContext().getAsmInfo();
7705  bool isMachO = MAI.hasSubsectionsViaSymbols();
7706  StringRef Name;
7707  bool needFuncName = true;
7708
7709  // Darwin asm has (optionally) function name after .thumb_func direction
7710  // ELF doesn't
7711  if (isMachO) {
7712    const AsmToken &Tok = Parser.getTok();
7713    if (Tok.isNot(AsmToken::EndOfStatement)) {
7714      if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String))
7715        return Error(L, "unexpected token in .thumb_func directive");
7716      Name = Tok.getIdentifier();
7717      Parser.Lex(); // Consume the identifier token.
7718      needFuncName = false;
7719    }
7720  }
7721
7722  if (getLexer().isNot(AsmToken::EndOfStatement))
7723    return Error(L, "unexpected token in directive");
7724
7725  // Eat the end of statement and any blank lines that follow.
7726  while (getLexer().is(AsmToken::EndOfStatement))
7727    Parser.Lex();
7728
7729  // FIXME: assuming function name will be the line following .thumb_func
7730  // We really should be checking the next symbol definition even if there's
7731  // stuff in between.
7732  if (needFuncName) {
7733    Name = Parser.getTok().getIdentifier();
7734  }
7735
7736  // Mark symbol as a thumb symbol.
7737  MCSymbol *Func = getParser().getContext().GetOrCreateSymbol(Name);
7738  getParser().getStreamer().EmitThumbFunc(Func);
7739  return false;
7740}
7741
7742/// parseDirectiveSyntax
7743///  ::= .syntax unified | divided
7744bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
7745  const AsmToken &Tok = Parser.getTok();
7746  if (Tok.isNot(AsmToken::Identifier))
7747    return Error(L, "unexpected token in .syntax directive");
7748  StringRef Mode = Tok.getString();
7749  if (Mode == "unified" || Mode == "UNIFIED")
7750    Parser.Lex();
7751  else if (Mode == "divided" || Mode == "DIVIDED")
7752    return Error(L, "'.syntax divided' arm asssembly not supported");
7753  else
7754    return Error(L, "unrecognized syntax mode in .syntax directive");
7755
7756  if (getLexer().isNot(AsmToken::EndOfStatement))
7757    return Error(Parser.getTok().getLoc(), "unexpected token in directive");
7758  Parser.Lex();
7759
7760  // TODO tell the MC streamer the mode
7761  // getParser().getStreamer().Emit???();
7762  return false;
7763}
7764
7765/// parseDirectiveCode
7766///  ::= .code 16 | 32
7767bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
7768  const AsmToken &Tok = Parser.getTok();
7769  if (Tok.isNot(AsmToken::Integer))
7770    return Error(L, "unexpected token in .code directive");
7771  int64_t Val = Parser.getTok().getIntVal();
7772  if (Val == 16)
7773    Parser.Lex();
7774  else if (Val == 32)
7775    Parser.Lex();
7776  else
7777    return Error(L, "invalid operand to .code directive");
7778
7779  if (getLexer().isNot(AsmToken::EndOfStatement))
7780    return Error(Parser.getTok().getLoc(), "unexpected token in directive");
7781  Parser.Lex();
7782
7783  if (Val == 16) {
7784    if (!isThumb())
7785      SwitchMode();
7786    getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
7787  } else {
7788    if (isThumb())
7789      SwitchMode();
7790    getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
7791  }
7792
7793  return false;
7794}
7795
7796/// parseDirectiveReq
7797///  ::= name .req registername
7798bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
7799  Parser.Lex(); // Eat the '.req' token.
7800  unsigned Reg;
7801  SMLoc SRegLoc, ERegLoc;
7802  if (ParseRegister(Reg, SRegLoc, ERegLoc)) {
7803    Parser.eatToEndOfStatement();
7804    return Error(SRegLoc, "register name expected");
7805  }
7806
7807  // Shouldn't be anything else.
7808  if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
7809    Parser.eatToEndOfStatement();
7810    return Error(Parser.getTok().getLoc(),
7811                 "unexpected input in .req directive.");
7812  }
7813
7814  Parser.Lex(); // Consume the EndOfStatement
7815
7816  if (RegisterReqs.GetOrCreateValue(Name, Reg).getValue() != Reg)
7817    return Error(SRegLoc, "redefinition of '" + Name +
7818                          "' does not match original.");
7819
7820  return false;
7821}
7822
7823/// parseDirectiveUneq
7824///  ::= .unreq registername
7825bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
7826  if (Parser.getTok().isNot(AsmToken::Identifier)) {
7827    Parser.eatToEndOfStatement();
7828    return Error(L, "unexpected input in .unreq directive.");
7829  }
7830  RegisterReqs.erase(Parser.getTok().getIdentifier());
7831  Parser.Lex(); // Eat the identifier.
7832  return false;
7833}
7834
7835/// parseDirectiveArch
7836///  ::= .arch token
7837bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
7838  return true;
7839}
7840
7841/// parseDirectiveEabiAttr
7842///  ::= .eabi_attribute int, int
7843bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
7844  return true;
7845}
7846
7847/// Force static initialization.
7848extern "C" void LLVMInitializeARMAsmParser() {
7849  RegisterMCAsmParser<ARMAsmParser> X(TheARMTarget);
7850  RegisterMCAsmParser<ARMAsmParser> Y(TheThumbTarget);
7851}
7852
7853#define GET_REGISTER_MATCHER
7854#define GET_SUBTARGET_FEATURE_NAME
7855#define GET_MATCHER_IMPLEMENTATION
7856#include "ARMGenAsmMatcher.inc"
7857
7858// Define this matcher function after the auto-generated include so we
7859// have the match class enum definitions.
7860unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand *AsmOp,
7861                                                  unsigned Kind) {
7862  ARMOperand *Op = static_cast<ARMOperand*>(AsmOp);
7863  // If the kind is a token for a literal immediate, check if our asm
7864  // operand matches. This is for InstAliases which have a fixed-value
7865  // immediate in the syntax.
7866  if (Kind == MCK__35_0 && Op->isImm()) {
7867    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op->getImm());
7868    if (!CE)
7869      return Match_InvalidOperand;
7870    if (CE->getValue() == 0)
7871      return Match_Success;
7872  }
7873  return Match_InvalidOperand;
7874}
7875