ARMAsmParser.cpp revision 59e648e3c8966e0678902a2994558f25c8573ce4
1//===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "ARMBuildAttrs.h"
11#include "ARMFPUName.h"
12#include "ARMFeatures.h"
13#include "llvm/MC/MCTargetAsmParser.h"
14#include "MCTargetDesc/ARMAddressingModes.h"
15#include "MCTargetDesc/ARMBaseInfo.h"
16#include "MCTargetDesc/ARMMCExpr.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/OwningPtr.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/StringSwitch.h"
22#include "llvm/ADT/Twine.h"
23#include "llvm/MC/MCAsmInfo.h"
24#include "llvm/MC/MCAssembler.h"
25#include "llvm/MC/MCContext.h"
26#include "llvm/MC/MCELFStreamer.h"
27#include "llvm/MC/MCExpr.h"
28#include "llvm/MC/MCInst.h"
29#include "llvm/MC/MCInstrDesc.h"
30#include "llvm/MC/MCInstrInfo.h"
31#include "llvm/MC/MCParser/MCAsmLexer.h"
32#include "llvm/MC/MCParser/MCAsmParser.h"
33#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
34#include "llvm/MC/MCRegisterInfo.h"
35#include "llvm/MC/MCStreamer.h"
36#include "llvm/MC/MCSubtargetInfo.h"
37#include "llvm/Support/ELF.h"
38#include "llvm/Support/MathExtras.h"
39#include "llvm/Support/SourceMgr.h"
40#include "llvm/Support/TargetRegistry.h"
41#include "llvm/Support/raw_ostream.h"
42
43using namespace llvm;
44
45namespace {
46
47class ARMOperand;
48
49enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
50
51class ARMAsmParser : public MCTargetAsmParser {
52  MCSubtargetInfo &STI;
53  MCAsmParser &Parser;
54  const MCInstrInfo &MII;
55  const MCRegisterInfo *MRI;
56
57  ARMTargetStreamer &getTargetStreamer() {
58    MCTargetStreamer &TS = getParser().getStreamer().getTargetStreamer();
59    return static_cast<ARMTargetStreamer &>(TS);
60  }
61
62  // Unwind directives state
63  SMLoc FnStartLoc;
64  SMLoc CantUnwindLoc;
65  SMLoc PersonalityLoc;
66  SMLoc HandlerDataLoc;
67  int FPReg;
68  void resetUnwindDirectiveParserState() {
69    FnStartLoc = SMLoc();
70    CantUnwindLoc = SMLoc();
71    PersonalityLoc = SMLoc();
72    HandlerDataLoc = SMLoc();
73    FPReg = -1;
74  }
75
76  // Map of register aliases registers via the .req directive.
77  StringMap<unsigned> RegisterReqs;
78
79  bool NextSymbolIsThumb;
80
81  struct {
82    ARMCC::CondCodes Cond;    // Condition for IT block.
83    unsigned Mask:4;          // Condition mask for instructions.
84                              // Starting at first 1 (from lsb).
85                              //   '1'  condition as indicated in IT.
86                              //   '0'  inverse of condition (else).
87                              // Count of instructions in IT block is
88                              // 4 - trailingzeroes(mask)
89
90    bool FirstCond;           // Explicit flag for when we're parsing the
91                              // First instruction in the IT block. It's
92                              // implied in the mask, so needs special
93                              // handling.
94
95    unsigned CurPosition;     // Current position in parsing of IT
96                              // block. In range [0,3]. Initialized
97                              // according to count of instructions in block.
98                              // ~0U if no active IT block.
99  } ITState;
100  bool inITBlock() { return ITState.CurPosition != ~0U;}
101  void forwardITPosition() {
102    if (!inITBlock()) return;
103    // Move to the next instruction in the IT block, if there is one. If not,
104    // mark the block as done.
105    unsigned TZ = countTrailingZeros(ITState.Mask);
106    if (++ITState.CurPosition == 5 - TZ)
107      ITState.CurPosition = ~0U; // Done with the IT block after this.
108  }
109
110
111  MCAsmParser &getParser() const { return Parser; }
112  MCAsmLexer &getLexer() const { return Parser.getLexer(); }
113
114  bool Warning(SMLoc L, const Twine &Msg,
115               ArrayRef<SMRange> Ranges = None) {
116    return Parser.Warning(L, Msg, Ranges);
117  }
118  bool Error(SMLoc L, const Twine &Msg,
119             ArrayRef<SMRange> Ranges = None) {
120    return Parser.Error(L, Msg, Ranges);
121  }
122
123  int tryParseRegister();
124  bool tryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &);
125  int tryParseShiftRegister(SmallVectorImpl<MCParsedAsmOperand*> &);
126  bool parseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &);
127  bool parseMemory(SmallVectorImpl<MCParsedAsmOperand*> &);
128  bool parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &, StringRef Mnemonic);
129  bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
130  bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
131                              unsigned &ShiftAmount);
132  bool parseDirectiveWord(unsigned Size, SMLoc L);
133  bool parseDirectiveThumb(SMLoc L);
134  bool parseDirectiveARM(SMLoc L);
135  bool parseDirectiveThumbFunc(SMLoc L);
136  bool parseDirectiveCode(SMLoc L);
137  bool parseDirectiveSyntax(SMLoc L);
138  bool parseDirectiveReq(StringRef Name, SMLoc L);
139  bool parseDirectiveUnreq(SMLoc L);
140  bool parseDirectiveArch(SMLoc L);
141  bool parseDirectiveEabiAttr(SMLoc L);
142  bool parseDirectiveCPU(SMLoc L);
143  bool parseDirectiveFPU(SMLoc L);
144  bool parseDirectiveFnStart(SMLoc L);
145  bool parseDirectiveFnEnd(SMLoc L);
146  bool parseDirectiveCantUnwind(SMLoc L);
147  bool parseDirectivePersonality(SMLoc L);
148  bool parseDirectiveHandlerData(SMLoc L);
149  bool parseDirectiveSetFP(SMLoc L);
150  bool parseDirectivePad(SMLoc L);
151  bool parseDirectiveRegSave(SMLoc L, bool IsVector);
152
153  StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode,
154                          bool &CarrySetting, unsigned &ProcessorIMod,
155                          StringRef &ITMask);
156  void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst,
157                             bool &CanAcceptCarrySet,
158                             bool &CanAcceptPredicationCode);
159
160  bool isThumb() const {
161    // FIXME: Can tablegen auto-generate this?
162    return (STI.getFeatureBits() & ARM::ModeThumb) != 0;
163  }
164  bool isThumbOne() const {
165    return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2) == 0;
166  }
167  bool isThumbTwo() const {
168    return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2);
169  }
170  bool hasThumb() const {
171    return STI.getFeatureBits() & ARM::HasV4TOps;
172  }
173  bool hasV6Ops() const {
174    return STI.getFeatureBits() & ARM::HasV6Ops;
175  }
176  bool hasV6MOps() const {
177    return STI.getFeatureBits() & ARM::HasV6MOps;
178  }
179  bool hasV7Ops() const {
180    return STI.getFeatureBits() & ARM::HasV7Ops;
181  }
182  bool hasV8Ops() const {
183    return STI.getFeatureBits() & ARM::HasV8Ops;
184  }
185  bool hasARM() const {
186    return !(STI.getFeatureBits() & ARM::FeatureNoARM);
187  }
188
189  void SwitchMode() {
190    unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
191    setAvailableFeatures(FB);
192  }
193  bool isMClass() const {
194    return STI.getFeatureBits() & ARM::FeatureMClass;
195  }
196
197  /// @name Auto-generated Match Functions
198  /// {
199
200#define GET_ASSEMBLER_HEADER
201#include "ARMGenAsmMatcher.inc"
202
203  /// }
204
205  OperandMatchResultTy parseITCondCode(SmallVectorImpl<MCParsedAsmOperand*>&);
206  OperandMatchResultTy parseCoprocNumOperand(
207    SmallVectorImpl<MCParsedAsmOperand*>&);
208  OperandMatchResultTy parseCoprocRegOperand(
209    SmallVectorImpl<MCParsedAsmOperand*>&);
210  OperandMatchResultTy parseCoprocOptionOperand(
211    SmallVectorImpl<MCParsedAsmOperand*>&);
212  OperandMatchResultTy parseMemBarrierOptOperand(
213    SmallVectorImpl<MCParsedAsmOperand*>&);
214  OperandMatchResultTy parseInstSyncBarrierOptOperand(
215    SmallVectorImpl<MCParsedAsmOperand*>&);
216  OperandMatchResultTy parseProcIFlagsOperand(
217    SmallVectorImpl<MCParsedAsmOperand*>&);
218  OperandMatchResultTy parseMSRMaskOperand(
219    SmallVectorImpl<MCParsedAsmOperand*>&);
220  OperandMatchResultTy parsePKHImm(SmallVectorImpl<MCParsedAsmOperand*> &O,
221                                   StringRef Op, int Low, int High);
222  OperandMatchResultTy parsePKHLSLImm(SmallVectorImpl<MCParsedAsmOperand*> &O) {
223    return parsePKHImm(O, "lsl", 0, 31);
224  }
225  OperandMatchResultTy parsePKHASRImm(SmallVectorImpl<MCParsedAsmOperand*> &O) {
226    return parsePKHImm(O, "asr", 1, 32);
227  }
228  OperandMatchResultTy parseSetEndImm(SmallVectorImpl<MCParsedAsmOperand*>&);
229  OperandMatchResultTy parseShifterImm(SmallVectorImpl<MCParsedAsmOperand*>&);
230  OperandMatchResultTy parseRotImm(SmallVectorImpl<MCParsedAsmOperand*>&);
231  OperandMatchResultTy parseBitfield(SmallVectorImpl<MCParsedAsmOperand*>&);
232  OperandMatchResultTy parsePostIdxReg(SmallVectorImpl<MCParsedAsmOperand*>&);
233  OperandMatchResultTy parseAM3Offset(SmallVectorImpl<MCParsedAsmOperand*>&);
234  OperandMatchResultTy parseFPImm(SmallVectorImpl<MCParsedAsmOperand*>&);
235  OperandMatchResultTy parseVectorList(SmallVectorImpl<MCParsedAsmOperand*>&);
236  OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index,
237                                       SMLoc &EndLoc);
238
239  // Asm Match Converter Methods
240  void cvtThumbMultiply(MCInst &Inst,
241                        const SmallVectorImpl<MCParsedAsmOperand*> &);
242  void cvtThumbBranches(MCInst &Inst,
243                        const SmallVectorImpl<MCParsedAsmOperand*> &);
244
245  bool validateInstruction(MCInst &Inst,
246                           const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
247  bool processInstruction(MCInst &Inst,
248                          const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
249  bool shouldOmitCCOutOperand(StringRef Mnemonic,
250                              SmallVectorImpl<MCParsedAsmOperand*> &Operands);
251  bool shouldOmitPredicateOperand(StringRef Mnemonic,
252                              SmallVectorImpl<MCParsedAsmOperand*> &Operands);
253public:
254  enum ARMMatchResultTy {
255    Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
256    Match_RequiresNotITBlock,
257    Match_RequiresV6,
258    Match_RequiresThumb2,
259#define GET_OPERAND_DIAGNOSTIC_TYPES
260#include "ARMGenAsmMatcher.inc"
261
262  };
263
264  ARMAsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser,
265               const MCInstrInfo &MII)
266      : MCTargetAsmParser(), STI(_STI), Parser(_Parser), MII(MII), FPReg(-1) {
267    MCAsmParserExtension::Initialize(_Parser);
268
269    // Cache the MCRegisterInfo.
270    MRI = getContext().getRegisterInfo();
271
272    // Initialize the set of available features.
273    setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
274
275    // Not in an ITBlock to start with.
276    ITState.CurPosition = ~0U;
277
278    NextSymbolIsThumb = false;
279  }
280
281  // Implementation of the MCTargetAsmParser interface:
282  bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
283  bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
284                        SMLoc NameLoc,
285                        SmallVectorImpl<MCParsedAsmOperand*> &Operands);
286  bool ParseDirective(AsmToken DirectiveID);
287
288  unsigned validateTargetOperandClass(MCParsedAsmOperand *Op, unsigned Kind);
289  unsigned checkTargetMatchPredicate(MCInst &Inst);
290
291  bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
292                               SmallVectorImpl<MCParsedAsmOperand*> &Operands,
293                               MCStreamer &Out, unsigned &ErrorInfo,
294                               bool MatchingInlineAsm);
295  void onLabelParsed(MCSymbol *Symbol);
296
297};
298} // end anonymous namespace
299
300namespace {
301
302/// ARMOperand - Instances of this class represent a parsed ARM machine
303/// operand.
304class ARMOperand : public MCParsedAsmOperand {
305  enum KindTy {
306    k_CondCode,
307    k_CCOut,
308    k_ITCondMask,
309    k_CoprocNum,
310    k_CoprocReg,
311    k_CoprocOption,
312    k_Immediate,
313    k_MemBarrierOpt,
314    k_InstSyncBarrierOpt,
315    k_Memory,
316    k_PostIndexRegister,
317    k_MSRMask,
318    k_ProcIFlags,
319    k_VectorIndex,
320    k_Register,
321    k_RegisterList,
322    k_DPRRegisterList,
323    k_SPRRegisterList,
324    k_VectorList,
325    k_VectorListAllLanes,
326    k_VectorListIndexed,
327    k_ShiftedRegister,
328    k_ShiftedImmediate,
329    k_ShifterImmediate,
330    k_RotateImmediate,
331    k_BitfieldDescriptor,
332    k_Token
333  } Kind;
334
335  SMLoc StartLoc, EndLoc;
336  SmallVector<unsigned, 8> Registers;
337
338  struct CCOp {
339    ARMCC::CondCodes Val;
340  };
341
342  struct CopOp {
343    unsigned Val;
344  };
345
346  struct CoprocOptionOp {
347    unsigned Val;
348  };
349
350  struct ITMaskOp {
351    unsigned Mask:4;
352  };
353
354  struct MBOptOp {
355    ARM_MB::MemBOpt Val;
356  };
357
358  struct ISBOptOp {
359    ARM_ISB::InstSyncBOpt Val;
360  };
361
362  struct IFlagsOp {
363    ARM_PROC::IFlags Val;
364  };
365
366  struct MMaskOp {
367    unsigned Val;
368  };
369
370  struct TokOp {
371    const char *Data;
372    unsigned Length;
373  };
374
375  struct RegOp {
376    unsigned RegNum;
377  };
378
379  // A vector register list is a sequential list of 1 to 4 registers.
380  struct VectorListOp {
381    unsigned RegNum;
382    unsigned Count;
383    unsigned LaneIndex;
384    bool isDoubleSpaced;
385  };
386
387  struct VectorIndexOp {
388    unsigned Val;
389  };
390
391  struct ImmOp {
392    const MCExpr *Val;
393  };
394
395  /// Combined record for all forms of ARM address expressions.
396  struct MemoryOp {
397    unsigned BaseRegNum;
398    // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
399    // was specified.
400    const MCConstantExpr *OffsetImm;  // Offset immediate value
401    unsigned OffsetRegNum;    // Offset register num, when OffsetImm == NULL
402    ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
403    unsigned ShiftImm;        // shift for OffsetReg.
404    unsigned Alignment;       // 0 = no alignment specified
405    // n = alignment in bytes (2, 4, 8, 16, or 32)
406    unsigned isNegative : 1;  // Negated OffsetReg? (~'U' bit)
407  };
408
409  struct PostIdxRegOp {
410    unsigned RegNum;
411    bool isAdd;
412    ARM_AM::ShiftOpc ShiftTy;
413    unsigned ShiftImm;
414  };
415
416  struct ShifterImmOp {
417    bool isASR;
418    unsigned Imm;
419  };
420
421  struct RegShiftedRegOp {
422    ARM_AM::ShiftOpc ShiftTy;
423    unsigned SrcReg;
424    unsigned ShiftReg;
425    unsigned ShiftImm;
426  };
427
428  struct RegShiftedImmOp {
429    ARM_AM::ShiftOpc ShiftTy;
430    unsigned SrcReg;
431    unsigned ShiftImm;
432  };
433
434  struct RotImmOp {
435    unsigned Imm;
436  };
437
438  struct BitfieldOp {
439    unsigned LSB;
440    unsigned Width;
441  };
442
443  union {
444    struct CCOp CC;
445    struct CopOp Cop;
446    struct CoprocOptionOp CoprocOption;
447    struct MBOptOp MBOpt;
448    struct ISBOptOp ISBOpt;
449    struct ITMaskOp ITMask;
450    struct IFlagsOp IFlags;
451    struct MMaskOp MMask;
452    struct TokOp Tok;
453    struct RegOp Reg;
454    struct VectorListOp VectorList;
455    struct VectorIndexOp VectorIndex;
456    struct ImmOp Imm;
457    struct MemoryOp Memory;
458    struct PostIdxRegOp PostIdxReg;
459    struct ShifterImmOp ShifterImm;
460    struct RegShiftedRegOp RegShiftedReg;
461    struct RegShiftedImmOp RegShiftedImm;
462    struct RotImmOp RotImm;
463    struct BitfieldOp Bitfield;
464  };
465
466  ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
467public:
468  ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() {
469    Kind = o.Kind;
470    StartLoc = o.StartLoc;
471    EndLoc = o.EndLoc;
472    switch (Kind) {
473    case k_CondCode:
474      CC = o.CC;
475      break;
476    case k_ITCondMask:
477      ITMask = o.ITMask;
478      break;
479    case k_Token:
480      Tok = o.Tok;
481      break;
482    case k_CCOut:
483    case k_Register:
484      Reg = o.Reg;
485      break;
486    case k_RegisterList:
487    case k_DPRRegisterList:
488    case k_SPRRegisterList:
489      Registers = o.Registers;
490      break;
491    case k_VectorList:
492    case k_VectorListAllLanes:
493    case k_VectorListIndexed:
494      VectorList = o.VectorList;
495      break;
496    case k_CoprocNum:
497    case k_CoprocReg:
498      Cop = o.Cop;
499      break;
500    case k_CoprocOption:
501      CoprocOption = o.CoprocOption;
502      break;
503    case k_Immediate:
504      Imm = o.Imm;
505      break;
506    case k_MemBarrierOpt:
507      MBOpt = o.MBOpt;
508      break;
509    case k_InstSyncBarrierOpt:
510      ISBOpt = o.ISBOpt;
511    case k_Memory:
512      Memory = o.Memory;
513      break;
514    case k_PostIndexRegister:
515      PostIdxReg = o.PostIdxReg;
516      break;
517    case k_MSRMask:
518      MMask = o.MMask;
519      break;
520    case k_ProcIFlags:
521      IFlags = o.IFlags;
522      break;
523    case k_ShifterImmediate:
524      ShifterImm = o.ShifterImm;
525      break;
526    case k_ShiftedRegister:
527      RegShiftedReg = o.RegShiftedReg;
528      break;
529    case k_ShiftedImmediate:
530      RegShiftedImm = o.RegShiftedImm;
531      break;
532    case k_RotateImmediate:
533      RotImm = o.RotImm;
534      break;
535    case k_BitfieldDescriptor:
536      Bitfield = o.Bitfield;
537      break;
538    case k_VectorIndex:
539      VectorIndex = o.VectorIndex;
540      break;
541    }
542  }
543
544  /// getStartLoc - Get the location of the first token of this operand.
545  SMLoc getStartLoc() const { return StartLoc; }
546  /// getEndLoc - Get the location of the last token of this operand.
547  SMLoc getEndLoc() const { return EndLoc; }
548  /// getLocRange - Get the range between the first and last token of this
549  /// operand.
550  SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
551
552  ARMCC::CondCodes getCondCode() const {
553    assert(Kind == k_CondCode && "Invalid access!");
554    return CC.Val;
555  }
556
557  unsigned getCoproc() const {
558    assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
559    return Cop.Val;
560  }
561
562  StringRef getToken() const {
563    assert(Kind == k_Token && "Invalid access!");
564    return StringRef(Tok.Data, Tok.Length);
565  }
566
567  unsigned getReg() const {
568    assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
569    return Reg.RegNum;
570  }
571
572  const SmallVectorImpl<unsigned> &getRegList() const {
573    assert((Kind == k_RegisterList || Kind == k_DPRRegisterList ||
574            Kind == k_SPRRegisterList) && "Invalid access!");
575    return Registers;
576  }
577
578  const MCExpr *getImm() const {
579    assert(isImm() && "Invalid access!");
580    return Imm.Val;
581  }
582
583  unsigned getVectorIndex() const {
584    assert(Kind == k_VectorIndex && "Invalid access!");
585    return VectorIndex.Val;
586  }
587
588  ARM_MB::MemBOpt getMemBarrierOpt() const {
589    assert(Kind == k_MemBarrierOpt && "Invalid access!");
590    return MBOpt.Val;
591  }
592
593  ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const {
594    assert(Kind == k_InstSyncBarrierOpt && "Invalid access!");
595    return ISBOpt.Val;
596  }
597
598  ARM_PROC::IFlags getProcIFlags() const {
599    assert(Kind == k_ProcIFlags && "Invalid access!");
600    return IFlags.Val;
601  }
602
603  unsigned getMSRMask() const {
604    assert(Kind == k_MSRMask && "Invalid access!");
605    return MMask.Val;
606  }
607
608  bool isCoprocNum() const { return Kind == k_CoprocNum; }
609  bool isCoprocReg() const { return Kind == k_CoprocReg; }
610  bool isCoprocOption() const { return Kind == k_CoprocOption; }
611  bool isCondCode() const { return Kind == k_CondCode; }
612  bool isCCOut() const { return Kind == k_CCOut; }
613  bool isITMask() const { return Kind == k_ITCondMask; }
614  bool isITCondCode() const { return Kind == k_CondCode; }
615  bool isImm() const { return Kind == k_Immediate; }
616  // checks whether this operand is an unsigned offset which fits is a field
617  // of specified width and scaled by a specific number of bits
618  template<unsigned width, unsigned scale>
619  bool isUnsignedOffset() const {
620    if (!isImm()) return false;
621    if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
622    if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
623      int64_t Val = CE->getValue();
624      int64_t Align = 1LL << scale;
625      int64_t Max = Align * ((1LL << width) - 1);
626      return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max);
627    }
628    return false;
629  }
630  // checks whether this operand is an signed offset which fits is a field
631  // of specified width and scaled by a specific number of bits
632  template<unsigned width, unsigned scale>
633  bool isSignedOffset() const {
634    if (!isImm()) return false;
635    if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
636    if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
637      int64_t Val = CE->getValue();
638      int64_t Align = 1LL << scale;
639      int64_t Max = Align * ((1LL << (width-1)) - 1);
640      int64_t Min = -Align * (1LL << (width-1));
641      return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max);
642    }
643    return false;
644  }
645
646  // checks whether this operand is a memory operand computed as an offset
647  // applied to PC. the offset may have 8 bits of magnitude and is represented
648  // with two bits of shift. textually it may be either [pc, #imm], #imm or
649  // relocable expression...
650  bool isThumbMemPC() const {
651    int64_t Val = 0;
652    if (isImm()) {
653      if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
654      const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val);
655      if (!CE) return false;
656      Val = CE->getValue();
657    }
658    else if (isMem()) {
659      if(!Memory.OffsetImm || Memory.OffsetRegNum) return false;
660      if(Memory.BaseRegNum != ARM::PC) return false;
661      Val = Memory.OffsetImm->getValue();
662    }
663    else return false;
664    return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020);
665  }
666  bool isFPImm() const {
667    if (!isImm()) return false;
668    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
669    if (!CE) return false;
670    int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
671    return Val != -1;
672  }
673  bool isFBits16() const {
674    if (!isImm()) return false;
675    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
676    if (!CE) return false;
677    int64_t Value = CE->getValue();
678    return Value >= 0 && Value <= 16;
679  }
680  bool isFBits32() const {
681    if (!isImm()) return false;
682    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
683    if (!CE) return false;
684    int64_t Value = CE->getValue();
685    return Value >= 1 && Value <= 32;
686  }
687  bool isImm8s4() const {
688    if (!isImm()) return false;
689    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
690    if (!CE) return false;
691    int64_t Value = CE->getValue();
692    return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020;
693  }
694  bool isImm0_1020s4() const {
695    if (!isImm()) return false;
696    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
697    if (!CE) return false;
698    int64_t Value = CE->getValue();
699    return ((Value & 3) == 0) && Value >= 0 && Value <= 1020;
700  }
701  bool isImm0_508s4() const {
702    if (!isImm()) return false;
703    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
704    if (!CE) return false;
705    int64_t Value = CE->getValue();
706    return ((Value & 3) == 0) && Value >= 0 && Value <= 508;
707  }
708  bool isImm0_508s4Neg() const {
709    if (!isImm()) return false;
710    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
711    if (!CE) return false;
712    int64_t Value = -CE->getValue();
713    // explicitly exclude zero. we want that to use the normal 0_508 version.
714    return ((Value & 3) == 0) && Value > 0 && Value <= 508;
715  }
716  bool isImm0_239() const {
717    if (!isImm()) return false;
718    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
719    if (!CE) return false;
720    int64_t Value = CE->getValue();
721    return Value >= 0 && Value < 240;
722  }
723  bool isImm0_255() const {
724    if (!isImm()) return false;
725    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
726    if (!CE) return false;
727    int64_t Value = CE->getValue();
728    return Value >= 0 && Value < 256;
729  }
730  bool isImm0_4095() const {
731    if (!isImm()) return false;
732    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
733    if (!CE) return false;
734    int64_t Value = CE->getValue();
735    return Value >= 0 && Value < 4096;
736  }
737  bool isImm0_4095Neg() const {
738    if (!isImm()) return false;
739    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
740    if (!CE) return false;
741    int64_t Value = -CE->getValue();
742    return Value > 0 && Value < 4096;
743  }
744  bool isImm0_1() const {
745    if (!isImm()) return false;
746    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
747    if (!CE) return false;
748    int64_t Value = CE->getValue();
749    return Value >= 0 && Value < 2;
750  }
751  bool isImm0_3() const {
752    if (!isImm()) return false;
753    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
754    if (!CE) return false;
755    int64_t Value = CE->getValue();
756    return Value >= 0 && Value < 4;
757  }
758  bool isImm0_7() const {
759    if (!isImm()) return false;
760    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
761    if (!CE) return false;
762    int64_t Value = CE->getValue();
763    return Value >= 0 && Value < 8;
764  }
765  bool isImm0_15() const {
766    if (!isImm()) return false;
767    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
768    if (!CE) return false;
769    int64_t Value = CE->getValue();
770    return Value >= 0 && Value < 16;
771  }
772  bool isImm0_31() const {
773    if (!isImm()) return false;
774    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
775    if (!CE) return false;
776    int64_t Value = CE->getValue();
777    return Value >= 0 && Value < 32;
778  }
779  bool isImm0_63() const {
780    if (!isImm()) return false;
781    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
782    if (!CE) return false;
783    int64_t Value = CE->getValue();
784    return Value >= 0 && Value < 64;
785  }
786  bool isImm8() const {
787    if (!isImm()) return false;
788    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
789    if (!CE) return false;
790    int64_t Value = CE->getValue();
791    return Value == 8;
792  }
793  bool isImm16() const {
794    if (!isImm()) return false;
795    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
796    if (!CE) return false;
797    int64_t Value = CE->getValue();
798    return Value == 16;
799  }
800  bool isImm32() const {
801    if (!isImm()) return false;
802    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
803    if (!CE) return false;
804    int64_t Value = CE->getValue();
805    return Value == 32;
806  }
807  bool isShrImm8() const {
808    if (!isImm()) return false;
809    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
810    if (!CE) return false;
811    int64_t Value = CE->getValue();
812    return Value > 0 && Value <= 8;
813  }
814  bool isShrImm16() const {
815    if (!isImm()) return false;
816    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
817    if (!CE) return false;
818    int64_t Value = CE->getValue();
819    return Value > 0 && Value <= 16;
820  }
821  bool isShrImm32() const {
822    if (!isImm()) return false;
823    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
824    if (!CE) return false;
825    int64_t Value = CE->getValue();
826    return Value > 0 && Value <= 32;
827  }
828  bool isShrImm64() const {
829    if (!isImm()) return false;
830    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
831    if (!CE) return false;
832    int64_t Value = CE->getValue();
833    return Value > 0 && Value <= 64;
834  }
835  bool isImm1_7() const {
836    if (!isImm()) return false;
837    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
838    if (!CE) return false;
839    int64_t Value = CE->getValue();
840    return Value > 0 && Value < 8;
841  }
842  bool isImm1_15() const {
843    if (!isImm()) return false;
844    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
845    if (!CE) return false;
846    int64_t Value = CE->getValue();
847    return Value > 0 && Value < 16;
848  }
849  bool isImm1_31() const {
850    if (!isImm()) return false;
851    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
852    if (!CE) return false;
853    int64_t Value = CE->getValue();
854    return Value > 0 && Value < 32;
855  }
856  bool isImm1_16() const {
857    if (!isImm()) return false;
858    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
859    if (!CE) return false;
860    int64_t Value = CE->getValue();
861    return Value > 0 && Value < 17;
862  }
863  bool isImm1_32() const {
864    if (!isImm()) return false;
865    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
866    if (!CE) return false;
867    int64_t Value = CE->getValue();
868    return Value > 0 && Value < 33;
869  }
870  bool isImm0_32() const {
871    if (!isImm()) return false;
872    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
873    if (!CE) return false;
874    int64_t Value = CE->getValue();
875    return Value >= 0 && Value < 33;
876  }
877  bool isImm0_65535() const {
878    if (!isImm()) return false;
879    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
880    if (!CE) return false;
881    int64_t Value = CE->getValue();
882    return Value >= 0 && Value < 65536;
883  }
884  bool isImm256_65535Expr() const {
885    if (!isImm()) return false;
886    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
887    // If it's not a constant expression, it'll generate a fixup and be
888    // handled later.
889    if (!CE) return true;
890    int64_t Value = CE->getValue();
891    return Value >= 256 && Value < 65536;
892  }
893  bool isImm0_65535Expr() const {
894    if (!isImm()) return false;
895    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
896    // If it's not a constant expression, it'll generate a fixup and be
897    // handled later.
898    if (!CE) return true;
899    int64_t Value = CE->getValue();
900    return Value >= 0 && Value < 65536;
901  }
902  bool isImm24bit() const {
903    if (!isImm()) return false;
904    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
905    if (!CE) return false;
906    int64_t Value = CE->getValue();
907    return Value >= 0 && Value <= 0xffffff;
908  }
909  bool isImmThumbSR() const {
910    if (!isImm()) return false;
911    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
912    if (!CE) return false;
913    int64_t Value = CE->getValue();
914    return Value > 0 && Value < 33;
915  }
916  bool isPKHLSLImm() const {
917    if (!isImm()) return false;
918    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
919    if (!CE) return false;
920    int64_t Value = CE->getValue();
921    return Value >= 0 && Value < 32;
922  }
923  bool isPKHASRImm() const {
924    if (!isImm()) return false;
925    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
926    if (!CE) return false;
927    int64_t Value = CE->getValue();
928    return Value > 0 && Value <= 32;
929  }
930  bool isAdrLabel() const {
931    // If we have an immediate that's not a constant, treat it as a label
932    // reference needing a fixup. If it is a constant, but it can't fit
933    // into shift immediate encoding, we reject it.
934    if (isImm() && !isa<MCConstantExpr>(getImm())) return true;
935    else return (isARMSOImm() || isARMSOImmNeg());
936  }
937  bool isARMSOImm() const {
938    if (!isImm()) return false;
939    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
940    if (!CE) return false;
941    int64_t Value = CE->getValue();
942    return ARM_AM::getSOImmVal(Value) != -1;
943  }
944  bool isARMSOImmNot() const {
945    if (!isImm()) return false;
946    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
947    if (!CE) return false;
948    int64_t Value = CE->getValue();
949    return ARM_AM::getSOImmVal(~Value) != -1;
950  }
951  bool isARMSOImmNeg() const {
952    if (!isImm()) return false;
953    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
954    if (!CE) return false;
955    int64_t Value = CE->getValue();
956    // Only use this when not representable as a plain so_imm.
957    return ARM_AM::getSOImmVal(Value) == -1 &&
958      ARM_AM::getSOImmVal(-Value) != -1;
959  }
960  bool isT2SOImm() const {
961    if (!isImm()) return false;
962    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
963    if (!CE) return false;
964    int64_t Value = CE->getValue();
965    return ARM_AM::getT2SOImmVal(Value) != -1;
966  }
967  bool isT2SOImmNot() const {
968    if (!isImm()) return false;
969    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
970    if (!CE) return false;
971    int64_t Value = CE->getValue();
972    return ARM_AM::getT2SOImmVal(Value) == -1 &&
973      ARM_AM::getT2SOImmVal(~Value) != -1;
974  }
975  bool isT2SOImmNeg() const {
976    if (!isImm()) return false;
977    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
978    if (!CE) return false;
979    int64_t Value = CE->getValue();
980    // Only use this when not representable as a plain so_imm.
981    return ARM_AM::getT2SOImmVal(Value) == -1 &&
982      ARM_AM::getT2SOImmVal(-Value) != -1;
983  }
984  bool isSetEndImm() const {
985    if (!isImm()) return false;
986    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
987    if (!CE) return false;
988    int64_t Value = CE->getValue();
989    return Value == 1 || Value == 0;
990  }
991  bool isReg() const { return Kind == k_Register; }
992  bool isRegList() const { return Kind == k_RegisterList; }
993  bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
994  bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
995  bool isToken() const { return Kind == k_Token; }
996  bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
997  bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; }
998  bool isMem() const { return Kind == k_Memory; }
999  bool isShifterImm() const { return Kind == k_ShifterImmediate; }
1000  bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; }
1001  bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; }
1002  bool isRotImm() const { return Kind == k_RotateImmediate; }
1003  bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
1004  bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; }
1005  bool isPostIdxReg() const {
1006    return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift;
1007  }
1008  bool isMemNoOffset(bool alignOK = false) const {
1009    if (!isMem())
1010      return false;
1011    // No offset of any kind.
1012    return Memory.OffsetRegNum == 0 && Memory.OffsetImm == 0 &&
1013     (alignOK || Memory.Alignment == 0);
1014  }
1015  bool isMemPCRelImm12() const {
1016    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1017      return false;
1018    // Base register must be PC.
1019    if (Memory.BaseRegNum != ARM::PC)
1020      return false;
1021    // Immediate offset in range [-4095, 4095].
1022    if (!Memory.OffsetImm) return true;
1023    int64_t Val = Memory.OffsetImm->getValue();
1024    return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
1025  }
1026  bool isAlignedMemory() const {
1027    return isMemNoOffset(true);
1028  }
1029  bool isAddrMode2() const {
1030    if (!isMem() || Memory.Alignment != 0) return false;
1031    // Check for register offset.
1032    if (Memory.OffsetRegNum) return true;
1033    // Immediate offset in range [-4095, 4095].
1034    if (!Memory.OffsetImm) return true;
1035    int64_t Val = Memory.OffsetImm->getValue();
1036    return Val > -4096 && Val < 4096;
1037  }
1038  bool isAM2OffsetImm() const {
1039    if (!isImm()) return false;
1040    // Immediate offset in range [-4095, 4095].
1041    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1042    if (!CE) return false;
1043    int64_t Val = CE->getValue();
1044    return (Val == INT32_MIN) || (Val > -4096 && Val < 4096);
1045  }
1046  bool isAddrMode3() const {
1047    // If we have an immediate that's not a constant, treat it as a label
1048    // reference needing a fixup. If it is a constant, it's something else
1049    // and we reject it.
1050    if (isImm() && !isa<MCConstantExpr>(getImm()))
1051      return true;
1052    if (!isMem() || Memory.Alignment != 0) return false;
1053    // No shifts are legal for AM3.
1054    if (Memory.ShiftType != ARM_AM::no_shift) return false;
1055    // Check for register offset.
1056    if (Memory.OffsetRegNum) return true;
1057    // Immediate offset in range [-255, 255].
1058    if (!Memory.OffsetImm) return true;
1059    int64_t Val = Memory.OffsetImm->getValue();
1060    // The #-0 offset is encoded as INT32_MIN, and we have to check
1061    // for this too.
1062    return (Val > -256 && Val < 256) || Val == INT32_MIN;
1063  }
1064  bool isAM3Offset() const {
1065    if (Kind != k_Immediate && Kind != k_PostIndexRegister)
1066      return false;
1067    if (Kind == k_PostIndexRegister)
1068      return PostIdxReg.ShiftTy == ARM_AM::no_shift;
1069    // Immediate offset in range [-255, 255].
1070    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1071    if (!CE) return false;
1072    int64_t Val = CE->getValue();
1073    // Special case, #-0 is INT32_MIN.
1074    return (Val > -256 && Val < 256) || Val == INT32_MIN;
1075  }
1076  bool isAddrMode5() const {
1077    // If we have an immediate that's not a constant, treat it as a label
1078    // reference needing a fixup. If it is a constant, it's something else
1079    // and we reject it.
1080    if (isImm() && !isa<MCConstantExpr>(getImm()))
1081      return true;
1082    if (!isMem() || Memory.Alignment != 0) return false;
1083    // Check for register offset.
1084    if (Memory.OffsetRegNum) return false;
1085    // Immediate offset in range [-1020, 1020] and a multiple of 4.
1086    if (!Memory.OffsetImm) return true;
1087    int64_t Val = Memory.OffsetImm->getValue();
1088    return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
1089      Val == INT32_MIN;
1090  }
1091  bool isMemTBB() const {
1092    if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1093        Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1094      return false;
1095    return true;
1096  }
1097  bool isMemTBH() const {
1098    if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1099        Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
1100        Memory.Alignment != 0 )
1101      return false;
1102    return true;
1103  }
1104  bool isMemRegOffset() const {
1105    if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0)
1106      return false;
1107    return true;
1108  }
1109  bool isT2MemRegOffset() const {
1110    if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1111        Memory.Alignment != 0)
1112      return false;
1113    // Only lsl #{0, 1, 2, 3} allowed.
1114    if (Memory.ShiftType == ARM_AM::no_shift)
1115      return true;
1116    if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
1117      return false;
1118    return true;
1119  }
1120  bool isMemThumbRR() const {
1121    // Thumb reg+reg addressing is simple. Just two registers, a base and
1122    // an offset. No shifts, negations or any other complicating factors.
1123    if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1124        Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1125      return false;
1126    return isARMLowRegister(Memory.BaseRegNum) &&
1127      (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
1128  }
1129  bool isMemThumbRIs4() const {
1130    if (!isMem() || Memory.OffsetRegNum != 0 ||
1131        !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1132      return false;
1133    // Immediate offset, multiple of 4 in range [0, 124].
1134    if (!Memory.OffsetImm) return true;
1135    int64_t Val = Memory.OffsetImm->getValue();
1136    return Val >= 0 && Val <= 124 && (Val % 4) == 0;
1137  }
1138  bool isMemThumbRIs2() const {
1139    if (!isMem() || Memory.OffsetRegNum != 0 ||
1140        !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1141      return false;
1142    // Immediate offset, multiple of 4 in range [0, 62].
1143    if (!Memory.OffsetImm) return true;
1144    int64_t Val = Memory.OffsetImm->getValue();
1145    return Val >= 0 && Val <= 62 && (Val % 2) == 0;
1146  }
1147  bool isMemThumbRIs1() const {
1148    if (!isMem() || Memory.OffsetRegNum != 0 ||
1149        !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1150      return false;
1151    // Immediate offset in range [0, 31].
1152    if (!Memory.OffsetImm) return true;
1153    int64_t Val = Memory.OffsetImm->getValue();
1154    return Val >= 0 && Val <= 31;
1155  }
1156  bool isMemThumbSPI() const {
1157    if (!isMem() || Memory.OffsetRegNum != 0 ||
1158        Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
1159      return false;
1160    // Immediate offset, multiple of 4 in range [0, 1020].
1161    if (!Memory.OffsetImm) return true;
1162    int64_t Val = Memory.OffsetImm->getValue();
1163    return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
1164  }
1165  bool isMemImm8s4Offset() const {
1166    // If we have an immediate that's not a constant, treat it as a label
1167    // reference needing a fixup. If it is a constant, it's something else
1168    // and we reject it.
1169    if (isImm() && !isa<MCConstantExpr>(getImm()))
1170      return true;
1171    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1172      return false;
1173    // Immediate offset a multiple of 4 in range [-1020, 1020].
1174    if (!Memory.OffsetImm) return true;
1175    int64_t Val = Memory.OffsetImm->getValue();
1176    // Special case, #-0 is INT32_MIN.
1177    return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN;
1178  }
1179  bool isMemImm0_1020s4Offset() const {
1180    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1181      return false;
1182    // Immediate offset a multiple of 4 in range [0, 1020].
1183    if (!Memory.OffsetImm) return true;
1184    int64_t Val = Memory.OffsetImm->getValue();
1185    return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
1186  }
1187  bool isMemImm8Offset() const {
1188    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1189      return false;
1190    // Base reg of PC isn't allowed for these encodings.
1191    if (Memory.BaseRegNum == ARM::PC) return false;
1192    // Immediate offset in range [-255, 255].
1193    if (!Memory.OffsetImm) return true;
1194    int64_t Val = Memory.OffsetImm->getValue();
1195    return (Val == INT32_MIN) || (Val > -256 && Val < 256);
1196  }
1197  bool isMemPosImm8Offset() const {
1198    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1199      return false;
1200    // Immediate offset in range [0, 255].
1201    if (!Memory.OffsetImm) return true;
1202    int64_t Val = Memory.OffsetImm->getValue();
1203    return Val >= 0 && Val < 256;
1204  }
1205  bool isMemNegImm8Offset() const {
1206    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1207      return false;
1208    // Base reg of PC isn't allowed for these encodings.
1209    if (Memory.BaseRegNum == ARM::PC) return false;
1210    // Immediate offset in range [-255, -1].
1211    if (!Memory.OffsetImm) return false;
1212    int64_t Val = Memory.OffsetImm->getValue();
1213    return (Val == INT32_MIN) || (Val > -256 && Val < 0);
1214  }
1215  bool isMemUImm12Offset() const {
1216    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1217      return false;
1218    // Immediate offset in range [0, 4095].
1219    if (!Memory.OffsetImm) return true;
1220    int64_t Val = Memory.OffsetImm->getValue();
1221    return (Val >= 0 && Val < 4096);
1222  }
1223  bool isMemImm12Offset() const {
1224    // If we have an immediate that's not a constant, treat it as a label
1225    // reference needing a fixup. If it is a constant, it's something else
1226    // and we reject it.
1227    if (isImm() && !isa<MCConstantExpr>(getImm()))
1228      return true;
1229
1230    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1231      return false;
1232    // Immediate offset in range [-4095, 4095].
1233    if (!Memory.OffsetImm) return true;
1234    int64_t Val = Memory.OffsetImm->getValue();
1235    return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
1236  }
1237  bool isPostIdxImm8() const {
1238    if (!isImm()) return false;
1239    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1240    if (!CE) return false;
1241    int64_t Val = CE->getValue();
1242    return (Val > -256 && Val < 256) || (Val == INT32_MIN);
1243  }
1244  bool isPostIdxImm8s4() const {
1245    if (!isImm()) return false;
1246    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1247    if (!CE) return false;
1248    int64_t Val = CE->getValue();
1249    return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
1250      (Val == INT32_MIN);
1251  }
1252
1253  bool isMSRMask() const { return Kind == k_MSRMask; }
1254  bool isProcIFlags() const { return Kind == k_ProcIFlags; }
1255
1256  // NEON operands.
1257  bool isSingleSpacedVectorList() const {
1258    return Kind == k_VectorList && !VectorList.isDoubleSpaced;
1259  }
1260  bool isDoubleSpacedVectorList() const {
1261    return Kind == k_VectorList && VectorList.isDoubleSpaced;
1262  }
1263  bool isVecListOneD() const {
1264    if (!isSingleSpacedVectorList()) return false;
1265    return VectorList.Count == 1;
1266  }
1267
1268  bool isVecListDPair() const {
1269    if (!isSingleSpacedVectorList()) return false;
1270    return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1271              .contains(VectorList.RegNum));
1272  }
1273
1274  bool isVecListThreeD() const {
1275    if (!isSingleSpacedVectorList()) return false;
1276    return VectorList.Count == 3;
1277  }
1278
1279  bool isVecListFourD() const {
1280    if (!isSingleSpacedVectorList()) return false;
1281    return VectorList.Count == 4;
1282  }
1283
1284  bool isVecListDPairSpaced() const {
1285    if (isSingleSpacedVectorList()) return false;
1286    return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
1287              .contains(VectorList.RegNum));
1288  }
1289
1290  bool isVecListThreeQ() const {
1291    if (!isDoubleSpacedVectorList()) return false;
1292    return VectorList.Count == 3;
1293  }
1294
1295  bool isVecListFourQ() const {
1296    if (!isDoubleSpacedVectorList()) return false;
1297    return VectorList.Count == 4;
1298  }
1299
1300  bool isSingleSpacedVectorAllLanes() const {
1301    return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
1302  }
1303  bool isDoubleSpacedVectorAllLanes() const {
1304    return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
1305  }
1306  bool isVecListOneDAllLanes() const {
1307    if (!isSingleSpacedVectorAllLanes()) return false;
1308    return VectorList.Count == 1;
1309  }
1310
1311  bool isVecListDPairAllLanes() const {
1312    if (!isSingleSpacedVectorAllLanes()) return false;
1313    return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1314              .contains(VectorList.RegNum));
1315  }
1316
1317  bool isVecListDPairSpacedAllLanes() const {
1318    if (!isDoubleSpacedVectorAllLanes()) return false;
1319    return VectorList.Count == 2;
1320  }
1321
1322  bool isVecListThreeDAllLanes() const {
1323    if (!isSingleSpacedVectorAllLanes()) return false;
1324    return VectorList.Count == 3;
1325  }
1326
1327  bool isVecListThreeQAllLanes() const {
1328    if (!isDoubleSpacedVectorAllLanes()) return false;
1329    return VectorList.Count == 3;
1330  }
1331
1332  bool isVecListFourDAllLanes() const {
1333    if (!isSingleSpacedVectorAllLanes()) return false;
1334    return VectorList.Count == 4;
1335  }
1336
1337  bool isVecListFourQAllLanes() const {
1338    if (!isDoubleSpacedVectorAllLanes()) return false;
1339    return VectorList.Count == 4;
1340  }
1341
1342  bool isSingleSpacedVectorIndexed() const {
1343    return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
1344  }
1345  bool isDoubleSpacedVectorIndexed() const {
1346    return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
1347  }
1348  bool isVecListOneDByteIndexed() const {
1349    if (!isSingleSpacedVectorIndexed()) return false;
1350    return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
1351  }
1352
1353  bool isVecListOneDHWordIndexed() const {
1354    if (!isSingleSpacedVectorIndexed()) return false;
1355    return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
1356  }
1357
1358  bool isVecListOneDWordIndexed() const {
1359    if (!isSingleSpacedVectorIndexed()) return false;
1360    return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
1361  }
1362
1363  bool isVecListTwoDByteIndexed() const {
1364    if (!isSingleSpacedVectorIndexed()) return false;
1365    return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
1366  }
1367
1368  bool isVecListTwoDHWordIndexed() const {
1369    if (!isSingleSpacedVectorIndexed()) return false;
1370    return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
1371  }
1372
1373  bool isVecListTwoQWordIndexed() const {
1374    if (!isDoubleSpacedVectorIndexed()) return false;
1375    return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
1376  }
1377
1378  bool isVecListTwoQHWordIndexed() const {
1379    if (!isDoubleSpacedVectorIndexed()) return false;
1380    return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
1381  }
1382
1383  bool isVecListTwoDWordIndexed() const {
1384    if (!isSingleSpacedVectorIndexed()) return false;
1385    return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
1386  }
1387
1388  bool isVecListThreeDByteIndexed() const {
1389    if (!isSingleSpacedVectorIndexed()) return false;
1390    return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
1391  }
1392
1393  bool isVecListThreeDHWordIndexed() const {
1394    if (!isSingleSpacedVectorIndexed()) return false;
1395    return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
1396  }
1397
1398  bool isVecListThreeQWordIndexed() const {
1399    if (!isDoubleSpacedVectorIndexed()) return false;
1400    return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
1401  }
1402
1403  bool isVecListThreeQHWordIndexed() const {
1404    if (!isDoubleSpacedVectorIndexed()) return false;
1405    return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
1406  }
1407
1408  bool isVecListThreeDWordIndexed() const {
1409    if (!isSingleSpacedVectorIndexed()) return false;
1410    return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
1411  }
1412
1413  bool isVecListFourDByteIndexed() const {
1414    if (!isSingleSpacedVectorIndexed()) return false;
1415    return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
1416  }
1417
1418  bool isVecListFourDHWordIndexed() const {
1419    if (!isSingleSpacedVectorIndexed()) return false;
1420    return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
1421  }
1422
1423  bool isVecListFourQWordIndexed() const {
1424    if (!isDoubleSpacedVectorIndexed()) return false;
1425    return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
1426  }
1427
1428  bool isVecListFourQHWordIndexed() const {
1429    if (!isDoubleSpacedVectorIndexed()) return false;
1430    return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
1431  }
1432
1433  bool isVecListFourDWordIndexed() const {
1434    if (!isSingleSpacedVectorIndexed()) return false;
1435    return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
1436  }
1437
1438  bool isVectorIndex8() const {
1439    if (Kind != k_VectorIndex) return false;
1440    return VectorIndex.Val < 8;
1441  }
1442  bool isVectorIndex16() const {
1443    if (Kind != k_VectorIndex) return false;
1444    return VectorIndex.Val < 4;
1445  }
1446  bool isVectorIndex32() const {
1447    if (Kind != k_VectorIndex) return false;
1448    return VectorIndex.Val < 2;
1449  }
1450
1451  bool isNEONi8splat() const {
1452    if (!isImm()) return false;
1453    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1454    // Must be a constant.
1455    if (!CE) return false;
1456    int64_t Value = CE->getValue();
1457    // i8 value splatted across 8 bytes. The immediate is just the 8 byte
1458    // value.
1459    return Value >= 0 && Value < 256;
1460  }
1461
1462  bool isNEONi16splat() const {
1463    if (!isImm()) return false;
1464    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1465    // Must be a constant.
1466    if (!CE) return false;
1467    int64_t Value = CE->getValue();
1468    // i16 value in the range [0,255] or [0x0100, 0xff00]
1469    return (Value >= 0 && Value < 256) || (Value >= 0x0100 && Value <= 0xff00);
1470  }
1471
1472  bool isNEONi32splat() const {
1473    if (!isImm()) return false;
1474    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1475    // Must be a constant.
1476    if (!CE) return false;
1477    int64_t Value = CE->getValue();
1478    // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
1479    return (Value >= 0 && Value < 256) ||
1480      (Value >= 0x0100 && Value <= 0xff00) ||
1481      (Value >= 0x010000 && Value <= 0xff0000) ||
1482      (Value >= 0x01000000 && Value <= 0xff000000);
1483  }
1484
1485  bool isNEONi32vmov() const {
1486    if (!isImm()) return false;
1487    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1488    // Must be a constant.
1489    if (!CE) return false;
1490    int64_t Value = CE->getValue();
1491    // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
1492    // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
1493    return (Value >= 0 && Value < 256) ||
1494      (Value >= 0x0100 && Value <= 0xff00) ||
1495      (Value >= 0x010000 && Value <= 0xff0000) ||
1496      (Value >= 0x01000000 && Value <= 0xff000000) ||
1497      (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
1498      (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
1499  }
1500  bool isNEONi32vmovNeg() const {
1501    if (!isImm()) return false;
1502    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1503    // Must be a constant.
1504    if (!CE) return false;
1505    int64_t Value = ~CE->getValue();
1506    // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
1507    // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
1508    return (Value >= 0 && Value < 256) ||
1509      (Value >= 0x0100 && Value <= 0xff00) ||
1510      (Value >= 0x010000 && Value <= 0xff0000) ||
1511      (Value >= 0x01000000 && Value <= 0xff000000) ||
1512      (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
1513      (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
1514  }
1515
1516  bool isNEONi64splat() const {
1517    if (!isImm()) return false;
1518    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1519    // Must be a constant.
1520    if (!CE) return false;
1521    uint64_t Value = CE->getValue();
1522    // i64 value with each byte being either 0 or 0xff.
1523    for (unsigned i = 0; i < 8; ++i)
1524      if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
1525    return true;
1526  }
1527
1528  void addExpr(MCInst &Inst, const MCExpr *Expr) const {
1529    // Add as immediates when possible.  Null MCExpr = 0.
1530    if (Expr == 0)
1531      Inst.addOperand(MCOperand::CreateImm(0));
1532    else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
1533      Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
1534    else
1535      Inst.addOperand(MCOperand::CreateExpr(Expr));
1536  }
1537
1538  void addCondCodeOperands(MCInst &Inst, unsigned N) const {
1539    assert(N == 2 && "Invalid number of operands!");
1540    Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
1541    unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
1542    Inst.addOperand(MCOperand::CreateReg(RegNum));
1543  }
1544
1545  void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
1546    assert(N == 1 && "Invalid number of operands!");
1547    Inst.addOperand(MCOperand::CreateImm(getCoproc()));
1548  }
1549
1550  void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
1551    assert(N == 1 && "Invalid number of operands!");
1552    Inst.addOperand(MCOperand::CreateImm(getCoproc()));
1553  }
1554
1555  void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
1556    assert(N == 1 && "Invalid number of operands!");
1557    Inst.addOperand(MCOperand::CreateImm(CoprocOption.Val));
1558  }
1559
1560  void addITMaskOperands(MCInst &Inst, unsigned N) const {
1561    assert(N == 1 && "Invalid number of operands!");
1562    Inst.addOperand(MCOperand::CreateImm(ITMask.Mask));
1563  }
1564
1565  void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
1566    assert(N == 1 && "Invalid number of operands!");
1567    Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
1568  }
1569
1570  void addCCOutOperands(MCInst &Inst, unsigned N) const {
1571    assert(N == 1 && "Invalid number of operands!");
1572    Inst.addOperand(MCOperand::CreateReg(getReg()));
1573  }
1574
1575  void addRegOperands(MCInst &Inst, unsigned N) const {
1576    assert(N == 1 && "Invalid number of operands!");
1577    Inst.addOperand(MCOperand::CreateReg(getReg()));
1578  }
1579
1580  void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
1581    assert(N == 3 && "Invalid number of operands!");
1582    assert(isRegShiftedReg() &&
1583           "addRegShiftedRegOperands() on non RegShiftedReg!");
1584    Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.SrcReg));
1585    Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.ShiftReg));
1586    Inst.addOperand(MCOperand::CreateImm(
1587      ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
1588  }
1589
1590  void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
1591    assert(N == 2 && "Invalid number of operands!");
1592    assert(isRegShiftedImm() &&
1593           "addRegShiftedImmOperands() on non RegShiftedImm!");
1594    Inst.addOperand(MCOperand::CreateReg(RegShiftedImm.SrcReg));
1595    // Shift of #32 is encoded as 0 where permitted
1596    unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
1597    Inst.addOperand(MCOperand::CreateImm(
1598      ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
1599  }
1600
1601  void addShifterImmOperands(MCInst &Inst, unsigned N) const {
1602    assert(N == 1 && "Invalid number of operands!");
1603    Inst.addOperand(MCOperand::CreateImm((ShifterImm.isASR << 5) |
1604                                         ShifterImm.Imm));
1605  }
1606
1607  void addRegListOperands(MCInst &Inst, unsigned N) const {
1608    assert(N == 1 && "Invalid number of operands!");
1609    const SmallVectorImpl<unsigned> &RegList = getRegList();
1610    for (SmallVectorImpl<unsigned>::const_iterator
1611           I = RegList.begin(), E = RegList.end(); I != E; ++I)
1612      Inst.addOperand(MCOperand::CreateReg(*I));
1613  }
1614
1615  void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
1616    addRegListOperands(Inst, N);
1617  }
1618
1619  void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
1620    addRegListOperands(Inst, N);
1621  }
1622
1623  void addRotImmOperands(MCInst &Inst, unsigned N) const {
1624    assert(N == 1 && "Invalid number of operands!");
1625    // Encoded as val>>3. The printer handles display as 8, 16, 24.
1626    Inst.addOperand(MCOperand::CreateImm(RotImm.Imm >> 3));
1627  }
1628
1629  void addBitfieldOperands(MCInst &Inst, unsigned N) const {
1630    assert(N == 1 && "Invalid number of operands!");
1631    // Munge the lsb/width into a bitfield mask.
1632    unsigned lsb = Bitfield.LSB;
1633    unsigned width = Bitfield.Width;
1634    // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
1635    uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
1636                      (32 - (lsb + width)));
1637    Inst.addOperand(MCOperand::CreateImm(Mask));
1638  }
1639
1640  void addImmOperands(MCInst &Inst, unsigned N) const {
1641    assert(N == 1 && "Invalid number of operands!");
1642    addExpr(Inst, getImm());
1643  }
1644
1645  void addFBits16Operands(MCInst &Inst, unsigned N) const {
1646    assert(N == 1 && "Invalid number of operands!");
1647    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1648    Inst.addOperand(MCOperand::CreateImm(16 - CE->getValue()));
1649  }
1650
1651  void addFBits32Operands(MCInst &Inst, unsigned N) const {
1652    assert(N == 1 && "Invalid number of operands!");
1653    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1654    Inst.addOperand(MCOperand::CreateImm(32 - CE->getValue()));
1655  }
1656
1657  void addFPImmOperands(MCInst &Inst, unsigned N) const {
1658    assert(N == 1 && "Invalid number of operands!");
1659    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1660    int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
1661    Inst.addOperand(MCOperand::CreateImm(Val));
1662  }
1663
1664  void addImm8s4Operands(MCInst &Inst, unsigned N) const {
1665    assert(N == 1 && "Invalid number of operands!");
1666    // FIXME: We really want to scale the value here, but the LDRD/STRD
1667    // instruction don't encode operands that way yet.
1668    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1669    Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
1670  }
1671
1672  void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
1673    assert(N == 1 && "Invalid number of operands!");
1674    // The immediate is scaled by four in the encoding and is stored
1675    // in the MCInst as such. Lop off the low two bits here.
1676    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1677    Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
1678  }
1679
1680  void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
1681    assert(N == 1 && "Invalid number of operands!");
1682    // The immediate is scaled by four in the encoding and is stored
1683    // in the MCInst as such. Lop off the low two bits here.
1684    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1685    Inst.addOperand(MCOperand::CreateImm(-(CE->getValue() / 4)));
1686  }
1687
1688  void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
1689    assert(N == 1 && "Invalid number of operands!");
1690    // The immediate is scaled by four in the encoding and is stored
1691    // in the MCInst as such. Lop off the low two bits here.
1692    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1693    Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
1694  }
1695
1696  void addImm1_16Operands(MCInst &Inst, unsigned N) const {
1697    assert(N == 1 && "Invalid number of operands!");
1698    // The constant encodes as the immediate-1, and we store in the instruction
1699    // the bits as encoded, so subtract off one here.
1700    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1701    Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
1702  }
1703
1704  void addImm1_32Operands(MCInst &Inst, unsigned N) const {
1705    assert(N == 1 && "Invalid number of operands!");
1706    // The constant encodes as the immediate-1, and we store in the instruction
1707    // the bits as encoded, so subtract off one here.
1708    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1709    Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
1710  }
1711
1712  void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
1713    assert(N == 1 && "Invalid number of operands!");
1714    // The constant encodes as the immediate, except for 32, which encodes as
1715    // zero.
1716    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1717    unsigned Imm = CE->getValue();
1718    Inst.addOperand(MCOperand::CreateImm((Imm == 32 ? 0 : Imm)));
1719  }
1720
1721  void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
1722    assert(N == 1 && "Invalid number of operands!");
1723    // An ASR value of 32 encodes as 0, so that's how we want to add it to
1724    // the instruction as well.
1725    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1726    int Val = CE->getValue();
1727    Inst.addOperand(MCOperand::CreateImm(Val == 32 ? 0 : Val));
1728  }
1729
1730  void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
1731    assert(N == 1 && "Invalid number of operands!");
1732    // The operand is actually a t2_so_imm, but we have its bitwise
1733    // negation in the assembly source, so twiddle it here.
1734    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1735    Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
1736  }
1737
1738  void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
1739    assert(N == 1 && "Invalid number of operands!");
1740    // The operand is actually a t2_so_imm, but we have its
1741    // negation in the assembly source, so twiddle it here.
1742    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1743    Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
1744  }
1745
1746  void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
1747    assert(N == 1 && "Invalid number of operands!");
1748    // The operand is actually an imm0_4095, but we have its
1749    // negation in the assembly source, so twiddle it here.
1750    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1751    Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
1752  }
1753
1754  void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const {
1755    if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) {
1756      Inst.addOperand(MCOperand::CreateImm(CE->getValue() >> 2));
1757      return;
1758    }
1759
1760    const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
1761    assert(SR && "Unknown value type!");
1762    Inst.addOperand(MCOperand::CreateExpr(SR));
1763  }
1764
1765  void addThumbMemPCOperands(MCInst &Inst, unsigned N) const {
1766    assert(N == 1 && "Invalid number of operands!");
1767    if (isImm()) {
1768      const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1769      if (CE) {
1770        Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
1771        return;
1772      }
1773
1774      const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
1775      assert(SR && "Unknown value type!");
1776      Inst.addOperand(MCOperand::CreateExpr(SR));
1777      return;
1778    }
1779
1780    assert(isMem()  && "Unknown value type!");
1781    assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!");
1782    Inst.addOperand(MCOperand::CreateImm(Memory.OffsetImm->getValue()));
1783  }
1784
1785  void addARMSOImmNotOperands(MCInst &Inst, unsigned N) const {
1786    assert(N == 1 && "Invalid number of operands!");
1787    // The operand is actually a so_imm, but we have its bitwise
1788    // negation in the assembly source, so twiddle it here.
1789    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1790    Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
1791  }
1792
1793  void addARMSOImmNegOperands(MCInst &Inst, unsigned N) const {
1794    assert(N == 1 && "Invalid number of operands!");
1795    // The operand is actually a so_imm, but we have its
1796    // negation in the assembly source, so twiddle it here.
1797    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1798    Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
1799  }
1800
1801  void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
1802    assert(N == 1 && "Invalid number of operands!");
1803    Inst.addOperand(MCOperand::CreateImm(unsigned(getMemBarrierOpt())));
1804  }
1805
1806  void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
1807    assert(N == 1 && "Invalid number of operands!");
1808    Inst.addOperand(MCOperand::CreateImm(unsigned(getInstSyncBarrierOpt())));
1809  }
1810
1811  void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
1812    assert(N == 1 && "Invalid number of operands!");
1813    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1814  }
1815
1816  void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
1817    assert(N == 1 && "Invalid number of operands!");
1818    int32_t Imm = Memory.OffsetImm->getValue();
1819    Inst.addOperand(MCOperand::CreateImm(Imm));
1820  }
1821
1822  void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
1823    assert(N == 1 && "Invalid number of operands!");
1824    assert(isImm() && "Not an immediate!");
1825
1826    // If we have an immediate that's not a constant, treat it as a label
1827    // reference needing a fixup.
1828    if (!isa<MCConstantExpr>(getImm())) {
1829      Inst.addOperand(MCOperand::CreateExpr(getImm()));
1830      return;
1831    }
1832
1833    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1834    int Val = CE->getValue();
1835    Inst.addOperand(MCOperand::CreateImm(Val));
1836  }
1837
1838  void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
1839    assert(N == 2 && "Invalid number of operands!");
1840    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1841    Inst.addOperand(MCOperand::CreateImm(Memory.Alignment));
1842  }
1843
1844  void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
1845    assert(N == 3 && "Invalid number of operands!");
1846    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1847    if (!Memory.OffsetRegNum) {
1848      ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1849      // Special case for #-0
1850      if (Val == INT32_MIN) Val = 0;
1851      if (Val < 0) Val = -Val;
1852      Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
1853    } else {
1854      // For register offset, we encode the shift type and negation flag
1855      // here.
1856      Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
1857                              Memory.ShiftImm, Memory.ShiftType);
1858    }
1859    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1860    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1861    Inst.addOperand(MCOperand::CreateImm(Val));
1862  }
1863
1864  void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
1865    assert(N == 2 && "Invalid number of operands!");
1866    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1867    assert(CE && "non-constant AM2OffsetImm operand!");
1868    int32_t Val = CE->getValue();
1869    ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1870    // Special case for #-0
1871    if (Val == INT32_MIN) Val = 0;
1872    if (Val < 0) Val = -Val;
1873    Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
1874    Inst.addOperand(MCOperand::CreateReg(0));
1875    Inst.addOperand(MCOperand::CreateImm(Val));
1876  }
1877
1878  void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
1879    assert(N == 3 && "Invalid number of operands!");
1880    // If we have an immediate that's not a constant, treat it as a label
1881    // reference needing a fixup. If it is a constant, it's something else
1882    // and we reject it.
1883    if (isImm()) {
1884      Inst.addOperand(MCOperand::CreateExpr(getImm()));
1885      Inst.addOperand(MCOperand::CreateReg(0));
1886      Inst.addOperand(MCOperand::CreateImm(0));
1887      return;
1888    }
1889
1890    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1891    if (!Memory.OffsetRegNum) {
1892      ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1893      // Special case for #-0
1894      if (Val == INT32_MIN) Val = 0;
1895      if (Val < 0) Val = -Val;
1896      Val = ARM_AM::getAM3Opc(AddSub, Val);
1897    } else {
1898      // For register offset, we encode the shift type and negation flag
1899      // here.
1900      Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
1901    }
1902    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1903    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1904    Inst.addOperand(MCOperand::CreateImm(Val));
1905  }
1906
1907  void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
1908    assert(N == 2 && "Invalid number of operands!");
1909    if (Kind == k_PostIndexRegister) {
1910      int32_t Val =
1911        ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
1912      Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
1913      Inst.addOperand(MCOperand::CreateImm(Val));
1914      return;
1915    }
1916
1917    // Constant offset.
1918    const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
1919    int32_t Val = CE->getValue();
1920    ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1921    // Special case for #-0
1922    if (Val == INT32_MIN) Val = 0;
1923    if (Val < 0) Val = -Val;
1924    Val = ARM_AM::getAM3Opc(AddSub, Val);
1925    Inst.addOperand(MCOperand::CreateReg(0));
1926    Inst.addOperand(MCOperand::CreateImm(Val));
1927  }
1928
1929  void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
1930    assert(N == 2 && "Invalid number of operands!");
1931    // If we have an immediate that's not a constant, treat it as a label
1932    // reference needing a fixup. If it is a constant, it's something else
1933    // and we reject it.
1934    if (isImm()) {
1935      Inst.addOperand(MCOperand::CreateExpr(getImm()));
1936      Inst.addOperand(MCOperand::CreateImm(0));
1937      return;
1938    }
1939
1940    // The lower two bits are always zero and as such are not encoded.
1941    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
1942    ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1943    // Special case for #-0
1944    if (Val == INT32_MIN) Val = 0;
1945    if (Val < 0) Val = -Val;
1946    Val = ARM_AM::getAM5Opc(AddSub, Val);
1947    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1948    Inst.addOperand(MCOperand::CreateImm(Val));
1949  }
1950
1951  void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
1952    assert(N == 2 && "Invalid number of operands!");
1953    // If we have an immediate that's not a constant, treat it as a label
1954    // reference needing a fixup. If it is a constant, it's something else
1955    // and we reject it.
1956    if (isImm()) {
1957      Inst.addOperand(MCOperand::CreateExpr(getImm()));
1958      Inst.addOperand(MCOperand::CreateImm(0));
1959      return;
1960    }
1961
1962    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1963    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1964    Inst.addOperand(MCOperand::CreateImm(Val));
1965  }
1966
1967  void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
1968    assert(N == 2 && "Invalid number of operands!");
1969    // The lower two bits are always zero and as such are not encoded.
1970    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
1971    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1972    Inst.addOperand(MCOperand::CreateImm(Val));
1973  }
1974
1975  void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const {
1976    assert(N == 2 && "Invalid number of operands!");
1977    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1978    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1979    Inst.addOperand(MCOperand::CreateImm(Val));
1980  }
1981
1982  void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const {
1983    addMemImm8OffsetOperands(Inst, N);
1984  }
1985
1986  void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const {
1987    addMemImm8OffsetOperands(Inst, N);
1988  }
1989
1990  void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
1991    assert(N == 2 && "Invalid number of operands!");
1992    // If this is an immediate, it's a label reference.
1993    if (isImm()) {
1994      addExpr(Inst, getImm());
1995      Inst.addOperand(MCOperand::CreateImm(0));
1996      return;
1997    }
1998
1999    // Otherwise, it's a normal memory reg+offset.
2000    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2001    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2002    Inst.addOperand(MCOperand::CreateImm(Val));
2003  }
2004
2005  void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
2006    assert(N == 2 && "Invalid number of operands!");
2007    // If this is an immediate, it's a label reference.
2008    if (isImm()) {
2009      addExpr(Inst, getImm());
2010      Inst.addOperand(MCOperand::CreateImm(0));
2011      return;
2012    }
2013
2014    // Otherwise, it's a normal memory reg+offset.
2015    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2016    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2017    Inst.addOperand(MCOperand::CreateImm(Val));
2018  }
2019
2020  void addMemTBBOperands(MCInst &Inst, unsigned N) const {
2021    assert(N == 2 && "Invalid number of operands!");
2022    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2023    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
2024  }
2025
2026  void addMemTBHOperands(MCInst &Inst, unsigned N) const {
2027    assert(N == 2 && "Invalid number of operands!");
2028    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2029    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
2030  }
2031
2032  void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
2033    assert(N == 3 && "Invalid number of operands!");
2034    unsigned Val =
2035      ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
2036                        Memory.ShiftImm, Memory.ShiftType);
2037    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2038    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
2039    Inst.addOperand(MCOperand::CreateImm(Val));
2040  }
2041
2042  void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
2043    assert(N == 3 && "Invalid number of operands!");
2044    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2045    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
2046    Inst.addOperand(MCOperand::CreateImm(Memory.ShiftImm));
2047  }
2048
2049  void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
2050    assert(N == 2 && "Invalid number of operands!");
2051    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2052    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
2053  }
2054
2055  void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
2056    assert(N == 2 && "Invalid number of operands!");
2057    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
2058    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2059    Inst.addOperand(MCOperand::CreateImm(Val));
2060  }
2061
2062  void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
2063    assert(N == 2 && "Invalid number of operands!");
2064    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0;
2065    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2066    Inst.addOperand(MCOperand::CreateImm(Val));
2067  }
2068
2069  void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
2070    assert(N == 2 && "Invalid number of operands!");
2071    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0;
2072    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2073    Inst.addOperand(MCOperand::CreateImm(Val));
2074  }
2075
2076  void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
2077    assert(N == 2 && "Invalid number of operands!");
2078    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
2079    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2080    Inst.addOperand(MCOperand::CreateImm(Val));
2081  }
2082
2083  void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
2084    assert(N == 1 && "Invalid number of operands!");
2085    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2086    assert(CE && "non-constant post-idx-imm8 operand!");
2087    int Imm = CE->getValue();
2088    bool isAdd = Imm >= 0;
2089    if (Imm == INT32_MIN) Imm = 0;
2090    Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
2091    Inst.addOperand(MCOperand::CreateImm(Imm));
2092  }
2093
2094  void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
2095    assert(N == 1 && "Invalid number of operands!");
2096    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2097    assert(CE && "non-constant post-idx-imm8s4 operand!");
2098    int Imm = CE->getValue();
2099    bool isAdd = Imm >= 0;
2100    if (Imm == INT32_MIN) Imm = 0;
2101    // Immediate is scaled by 4.
2102    Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
2103    Inst.addOperand(MCOperand::CreateImm(Imm));
2104  }
2105
2106  void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
2107    assert(N == 2 && "Invalid number of operands!");
2108    Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
2109    Inst.addOperand(MCOperand::CreateImm(PostIdxReg.isAdd));
2110  }
2111
2112  void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
2113    assert(N == 2 && "Invalid number of operands!");
2114    Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
2115    // The sign, shift type, and shift amount are encoded in a single operand
2116    // using the AM2 encoding helpers.
2117    ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
2118    unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
2119                                     PostIdxReg.ShiftTy);
2120    Inst.addOperand(MCOperand::CreateImm(Imm));
2121  }
2122
2123  void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
2124    assert(N == 1 && "Invalid number of operands!");
2125    Inst.addOperand(MCOperand::CreateImm(unsigned(getMSRMask())));
2126  }
2127
2128  void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
2129    assert(N == 1 && "Invalid number of operands!");
2130    Inst.addOperand(MCOperand::CreateImm(unsigned(getProcIFlags())));
2131  }
2132
2133  void addVecListOperands(MCInst &Inst, unsigned N) const {
2134    assert(N == 1 && "Invalid number of operands!");
2135    Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
2136  }
2137
2138  void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
2139    assert(N == 2 && "Invalid number of operands!");
2140    Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
2141    Inst.addOperand(MCOperand::CreateImm(VectorList.LaneIndex));
2142  }
2143
2144  void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
2145    assert(N == 1 && "Invalid number of operands!");
2146    Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
2147  }
2148
2149  void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
2150    assert(N == 1 && "Invalid number of operands!");
2151    Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
2152  }
2153
2154  void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
2155    assert(N == 1 && "Invalid number of operands!");
2156    Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
2157  }
2158
2159  void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
2160    assert(N == 1 && "Invalid number of operands!");
2161    // The immediate encodes the type of constant as well as the value.
2162    // Mask in that this is an i8 splat.
2163    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2164    Inst.addOperand(MCOperand::CreateImm(CE->getValue() | 0xe00));
2165  }
2166
2167  void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
2168    assert(N == 1 && "Invalid number of operands!");
2169    // The immediate encodes the type of constant as well as the value.
2170    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2171    unsigned Value = CE->getValue();
2172    if (Value >= 256)
2173      Value = (Value >> 8) | 0xa00;
2174    else
2175      Value |= 0x800;
2176    Inst.addOperand(MCOperand::CreateImm(Value));
2177  }
2178
2179  void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
2180    assert(N == 1 && "Invalid number of operands!");
2181    // The immediate encodes the type of constant as well as the value.
2182    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2183    unsigned Value = CE->getValue();
2184    if (Value >= 256 && Value <= 0xff00)
2185      Value = (Value >> 8) | 0x200;
2186    else if (Value > 0xffff && Value <= 0xff0000)
2187      Value = (Value >> 16) | 0x400;
2188    else if (Value > 0xffffff)
2189      Value = (Value >> 24) | 0x600;
2190    Inst.addOperand(MCOperand::CreateImm(Value));
2191  }
2192
2193  void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
2194    assert(N == 1 && "Invalid number of operands!");
2195    // The immediate encodes the type of constant as well as the value.
2196    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2197    unsigned Value = CE->getValue();
2198    if (Value >= 256 && Value <= 0xffff)
2199      Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
2200    else if (Value > 0xffff && Value <= 0xffffff)
2201      Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
2202    else if (Value > 0xffffff)
2203      Value = (Value >> 24) | 0x600;
2204    Inst.addOperand(MCOperand::CreateImm(Value));
2205  }
2206
2207  void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
2208    assert(N == 1 && "Invalid number of operands!");
2209    // The immediate encodes the type of constant as well as the value.
2210    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2211    unsigned Value = ~CE->getValue();
2212    if (Value >= 256 && Value <= 0xffff)
2213      Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
2214    else if (Value > 0xffff && Value <= 0xffffff)
2215      Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
2216    else if (Value > 0xffffff)
2217      Value = (Value >> 24) | 0x600;
2218    Inst.addOperand(MCOperand::CreateImm(Value));
2219  }
2220
2221  void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
2222    assert(N == 1 && "Invalid number of operands!");
2223    // The immediate encodes the type of constant as well as the value.
2224    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2225    uint64_t Value = CE->getValue();
2226    unsigned Imm = 0;
2227    for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
2228      Imm |= (Value & 1) << i;
2229    }
2230    Inst.addOperand(MCOperand::CreateImm(Imm | 0x1e00));
2231  }
2232
2233  virtual void print(raw_ostream &OS) const;
2234
2235  static ARMOperand *CreateITMask(unsigned Mask, SMLoc S) {
2236    ARMOperand *Op = new ARMOperand(k_ITCondMask);
2237    Op->ITMask.Mask = Mask;
2238    Op->StartLoc = S;
2239    Op->EndLoc = S;
2240    return Op;
2241  }
2242
2243  static ARMOperand *CreateCondCode(ARMCC::CondCodes CC, SMLoc S) {
2244    ARMOperand *Op = new ARMOperand(k_CondCode);
2245    Op->CC.Val = CC;
2246    Op->StartLoc = S;
2247    Op->EndLoc = S;
2248    return Op;
2249  }
2250
2251  static ARMOperand *CreateCoprocNum(unsigned CopVal, SMLoc S) {
2252    ARMOperand *Op = new ARMOperand(k_CoprocNum);
2253    Op->Cop.Val = CopVal;
2254    Op->StartLoc = S;
2255    Op->EndLoc = S;
2256    return Op;
2257  }
2258
2259  static ARMOperand *CreateCoprocReg(unsigned CopVal, SMLoc S) {
2260    ARMOperand *Op = new ARMOperand(k_CoprocReg);
2261    Op->Cop.Val = CopVal;
2262    Op->StartLoc = S;
2263    Op->EndLoc = S;
2264    return Op;
2265  }
2266
2267  static ARMOperand *CreateCoprocOption(unsigned Val, SMLoc S, SMLoc E) {
2268    ARMOperand *Op = new ARMOperand(k_CoprocOption);
2269    Op->Cop.Val = Val;
2270    Op->StartLoc = S;
2271    Op->EndLoc = E;
2272    return Op;
2273  }
2274
2275  static ARMOperand *CreateCCOut(unsigned RegNum, SMLoc S) {
2276    ARMOperand *Op = new ARMOperand(k_CCOut);
2277    Op->Reg.RegNum = RegNum;
2278    Op->StartLoc = S;
2279    Op->EndLoc = S;
2280    return Op;
2281  }
2282
2283  static ARMOperand *CreateToken(StringRef Str, SMLoc S) {
2284    ARMOperand *Op = new ARMOperand(k_Token);
2285    Op->Tok.Data = Str.data();
2286    Op->Tok.Length = Str.size();
2287    Op->StartLoc = S;
2288    Op->EndLoc = S;
2289    return Op;
2290  }
2291
2292  static ARMOperand *CreateReg(unsigned RegNum, SMLoc S, SMLoc E) {
2293    ARMOperand *Op = new ARMOperand(k_Register);
2294    Op->Reg.RegNum = RegNum;
2295    Op->StartLoc = S;
2296    Op->EndLoc = E;
2297    return Op;
2298  }
2299
2300  static ARMOperand *CreateShiftedRegister(ARM_AM::ShiftOpc ShTy,
2301                                           unsigned SrcReg,
2302                                           unsigned ShiftReg,
2303                                           unsigned ShiftImm,
2304                                           SMLoc S, SMLoc E) {
2305    ARMOperand *Op = new ARMOperand(k_ShiftedRegister);
2306    Op->RegShiftedReg.ShiftTy = ShTy;
2307    Op->RegShiftedReg.SrcReg = SrcReg;
2308    Op->RegShiftedReg.ShiftReg = ShiftReg;
2309    Op->RegShiftedReg.ShiftImm = ShiftImm;
2310    Op->StartLoc = S;
2311    Op->EndLoc = E;
2312    return Op;
2313  }
2314
2315  static ARMOperand *CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy,
2316                                            unsigned SrcReg,
2317                                            unsigned ShiftImm,
2318                                            SMLoc S, SMLoc E) {
2319    ARMOperand *Op = new ARMOperand(k_ShiftedImmediate);
2320    Op->RegShiftedImm.ShiftTy = ShTy;
2321    Op->RegShiftedImm.SrcReg = SrcReg;
2322    Op->RegShiftedImm.ShiftImm = ShiftImm;
2323    Op->StartLoc = S;
2324    Op->EndLoc = E;
2325    return Op;
2326  }
2327
2328  static ARMOperand *CreateShifterImm(bool isASR, unsigned Imm,
2329                                   SMLoc S, SMLoc E) {
2330    ARMOperand *Op = new ARMOperand(k_ShifterImmediate);
2331    Op->ShifterImm.isASR = isASR;
2332    Op->ShifterImm.Imm = Imm;
2333    Op->StartLoc = S;
2334    Op->EndLoc = E;
2335    return Op;
2336  }
2337
2338  static ARMOperand *CreateRotImm(unsigned Imm, SMLoc S, SMLoc E) {
2339    ARMOperand *Op = new ARMOperand(k_RotateImmediate);
2340    Op->RotImm.Imm = Imm;
2341    Op->StartLoc = S;
2342    Op->EndLoc = E;
2343    return Op;
2344  }
2345
2346  static ARMOperand *CreateBitfield(unsigned LSB, unsigned Width,
2347                                    SMLoc S, SMLoc E) {
2348    ARMOperand *Op = new ARMOperand(k_BitfieldDescriptor);
2349    Op->Bitfield.LSB = LSB;
2350    Op->Bitfield.Width = Width;
2351    Op->StartLoc = S;
2352    Op->EndLoc = E;
2353    return Op;
2354  }
2355
2356  static ARMOperand *
2357  CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned> > &Regs,
2358                SMLoc StartLoc, SMLoc EndLoc) {
2359    assert (Regs.size() > 0 && "RegList contains no registers?");
2360    KindTy Kind = k_RegisterList;
2361
2362    if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second))
2363      Kind = k_DPRRegisterList;
2364    else if (ARMMCRegisterClasses[ARM::SPRRegClassID].
2365             contains(Regs.front().second))
2366      Kind = k_SPRRegisterList;
2367
2368    // Sort based on the register encoding values.
2369    array_pod_sort(Regs.begin(), Regs.end());
2370
2371    ARMOperand *Op = new ARMOperand(Kind);
2372    for (SmallVectorImpl<std::pair<unsigned, unsigned> >::const_iterator
2373           I = Regs.begin(), E = Regs.end(); I != E; ++I)
2374      Op->Registers.push_back(I->second);
2375    Op->StartLoc = StartLoc;
2376    Op->EndLoc = EndLoc;
2377    return Op;
2378  }
2379
2380  static ARMOperand *CreateVectorList(unsigned RegNum, unsigned Count,
2381                                      bool isDoubleSpaced, SMLoc S, SMLoc E) {
2382    ARMOperand *Op = new ARMOperand(k_VectorList);
2383    Op->VectorList.RegNum = RegNum;
2384    Op->VectorList.Count = Count;
2385    Op->VectorList.isDoubleSpaced = isDoubleSpaced;
2386    Op->StartLoc = S;
2387    Op->EndLoc = E;
2388    return Op;
2389  }
2390
2391  static ARMOperand *CreateVectorListAllLanes(unsigned RegNum, unsigned Count,
2392                                              bool isDoubleSpaced,
2393                                              SMLoc S, SMLoc E) {
2394    ARMOperand *Op = new ARMOperand(k_VectorListAllLanes);
2395    Op->VectorList.RegNum = RegNum;
2396    Op->VectorList.Count = Count;
2397    Op->VectorList.isDoubleSpaced = isDoubleSpaced;
2398    Op->StartLoc = S;
2399    Op->EndLoc = E;
2400    return Op;
2401  }
2402
2403  static ARMOperand *CreateVectorListIndexed(unsigned RegNum, unsigned Count,
2404                                             unsigned Index,
2405                                             bool isDoubleSpaced,
2406                                             SMLoc S, SMLoc E) {
2407    ARMOperand *Op = new ARMOperand(k_VectorListIndexed);
2408    Op->VectorList.RegNum = RegNum;
2409    Op->VectorList.Count = Count;
2410    Op->VectorList.LaneIndex = Index;
2411    Op->VectorList.isDoubleSpaced = isDoubleSpaced;
2412    Op->StartLoc = S;
2413    Op->EndLoc = E;
2414    return Op;
2415  }
2416
2417  static ARMOperand *CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E,
2418                                       MCContext &Ctx) {
2419    ARMOperand *Op = new ARMOperand(k_VectorIndex);
2420    Op->VectorIndex.Val = Idx;
2421    Op->StartLoc = S;
2422    Op->EndLoc = E;
2423    return Op;
2424  }
2425
2426  static ARMOperand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) {
2427    ARMOperand *Op = new ARMOperand(k_Immediate);
2428    Op->Imm.Val = Val;
2429    Op->StartLoc = S;
2430    Op->EndLoc = E;
2431    return Op;
2432  }
2433
2434  static ARMOperand *CreateMem(unsigned BaseRegNum,
2435                               const MCConstantExpr *OffsetImm,
2436                               unsigned OffsetRegNum,
2437                               ARM_AM::ShiftOpc ShiftType,
2438                               unsigned ShiftImm,
2439                               unsigned Alignment,
2440                               bool isNegative,
2441                               SMLoc S, SMLoc E) {
2442    ARMOperand *Op = new ARMOperand(k_Memory);
2443    Op->Memory.BaseRegNum = BaseRegNum;
2444    Op->Memory.OffsetImm = OffsetImm;
2445    Op->Memory.OffsetRegNum = OffsetRegNum;
2446    Op->Memory.ShiftType = ShiftType;
2447    Op->Memory.ShiftImm = ShiftImm;
2448    Op->Memory.Alignment = Alignment;
2449    Op->Memory.isNegative = isNegative;
2450    Op->StartLoc = S;
2451    Op->EndLoc = E;
2452    return Op;
2453  }
2454
2455  static ARMOperand *CreatePostIdxReg(unsigned RegNum, bool isAdd,
2456                                      ARM_AM::ShiftOpc ShiftTy,
2457                                      unsigned ShiftImm,
2458                                      SMLoc S, SMLoc E) {
2459    ARMOperand *Op = new ARMOperand(k_PostIndexRegister);
2460    Op->PostIdxReg.RegNum = RegNum;
2461    Op->PostIdxReg.isAdd = isAdd;
2462    Op->PostIdxReg.ShiftTy = ShiftTy;
2463    Op->PostIdxReg.ShiftImm = ShiftImm;
2464    Op->StartLoc = S;
2465    Op->EndLoc = E;
2466    return Op;
2467  }
2468
2469  static ARMOperand *CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, SMLoc S) {
2470    ARMOperand *Op = new ARMOperand(k_MemBarrierOpt);
2471    Op->MBOpt.Val = Opt;
2472    Op->StartLoc = S;
2473    Op->EndLoc = S;
2474    return Op;
2475  }
2476
2477  static ARMOperand *CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt,
2478                                              SMLoc S) {
2479    ARMOperand *Op = new ARMOperand(k_InstSyncBarrierOpt);
2480    Op->ISBOpt.Val = Opt;
2481    Op->StartLoc = S;
2482    Op->EndLoc = S;
2483    return Op;
2484  }
2485
2486  static ARMOperand *CreateProcIFlags(ARM_PROC::IFlags IFlags, SMLoc S) {
2487    ARMOperand *Op = new ARMOperand(k_ProcIFlags);
2488    Op->IFlags.Val = IFlags;
2489    Op->StartLoc = S;
2490    Op->EndLoc = S;
2491    return Op;
2492  }
2493
2494  static ARMOperand *CreateMSRMask(unsigned MMask, SMLoc S) {
2495    ARMOperand *Op = new ARMOperand(k_MSRMask);
2496    Op->MMask.Val = MMask;
2497    Op->StartLoc = S;
2498    Op->EndLoc = S;
2499    return Op;
2500  }
2501};
2502
2503} // end anonymous namespace.
2504
2505void ARMOperand::print(raw_ostream &OS) const {
2506  switch (Kind) {
2507  case k_CondCode:
2508    OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
2509    break;
2510  case k_CCOut:
2511    OS << "<ccout " << getReg() << ">";
2512    break;
2513  case k_ITCondMask: {
2514    static const char *const MaskStr[] = {
2515      "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)",
2516      "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)"
2517    };
2518    assert((ITMask.Mask & 0xf) == ITMask.Mask);
2519    OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
2520    break;
2521  }
2522  case k_CoprocNum:
2523    OS << "<coprocessor number: " << getCoproc() << ">";
2524    break;
2525  case k_CoprocReg:
2526    OS << "<coprocessor register: " << getCoproc() << ">";
2527    break;
2528  case k_CoprocOption:
2529    OS << "<coprocessor option: " << CoprocOption.Val << ">";
2530    break;
2531  case k_MSRMask:
2532    OS << "<mask: " << getMSRMask() << ">";
2533    break;
2534  case k_Immediate:
2535    getImm()->print(OS);
2536    break;
2537  case k_MemBarrierOpt:
2538    OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">";
2539    break;
2540  case k_InstSyncBarrierOpt:
2541    OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
2542    break;
2543  case k_Memory:
2544    OS << "<memory "
2545       << " base:" << Memory.BaseRegNum;
2546    OS << ">";
2547    break;
2548  case k_PostIndexRegister:
2549    OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
2550       << PostIdxReg.RegNum;
2551    if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
2552      OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
2553         << PostIdxReg.ShiftImm;
2554    OS << ">";
2555    break;
2556  case k_ProcIFlags: {
2557    OS << "<ARM_PROC::";
2558    unsigned IFlags = getProcIFlags();
2559    for (int i=2; i >= 0; --i)
2560      if (IFlags & (1 << i))
2561        OS << ARM_PROC::IFlagsToString(1 << i);
2562    OS << ">";
2563    break;
2564  }
2565  case k_Register:
2566    OS << "<register " << getReg() << ">";
2567    break;
2568  case k_ShifterImmediate:
2569    OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
2570       << " #" << ShifterImm.Imm << ">";
2571    break;
2572  case k_ShiftedRegister:
2573    OS << "<so_reg_reg "
2574       << RegShiftedReg.SrcReg << " "
2575       << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy)
2576       << " " << RegShiftedReg.ShiftReg << ">";
2577    break;
2578  case k_ShiftedImmediate:
2579    OS << "<so_reg_imm "
2580       << RegShiftedImm.SrcReg << " "
2581       << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy)
2582       << " #" << RegShiftedImm.ShiftImm << ">";
2583    break;
2584  case k_RotateImmediate:
2585    OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
2586    break;
2587  case k_BitfieldDescriptor:
2588    OS << "<bitfield " << "lsb: " << Bitfield.LSB
2589       << ", width: " << Bitfield.Width << ">";
2590    break;
2591  case k_RegisterList:
2592  case k_DPRRegisterList:
2593  case k_SPRRegisterList: {
2594    OS << "<register_list ";
2595
2596    const SmallVectorImpl<unsigned> &RegList = getRegList();
2597    for (SmallVectorImpl<unsigned>::const_iterator
2598           I = RegList.begin(), E = RegList.end(); I != E; ) {
2599      OS << *I;
2600      if (++I < E) OS << ", ";
2601    }
2602
2603    OS << ">";
2604    break;
2605  }
2606  case k_VectorList:
2607    OS << "<vector_list " << VectorList.Count << " * "
2608       << VectorList.RegNum << ">";
2609    break;
2610  case k_VectorListAllLanes:
2611    OS << "<vector_list(all lanes) " << VectorList.Count << " * "
2612       << VectorList.RegNum << ">";
2613    break;
2614  case k_VectorListIndexed:
2615    OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
2616       << VectorList.Count << " * " << VectorList.RegNum << ">";
2617    break;
2618  case k_Token:
2619    OS << "'" << getToken() << "'";
2620    break;
2621  case k_VectorIndex:
2622    OS << "<vectorindex " << getVectorIndex() << ">";
2623    break;
2624  }
2625}
2626
2627/// @name Auto-generated Match Functions
2628/// {
2629
2630static unsigned MatchRegisterName(StringRef Name);
2631
2632/// }
2633
2634bool ARMAsmParser::ParseRegister(unsigned &RegNo,
2635                                 SMLoc &StartLoc, SMLoc &EndLoc) {
2636  StartLoc = Parser.getTok().getLoc();
2637  EndLoc = Parser.getTok().getEndLoc();
2638  RegNo = tryParseRegister();
2639
2640  return (RegNo == (unsigned)-1);
2641}
2642
2643/// Try to parse a register name.  The token must be an Identifier when called,
2644/// and if it is a register name the token is eaten and the register number is
2645/// returned.  Otherwise return -1.
2646///
2647int ARMAsmParser::tryParseRegister() {
2648  const AsmToken &Tok = Parser.getTok();
2649  if (Tok.isNot(AsmToken::Identifier)) return -1;
2650
2651  std::string lowerCase = Tok.getString().lower();
2652  unsigned RegNum = MatchRegisterName(lowerCase);
2653  if (!RegNum) {
2654    RegNum = StringSwitch<unsigned>(lowerCase)
2655      .Case("r13", ARM::SP)
2656      .Case("r14", ARM::LR)
2657      .Case("r15", ARM::PC)
2658      .Case("ip", ARM::R12)
2659      // Additional register name aliases for 'gas' compatibility.
2660      .Case("a1", ARM::R0)
2661      .Case("a2", ARM::R1)
2662      .Case("a3", ARM::R2)
2663      .Case("a4", ARM::R3)
2664      .Case("v1", ARM::R4)
2665      .Case("v2", ARM::R5)
2666      .Case("v3", ARM::R6)
2667      .Case("v4", ARM::R7)
2668      .Case("v5", ARM::R8)
2669      .Case("v6", ARM::R9)
2670      .Case("v7", ARM::R10)
2671      .Case("v8", ARM::R11)
2672      .Case("sb", ARM::R9)
2673      .Case("sl", ARM::R10)
2674      .Case("fp", ARM::R11)
2675      .Default(0);
2676  }
2677  if (!RegNum) {
2678    // Check for aliases registered via .req. Canonicalize to lower case.
2679    // That's more consistent since register names are case insensitive, and
2680    // it's how the original entry was passed in from MC/MCParser/AsmParser.
2681    StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
2682    // If no match, return failure.
2683    if (Entry == RegisterReqs.end())
2684      return -1;
2685    Parser.Lex(); // Eat identifier token.
2686    return Entry->getValue();
2687  }
2688
2689  Parser.Lex(); // Eat identifier token.
2690
2691  return RegNum;
2692}
2693
2694// Try to parse a shifter  (e.g., "lsl <amt>"). On success, return 0.
2695// If a recoverable error occurs, return 1. If an irrecoverable error
2696// occurs, return -1. An irrecoverable error is one where tokens have been
2697// consumed in the process of trying to parse the shifter (i.e., when it is
2698// indeed a shifter operand, but malformed).
2699int ARMAsmParser::tryParseShiftRegister(
2700                               SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2701  SMLoc S = Parser.getTok().getLoc();
2702  const AsmToken &Tok = Parser.getTok();
2703  assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
2704
2705  std::string lowerCase = Tok.getString().lower();
2706  ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
2707      .Case("asl", ARM_AM::lsl)
2708      .Case("lsl", ARM_AM::lsl)
2709      .Case("lsr", ARM_AM::lsr)
2710      .Case("asr", ARM_AM::asr)
2711      .Case("ror", ARM_AM::ror)
2712      .Case("rrx", ARM_AM::rrx)
2713      .Default(ARM_AM::no_shift);
2714
2715  if (ShiftTy == ARM_AM::no_shift)
2716    return 1;
2717
2718  Parser.Lex(); // Eat the operator.
2719
2720  // The source register for the shift has already been added to the
2721  // operand list, so we need to pop it off and combine it into the shifted
2722  // register operand instead.
2723  OwningPtr<ARMOperand> PrevOp((ARMOperand*)Operands.pop_back_val());
2724  if (!PrevOp->isReg())
2725    return Error(PrevOp->getStartLoc(), "shift must be of a register");
2726  int SrcReg = PrevOp->getReg();
2727
2728  SMLoc EndLoc;
2729  int64_t Imm = 0;
2730  int ShiftReg = 0;
2731  if (ShiftTy == ARM_AM::rrx) {
2732    // RRX Doesn't have an explicit shift amount. The encoder expects
2733    // the shift register to be the same as the source register. Seems odd,
2734    // but OK.
2735    ShiftReg = SrcReg;
2736  } else {
2737    // Figure out if this is shifted by a constant or a register (for non-RRX).
2738    if (Parser.getTok().is(AsmToken::Hash) ||
2739        Parser.getTok().is(AsmToken::Dollar)) {
2740      Parser.Lex(); // Eat hash.
2741      SMLoc ImmLoc = Parser.getTok().getLoc();
2742      const MCExpr *ShiftExpr = 0;
2743      if (getParser().parseExpression(ShiftExpr, EndLoc)) {
2744        Error(ImmLoc, "invalid immediate shift value");
2745        return -1;
2746      }
2747      // The expression must be evaluatable as an immediate.
2748      const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
2749      if (!CE) {
2750        Error(ImmLoc, "invalid immediate shift value");
2751        return -1;
2752      }
2753      // Range check the immediate.
2754      // lsl, ror: 0 <= imm <= 31
2755      // lsr, asr: 0 <= imm <= 32
2756      Imm = CE->getValue();
2757      if (Imm < 0 ||
2758          ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
2759          ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
2760        Error(ImmLoc, "immediate shift value out of range");
2761        return -1;
2762      }
2763      // shift by zero is a nop. Always send it through as lsl.
2764      // ('as' compatibility)
2765      if (Imm == 0)
2766        ShiftTy = ARM_AM::lsl;
2767    } else if (Parser.getTok().is(AsmToken::Identifier)) {
2768      SMLoc L = Parser.getTok().getLoc();
2769      EndLoc = Parser.getTok().getEndLoc();
2770      ShiftReg = tryParseRegister();
2771      if (ShiftReg == -1) {
2772        Error (L, "expected immediate or register in shift operand");
2773        return -1;
2774      }
2775    } else {
2776      Error (Parser.getTok().getLoc(),
2777                    "expected immediate or register in shift operand");
2778      return -1;
2779    }
2780  }
2781
2782  if (ShiftReg && ShiftTy != ARM_AM::rrx)
2783    Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
2784                                                         ShiftReg, Imm,
2785                                                         S, EndLoc));
2786  else
2787    Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
2788                                                          S, EndLoc));
2789
2790  return 0;
2791}
2792
2793
2794/// Try to parse a register name.  The token must be an Identifier when called.
2795/// If it's a register, an AsmOperand is created. Another AsmOperand is created
2796/// if there is a "writeback". 'true' if it's not a register.
2797///
2798/// TODO this is likely to change to allow different register types and or to
2799/// parse for a specific register type.
2800bool ARMAsmParser::
2801tryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2802  const AsmToken &RegTok = Parser.getTok();
2803  int RegNo = tryParseRegister();
2804  if (RegNo == -1)
2805    return true;
2806
2807  Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(),
2808                                           RegTok.getEndLoc()));
2809
2810  const AsmToken &ExclaimTok = Parser.getTok();
2811  if (ExclaimTok.is(AsmToken::Exclaim)) {
2812    Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
2813                                               ExclaimTok.getLoc()));
2814    Parser.Lex(); // Eat exclaim token
2815    return false;
2816  }
2817
2818  // Also check for an index operand. This is only legal for vector registers,
2819  // but that'll get caught OK in operand matching, so we don't need to
2820  // explicitly filter everything else out here.
2821  if (Parser.getTok().is(AsmToken::LBrac)) {
2822    SMLoc SIdx = Parser.getTok().getLoc();
2823    Parser.Lex(); // Eat left bracket token.
2824
2825    const MCExpr *ImmVal;
2826    if (getParser().parseExpression(ImmVal))
2827      return true;
2828    const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
2829    if (!MCE)
2830      return TokError("immediate value expected for vector index");
2831
2832    if (Parser.getTok().isNot(AsmToken::RBrac))
2833      return Error(Parser.getTok().getLoc(), "']' expected");
2834
2835    SMLoc E = Parser.getTok().getEndLoc();
2836    Parser.Lex(); // Eat right bracket token.
2837
2838    Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
2839                                                     SIdx, E,
2840                                                     getContext()));
2841  }
2842
2843  return false;
2844}
2845
2846/// MatchCoprocessorOperandName - Try to parse an coprocessor related
2847/// instruction with a symbolic operand name. Example: "p1", "p7", "c3",
2848/// "c5", ...
2849static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
2850  // Use the same layout as the tablegen'erated register name matcher. Ugly,
2851  // but efficient.
2852  switch (Name.size()) {
2853  default: return -1;
2854  case 2:
2855    if (Name[0] != CoprocOp)
2856      return -1;
2857    switch (Name[1]) {
2858    default:  return -1;
2859    case '0': return 0;
2860    case '1': return 1;
2861    case '2': return 2;
2862    case '3': return 3;
2863    case '4': return 4;
2864    case '5': return 5;
2865    case '6': return 6;
2866    case '7': return 7;
2867    case '8': return 8;
2868    case '9': return 9;
2869    }
2870  case 3:
2871    if (Name[0] != CoprocOp || Name[1] != '1')
2872      return -1;
2873    switch (Name[2]) {
2874    default:  return -1;
2875    // p10 and p11 are invalid for coproc instructions (reserved for FP/NEON)
2876    case '0': return CoprocOp == 'p'? -1: 10;
2877    case '1': return CoprocOp == 'p'? -1: 11;
2878    case '2': return 12;
2879    case '3': return 13;
2880    case '4': return 14;
2881    case '5': return 15;
2882    }
2883  }
2884}
2885
2886/// parseITCondCode - Try to parse a condition code for an IT instruction.
2887ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2888parseITCondCode(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2889  SMLoc S = Parser.getTok().getLoc();
2890  const AsmToken &Tok = Parser.getTok();
2891  if (!Tok.is(AsmToken::Identifier))
2892    return MatchOperand_NoMatch;
2893  unsigned CC = StringSwitch<unsigned>(Tok.getString().lower())
2894    .Case("eq", ARMCC::EQ)
2895    .Case("ne", ARMCC::NE)
2896    .Case("hs", ARMCC::HS)
2897    .Case("cs", ARMCC::HS)
2898    .Case("lo", ARMCC::LO)
2899    .Case("cc", ARMCC::LO)
2900    .Case("mi", ARMCC::MI)
2901    .Case("pl", ARMCC::PL)
2902    .Case("vs", ARMCC::VS)
2903    .Case("vc", ARMCC::VC)
2904    .Case("hi", ARMCC::HI)
2905    .Case("ls", ARMCC::LS)
2906    .Case("ge", ARMCC::GE)
2907    .Case("lt", ARMCC::LT)
2908    .Case("gt", ARMCC::GT)
2909    .Case("le", ARMCC::LE)
2910    .Case("al", ARMCC::AL)
2911    .Default(~0U);
2912  if (CC == ~0U)
2913    return MatchOperand_NoMatch;
2914  Parser.Lex(); // Eat the token.
2915
2916  Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
2917
2918  return MatchOperand_Success;
2919}
2920
2921/// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
2922/// token must be an Identifier when called, and if it is a coprocessor
2923/// number, the token is eaten and the operand is added to the operand list.
2924ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2925parseCoprocNumOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2926  SMLoc S = Parser.getTok().getLoc();
2927  const AsmToken &Tok = Parser.getTok();
2928  if (Tok.isNot(AsmToken::Identifier))
2929    return MatchOperand_NoMatch;
2930
2931  int Num = MatchCoprocessorOperandName(Tok.getString(), 'p');
2932  if (Num == -1)
2933    return MatchOperand_NoMatch;
2934
2935  Parser.Lex(); // Eat identifier token.
2936  Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
2937  return MatchOperand_Success;
2938}
2939
2940/// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
2941/// token must be an Identifier when called, and if it is a coprocessor
2942/// number, the token is eaten and the operand is added to the operand list.
2943ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2944parseCoprocRegOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2945  SMLoc S = Parser.getTok().getLoc();
2946  const AsmToken &Tok = Parser.getTok();
2947  if (Tok.isNot(AsmToken::Identifier))
2948    return MatchOperand_NoMatch;
2949
2950  int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c');
2951  if (Reg == -1)
2952    return MatchOperand_NoMatch;
2953
2954  Parser.Lex(); // Eat identifier token.
2955  Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
2956  return MatchOperand_Success;
2957}
2958
2959/// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
2960/// coproc_option : '{' imm0_255 '}'
2961ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2962parseCoprocOptionOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2963  SMLoc S = Parser.getTok().getLoc();
2964
2965  // If this isn't a '{', this isn't a coprocessor immediate operand.
2966  if (Parser.getTok().isNot(AsmToken::LCurly))
2967    return MatchOperand_NoMatch;
2968  Parser.Lex(); // Eat the '{'
2969
2970  const MCExpr *Expr;
2971  SMLoc Loc = Parser.getTok().getLoc();
2972  if (getParser().parseExpression(Expr)) {
2973    Error(Loc, "illegal expression");
2974    return MatchOperand_ParseFail;
2975  }
2976  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
2977  if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
2978    Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
2979    return MatchOperand_ParseFail;
2980  }
2981  int Val = CE->getValue();
2982
2983  // Check for and consume the closing '}'
2984  if (Parser.getTok().isNot(AsmToken::RCurly))
2985    return MatchOperand_ParseFail;
2986  SMLoc E = Parser.getTok().getEndLoc();
2987  Parser.Lex(); // Eat the '}'
2988
2989  Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
2990  return MatchOperand_Success;
2991}
2992
2993// For register list parsing, we need to map from raw GPR register numbering
2994// to the enumeration values. The enumeration values aren't sorted by
2995// register number due to our using "sp", "lr" and "pc" as canonical names.
2996static unsigned getNextRegister(unsigned Reg) {
2997  // If this is a GPR, we need to do it manually, otherwise we can rely
2998  // on the sort ordering of the enumeration since the other reg-classes
2999  // are sane.
3000  if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
3001    return Reg + 1;
3002  switch(Reg) {
3003  default: llvm_unreachable("Invalid GPR number!");
3004  case ARM::R0:  return ARM::R1;  case ARM::R1:  return ARM::R2;
3005  case ARM::R2:  return ARM::R3;  case ARM::R3:  return ARM::R4;
3006  case ARM::R4:  return ARM::R5;  case ARM::R5:  return ARM::R6;
3007  case ARM::R6:  return ARM::R7;  case ARM::R7:  return ARM::R8;
3008  case ARM::R8:  return ARM::R9;  case ARM::R9:  return ARM::R10;
3009  case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
3010  case ARM::R12: return ARM::SP;  case ARM::SP:  return ARM::LR;
3011  case ARM::LR:  return ARM::PC;  case ARM::PC:  return ARM::R0;
3012  }
3013}
3014
3015// Return the low-subreg of a given Q register.
3016static unsigned getDRegFromQReg(unsigned QReg) {
3017  switch (QReg) {
3018  default: llvm_unreachable("expected a Q register!");
3019  case ARM::Q0:  return ARM::D0;
3020  case ARM::Q1:  return ARM::D2;
3021  case ARM::Q2:  return ARM::D4;
3022  case ARM::Q3:  return ARM::D6;
3023  case ARM::Q4:  return ARM::D8;
3024  case ARM::Q5:  return ARM::D10;
3025  case ARM::Q6:  return ARM::D12;
3026  case ARM::Q7:  return ARM::D14;
3027  case ARM::Q8:  return ARM::D16;
3028  case ARM::Q9:  return ARM::D18;
3029  case ARM::Q10: return ARM::D20;
3030  case ARM::Q11: return ARM::D22;
3031  case ARM::Q12: return ARM::D24;
3032  case ARM::Q13: return ARM::D26;
3033  case ARM::Q14: return ARM::D28;
3034  case ARM::Q15: return ARM::D30;
3035  }
3036}
3037
3038/// Parse a register list.
3039bool ARMAsmParser::
3040parseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3041  assert(Parser.getTok().is(AsmToken::LCurly) &&
3042         "Token is not a Left Curly Brace");
3043  SMLoc S = Parser.getTok().getLoc();
3044  Parser.Lex(); // Eat '{' token.
3045  SMLoc RegLoc = Parser.getTok().getLoc();
3046
3047  // Check the first register in the list to see what register class
3048  // this is a list of.
3049  int Reg = tryParseRegister();
3050  if (Reg == -1)
3051    return Error(RegLoc, "register expected");
3052
3053  // The reglist instructions have at most 16 registers, so reserve
3054  // space for that many.
3055  int EReg = 0;
3056  SmallVector<std::pair<unsigned, unsigned>, 16> Registers;
3057
3058  // Allow Q regs and just interpret them as the two D sub-registers.
3059  if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3060    Reg = getDRegFromQReg(Reg);
3061    EReg = MRI->getEncodingValue(Reg);
3062    Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3063    ++Reg;
3064  }
3065  const MCRegisterClass *RC;
3066  if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
3067    RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
3068  else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
3069    RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
3070  else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
3071    RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
3072  else
3073    return Error(RegLoc, "invalid register in register list");
3074
3075  // Store the register.
3076  EReg = MRI->getEncodingValue(Reg);
3077  Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3078
3079  // This starts immediately after the first register token in the list,
3080  // so we can see either a comma or a minus (range separator) as a legal
3081  // next token.
3082  while (Parser.getTok().is(AsmToken::Comma) ||
3083         Parser.getTok().is(AsmToken::Minus)) {
3084    if (Parser.getTok().is(AsmToken::Minus)) {
3085      Parser.Lex(); // Eat the minus.
3086      SMLoc AfterMinusLoc = Parser.getTok().getLoc();
3087      int EndReg = tryParseRegister();
3088      if (EndReg == -1)
3089        return Error(AfterMinusLoc, "register expected");
3090      // Allow Q regs and just interpret them as the two D sub-registers.
3091      if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
3092        EndReg = getDRegFromQReg(EndReg) + 1;
3093      // If the register is the same as the start reg, there's nothing
3094      // more to do.
3095      if (Reg == EndReg)
3096        continue;
3097      // The register must be in the same register class as the first.
3098      if (!RC->contains(EndReg))
3099        return Error(AfterMinusLoc, "invalid register in register list");
3100      // Ranges must go from low to high.
3101      if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
3102        return Error(AfterMinusLoc, "bad range in register list");
3103
3104      // Add all the registers in the range to the register list.
3105      while (Reg != EndReg) {
3106        Reg = getNextRegister(Reg);
3107        EReg = MRI->getEncodingValue(Reg);
3108        Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3109      }
3110      continue;
3111    }
3112    Parser.Lex(); // Eat the comma.
3113    RegLoc = Parser.getTok().getLoc();
3114    int OldReg = Reg;
3115    const AsmToken RegTok = Parser.getTok();
3116    Reg = tryParseRegister();
3117    if (Reg == -1)
3118      return Error(RegLoc, "register expected");
3119    // Allow Q regs and just interpret them as the two D sub-registers.
3120    bool isQReg = false;
3121    if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3122      Reg = getDRegFromQReg(Reg);
3123      isQReg = true;
3124    }
3125    // The register must be in the same register class as the first.
3126    if (!RC->contains(Reg))
3127      return Error(RegLoc, "invalid register in register list");
3128    // List must be monotonically increasing.
3129    if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
3130      if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
3131        Warning(RegLoc, "register list not in ascending order");
3132      else
3133        return Error(RegLoc, "register list not in ascending order");
3134    }
3135    if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) {
3136      Warning(RegLoc, "duplicated register (" + RegTok.getString() +
3137              ") in register list");
3138      continue;
3139    }
3140    // VFP register lists must also be contiguous.
3141    if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
3142        Reg != OldReg + 1)
3143      return Error(RegLoc, "non-contiguous register range");
3144    EReg = MRI->getEncodingValue(Reg);
3145    Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3146    if (isQReg) {
3147      EReg = MRI->getEncodingValue(++Reg);
3148      Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3149    }
3150  }
3151
3152  if (Parser.getTok().isNot(AsmToken::RCurly))
3153    return Error(Parser.getTok().getLoc(), "'}' expected");
3154  SMLoc E = Parser.getTok().getEndLoc();
3155  Parser.Lex(); // Eat '}' token.
3156
3157  // Push the register list operand.
3158  Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
3159
3160  // The ARM system instruction variants for LDM/STM have a '^' token here.
3161  if (Parser.getTok().is(AsmToken::Caret)) {
3162    Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
3163    Parser.Lex(); // Eat '^' token.
3164  }
3165
3166  return false;
3167}
3168
3169// Helper function to parse the lane index for vector lists.
3170ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3171parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
3172  Index = 0; // Always return a defined index value.
3173  if (Parser.getTok().is(AsmToken::LBrac)) {
3174    Parser.Lex(); // Eat the '['.
3175    if (Parser.getTok().is(AsmToken::RBrac)) {
3176      // "Dn[]" is the 'all lanes' syntax.
3177      LaneKind = AllLanes;
3178      EndLoc = Parser.getTok().getEndLoc();
3179      Parser.Lex(); // Eat the ']'.
3180      return MatchOperand_Success;
3181    }
3182
3183    // There's an optional '#' token here. Normally there wouldn't be, but
3184    // inline assemble puts one in, and it's friendly to accept that.
3185    if (Parser.getTok().is(AsmToken::Hash))
3186      Parser.Lex(); // Eat '#' or '$'.
3187
3188    const MCExpr *LaneIndex;
3189    SMLoc Loc = Parser.getTok().getLoc();
3190    if (getParser().parseExpression(LaneIndex)) {
3191      Error(Loc, "illegal expression");
3192      return MatchOperand_ParseFail;
3193    }
3194    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
3195    if (!CE) {
3196      Error(Loc, "lane index must be empty or an integer");
3197      return MatchOperand_ParseFail;
3198    }
3199    if (Parser.getTok().isNot(AsmToken::RBrac)) {
3200      Error(Parser.getTok().getLoc(), "']' expected");
3201      return MatchOperand_ParseFail;
3202    }
3203    EndLoc = Parser.getTok().getEndLoc();
3204    Parser.Lex(); // Eat the ']'.
3205    int64_t Val = CE->getValue();
3206
3207    // FIXME: Make this range check context sensitive for .8, .16, .32.
3208    if (Val < 0 || Val > 7) {
3209      Error(Parser.getTok().getLoc(), "lane index out of range");
3210      return MatchOperand_ParseFail;
3211    }
3212    Index = Val;
3213    LaneKind = IndexedLane;
3214    return MatchOperand_Success;
3215  }
3216  LaneKind = NoLanes;
3217  return MatchOperand_Success;
3218}
3219
3220// parse a vector register list
3221ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3222parseVectorList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3223  VectorLaneTy LaneKind;
3224  unsigned LaneIndex;
3225  SMLoc S = Parser.getTok().getLoc();
3226  // As an extension (to match gas), support a plain D register or Q register
3227  // (without encosing curly braces) as a single or double entry list,
3228  // respectively.
3229  if (Parser.getTok().is(AsmToken::Identifier)) {
3230    SMLoc E = Parser.getTok().getEndLoc();
3231    int Reg = tryParseRegister();
3232    if (Reg == -1)
3233      return MatchOperand_NoMatch;
3234    if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
3235      OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
3236      if (Res != MatchOperand_Success)
3237        return Res;
3238      switch (LaneKind) {
3239      case NoLanes:
3240        Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
3241        break;
3242      case AllLanes:
3243        Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
3244                                                                S, E));
3245        break;
3246      case IndexedLane:
3247        Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
3248                                                               LaneIndex,
3249                                                               false, S, E));
3250        break;
3251      }
3252      return MatchOperand_Success;
3253    }
3254    if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3255      Reg = getDRegFromQReg(Reg);
3256      OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
3257      if (Res != MatchOperand_Success)
3258        return Res;
3259      switch (LaneKind) {
3260      case NoLanes:
3261        Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
3262                                   &ARMMCRegisterClasses[ARM::DPairRegClassID]);
3263        Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
3264        break;
3265      case AllLanes:
3266        Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
3267                                   &ARMMCRegisterClasses[ARM::DPairRegClassID]);
3268        Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
3269                                                                S, E));
3270        break;
3271      case IndexedLane:
3272        Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
3273                                                               LaneIndex,
3274                                                               false, S, E));
3275        break;
3276      }
3277      return MatchOperand_Success;
3278    }
3279    Error(S, "vector register expected");
3280    return MatchOperand_ParseFail;
3281  }
3282
3283  if (Parser.getTok().isNot(AsmToken::LCurly))
3284    return MatchOperand_NoMatch;
3285
3286  Parser.Lex(); // Eat '{' token.
3287  SMLoc RegLoc = Parser.getTok().getLoc();
3288
3289  int Reg = tryParseRegister();
3290  if (Reg == -1) {
3291    Error(RegLoc, "register expected");
3292    return MatchOperand_ParseFail;
3293  }
3294  unsigned Count = 1;
3295  int Spacing = 0;
3296  unsigned FirstReg = Reg;
3297  // The list is of D registers, but we also allow Q regs and just interpret
3298  // them as the two D sub-registers.
3299  if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3300    FirstReg = Reg = getDRegFromQReg(Reg);
3301    Spacing = 1; // double-spacing requires explicit D registers, otherwise
3302                 // it's ambiguous with four-register single spaced.
3303    ++Reg;
3304    ++Count;
3305  }
3306
3307  SMLoc E;
3308  if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success)
3309    return MatchOperand_ParseFail;
3310
3311  while (Parser.getTok().is(AsmToken::Comma) ||
3312         Parser.getTok().is(AsmToken::Minus)) {
3313    if (Parser.getTok().is(AsmToken::Minus)) {
3314      if (!Spacing)
3315        Spacing = 1; // Register range implies a single spaced list.
3316      else if (Spacing == 2) {
3317        Error(Parser.getTok().getLoc(),
3318              "sequential registers in double spaced list");
3319        return MatchOperand_ParseFail;
3320      }
3321      Parser.Lex(); // Eat the minus.
3322      SMLoc AfterMinusLoc = Parser.getTok().getLoc();
3323      int EndReg = tryParseRegister();
3324      if (EndReg == -1) {
3325        Error(AfterMinusLoc, "register expected");
3326        return MatchOperand_ParseFail;
3327      }
3328      // Allow Q regs and just interpret them as the two D sub-registers.
3329      if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
3330        EndReg = getDRegFromQReg(EndReg) + 1;
3331      // If the register is the same as the start reg, there's nothing
3332      // more to do.
3333      if (Reg == EndReg)
3334        continue;
3335      // The register must be in the same register class as the first.
3336      if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) {
3337        Error(AfterMinusLoc, "invalid register in register list");
3338        return MatchOperand_ParseFail;
3339      }
3340      // Ranges must go from low to high.
3341      if (Reg > EndReg) {
3342        Error(AfterMinusLoc, "bad range in register list");
3343        return MatchOperand_ParseFail;
3344      }
3345      // Parse the lane specifier if present.
3346      VectorLaneTy NextLaneKind;
3347      unsigned NextLaneIndex;
3348      if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
3349          MatchOperand_Success)
3350        return MatchOperand_ParseFail;
3351      if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
3352        Error(AfterMinusLoc, "mismatched lane index in register list");
3353        return MatchOperand_ParseFail;
3354      }
3355
3356      // Add all the registers in the range to the register list.
3357      Count += EndReg - Reg;
3358      Reg = EndReg;
3359      continue;
3360    }
3361    Parser.Lex(); // Eat the comma.
3362    RegLoc = Parser.getTok().getLoc();
3363    int OldReg = Reg;
3364    Reg = tryParseRegister();
3365    if (Reg == -1) {
3366      Error(RegLoc, "register expected");
3367      return MatchOperand_ParseFail;
3368    }
3369    // vector register lists must be contiguous.
3370    // It's OK to use the enumeration values directly here rather, as the
3371    // VFP register classes have the enum sorted properly.
3372    //
3373    // The list is of D registers, but we also allow Q regs and just interpret
3374    // them as the two D sub-registers.
3375    if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3376      if (!Spacing)
3377        Spacing = 1; // Register range implies a single spaced list.
3378      else if (Spacing == 2) {
3379        Error(RegLoc,
3380              "invalid register in double-spaced list (must be 'D' register')");
3381        return MatchOperand_ParseFail;
3382      }
3383      Reg = getDRegFromQReg(Reg);
3384      if (Reg != OldReg + 1) {
3385        Error(RegLoc, "non-contiguous register range");
3386        return MatchOperand_ParseFail;
3387      }
3388      ++Reg;
3389      Count += 2;
3390      // Parse the lane specifier if present.
3391      VectorLaneTy NextLaneKind;
3392      unsigned NextLaneIndex;
3393      SMLoc LaneLoc = Parser.getTok().getLoc();
3394      if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
3395          MatchOperand_Success)
3396        return MatchOperand_ParseFail;
3397      if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
3398        Error(LaneLoc, "mismatched lane index in register list");
3399        return MatchOperand_ParseFail;
3400      }
3401      continue;
3402    }
3403    // Normal D register.
3404    // Figure out the register spacing (single or double) of the list if
3405    // we don't know it already.
3406    if (!Spacing)
3407      Spacing = 1 + (Reg == OldReg + 2);
3408
3409    // Just check that it's contiguous and keep going.
3410    if (Reg != OldReg + Spacing) {
3411      Error(RegLoc, "non-contiguous register range");
3412      return MatchOperand_ParseFail;
3413    }
3414    ++Count;
3415    // Parse the lane specifier if present.
3416    VectorLaneTy NextLaneKind;
3417    unsigned NextLaneIndex;
3418    SMLoc EndLoc = Parser.getTok().getLoc();
3419    if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success)
3420      return MatchOperand_ParseFail;
3421    if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
3422      Error(EndLoc, "mismatched lane index in register list");
3423      return MatchOperand_ParseFail;
3424    }
3425  }
3426
3427  if (Parser.getTok().isNot(AsmToken::RCurly)) {
3428    Error(Parser.getTok().getLoc(), "'}' expected");
3429    return MatchOperand_ParseFail;
3430  }
3431  E = Parser.getTok().getEndLoc();
3432  Parser.Lex(); // Eat '}' token.
3433
3434  switch (LaneKind) {
3435  case NoLanes:
3436    // Two-register operands have been converted to the
3437    // composite register classes.
3438    if (Count == 2) {
3439      const MCRegisterClass *RC = (Spacing == 1) ?
3440        &ARMMCRegisterClasses[ARM::DPairRegClassID] :
3441        &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
3442      FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
3443    }
3444
3445    Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count,
3446                                                    (Spacing == 2), S, E));
3447    break;
3448  case AllLanes:
3449    // Two-register operands have been converted to the
3450    // composite register classes.
3451    if (Count == 2) {
3452      const MCRegisterClass *RC = (Spacing == 1) ?
3453        &ARMMCRegisterClasses[ARM::DPairRegClassID] :
3454        &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
3455      FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
3456    }
3457    Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count,
3458                                                            (Spacing == 2),
3459                                                            S, E));
3460    break;
3461  case IndexedLane:
3462    Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
3463                                                           LaneIndex,
3464                                                           (Spacing == 2),
3465                                                           S, E));
3466    break;
3467  }
3468  return MatchOperand_Success;
3469}
3470
3471/// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
3472ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3473parseMemBarrierOptOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3474  SMLoc S = Parser.getTok().getLoc();
3475  const AsmToken &Tok = Parser.getTok();
3476  unsigned Opt;
3477
3478  if (Tok.is(AsmToken::Identifier)) {
3479    StringRef OptStr = Tok.getString();
3480
3481    Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
3482      .Case("sy",    ARM_MB::SY)
3483      .Case("st",    ARM_MB::ST)
3484      .Case("ld",    ARM_MB::LD)
3485      .Case("sh",    ARM_MB::ISH)
3486      .Case("ish",   ARM_MB::ISH)
3487      .Case("shst",  ARM_MB::ISHST)
3488      .Case("ishst", ARM_MB::ISHST)
3489      .Case("ishld", ARM_MB::ISHLD)
3490      .Case("nsh",   ARM_MB::NSH)
3491      .Case("un",    ARM_MB::NSH)
3492      .Case("nshst", ARM_MB::NSHST)
3493      .Case("nshld", ARM_MB::NSHLD)
3494      .Case("unst",  ARM_MB::NSHST)
3495      .Case("osh",   ARM_MB::OSH)
3496      .Case("oshst", ARM_MB::OSHST)
3497      .Case("oshld", ARM_MB::OSHLD)
3498      .Default(~0U);
3499
3500    // ishld, oshld, nshld and ld are only available from ARMv8.
3501    if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD ||
3502                        Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD))
3503      Opt = ~0U;
3504
3505    if (Opt == ~0U)
3506      return MatchOperand_NoMatch;
3507
3508    Parser.Lex(); // Eat identifier token.
3509  } else if (Tok.is(AsmToken::Hash) ||
3510             Tok.is(AsmToken::Dollar) ||
3511             Tok.is(AsmToken::Integer)) {
3512    if (Parser.getTok().isNot(AsmToken::Integer))
3513      Parser.Lex(); // Eat '#' or '$'.
3514    SMLoc Loc = Parser.getTok().getLoc();
3515
3516    const MCExpr *MemBarrierID;
3517    if (getParser().parseExpression(MemBarrierID)) {
3518      Error(Loc, "illegal expression");
3519      return MatchOperand_ParseFail;
3520    }
3521
3522    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
3523    if (!CE) {
3524      Error(Loc, "constant expression expected");
3525      return MatchOperand_ParseFail;
3526    }
3527
3528    int Val = CE->getValue();
3529    if (Val & ~0xf) {
3530      Error(Loc, "immediate value out of range");
3531      return MatchOperand_ParseFail;
3532    }
3533
3534    Opt = ARM_MB::RESERVED_0 + Val;
3535  } else
3536    return MatchOperand_ParseFail;
3537
3538  Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
3539  return MatchOperand_Success;
3540}
3541
3542/// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
3543ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3544parseInstSyncBarrierOptOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3545  SMLoc S = Parser.getTok().getLoc();
3546  const AsmToken &Tok = Parser.getTok();
3547  unsigned Opt;
3548
3549  if (Tok.is(AsmToken::Identifier)) {
3550    StringRef OptStr = Tok.getString();
3551
3552    if (OptStr.equals_lower("sy"))
3553      Opt = ARM_ISB::SY;
3554    else
3555      return MatchOperand_NoMatch;
3556
3557    Parser.Lex(); // Eat identifier token.
3558  } else if (Tok.is(AsmToken::Hash) ||
3559             Tok.is(AsmToken::Dollar) ||
3560             Tok.is(AsmToken::Integer)) {
3561    if (Parser.getTok().isNot(AsmToken::Integer))
3562      Parser.Lex(); // Eat '#' or '$'.
3563    SMLoc Loc = Parser.getTok().getLoc();
3564
3565    const MCExpr *ISBarrierID;
3566    if (getParser().parseExpression(ISBarrierID)) {
3567      Error(Loc, "illegal expression");
3568      return MatchOperand_ParseFail;
3569    }
3570
3571    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID);
3572    if (!CE) {
3573      Error(Loc, "constant expression expected");
3574      return MatchOperand_ParseFail;
3575    }
3576
3577    int Val = CE->getValue();
3578    if (Val & ~0xf) {
3579      Error(Loc, "immediate value out of range");
3580      return MatchOperand_ParseFail;
3581    }
3582
3583    Opt = ARM_ISB::RESERVED_0 + Val;
3584  } else
3585    return MatchOperand_ParseFail;
3586
3587  Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt(
3588          (ARM_ISB::InstSyncBOpt)Opt, S));
3589  return MatchOperand_Success;
3590}
3591
3592
3593/// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
3594ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3595parseProcIFlagsOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3596  SMLoc S = Parser.getTok().getLoc();
3597  const AsmToken &Tok = Parser.getTok();
3598  if (!Tok.is(AsmToken::Identifier))
3599    return MatchOperand_NoMatch;
3600  StringRef IFlagsStr = Tok.getString();
3601
3602  // An iflags string of "none" is interpreted to mean that none of the AIF
3603  // bits are set.  Not a terribly useful instruction, but a valid encoding.
3604  unsigned IFlags = 0;
3605  if (IFlagsStr != "none") {
3606        for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
3607      unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1))
3608        .Case("a", ARM_PROC::A)
3609        .Case("i", ARM_PROC::I)
3610        .Case("f", ARM_PROC::F)
3611        .Default(~0U);
3612
3613      // If some specific iflag is already set, it means that some letter is
3614      // present more than once, this is not acceptable.
3615      if (Flag == ~0U || (IFlags & Flag))
3616        return MatchOperand_NoMatch;
3617
3618      IFlags |= Flag;
3619    }
3620  }
3621
3622  Parser.Lex(); // Eat identifier token.
3623  Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
3624  return MatchOperand_Success;
3625}
3626
3627/// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
3628ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3629parseMSRMaskOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3630  SMLoc S = Parser.getTok().getLoc();
3631  const AsmToken &Tok = Parser.getTok();
3632  if (!Tok.is(AsmToken::Identifier))
3633    return MatchOperand_NoMatch;
3634  StringRef Mask = Tok.getString();
3635
3636  if (isMClass()) {
3637    // See ARMv6-M 10.1.1
3638    std::string Name = Mask.lower();
3639    unsigned FlagsVal = StringSwitch<unsigned>(Name)
3640      // Note: in the documentation:
3641      //  ARM deprecates using MSR APSR without a _<bits> qualifier as an alias
3642      //  for MSR APSR_nzcvq.
3643      // but we do make it an alias here.  This is so to get the "mask encoding"
3644      // bits correct on MSR APSR writes.
3645      //
3646      // FIXME: Note the 0xc00 "mask encoding" bits version of the registers
3647      // should really only be allowed when writing a special register.  Note
3648      // they get dropped in the MRS instruction reading a special register as
3649      // the SYSm field is only 8 bits.
3650      //
3651      // FIXME: the _g and _nzcvqg versions are only allowed if the processor
3652      // includes the DSP extension but that is not checked.
3653      .Case("apsr", 0x800)
3654      .Case("apsr_nzcvq", 0x800)
3655      .Case("apsr_g", 0x400)
3656      .Case("apsr_nzcvqg", 0xc00)
3657      .Case("iapsr", 0x801)
3658      .Case("iapsr_nzcvq", 0x801)
3659      .Case("iapsr_g", 0x401)
3660      .Case("iapsr_nzcvqg", 0xc01)
3661      .Case("eapsr", 0x802)
3662      .Case("eapsr_nzcvq", 0x802)
3663      .Case("eapsr_g", 0x402)
3664      .Case("eapsr_nzcvqg", 0xc02)
3665      .Case("xpsr", 0x803)
3666      .Case("xpsr_nzcvq", 0x803)
3667      .Case("xpsr_g", 0x403)
3668      .Case("xpsr_nzcvqg", 0xc03)
3669      .Case("ipsr", 0x805)
3670      .Case("epsr", 0x806)
3671      .Case("iepsr", 0x807)
3672      .Case("msp", 0x808)
3673      .Case("psp", 0x809)
3674      .Case("primask", 0x810)
3675      .Case("basepri", 0x811)
3676      .Case("basepri_max", 0x812)
3677      .Case("faultmask", 0x813)
3678      .Case("control", 0x814)
3679      .Default(~0U);
3680
3681    if (FlagsVal == ~0U)
3682      return MatchOperand_NoMatch;
3683
3684    if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813)
3685      // basepri, basepri_max and faultmask only valid for V7m.
3686      return MatchOperand_NoMatch;
3687
3688    Parser.Lex(); // Eat identifier token.
3689    Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
3690    return MatchOperand_Success;
3691  }
3692
3693  // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
3694  size_t Start = 0, Next = Mask.find('_');
3695  StringRef Flags = "";
3696  std::string SpecReg = Mask.slice(Start, Next).lower();
3697  if (Next != StringRef::npos)
3698    Flags = Mask.slice(Next+1, Mask.size());
3699
3700  // FlagsVal contains the complete mask:
3701  // 3-0: Mask
3702  // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
3703  unsigned FlagsVal = 0;
3704
3705  if (SpecReg == "apsr") {
3706    FlagsVal = StringSwitch<unsigned>(Flags)
3707    .Case("nzcvq",  0x8) // same as CPSR_f
3708    .Case("g",      0x4) // same as CPSR_s
3709    .Case("nzcvqg", 0xc) // same as CPSR_fs
3710    .Default(~0U);
3711
3712    if (FlagsVal == ~0U) {
3713      if (!Flags.empty())
3714        return MatchOperand_NoMatch;
3715      else
3716        FlagsVal = 8; // No flag
3717    }
3718  } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
3719    // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
3720    if (Flags == "all" || Flags == "")
3721      Flags = "fc";
3722    for (int i = 0, e = Flags.size(); i != e; ++i) {
3723      unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
3724      .Case("c", 1)
3725      .Case("x", 2)
3726      .Case("s", 4)
3727      .Case("f", 8)
3728      .Default(~0U);
3729
3730      // If some specific flag is already set, it means that some letter is
3731      // present more than once, this is not acceptable.
3732      if (FlagsVal == ~0U || (FlagsVal & Flag))
3733        return MatchOperand_NoMatch;
3734      FlagsVal |= Flag;
3735    }
3736  } else // No match for special register.
3737    return MatchOperand_NoMatch;
3738
3739  // Special register without flags is NOT equivalent to "fc" flags.
3740  // NOTE: This is a divergence from gas' behavior.  Uncommenting the following
3741  // two lines would enable gas compatibility at the expense of breaking
3742  // round-tripping.
3743  //
3744  // if (!FlagsVal)
3745  //  FlagsVal = 0x9;
3746
3747  // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
3748  if (SpecReg == "spsr")
3749    FlagsVal |= 16;
3750
3751  Parser.Lex(); // Eat identifier token.
3752  Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
3753  return MatchOperand_Success;
3754}
3755
3756ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3757parsePKHImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands, StringRef Op,
3758            int Low, int High) {
3759  const AsmToken &Tok = Parser.getTok();
3760  if (Tok.isNot(AsmToken::Identifier)) {
3761    Error(Parser.getTok().getLoc(), Op + " operand expected.");
3762    return MatchOperand_ParseFail;
3763  }
3764  StringRef ShiftName = Tok.getString();
3765  std::string LowerOp = Op.lower();
3766  std::string UpperOp = Op.upper();
3767  if (ShiftName != LowerOp && ShiftName != UpperOp) {
3768    Error(Parser.getTok().getLoc(), Op + " operand expected.");
3769    return MatchOperand_ParseFail;
3770  }
3771  Parser.Lex(); // Eat shift type token.
3772
3773  // There must be a '#' and a shift amount.
3774  if (Parser.getTok().isNot(AsmToken::Hash) &&
3775      Parser.getTok().isNot(AsmToken::Dollar)) {
3776    Error(Parser.getTok().getLoc(), "'#' expected");
3777    return MatchOperand_ParseFail;
3778  }
3779  Parser.Lex(); // Eat hash token.
3780
3781  const MCExpr *ShiftAmount;
3782  SMLoc Loc = Parser.getTok().getLoc();
3783  SMLoc EndLoc;
3784  if (getParser().parseExpression(ShiftAmount, EndLoc)) {
3785    Error(Loc, "illegal expression");
3786    return MatchOperand_ParseFail;
3787  }
3788  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
3789  if (!CE) {
3790    Error(Loc, "constant expression expected");
3791    return MatchOperand_ParseFail;
3792  }
3793  int Val = CE->getValue();
3794  if (Val < Low || Val > High) {
3795    Error(Loc, "immediate value out of range");
3796    return MatchOperand_ParseFail;
3797  }
3798
3799  Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc));
3800
3801  return MatchOperand_Success;
3802}
3803
3804ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3805parseSetEndImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3806  const AsmToken &Tok = Parser.getTok();
3807  SMLoc S = Tok.getLoc();
3808  if (Tok.isNot(AsmToken::Identifier)) {
3809    Error(S, "'be' or 'le' operand expected");
3810    return MatchOperand_ParseFail;
3811  }
3812  int Val = StringSwitch<int>(Tok.getString().lower())
3813    .Case("be", 1)
3814    .Case("le", 0)
3815    .Default(-1);
3816  Parser.Lex(); // Eat the token.
3817
3818  if (Val == -1) {
3819    Error(S, "'be' or 'le' operand expected");
3820    return MatchOperand_ParseFail;
3821  }
3822  Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::Create(Val,
3823                                                                  getContext()),
3824                                           S, Tok.getEndLoc()));
3825  return MatchOperand_Success;
3826}
3827
3828/// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
3829/// instructions. Legal values are:
3830///     lsl #n  'n' in [0,31]
3831///     asr #n  'n' in [1,32]
3832///             n == 32 encoded as n == 0.
3833ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3834parseShifterImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3835  const AsmToken &Tok = Parser.getTok();
3836  SMLoc S = Tok.getLoc();
3837  if (Tok.isNot(AsmToken::Identifier)) {
3838    Error(S, "shift operator 'asr' or 'lsl' expected");
3839    return MatchOperand_ParseFail;
3840  }
3841  StringRef ShiftName = Tok.getString();
3842  bool isASR;
3843  if (ShiftName == "lsl" || ShiftName == "LSL")
3844    isASR = false;
3845  else if (ShiftName == "asr" || ShiftName == "ASR")
3846    isASR = true;
3847  else {
3848    Error(S, "shift operator 'asr' or 'lsl' expected");
3849    return MatchOperand_ParseFail;
3850  }
3851  Parser.Lex(); // Eat the operator.
3852
3853  // A '#' and a shift amount.
3854  if (Parser.getTok().isNot(AsmToken::Hash) &&
3855      Parser.getTok().isNot(AsmToken::Dollar)) {
3856    Error(Parser.getTok().getLoc(), "'#' expected");
3857    return MatchOperand_ParseFail;
3858  }
3859  Parser.Lex(); // Eat hash token.
3860  SMLoc ExLoc = Parser.getTok().getLoc();
3861
3862  const MCExpr *ShiftAmount;
3863  SMLoc EndLoc;
3864  if (getParser().parseExpression(ShiftAmount, EndLoc)) {
3865    Error(ExLoc, "malformed shift expression");
3866    return MatchOperand_ParseFail;
3867  }
3868  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
3869  if (!CE) {
3870    Error(ExLoc, "shift amount must be an immediate");
3871    return MatchOperand_ParseFail;
3872  }
3873
3874  int64_t Val = CE->getValue();
3875  if (isASR) {
3876    // Shift amount must be in [1,32]
3877    if (Val < 1 || Val > 32) {
3878      Error(ExLoc, "'asr' shift amount must be in range [1,32]");
3879      return MatchOperand_ParseFail;
3880    }
3881    // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
3882    if (isThumb() && Val == 32) {
3883      Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode");
3884      return MatchOperand_ParseFail;
3885    }
3886    if (Val == 32) Val = 0;
3887  } else {
3888    // Shift amount must be in [1,32]
3889    if (Val < 0 || Val > 31) {
3890      Error(ExLoc, "'lsr' shift amount must be in range [0,31]");
3891      return MatchOperand_ParseFail;
3892    }
3893  }
3894
3895  Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc));
3896
3897  return MatchOperand_Success;
3898}
3899
3900/// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
3901/// of instructions. Legal values are:
3902///     ror #n  'n' in {0, 8, 16, 24}
3903ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3904parseRotImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3905  const AsmToken &Tok = Parser.getTok();
3906  SMLoc S = Tok.getLoc();
3907  if (Tok.isNot(AsmToken::Identifier))
3908    return MatchOperand_NoMatch;
3909  StringRef ShiftName = Tok.getString();
3910  if (ShiftName != "ror" && ShiftName != "ROR")
3911    return MatchOperand_NoMatch;
3912  Parser.Lex(); // Eat the operator.
3913
3914  // A '#' and a rotate amount.
3915  if (Parser.getTok().isNot(AsmToken::Hash) &&
3916      Parser.getTok().isNot(AsmToken::Dollar)) {
3917    Error(Parser.getTok().getLoc(), "'#' expected");
3918    return MatchOperand_ParseFail;
3919  }
3920  Parser.Lex(); // Eat hash token.
3921  SMLoc ExLoc = Parser.getTok().getLoc();
3922
3923  const MCExpr *ShiftAmount;
3924  SMLoc EndLoc;
3925  if (getParser().parseExpression(ShiftAmount, EndLoc)) {
3926    Error(ExLoc, "malformed rotate expression");
3927    return MatchOperand_ParseFail;
3928  }
3929  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
3930  if (!CE) {
3931    Error(ExLoc, "rotate amount must be an immediate");
3932    return MatchOperand_ParseFail;
3933  }
3934
3935  int64_t Val = CE->getValue();
3936  // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
3937  // normally, zero is represented in asm by omitting the rotate operand
3938  // entirely.
3939  if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
3940    Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24");
3941    return MatchOperand_ParseFail;
3942  }
3943
3944  Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc));
3945
3946  return MatchOperand_Success;
3947}
3948
3949ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3950parseBitfield(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3951  SMLoc S = Parser.getTok().getLoc();
3952  // The bitfield descriptor is really two operands, the LSB and the width.
3953  if (Parser.getTok().isNot(AsmToken::Hash) &&
3954      Parser.getTok().isNot(AsmToken::Dollar)) {
3955    Error(Parser.getTok().getLoc(), "'#' expected");
3956    return MatchOperand_ParseFail;
3957  }
3958  Parser.Lex(); // Eat hash token.
3959
3960  const MCExpr *LSBExpr;
3961  SMLoc E = Parser.getTok().getLoc();
3962  if (getParser().parseExpression(LSBExpr)) {
3963    Error(E, "malformed immediate expression");
3964    return MatchOperand_ParseFail;
3965  }
3966  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
3967  if (!CE) {
3968    Error(E, "'lsb' operand must be an immediate");
3969    return MatchOperand_ParseFail;
3970  }
3971
3972  int64_t LSB = CE->getValue();
3973  // The LSB must be in the range [0,31]
3974  if (LSB < 0 || LSB > 31) {
3975    Error(E, "'lsb' operand must be in the range [0,31]");
3976    return MatchOperand_ParseFail;
3977  }
3978  E = Parser.getTok().getLoc();
3979
3980  // Expect another immediate operand.
3981  if (Parser.getTok().isNot(AsmToken::Comma)) {
3982    Error(Parser.getTok().getLoc(), "too few operands");
3983    return MatchOperand_ParseFail;
3984  }
3985  Parser.Lex(); // Eat hash token.
3986  if (Parser.getTok().isNot(AsmToken::Hash) &&
3987      Parser.getTok().isNot(AsmToken::Dollar)) {
3988    Error(Parser.getTok().getLoc(), "'#' expected");
3989    return MatchOperand_ParseFail;
3990  }
3991  Parser.Lex(); // Eat hash token.
3992
3993  const MCExpr *WidthExpr;
3994  SMLoc EndLoc;
3995  if (getParser().parseExpression(WidthExpr, EndLoc)) {
3996    Error(E, "malformed immediate expression");
3997    return MatchOperand_ParseFail;
3998  }
3999  CE = dyn_cast<MCConstantExpr>(WidthExpr);
4000  if (!CE) {
4001    Error(E, "'width' operand must be an immediate");
4002    return MatchOperand_ParseFail;
4003  }
4004
4005  int64_t Width = CE->getValue();
4006  // The LSB must be in the range [1,32-lsb]
4007  if (Width < 1 || Width > 32 - LSB) {
4008    Error(E, "'width' operand must be in the range [1,32-lsb]");
4009    return MatchOperand_ParseFail;
4010  }
4011
4012  Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc));
4013
4014  return MatchOperand_Success;
4015}
4016
4017ARMAsmParser::OperandMatchResultTy ARMAsmParser::
4018parsePostIdxReg(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4019  // Check for a post-index addressing register operand. Specifically:
4020  // postidx_reg := '+' register {, shift}
4021  //              | '-' register {, shift}
4022  //              | register {, shift}
4023
4024  // This method must return MatchOperand_NoMatch without consuming any tokens
4025  // in the case where there is no match, as other alternatives take other
4026  // parse methods.
4027  AsmToken Tok = Parser.getTok();
4028  SMLoc S = Tok.getLoc();
4029  bool haveEaten = false;
4030  bool isAdd = true;
4031  if (Tok.is(AsmToken::Plus)) {
4032    Parser.Lex(); // Eat the '+' token.
4033    haveEaten = true;
4034  } else if (Tok.is(AsmToken::Minus)) {
4035    Parser.Lex(); // Eat the '-' token.
4036    isAdd = false;
4037    haveEaten = true;
4038  }
4039
4040  SMLoc E = Parser.getTok().getEndLoc();
4041  int Reg = tryParseRegister();
4042  if (Reg == -1) {
4043    if (!haveEaten)
4044      return MatchOperand_NoMatch;
4045    Error(Parser.getTok().getLoc(), "register expected");
4046    return MatchOperand_ParseFail;
4047  }
4048
4049  ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
4050  unsigned ShiftImm = 0;
4051  if (Parser.getTok().is(AsmToken::Comma)) {
4052    Parser.Lex(); // Eat the ','.
4053    if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
4054      return MatchOperand_ParseFail;
4055
4056    // FIXME: Only approximates end...may include intervening whitespace.
4057    E = Parser.getTok().getLoc();
4058  }
4059
4060  Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
4061                                                  ShiftImm, S, E));
4062
4063  return MatchOperand_Success;
4064}
4065
4066ARMAsmParser::OperandMatchResultTy ARMAsmParser::
4067parseAM3Offset(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4068  // Check for a post-index addressing register operand. Specifically:
4069  // am3offset := '+' register
4070  //              | '-' register
4071  //              | register
4072  //              | # imm
4073  //              | # + imm
4074  //              | # - imm
4075
4076  // This method must return MatchOperand_NoMatch without consuming any tokens
4077  // in the case where there is no match, as other alternatives take other
4078  // parse methods.
4079  AsmToken Tok = Parser.getTok();
4080  SMLoc S = Tok.getLoc();
4081
4082  // Do immediates first, as we always parse those if we have a '#'.
4083  if (Parser.getTok().is(AsmToken::Hash) ||
4084      Parser.getTok().is(AsmToken::Dollar)) {
4085    Parser.Lex(); // Eat '#' or '$'.
4086    // Explicitly look for a '-', as we need to encode negative zero
4087    // differently.
4088    bool isNegative = Parser.getTok().is(AsmToken::Minus);
4089    const MCExpr *Offset;
4090    SMLoc E;
4091    if (getParser().parseExpression(Offset, E))
4092      return MatchOperand_ParseFail;
4093    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
4094    if (!CE) {
4095      Error(S, "constant expression expected");
4096      return MatchOperand_ParseFail;
4097    }
4098    // Negative zero is encoded as the flag value INT32_MIN.
4099    int32_t Val = CE->getValue();
4100    if (isNegative && Val == 0)
4101      Val = INT32_MIN;
4102
4103    Operands.push_back(
4104      ARMOperand::CreateImm(MCConstantExpr::Create(Val, getContext()), S, E));
4105
4106    return MatchOperand_Success;
4107  }
4108
4109
4110  bool haveEaten = false;
4111  bool isAdd = true;
4112  if (Tok.is(AsmToken::Plus)) {
4113    Parser.Lex(); // Eat the '+' token.
4114    haveEaten = true;
4115  } else if (Tok.is(AsmToken::Minus)) {
4116    Parser.Lex(); // Eat the '-' token.
4117    isAdd = false;
4118    haveEaten = true;
4119  }
4120
4121  Tok = Parser.getTok();
4122  int Reg = tryParseRegister();
4123  if (Reg == -1) {
4124    if (!haveEaten)
4125      return MatchOperand_NoMatch;
4126    Error(Tok.getLoc(), "register expected");
4127    return MatchOperand_ParseFail;
4128  }
4129
4130  Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
4131                                                  0, S, Tok.getEndLoc()));
4132
4133  return MatchOperand_Success;
4134}
4135
4136/// Convert parsed operands to MCInst.  Needed here because this instruction
4137/// only has two register operands, but multiplication is commutative so
4138/// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN".
4139void ARMAsmParser::
4140cvtThumbMultiply(MCInst &Inst,
4141           const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4142  ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
4143  ((ARMOperand*)Operands[1])->addCCOutOperands(Inst, 1);
4144  // If we have a three-operand form, make sure to set Rn to be the operand
4145  // that isn't the same as Rd.
4146  unsigned RegOp = 4;
4147  if (Operands.size() == 6 &&
4148      ((ARMOperand*)Operands[4])->getReg() ==
4149        ((ARMOperand*)Operands[3])->getReg())
4150    RegOp = 5;
4151  ((ARMOperand*)Operands[RegOp])->addRegOperands(Inst, 1);
4152  Inst.addOperand(Inst.getOperand(0));
4153  ((ARMOperand*)Operands[2])->addCondCodeOperands(Inst, 2);
4154}
4155
4156void ARMAsmParser::
4157cvtThumbBranches(MCInst &Inst,
4158           const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4159  int CondOp = -1, ImmOp = -1;
4160  switch(Inst.getOpcode()) {
4161    case ARM::tB:
4162    case ARM::tBcc:  CondOp = 1; ImmOp = 2; break;
4163
4164    case ARM::t2B:
4165    case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break;
4166
4167    default: llvm_unreachable("Unexpected instruction in cvtThumbBranches");
4168  }
4169  // first decide whether or not the branch should be conditional
4170  // by looking at it's location relative to an IT block
4171  if(inITBlock()) {
4172    // inside an IT block we cannot have any conditional branches. any
4173    // such instructions needs to be converted to unconditional form
4174    switch(Inst.getOpcode()) {
4175      case ARM::tBcc: Inst.setOpcode(ARM::tB); break;
4176      case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break;
4177    }
4178  } else {
4179    // outside IT blocks we can only have unconditional branches with AL
4180    // condition code or conditional branches with non-AL condition code
4181    unsigned Cond = static_cast<ARMOperand*>(Operands[CondOp])->getCondCode();
4182    switch(Inst.getOpcode()) {
4183      case ARM::tB:
4184      case ARM::tBcc:
4185        Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc);
4186        break;
4187      case ARM::t2B:
4188      case ARM::t2Bcc:
4189        Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc);
4190        break;
4191    }
4192  }
4193
4194  // now decide on encoding size based on branch target range
4195  switch(Inst.getOpcode()) {
4196    // classify tB as either t2B or t1B based on range of immediate operand
4197    case ARM::tB: {
4198      ARMOperand* op = static_cast<ARMOperand*>(Operands[ImmOp]);
4199      if(!op->isSignedOffset<11, 1>() && isThumbTwo())
4200        Inst.setOpcode(ARM::t2B);
4201      break;
4202    }
4203    // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand
4204    case ARM::tBcc: {
4205      ARMOperand* op = static_cast<ARMOperand*>(Operands[ImmOp]);
4206      if(!op->isSignedOffset<8, 1>() && isThumbTwo())
4207        Inst.setOpcode(ARM::t2Bcc);
4208      break;
4209    }
4210  }
4211  ((ARMOperand*)Operands[ImmOp])->addImmOperands(Inst, 1);
4212  ((ARMOperand*)Operands[CondOp])->addCondCodeOperands(Inst, 2);
4213}
4214
4215/// Parse an ARM memory expression, return false if successful else return true
4216/// or an error.  The first token must be a '[' when called.
4217bool ARMAsmParser::
4218parseMemory(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4219  SMLoc S, E;
4220  assert(Parser.getTok().is(AsmToken::LBrac) &&
4221         "Token is not a Left Bracket");
4222  S = Parser.getTok().getLoc();
4223  Parser.Lex(); // Eat left bracket token.
4224
4225  const AsmToken &BaseRegTok = Parser.getTok();
4226  int BaseRegNum = tryParseRegister();
4227  if (BaseRegNum == -1)
4228    return Error(BaseRegTok.getLoc(), "register expected");
4229
4230  // The next token must either be a comma, a colon or a closing bracket.
4231  const AsmToken &Tok = Parser.getTok();
4232  if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) &&
4233      !Tok.is(AsmToken::RBrac))
4234    return Error(Tok.getLoc(), "malformed memory operand");
4235
4236  if (Tok.is(AsmToken::RBrac)) {
4237    E = Tok.getEndLoc();
4238    Parser.Lex(); // Eat right bracket token.
4239
4240    Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, 0, ARM_AM::no_shift,
4241                                             0, 0, false, S, E));
4242
4243    // If there's a pre-indexing writeback marker, '!', just add it as a token
4244    // operand. It's rather odd, but syntactically valid.
4245    if (Parser.getTok().is(AsmToken::Exclaim)) {
4246      Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4247      Parser.Lex(); // Eat the '!'.
4248    }
4249
4250    return false;
4251  }
4252
4253  assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) &&
4254         "Lost colon or comma in memory operand?!");
4255  if (Tok.is(AsmToken::Comma)) {
4256    Parser.Lex(); // Eat the comma.
4257  }
4258
4259  // If we have a ':', it's an alignment specifier.
4260  if (Parser.getTok().is(AsmToken::Colon)) {
4261    Parser.Lex(); // Eat the ':'.
4262    E = Parser.getTok().getLoc();
4263
4264    const MCExpr *Expr;
4265    if (getParser().parseExpression(Expr))
4266     return true;
4267
4268    // The expression has to be a constant. Memory references with relocations
4269    // don't come through here, as they use the <label> forms of the relevant
4270    // instructions.
4271    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
4272    if (!CE)
4273      return Error (E, "constant expression expected");
4274
4275    unsigned Align = 0;
4276    switch (CE->getValue()) {
4277    default:
4278      return Error(E,
4279                   "alignment specifier must be 16, 32, 64, 128, or 256 bits");
4280    case 16:  Align = 2; break;
4281    case 32:  Align = 4; break;
4282    case 64:  Align = 8; break;
4283    case 128: Align = 16; break;
4284    case 256: Align = 32; break;
4285    }
4286
4287    // Now we should have the closing ']'
4288    if (Parser.getTok().isNot(AsmToken::RBrac))
4289      return Error(Parser.getTok().getLoc(), "']' expected");
4290    E = Parser.getTok().getEndLoc();
4291    Parser.Lex(); // Eat right bracket token.
4292
4293    // Don't worry about range checking the value here. That's handled by
4294    // the is*() predicates.
4295    Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, 0,
4296                                             ARM_AM::no_shift, 0, Align,
4297                                             false, S, E));
4298
4299    // If there's a pre-indexing writeback marker, '!', just add it as a token
4300    // operand.
4301    if (Parser.getTok().is(AsmToken::Exclaim)) {
4302      Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4303      Parser.Lex(); // Eat the '!'.
4304    }
4305
4306    return false;
4307  }
4308
4309  // If we have a '#', it's an immediate offset, else assume it's a register
4310  // offset. Be friendly and also accept a plain integer (without a leading
4311  // hash) for gas compatibility.
4312  if (Parser.getTok().is(AsmToken::Hash) ||
4313      Parser.getTok().is(AsmToken::Dollar) ||
4314      Parser.getTok().is(AsmToken::Integer)) {
4315    if (Parser.getTok().isNot(AsmToken::Integer))
4316      Parser.Lex(); // Eat '#' or '$'.
4317    E = Parser.getTok().getLoc();
4318
4319    bool isNegative = getParser().getTok().is(AsmToken::Minus);
4320    const MCExpr *Offset;
4321    if (getParser().parseExpression(Offset))
4322     return true;
4323
4324    // The expression has to be a constant. Memory references with relocations
4325    // don't come through here, as they use the <label> forms of the relevant
4326    // instructions.
4327    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
4328    if (!CE)
4329      return Error (E, "constant expression expected");
4330
4331    // If the constant was #-0, represent it as INT32_MIN.
4332    int32_t Val = CE->getValue();
4333    if (isNegative && Val == 0)
4334      CE = MCConstantExpr::Create(INT32_MIN, getContext());
4335
4336    // Now we should have the closing ']'
4337    if (Parser.getTok().isNot(AsmToken::RBrac))
4338      return Error(Parser.getTok().getLoc(), "']' expected");
4339    E = Parser.getTok().getEndLoc();
4340    Parser.Lex(); // Eat right bracket token.
4341
4342    // Don't worry about range checking the value here. That's handled by
4343    // the is*() predicates.
4344    Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0,
4345                                             ARM_AM::no_shift, 0, 0,
4346                                             false, S, E));
4347
4348    // If there's a pre-indexing writeback marker, '!', just add it as a token
4349    // operand.
4350    if (Parser.getTok().is(AsmToken::Exclaim)) {
4351      Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4352      Parser.Lex(); // Eat the '!'.
4353    }
4354
4355    return false;
4356  }
4357
4358  // The register offset is optionally preceded by a '+' or '-'
4359  bool isNegative = false;
4360  if (Parser.getTok().is(AsmToken::Minus)) {
4361    isNegative = true;
4362    Parser.Lex(); // Eat the '-'.
4363  } else if (Parser.getTok().is(AsmToken::Plus)) {
4364    // Nothing to do.
4365    Parser.Lex(); // Eat the '+'.
4366  }
4367
4368  E = Parser.getTok().getLoc();
4369  int OffsetRegNum = tryParseRegister();
4370  if (OffsetRegNum == -1)
4371    return Error(E, "register expected");
4372
4373  // If there's a shift operator, handle it.
4374  ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
4375  unsigned ShiftImm = 0;
4376  if (Parser.getTok().is(AsmToken::Comma)) {
4377    Parser.Lex(); // Eat the ','.
4378    if (parseMemRegOffsetShift(ShiftType, ShiftImm))
4379      return true;
4380  }
4381
4382  // Now we should have the closing ']'
4383  if (Parser.getTok().isNot(AsmToken::RBrac))
4384    return Error(Parser.getTok().getLoc(), "']' expected");
4385  E = Parser.getTok().getEndLoc();
4386  Parser.Lex(); // Eat right bracket token.
4387
4388  Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, OffsetRegNum,
4389                                           ShiftType, ShiftImm, 0, isNegative,
4390                                           S, E));
4391
4392  // If there's a pre-indexing writeback marker, '!', just add it as a token
4393  // operand.
4394  if (Parser.getTok().is(AsmToken::Exclaim)) {
4395    Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4396    Parser.Lex(); // Eat the '!'.
4397  }
4398
4399  return false;
4400}
4401
4402/// parseMemRegOffsetShift - one of these two:
4403///   ( lsl | lsr | asr | ror ) , # shift_amount
4404///   rrx
4405/// return true if it parses a shift otherwise it returns false.
4406bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
4407                                          unsigned &Amount) {
4408  SMLoc Loc = Parser.getTok().getLoc();
4409  const AsmToken &Tok = Parser.getTok();
4410  if (Tok.isNot(AsmToken::Identifier))
4411    return true;
4412  StringRef ShiftName = Tok.getString();
4413  if (ShiftName == "lsl" || ShiftName == "LSL" ||
4414      ShiftName == "asl" || ShiftName == "ASL")
4415    St = ARM_AM::lsl;
4416  else if (ShiftName == "lsr" || ShiftName == "LSR")
4417    St = ARM_AM::lsr;
4418  else if (ShiftName == "asr" || ShiftName == "ASR")
4419    St = ARM_AM::asr;
4420  else if (ShiftName == "ror" || ShiftName == "ROR")
4421    St = ARM_AM::ror;
4422  else if (ShiftName == "rrx" || ShiftName == "RRX")
4423    St = ARM_AM::rrx;
4424  else
4425    return Error(Loc, "illegal shift operator");
4426  Parser.Lex(); // Eat shift type token.
4427
4428  // rrx stands alone.
4429  Amount = 0;
4430  if (St != ARM_AM::rrx) {
4431    Loc = Parser.getTok().getLoc();
4432    // A '#' and a shift amount.
4433    const AsmToken &HashTok = Parser.getTok();
4434    if (HashTok.isNot(AsmToken::Hash) &&
4435        HashTok.isNot(AsmToken::Dollar))
4436      return Error(HashTok.getLoc(), "'#' expected");
4437    Parser.Lex(); // Eat hash token.
4438
4439    const MCExpr *Expr;
4440    if (getParser().parseExpression(Expr))
4441      return true;
4442    // Range check the immediate.
4443    // lsl, ror: 0 <= imm <= 31
4444    // lsr, asr: 0 <= imm <= 32
4445    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
4446    if (!CE)
4447      return Error(Loc, "shift amount must be an immediate");
4448    int64_t Imm = CE->getValue();
4449    if (Imm < 0 ||
4450        ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
4451        ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
4452      return Error(Loc, "immediate shift value out of range");
4453    // If <ShiftTy> #0, turn it into a no_shift.
4454    if (Imm == 0)
4455      St = ARM_AM::lsl;
4456    // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
4457    if (Imm == 32)
4458      Imm = 0;
4459    Amount = Imm;
4460  }
4461
4462  return false;
4463}
4464
4465/// parseFPImm - A floating point immediate expression operand.
4466ARMAsmParser::OperandMatchResultTy ARMAsmParser::
4467parseFPImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4468  // Anything that can accept a floating point constant as an operand
4469  // needs to go through here, as the regular parseExpression is
4470  // integer only.
4471  //
4472  // This routine still creates a generic Immediate operand, containing
4473  // a bitcast of the 64-bit floating point value. The various operands
4474  // that accept floats can check whether the value is valid for them
4475  // via the standard is*() predicates.
4476
4477  SMLoc S = Parser.getTok().getLoc();
4478
4479  if (Parser.getTok().isNot(AsmToken::Hash) &&
4480      Parser.getTok().isNot(AsmToken::Dollar))
4481    return MatchOperand_NoMatch;
4482
4483  // Disambiguate the VMOV forms that can accept an FP immediate.
4484  // vmov.f32 <sreg>, #imm
4485  // vmov.f64 <dreg>, #imm
4486  // vmov.f32 <dreg>, #imm  @ vector f32x2
4487  // vmov.f32 <qreg>, #imm  @ vector f32x4
4488  //
4489  // There are also the NEON VMOV instructions which expect an
4490  // integer constant. Make sure we don't try to parse an FPImm
4491  // for these:
4492  // vmov.i{8|16|32|64} <dreg|qreg>, #imm
4493  ARMOperand *TyOp = static_cast<ARMOperand*>(Operands[2]);
4494  if (!TyOp->isToken() || (TyOp->getToken() != ".f32" &&
4495                           TyOp->getToken() != ".f64"))
4496    return MatchOperand_NoMatch;
4497
4498  Parser.Lex(); // Eat '#' or '$'.
4499
4500  // Handle negation, as that still comes through as a separate token.
4501  bool isNegative = false;
4502  if (Parser.getTok().is(AsmToken::Minus)) {
4503    isNegative = true;
4504    Parser.Lex();
4505  }
4506  const AsmToken &Tok = Parser.getTok();
4507  SMLoc Loc = Tok.getLoc();
4508  if (Tok.is(AsmToken::Real)) {
4509    APFloat RealVal(APFloat::IEEEsingle, Tok.getString());
4510    uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
4511    // If we had a '-' in front, toggle the sign bit.
4512    IntVal ^= (uint64_t)isNegative << 31;
4513    Parser.Lex(); // Eat the token.
4514    Operands.push_back(ARMOperand::CreateImm(
4515          MCConstantExpr::Create(IntVal, getContext()),
4516          S, Parser.getTok().getLoc()));
4517    return MatchOperand_Success;
4518  }
4519  // Also handle plain integers. Instructions which allow floating point
4520  // immediates also allow a raw encoded 8-bit value.
4521  if (Tok.is(AsmToken::Integer)) {
4522    int64_t Val = Tok.getIntVal();
4523    Parser.Lex(); // Eat the token.
4524    if (Val > 255 || Val < 0) {
4525      Error(Loc, "encoded floating point value out of range");
4526      return MatchOperand_ParseFail;
4527    }
4528    double RealVal = ARM_AM::getFPImmFloat(Val);
4529    Val = APFloat(APFloat::IEEEdouble, RealVal).bitcastToAPInt().getZExtValue();
4530    Operands.push_back(ARMOperand::CreateImm(
4531        MCConstantExpr::Create(Val, getContext()), S,
4532        Parser.getTok().getLoc()));
4533    return MatchOperand_Success;
4534  }
4535
4536  Error(Loc, "invalid floating point immediate");
4537  return MatchOperand_ParseFail;
4538}
4539
4540/// Parse a arm instruction operand.  For now this parses the operand regardless
4541/// of the mnemonic.
4542bool ARMAsmParser::parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
4543                                StringRef Mnemonic) {
4544  SMLoc S, E;
4545
4546  // Check if the current operand has a custom associated parser, if so, try to
4547  // custom parse the operand, or fallback to the general approach.
4548  OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
4549  if (ResTy == MatchOperand_Success)
4550    return false;
4551  // If there wasn't a custom match, try the generic matcher below. Otherwise,
4552  // there was a match, but an error occurred, in which case, just return that
4553  // the operand parsing failed.
4554  if (ResTy == MatchOperand_ParseFail)
4555    return true;
4556
4557  switch (getLexer().getKind()) {
4558  default:
4559    Error(Parser.getTok().getLoc(), "unexpected token in operand");
4560    return true;
4561  case AsmToken::Identifier: {
4562    // If we've seen a branch mnemonic, the next operand must be a label.  This
4563    // is true even if the label is a register name.  So "br r1" means branch to
4564    // label "r1".
4565    bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl";
4566    if (!ExpectLabel) {
4567      if (!tryParseRegisterWithWriteBack(Operands))
4568        return false;
4569      int Res = tryParseShiftRegister(Operands);
4570      if (Res == 0) // success
4571        return false;
4572      else if (Res == -1) // irrecoverable error
4573        return true;
4574      // If this is VMRS, check for the apsr_nzcv operand.
4575      if (Mnemonic == "vmrs" &&
4576          Parser.getTok().getString().equals_lower("apsr_nzcv")) {
4577        S = Parser.getTok().getLoc();
4578        Parser.Lex();
4579        Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
4580        return false;
4581      }
4582    }
4583
4584    // Fall though for the Identifier case that is not a register or a
4585    // special name.
4586  }
4587  case AsmToken::LParen:  // parenthesized expressions like (_strcmp-4)
4588  case AsmToken::Integer: // things like 1f and 2b as a branch targets
4589  case AsmToken::String:  // quoted label names.
4590  case AsmToken::Dot: {   // . as a branch target
4591    // This was not a register so parse other operands that start with an
4592    // identifier (like labels) as expressions and create them as immediates.
4593    const MCExpr *IdVal;
4594    S = Parser.getTok().getLoc();
4595    if (getParser().parseExpression(IdVal))
4596      return true;
4597    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
4598    Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
4599    return false;
4600  }
4601  case AsmToken::LBrac:
4602    return parseMemory(Operands);
4603  case AsmToken::LCurly:
4604    return parseRegisterList(Operands);
4605  case AsmToken::Dollar:
4606  case AsmToken::Hash: {
4607    // #42 -> immediate.
4608    S = Parser.getTok().getLoc();
4609    Parser.Lex();
4610
4611    if (Parser.getTok().isNot(AsmToken::Colon)) {
4612      bool isNegative = Parser.getTok().is(AsmToken::Minus);
4613      const MCExpr *ImmVal;
4614      if (getParser().parseExpression(ImmVal))
4615        return true;
4616      const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
4617      if (CE) {
4618        int32_t Val = CE->getValue();
4619        if (isNegative && Val == 0)
4620          ImmVal = MCConstantExpr::Create(INT32_MIN, getContext());
4621      }
4622      E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
4623      Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
4624
4625      // There can be a trailing '!' on operands that we want as a separate
4626      // '!' Token operand. Handle that here. For example, the compatibilty
4627      // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
4628      if (Parser.getTok().is(AsmToken::Exclaim)) {
4629        Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(),
4630                                                   Parser.getTok().getLoc()));
4631        Parser.Lex(); // Eat exclaim token
4632      }
4633      return false;
4634    }
4635    // w/ a ':' after the '#', it's just like a plain ':'.
4636    // FALLTHROUGH
4637  }
4638  case AsmToken::Colon: {
4639    // ":lower16:" and ":upper16:" expression prefixes
4640    // FIXME: Check it's an expression prefix,
4641    // e.g. (FOO - :lower16:BAR) isn't legal.
4642    ARMMCExpr::VariantKind RefKind;
4643    if (parsePrefix(RefKind))
4644      return true;
4645
4646    const MCExpr *SubExprVal;
4647    if (getParser().parseExpression(SubExprVal))
4648      return true;
4649
4650    const MCExpr *ExprVal = ARMMCExpr::Create(RefKind, SubExprVal,
4651                                              getContext());
4652    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
4653    Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
4654    return false;
4655  }
4656  }
4657}
4658
4659// parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
4660//  :lower16: and :upper16:.
4661bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
4662  RefKind = ARMMCExpr::VK_ARM_None;
4663
4664  // :lower16: and :upper16: modifiers
4665  assert(getLexer().is(AsmToken::Colon) && "expected a :");
4666  Parser.Lex(); // Eat ':'
4667
4668  if (getLexer().isNot(AsmToken::Identifier)) {
4669    Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
4670    return true;
4671  }
4672
4673  StringRef IDVal = Parser.getTok().getIdentifier();
4674  if (IDVal == "lower16") {
4675    RefKind = ARMMCExpr::VK_ARM_LO16;
4676  } else if (IDVal == "upper16") {
4677    RefKind = ARMMCExpr::VK_ARM_HI16;
4678  } else {
4679    Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
4680    return true;
4681  }
4682  Parser.Lex();
4683
4684  if (getLexer().isNot(AsmToken::Colon)) {
4685    Error(Parser.getTok().getLoc(), "unexpected token after prefix");
4686    return true;
4687  }
4688  Parser.Lex(); // Eat the last ':'
4689  return false;
4690}
4691
4692/// \brief Given a mnemonic, split out possible predication code and carry
4693/// setting letters to form a canonical mnemonic and flags.
4694//
4695// FIXME: Would be nice to autogen this.
4696// FIXME: This is a bit of a maze of special cases.
4697StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
4698                                      unsigned &PredicationCode,
4699                                      bool &CarrySetting,
4700                                      unsigned &ProcessorIMod,
4701                                      StringRef &ITMask) {
4702  PredicationCode = ARMCC::AL;
4703  CarrySetting = false;
4704  ProcessorIMod = 0;
4705
4706  // Ignore some mnemonics we know aren't predicated forms.
4707  //
4708  // FIXME: Would be nice to autogen this.
4709  if ((Mnemonic == "movs" && isThumb()) ||
4710      Mnemonic == "teq"   || Mnemonic == "vceq"   || Mnemonic == "svc"   ||
4711      Mnemonic == "mls"   || Mnemonic == "smmls"  || Mnemonic == "vcls"  ||
4712      Mnemonic == "vmls"  || Mnemonic == "vnmls"  || Mnemonic == "vacge" ||
4713      Mnemonic == "vcge"  || Mnemonic == "vclt"   || Mnemonic == "vacgt" ||
4714      Mnemonic == "vaclt" || Mnemonic == "vacle"  || Mnemonic == "hlt" ||
4715      Mnemonic == "vcgt"  || Mnemonic == "vcle"   || Mnemonic == "smlal" ||
4716      Mnemonic == "umaal" || Mnemonic == "umlal"  || Mnemonic == "vabal" ||
4717      Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
4718      Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" ||
4719      Mnemonic == "vcvta" || Mnemonic == "vcvtn"  || Mnemonic == "vcvtp" ||
4720      Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" ||
4721      Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic.startswith("vsel"))
4722    return Mnemonic;
4723
4724  // First, split out any predication code. Ignore mnemonics we know aren't
4725  // predicated but do have a carry-set and so weren't caught above.
4726  if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
4727      Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
4728      Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
4729      Mnemonic != "sbcs" && Mnemonic != "rscs") {
4730    unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2))
4731      .Case("eq", ARMCC::EQ)
4732      .Case("ne", ARMCC::NE)
4733      .Case("hs", ARMCC::HS)
4734      .Case("cs", ARMCC::HS)
4735      .Case("lo", ARMCC::LO)
4736      .Case("cc", ARMCC::LO)
4737      .Case("mi", ARMCC::MI)
4738      .Case("pl", ARMCC::PL)
4739      .Case("vs", ARMCC::VS)
4740      .Case("vc", ARMCC::VC)
4741      .Case("hi", ARMCC::HI)
4742      .Case("ls", ARMCC::LS)
4743      .Case("ge", ARMCC::GE)
4744      .Case("lt", ARMCC::LT)
4745      .Case("gt", ARMCC::GT)
4746      .Case("le", ARMCC::LE)
4747      .Case("al", ARMCC::AL)
4748      .Default(~0U);
4749    if (CC != ~0U) {
4750      Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
4751      PredicationCode = CC;
4752    }
4753  }
4754
4755  // Next, determine if we have a carry setting bit. We explicitly ignore all
4756  // the instructions we know end in 's'.
4757  if (Mnemonic.endswith("s") &&
4758      !(Mnemonic == "cps" || Mnemonic == "mls" ||
4759        Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
4760        Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
4761        Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
4762        Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
4763        Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
4764        Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
4765        Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
4766        Mnemonic == "vfms" || Mnemonic == "vfnms" ||
4767        (Mnemonic == "movs" && isThumb()))) {
4768    Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
4769    CarrySetting = true;
4770  }
4771
4772  // The "cps" instruction can have a interrupt mode operand which is glued into
4773  // the mnemonic. Check if this is the case, split it and parse the imod op
4774  if (Mnemonic.startswith("cps")) {
4775    // Split out any imod code.
4776    unsigned IMod =
4777      StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
4778      .Case("ie", ARM_PROC::IE)
4779      .Case("id", ARM_PROC::ID)
4780      .Default(~0U);
4781    if (IMod != ~0U) {
4782      Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
4783      ProcessorIMod = IMod;
4784    }
4785  }
4786
4787  // The "it" instruction has the condition mask on the end of the mnemonic.
4788  if (Mnemonic.startswith("it")) {
4789    ITMask = Mnemonic.slice(2, Mnemonic.size());
4790    Mnemonic = Mnemonic.slice(0, 2);
4791  }
4792
4793  return Mnemonic;
4794}
4795
4796/// \brief Given a canonical mnemonic, determine if the instruction ever allows
4797/// inclusion of carry set or predication code operands.
4798//
4799// FIXME: It would be nice to autogen this.
4800void ARMAsmParser::
4801getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst,
4802                     bool &CanAcceptCarrySet, bool &CanAcceptPredicationCode) {
4803  if (Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
4804      Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
4805      Mnemonic == "add" || Mnemonic == "adc" ||
4806      Mnemonic == "mul" || Mnemonic == "bic" || Mnemonic == "asr" ||
4807      Mnemonic == "orr" || Mnemonic == "mvn" ||
4808      Mnemonic == "rsb" || Mnemonic == "rsc" || Mnemonic == "orn" ||
4809      Mnemonic == "sbc" || Mnemonic == "eor" || Mnemonic == "neg" ||
4810      Mnemonic == "vfm" || Mnemonic == "vfnm" ||
4811      (!isThumb() && (Mnemonic == "smull" || Mnemonic == "mov" ||
4812                      Mnemonic == "mla" || Mnemonic == "smlal" ||
4813                      Mnemonic == "umlal" || Mnemonic == "umull"))) {
4814    CanAcceptCarrySet = true;
4815  } else
4816    CanAcceptCarrySet = false;
4817
4818  if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" ||
4819      Mnemonic == "cps" ||  Mnemonic == "it" ||  Mnemonic == "cbz" ||
4820      Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic.startswith("crc32") ||
4821      Mnemonic.startswith("cps") || Mnemonic.startswith("vsel") ||
4822      Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || Mnemonic == "vcvta" ||
4823      Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || Mnemonic == "vcvtm" ||
4824      Mnemonic == "vrinta" || Mnemonic == "vrintn" || Mnemonic == "vrintp" ||
4825      Mnemonic == "vrintm" || Mnemonic.startswith("aes") ||
4826      Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") ||
4827      (FullInst.startswith("vmull") && FullInst.endswith(".p64"))) {
4828    // These mnemonics are never predicable
4829    CanAcceptPredicationCode = false;
4830  } else if (!isThumb()) {
4831    // Some instructions are only predicable in Thumb mode
4832    CanAcceptPredicationCode
4833      = Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" &&
4834        Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" &&
4835        Mnemonic != "dmb" && Mnemonic != "dsb" && Mnemonic != "isb" &&
4836        Mnemonic != "pld" && Mnemonic != "pli" && Mnemonic != "pldw" &&
4837        Mnemonic != "ldc2" && Mnemonic != "ldc2l" &&
4838        Mnemonic != "stc2" && Mnemonic != "stc2l" &&
4839        !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs");
4840  } else if (isThumbOne()) {
4841    if (hasV6MOps())
4842      CanAcceptPredicationCode = Mnemonic != "movs";
4843    else
4844      CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs";
4845  } else
4846    CanAcceptPredicationCode = true;
4847}
4848
4849bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
4850                               SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4851  // FIXME: This is all horribly hacky. We really need a better way to deal
4852  // with optional operands like this in the matcher table.
4853
4854  // The 'mov' mnemonic is special. One variant has a cc_out operand, while
4855  // another does not. Specifically, the MOVW instruction does not. So we
4856  // special case it here and remove the defaulted (non-setting) cc_out
4857  // operand if that's the instruction we're trying to match.
4858  //
4859  // We do this as post-processing of the explicit operands rather than just
4860  // conditionally adding the cc_out in the first place because we need
4861  // to check the type of the parsed immediate operand.
4862  if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
4863      !static_cast<ARMOperand*>(Operands[4])->isARMSOImm() &&
4864      static_cast<ARMOperand*>(Operands[4])->isImm0_65535Expr() &&
4865      static_cast<ARMOperand*>(Operands[1])->getReg() == 0)
4866    return true;
4867
4868  // Register-register 'add' for thumb does not have a cc_out operand
4869  // when there are only two register operands.
4870  if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
4871      static_cast<ARMOperand*>(Operands[3])->isReg() &&
4872      static_cast<ARMOperand*>(Operands[4])->isReg() &&
4873      static_cast<ARMOperand*>(Operands[1])->getReg() == 0)
4874    return true;
4875  // Register-register 'add' for thumb does not have a cc_out operand
4876  // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
4877  // have to check the immediate range here since Thumb2 has a variant
4878  // that can handle a different range and has a cc_out operand.
4879  if (((isThumb() && Mnemonic == "add") ||
4880       (isThumbTwo() && Mnemonic == "sub")) &&
4881      Operands.size() == 6 &&
4882      static_cast<ARMOperand*>(Operands[3])->isReg() &&
4883      static_cast<ARMOperand*>(Operands[4])->isReg() &&
4884      static_cast<ARMOperand*>(Operands[4])->getReg() == ARM::SP &&
4885      static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
4886      ((Mnemonic == "add" &&static_cast<ARMOperand*>(Operands[5])->isReg()) ||
4887       static_cast<ARMOperand*>(Operands[5])->isImm0_1020s4()))
4888    return true;
4889  // For Thumb2, add/sub immediate does not have a cc_out operand for the
4890  // imm0_4095 variant. That's the least-preferred variant when
4891  // selecting via the generic "add" mnemonic, so to know that we
4892  // should remove the cc_out operand, we have to explicitly check that
4893  // it's not one of the other variants. Ugh.
4894  if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
4895      Operands.size() == 6 &&
4896      static_cast<ARMOperand*>(Operands[3])->isReg() &&
4897      static_cast<ARMOperand*>(Operands[4])->isReg() &&
4898      static_cast<ARMOperand*>(Operands[5])->isImm()) {
4899    // Nest conditions rather than one big 'if' statement for readability.
4900    //
4901    // If both registers are low, we're in an IT block, and the immediate is
4902    // in range, we should use encoding T1 instead, which has a cc_out.
4903    if (inITBlock() &&
4904        isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) &&
4905        isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) &&
4906        static_cast<ARMOperand*>(Operands[5])->isImm0_7())
4907      return false;
4908    // Check against T3. If the second register is the PC, this is an
4909    // alternate form of ADR, which uses encoding T4, so check for that too.
4910    if (static_cast<ARMOperand*>(Operands[4])->getReg() != ARM::PC &&
4911        static_cast<ARMOperand*>(Operands[5])->isT2SOImm())
4912      return false;
4913
4914    // Otherwise, we use encoding T4, which does not have a cc_out
4915    // operand.
4916    return true;
4917  }
4918
4919  // The thumb2 multiply instruction doesn't have a CCOut register, so
4920  // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
4921  // use the 16-bit encoding or not.
4922  if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
4923      static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
4924      static_cast<ARMOperand*>(Operands[3])->isReg() &&
4925      static_cast<ARMOperand*>(Operands[4])->isReg() &&
4926      static_cast<ARMOperand*>(Operands[5])->isReg() &&
4927      // If the registers aren't low regs, the destination reg isn't the
4928      // same as one of the source regs, or the cc_out operand is zero
4929      // outside of an IT block, we have to use the 32-bit encoding, so
4930      // remove the cc_out operand.
4931      (!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
4932       !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) ||
4933       !isARMLowRegister(static_cast<ARMOperand*>(Operands[5])->getReg()) ||
4934       !inITBlock() ||
4935       (static_cast<ARMOperand*>(Operands[3])->getReg() !=
4936        static_cast<ARMOperand*>(Operands[5])->getReg() &&
4937        static_cast<ARMOperand*>(Operands[3])->getReg() !=
4938        static_cast<ARMOperand*>(Operands[4])->getReg())))
4939    return true;
4940
4941  // Also check the 'mul' syntax variant that doesn't specify an explicit
4942  // destination register.
4943  if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
4944      static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
4945      static_cast<ARMOperand*>(Operands[3])->isReg() &&
4946      static_cast<ARMOperand*>(Operands[4])->isReg() &&
4947      // If the registers aren't low regs  or the cc_out operand is zero
4948      // outside of an IT block, we have to use the 32-bit encoding, so
4949      // remove the cc_out operand.
4950      (!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
4951       !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) ||
4952       !inITBlock()))
4953    return true;
4954
4955
4956
4957  // Register-register 'add/sub' for thumb does not have a cc_out operand
4958  // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
4959  // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
4960  // right, this will result in better diagnostics (which operand is off)
4961  // anyway.
4962  if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
4963      (Operands.size() == 5 || Operands.size() == 6) &&
4964      static_cast<ARMOperand*>(Operands[3])->isReg() &&
4965      static_cast<ARMOperand*>(Operands[3])->getReg() == ARM::SP &&
4966      static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
4967      (static_cast<ARMOperand*>(Operands[4])->isImm() ||
4968       (Operands.size() == 6 &&
4969        static_cast<ARMOperand*>(Operands[5])->isImm())))
4970    return true;
4971
4972  return false;
4973}
4974
4975bool ARMAsmParser::shouldOmitPredicateOperand(
4976    StringRef Mnemonic, SmallVectorImpl<MCParsedAsmOperand *> &Operands) {
4977  // VRINT{Z, R, X} have a predicate operand in VFP, but not in NEON
4978  unsigned RegIdx = 3;
4979  if ((Mnemonic == "vrintz" || Mnemonic == "vrintx" || Mnemonic == "vrintr") &&
4980      static_cast<ARMOperand *>(Operands[2])->getToken() == ".f32") {
4981    if (static_cast<ARMOperand *>(Operands[3])->isToken() &&
4982        static_cast<ARMOperand *>(Operands[3])->getToken() == ".f32")
4983      RegIdx = 4;
4984
4985    if (static_cast<ARMOperand *>(Operands[RegIdx])->isReg() &&
4986        (ARMMCRegisterClasses[ARM::DPRRegClassID]
4987             .contains(static_cast<ARMOperand *>(Operands[RegIdx])->getReg()) ||
4988         ARMMCRegisterClasses[ARM::QPRRegClassID]
4989             .contains(static_cast<ARMOperand *>(Operands[RegIdx])->getReg())))
4990      return true;
4991  }
4992  return false;
4993}
4994
4995static bool isDataTypeToken(StringRef Tok) {
4996  return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
4997    Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
4998    Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
4999    Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
5000    Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
5001    Tok == ".f" || Tok == ".d";
5002}
5003
5004// FIXME: This bit should probably be handled via an explicit match class
5005// in the .td files that matches the suffix instead of having it be
5006// a literal string token the way it is now.
5007static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
5008  return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
5009}
5010static void applyMnemonicAliases(StringRef &Mnemonic, unsigned Features,
5011                                 unsigned VariantID);
5012/// Parse an arm instruction mnemonic followed by its operands.
5013bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
5014                                    SMLoc NameLoc,
5015                               SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
5016  // Apply mnemonic aliases before doing anything else, as the destination
5017  // mnemnonic may include suffices and we want to handle them normally.
5018  // The generic tblgen'erated code does this later, at the start of
5019  // MatchInstructionImpl(), but that's too late for aliases that include
5020  // any sort of suffix.
5021  unsigned AvailableFeatures = getAvailableFeatures();
5022  unsigned AssemblerDialect = getParser().getAssemblerDialect();
5023  applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect);
5024
5025  // First check for the ARM-specific .req directive.
5026  if (Parser.getTok().is(AsmToken::Identifier) &&
5027      Parser.getTok().getIdentifier() == ".req") {
5028    parseDirectiveReq(Name, NameLoc);
5029    // We always return 'error' for this, as we're done with this
5030    // statement and don't need to match the 'instruction."
5031    return true;
5032  }
5033
5034  // Create the leading tokens for the mnemonic, split by '.' characters.
5035  size_t Start = 0, Next = Name.find('.');
5036  StringRef Mnemonic = Name.slice(Start, Next);
5037
5038  // Split out the predication code and carry setting flag from the mnemonic.
5039  unsigned PredicationCode;
5040  unsigned ProcessorIMod;
5041  bool CarrySetting;
5042  StringRef ITMask;
5043  Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting,
5044                           ProcessorIMod, ITMask);
5045
5046  // In Thumb1, only the branch (B) instruction can be predicated.
5047  if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
5048    Parser.eatToEndOfStatement();
5049    return Error(NameLoc, "conditional execution not supported in Thumb1");
5050  }
5051
5052  Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
5053
5054  // Handle the IT instruction ITMask. Convert it to a bitmask. This
5055  // is the mask as it will be for the IT encoding if the conditional
5056  // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case
5057  // where the conditional bit0 is zero, the instruction post-processing
5058  // will adjust the mask accordingly.
5059  if (Mnemonic == "it") {
5060    SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2);
5061    if (ITMask.size() > 3) {
5062      Parser.eatToEndOfStatement();
5063      return Error(Loc, "too many conditions on IT instruction");
5064    }
5065    unsigned Mask = 8;
5066    for (unsigned i = ITMask.size(); i != 0; --i) {
5067      char pos = ITMask[i - 1];
5068      if (pos != 't' && pos != 'e') {
5069        Parser.eatToEndOfStatement();
5070        return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
5071      }
5072      Mask >>= 1;
5073      if (ITMask[i - 1] == 't')
5074        Mask |= 8;
5075    }
5076    Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
5077  }
5078
5079  // FIXME: This is all a pretty gross hack. We should automatically handle
5080  // optional operands like this via tblgen.
5081
5082  // Next, add the CCOut and ConditionCode operands, if needed.
5083  //
5084  // For mnemonics which can ever incorporate a carry setting bit or predication
5085  // code, our matching model involves us always generating CCOut and
5086  // ConditionCode operands to match the mnemonic "as written" and then we let
5087  // the matcher deal with finding the right instruction or generating an
5088  // appropriate error.
5089  bool CanAcceptCarrySet, CanAcceptPredicationCode;
5090  getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode);
5091
5092  // If we had a carry-set on an instruction that can't do that, issue an
5093  // error.
5094  if (!CanAcceptCarrySet && CarrySetting) {
5095    Parser.eatToEndOfStatement();
5096    return Error(NameLoc, "instruction '" + Mnemonic +
5097                 "' can not set flags, but 's' suffix specified");
5098  }
5099  // If we had a predication code on an instruction that can't do that, issue an
5100  // error.
5101  if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
5102    Parser.eatToEndOfStatement();
5103    return Error(NameLoc, "instruction '" + Mnemonic +
5104                 "' is not predicable, but condition code specified");
5105  }
5106
5107  // Add the carry setting operand, if necessary.
5108  if (CanAcceptCarrySet) {
5109    SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
5110    Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
5111                                               Loc));
5112  }
5113
5114  // Add the predication code operand, if necessary.
5115  if (CanAcceptPredicationCode) {
5116    SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
5117                                      CarrySetting);
5118    Operands.push_back(ARMOperand::CreateCondCode(
5119                         ARMCC::CondCodes(PredicationCode), Loc));
5120  }
5121
5122  // Add the processor imod operand, if necessary.
5123  if (ProcessorIMod) {
5124    Operands.push_back(ARMOperand::CreateImm(
5125          MCConstantExpr::Create(ProcessorIMod, getContext()),
5126                                 NameLoc, NameLoc));
5127  }
5128
5129  // Add the remaining tokens in the mnemonic.
5130  while (Next != StringRef::npos) {
5131    Start = Next;
5132    Next = Name.find('.', Start + 1);
5133    StringRef ExtraToken = Name.slice(Start, Next);
5134
5135    // Some NEON instructions have an optional datatype suffix that is
5136    // completely ignored. Check for that.
5137    if (isDataTypeToken(ExtraToken) &&
5138        doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
5139      continue;
5140
5141    // For for ARM mode generate an error if the .n qualifier is used.
5142    if (ExtraToken == ".n" && !isThumb()) {
5143      SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
5144      return Error(Loc, "instruction with .n (narrow) qualifier not allowed in "
5145                   "arm mode");
5146    }
5147
5148    // The .n qualifier is always discarded as that is what the tables
5149    // and matcher expect.  In ARM mode the .w qualifier has no effect,
5150    // so discard it to avoid errors that can be caused by the matcher.
5151    if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) {
5152      SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
5153      Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
5154    }
5155  }
5156
5157  // Read the remaining operands.
5158  if (getLexer().isNot(AsmToken::EndOfStatement)) {
5159    // Read the first operand.
5160    if (parseOperand(Operands, Mnemonic)) {
5161      Parser.eatToEndOfStatement();
5162      return true;
5163    }
5164
5165    while (getLexer().is(AsmToken::Comma)) {
5166      Parser.Lex();  // Eat the comma.
5167
5168      // Parse and remember the operand.
5169      if (parseOperand(Operands, Mnemonic)) {
5170        Parser.eatToEndOfStatement();
5171        return true;
5172      }
5173    }
5174  }
5175
5176  if (getLexer().isNot(AsmToken::EndOfStatement)) {
5177    SMLoc Loc = getLexer().getLoc();
5178    Parser.eatToEndOfStatement();
5179    return Error(Loc, "unexpected token in argument list");
5180  }
5181
5182  Parser.Lex(); // Consume the EndOfStatement
5183
5184  // Some instructions, mostly Thumb, have forms for the same mnemonic that
5185  // do and don't have a cc_out optional-def operand. With some spot-checks
5186  // of the operand list, we can figure out which variant we're trying to
5187  // parse and adjust accordingly before actually matching. We shouldn't ever
5188  // try to remove a cc_out operand that was explicitly set on the the
5189  // mnemonic, of course (CarrySetting == true). Reason number #317 the
5190  // table driven matcher doesn't fit well with the ARM instruction set.
5191  if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) {
5192    ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
5193    Operands.erase(Operands.begin() + 1);
5194    delete Op;
5195  }
5196
5197  // Some instructions have the same mnemonic, but don't always
5198  // have a predicate. Distinguish them here and delete the
5199  // predicate if needed.
5200  if (shouldOmitPredicateOperand(Mnemonic, Operands)) {
5201    ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
5202    Operands.erase(Operands.begin() + 1);
5203    delete Op;
5204  }
5205
5206  // ARM mode 'blx' need special handling, as the register operand version
5207  // is predicable, but the label operand version is not. So, we can't rely
5208  // on the Mnemonic based checking to correctly figure out when to put
5209  // a k_CondCode operand in the list. If we're trying to match the label
5210  // version, remove the k_CondCode operand here.
5211  if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
5212      static_cast<ARMOperand*>(Operands[2])->isImm()) {
5213    ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
5214    Operands.erase(Operands.begin() + 1);
5215    delete Op;
5216  }
5217
5218  // Adjust operands of ldrexd/strexd to MCK_GPRPair.
5219  // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
5220  // a single GPRPair reg operand is used in the .td file to replace the two
5221  // GPRs. However, when parsing from asm, the two GRPs cannot be automatically
5222  // expressed as a GPRPair, so we have to manually merge them.
5223  // FIXME: We would really like to be able to tablegen'erate this.
5224  if (!isThumb() && Operands.size() > 4 &&
5225      (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" ||
5226       Mnemonic == "stlexd")) {
5227    bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd");
5228    unsigned Idx = isLoad ? 2 : 3;
5229    ARMOperand* Op1 = static_cast<ARMOperand*>(Operands[Idx]);
5230    ARMOperand* Op2 = static_cast<ARMOperand*>(Operands[Idx+1]);
5231
5232    const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID);
5233    // Adjust only if Op1 and Op2 are GPRs.
5234    if (Op1->isReg() && Op2->isReg() && MRC.contains(Op1->getReg()) &&
5235        MRC.contains(Op2->getReg())) {
5236      unsigned Reg1 = Op1->getReg();
5237      unsigned Reg2 = Op2->getReg();
5238      unsigned Rt = MRI->getEncodingValue(Reg1);
5239      unsigned Rt2 = MRI->getEncodingValue(Reg2);
5240
5241      // Rt2 must be Rt + 1 and Rt must be even.
5242      if (Rt + 1 != Rt2 || (Rt & 1)) {
5243        Error(Op2->getStartLoc(), isLoad ?
5244            "destination operands must be sequential" :
5245            "source operands must be sequential");
5246        return true;
5247      }
5248      unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0,
5249          &(MRI->getRegClass(ARM::GPRPairRegClassID)));
5250      Operands.erase(Operands.begin() + Idx, Operands.begin() + Idx + 2);
5251      Operands.insert(Operands.begin() + Idx, ARMOperand::CreateReg(
5252            NewReg, Op1->getStartLoc(), Op2->getEndLoc()));
5253      delete Op1;
5254      delete Op2;
5255    }
5256  }
5257
5258  // FIXME: As said above, this is all a pretty gross hack.  This instruction
5259  // does not fit with other "subs" and tblgen.
5260  // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction
5261  // so the Mnemonic is the original name "subs" and delete the predicate
5262  // operand so it will match the table entry.
5263  if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 &&
5264      static_cast<ARMOperand*>(Operands[3])->isReg() &&
5265      static_cast<ARMOperand*>(Operands[3])->getReg() == ARM::PC &&
5266      static_cast<ARMOperand*>(Operands[4])->isReg() &&
5267      static_cast<ARMOperand*>(Operands[4])->getReg() == ARM::LR &&
5268      static_cast<ARMOperand*>(Operands[5])->isImm()) {
5269    ARMOperand *Op0 = static_cast<ARMOperand*>(Operands[0]);
5270    Operands.erase(Operands.begin());
5271    delete Op0;
5272    Operands.insert(Operands.begin(), ARMOperand::CreateToken(Name, NameLoc));
5273
5274    ARMOperand *Op1 = static_cast<ARMOperand*>(Operands[1]);
5275    Operands.erase(Operands.begin() + 1);
5276    delete Op1;
5277  }
5278  return false;
5279}
5280
5281// Validate context-sensitive operand constraints.
5282
5283// return 'true' if register list contains non-low GPR registers,
5284// 'false' otherwise. If Reg is in the register list or is HiReg, set
5285// 'containsReg' to true.
5286static bool checkLowRegisterList(MCInst Inst, unsigned OpNo, unsigned Reg,
5287                                 unsigned HiReg, bool &containsReg) {
5288  containsReg = false;
5289  for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
5290    unsigned OpReg = Inst.getOperand(i).getReg();
5291    if (OpReg == Reg)
5292      containsReg = true;
5293    // Anything other than a low register isn't legal here.
5294    if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
5295      return true;
5296  }
5297  return false;
5298}
5299
5300// Check if the specified regisgter is in the register list of the inst,
5301// starting at the indicated operand number.
5302static bool listContainsReg(MCInst &Inst, unsigned OpNo, unsigned Reg) {
5303  for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
5304    unsigned OpReg = Inst.getOperand(i).getReg();
5305    if (OpReg == Reg)
5306      return true;
5307  }
5308  return false;
5309}
5310
5311// Return true if instruction has the interesting property of being
5312// allowed in IT blocks, but not being predicable.
5313static bool instIsBreakpoint(const MCInst &Inst) {
5314    return Inst.getOpcode() == ARM::tBKPT ||
5315           Inst.getOpcode() == ARM::BKPT ||
5316           Inst.getOpcode() == ARM::tHLT ||
5317           Inst.getOpcode() == ARM::HLT;
5318
5319}
5320
5321// FIXME: We would really like to be able to tablegen'erate this.
5322bool ARMAsmParser::
5323validateInstruction(MCInst &Inst,
5324                    const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
5325  const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
5326  SMLoc Loc = Operands[0]->getStartLoc();
5327
5328  // Check the IT block state first.
5329  // NOTE: BKPT and HLT instructions have the interesting property of being
5330  // allowed in IT blocks, but not being predicable. They just always execute.
5331  if (inITBlock() && !instIsBreakpoint(Inst)) {
5332    unsigned Bit = 1;
5333    if (ITState.FirstCond)
5334      ITState.FirstCond = false;
5335    else
5336      Bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1;
5337    // The instruction must be predicable.
5338    if (!MCID.isPredicable())
5339      return Error(Loc, "instructions in IT block must be predicable");
5340    unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm();
5341    unsigned ITCond = Bit ? ITState.Cond :
5342      ARMCC::getOppositeCondition(ITState.Cond);
5343    if (Cond != ITCond) {
5344      // Find the condition code Operand to get its SMLoc information.
5345      SMLoc CondLoc;
5346      for (unsigned I = 1; I < Operands.size(); ++I)
5347        if (static_cast<ARMOperand*>(Operands[I])->isCondCode())
5348          CondLoc = Operands[I]->getStartLoc();
5349      return Error(CondLoc, "incorrect condition in IT block; got '" +
5350                   StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) +
5351                   "', but expected '" +
5352                   ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'");
5353    }
5354  // Check for non-'al' condition codes outside of the IT block.
5355  } else if (isThumbTwo() && MCID.isPredicable() &&
5356             Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
5357             ARMCC::AL && Inst.getOpcode() != ARM::tBcc &&
5358             Inst.getOpcode() != ARM::t2Bcc)
5359    return Error(Loc, "predicated instructions must be in IT block");
5360
5361  const unsigned Opcode = Inst.getOpcode();
5362  switch (Opcode) {
5363  case ARM::LDRD:
5364  case ARM::LDRD_PRE:
5365  case ARM::LDRD_POST: {
5366    const unsigned RtReg = Inst.getOperand(0).getReg();
5367
5368    // Rt can't be R14.
5369    if (RtReg == ARM::LR)
5370      return Error(Operands[3]->getStartLoc(),
5371                   "Rt can't be R14");
5372
5373    const unsigned Rt = MRI->getEncodingValue(RtReg);
5374    // Rt must be even-numbered.
5375    if ((Rt & 1) == 1)
5376      return Error(Operands[3]->getStartLoc(),
5377                   "Rt must be even-numbered");
5378
5379    // Rt2 must be Rt + 1.
5380    const unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
5381    if (Rt2 != Rt + 1)
5382      return Error(Operands[3]->getStartLoc(),
5383                   "destination operands must be sequential");
5384
5385    if (Opcode == ARM::LDRD_PRE || Opcode == ARM::LDRD_POST) {
5386      const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg());
5387      // For addressing modes with writeback, the base register needs to be
5388      // different from the destination registers.
5389      if (Rn == Rt || Rn == Rt2)
5390        return Error(Operands[3]->getStartLoc(),
5391                     "base register needs to be different from destination "
5392                     "registers");
5393    }
5394
5395    return false;
5396  }
5397  case ARM::t2LDRDi8:
5398  case ARM::t2LDRD_PRE:
5399  case ARM::t2LDRD_POST: {
5400    // Rt2 must be different from Rt.
5401    unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
5402    unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
5403    if (Rt2 == Rt)
5404      return Error(Operands[3]->getStartLoc(),
5405                   "destination operands can't be identical");
5406    return false;
5407  }
5408  case ARM::STRD: {
5409    // Rt2 must be Rt + 1.
5410    unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
5411    unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
5412    if (Rt2 != Rt + 1)
5413      return Error(Operands[3]->getStartLoc(),
5414                   "source operands must be sequential");
5415    return false;
5416  }
5417  case ARM::STRD_PRE:
5418  case ARM::STRD_POST: {
5419    // Rt2 must be Rt + 1.
5420    unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
5421    unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg());
5422    if (Rt2 != Rt + 1)
5423      return Error(Operands[3]->getStartLoc(),
5424                   "source operands must be sequential");
5425    return false;
5426  }
5427  case ARM::SBFX:
5428  case ARM::UBFX: {
5429    // Width must be in range [1, 32-lsb].
5430    unsigned LSB = Inst.getOperand(2).getImm();
5431    unsigned Widthm1 = Inst.getOperand(3).getImm();
5432    if (Widthm1 >= 32 - LSB)
5433      return Error(Operands[5]->getStartLoc(),
5434                   "bitfield width must be in range [1,32-lsb]");
5435    return false;
5436  }
5437  // Notionally handles ARM::tLDMIA_UPD too.
5438  case ARM::tLDMIA: {
5439    // If we're parsing Thumb2, the .w variant is available and handles
5440    // most cases that are normally illegal for a Thumb1 LDM instruction.
5441    // We'll make the transformation in processInstruction() if necessary.
5442    //
5443    // Thumb LDM instructions are writeback iff the base register is not
5444    // in the register list.
5445    unsigned Rn = Inst.getOperand(0).getReg();
5446    bool HasWritebackToken =
5447      (static_cast<ARMOperand*>(Operands[3])->isToken() &&
5448       static_cast<ARMOperand*>(Operands[3])->getToken() == "!");
5449    bool ListContainsBase;
5450    if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo())
5451      return Error(Operands[3 + HasWritebackToken]->getStartLoc(),
5452                   "registers must be in range r0-r7");
5453    // If we should have writeback, then there should be a '!' token.
5454    if (!ListContainsBase && !HasWritebackToken && !isThumbTwo())
5455      return Error(Operands[2]->getStartLoc(),
5456                   "writeback operator '!' expected");
5457    // If we should not have writeback, there must not be a '!'. This is
5458    // true even for the 32-bit wide encodings.
5459    if (ListContainsBase && HasWritebackToken)
5460      return Error(Operands[3]->getStartLoc(),
5461                   "writeback operator '!' not allowed when base register "
5462                   "in register list");
5463
5464    break;
5465  }
5466  case ARM::LDMIA_UPD:
5467  case ARM::LDMDB_UPD:
5468  case ARM::LDMIB_UPD:
5469  case ARM::LDMDA_UPD:
5470    // ARM variants loading and updating the same register are only officially
5471    // UNPREDICTABLE on v7 upwards. Goodness knows what they did before.
5472    if (!hasV7Ops())
5473      break;
5474    // Fallthrough
5475  case ARM::t2LDMIA_UPD:
5476  case ARM::t2LDMDB_UPD:
5477  case ARM::t2STMIA_UPD:
5478  case ARM::t2STMDB_UPD: {
5479    if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
5480      return Error(Operands.back()->getStartLoc(),
5481                   "writeback register not allowed in register list");
5482    break;
5483  }
5484  case ARM::sysLDMIA_UPD:
5485  case ARM::sysLDMDA_UPD:
5486  case ARM::sysLDMDB_UPD:
5487  case ARM::sysLDMIB_UPD:
5488    if (!listContainsReg(Inst, 3, ARM::PC))
5489      return Error(Operands[4]->getStartLoc(),
5490                   "writeback register only allowed on system LDM "
5491                   "if PC in register-list");
5492    break;
5493  case ARM::sysSTMIA_UPD:
5494  case ARM::sysSTMDA_UPD:
5495  case ARM::sysSTMDB_UPD:
5496  case ARM::sysSTMIB_UPD:
5497    return Error(Operands[2]->getStartLoc(),
5498                 "system STM cannot have writeback register");
5499    break;
5500  case ARM::tMUL: {
5501    // The second source operand must be the same register as the destination
5502    // operand.
5503    //
5504    // In this case, we must directly check the parsed operands because the
5505    // cvtThumbMultiply() function is written in such a way that it guarantees
5506    // this first statement is always true for the new Inst.  Essentially, the
5507    // destination is unconditionally copied into the second source operand
5508    // without checking to see if it matches what we actually parsed.
5509    if (Operands.size() == 6 &&
5510        (((ARMOperand*)Operands[3])->getReg() !=
5511         ((ARMOperand*)Operands[5])->getReg()) &&
5512        (((ARMOperand*)Operands[3])->getReg() !=
5513         ((ARMOperand*)Operands[4])->getReg())) {
5514      return Error(Operands[3]->getStartLoc(),
5515                   "destination register must match source register");
5516    }
5517    break;
5518  }
5519  // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
5520  // so only issue a diagnostic for thumb1. The instructions will be
5521  // switched to the t2 encodings in processInstruction() if necessary.
5522  case ARM::tPOP: {
5523    bool ListContainsBase;
5524    if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) &&
5525        !isThumbTwo())
5526      return Error(Operands[2]->getStartLoc(),
5527                   "registers must be in range r0-r7 or pc");
5528    break;
5529  }
5530  case ARM::tPUSH: {
5531    bool ListContainsBase;
5532    if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) &&
5533        !isThumbTwo())
5534      return Error(Operands[2]->getStartLoc(),
5535                   "registers must be in range r0-r7 or lr");
5536    break;
5537  }
5538  case ARM::tSTMIA_UPD: {
5539    bool ListContainsBase, InvalidLowList;
5540    InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(),
5541                                          0, ListContainsBase);
5542    if (InvalidLowList && !isThumbTwo())
5543      return Error(Operands[4]->getStartLoc(),
5544                   "registers must be in range r0-r7");
5545
5546    // This would be converted to a 32-bit stm, but that's not valid if the
5547    // writeback register is in the list.
5548    if (InvalidLowList && ListContainsBase)
5549      return Error(Operands[4]->getStartLoc(),
5550                   "writeback operator '!' not allowed when base register "
5551                   "in register list");
5552    break;
5553  }
5554  case ARM::tADDrSP: {
5555    // If the non-SP source operand and the destination operand are not the
5556    // same, we need thumb2 (for the wide encoding), or we have an error.
5557    if (!isThumbTwo() &&
5558        Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
5559      return Error(Operands[4]->getStartLoc(),
5560                   "source register must be the same as destination");
5561    }
5562    break;
5563  }
5564  // Final range checking for Thumb unconditional branch instructions.
5565  case ARM::tB:
5566    if (!(static_cast<ARMOperand*>(Operands[2]))->isSignedOffset<11, 1>())
5567      return Error(Operands[2]->getStartLoc(), "branch target out of range");
5568    break;
5569  case ARM::t2B: {
5570    int op = (Operands[2]->isImm()) ? 2 : 3;
5571    if (!(static_cast<ARMOperand*>(Operands[op]))->isSignedOffset<24, 1>())
5572      return Error(Operands[op]->getStartLoc(), "branch target out of range");
5573    break;
5574  }
5575  // Final range checking for Thumb conditional branch instructions.
5576  case ARM::tBcc:
5577    if (!(static_cast<ARMOperand*>(Operands[2]))->isSignedOffset<8, 1>())
5578      return Error(Operands[2]->getStartLoc(), "branch target out of range");
5579    break;
5580  case ARM::t2Bcc: {
5581    int Op = (Operands[2]->isImm()) ? 2 : 3;
5582    if (!(static_cast<ARMOperand*>(Operands[Op]))->isSignedOffset<20, 1>())
5583      return Error(Operands[Op]->getStartLoc(), "branch target out of range");
5584    break;
5585  }
5586  }
5587
5588  return false;
5589}
5590
5591static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
5592  switch(Opc) {
5593  default: llvm_unreachable("unexpected opcode!");
5594  // VST1LN
5595  case ARM::VST1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
5596  case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
5597  case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
5598  case ARM::VST1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
5599  case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
5600  case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
5601  case ARM::VST1LNdAsm_8:  Spacing = 1; return ARM::VST1LNd8;
5602  case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
5603  case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
5604
5605  // VST2LN
5606  case ARM::VST2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
5607  case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
5608  case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
5609  case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
5610  case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
5611
5612  case ARM::VST2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
5613  case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
5614  case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
5615  case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
5616  case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
5617
5618  case ARM::VST2LNdAsm_8:  Spacing = 1; return ARM::VST2LNd8;
5619  case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
5620  case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
5621  case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
5622  case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
5623
5624  // VST3LN
5625  case ARM::VST3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
5626  case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
5627  case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
5628  case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
5629  case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
5630  case ARM::VST3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
5631  case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
5632  case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
5633  case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
5634  case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
5635  case ARM::VST3LNdAsm_8:  Spacing = 1; return ARM::VST3LNd8;
5636  case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
5637  case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
5638  case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
5639  case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
5640
5641  // VST3
5642  case ARM::VST3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
5643  case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
5644  case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
5645  case ARM::VST3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
5646  case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
5647  case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
5648  case ARM::VST3dWB_register_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
5649  case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
5650  case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
5651  case ARM::VST3qWB_register_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
5652  case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
5653  case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
5654  case ARM::VST3dAsm_8:  Spacing = 1; return ARM::VST3d8;
5655  case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
5656  case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
5657  case ARM::VST3qAsm_8:  Spacing = 2; return ARM::VST3q8;
5658  case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
5659  case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
5660
5661  // VST4LN
5662  case ARM::VST4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
5663  case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
5664  case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
5665  case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
5666  case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
5667  case ARM::VST4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
5668  case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
5669  case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
5670  case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
5671  case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
5672  case ARM::VST4LNdAsm_8:  Spacing = 1; return ARM::VST4LNd8;
5673  case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
5674  case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
5675  case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
5676  case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
5677
5678  // VST4
5679  case ARM::VST4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
5680  case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
5681  case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
5682  case ARM::VST4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
5683  case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
5684  case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
5685  case ARM::VST4dWB_register_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
5686  case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
5687  case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
5688  case ARM::VST4qWB_register_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
5689  case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
5690  case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
5691  case ARM::VST4dAsm_8:  Spacing = 1; return ARM::VST4d8;
5692  case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
5693  case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
5694  case ARM::VST4qAsm_8:  Spacing = 2; return ARM::VST4q8;
5695  case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
5696  case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
5697  }
5698}
5699
5700static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
5701  switch(Opc) {
5702  default: llvm_unreachable("unexpected opcode!");
5703  // VLD1LN
5704  case ARM::VLD1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
5705  case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
5706  case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
5707  case ARM::VLD1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
5708  case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
5709  case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
5710  case ARM::VLD1LNdAsm_8:  Spacing = 1; return ARM::VLD1LNd8;
5711  case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
5712  case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
5713
5714  // VLD2LN
5715  case ARM::VLD2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
5716  case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
5717  case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
5718  case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
5719  case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
5720  case ARM::VLD2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
5721  case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
5722  case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
5723  case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
5724  case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
5725  case ARM::VLD2LNdAsm_8:  Spacing = 1; return ARM::VLD2LNd8;
5726  case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
5727  case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
5728  case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
5729  case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
5730
5731  // VLD3DUP
5732  case ARM::VLD3DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
5733  case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
5734  case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
5735  case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
5736  case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPq16_UPD;
5737  case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
5738  case ARM::VLD3DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
5739  case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
5740  case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
5741  case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
5742  case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
5743  case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
5744  case ARM::VLD3DUPdAsm_8:  Spacing = 1; return ARM::VLD3DUPd8;
5745  case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
5746  case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
5747  case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
5748  case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
5749  case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
5750
5751  // VLD3LN
5752  case ARM::VLD3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
5753  case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
5754  case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
5755  case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
5756  case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
5757  case ARM::VLD3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
5758  case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
5759  case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
5760  case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
5761  case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
5762  case ARM::VLD3LNdAsm_8:  Spacing = 1; return ARM::VLD3LNd8;
5763  case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
5764  case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
5765  case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
5766  case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
5767
5768  // VLD3
5769  case ARM::VLD3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
5770  case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
5771  case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
5772  case ARM::VLD3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
5773  case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
5774  case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
5775  case ARM::VLD3dWB_register_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
5776  case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
5777  case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
5778  case ARM::VLD3qWB_register_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
5779  case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
5780  case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
5781  case ARM::VLD3dAsm_8:  Spacing = 1; return ARM::VLD3d8;
5782  case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
5783  case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
5784  case ARM::VLD3qAsm_8:  Spacing = 2; return ARM::VLD3q8;
5785  case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
5786  case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
5787
5788  // VLD4LN
5789  case ARM::VLD4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
5790  case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
5791  case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
5792  case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNq16_UPD;
5793  case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
5794  case ARM::VLD4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
5795  case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
5796  case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
5797  case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
5798  case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
5799  case ARM::VLD4LNdAsm_8:  Spacing = 1; return ARM::VLD4LNd8;
5800  case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
5801  case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
5802  case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
5803  case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
5804
5805  // VLD4DUP
5806  case ARM::VLD4DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
5807  case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
5808  case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
5809  case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
5810  case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
5811  case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
5812  case ARM::VLD4DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
5813  case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
5814  case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
5815  case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
5816  case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
5817  case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
5818  case ARM::VLD4DUPdAsm_8:  Spacing = 1; return ARM::VLD4DUPd8;
5819  case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
5820  case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
5821  case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
5822  case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
5823  case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
5824
5825  // VLD4
5826  case ARM::VLD4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
5827  case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
5828  case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
5829  case ARM::VLD4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
5830  case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
5831  case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
5832  case ARM::VLD4dWB_register_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
5833  case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
5834  case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
5835  case ARM::VLD4qWB_register_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
5836  case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
5837  case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
5838  case ARM::VLD4dAsm_8:  Spacing = 1; return ARM::VLD4d8;
5839  case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
5840  case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
5841  case ARM::VLD4qAsm_8:  Spacing = 2; return ARM::VLD4q8;
5842  case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
5843  case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
5844  }
5845}
5846
5847bool ARMAsmParser::
5848processInstruction(MCInst &Inst,
5849                   const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
5850  switch (Inst.getOpcode()) {
5851  // Alias for alternate form of 'ADR Rd, #imm' instruction.
5852  case ARM::ADDri: {
5853    if (Inst.getOperand(1).getReg() != ARM::PC ||
5854        Inst.getOperand(5).getReg() != 0)
5855      return false;
5856    MCInst TmpInst;
5857    TmpInst.setOpcode(ARM::ADR);
5858    TmpInst.addOperand(Inst.getOperand(0));
5859    TmpInst.addOperand(Inst.getOperand(2));
5860    TmpInst.addOperand(Inst.getOperand(3));
5861    TmpInst.addOperand(Inst.getOperand(4));
5862    Inst = TmpInst;
5863    return true;
5864  }
5865  // Aliases for alternate PC+imm syntax of LDR instructions.
5866  case ARM::t2LDRpcrel:
5867    // Select the narrow version if the immediate will fit.
5868    if (Inst.getOperand(1).getImm() > 0 &&
5869        Inst.getOperand(1).getImm() <= 0xff &&
5870        !(static_cast<ARMOperand*>(Operands[2])->isToken() &&
5871         static_cast<ARMOperand*>(Operands[2])->getToken() == ".w"))
5872      Inst.setOpcode(ARM::tLDRpci);
5873    else
5874      Inst.setOpcode(ARM::t2LDRpci);
5875    return true;
5876  case ARM::t2LDRBpcrel:
5877    Inst.setOpcode(ARM::t2LDRBpci);
5878    return true;
5879  case ARM::t2LDRHpcrel:
5880    Inst.setOpcode(ARM::t2LDRHpci);
5881    return true;
5882  case ARM::t2LDRSBpcrel:
5883    Inst.setOpcode(ARM::t2LDRSBpci);
5884    return true;
5885  case ARM::t2LDRSHpcrel:
5886    Inst.setOpcode(ARM::t2LDRSHpci);
5887    return true;
5888  // Handle NEON VST complex aliases.
5889  case ARM::VST1LNdWB_register_Asm_8:
5890  case ARM::VST1LNdWB_register_Asm_16:
5891  case ARM::VST1LNdWB_register_Asm_32: {
5892    MCInst TmpInst;
5893    // Shuffle the operands around so the lane index operand is in the
5894    // right place.
5895    unsigned Spacing;
5896    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5897    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5898    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5899    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5900    TmpInst.addOperand(Inst.getOperand(4)); // Rm
5901    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5902    TmpInst.addOperand(Inst.getOperand(1)); // lane
5903    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5904    TmpInst.addOperand(Inst.getOperand(6));
5905    Inst = TmpInst;
5906    return true;
5907  }
5908
5909  case ARM::VST2LNdWB_register_Asm_8:
5910  case ARM::VST2LNdWB_register_Asm_16:
5911  case ARM::VST2LNdWB_register_Asm_32:
5912  case ARM::VST2LNqWB_register_Asm_16:
5913  case ARM::VST2LNqWB_register_Asm_32: {
5914    MCInst TmpInst;
5915    // Shuffle the operands around so the lane index operand is in the
5916    // right place.
5917    unsigned Spacing;
5918    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5919    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5920    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5921    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5922    TmpInst.addOperand(Inst.getOperand(4)); // Rm
5923    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5924    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5925                                            Spacing));
5926    TmpInst.addOperand(Inst.getOperand(1)); // lane
5927    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5928    TmpInst.addOperand(Inst.getOperand(6));
5929    Inst = TmpInst;
5930    return true;
5931  }
5932
5933  case ARM::VST3LNdWB_register_Asm_8:
5934  case ARM::VST3LNdWB_register_Asm_16:
5935  case ARM::VST3LNdWB_register_Asm_32:
5936  case ARM::VST3LNqWB_register_Asm_16:
5937  case ARM::VST3LNqWB_register_Asm_32: {
5938    MCInst TmpInst;
5939    // Shuffle the operands around so the lane index operand is in the
5940    // right place.
5941    unsigned Spacing;
5942    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5943    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5944    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5945    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5946    TmpInst.addOperand(Inst.getOperand(4)); // Rm
5947    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5948    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5949                                            Spacing));
5950    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5951                                            Spacing * 2));
5952    TmpInst.addOperand(Inst.getOperand(1)); // lane
5953    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5954    TmpInst.addOperand(Inst.getOperand(6));
5955    Inst = TmpInst;
5956    return true;
5957  }
5958
5959  case ARM::VST4LNdWB_register_Asm_8:
5960  case ARM::VST4LNdWB_register_Asm_16:
5961  case ARM::VST4LNdWB_register_Asm_32:
5962  case ARM::VST4LNqWB_register_Asm_16:
5963  case ARM::VST4LNqWB_register_Asm_32: {
5964    MCInst TmpInst;
5965    // Shuffle the operands around so the lane index operand is in the
5966    // right place.
5967    unsigned Spacing;
5968    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5969    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5970    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5971    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5972    TmpInst.addOperand(Inst.getOperand(4)); // Rm
5973    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5974    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5975                                            Spacing));
5976    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5977                                            Spacing * 2));
5978    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5979                                            Spacing * 3));
5980    TmpInst.addOperand(Inst.getOperand(1)); // lane
5981    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5982    TmpInst.addOperand(Inst.getOperand(6));
5983    Inst = TmpInst;
5984    return true;
5985  }
5986
5987  case ARM::VST1LNdWB_fixed_Asm_8:
5988  case ARM::VST1LNdWB_fixed_Asm_16:
5989  case ARM::VST1LNdWB_fixed_Asm_32: {
5990    MCInst TmpInst;
5991    // Shuffle the operands around so the lane index operand is in the
5992    // right place.
5993    unsigned Spacing;
5994    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5995    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5996    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5997    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5998    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
5999    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6000    TmpInst.addOperand(Inst.getOperand(1)); // lane
6001    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6002    TmpInst.addOperand(Inst.getOperand(5));
6003    Inst = TmpInst;
6004    return true;
6005  }
6006
6007  case ARM::VST2LNdWB_fixed_Asm_8:
6008  case ARM::VST2LNdWB_fixed_Asm_16:
6009  case ARM::VST2LNdWB_fixed_Asm_32:
6010  case ARM::VST2LNqWB_fixed_Asm_16:
6011  case ARM::VST2LNqWB_fixed_Asm_32: {
6012    MCInst TmpInst;
6013    // Shuffle the operands around so the lane index operand is in the
6014    // right place.
6015    unsigned Spacing;
6016    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6017    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6018    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6019    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6020    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6021    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6022    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6023                                            Spacing));
6024    TmpInst.addOperand(Inst.getOperand(1)); // lane
6025    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6026    TmpInst.addOperand(Inst.getOperand(5));
6027    Inst = TmpInst;
6028    return true;
6029  }
6030
6031  case ARM::VST3LNdWB_fixed_Asm_8:
6032  case ARM::VST3LNdWB_fixed_Asm_16:
6033  case ARM::VST3LNdWB_fixed_Asm_32:
6034  case ARM::VST3LNqWB_fixed_Asm_16:
6035  case ARM::VST3LNqWB_fixed_Asm_32: {
6036    MCInst TmpInst;
6037    // Shuffle the operands around so the lane index operand is in the
6038    // right place.
6039    unsigned Spacing;
6040    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6041    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6042    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6043    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6044    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6045    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6046    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6047                                            Spacing));
6048    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6049                                            Spacing * 2));
6050    TmpInst.addOperand(Inst.getOperand(1)); // lane
6051    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6052    TmpInst.addOperand(Inst.getOperand(5));
6053    Inst = TmpInst;
6054    return true;
6055  }
6056
6057  case ARM::VST4LNdWB_fixed_Asm_8:
6058  case ARM::VST4LNdWB_fixed_Asm_16:
6059  case ARM::VST4LNdWB_fixed_Asm_32:
6060  case ARM::VST4LNqWB_fixed_Asm_16:
6061  case ARM::VST4LNqWB_fixed_Asm_32: {
6062    MCInst TmpInst;
6063    // Shuffle the operands around so the lane index operand is in the
6064    // right place.
6065    unsigned Spacing;
6066    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6067    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6068    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6069    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6070    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6071    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6072    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6073                                            Spacing));
6074    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6075                                            Spacing * 2));
6076    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6077                                            Spacing * 3));
6078    TmpInst.addOperand(Inst.getOperand(1)); // lane
6079    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6080    TmpInst.addOperand(Inst.getOperand(5));
6081    Inst = TmpInst;
6082    return true;
6083  }
6084
6085  case ARM::VST1LNdAsm_8:
6086  case ARM::VST1LNdAsm_16:
6087  case ARM::VST1LNdAsm_32: {
6088    MCInst TmpInst;
6089    // Shuffle the operands around so the lane index operand is in the
6090    // right place.
6091    unsigned Spacing;
6092    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6093    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6094    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6095    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6096    TmpInst.addOperand(Inst.getOperand(1)); // lane
6097    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6098    TmpInst.addOperand(Inst.getOperand(5));
6099    Inst = TmpInst;
6100    return true;
6101  }
6102
6103  case ARM::VST2LNdAsm_8:
6104  case ARM::VST2LNdAsm_16:
6105  case ARM::VST2LNdAsm_32:
6106  case ARM::VST2LNqAsm_16:
6107  case ARM::VST2LNqAsm_32: {
6108    MCInst TmpInst;
6109    // Shuffle the operands around so the lane index operand is in the
6110    // right place.
6111    unsigned Spacing;
6112    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6113    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6114    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6115    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6116    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6117                                            Spacing));
6118    TmpInst.addOperand(Inst.getOperand(1)); // lane
6119    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6120    TmpInst.addOperand(Inst.getOperand(5));
6121    Inst = TmpInst;
6122    return true;
6123  }
6124
6125  case ARM::VST3LNdAsm_8:
6126  case ARM::VST3LNdAsm_16:
6127  case ARM::VST3LNdAsm_32:
6128  case ARM::VST3LNqAsm_16:
6129  case ARM::VST3LNqAsm_32: {
6130    MCInst TmpInst;
6131    // Shuffle the operands around so the lane index operand is in the
6132    // right place.
6133    unsigned Spacing;
6134    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6135    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6136    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6137    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6138    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6139                                            Spacing));
6140    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6141                                            Spacing * 2));
6142    TmpInst.addOperand(Inst.getOperand(1)); // lane
6143    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6144    TmpInst.addOperand(Inst.getOperand(5));
6145    Inst = TmpInst;
6146    return true;
6147  }
6148
6149  case ARM::VST4LNdAsm_8:
6150  case ARM::VST4LNdAsm_16:
6151  case ARM::VST4LNdAsm_32:
6152  case ARM::VST4LNqAsm_16:
6153  case ARM::VST4LNqAsm_32: {
6154    MCInst TmpInst;
6155    // Shuffle the operands around so the lane index operand is in the
6156    // right place.
6157    unsigned Spacing;
6158    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6159    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6160    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6161    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6162    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6163                                            Spacing));
6164    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6165                                            Spacing * 2));
6166    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6167                                            Spacing * 3));
6168    TmpInst.addOperand(Inst.getOperand(1)); // lane
6169    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6170    TmpInst.addOperand(Inst.getOperand(5));
6171    Inst = TmpInst;
6172    return true;
6173  }
6174
6175  // Handle NEON VLD complex aliases.
6176  case ARM::VLD1LNdWB_register_Asm_8:
6177  case ARM::VLD1LNdWB_register_Asm_16:
6178  case ARM::VLD1LNdWB_register_Asm_32: {
6179    MCInst TmpInst;
6180    // Shuffle the operands around so the lane index operand is in the
6181    // right place.
6182    unsigned Spacing;
6183    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6184    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6185    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6186    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6187    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6188    TmpInst.addOperand(Inst.getOperand(4)); // Rm
6189    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6190    TmpInst.addOperand(Inst.getOperand(1)); // lane
6191    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6192    TmpInst.addOperand(Inst.getOperand(6));
6193    Inst = TmpInst;
6194    return true;
6195  }
6196
6197  case ARM::VLD2LNdWB_register_Asm_8:
6198  case ARM::VLD2LNdWB_register_Asm_16:
6199  case ARM::VLD2LNdWB_register_Asm_32:
6200  case ARM::VLD2LNqWB_register_Asm_16:
6201  case ARM::VLD2LNqWB_register_Asm_32: {
6202    MCInst TmpInst;
6203    // Shuffle the operands around so the lane index operand is in the
6204    // right place.
6205    unsigned Spacing;
6206    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6207    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6208    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6209                                            Spacing));
6210    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6211    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6212    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6213    TmpInst.addOperand(Inst.getOperand(4)); // Rm
6214    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6215    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6216                                            Spacing));
6217    TmpInst.addOperand(Inst.getOperand(1)); // lane
6218    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6219    TmpInst.addOperand(Inst.getOperand(6));
6220    Inst = TmpInst;
6221    return true;
6222  }
6223
6224  case ARM::VLD3LNdWB_register_Asm_8:
6225  case ARM::VLD3LNdWB_register_Asm_16:
6226  case ARM::VLD3LNdWB_register_Asm_32:
6227  case ARM::VLD3LNqWB_register_Asm_16:
6228  case ARM::VLD3LNqWB_register_Asm_32: {
6229    MCInst TmpInst;
6230    // Shuffle the operands around so the lane index operand is in the
6231    // right place.
6232    unsigned Spacing;
6233    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6234    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6235    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6236                                            Spacing));
6237    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6238                                            Spacing * 2));
6239    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6240    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6241    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6242    TmpInst.addOperand(Inst.getOperand(4)); // Rm
6243    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6244    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6245                                            Spacing));
6246    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6247                                            Spacing * 2));
6248    TmpInst.addOperand(Inst.getOperand(1)); // lane
6249    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6250    TmpInst.addOperand(Inst.getOperand(6));
6251    Inst = TmpInst;
6252    return true;
6253  }
6254
6255  case ARM::VLD4LNdWB_register_Asm_8:
6256  case ARM::VLD4LNdWB_register_Asm_16:
6257  case ARM::VLD4LNdWB_register_Asm_32:
6258  case ARM::VLD4LNqWB_register_Asm_16:
6259  case ARM::VLD4LNqWB_register_Asm_32: {
6260    MCInst TmpInst;
6261    // Shuffle the operands around so the lane index operand is in the
6262    // right place.
6263    unsigned Spacing;
6264    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6265    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6266    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6267                                            Spacing));
6268    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6269                                            Spacing * 2));
6270    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6271                                            Spacing * 3));
6272    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6273    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6274    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6275    TmpInst.addOperand(Inst.getOperand(4)); // Rm
6276    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6277    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6278                                            Spacing));
6279    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6280                                            Spacing * 2));
6281    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6282                                            Spacing * 3));
6283    TmpInst.addOperand(Inst.getOperand(1)); // lane
6284    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6285    TmpInst.addOperand(Inst.getOperand(6));
6286    Inst = TmpInst;
6287    return true;
6288  }
6289
6290  case ARM::VLD1LNdWB_fixed_Asm_8:
6291  case ARM::VLD1LNdWB_fixed_Asm_16:
6292  case ARM::VLD1LNdWB_fixed_Asm_32: {
6293    MCInst TmpInst;
6294    // Shuffle the operands around so the lane index operand is in the
6295    // right place.
6296    unsigned Spacing;
6297    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6298    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6299    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6300    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6301    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6302    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6303    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6304    TmpInst.addOperand(Inst.getOperand(1)); // lane
6305    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6306    TmpInst.addOperand(Inst.getOperand(5));
6307    Inst = TmpInst;
6308    return true;
6309  }
6310
6311  case ARM::VLD2LNdWB_fixed_Asm_8:
6312  case ARM::VLD2LNdWB_fixed_Asm_16:
6313  case ARM::VLD2LNdWB_fixed_Asm_32:
6314  case ARM::VLD2LNqWB_fixed_Asm_16:
6315  case ARM::VLD2LNqWB_fixed_Asm_32: {
6316    MCInst TmpInst;
6317    // Shuffle the operands around so the lane index operand is in the
6318    // right place.
6319    unsigned Spacing;
6320    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6321    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6322    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6323                                            Spacing));
6324    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6325    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6326    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6327    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6328    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6329    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6330                                            Spacing));
6331    TmpInst.addOperand(Inst.getOperand(1)); // lane
6332    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6333    TmpInst.addOperand(Inst.getOperand(5));
6334    Inst = TmpInst;
6335    return true;
6336  }
6337
6338  case ARM::VLD3LNdWB_fixed_Asm_8:
6339  case ARM::VLD3LNdWB_fixed_Asm_16:
6340  case ARM::VLD3LNdWB_fixed_Asm_32:
6341  case ARM::VLD3LNqWB_fixed_Asm_16:
6342  case ARM::VLD3LNqWB_fixed_Asm_32: {
6343    MCInst TmpInst;
6344    // Shuffle the operands around so the lane index operand is in the
6345    // right place.
6346    unsigned Spacing;
6347    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6348    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6349    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6350                                            Spacing));
6351    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6352                                            Spacing * 2));
6353    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6354    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6355    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6356    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6357    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6358    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6359                                            Spacing));
6360    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6361                                            Spacing * 2));
6362    TmpInst.addOperand(Inst.getOperand(1)); // lane
6363    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6364    TmpInst.addOperand(Inst.getOperand(5));
6365    Inst = TmpInst;
6366    return true;
6367  }
6368
6369  case ARM::VLD4LNdWB_fixed_Asm_8:
6370  case ARM::VLD4LNdWB_fixed_Asm_16:
6371  case ARM::VLD4LNdWB_fixed_Asm_32:
6372  case ARM::VLD4LNqWB_fixed_Asm_16:
6373  case ARM::VLD4LNqWB_fixed_Asm_32: {
6374    MCInst TmpInst;
6375    // Shuffle the operands around so the lane index operand is in the
6376    // right place.
6377    unsigned Spacing;
6378    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6379    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6380    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6381                                            Spacing));
6382    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6383                                            Spacing * 2));
6384    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6385                                            Spacing * 3));
6386    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6387    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6388    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6389    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6390    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6391    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6392                                            Spacing));
6393    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6394                                            Spacing * 2));
6395    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6396                                            Spacing * 3));
6397    TmpInst.addOperand(Inst.getOperand(1)); // lane
6398    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6399    TmpInst.addOperand(Inst.getOperand(5));
6400    Inst = TmpInst;
6401    return true;
6402  }
6403
6404  case ARM::VLD1LNdAsm_8:
6405  case ARM::VLD1LNdAsm_16:
6406  case ARM::VLD1LNdAsm_32: {
6407    MCInst TmpInst;
6408    // Shuffle the operands around so the lane index operand is in the
6409    // right place.
6410    unsigned Spacing;
6411    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6412    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6413    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6414    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6415    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6416    TmpInst.addOperand(Inst.getOperand(1)); // lane
6417    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6418    TmpInst.addOperand(Inst.getOperand(5));
6419    Inst = TmpInst;
6420    return true;
6421  }
6422
6423  case ARM::VLD2LNdAsm_8:
6424  case ARM::VLD2LNdAsm_16:
6425  case ARM::VLD2LNdAsm_32:
6426  case ARM::VLD2LNqAsm_16:
6427  case ARM::VLD2LNqAsm_32: {
6428    MCInst TmpInst;
6429    // Shuffle the operands around so the lane index operand is in the
6430    // right place.
6431    unsigned Spacing;
6432    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6433    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6434    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6435                                            Spacing));
6436    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6437    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6438    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6439    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6440                                            Spacing));
6441    TmpInst.addOperand(Inst.getOperand(1)); // lane
6442    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6443    TmpInst.addOperand(Inst.getOperand(5));
6444    Inst = TmpInst;
6445    return true;
6446  }
6447
6448  case ARM::VLD3LNdAsm_8:
6449  case ARM::VLD3LNdAsm_16:
6450  case ARM::VLD3LNdAsm_32:
6451  case ARM::VLD3LNqAsm_16:
6452  case ARM::VLD3LNqAsm_32: {
6453    MCInst TmpInst;
6454    // Shuffle the operands around so the lane index operand is in the
6455    // right place.
6456    unsigned Spacing;
6457    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6458    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6459    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6460                                            Spacing));
6461    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6462                                            Spacing * 2));
6463    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6464    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6465    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6466    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6467                                            Spacing));
6468    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6469                                            Spacing * 2));
6470    TmpInst.addOperand(Inst.getOperand(1)); // lane
6471    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6472    TmpInst.addOperand(Inst.getOperand(5));
6473    Inst = TmpInst;
6474    return true;
6475  }
6476
6477  case ARM::VLD4LNdAsm_8:
6478  case ARM::VLD4LNdAsm_16:
6479  case ARM::VLD4LNdAsm_32:
6480  case ARM::VLD4LNqAsm_16:
6481  case ARM::VLD4LNqAsm_32: {
6482    MCInst TmpInst;
6483    // Shuffle the operands around so the lane index operand is in the
6484    // right place.
6485    unsigned Spacing;
6486    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6487    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6488    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6489                                            Spacing));
6490    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6491                                            Spacing * 2));
6492    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6493                                            Spacing * 3));
6494    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6495    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6496    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6497    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6498                                            Spacing));
6499    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6500                                            Spacing * 2));
6501    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6502                                            Spacing * 3));
6503    TmpInst.addOperand(Inst.getOperand(1)); // lane
6504    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6505    TmpInst.addOperand(Inst.getOperand(5));
6506    Inst = TmpInst;
6507    return true;
6508  }
6509
6510  // VLD3DUP single 3-element structure to all lanes instructions.
6511  case ARM::VLD3DUPdAsm_8:
6512  case ARM::VLD3DUPdAsm_16:
6513  case ARM::VLD3DUPdAsm_32:
6514  case ARM::VLD3DUPqAsm_8:
6515  case ARM::VLD3DUPqAsm_16:
6516  case ARM::VLD3DUPqAsm_32: {
6517    MCInst TmpInst;
6518    unsigned Spacing;
6519    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6520    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6521    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6522                                            Spacing));
6523    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6524                                            Spacing * 2));
6525    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6526    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6527    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6528    TmpInst.addOperand(Inst.getOperand(4));
6529    Inst = TmpInst;
6530    return true;
6531  }
6532
6533  case ARM::VLD3DUPdWB_fixed_Asm_8:
6534  case ARM::VLD3DUPdWB_fixed_Asm_16:
6535  case ARM::VLD3DUPdWB_fixed_Asm_32:
6536  case ARM::VLD3DUPqWB_fixed_Asm_8:
6537  case ARM::VLD3DUPqWB_fixed_Asm_16:
6538  case ARM::VLD3DUPqWB_fixed_Asm_32: {
6539    MCInst TmpInst;
6540    unsigned Spacing;
6541    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6542    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6543    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6544                                            Spacing));
6545    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6546                                            Spacing * 2));
6547    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6548    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6549    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6550    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6551    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6552    TmpInst.addOperand(Inst.getOperand(4));
6553    Inst = TmpInst;
6554    return true;
6555  }
6556
6557  case ARM::VLD3DUPdWB_register_Asm_8:
6558  case ARM::VLD3DUPdWB_register_Asm_16:
6559  case ARM::VLD3DUPdWB_register_Asm_32:
6560  case ARM::VLD3DUPqWB_register_Asm_8:
6561  case ARM::VLD3DUPqWB_register_Asm_16:
6562  case ARM::VLD3DUPqWB_register_Asm_32: {
6563    MCInst TmpInst;
6564    unsigned Spacing;
6565    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6566    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6567    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6568                                            Spacing));
6569    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6570                                            Spacing * 2));
6571    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6572    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6573    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6574    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6575    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6576    TmpInst.addOperand(Inst.getOperand(5));
6577    Inst = TmpInst;
6578    return true;
6579  }
6580
6581  // VLD3 multiple 3-element structure instructions.
6582  case ARM::VLD3dAsm_8:
6583  case ARM::VLD3dAsm_16:
6584  case ARM::VLD3dAsm_32:
6585  case ARM::VLD3qAsm_8:
6586  case ARM::VLD3qAsm_16:
6587  case ARM::VLD3qAsm_32: {
6588    MCInst TmpInst;
6589    unsigned Spacing;
6590    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6591    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6592    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6593                                            Spacing));
6594    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6595                                            Spacing * 2));
6596    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6597    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6598    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6599    TmpInst.addOperand(Inst.getOperand(4));
6600    Inst = TmpInst;
6601    return true;
6602  }
6603
6604  case ARM::VLD3dWB_fixed_Asm_8:
6605  case ARM::VLD3dWB_fixed_Asm_16:
6606  case ARM::VLD3dWB_fixed_Asm_32:
6607  case ARM::VLD3qWB_fixed_Asm_8:
6608  case ARM::VLD3qWB_fixed_Asm_16:
6609  case ARM::VLD3qWB_fixed_Asm_32: {
6610    MCInst TmpInst;
6611    unsigned Spacing;
6612    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6613    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6614    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6615                                            Spacing));
6616    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6617                                            Spacing * 2));
6618    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6619    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6620    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6621    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6622    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6623    TmpInst.addOperand(Inst.getOperand(4));
6624    Inst = TmpInst;
6625    return true;
6626  }
6627
6628  case ARM::VLD3dWB_register_Asm_8:
6629  case ARM::VLD3dWB_register_Asm_16:
6630  case ARM::VLD3dWB_register_Asm_32:
6631  case ARM::VLD3qWB_register_Asm_8:
6632  case ARM::VLD3qWB_register_Asm_16:
6633  case ARM::VLD3qWB_register_Asm_32: {
6634    MCInst TmpInst;
6635    unsigned Spacing;
6636    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6637    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6638    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6639                                            Spacing));
6640    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6641                                            Spacing * 2));
6642    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6643    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6644    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6645    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6646    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6647    TmpInst.addOperand(Inst.getOperand(5));
6648    Inst = TmpInst;
6649    return true;
6650  }
6651
6652  // VLD4DUP single 3-element structure to all lanes instructions.
6653  case ARM::VLD4DUPdAsm_8:
6654  case ARM::VLD4DUPdAsm_16:
6655  case ARM::VLD4DUPdAsm_32:
6656  case ARM::VLD4DUPqAsm_8:
6657  case ARM::VLD4DUPqAsm_16:
6658  case ARM::VLD4DUPqAsm_32: {
6659    MCInst TmpInst;
6660    unsigned Spacing;
6661    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6662    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6663    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6664                                            Spacing));
6665    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6666                                            Spacing * 2));
6667    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6668                                            Spacing * 3));
6669    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6670    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6671    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6672    TmpInst.addOperand(Inst.getOperand(4));
6673    Inst = TmpInst;
6674    return true;
6675  }
6676
6677  case ARM::VLD4DUPdWB_fixed_Asm_8:
6678  case ARM::VLD4DUPdWB_fixed_Asm_16:
6679  case ARM::VLD4DUPdWB_fixed_Asm_32:
6680  case ARM::VLD4DUPqWB_fixed_Asm_8:
6681  case ARM::VLD4DUPqWB_fixed_Asm_16:
6682  case ARM::VLD4DUPqWB_fixed_Asm_32: {
6683    MCInst TmpInst;
6684    unsigned Spacing;
6685    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6686    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6687    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6688                                            Spacing));
6689    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6690                                            Spacing * 2));
6691    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6692                                            Spacing * 3));
6693    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6694    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6695    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6696    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6697    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6698    TmpInst.addOperand(Inst.getOperand(4));
6699    Inst = TmpInst;
6700    return true;
6701  }
6702
6703  case ARM::VLD4DUPdWB_register_Asm_8:
6704  case ARM::VLD4DUPdWB_register_Asm_16:
6705  case ARM::VLD4DUPdWB_register_Asm_32:
6706  case ARM::VLD4DUPqWB_register_Asm_8:
6707  case ARM::VLD4DUPqWB_register_Asm_16:
6708  case ARM::VLD4DUPqWB_register_Asm_32: {
6709    MCInst TmpInst;
6710    unsigned Spacing;
6711    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6712    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6713    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6714                                            Spacing));
6715    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6716                                            Spacing * 2));
6717    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6718                                            Spacing * 3));
6719    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6720    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6721    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6722    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6723    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6724    TmpInst.addOperand(Inst.getOperand(5));
6725    Inst = TmpInst;
6726    return true;
6727  }
6728
6729  // VLD4 multiple 4-element structure instructions.
6730  case ARM::VLD4dAsm_8:
6731  case ARM::VLD4dAsm_16:
6732  case ARM::VLD4dAsm_32:
6733  case ARM::VLD4qAsm_8:
6734  case ARM::VLD4qAsm_16:
6735  case ARM::VLD4qAsm_32: {
6736    MCInst TmpInst;
6737    unsigned Spacing;
6738    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6739    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6740    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6741                                            Spacing));
6742    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6743                                            Spacing * 2));
6744    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6745                                            Spacing * 3));
6746    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6747    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6748    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6749    TmpInst.addOperand(Inst.getOperand(4));
6750    Inst = TmpInst;
6751    return true;
6752  }
6753
6754  case ARM::VLD4dWB_fixed_Asm_8:
6755  case ARM::VLD4dWB_fixed_Asm_16:
6756  case ARM::VLD4dWB_fixed_Asm_32:
6757  case ARM::VLD4qWB_fixed_Asm_8:
6758  case ARM::VLD4qWB_fixed_Asm_16:
6759  case ARM::VLD4qWB_fixed_Asm_32: {
6760    MCInst TmpInst;
6761    unsigned Spacing;
6762    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6763    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6764    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6765                                            Spacing));
6766    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6767                                            Spacing * 2));
6768    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6769                                            Spacing * 3));
6770    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6771    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6772    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6773    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6774    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6775    TmpInst.addOperand(Inst.getOperand(4));
6776    Inst = TmpInst;
6777    return true;
6778  }
6779
6780  case ARM::VLD4dWB_register_Asm_8:
6781  case ARM::VLD4dWB_register_Asm_16:
6782  case ARM::VLD4dWB_register_Asm_32:
6783  case ARM::VLD4qWB_register_Asm_8:
6784  case ARM::VLD4qWB_register_Asm_16:
6785  case ARM::VLD4qWB_register_Asm_32: {
6786    MCInst TmpInst;
6787    unsigned Spacing;
6788    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6789    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6790    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6791                                            Spacing));
6792    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6793                                            Spacing * 2));
6794    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6795                                            Spacing * 3));
6796    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6797    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6798    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6799    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6800    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6801    TmpInst.addOperand(Inst.getOperand(5));
6802    Inst = TmpInst;
6803    return true;
6804  }
6805
6806  // VST3 multiple 3-element structure instructions.
6807  case ARM::VST3dAsm_8:
6808  case ARM::VST3dAsm_16:
6809  case ARM::VST3dAsm_32:
6810  case ARM::VST3qAsm_8:
6811  case ARM::VST3qAsm_16:
6812  case ARM::VST3qAsm_32: {
6813    MCInst TmpInst;
6814    unsigned Spacing;
6815    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6816    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6817    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6818    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6819    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6820                                            Spacing));
6821    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6822                                            Spacing * 2));
6823    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6824    TmpInst.addOperand(Inst.getOperand(4));
6825    Inst = TmpInst;
6826    return true;
6827  }
6828
6829  case ARM::VST3dWB_fixed_Asm_8:
6830  case ARM::VST3dWB_fixed_Asm_16:
6831  case ARM::VST3dWB_fixed_Asm_32:
6832  case ARM::VST3qWB_fixed_Asm_8:
6833  case ARM::VST3qWB_fixed_Asm_16:
6834  case ARM::VST3qWB_fixed_Asm_32: {
6835    MCInst TmpInst;
6836    unsigned Spacing;
6837    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6838    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6839    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6840    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6841    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6842    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6843    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6844                                            Spacing));
6845    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6846                                            Spacing * 2));
6847    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6848    TmpInst.addOperand(Inst.getOperand(4));
6849    Inst = TmpInst;
6850    return true;
6851  }
6852
6853  case ARM::VST3dWB_register_Asm_8:
6854  case ARM::VST3dWB_register_Asm_16:
6855  case ARM::VST3dWB_register_Asm_32:
6856  case ARM::VST3qWB_register_Asm_8:
6857  case ARM::VST3qWB_register_Asm_16:
6858  case ARM::VST3qWB_register_Asm_32: {
6859    MCInst TmpInst;
6860    unsigned Spacing;
6861    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6862    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6863    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6864    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6865    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6866    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6867    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6868                                            Spacing));
6869    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6870                                            Spacing * 2));
6871    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6872    TmpInst.addOperand(Inst.getOperand(5));
6873    Inst = TmpInst;
6874    return true;
6875  }
6876
6877  // VST4 multiple 3-element structure instructions.
6878  case ARM::VST4dAsm_8:
6879  case ARM::VST4dAsm_16:
6880  case ARM::VST4dAsm_32:
6881  case ARM::VST4qAsm_8:
6882  case ARM::VST4qAsm_16:
6883  case ARM::VST4qAsm_32: {
6884    MCInst TmpInst;
6885    unsigned Spacing;
6886    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6887    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6888    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6889    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6890    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6891                                            Spacing));
6892    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6893                                            Spacing * 2));
6894    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6895                                            Spacing * 3));
6896    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6897    TmpInst.addOperand(Inst.getOperand(4));
6898    Inst = TmpInst;
6899    return true;
6900  }
6901
6902  case ARM::VST4dWB_fixed_Asm_8:
6903  case ARM::VST4dWB_fixed_Asm_16:
6904  case ARM::VST4dWB_fixed_Asm_32:
6905  case ARM::VST4qWB_fixed_Asm_8:
6906  case ARM::VST4qWB_fixed_Asm_16:
6907  case ARM::VST4qWB_fixed_Asm_32: {
6908    MCInst TmpInst;
6909    unsigned Spacing;
6910    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6911    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6912    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6913    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6914    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6915    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6916    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6917                                            Spacing));
6918    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6919                                            Spacing * 2));
6920    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6921                                            Spacing * 3));
6922    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6923    TmpInst.addOperand(Inst.getOperand(4));
6924    Inst = TmpInst;
6925    return true;
6926  }
6927
6928  case ARM::VST4dWB_register_Asm_8:
6929  case ARM::VST4dWB_register_Asm_16:
6930  case ARM::VST4dWB_register_Asm_32:
6931  case ARM::VST4qWB_register_Asm_8:
6932  case ARM::VST4qWB_register_Asm_16:
6933  case ARM::VST4qWB_register_Asm_32: {
6934    MCInst TmpInst;
6935    unsigned Spacing;
6936    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6937    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6938    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6939    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6940    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6941    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6942    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6943                                            Spacing));
6944    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6945                                            Spacing * 2));
6946    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6947                                            Spacing * 3));
6948    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6949    TmpInst.addOperand(Inst.getOperand(5));
6950    Inst = TmpInst;
6951    return true;
6952  }
6953
6954  // Handle encoding choice for the shift-immediate instructions.
6955  case ARM::t2LSLri:
6956  case ARM::t2LSRri:
6957  case ARM::t2ASRri: {
6958    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
6959        Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
6960        Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
6961        !(static_cast<ARMOperand*>(Operands[3])->isToken() &&
6962         static_cast<ARMOperand*>(Operands[3])->getToken() == ".w")) {
6963      unsigned NewOpc;
6964      switch (Inst.getOpcode()) {
6965      default: llvm_unreachable("unexpected opcode");
6966      case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
6967      case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
6968      case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
6969      }
6970      // The Thumb1 operands aren't in the same order. Awesome, eh?
6971      MCInst TmpInst;
6972      TmpInst.setOpcode(NewOpc);
6973      TmpInst.addOperand(Inst.getOperand(0));
6974      TmpInst.addOperand(Inst.getOperand(5));
6975      TmpInst.addOperand(Inst.getOperand(1));
6976      TmpInst.addOperand(Inst.getOperand(2));
6977      TmpInst.addOperand(Inst.getOperand(3));
6978      TmpInst.addOperand(Inst.getOperand(4));
6979      Inst = TmpInst;
6980      return true;
6981    }
6982    return false;
6983  }
6984
6985  // Handle the Thumb2 mode MOV complex aliases.
6986  case ARM::t2MOVsr:
6987  case ARM::t2MOVSsr: {
6988    // Which instruction to expand to depends on the CCOut operand and
6989    // whether we're in an IT block if the register operands are low
6990    // registers.
6991    bool isNarrow = false;
6992    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
6993        isARMLowRegister(Inst.getOperand(1).getReg()) &&
6994        isARMLowRegister(Inst.getOperand(2).getReg()) &&
6995        Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
6996        inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr))
6997      isNarrow = true;
6998    MCInst TmpInst;
6999    unsigned newOpc;
7000    switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
7001    default: llvm_unreachable("unexpected opcode!");
7002    case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
7003    case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
7004    case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
7005    case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR   : ARM::t2RORrr; break;
7006    }
7007    TmpInst.setOpcode(newOpc);
7008    TmpInst.addOperand(Inst.getOperand(0)); // Rd
7009    if (isNarrow)
7010      TmpInst.addOperand(MCOperand::CreateReg(
7011          Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
7012    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7013    TmpInst.addOperand(Inst.getOperand(2)); // Rm
7014    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7015    TmpInst.addOperand(Inst.getOperand(5));
7016    if (!isNarrow)
7017      TmpInst.addOperand(MCOperand::CreateReg(
7018          Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
7019    Inst = TmpInst;
7020    return true;
7021  }
7022  case ARM::t2MOVsi:
7023  case ARM::t2MOVSsi: {
7024    // Which instruction to expand to depends on the CCOut operand and
7025    // whether we're in an IT block if the register operands are low
7026    // registers.
7027    bool isNarrow = false;
7028    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7029        isARMLowRegister(Inst.getOperand(1).getReg()) &&
7030        inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi))
7031      isNarrow = true;
7032    MCInst TmpInst;
7033    unsigned newOpc;
7034    switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) {
7035    default: llvm_unreachable("unexpected opcode!");
7036    case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
7037    case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
7038    case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
7039    case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
7040    case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
7041    }
7042    unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
7043    if (Amount == 32) Amount = 0;
7044    TmpInst.setOpcode(newOpc);
7045    TmpInst.addOperand(Inst.getOperand(0)); // Rd
7046    if (isNarrow)
7047      TmpInst.addOperand(MCOperand::CreateReg(
7048          Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
7049    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7050    if (newOpc != ARM::t2RRX)
7051      TmpInst.addOperand(MCOperand::CreateImm(Amount));
7052    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7053    TmpInst.addOperand(Inst.getOperand(4));
7054    if (!isNarrow)
7055      TmpInst.addOperand(MCOperand::CreateReg(
7056          Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
7057    Inst = TmpInst;
7058    return true;
7059  }
7060  // Handle the ARM mode MOV complex aliases.
7061  case ARM::ASRr:
7062  case ARM::LSRr:
7063  case ARM::LSLr:
7064  case ARM::RORr: {
7065    ARM_AM::ShiftOpc ShiftTy;
7066    switch(Inst.getOpcode()) {
7067    default: llvm_unreachable("unexpected opcode!");
7068    case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
7069    case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
7070    case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
7071    case ARM::RORr: ShiftTy = ARM_AM::ror; break;
7072    }
7073    unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
7074    MCInst TmpInst;
7075    TmpInst.setOpcode(ARM::MOVsr);
7076    TmpInst.addOperand(Inst.getOperand(0)); // Rd
7077    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7078    TmpInst.addOperand(Inst.getOperand(2)); // Rm
7079    TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
7080    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7081    TmpInst.addOperand(Inst.getOperand(4));
7082    TmpInst.addOperand(Inst.getOperand(5)); // cc_out
7083    Inst = TmpInst;
7084    return true;
7085  }
7086  case ARM::ASRi:
7087  case ARM::LSRi:
7088  case ARM::LSLi:
7089  case ARM::RORi: {
7090    ARM_AM::ShiftOpc ShiftTy;
7091    switch(Inst.getOpcode()) {
7092    default: llvm_unreachable("unexpected opcode!");
7093    case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
7094    case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
7095    case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
7096    case ARM::RORi: ShiftTy = ARM_AM::ror; break;
7097    }
7098    // A shift by zero is a plain MOVr, not a MOVsi.
7099    unsigned Amt = Inst.getOperand(2).getImm();
7100    unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
7101    // A shift by 32 should be encoded as 0 when permitted
7102    if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
7103      Amt = 0;
7104    unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
7105    MCInst TmpInst;
7106    TmpInst.setOpcode(Opc);
7107    TmpInst.addOperand(Inst.getOperand(0)); // Rd
7108    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7109    if (Opc == ARM::MOVsi)
7110      TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
7111    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7112    TmpInst.addOperand(Inst.getOperand(4));
7113    TmpInst.addOperand(Inst.getOperand(5)); // cc_out
7114    Inst = TmpInst;
7115    return true;
7116  }
7117  case ARM::RRXi: {
7118    unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
7119    MCInst TmpInst;
7120    TmpInst.setOpcode(ARM::MOVsi);
7121    TmpInst.addOperand(Inst.getOperand(0)); // Rd
7122    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7123    TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
7124    TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7125    TmpInst.addOperand(Inst.getOperand(3));
7126    TmpInst.addOperand(Inst.getOperand(4)); // cc_out
7127    Inst = TmpInst;
7128    return true;
7129  }
7130  case ARM::t2LDMIA_UPD: {
7131    // If this is a load of a single register, then we should use
7132    // a post-indexed LDR instruction instead, per the ARM ARM.
7133    if (Inst.getNumOperands() != 5)
7134      return false;
7135    MCInst TmpInst;
7136    TmpInst.setOpcode(ARM::t2LDR_POST);
7137    TmpInst.addOperand(Inst.getOperand(4)); // Rt
7138    TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
7139    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7140    TmpInst.addOperand(MCOperand::CreateImm(4));
7141    TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7142    TmpInst.addOperand(Inst.getOperand(3));
7143    Inst = TmpInst;
7144    return true;
7145  }
7146  case ARM::t2STMDB_UPD: {
7147    // If this is a store of a single register, then we should use
7148    // a pre-indexed STR instruction instead, per the ARM ARM.
7149    if (Inst.getNumOperands() != 5)
7150      return false;
7151    MCInst TmpInst;
7152    TmpInst.setOpcode(ARM::t2STR_PRE);
7153    TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
7154    TmpInst.addOperand(Inst.getOperand(4)); // Rt
7155    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7156    TmpInst.addOperand(MCOperand::CreateImm(-4));
7157    TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7158    TmpInst.addOperand(Inst.getOperand(3));
7159    Inst = TmpInst;
7160    return true;
7161  }
7162  case ARM::LDMIA_UPD:
7163    // If this is a load of a single register via a 'pop', then we should use
7164    // a post-indexed LDR instruction instead, per the ARM ARM.
7165    if (static_cast<ARMOperand*>(Operands[0])->getToken() == "pop" &&
7166        Inst.getNumOperands() == 5) {
7167      MCInst TmpInst;
7168      TmpInst.setOpcode(ARM::LDR_POST_IMM);
7169      TmpInst.addOperand(Inst.getOperand(4)); // Rt
7170      TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
7171      TmpInst.addOperand(Inst.getOperand(1)); // Rn
7172      TmpInst.addOperand(MCOperand::CreateReg(0));  // am2offset
7173      TmpInst.addOperand(MCOperand::CreateImm(4));
7174      TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7175      TmpInst.addOperand(Inst.getOperand(3));
7176      Inst = TmpInst;
7177      return true;
7178    }
7179    break;
7180  case ARM::STMDB_UPD:
7181    // If this is a store of a single register via a 'push', then we should use
7182    // a pre-indexed STR instruction instead, per the ARM ARM.
7183    if (static_cast<ARMOperand*>(Operands[0])->getToken() == "push" &&
7184        Inst.getNumOperands() == 5) {
7185      MCInst TmpInst;
7186      TmpInst.setOpcode(ARM::STR_PRE_IMM);
7187      TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
7188      TmpInst.addOperand(Inst.getOperand(4)); // Rt
7189      TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
7190      TmpInst.addOperand(MCOperand::CreateImm(-4));
7191      TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7192      TmpInst.addOperand(Inst.getOperand(3));
7193      Inst = TmpInst;
7194    }
7195    break;
7196  case ARM::t2ADDri12:
7197    // If the immediate fits for encoding T3 (t2ADDri) and the generic "add"
7198    // mnemonic was used (not "addw"), encoding T3 is preferred.
7199    if (static_cast<ARMOperand*>(Operands[0])->getToken() != "add" ||
7200        ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
7201      break;
7202    Inst.setOpcode(ARM::t2ADDri);
7203    Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
7204    break;
7205  case ARM::t2SUBri12:
7206    // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub"
7207    // mnemonic was used (not "subw"), encoding T3 is preferred.
7208    if (static_cast<ARMOperand*>(Operands[0])->getToken() != "sub" ||
7209        ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
7210      break;
7211    Inst.setOpcode(ARM::t2SUBri);
7212    Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
7213    break;
7214  case ARM::tADDi8:
7215    // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
7216    // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
7217    // to encoding T2 if <Rd> is specified and encoding T2 is preferred
7218    // to encoding T1 if <Rd> is omitted."
7219    if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
7220      Inst.setOpcode(ARM::tADDi3);
7221      return true;
7222    }
7223    break;
7224  case ARM::tSUBi8:
7225    // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
7226    // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
7227    // to encoding T2 if <Rd> is specified and encoding T2 is preferred
7228    // to encoding T1 if <Rd> is omitted."
7229    if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
7230      Inst.setOpcode(ARM::tSUBi3);
7231      return true;
7232    }
7233    break;
7234  case ARM::t2ADDri:
7235  case ARM::t2SUBri: {
7236    // If the destination and first source operand are the same, and
7237    // the flags are compatible with the current IT status, use encoding T2
7238    // instead of T3. For compatibility with the system 'as'. Make sure the
7239    // wide encoding wasn't explicit.
7240    if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
7241        !isARMLowRegister(Inst.getOperand(0).getReg()) ||
7242        (unsigned)Inst.getOperand(2).getImm() > 255 ||
7243        ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) ||
7244        (inITBlock() && Inst.getOperand(5).getReg() != 0)) ||
7245        (static_cast<ARMOperand*>(Operands[3])->isToken() &&
7246         static_cast<ARMOperand*>(Operands[3])->getToken() == ".w"))
7247      break;
7248    MCInst TmpInst;
7249    TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
7250                      ARM::tADDi8 : ARM::tSUBi8);
7251    TmpInst.addOperand(Inst.getOperand(0));
7252    TmpInst.addOperand(Inst.getOperand(5));
7253    TmpInst.addOperand(Inst.getOperand(0));
7254    TmpInst.addOperand(Inst.getOperand(2));
7255    TmpInst.addOperand(Inst.getOperand(3));
7256    TmpInst.addOperand(Inst.getOperand(4));
7257    Inst = TmpInst;
7258    return true;
7259  }
7260  case ARM::t2ADDrr: {
7261    // If the destination and first source operand are the same, and
7262    // there's no setting of the flags, use encoding T2 instead of T3.
7263    // Note that this is only for ADD, not SUB. This mirrors the system
7264    // 'as' behaviour. Make sure the wide encoding wasn't explicit.
7265    if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
7266        Inst.getOperand(5).getReg() != 0 ||
7267        (static_cast<ARMOperand*>(Operands[3])->isToken() &&
7268         static_cast<ARMOperand*>(Operands[3])->getToken() == ".w"))
7269      break;
7270    MCInst TmpInst;
7271    TmpInst.setOpcode(ARM::tADDhirr);
7272    TmpInst.addOperand(Inst.getOperand(0));
7273    TmpInst.addOperand(Inst.getOperand(0));
7274    TmpInst.addOperand(Inst.getOperand(2));
7275    TmpInst.addOperand(Inst.getOperand(3));
7276    TmpInst.addOperand(Inst.getOperand(4));
7277    Inst = TmpInst;
7278    return true;
7279  }
7280  case ARM::tADDrSP: {
7281    // If the non-SP source operand and the destination operand are not the
7282    // same, we need to use the 32-bit encoding if it's available.
7283    if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
7284      Inst.setOpcode(ARM::t2ADDrr);
7285      Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
7286      return true;
7287    }
7288    break;
7289  }
7290  case ARM::tB:
7291    // A Thumb conditional branch outside of an IT block is a tBcc.
7292    if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
7293      Inst.setOpcode(ARM::tBcc);
7294      return true;
7295    }
7296    break;
7297  case ARM::t2B:
7298    // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
7299    if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
7300      Inst.setOpcode(ARM::t2Bcc);
7301      return true;
7302    }
7303    break;
7304  case ARM::t2Bcc:
7305    // If the conditional is AL or we're in an IT block, we really want t2B.
7306    if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
7307      Inst.setOpcode(ARM::t2B);
7308      return true;
7309    }
7310    break;
7311  case ARM::tBcc:
7312    // If the conditional is AL, we really want tB.
7313    if (Inst.getOperand(1).getImm() == ARMCC::AL) {
7314      Inst.setOpcode(ARM::tB);
7315      return true;
7316    }
7317    break;
7318  case ARM::tLDMIA: {
7319    // If the register list contains any high registers, or if the writeback
7320    // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
7321    // instead if we're in Thumb2. Otherwise, this should have generated
7322    // an error in validateInstruction().
7323    unsigned Rn = Inst.getOperand(0).getReg();
7324    bool hasWritebackToken =
7325      (static_cast<ARMOperand*>(Operands[3])->isToken() &&
7326       static_cast<ARMOperand*>(Operands[3])->getToken() == "!");
7327    bool listContainsBase;
7328    if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
7329        (!listContainsBase && !hasWritebackToken) ||
7330        (listContainsBase && hasWritebackToken)) {
7331      // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
7332      assert (isThumbTwo());
7333      Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
7334      // If we're switching to the updating version, we need to insert
7335      // the writeback tied operand.
7336      if (hasWritebackToken)
7337        Inst.insert(Inst.begin(),
7338                    MCOperand::CreateReg(Inst.getOperand(0).getReg()));
7339      return true;
7340    }
7341    break;
7342  }
7343  case ARM::tSTMIA_UPD: {
7344    // If the register list contains any high registers, we need to use
7345    // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
7346    // should have generated an error in validateInstruction().
7347    unsigned Rn = Inst.getOperand(0).getReg();
7348    bool listContainsBase;
7349    if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
7350      // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
7351      assert (isThumbTwo());
7352      Inst.setOpcode(ARM::t2STMIA_UPD);
7353      return true;
7354    }
7355    break;
7356  }
7357  case ARM::tPOP: {
7358    bool listContainsBase;
7359    // If the register list contains any high registers, we need to use
7360    // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
7361    // should have generated an error in validateInstruction().
7362    if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
7363      return false;
7364    assert (isThumbTwo());
7365    Inst.setOpcode(ARM::t2LDMIA_UPD);
7366    // Add the base register and writeback operands.
7367    Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7368    Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7369    return true;
7370  }
7371  case ARM::tPUSH: {
7372    bool listContainsBase;
7373    if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
7374      return false;
7375    assert (isThumbTwo());
7376    Inst.setOpcode(ARM::t2STMDB_UPD);
7377    // Add the base register and writeback operands.
7378    Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7379    Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7380    return true;
7381  }
7382  case ARM::t2MOVi: {
7383    // If we can use the 16-bit encoding and the user didn't explicitly
7384    // request the 32-bit variant, transform it here.
7385    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7386        (unsigned)Inst.getOperand(1).getImm() <= 255 &&
7387        ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL &&
7388         Inst.getOperand(4).getReg() == ARM::CPSR) ||
7389        (inITBlock() && Inst.getOperand(4).getReg() == 0)) &&
7390        (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
7391         static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
7392      // The operands aren't in the same order for tMOVi8...
7393      MCInst TmpInst;
7394      TmpInst.setOpcode(ARM::tMOVi8);
7395      TmpInst.addOperand(Inst.getOperand(0));
7396      TmpInst.addOperand(Inst.getOperand(4));
7397      TmpInst.addOperand(Inst.getOperand(1));
7398      TmpInst.addOperand(Inst.getOperand(2));
7399      TmpInst.addOperand(Inst.getOperand(3));
7400      Inst = TmpInst;
7401      return true;
7402    }
7403    break;
7404  }
7405  case ARM::t2MOVr: {
7406    // If we can use the 16-bit encoding and the user didn't explicitly
7407    // request the 32-bit variant, transform it here.
7408    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7409        isARMLowRegister(Inst.getOperand(1).getReg()) &&
7410        Inst.getOperand(2).getImm() == ARMCC::AL &&
7411        Inst.getOperand(4).getReg() == ARM::CPSR &&
7412        (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
7413         static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
7414      // The operands aren't the same for tMOV[S]r... (no cc_out)
7415      MCInst TmpInst;
7416      TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr);
7417      TmpInst.addOperand(Inst.getOperand(0));
7418      TmpInst.addOperand(Inst.getOperand(1));
7419      TmpInst.addOperand(Inst.getOperand(2));
7420      TmpInst.addOperand(Inst.getOperand(3));
7421      Inst = TmpInst;
7422      return true;
7423    }
7424    break;
7425  }
7426  case ARM::t2SXTH:
7427  case ARM::t2SXTB:
7428  case ARM::t2UXTH:
7429  case ARM::t2UXTB: {
7430    // If we can use the 16-bit encoding and the user didn't explicitly
7431    // request the 32-bit variant, transform it here.
7432    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7433        isARMLowRegister(Inst.getOperand(1).getReg()) &&
7434        Inst.getOperand(2).getImm() == 0 &&
7435        (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
7436         static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
7437      unsigned NewOpc;
7438      switch (Inst.getOpcode()) {
7439      default: llvm_unreachable("Illegal opcode!");
7440      case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
7441      case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
7442      case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
7443      case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
7444      }
7445      // The operands aren't the same for thumb1 (no rotate operand).
7446      MCInst TmpInst;
7447      TmpInst.setOpcode(NewOpc);
7448      TmpInst.addOperand(Inst.getOperand(0));
7449      TmpInst.addOperand(Inst.getOperand(1));
7450      TmpInst.addOperand(Inst.getOperand(3));
7451      TmpInst.addOperand(Inst.getOperand(4));
7452      Inst = TmpInst;
7453      return true;
7454    }
7455    break;
7456  }
7457  case ARM::MOVsi: {
7458    ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
7459    // rrx shifts and asr/lsr of #32 is encoded as 0
7460    if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr)
7461      return false;
7462    if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
7463      // Shifting by zero is accepted as a vanilla 'MOVr'
7464      MCInst TmpInst;
7465      TmpInst.setOpcode(ARM::MOVr);
7466      TmpInst.addOperand(Inst.getOperand(0));
7467      TmpInst.addOperand(Inst.getOperand(1));
7468      TmpInst.addOperand(Inst.getOperand(3));
7469      TmpInst.addOperand(Inst.getOperand(4));
7470      TmpInst.addOperand(Inst.getOperand(5));
7471      Inst = TmpInst;
7472      return true;
7473    }
7474    return false;
7475  }
7476  case ARM::ANDrsi:
7477  case ARM::ORRrsi:
7478  case ARM::EORrsi:
7479  case ARM::BICrsi:
7480  case ARM::SUBrsi:
7481  case ARM::ADDrsi: {
7482    unsigned newOpc;
7483    ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
7484    if (SOpc == ARM_AM::rrx) return false;
7485    switch (Inst.getOpcode()) {
7486    default: llvm_unreachable("unexpected opcode!");
7487    case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
7488    case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
7489    case ARM::EORrsi: newOpc = ARM::EORrr; break;
7490    case ARM::BICrsi: newOpc = ARM::BICrr; break;
7491    case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
7492    case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
7493    }
7494    // If the shift is by zero, use the non-shifted instruction definition.
7495    // The exception is for right shifts, where 0 == 32
7496    if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
7497        !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
7498      MCInst TmpInst;
7499      TmpInst.setOpcode(newOpc);
7500      TmpInst.addOperand(Inst.getOperand(0));
7501      TmpInst.addOperand(Inst.getOperand(1));
7502      TmpInst.addOperand(Inst.getOperand(2));
7503      TmpInst.addOperand(Inst.getOperand(4));
7504      TmpInst.addOperand(Inst.getOperand(5));
7505      TmpInst.addOperand(Inst.getOperand(6));
7506      Inst = TmpInst;
7507      return true;
7508    }
7509    return false;
7510  }
7511  case ARM::ITasm:
7512  case ARM::t2IT: {
7513    // The mask bits for all but the first condition are represented as
7514    // the low bit of the condition code value implies 't'. We currently
7515    // always have 1 implies 't', so XOR toggle the bits if the low bit
7516    // of the condition code is zero.
7517    MCOperand &MO = Inst.getOperand(1);
7518    unsigned Mask = MO.getImm();
7519    unsigned OrigMask = Mask;
7520    unsigned TZ = countTrailingZeros(Mask);
7521    if ((Inst.getOperand(0).getImm() & 1) == 0) {
7522      assert(Mask && TZ <= 3 && "illegal IT mask value!");
7523      Mask ^= (0xE << TZ) & 0xF;
7524    }
7525    MO.setImm(Mask);
7526
7527    // Set up the IT block state according to the IT instruction we just
7528    // matched.
7529    assert(!inITBlock() && "nested IT blocks?!");
7530    ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm());
7531    ITState.Mask = OrigMask; // Use the original mask, not the updated one.
7532    ITState.CurPosition = 0;
7533    ITState.FirstCond = true;
7534    break;
7535  }
7536  case ARM::t2LSLrr:
7537  case ARM::t2LSRrr:
7538  case ARM::t2ASRrr:
7539  case ARM::t2SBCrr:
7540  case ARM::t2RORrr:
7541  case ARM::t2BICrr:
7542  {
7543    // Assemblers should use the narrow encodings of these instructions when permissible.
7544    if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
7545         isARMLowRegister(Inst.getOperand(2).getReg())) &&
7546        Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
7547        ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
7548         (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) &&
7549        (!static_cast<ARMOperand*>(Operands[3])->isToken() ||
7550         !static_cast<ARMOperand*>(Operands[3])->getToken().equals_lower(".w"))) {
7551      unsigned NewOpc;
7552      switch (Inst.getOpcode()) {
7553        default: llvm_unreachable("unexpected opcode");
7554        case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
7555        case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
7556        case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
7557        case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
7558        case ARM::t2RORrr: NewOpc = ARM::tROR; break;
7559        case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
7560      }
7561      MCInst TmpInst;
7562      TmpInst.setOpcode(NewOpc);
7563      TmpInst.addOperand(Inst.getOperand(0));
7564      TmpInst.addOperand(Inst.getOperand(5));
7565      TmpInst.addOperand(Inst.getOperand(1));
7566      TmpInst.addOperand(Inst.getOperand(2));
7567      TmpInst.addOperand(Inst.getOperand(3));
7568      TmpInst.addOperand(Inst.getOperand(4));
7569      Inst = TmpInst;
7570      return true;
7571    }
7572    return false;
7573  }
7574  case ARM::t2ANDrr:
7575  case ARM::t2EORrr:
7576  case ARM::t2ADCrr:
7577  case ARM::t2ORRrr:
7578  {
7579    // Assemblers should use the narrow encodings of these instructions when permissible.
7580    // These instructions are special in that they are commutable, so shorter encodings
7581    // are available more often.
7582    if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
7583         isARMLowRegister(Inst.getOperand(2).getReg())) &&
7584        (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
7585         Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
7586        ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
7587         (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) &&
7588        (!static_cast<ARMOperand*>(Operands[3])->isToken() ||
7589         !static_cast<ARMOperand*>(Operands[3])->getToken().equals_lower(".w"))) {
7590      unsigned NewOpc;
7591      switch (Inst.getOpcode()) {
7592        default: llvm_unreachable("unexpected opcode");
7593        case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
7594        case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
7595        case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
7596        case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
7597      }
7598      MCInst TmpInst;
7599      TmpInst.setOpcode(NewOpc);
7600      TmpInst.addOperand(Inst.getOperand(0));
7601      TmpInst.addOperand(Inst.getOperand(5));
7602      if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
7603        TmpInst.addOperand(Inst.getOperand(1));
7604        TmpInst.addOperand(Inst.getOperand(2));
7605      } else {
7606        TmpInst.addOperand(Inst.getOperand(2));
7607        TmpInst.addOperand(Inst.getOperand(1));
7608      }
7609      TmpInst.addOperand(Inst.getOperand(3));
7610      TmpInst.addOperand(Inst.getOperand(4));
7611      Inst = TmpInst;
7612      return true;
7613    }
7614    return false;
7615  }
7616  }
7617  return false;
7618}
7619
7620unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
7621  // 16-bit thumb arithmetic instructions either require or preclude the 'S'
7622  // suffix depending on whether they're in an IT block or not.
7623  unsigned Opc = Inst.getOpcode();
7624  const MCInstrDesc &MCID = MII.get(Opc);
7625  if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
7626    assert(MCID.hasOptionalDef() &&
7627           "optionally flag setting instruction missing optional def operand");
7628    assert(MCID.NumOperands == Inst.getNumOperands() &&
7629           "operand count mismatch!");
7630    // Find the optional-def operand (cc_out).
7631    unsigned OpNo;
7632    for (OpNo = 0;
7633         !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
7634         ++OpNo)
7635      ;
7636    // If we're parsing Thumb1, reject it completely.
7637    if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
7638      return Match_MnemonicFail;
7639    // If we're parsing Thumb2, which form is legal depends on whether we're
7640    // in an IT block.
7641    if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
7642        !inITBlock())
7643      return Match_RequiresITBlock;
7644    if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
7645        inITBlock())
7646      return Match_RequiresNotITBlock;
7647  }
7648  // Some high-register supporting Thumb1 encodings only allow both registers
7649  // to be from r0-r7 when in Thumb2.
7650  else if (Opc == ARM::tADDhirr && isThumbOne() &&
7651           isARMLowRegister(Inst.getOperand(1).getReg()) &&
7652           isARMLowRegister(Inst.getOperand(2).getReg()))
7653    return Match_RequiresThumb2;
7654  // Others only require ARMv6 or later.
7655  else if (Opc == ARM::tMOVr && isThumbOne() && !hasV6Ops() &&
7656           isARMLowRegister(Inst.getOperand(0).getReg()) &&
7657           isARMLowRegister(Inst.getOperand(1).getReg()))
7658    return Match_RequiresV6;
7659  return Match_Success;
7660}
7661
7662static const char *getSubtargetFeatureName(unsigned Val);
7663bool ARMAsmParser::
7664MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
7665                        SmallVectorImpl<MCParsedAsmOperand*> &Operands,
7666                        MCStreamer &Out, unsigned &ErrorInfo,
7667                        bool MatchingInlineAsm) {
7668  MCInst Inst;
7669  unsigned MatchResult;
7670
7671  MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
7672                                     MatchingInlineAsm);
7673  switch (MatchResult) {
7674  default: break;
7675  case Match_Success:
7676    // Context sensitive operand constraints aren't handled by the matcher,
7677    // so check them here.
7678    if (validateInstruction(Inst, Operands)) {
7679      // Still progress the IT block, otherwise one wrong condition causes
7680      // nasty cascading errors.
7681      forwardITPosition();
7682      return true;
7683    }
7684
7685    { // processInstruction() updates inITBlock state, we need to save it away
7686      bool wasInITBlock = inITBlock();
7687
7688      // Some instructions need post-processing to, for example, tweak which
7689      // encoding is selected. Loop on it while changes happen so the
7690      // individual transformations can chain off each other. E.g.,
7691      // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
7692      while (processInstruction(Inst, Operands))
7693        ;
7694
7695      // Only after the instruction is fully processed, we can validate it
7696      if (wasInITBlock && hasV8Ops() && isThumb() &&
7697          !isV8EligibleForIT(&Inst, 2)) {
7698        Warning(IDLoc, "deprecated instruction in IT block");
7699      }
7700    }
7701
7702    // Only move forward at the very end so that everything in validate
7703    // and process gets a consistent answer about whether we're in an IT
7704    // block.
7705    forwardITPosition();
7706
7707    // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
7708    // doesn't actually encode.
7709    if (Inst.getOpcode() == ARM::ITasm)
7710      return false;
7711
7712    Inst.setLoc(IDLoc);
7713    Out.EmitInstruction(Inst);
7714    return false;
7715  case Match_MissingFeature: {
7716    assert(ErrorInfo && "Unknown missing feature!");
7717    // Special case the error message for the very common case where only
7718    // a single subtarget feature is missing (Thumb vs. ARM, e.g.).
7719    std::string Msg = "instruction requires:";
7720    unsigned Mask = 1;
7721    for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
7722      if (ErrorInfo & Mask) {
7723        Msg += " ";
7724        Msg += getSubtargetFeatureName(ErrorInfo & Mask);
7725      }
7726      Mask <<= 1;
7727    }
7728    return Error(IDLoc, Msg);
7729  }
7730  case Match_InvalidOperand: {
7731    SMLoc ErrorLoc = IDLoc;
7732    if (ErrorInfo != ~0U) {
7733      if (ErrorInfo >= Operands.size())
7734        return Error(IDLoc, "too few operands for instruction");
7735
7736      ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
7737      if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
7738    }
7739
7740    return Error(ErrorLoc, "invalid operand for instruction");
7741  }
7742  case Match_MnemonicFail:
7743    return Error(IDLoc, "invalid instruction",
7744                 ((ARMOperand*)Operands[0])->getLocRange());
7745  case Match_RequiresNotITBlock:
7746    return Error(IDLoc, "flag setting instruction only valid outside IT block");
7747  case Match_RequiresITBlock:
7748    return Error(IDLoc, "instruction only valid inside IT block");
7749  case Match_RequiresV6:
7750    return Error(IDLoc, "instruction variant requires ARMv6 or later");
7751  case Match_RequiresThumb2:
7752    return Error(IDLoc, "instruction variant requires Thumb2");
7753  case Match_ImmRange0_15: {
7754    SMLoc ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
7755    if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
7756    return Error(ErrorLoc, "immediate operand must be in the range [0,15]");
7757  }
7758  case Match_ImmRange0_239: {
7759    SMLoc ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
7760    if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
7761    return Error(ErrorLoc, "immediate operand must be in the range [0,239]");
7762  }
7763  }
7764
7765  llvm_unreachable("Implement any new match types added!");
7766}
7767
7768/// parseDirective parses the arm specific directives
7769bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
7770  StringRef IDVal = DirectiveID.getIdentifier();
7771  if (IDVal == ".word")
7772    return parseDirectiveWord(4, DirectiveID.getLoc());
7773  else if (IDVal == ".thumb")
7774    return parseDirectiveThumb(DirectiveID.getLoc());
7775  else if (IDVal == ".arm")
7776    return parseDirectiveARM(DirectiveID.getLoc());
7777  else if (IDVal == ".thumb_func")
7778    return parseDirectiveThumbFunc(DirectiveID.getLoc());
7779  else if (IDVal == ".code")
7780    return parseDirectiveCode(DirectiveID.getLoc());
7781  else if (IDVal == ".syntax")
7782    return parseDirectiveSyntax(DirectiveID.getLoc());
7783  else if (IDVal == ".unreq")
7784    return parseDirectiveUnreq(DirectiveID.getLoc());
7785  else if (IDVal == ".arch")
7786    return parseDirectiveArch(DirectiveID.getLoc());
7787  else if (IDVal == ".eabi_attribute")
7788    return parseDirectiveEabiAttr(DirectiveID.getLoc());
7789  else if (IDVal == ".cpu")
7790    return parseDirectiveCPU(DirectiveID.getLoc());
7791  else if (IDVal == ".fpu")
7792    return parseDirectiveFPU(DirectiveID.getLoc());
7793  else if (IDVal == ".fnstart")
7794    return parseDirectiveFnStart(DirectiveID.getLoc());
7795  else if (IDVal == ".fnend")
7796    return parseDirectiveFnEnd(DirectiveID.getLoc());
7797  else if (IDVal == ".cantunwind")
7798    return parseDirectiveCantUnwind(DirectiveID.getLoc());
7799  else if (IDVal == ".personality")
7800    return parseDirectivePersonality(DirectiveID.getLoc());
7801  else if (IDVal == ".handlerdata")
7802    return parseDirectiveHandlerData(DirectiveID.getLoc());
7803  else if (IDVal == ".setfp")
7804    return parseDirectiveSetFP(DirectiveID.getLoc());
7805  else if (IDVal == ".pad")
7806    return parseDirectivePad(DirectiveID.getLoc());
7807  else if (IDVal == ".save")
7808    return parseDirectiveRegSave(DirectiveID.getLoc(), false);
7809  else if (IDVal == ".vsave")
7810    return parseDirectiveRegSave(DirectiveID.getLoc(), true);
7811  return true;
7812}
7813
7814/// parseDirectiveWord
7815///  ::= .word [ expression (, expression)* ]
7816bool ARMAsmParser::parseDirectiveWord(unsigned Size, SMLoc L) {
7817  if (getLexer().isNot(AsmToken::EndOfStatement)) {
7818    for (;;) {
7819      const MCExpr *Value;
7820      if (getParser().parseExpression(Value))
7821        return true;
7822
7823      getParser().getStreamer().EmitValue(Value, Size);
7824
7825      if (getLexer().is(AsmToken::EndOfStatement))
7826        break;
7827
7828      // FIXME: Improve diagnostic.
7829      if (getLexer().isNot(AsmToken::Comma))
7830        return Error(L, "unexpected token in directive");
7831      Parser.Lex();
7832    }
7833  }
7834
7835  Parser.Lex();
7836  return false;
7837}
7838
7839/// parseDirectiveThumb
7840///  ::= .thumb
7841bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
7842  if (getLexer().isNot(AsmToken::EndOfStatement))
7843    return Error(L, "unexpected token in directive");
7844  Parser.Lex();
7845
7846  if (!hasThumb())
7847    return Error(L, "target does not support Thumb mode");
7848
7849  if (!isThumb())
7850    SwitchMode();
7851  getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
7852  return false;
7853}
7854
7855/// parseDirectiveARM
7856///  ::= .arm
7857bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
7858  if (getLexer().isNot(AsmToken::EndOfStatement))
7859    return Error(L, "unexpected token in directive");
7860  Parser.Lex();
7861
7862  if (!hasARM())
7863    return Error(L, "target does not support ARM mode");
7864
7865  if (isThumb())
7866    SwitchMode();
7867  getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
7868  return false;
7869}
7870
7871void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) {
7872  if (NextSymbolIsThumb) {
7873    getParser().getStreamer().EmitThumbFunc(Symbol);
7874    NextSymbolIsThumb = false;
7875  }
7876}
7877
7878/// parseDirectiveThumbFunc
7879///  ::= .thumbfunc symbol_name
7880bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
7881  const MCAsmInfo *MAI = getParser().getStreamer().getContext().getAsmInfo();
7882  bool isMachO = MAI->hasSubsectionsViaSymbols();
7883
7884  // Darwin asm has (optionally) function name after .thumb_func direction
7885  // ELF doesn't
7886  if (isMachO) {
7887    const AsmToken &Tok = Parser.getTok();
7888    if (Tok.isNot(AsmToken::EndOfStatement)) {
7889      if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String))
7890        return Error(L, "unexpected token in .thumb_func directive");
7891      MCSymbol *Func =
7892          getParser().getContext().GetOrCreateSymbol(Tok.getIdentifier());
7893      getParser().getStreamer().EmitThumbFunc(Func);
7894      Parser.Lex(); // Consume the identifier token.
7895      return false;
7896    }
7897  }
7898
7899  if (getLexer().isNot(AsmToken::EndOfStatement))
7900    return Error(L, "unexpected token in directive");
7901
7902  NextSymbolIsThumb = true;
7903
7904  return false;
7905}
7906
7907/// parseDirectiveSyntax
7908///  ::= .syntax unified | divided
7909bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
7910  const AsmToken &Tok = Parser.getTok();
7911  if (Tok.isNot(AsmToken::Identifier))
7912    return Error(L, "unexpected token in .syntax directive");
7913  StringRef Mode = Tok.getString();
7914  if (Mode == "unified" || Mode == "UNIFIED")
7915    Parser.Lex();
7916  else if (Mode == "divided" || Mode == "DIVIDED")
7917    return Error(L, "'.syntax divided' arm asssembly not supported");
7918  else
7919    return Error(L, "unrecognized syntax mode in .syntax directive");
7920
7921  if (getLexer().isNot(AsmToken::EndOfStatement))
7922    return Error(Parser.getTok().getLoc(), "unexpected token in directive");
7923  Parser.Lex();
7924
7925  // TODO tell the MC streamer the mode
7926  // getParser().getStreamer().Emit???();
7927  return false;
7928}
7929
7930/// parseDirectiveCode
7931///  ::= .code 16 | 32
7932bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
7933  const AsmToken &Tok = Parser.getTok();
7934  if (Tok.isNot(AsmToken::Integer))
7935    return Error(L, "unexpected token in .code directive");
7936  int64_t Val = Parser.getTok().getIntVal();
7937  if (Val == 16)
7938    Parser.Lex();
7939  else if (Val == 32)
7940    Parser.Lex();
7941  else
7942    return Error(L, "invalid operand to .code directive");
7943
7944  if (getLexer().isNot(AsmToken::EndOfStatement))
7945    return Error(Parser.getTok().getLoc(), "unexpected token in directive");
7946  Parser.Lex();
7947
7948  if (Val == 16) {
7949    if (!hasThumb())
7950      return Error(L, "target does not support Thumb mode");
7951
7952    if (!isThumb())
7953      SwitchMode();
7954    getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
7955  } else {
7956    if (!hasARM())
7957      return Error(L, "target does not support ARM mode");
7958
7959    if (isThumb())
7960      SwitchMode();
7961    getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
7962  }
7963
7964  return false;
7965}
7966
7967/// parseDirectiveReq
7968///  ::= name .req registername
7969bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
7970  Parser.Lex(); // Eat the '.req' token.
7971  unsigned Reg;
7972  SMLoc SRegLoc, ERegLoc;
7973  if (ParseRegister(Reg, SRegLoc, ERegLoc)) {
7974    Parser.eatToEndOfStatement();
7975    return Error(SRegLoc, "register name expected");
7976  }
7977
7978  // Shouldn't be anything else.
7979  if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
7980    Parser.eatToEndOfStatement();
7981    return Error(Parser.getTok().getLoc(),
7982                 "unexpected input in .req directive.");
7983  }
7984
7985  Parser.Lex(); // Consume the EndOfStatement
7986
7987  if (RegisterReqs.GetOrCreateValue(Name, Reg).getValue() != Reg)
7988    return Error(SRegLoc, "redefinition of '" + Name +
7989                          "' does not match original.");
7990
7991  return false;
7992}
7993
7994/// parseDirectiveUneq
7995///  ::= .unreq registername
7996bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
7997  if (Parser.getTok().isNot(AsmToken::Identifier)) {
7998    Parser.eatToEndOfStatement();
7999    return Error(L, "unexpected input in .unreq directive.");
8000  }
8001  RegisterReqs.erase(Parser.getTok().getIdentifier());
8002  Parser.Lex(); // Eat the identifier.
8003  return false;
8004}
8005
8006/// parseDirectiveArch
8007///  ::= .arch token
8008bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
8009  return true;
8010}
8011
8012/// parseDirectiveEabiAttr
8013///  ::= .eabi_attribute int, int
8014bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
8015  if (Parser.getTok().isNot(AsmToken::Integer))
8016    return Error(L, "integer expected");
8017  int64_t Tag = Parser.getTok().getIntVal();
8018  Parser.Lex(); // eat tag integer
8019
8020  if (Parser.getTok().isNot(AsmToken::Comma))
8021    return Error(L, "comma expected");
8022  Parser.Lex(); // skip comma
8023
8024  L = Parser.getTok().getLoc();
8025  if (Parser.getTok().isNot(AsmToken::Integer))
8026    return Error(L, "integer expected");
8027  int64_t Value = Parser.getTok().getIntVal();
8028  Parser.Lex(); // eat value integer
8029
8030  getTargetStreamer().emitAttribute(Tag, Value);
8031  return false;
8032}
8033
8034/// parseDirectiveCPU
8035///  ::= .cpu str
8036bool ARMAsmParser::parseDirectiveCPU(SMLoc L) {
8037  StringRef CPU = getParser().parseStringToEndOfStatement().trim();
8038  getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU);
8039  return false;
8040}
8041
8042/// parseDirectiveFPU
8043///  ::= .fpu str
8044bool ARMAsmParser::parseDirectiveFPU(SMLoc L) {
8045  StringRef FPU = getParser().parseStringToEndOfStatement().trim();
8046
8047  unsigned ID = StringSwitch<unsigned>(FPU)
8048#define ARM_FPU_NAME(NAME, ID) .Case(NAME, ARM::ID)
8049#include "ARMFPUName.def"
8050    .Default(ARM::INVALID_FPU);
8051
8052  if (ID == ARM::INVALID_FPU)
8053    return Error(L, "Unknown FPU name");
8054
8055  getTargetStreamer().emitFPU(ID);
8056  return false;
8057}
8058
8059/// parseDirectiveFnStart
8060///  ::= .fnstart
8061bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) {
8062  if (FnStartLoc.isValid()) {
8063    Error(L, ".fnstart starts before the end of previous one");
8064    Error(FnStartLoc, "previous .fnstart starts here");
8065    return true;
8066  }
8067
8068  FnStartLoc = L;
8069  getTargetStreamer().emitFnStart();
8070  return false;
8071}
8072
8073/// parseDirectiveFnEnd
8074///  ::= .fnend
8075bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) {
8076  // Check the ordering of unwind directives
8077  if (!FnStartLoc.isValid())
8078    return Error(L, ".fnstart must precede .fnend directive");
8079
8080  // Reset the unwind directives parser state
8081  resetUnwindDirectiveParserState();
8082  getTargetStreamer().emitFnEnd();
8083  return false;
8084}
8085
8086/// parseDirectiveCantUnwind
8087///  ::= .cantunwind
8088bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) {
8089  // Check the ordering of unwind directives
8090  CantUnwindLoc = L;
8091  if (!FnStartLoc.isValid())
8092    return Error(L, ".fnstart must precede .cantunwind directive");
8093  if (HandlerDataLoc.isValid()) {
8094    Error(L, ".cantunwind can't be used with .handlerdata directive");
8095    Error(HandlerDataLoc, ".handlerdata was specified here");
8096    return true;
8097  }
8098  if (PersonalityLoc.isValid()) {
8099    Error(L, ".cantunwind can't be used with .personality directive");
8100    Error(PersonalityLoc, ".personality was specified here");
8101    return true;
8102  }
8103
8104  getTargetStreamer().emitCantUnwind();
8105  return false;
8106}
8107
8108/// parseDirectivePersonality
8109///  ::= .personality name
8110bool ARMAsmParser::parseDirectivePersonality(SMLoc L) {
8111  // Check the ordering of unwind directives
8112  PersonalityLoc = L;
8113  if (!FnStartLoc.isValid())
8114    return Error(L, ".fnstart must precede .personality directive");
8115  if (CantUnwindLoc.isValid()) {
8116    Error(L, ".personality can't be used with .cantunwind directive");
8117    Error(CantUnwindLoc, ".cantunwind was specified here");
8118    return true;
8119  }
8120  if (HandlerDataLoc.isValid()) {
8121    Error(L, ".personality must precede .handlerdata directive");
8122    Error(HandlerDataLoc, ".handlerdata was specified here");
8123    return true;
8124  }
8125
8126  // Parse the name of the personality routine
8127  if (Parser.getTok().isNot(AsmToken::Identifier)) {
8128    Parser.eatToEndOfStatement();
8129    return Error(L, "unexpected input in .personality directive.");
8130  }
8131  StringRef Name(Parser.getTok().getIdentifier());
8132  Parser.Lex();
8133
8134  MCSymbol *PR = getParser().getContext().GetOrCreateSymbol(Name);
8135  getTargetStreamer().emitPersonality(PR);
8136  return false;
8137}
8138
8139/// parseDirectiveHandlerData
8140///  ::= .handlerdata
8141bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) {
8142  // Check the ordering of unwind directives
8143  HandlerDataLoc = L;
8144  if (!FnStartLoc.isValid())
8145    return Error(L, ".fnstart must precede .personality directive");
8146  if (CantUnwindLoc.isValid()) {
8147    Error(L, ".handlerdata can't be used with .cantunwind directive");
8148    Error(CantUnwindLoc, ".cantunwind was specified here");
8149    return true;
8150  }
8151
8152  getTargetStreamer().emitHandlerData();
8153  return false;
8154}
8155
8156/// parseDirectiveSetFP
8157///  ::= .setfp fpreg, spreg [, offset]
8158bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) {
8159  // Check the ordering of unwind directives
8160  if (!FnStartLoc.isValid())
8161    return Error(L, ".fnstart must precede .setfp directive");
8162  if (HandlerDataLoc.isValid())
8163    return Error(L, ".setfp must precede .handlerdata directive");
8164
8165  // Parse fpreg
8166  SMLoc NewFPRegLoc = Parser.getTok().getLoc();
8167  int NewFPReg = tryParseRegister();
8168  if (NewFPReg == -1)
8169    return Error(NewFPRegLoc, "frame pointer register expected");
8170
8171  // Consume comma
8172  if (!Parser.getTok().is(AsmToken::Comma))
8173    return Error(Parser.getTok().getLoc(), "comma expected");
8174  Parser.Lex(); // skip comma
8175
8176  // Parse spreg
8177  SMLoc NewSPRegLoc = Parser.getTok().getLoc();
8178  int NewSPReg = tryParseRegister();
8179  if (NewSPReg == -1)
8180    return Error(NewSPRegLoc, "stack pointer register expected");
8181
8182  if (NewSPReg != ARM::SP && NewSPReg != FPReg)
8183    return Error(NewSPRegLoc,
8184                 "register should be either $sp or the latest fp register");
8185
8186  // Update the frame pointer register
8187  FPReg = NewFPReg;
8188
8189  // Parse offset
8190  int64_t Offset = 0;
8191  if (Parser.getTok().is(AsmToken::Comma)) {
8192    Parser.Lex(); // skip comma
8193
8194    if (Parser.getTok().isNot(AsmToken::Hash) &&
8195        Parser.getTok().isNot(AsmToken::Dollar)) {
8196      return Error(Parser.getTok().getLoc(), "'#' expected");
8197    }
8198    Parser.Lex(); // skip hash token.
8199
8200    const MCExpr *OffsetExpr;
8201    SMLoc ExLoc = Parser.getTok().getLoc();
8202    SMLoc EndLoc;
8203    if (getParser().parseExpression(OffsetExpr, EndLoc))
8204      return Error(ExLoc, "malformed setfp offset");
8205    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
8206    if (!CE)
8207      return Error(ExLoc, "setfp offset must be an immediate");
8208
8209    Offset = CE->getValue();
8210  }
8211
8212  getTargetStreamer().emitSetFP(static_cast<unsigned>(NewFPReg),
8213                                static_cast<unsigned>(NewSPReg), Offset);
8214  return false;
8215}
8216
8217/// parseDirective
8218///  ::= .pad offset
8219bool ARMAsmParser::parseDirectivePad(SMLoc L) {
8220  // Check the ordering of unwind directives
8221  if (!FnStartLoc.isValid())
8222    return Error(L, ".fnstart must precede .pad directive");
8223  if (HandlerDataLoc.isValid())
8224    return Error(L, ".pad must precede .handlerdata directive");
8225
8226  // Parse the offset
8227  if (Parser.getTok().isNot(AsmToken::Hash) &&
8228      Parser.getTok().isNot(AsmToken::Dollar)) {
8229    return Error(Parser.getTok().getLoc(), "'#' expected");
8230  }
8231  Parser.Lex(); // skip hash token.
8232
8233  const MCExpr *OffsetExpr;
8234  SMLoc ExLoc = Parser.getTok().getLoc();
8235  SMLoc EndLoc;
8236  if (getParser().parseExpression(OffsetExpr, EndLoc))
8237    return Error(ExLoc, "malformed pad offset");
8238  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
8239  if (!CE)
8240    return Error(ExLoc, "pad offset must be an immediate");
8241
8242  getTargetStreamer().emitPad(CE->getValue());
8243  return false;
8244}
8245
8246/// parseDirectiveRegSave
8247///  ::= .save  { registers }
8248///  ::= .vsave { registers }
8249bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) {
8250  // Check the ordering of unwind directives
8251  if (!FnStartLoc.isValid())
8252    return Error(L, ".fnstart must precede .save or .vsave directives");
8253  if (HandlerDataLoc.isValid())
8254    return Error(L, ".save or .vsave must precede .handlerdata directive");
8255
8256  // RAII object to make sure parsed operands are deleted.
8257  struct CleanupObject {
8258    SmallVector<MCParsedAsmOperand *, 1> Operands;
8259    ~CleanupObject() {
8260      for (unsigned I = 0, E = Operands.size(); I != E; ++I)
8261        delete Operands[I];
8262    }
8263  } CO;
8264
8265  // Parse the register list
8266  if (parseRegisterList(CO.Operands))
8267    return true;
8268  ARMOperand *Op = (ARMOperand*)CO.Operands[0];
8269  if (!IsVector && !Op->isRegList())
8270    return Error(L, ".save expects GPR registers");
8271  if (IsVector && !Op->isDPRRegList())
8272    return Error(L, ".vsave expects DPR registers");
8273
8274  getTargetStreamer().emitRegSave(Op->getRegList(), IsVector);
8275  return false;
8276}
8277
8278/// Force static initialization.
8279extern "C" void LLVMInitializeARMAsmParser() {
8280  RegisterMCAsmParser<ARMAsmParser> X(TheARMTarget);
8281  RegisterMCAsmParser<ARMAsmParser> Y(TheThumbTarget);
8282}
8283
8284#define GET_REGISTER_MATCHER
8285#define GET_SUBTARGET_FEATURE_NAME
8286#define GET_MATCHER_IMPLEMENTATION
8287#include "ARMGenAsmMatcher.inc"
8288
8289// Define this matcher function after the auto-generated include so we
8290// have the match class enum definitions.
8291unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand *AsmOp,
8292                                                  unsigned Kind) {
8293  ARMOperand *Op = static_cast<ARMOperand*>(AsmOp);
8294  // If the kind is a token for a literal immediate, check if our asm
8295  // operand matches. This is for InstAliases which have a fixed-value
8296  // immediate in the syntax.
8297  if (Kind == MCK__35_0 && Op->isImm()) {
8298    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op->getImm());
8299    if (!CE)
8300      return Match_InvalidOperand;
8301    if (CE->getValue() == 0)
8302      return Match_Success;
8303  }
8304  return Match_InvalidOperand;
8305}
8306