ARMAsmParser.cpp revision 9fb5a6588becc92be1d7cf503d2947b170be3c31
1//===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "llvm/MC/MCTargetAsmParser.h"
11#include "MCTargetDesc/ARMAddressingModes.h"
12#include "MCTargetDesc/ARMBaseInfo.h"
13#include "MCTargetDesc/ARMMCExpr.h"
14#include "llvm/ADT/BitVector.h"
15#include "llvm/ADT/OwningPtr.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/StringSwitch.h"
19#include "llvm/ADT/Twine.h"
20#include "llvm/MC/MCAsmInfo.h"
21#include "llvm/MC/MCAssembler.h"
22#include "llvm/MC/MCContext.h"
23#include "llvm/MC/MCELFStreamer.h"
24#include "llvm/MC/MCExpr.h"
25#include "llvm/MC/MCInst.h"
26#include "llvm/MC/MCInstrDesc.h"
27#include "llvm/MC/MCParser/MCAsmLexer.h"
28#include "llvm/MC/MCParser/MCAsmParser.h"
29#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
30#include "llvm/MC/MCRegisterInfo.h"
31#include "llvm/MC/MCStreamer.h"
32#include "llvm/MC/MCSubtargetInfo.h"
33#include "llvm/Support/ELF.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/SourceMgr.h"
36#include "llvm/Support/TargetRegistry.h"
37#include "llvm/Support/raw_ostream.h"
38
39using namespace llvm;
40
41namespace {
42
43class ARMOperand;
44
45enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
46
47class ARMAsmParser : public MCTargetAsmParser {
48  MCSubtargetInfo &STI;
49  MCAsmParser &Parser;
50  const MCRegisterInfo *MRI;
51
52  // Unwind directives state
53  SMLoc FnStartLoc;
54  SMLoc CantUnwindLoc;
55  SMLoc PersonalityLoc;
56  SMLoc HandlerDataLoc;
57  int FPReg;
58  void resetUnwindDirectiveParserState() {
59    FnStartLoc = SMLoc();
60    CantUnwindLoc = SMLoc();
61    PersonalityLoc = SMLoc();
62    HandlerDataLoc = SMLoc();
63    FPReg = -1;
64  }
65
66  // Map of register aliases registers via the .req directive.
67  StringMap<unsigned> RegisterReqs;
68
69  struct {
70    ARMCC::CondCodes Cond;    // Condition for IT block.
71    unsigned Mask:4;          // Condition mask for instructions.
72                              // Starting at first 1 (from lsb).
73                              //   '1'  condition as indicated in IT.
74                              //   '0'  inverse of condition (else).
75                              // Count of instructions in IT block is
76                              // 4 - trailingzeroes(mask)
77
78    bool FirstCond;           // Explicit flag for when we're parsing the
79                              // First instruction in the IT block. It's
80                              // implied in the mask, so needs special
81                              // handling.
82
83    unsigned CurPosition;     // Current position in parsing of IT
84                              // block. In range [0,3]. Initialized
85                              // according to count of instructions in block.
86                              // ~0U if no active IT block.
87  } ITState;
88  bool inITBlock() { return ITState.CurPosition != ~0U;}
89  void forwardITPosition() {
90    if (!inITBlock()) return;
91    // Move to the next instruction in the IT block, if there is one. If not,
92    // mark the block as done.
93    unsigned TZ = countTrailingZeros(ITState.Mask);
94    if (++ITState.CurPosition == 5 - TZ)
95      ITState.CurPosition = ~0U; // Done with the IT block after this.
96  }
97
98
99  MCAsmParser &getParser() const { return Parser; }
100  MCAsmLexer &getLexer() const { return Parser.getLexer(); }
101
102  bool Warning(SMLoc L, const Twine &Msg,
103               ArrayRef<SMRange> Ranges = None) {
104    return Parser.Warning(L, Msg, Ranges);
105  }
106  bool Error(SMLoc L, const Twine &Msg,
107             ArrayRef<SMRange> Ranges = None) {
108    return Parser.Error(L, Msg, Ranges);
109  }
110
111  int tryParseRegister();
112  bool tryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &);
113  int tryParseShiftRegister(SmallVectorImpl<MCParsedAsmOperand*> &);
114  bool parseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &);
115  bool parseMemory(SmallVectorImpl<MCParsedAsmOperand*> &);
116  bool parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &, StringRef Mnemonic);
117  bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
118  bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
119                              unsigned &ShiftAmount);
120  bool parseDirectiveWord(unsigned Size, SMLoc L);
121  bool parseDirectiveThumb(SMLoc L);
122  bool parseDirectiveARM(SMLoc L);
123  bool parseDirectiveThumbFunc(SMLoc L);
124  bool parseDirectiveCode(SMLoc L);
125  bool parseDirectiveSyntax(SMLoc L);
126  bool parseDirectiveReq(StringRef Name, SMLoc L);
127  bool parseDirectiveUnreq(SMLoc L);
128  bool parseDirectiveArch(SMLoc L);
129  bool parseDirectiveEabiAttr(SMLoc L);
130  bool parseDirectiveFnStart(SMLoc L);
131  bool parseDirectiveFnEnd(SMLoc L);
132  bool parseDirectiveCantUnwind(SMLoc L);
133  bool parseDirectivePersonality(SMLoc L);
134  bool parseDirectiveHandlerData(SMLoc L);
135  bool parseDirectiveSetFP(SMLoc L);
136  bool parseDirectivePad(SMLoc L);
137  bool parseDirectiveRegSave(SMLoc L, bool IsVector);
138
139  StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode,
140                          bool &CarrySetting, unsigned &ProcessorIMod,
141                          StringRef &ITMask);
142  void getMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
143                             bool &CanAcceptPredicationCode);
144
145  bool isThumb() const {
146    // FIXME: Can tablegen auto-generate this?
147    return (STI.getFeatureBits() & ARM::ModeThumb) != 0;
148  }
149  bool isThumbOne() const {
150    return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2) == 0;
151  }
152  bool isThumbTwo() const {
153    return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2);
154  }
155  bool hasThumb() const {
156    return STI.getFeatureBits() & ARM::HasV4TOps;
157  }
158  bool hasV6Ops() const {
159    return STI.getFeatureBits() & ARM::HasV6Ops;
160  }
161  bool hasV7Ops() const {
162    return STI.getFeatureBits() & ARM::HasV7Ops;
163  }
164  bool hasV8Ops() const {
165    return STI.getFeatureBits() & ARM::HasV8Ops;
166  }
167  bool hasARM() const {
168    return !(STI.getFeatureBits() & ARM::FeatureNoARM);
169  }
170
171  void SwitchMode() {
172    unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
173    setAvailableFeatures(FB);
174  }
175  bool isMClass() const {
176    return STI.getFeatureBits() & ARM::FeatureMClass;
177  }
178
179  /// @name Auto-generated Match Functions
180  /// {
181
182#define GET_ASSEMBLER_HEADER
183#include "ARMGenAsmMatcher.inc"
184
185  /// }
186
187  OperandMatchResultTy parseITCondCode(SmallVectorImpl<MCParsedAsmOperand*>&);
188  OperandMatchResultTy parseCoprocNumOperand(
189    SmallVectorImpl<MCParsedAsmOperand*>&);
190  OperandMatchResultTy parseCoprocRegOperand(
191    SmallVectorImpl<MCParsedAsmOperand*>&);
192  OperandMatchResultTy parseCoprocOptionOperand(
193    SmallVectorImpl<MCParsedAsmOperand*>&);
194  OperandMatchResultTy parseMemBarrierOptOperand(
195    SmallVectorImpl<MCParsedAsmOperand*>&);
196  OperandMatchResultTy parseInstSyncBarrierOptOperand(
197    SmallVectorImpl<MCParsedAsmOperand*>&);
198  OperandMatchResultTy parseProcIFlagsOperand(
199    SmallVectorImpl<MCParsedAsmOperand*>&);
200  OperandMatchResultTy parseMSRMaskOperand(
201    SmallVectorImpl<MCParsedAsmOperand*>&);
202  OperandMatchResultTy parsePKHImm(SmallVectorImpl<MCParsedAsmOperand*> &O,
203                                   StringRef Op, int Low, int High);
204  OperandMatchResultTy parsePKHLSLImm(SmallVectorImpl<MCParsedAsmOperand*> &O) {
205    return parsePKHImm(O, "lsl", 0, 31);
206  }
207  OperandMatchResultTy parsePKHASRImm(SmallVectorImpl<MCParsedAsmOperand*> &O) {
208    return parsePKHImm(O, "asr", 1, 32);
209  }
210  OperandMatchResultTy parseSetEndImm(SmallVectorImpl<MCParsedAsmOperand*>&);
211  OperandMatchResultTy parseShifterImm(SmallVectorImpl<MCParsedAsmOperand*>&);
212  OperandMatchResultTy parseRotImm(SmallVectorImpl<MCParsedAsmOperand*>&);
213  OperandMatchResultTy parseBitfield(SmallVectorImpl<MCParsedAsmOperand*>&);
214  OperandMatchResultTy parsePostIdxReg(SmallVectorImpl<MCParsedAsmOperand*>&);
215  OperandMatchResultTy parseAM3Offset(SmallVectorImpl<MCParsedAsmOperand*>&);
216  OperandMatchResultTy parseFPImm(SmallVectorImpl<MCParsedAsmOperand*>&);
217  OperandMatchResultTy parseVectorList(SmallVectorImpl<MCParsedAsmOperand*>&);
218  OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index,
219                                       SMLoc &EndLoc);
220
221  // Asm Match Converter Methods
222  void cvtT2LdrdPre(MCInst &Inst, const SmallVectorImpl<MCParsedAsmOperand*> &);
223  void cvtT2StrdPre(MCInst &Inst, const SmallVectorImpl<MCParsedAsmOperand*> &);
224  void cvtLdWriteBackRegT2AddrModeImm8(MCInst &Inst,
225                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
226  void cvtStWriteBackRegT2AddrModeImm8(MCInst &Inst,
227                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
228  void cvtLdWriteBackRegAddrMode2(MCInst &Inst,
229                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
230  void cvtLdWriteBackRegAddrModeImm12(MCInst &Inst,
231                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
232  void cvtStWriteBackRegAddrModeImm12(MCInst &Inst,
233                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
234  void cvtStWriteBackRegAddrMode2(MCInst &Inst,
235                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
236  void cvtStWriteBackRegAddrMode3(MCInst &Inst,
237                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
238  void cvtLdExtTWriteBackImm(MCInst &Inst,
239                             const SmallVectorImpl<MCParsedAsmOperand*> &);
240  void cvtLdExtTWriteBackReg(MCInst &Inst,
241                             const SmallVectorImpl<MCParsedAsmOperand*> &);
242  void cvtStExtTWriteBackImm(MCInst &Inst,
243                             const SmallVectorImpl<MCParsedAsmOperand*> &);
244  void cvtStExtTWriteBackReg(MCInst &Inst,
245                             const SmallVectorImpl<MCParsedAsmOperand*> &);
246  void cvtLdrdPre(MCInst &Inst, const SmallVectorImpl<MCParsedAsmOperand*> &);
247  void cvtStrdPre(MCInst &Inst, const SmallVectorImpl<MCParsedAsmOperand*> &);
248  void cvtLdWriteBackRegAddrMode3(MCInst &Inst,
249                                  const SmallVectorImpl<MCParsedAsmOperand*> &);
250  void cvtThumbMultiply(MCInst &Inst,
251                        const SmallVectorImpl<MCParsedAsmOperand*> &);
252  void cvtVLDwbFixed(MCInst &Inst,
253                     const SmallVectorImpl<MCParsedAsmOperand*> &);
254  void cvtVLDwbRegister(MCInst &Inst,
255                        const SmallVectorImpl<MCParsedAsmOperand*> &);
256  void cvtVSTwbFixed(MCInst &Inst,
257                     const SmallVectorImpl<MCParsedAsmOperand*> &);
258  void cvtVSTwbRegister(MCInst &Inst,
259                        const SmallVectorImpl<MCParsedAsmOperand*> &);
260  bool validateInstruction(MCInst &Inst,
261                           const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
262  bool processInstruction(MCInst &Inst,
263                          const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
264  bool shouldOmitCCOutOperand(StringRef Mnemonic,
265                              SmallVectorImpl<MCParsedAsmOperand*> &Operands);
266
267public:
268  enum ARMMatchResultTy {
269    Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
270    Match_RequiresNotITBlock,
271    Match_RequiresV6,
272    Match_RequiresThumb2,
273#define GET_OPERAND_DIAGNOSTIC_TYPES
274#include "ARMGenAsmMatcher.inc"
275
276  };
277
278  ARMAsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser)
279    : MCTargetAsmParser(), STI(_STI), Parser(_Parser), FPReg(-1) {
280    MCAsmParserExtension::Initialize(_Parser);
281
282    // Cache the MCRegisterInfo.
283    MRI = getContext().getRegisterInfo();
284
285    // Initialize the set of available features.
286    setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
287
288    // Not in an ITBlock to start with.
289    ITState.CurPosition = ~0U;
290
291    // Set ELF header flags.
292    // FIXME: This should eventually end up somewhere else where more
293    // intelligent flag decisions can be made. For now we are just maintaining
294    // the statu/parseDirects quo for ARM and setting EF_ARM_EABI_VER5 as the default.
295    if (MCELFStreamer *MES = dyn_cast<MCELFStreamer>(&Parser.getStreamer()))
296      MES->getAssembler().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5);
297  }
298
299  // Implementation of the MCTargetAsmParser interface:
300  bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
301  bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
302                        SMLoc NameLoc,
303                        SmallVectorImpl<MCParsedAsmOperand*> &Operands);
304  bool ParseDirective(AsmToken DirectiveID);
305
306  unsigned validateTargetOperandClass(MCParsedAsmOperand *Op, unsigned Kind);
307  unsigned checkTargetMatchPredicate(MCInst &Inst);
308
309  bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
310                               SmallVectorImpl<MCParsedAsmOperand*> &Operands,
311                               MCStreamer &Out, unsigned &ErrorInfo,
312                               bool MatchingInlineAsm);
313};
314} // end anonymous namespace
315
316namespace {
317
318/// ARMOperand - Instances of this class represent a parsed ARM machine
319/// operand.
320class ARMOperand : public MCParsedAsmOperand {
321  enum KindTy {
322    k_CondCode,
323    k_CCOut,
324    k_ITCondMask,
325    k_CoprocNum,
326    k_CoprocReg,
327    k_CoprocOption,
328    k_Immediate,
329    k_MemBarrierOpt,
330    k_InstSyncBarrierOpt,
331    k_Memory,
332    k_PostIndexRegister,
333    k_MSRMask,
334    k_ProcIFlags,
335    k_VectorIndex,
336    k_Register,
337    k_RegisterList,
338    k_DPRRegisterList,
339    k_SPRRegisterList,
340    k_VectorList,
341    k_VectorListAllLanes,
342    k_VectorListIndexed,
343    k_ShiftedRegister,
344    k_ShiftedImmediate,
345    k_ShifterImmediate,
346    k_RotateImmediate,
347    k_BitfieldDescriptor,
348    k_Token
349  } Kind;
350
351  SMLoc StartLoc, EndLoc;
352  SmallVector<unsigned, 8> Registers;
353
354  struct CCOp {
355    ARMCC::CondCodes Val;
356  };
357
358  struct CopOp {
359    unsigned Val;
360  };
361
362  struct CoprocOptionOp {
363    unsigned Val;
364  };
365
366  struct ITMaskOp {
367    unsigned Mask:4;
368  };
369
370  struct MBOptOp {
371    ARM_MB::MemBOpt Val;
372  };
373
374  struct ISBOptOp {
375    ARM_ISB::InstSyncBOpt Val;
376  };
377
378  struct IFlagsOp {
379    ARM_PROC::IFlags Val;
380  };
381
382  struct MMaskOp {
383    unsigned Val;
384  };
385
386  struct TokOp {
387    const char *Data;
388    unsigned Length;
389  };
390
391  struct RegOp {
392    unsigned RegNum;
393  };
394
395  // A vector register list is a sequential list of 1 to 4 registers.
396  struct VectorListOp {
397    unsigned RegNum;
398    unsigned Count;
399    unsigned LaneIndex;
400    bool isDoubleSpaced;
401  };
402
403  struct VectorIndexOp {
404    unsigned Val;
405  };
406
407  struct ImmOp {
408    const MCExpr *Val;
409  };
410
411  /// Combined record for all forms of ARM address expressions.
412  struct MemoryOp {
413    unsigned BaseRegNum;
414    // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
415    // was specified.
416    const MCConstantExpr *OffsetImm;  // Offset immediate value
417    unsigned OffsetRegNum;    // Offset register num, when OffsetImm == NULL
418    ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
419    unsigned ShiftImm;        // shift for OffsetReg.
420    unsigned Alignment;       // 0 = no alignment specified
421    // n = alignment in bytes (2, 4, 8, 16, or 32)
422    unsigned isNegative : 1;  // Negated OffsetReg? (~'U' bit)
423  };
424
425  struct PostIdxRegOp {
426    unsigned RegNum;
427    bool isAdd;
428    ARM_AM::ShiftOpc ShiftTy;
429    unsigned ShiftImm;
430  };
431
432  struct ShifterImmOp {
433    bool isASR;
434    unsigned Imm;
435  };
436
437  struct RegShiftedRegOp {
438    ARM_AM::ShiftOpc ShiftTy;
439    unsigned SrcReg;
440    unsigned ShiftReg;
441    unsigned ShiftImm;
442  };
443
444  struct RegShiftedImmOp {
445    ARM_AM::ShiftOpc ShiftTy;
446    unsigned SrcReg;
447    unsigned ShiftImm;
448  };
449
450  struct RotImmOp {
451    unsigned Imm;
452  };
453
454  struct BitfieldOp {
455    unsigned LSB;
456    unsigned Width;
457  };
458
459  union {
460    struct CCOp CC;
461    struct CopOp Cop;
462    struct CoprocOptionOp CoprocOption;
463    struct MBOptOp MBOpt;
464    struct ISBOptOp ISBOpt;
465    struct ITMaskOp ITMask;
466    struct IFlagsOp IFlags;
467    struct MMaskOp MMask;
468    struct TokOp Tok;
469    struct RegOp Reg;
470    struct VectorListOp VectorList;
471    struct VectorIndexOp VectorIndex;
472    struct ImmOp Imm;
473    struct MemoryOp Memory;
474    struct PostIdxRegOp PostIdxReg;
475    struct ShifterImmOp ShifterImm;
476    struct RegShiftedRegOp RegShiftedReg;
477    struct RegShiftedImmOp RegShiftedImm;
478    struct RotImmOp RotImm;
479    struct BitfieldOp Bitfield;
480  };
481
482  ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
483public:
484  ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() {
485    Kind = o.Kind;
486    StartLoc = o.StartLoc;
487    EndLoc = o.EndLoc;
488    switch (Kind) {
489    case k_CondCode:
490      CC = o.CC;
491      break;
492    case k_ITCondMask:
493      ITMask = o.ITMask;
494      break;
495    case k_Token:
496      Tok = o.Tok;
497      break;
498    case k_CCOut:
499    case k_Register:
500      Reg = o.Reg;
501      break;
502    case k_RegisterList:
503    case k_DPRRegisterList:
504    case k_SPRRegisterList:
505      Registers = o.Registers;
506      break;
507    case k_VectorList:
508    case k_VectorListAllLanes:
509    case k_VectorListIndexed:
510      VectorList = o.VectorList;
511      break;
512    case k_CoprocNum:
513    case k_CoprocReg:
514      Cop = o.Cop;
515      break;
516    case k_CoprocOption:
517      CoprocOption = o.CoprocOption;
518      break;
519    case k_Immediate:
520      Imm = o.Imm;
521      break;
522    case k_MemBarrierOpt:
523      MBOpt = o.MBOpt;
524      break;
525    case k_InstSyncBarrierOpt:
526      ISBOpt = o.ISBOpt;
527    case k_Memory:
528      Memory = o.Memory;
529      break;
530    case k_PostIndexRegister:
531      PostIdxReg = o.PostIdxReg;
532      break;
533    case k_MSRMask:
534      MMask = o.MMask;
535      break;
536    case k_ProcIFlags:
537      IFlags = o.IFlags;
538      break;
539    case k_ShifterImmediate:
540      ShifterImm = o.ShifterImm;
541      break;
542    case k_ShiftedRegister:
543      RegShiftedReg = o.RegShiftedReg;
544      break;
545    case k_ShiftedImmediate:
546      RegShiftedImm = o.RegShiftedImm;
547      break;
548    case k_RotateImmediate:
549      RotImm = o.RotImm;
550      break;
551    case k_BitfieldDescriptor:
552      Bitfield = o.Bitfield;
553      break;
554    case k_VectorIndex:
555      VectorIndex = o.VectorIndex;
556      break;
557    }
558  }
559
560  /// getStartLoc - Get the location of the first token of this operand.
561  SMLoc getStartLoc() const { return StartLoc; }
562  /// getEndLoc - Get the location of the last token of this operand.
563  SMLoc getEndLoc() const { return EndLoc; }
564  /// getLocRange - Get the range between the first and last token of this
565  /// operand.
566  SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
567
568  ARMCC::CondCodes getCondCode() const {
569    assert(Kind == k_CondCode && "Invalid access!");
570    return CC.Val;
571  }
572
573  unsigned getCoproc() const {
574    assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
575    return Cop.Val;
576  }
577
578  StringRef getToken() const {
579    assert(Kind == k_Token && "Invalid access!");
580    return StringRef(Tok.Data, Tok.Length);
581  }
582
583  unsigned getReg() const {
584    assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
585    return Reg.RegNum;
586  }
587
588  const SmallVectorImpl<unsigned> &getRegList() const {
589    assert((Kind == k_RegisterList || Kind == k_DPRRegisterList ||
590            Kind == k_SPRRegisterList) && "Invalid access!");
591    return Registers;
592  }
593
594  const MCExpr *getImm() const {
595    assert(isImm() && "Invalid access!");
596    return Imm.Val;
597  }
598
599  unsigned getVectorIndex() const {
600    assert(Kind == k_VectorIndex && "Invalid access!");
601    return VectorIndex.Val;
602  }
603
604  ARM_MB::MemBOpt getMemBarrierOpt() const {
605    assert(Kind == k_MemBarrierOpt && "Invalid access!");
606    return MBOpt.Val;
607  }
608
609  ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const {
610    assert(Kind == k_InstSyncBarrierOpt && "Invalid access!");
611    return ISBOpt.Val;
612  }
613
614  ARM_PROC::IFlags getProcIFlags() const {
615    assert(Kind == k_ProcIFlags && "Invalid access!");
616    return IFlags.Val;
617  }
618
619  unsigned getMSRMask() const {
620    assert(Kind == k_MSRMask && "Invalid access!");
621    return MMask.Val;
622  }
623
624  bool isCoprocNum() const { return Kind == k_CoprocNum; }
625  bool isCoprocReg() const { return Kind == k_CoprocReg; }
626  bool isCoprocOption() const { return Kind == k_CoprocOption; }
627  bool isCondCode() const { return Kind == k_CondCode; }
628  bool isCCOut() const { return Kind == k_CCOut; }
629  bool isITMask() const { return Kind == k_ITCondMask; }
630  bool isITCondCode() const { return Kind == k_CondCode; }
631  bool isImm() const { return Kind == k_Immediate; }
632  // checks whether this operand is an unsigned offset which fits is a field
633  // of specified width and scaled by a specific number of bits
634  template<unsigned width, unsigned scale>
635  bool isUnsignedOffset() const {
636    if (!isImm()) return false;
637    if (dyn_cast<MCSymbolRefExpr>(Imm.Val)) return true;
638    if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
639      int64_t Val = CE->getValue();
640      int64_t Align = 1LL << scale;
641      int64_t Max = Align * ((1LL << width) - 1);
642      return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max);
643    }
644    return false;
645  }
646  bool isFPImm() const {
647    if (!isImm()) return false;
648    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
649    if (!CE) return false;
650    int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
651    return Val != -1;
652  }
653  bool isFBits16() const {
654    if (!isImm()) return false;
655    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
656    if (!CE) return false;
657    int64_t Value = CE->getValue();
658    return Value >= 0 && Value <= 16;
659  }
660  bool isFBits32() const {
661    if (!isImm()) return false;
662    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
663    if (!CE) return false;
664    int64_t Value = CE->getValue();
665    return Value >= 1 && Value <= 32;
666  }
667  bool isImm8s4() const {
668    if (!isImm()) return false;
669    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
670    if (!CE) return false;
671    int64_t Value = CE->getValue();
672    return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020;
673  }
674  bool isImm0_4() const {
675    if (!isImm()) return false;
676    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
677    if (!CE) return false;
678    int64_t Value = CE->getValue();
679    return Value >= 0 && Value < 5;
680  }
681  bool isImm0_1020s4() const {
682    if (!isImm()) return false;
683    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
684    if (!CE) return false;
685    int64_t Value = CE->getValue();
686    return ((Value & 3) == 0) && Value >= 0 && Value <= 1020;
687  }
688  bool isImm0_508s4() const {
689    if (!isImm()) return false;
690    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
691    if (!CE) return false;
692    int64_t Value = CE->getValue();
693    return ((Value & 3) == 0) && Value >= 0 && Value <= 508;
694  }
695  bool isImm0_508s4Neg() const {
696    if (!isImm()) return false;
697    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
698    if (!CE) return false;
699    int64_t Value = -CE->getValue();
700    // explicitly exclude zero. we want that to use the normal 0_508 version.
701    return ((Value & 3) == 0) && Value > 0 && Value <= 508;
702  }
703  bool isImm0_255() const {
704    if (!isImm()) return false;
705    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
706    if (!CE) return false;
707    int64_t Value = CE->getValue();
708    return Value >= 0 && Value < 256;
709  }
710  bool isImm0_4095() const {
711    if (!isImm()) return false;
712    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
713    if (!CE) return false;
714    int64_t Value = CE->getValue();
715    return Value >= 0 && Value < 4096;
716  }
717  bool isImm0_4095Neg() const {
718    if (!isImm()) return false;
719    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
720    if (!CE) return false;
721    int64_t Value = -CE->getValue();
722    return Value > 0 && Value < 4096;
723  }
724  bool isImm0_1() const {
725    if (!isImm()) return false;
726    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
727    if (!CE) return false;
728    int64_t Value = CE->getValue();
729    return Value >= 0 && Value < 2;
730  }
731  bool isImm0_3() const {
732    if (!isImm()) return false;
733    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
734    if (!CE) return false;
735    int64_t Value = CE->getValue();
736    return Value >= 0 && Value < 4;
737  }
738  bool isImm0_7() const {
739    if (!isImm()) return false;
740    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
741    if (!CE) return false;
742    int64_t Value = CE->getValue();
743    return Value >= 0 && Value < 8;
744  }
745  bool isImm0_15() const {
746    if (!isImm()) return false;
747    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
748    if (!CE) return false;
749    int64_t Value = CE->getValue();
750    return Value >= 0 && Value < 16;
751  }
752  bool isImm0_31() const {
753    if (!isImm()) return false;
754    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
755    if (!CE) return false;
756    int64_t Value = CE->getValue();
757    return Value >= 0 && Value < 32;
758  }
759  bool isImm0_63() const {
760    if (!isImm()) return false;
761    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
762    if (!CE) return false;
763    int64_t Value = CE->getValue();
764    return Value >= 0 && Value < 64;
765  }
766  bool isImm8() const {
767    if (!isImm()) return false;
768    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
769    if (!CE) return false;
770    int64_t Value = CE->getValue();
771    return Value == 8;
772  }
773  bool isImm16() const {
774    if (!isImm()) return false;
775    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
776    if (!CE) return false;
777    int64_t Value = CE->getValue();
778    return Value == 16;
779  }
780  bool isImm32() const {
781    if (!isImm()) return false;
782    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
783    if (!CE) return false;
784    int64_t Value = CE->getValue();
785    return Value == 32;
786  }
787  bool isShrImm8() const {
788    if (!isImm()) return false;
789    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
790    if (!CE) return false;
791    int64_t Value = CE->getValue();
792    return Value > 0 && Value <= 8;
793  }
794  bool isShrImm16() const {
795    if (!isImm()) return false;
796    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
797    if (!CE) return false;
798    int64_t Value = CE->getValue();
799    return Value > 0 && Value <= 16;
800  }
801  bool isShrImm32() const {
802    if (!isImm()) return false;
803    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
804    if (!CE) return false;
805    int64_t Value = CE->getValue();
806    return Value > 0 && Value <= 32;
807  }
808  bool isShrImm64() const {
809    if (!isImm()) return false;
810    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
811    if (!CE) return false;
812    int64_t Value = CE->getValue();
813    return Value > 0 && Value <= 64;
814  }
815  bool isImm1_7() const {
816    if (!isImm()) return false;
817    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
818    if (!CE) return false;
819    int64_t Value = CE->getValue();
820    return Value > 0 && Value < 8;
821  }
822  bool isImm1_15() const {
823    if (!isImm()) return false;
824    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
825    if (!CE) return false;
826    int64_t Value = CE->getValue();
827    return Value > 0 && Value < 16;
828  }
829  bool isImm1_31() const {
830    if (!isImm()) return false;
831    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
832    if (!CE) return false;
833    int64_t Value = CE->getValue();
834    return Value > 0 && Value < 32;
835  }
836  bool isImm1_16() const {
837    if (!isImm()) return false;
838    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
839    if (!CE) return false;
840    int64_t Value = CE->getValue();
841    return Value > 0 && Value < 17;
842  }
843  bool isImm1_32() const {
844    if (!isImm()) return false;
845    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
846    if (!CE) return false;
847    int64_t Value = CE->getValue();
848    return Value > 0 && Value < 33;
849  }
850  bool isImm0_32() const {
851    if (!isImm()) return false;
852    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
853    if (!CE) return false;
854    int64_t Value = CE->getValue();
855    return Value >= 0 && Value < 33;
856  }
857  bool isImm0_65535() const {
858    if (!isImm()) return false;
859    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
860    if (!CE) return false;
861    int64_t Value = CE->getValue();
862    return Value >= 0 && Value < 65536;
863  }
864  bool isImm0_65535Expr() const {
865    if (!isImm()) return false;
866    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
867    // If it's not a constant expression, it'll generate a fixup and be
868    // handled later.
869    if (!CE) return true;
870    int64_t Value = CE->getValue();
871    return Value >= 0 && Value < 65536;
872  }
873  bool isImm24bit() const {
874    if (!isImm()) return false;
875    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
876    if (!CE) return false;
877    int64_t Value = CE->getValue();
878    return Value >= 0 && Value <= 0xffffff;
879  }
880  bool isImmThumbSR() const {
881    if (!isImm()) return false;
882    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
883    if (!CE) return false;
884    int64_t Value = CE->getValue();
885    return Value > 0 && Value < 33;
886  }
887  bool isPKHLSLImm() const {
888    if (!isImm()) return false;
889    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
890    if (!CE) return false;
891    int64_t Value = CE->getValue();
892    return Value >= 0 && Value < 32;
893  }
894  bool isPKHASRImm() const {
895    if (!isImm()) return false;
896    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
897    if (!CE) return false;
898    int64_t Value = CE->getValue();
899    return Value > 0 && Value <= 32;
900  }
901  bool isAdrLabel() const {
902    // If we have an immediate that's not a constant, treat it as a label
903    // reference needing a fixup. If it is a constant, but it can't fit
904    // into shift immediate encoding, we reject it.
905    if (isImm() && !isa<MCConstantExpr>(getImm())) return true;
906    else return (isARMSOImm() || isARMSOImmNeg());
907  }
908  bool isARMSOImm() const {
909    if (!isImm()) return false;
910    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
911    if (!CE) return false;
912    int64_t Value = CE->getValue();
913    return ARM_AM::getSOImmVal(Value) != -1;
914  }
915  bool isARMSOImmNot() const {
916    if (!isImm()) return false;
917    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
918    if (!CE) return false;
919    int64_t Value = CE->getValue();
920    return ARM_AM::getSOImmVal(~Value) != -1;
921  }
922  bool isARMSOImmNeg() const {
923    if (!isImm()) return false;
924    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
925    if (!CE) return false;
926    int64_t Value = CE->getValue();
927    // Only use this when not representable as a plain so_imm.
928    return ARM_AM::getSOImmVal(Value) == -1 &&
929      ARM_AM::getSOImmVal(-Value) != -1;
930  }
931  bool isT2SOImm() const {
932    if (!isImm()) return false;
933    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
934    if (!CE) return false;
935    int64_t Value = CE->getValue();
936    return ARM_AM::getT2SOImmVal(Value) != -1;
937  }
938  bool isT2SOImmNot() const {
939    if (!isImm()) return false;
940    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
941    if (!CE) return false;
942    int64_t Value = CE->getValue();
943    return ARM_AM::getT2SOImmVal(~Value) != -1;
944  }
945  bool isT2SOImmNeg() const {
946    if (!isImm()) return false;
947    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
948    if (!CE) return false;
949    int64_t Value = CE->getValue();
950    // Only use this when not representable as a plain so_imm.
951    return ARM_AM::getT2SOImmVal(Value) == -1 &&
952      ARM_AM::getT2SOImmVal(-Value) != -1;
953  }
954  bool isSetEndImm() const {
955    if (!isImm()) return false;
956    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
957    if (!CE) return false;
958    int64_t Value = CE->getValue();
959    return Value == 1 || Value == 0;
960  }
961  bool isReg() const { return Kind == k_Register; }
962  bool isRegList() const { return Kind == k_RegisterList; }
963  bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
964  bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
965  bool isToken() const { return Kind == k_Token; }
966  bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
967  bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; }
968  bool isMem() const { return Kind == k_Memory; }
969  bool isShifterImm() const { return Kind == k_ShifterImmediate; }
970  bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; }
971  bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; }
972  bool isRotImm() const { return Kind == k_RotateImmediate; }
973  bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
974  bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; }
975  bool isPostIdxReg() const {
976    return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift;
977  }
978  bool isMemNoOffset(bool alignOK = false) const {
979    if (!isMem())
980      return false;
981    // No offset of any kind.
982    return Memory.OffsetRegNum == 0 && Memory.OffsetImm == 0 &&
983     (alignOK || Memory.Alignment == 0);
984  }
985  bool isMemPCRelImm12() const {
986    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
987      return false;
988    // Base register must be PC.
989    if (Memory.BaseRegNum != ARM::PC)
990      return false;
991    // Immediate offset in range [-4095, 4095].
992    if (!Memory.OffsetImm) return true;
993    int64_t Val = Memory.OffsetImm->getValue();
994    return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
995  }
996  bool isAlignedMemory() const {
997    return isMemNoOffset(true);
998  }
999  bool isAddrMode2() const {
1000    if (!isMem() || Memory.Alignment != 0) return false;
1001    // Check for register offset.
1002    if (Memory.OffsetRegNum) return true;
1003    // Immediate offset in range [-4095, 4095].
1004    if (!Memory.OffsetImm) return true;
1005    int64_t Val = Memory.OffsetImm->getValue();
1006    return Val > -4096 && Val < 4096;
1007  }
1008  bool isAM2OffsetImm() const {
1009    if (!isImm()) return false;
1010    // Immediate offset in range [-4095, 4095].
1011    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1012    if (!CE) return false;
1013    int64_t Val = CE->getValue();
1014    return (Val == INT32_MIN) || (Val > -4096 && Val < 4096);
1015  }
1016  bool isAddrMode3() const {
1017    // If we have an immediate that's not a constant, treat it as a label
1018    // reference needing a fixup. If it is a constant, it's something else
1019    // and we reject it.
1020    if (isImm() && !isa<MCConstantExpr>(getImm()))
1021      return true;
1022    if (!isMem() || Memory.Alignment != 0) return false;
1023    // No shifts are legal for AM3.
1024    if (Memory.ShiftType != ARM_AM::no_shift) return false;
1025    // Check for register offset.
1026    if (Memory.OffsetRegNum) return true;
1027    // Immediate offset in range [-255, 255].
1028    if (!Memory.OffsetImm) return true;
1029    int64_t Val = Memory.OffsetImm->getValue();
1030    // The #-0 offset is encoded as INT32_MIN, and we have to check
1031    // for this too.
1032    return (Val > -256 && Val < 256) || Val == INT32_MIN;
1033  }
1034  bool isAM3Offset() const {
1035    if (Kind != k_Immediate && Kind != k_PostIndexRegister)
1036      return false;
1037    if (Kind == k_PostIndexRegister)
1038      return PostIdxReg.ShiftTy == ARM_AM::no_shift;
1039    // Immediate offset in range [-255, 255].
1040    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1041    if (!CE) return false;
1042    int64_t Val = CE->getValue();
1043    // Special case, #-0 is INT32_MIN.
1044    return (Val > -256 && Val < 256) || Val == INT32_MIN;
1045  }
1046  bool isAddrMode5() const {
1047    // If we have an immediate that's not a constant, treat it as a label
1048    // reference needing a fixup. If it is a constant, it's something else
1049    // and we reject it.
1050    if (isImm() && !isa<MCConstantExpr>(getImm()))
1051      return true;
1052    if (!isMem() || Memory.Alignment != 0) return false;
1053    // Check for register offset.
1054    if (Memory.OffsetRegNum) return false;
1055    // Immediate offset in range [-1020, 1020] and a multiple of 4.
1056    if (!Memory.OffsetImm) return true;
1057    int64_t Val = Memory.OffsetImm->getValue();
1058    return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
1059      Val == INT32_MIN;
1060  }
1061  bool isMemTBB() const {
1062    if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1063        Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1064      return false;
1065    return true;
1066  }
1067  bool isMemTBH() const {
1068    if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1069        Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
1070        Memory.Alignment != 0 )
1071      return false;
1072    return true;
1073  }
1074  bool isMemRegOffset() const {
1075    if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0)
1076      return false;
1077    return true;
1078  }
1079  bool isT2MemRegOffset() const {
1080    if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1081        Memory.Alignment != 0)
1082      return false;
1083    // Only lsl #{0, 1, 2, 3} allowed.
1084    if (Memory.ShiftType == ARM_AM::no_shift)
1085      return true;
1086    if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
1087      return false;
1088    return true;
1089  }
1090  bool isMemThumbRR() const {
1091    // Thumb reg+reg addressing is simple. Just two registers, a base and
1092    // an offset. No shifts, negations or any other complicating factors.
1093    if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1094        Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1095      return false;
1096    return isARMLowRegister(Memory.BaseRegNum) &&
1097      (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
1098  }
1099  bool isMemThumbRIs4() const {
1100    if (!isMem() || Memory.OffsetRegNum != 0 ||
1101        !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1102      return false;
1103    // Immediate offset, multiple of 4 in range [0, 124].
1104    if (!Memory.OffsetImm) return true;
1105    int64_t Val = Memory.OffsetImm->getValue();
1106    return Val >= 0 && Val <= 124 && (Val % 4) == 0;
1107  }
1108  bool isMemThumbRIs2() const {
1109    if (!isMem() || Memory.OffsetRegNum != 0 ||
1110        !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1111      return false;
1112    // Immediate offset, multiple of 4 in range [0, 62].
1113    if (!Memory.OffsetImm) return true;
1114    int64_t Val = Memory.OffsetImm->getValue();
1115    return Val >= 0 && Val <= 62 && (Val % 2) == 0;
1116  }
1117  bool isMemThumbRIs1() const {
1118    if (!isMem() || Memory.OffsetRegNum != 0 ||
1119        !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1120      return false;
1121    // Immediate offset in range [0, 31].
1122    if (!Memory.OffsetImm) return true;
1123    int64_t Val = Memory.OffsetImm->getValue();
1124    return Val >= 0 && Val <= 31;
1125  }
1126  bool isMemThumbSPI() const {
1127    if (!isMem() || Memory.OffsetRegNum != 0 ||
1128        Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
1129      return false;
1130    // Immediate offset, multiple of 4 in range [0, 1020].
1131    if (!Memory.OffsetImm) return true;
1132    int64_t Val = Memory.OffsetImm->getValue();
1133    return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
1134  }
1135  bool isMemImm8s4Offset() const {
1136    // If we have an immediate that's not a constant, treat it as a label
1137    // reference needing a fixup. If it is a constant, it's something else
1138    // and we reject it.
1139    if (isImm() && !isa<MCConstantExpr>(getImm()))
1140      return true;
1141    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1142      return false;
1143    // Immediate offset a multiple of 4 in range [-1020, 1020].
1144    if (!Memory.OffsetImm) return true;
1145    int64_t Val = Memory.OffsetImm->getValue();
1146    // Special case, #-0 is INT32_MIN.
1147    return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN;
1148  }
1149  bool isMemImm0_1020s4Offset() const {
1150    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1151      return false;
1152    // Immediate offset a multiple of 4 in range [0, 1020].
1153    if (!Memory.OffsetImm) return true;
1154    int64_t Val = Memory.OffsetImm->getValue();
1155    return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
1156  }
1157  bool isMemImm8Offset() const {
1158    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1159      return false;
1160    // Base reg of PC isn't allowed for these encodings.
1161    if (Memory.BaseRegNum == ARM::PC) return false;
1162    // Immediate offset in range [-255, 255].
1163    if (!Memory.OffsetImm) return true;
1164    int64_t Val = Memory.OffsetImm->getValue();
1165    return (Val == INT32_MIN) || (Val > -256 && Val < 256);
1166  }
1167  bool isMemPosImm8Offset() const {
1168    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1169      return false;
1170    // Immediate offset in range [0, 255].
1171    if (!Memory.OffsetImm) return true;
1172    int64_t Val = Memory.OffsetImm->getValue();
1173    return Val >= 0 && Val < 256;
1174  }
1175  bool isMemNegImm8Offset() const {
1176    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1177      return false;
1178    // Base reg of PC isn't allowed for these encodings.
1179    if (Memory.BaseRegNum == ARM::PC) return false;
1180    // Immediate offset in range [-255, -1].
1181    if (!Memory.OffsetImm) return false;
1182    int64_t Val = Memory.OffsetImm->getValue();
1183    return (Val == INT32_MIN) || (Val > -256 && Val < 0);
1184  }
1185  bool isMemUImm12Offset() const {
1186    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1187      return false;
1188    // Immediate offset in range [0, 4095].
1189    if (!Memory.OffsetImm) return true;
1190    int64_t Val = Memory.OffsetImm->getValue();
1191    return (Val >= 0 && Val < 4096);
1192  }
1193  bool isMemImm12Offset() const {
1194    // If we have an immediate that's not a constant, treat it as a label
1195    // reference needing a fixup. If it is a constant, it's something else
1196    // and we reject it.
1197    if (isImm() && !isa<MCConstantExpr>(getImm()))
1198      return true;
1199
1200    if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1201      return false;
1202    // Immediate offset in range [-4095, 4095].
1203    if (!Memory.OffsetImm) return true;
1204    int64_t Val = Memory.OffsetImm->getValue();
1205    return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
1206  }
1207  bool isPostIdxImm8() const {
1208    if (!isImm()) return false;
1209    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1210    if (!CE) return false;
1211    int64_t Val = CE->getValue();
1212    return (Val > -256 && Val < 256) || (Val == INT32_MIN);
1213  }
1214  bool isPostIdxImm8s4() const {
1215    if (!isImm()) return false;
1216    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1217    if (!CE) return false;
1218    int64_t Val = CE->getValue();
1219    return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
1220      (Val == INT32_MIN);
1221  }
1222
1223  bool isMSRMask() const { return Kind == k_MSRMask; }
1224  bool isProcIFlags() const { return Kind == k_ProcIFlags; }
1225
1226  // NEON operands.
1227  bool isSingleSpacedVectorList() const {
1228    return Kind == k_VectorList && !VectorList.isDoubleSpaced;
1229  }
1230  bool isDoubleSpacedVectorList() const {
1231    return Kind == k_VectorList && VectorList.isDoubleSpaced;
1232  }
1233  bool isVecListOneD() const {
1234    if (!isSingleSpacedVectorList()) return false;
1235    return VectorList.Count == 1;
1236  }
1237
1238  bool isVecListDPair() const {
1239    if (!isSingleSpacedVectorList()) return false;
1240    return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1241              .contains(VectorList.RegNum));
1242  }
1243
1244  bool isVecListThreeD() const {
1245    if (!isSingleSpacedVectorList()) return false;
1246    return VectorList.Count == 3;
1247  }
1248
1249  bool isVecListFourD() const {
1250    if (!isSingleSpacedVectorList()) return false;
1251    return VectorList.Count == 4;
1252  }
1253
1254  bool isVecListDPairSpaced() const {
1255    if (isSingleSpacedVectorList()) return false;
1256    return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
1257              .contains(VectorList.RegNum));
1258  }
1259
1260  bool isVecListThreeQ() const {
1261    if (!isDoubleSpacedVectorList()) return false;
1262    return VectorList.Count == 3;
1263  }
1264
1265  bool isVecListFourQ() const {
1266    if (!isDoubleSpacedVectorList()) return false;
1267    return VectorList.Count == 4;
1268  }
1269
1270  bool isSingleSpacedVectorAllLanes() const {
1271    return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
1272  }
1273  bool isDoubleSpacedVectorAllLanes() const {
1274    return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
1275  }
1276  bool isVecListOneDAllLanes() const {
1277    if (!isSingleSpacedVectorAllLanes()) return false;
1278    return VectorList.Count == 1;
1279  }
1280
1281  bool isVecListDPairAllLanes() const {
1282    if (!isSingleSpacedVectorAllLanes()) return false;
1283    return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1284              .contains(VectorList.RegNum));
1285  }
1286
1287  bool isVecListDPairSpacedAllLanes() const {
1288    if (!isDoubleSpacedVectorAllLanes()) return false;
1289    return VectorList.Count == 2;
1290  }
1291
1292  bool isVecListThreeDAllLanes() const {
1293    if (!isSingleSpacedVectorAllLanes()) return false;
1294    return VectorList.Count == 3;
1295  }
1296
1297  bool isVecListThreeQAllLanes() const {
1298    if (!isDoubleSpacedVectorAllLanes()) return false;
1299    return VectorList.Count == 3;
1300  }
1301
1302  bool isVecListFourDAllLanes() const {
1303    if (!isSingleSpacedVectorAllLanes()) return false;
1304    return VectorList.Count == 4;
1305  }
1306
1307  bool isVecListFourQAllLanes() const {
1308    if (!isDoubleSpacedVectorAllLanes()) return false;
1309    return VectorList.Count == 4;
1310  }
1311
1312  bool isSingleSpacedVectorIndexed() const {
1313    return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
1314  }
1315  bool isDoubleSpacedVectorIndexed() const {
1316    return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
1317  }
1318  bool isVecListOneDByteIndexed() const {
1319    if (!isSingleSpacedVectorIndexed()) return false;
1320    return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
1321  }
1322
1323  bool isVecListOneDHWordIndexed() const {
1324    if (!isSingleSpacedVectorIndexed()) return false;
1325    return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
1326  }
1327
1328  bool isVecListOneDWordIndexed() const {
1329    if (!isSingleSpacedVectorIndexed()) return false;
1330    return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
1331  }
1332
1333  bool isVecListTwoDByteIndexed() const {
1334    if (!isSingleSpacedVectorIndexed()) return false;
1335    return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
1336  }
1337
1338  bool isVecListTwoDHWordIndexed() const {
1339    if (!isSingleSpacedVectorIndexed()) return false;
1340    return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
1341  }
1342
1343  bool isVecListTwoQWordIndexed() const {
1344    if (!isDoubleSpacedVectorIndexed()) return false;
1345    return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
1346  }
1347
1348  bool isVecListTwoQHWordIndexed() const {
1349    if (!isDoubleSpacedVectorIndexed()) return false;
1350    return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
1351  }
1352
1353  bool isVecListTwoDWordIndexed() const {
1354    if (!isSingleSpacedVectorIndexed()) return false;
1355    return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
1356  }
1357
1358  bool isVecListThreeDByteIndexed() const {
1359    if (!isSingleSpacedVectorIndexed()) return false;
1360    return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
1361  }
1362
1363  bool isVecListThreeDHWordIndexed() const {
1364    if (!isSingleSpacedVectorIndexed()) return false;
1365    return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
1366  }
1367
1368  bool isVecListThreeQWordIndexed() const {
1369    if (!isDoubleSpacedVectorIndexed()) return false;
1370    return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
1371  }
1372
1373  bool isVecListThreeQHWordIndexed() const {
1374    if (!isDoubleSpacedVectorIndexed()) return false;
1375    return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
1376  }
1377
1378  bool isVecListThreeDWordIndexed() const {
1379    if (!isSingleSpacedVectorIndexed()) return false;
1380    return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
1381  }
1382
1383  bool isVecListFourDByteIndexed() const {
1384    if (!isSingleSpacedVectorIndexed()) return false;
1385    return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
1386  }
1387
1388  bool isVecListFourDHWordIndexed() const {
1389    if (!isSingleSpacedVectorIndexed()) return false;
1390    return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
1391  }
1392
1393  bool isVecListFourQWordIndexed() const {
1394    if (!isDoubleSpacedVectorIndexed()) return false;
1395    return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
1396  }
1397
1398  bool isVecListFourQHWordIndexed() const {
1399    if (!isDoubleSpacedVectorIndexed()) return false;
1400    return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
1401  }
1402
1403  bool isVecListFourDWordIndexed() const {
1404    if (!isSingleSpacedVectorIndexed()) return false;
1405    return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
1406  }
1407
1408  bool isVectorIndex8() const {
1409    if (Kind != k_VectorIndex) return false;
1410    return VectorIndex.Val < 8;
1411  }
1412  bool isVectorIndex16() const {
1413    if (Kind != k_VectorIndex) return false;
1414    return VectorIndex.Val < 4;
1415  }
1416  bool isVectorIndex32() const {
1417    if (Kind != k_VectorIndex) return false;
1418    return VectorIndex.Val < 2;
1419  }
1420
1421  bool isNEONi8splat() const {
1422    if (!isImm()) return false;
1423    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1424    // Must be a constant.
1425    if (!CE) return false;
1426    int64_t Value = CE->getValue();
1427    // i8 value splatted across 8 bytes. The immediate is just the 8 byte
1428    // value.
1429    return Value >= 0 && Value < 256;
1430  }
1431
1432  bool isNEONi16splat() const {
1433    if (!isImm()) return false;
1434    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1435    // Must be a constant.
1436    if (!CE) return false;
1437    int64_t Value = CE->getValue();
1438    // i16 value in the range [0,255] or [0x0100, 0xff00]
1439    return (Value >= 0 && Value < 256) || (Value >= 0x0100 && Value <= 0xff00);
1440  }
1441
1442  bool isNEONi32splat() const {
1443    if (!isImm()) return false;
1444    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1445    // Must be a constant.
1446    if (!CE) return false;
1447    int64_t Value = CE->getValue();
1448    // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
1449    return (Value >= 0 && Value < 256) ||
1450      (Value >= 0x0100 && Value <= 0xff00) ||
1451      (Value >= 0x010000 && Value <= 0xff0000) ||
1452      (Value >= 0x01000000 && Value <= 0xff000000);
1453  }
1454
1455  bool isNEONi32vmov() const {
1456    if (!isImm()) return false;
1457    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1458    // Must be a constant.
1459    if (!CE) return false;
1460    int64_t Value = CE->getValue();
1461    // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
1462    // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
1463    return (Value >= 0 && Value < 256) ||
1464      (Value >= 0x0100 && Value <= 0xff00) ||
1465      (Value >= 0x010000 && Value <= 0xff0000) ||
1466      (Value >= 0x01000000 && Value <= 0xff000000) ||
1467      (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
1468      (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
1469  }
1470  bool isNEONi32vmovNeg() const {
1471    if (!isImm()) return false;
1472    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1473    // Must be a constant.
1474    if (!CE) return false;
1475    int64_t Value = ~CE->getValue();
1476    // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
1477    // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
1478    return (Value >= 0 && Value < 256) ||
1479      (Value >= 0x0100 && Value <= 0xff00) ||
1480      (Value >= 0x010000 && Value <= 0xff0000) ||
1481      (Value >= 0x01000000 && Value <= 0xff000000) ||
1482      (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
1483      (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
1484  }
1485
1486  bool isNEONi64splat() const {
1487    if (!isImm()) return false;
1488    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1489    // Must be a constant.
1490    if (!CE) return false;
1491    uint64_t Value = CE->getValue();
1492    // i64 value with each byte being either 0 or 0xff.
1493    for (unsigned i = 0; i < 8; ++i)
1494      if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
1495    return true;
1496  }
1497
1498  void addExpr(MCInst &Inst, const MCExpr *Expr) const {
1499    // Add as immediates when possible.  Null MCExpr = 0.
1500    if (Expr == 0)
1501      Inst.addOperand(MCOperand::CreateImm(0));
1502    else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
1503      Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
1504    else
1505      Inst.addOperand(MCOperand::CreateExpr(Expr));
1506  }
1507
1508  void addCondCodeOperands(MCInst &Inst, unsigned N) const {
1509    assert(N == 2 && "Invalid number of operands!");
1510    Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
1511    unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
1512    Inst.addOperand(MCOperand::CreateReg(RegNum));
1513  }
1514
1515  void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
1516    assert(N == 1 && "Invalid number of operands!");
1517    Inst.addOperand(MCOperand::CreateImm(getCoproc()));
1518  }
1519
1520  void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
1521    assert(N == 1 && "Invalid number of operands!");
1522    Inst.addOperand(MCOperand::CreateImm(getCoproc()));
1523  }
1524
1525  void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
1526    assert(N == 1 && "Invalid number of operands!");
1527    Inst.addOperand(MCOperand::CreateImm(CoprocOption.Val));
1528  }
1529
1530  void addITMaskOperands(MCInst &Inst, unsigned N) const {
1531    assert(N == 1 && "Invalid number of operands!");
1532    Inst.addOperand(MCOperand::CreateImm(ITMask.Mask));
1533  }
1534
1535  void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
1536    assert(N == 1 && "Invalid number of operands!");
1537    Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
1538  }
1539
1540  void addCCOutOperands(MCInst &Inst, unsigned N) const {
1541    assert(N == 1 && "Invalid number of operands!");
1542    Inst.addOperand(MCOperand::CreateReg(getReg()));
1543  }
1544
1545  void addRegOperands(MCInst &Inst, unsigned N) const {
1546    assert(N == 1 && "Invalid number of operands!");
1547    Inst.addOperand(MCOperand::CreateReg(getReg()));
1548  }
1549
1550  void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
1551    assert(N == 3 && "Invalid number of operands!");
1552    assert(isRegShiftedReg() &&
1553           "addRegShiftedRegOperands() on non RegShiftedReg!");
1554    Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.SrcReg));
1555    Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.ShiftReg));
1556    Inst.addOperand(MCOperand::CreateImm(
1557      ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
1558  }
1559
1560  void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
1561    assert(N == 2 && "Invalid number of operands!");
1562    assert(isRegShiftedImm() &&
1563           "addRegShiftedImmOperands() on non RegShiftedImm!");
1564    Inst.addOperand(MCOperand::CreateReg(RegShiftedImm.SrcReg));
1565    // Shift of #32 is encoded as 0 where permitted
1566    unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
1567    Inst.addOperand(MCOperand::CreateImm(
1568      ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
1569  }
1570
1571  void addShifterImmOperands(MCInst &Inst, unsigned N) const {
1572    assert(N == 1 && "Invalid number of operands!");
1573    Inst.addOperand(MCOperand::CreateImm((ShifterImm.isASR << 5) |
1574                                         ShifterImm.Imm));
1575  }
1576
1577  void addRegListOperands(MCInst &Inst, unsigned N) const {
1578    assert(N == 1 && "Invalid number of operands!");
1579    const SmallVectorImpl<unsigned> &RegList = getRegList();
1580    for (SmallVectorImpl<unsigned>::const_iterator
1581           I = RegList.begin(), E = RegList.end(); I != E; ++I)
1582      Inst.addOperand(MCOperand::CreateReg(*I));
1583  }
1584
1585  void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
1586    addRegListOperands(Inst, N);
1587  }
1588
1589  void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
1590    addRegListOperands(Inst, N);
1591  }
1592
1593  void addRotImmOperands(MCInst &Inst, unsigned N) const {
1594    assert(N == 1 && "Invalid number of operands!");
1595    // Encoded as val>>3. The printer handles display as 8, 16, 24.
1596    Inst.addOperand(MCOperand::CreateImm(RotImm.Imm >> 3));
1597  }
1598
1599  void addBitfieldOperands(MCInst &Inst, unsigned N) const {
1600    assert(N == 1 && "Invalid number of operands!");
1601    // Munge the lsb/width into a bitfield mask.
1602    unsigned lsb = Bitfield.LSB;
1603    unsigned width = Bitfield.Width;
1604    // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
1605    uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
1606                      (32 - (lsb + width)));
1607    Inst.addOperand(MCOperand::CreateImm(Mask));
1608  }
1609
1610  void addImmOperands(MCInst &Inst, unsigned N) const {
1611    assert(N == 1 && "Invalid number of operands!");
1612    addExpr(Inst, getImm());
1613  }
1614
1615  void addFBits16Operands(MCInst &Inst, unsigned N) const {
1616    assert(N == 1 && "Invalid number of operands!");
1617    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1618    Inst.addOperand(MCOperand::CreateImm(16 - CE->getValue()));
1619  }
1620
1621  void addFBits32Operands(MCInst &Inst, unsigned N) const {
1622    assert(N == 1 && "Invalid number of operands!");
1623    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1624    Inst.addOperand(MCOperand::CreateImm(32 - CE->getValue()));
1625  }
1626
1627  void addFPImmOperands(MCInst &Inst, unsigned N) const {
1628    assert(N == 1 && "Invalid number of operands!");
1629    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1630    int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
1631    Inst.addOperand(MCOperand::CreateImm(Val));
1632  }
1633
1634  void addImm8s4Operands(MCInst &Inst, unsigned N) const {
1635    assert(N == 1 && "Invalid number of operands!");
1636    // FIXME: We really want to scale the value here, but the LDRD/STRD
1637    // instruction don't encode operands that way yet.
1638    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1639    Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
1640  }
1641
1642  void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
1643    assert(N == 1 && "Invalid number of operands!");
1644    // The immediate is scaled by four in the encoding and is stored
1645    // in the MCInst as such. Lop off the low two bits here.
1646    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1647    Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
1648  }
1649
1650  void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
1651    assert(N == 1 && "Invalid number of operands!");
1652    // The immediate is scaled by four in the encoding and is stored
1653    // in the MCInst as such. Lop off the low two bits here.
1654    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1655    Inst.addOperand(MCOperand::CreateImm(-(CE->getValue() / 4)));
1656  }
1657
1658  void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
1659    assert(N == 1 && "Invalid number of operands!");
1660    // The immediate is scaled by four in the encoding and is stored
1661    // in the MCInst as such. Lop off the low two bits here.
1662    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1663    Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
1664  }
1665
1666  void addImm1_16Operands(MCInst &Inst, unsigned N) const {
1667    assert(N == 1 && "Invalid number of operands!");
1668    // The constant encodes as the immediate-1, and we store in the instruction
1669    // the bits as encoded, so subtract off one here.
1670    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1671    Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
1672  }
1673
1674  void addImm1_32Operands(MCInst &Inst, unsigned N) const {
1675    assert(N == 1 && "Invalid number of operands!");
1676    // The constant encodes as the immediate-1, and we store in the instruction
1677    // the bits as encoded, so subtract off one here.
1678    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1679    Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
1680  }
1681
1682  void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
1683    assert(N == 1 && "Invalid number of operands!");
1684    // The constant encodes as the immediate, except for 32, which encodes as
1685    // zero.
1686    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1687    unsigned Imm = CE->getValue();
1688    Inst.addOperand(MCOperand::CreateImm((Imm == 32 ? 0 : Imm)));
1689  }
1690
1691  void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
1692    assert(N == 1 && "Invalid number of operands!");
1693    // An ASR value of 32 encodes as 0, so that's how we want to add it to
1694    // the instruction as well.
1695    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1696    int Val = CE->getValue();
1697    Inst.addOperand(MCOperand::CreateImm(Val == 32 ? 0 : Val));
1698  }
1699
1700  void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
1701    assert(N == 1 && "Invalid number of operands!");
1702    // The operand is actually a t2_so_imm, but we have its bitwise
1703    // negation in the assembly source, so twiddle it here.
1704    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1705    Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
1706  }
1707
1708  void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
1709    assert(N == 1 && "Invalid number of operands!");
1710    // The operand is actually a t2_so_imm, but we have its
1711    // negation in the assembly source, so twiddle it here.
1712    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1713    Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
1714  }
1715
1716  void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
1717    assert(N == 1 && "Invalid number of operands!");
1718    // The operand is actually an imm0_4095, but we have its
1719    // negation in the assembly source, so twiddle it here.
1720    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1721    Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
1722  }
1723
1724  void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const {
1725    if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) {
1726      Inst.addOperand(MCOperand::CreateImm(CE->getValue() >> 2));
1727      return;
1728    }
1729
1730    const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
1731    assert(SR && "Unknown value type!");
1732    Inst.addOperand(MCOperand::CreateExpr(SR));
1733  }
1734
1735  void addARMSOImmNotOperands(MCInst &Inst, unsigned N) const {
1736    assert(N == 1 && "Invalid number of operands!");
1737    // The operand is actually a so_imm, but we have its bitwise
1738    // negation in the assembly source, so twiddle it here.
1739    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1740    Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
1741  }
1742
1743  void addARMSOImmNegOperands(MCInst &Inst, unsigned N) const {
1744    assert(N == 1 && "Invalid number of operands!");
1745    // The operand is actually a so_imm, but we have its
1746    // negation in the assembly source, so twiddle it here.
1747    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1748    Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
1749  }
1750
1751  void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
1752    assert(N == 1 && "Invalid number of operands!");
1753    Inst.addOperand(MCOperand::CreateImm(unsigned(getMemBarrierOpt())));
1754  }
1755
1756  void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
1757    assert(N == 1 && "Invalid number of operands!");
1758    Inst.addOperand(MCOperand::CreateImm(unsigned(getInstSyncBarrierOpt())));
1759  }
1760
1761  void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
1762    assert(N == 1 && "Invalid number of operands!");
1763    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1764  }
1765
1766  void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
1767    assert(N == 1 && "Invalid number of operands!");
1768    int32_t Imm = Memory.OffsetImm->getValue();
1769    // FIXME: Handle #-0
1770    if (Imm == INT32_MIN) Imm = 0;
1771    Inst.addOperand(MCOperand::CreateImm(Imm));
1772  }
1773
1774  void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
1775    assert(N == 1 && "Invalid number of operands!");
1776    assert(isImm() && "Not an immediate!");
1777
1778    // If we have an immediate that's not a constant, treat it as a label
1779    // reference needing a fixup.
1780    if (!isa<MCConstantExpr>(getImm())) {
1781      Inst.addOperand(MCOperand::CreateExpr(getImm()));
1782      return;
1783    }
1784
1785    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1786    int Val = CE->getValue();
1787    Inst.addOperand(MCOperand::CreateImm(Val));
1788  }
1789
1790  void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
1791    assert(N == 2 && "Invalid number of operands!");
1792    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1793    Inst.addOperand(MCOperand::CreateImm(Memory.Alignment));
1794  }
1795
1796  void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
1797    assert(N == 3 && "Invalid number of operands!");
1798    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1799    if (!Memory.OffsetRegNum) {
1800      ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1801      // Special case for #-0
1802      if (Val == INT32_MIN) Val = 0;
1803      if (Val < 0) Val = -Val;
1804      Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
1805    } else {
1806      // For register offset, we encode the shift type and negation flag
1807      // here.
1808      Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
1809                              Memory.ShiftImm, Memory.ShiftType);
1810    }
1811    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1812    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1813    Inst.addOperand(MCOperand::CreateImm(Val));
1814  }
1815
1816  void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
1817    assert(N == 2 && "Invalid number of operands!");
1818    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1819    assert(CE && "non-constant AM2OffsetImm operand!");
1820    int32_t Val = CE->getValue();
1821    ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1822    // Special case for #-0
1823    if (Val == INT32_MIN) Val = 0;
1824    if (Val < 0) Val = -Val;
1825    Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
1826    Inst.addOperand(MCOperand::CreateReg(0));
1827    Inst.addOperand(MCOperand::CreateImm(Val));
1828  }
1829
1830  void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
1831    assert(N == 3 && "Invalid number of operands!");
1832    // If we have an immediate that's not a constant, treat it as a label
1833    // reference needing a fixup. If it is a constant, it's something else
1834    // and we reject it.
1835    if (isImm()) {
1836      Inst.addOperand(MCOperand::CreateExpr(getImm()));
1837      Inst.addOperand(MCOperand::CreateReg(0));
1838      Inst.addOperand(MCOperand::CreateImm(0));
1839      return;
1840    }
1841
1842    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1843    if (!Memory.OffsetRegNum) {
1844      ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1845      // Special case for #-0
1846      if (Val == INT32_MIN) Val = 0;
1847      if (Val < 0) Val = -Val;
1848      Val = ARM_AM::getAM3Opc(AddSub, Val);
1849    } else {
1850      // For register offset, we encode the shift type and negation flag
1851      // here.
1852      Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
1853    }
1854    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1855    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1856    Inst.addOperand(MCOperand::CreateImm(Val));
1857  }
1858
1859  void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
1860    assert(N == 2 && "Invalid number of operands!");
1861    if (Kind == k_PostIndexRegister) {
1862      int32_t Val =
1863        ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
1864      Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
1865      Inst.addOperand(MCOperand::CreateImm(Val));
1866      return;
1867    }
1868
1869    // Constant offset.
1870    const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
1871    int32_t Val = CE->getValue();
1872    ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1873    // Special case for #-0
1874    if (Val == INT32_MIN) Val = 0;
1875    if (Val < 0) Val = -Val;
1876    Val = ARM_AM::getAM3Opc(AddSub, Val);
1877    Inst.addOperand(MCOperand::CreateReg(0));
1878    Inst.addOperand(MCOperand::CreateImm(Val));
1879  }
1880
1881  void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
1882    assert(N == 2 && "Invalid number of operands!");
1883    // If we have an immediate that's not a constant, treat it as a label
1884    // reference needing a fixup. If it is a constant, it's something else
1885    // and we reject it.
1886    if (isImm()) {
1887      Inst.addOperand(MCOperand::CreateExpr(getImm()));
1888      Inst.addOperand(MCOperand::CreateImm(0));
1889      return;
1890    }
1891
1892    // The lower two bits are always zero and as such are not encoded.
1893    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
1894    ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1895    // Special case for #-0
1896    if (Val == INT32_MIN) Val = 0;
1897    if (Val < 0) Val = -Val;
1898    Val = ARM_AM::getAM5Opc(AddSub, Val);
1899    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1900    Inst.addOperand(MCOperand::CreateImm(Val));
1901  }
1902
1903  void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
1904    assert(N == 2 && "Invalid number of operands!");
1905    // If we have an immediate that's not a constant, treat it as a label
1906    // reference needing a fixup. If it is a constant, it's something else
1907    // and we reject it.
1908    if (isImm()) {
1909      Inst.addOperand(MCOperand::CreateExpr(getImm()));
1910      Inst.addOperand(MCOperand::CreateImm(0));
1911      return;
1912    }
1913
1914    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1915    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1916    Inst.addOperand(MCOperand::CreateImm(Val));
1917  }
1918
1919  void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
1920    assert(N == 2 && "Invalid number of operands!");
1921    // The lower two bits are always zero and as such are not encoded.
1922    int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
1923    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1924    Inst.addOperand(MCOperand::CreateImm(Val));
1925  }
1926
1927  void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const {
1928    assert(N == 2 && "Invalid number of operands!");
1929    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1930    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1931    Inst.addOperand(MCOperand::CreateImm(Val));
1932  }
1933
1934  void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const {
1935    addMemImm8OffsetOperands(Inst, N);
1936  }
1937
1938  void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const {
1939    addMemImm8OffsetOperands(Inst, N);
1940  }
1941
1942  void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
1943    assert(N == 2 && "Invalid number of operands!");
1944    // If this is an immediate, it's a label reference.
1945    if (isImm()) {
1946      addExpr(Inst, getImm());
1947      Inst.addOperand(MCOperand::CreateImm(0));
1948      return;
1949    }
1950
1951    // Otherwise, it's a normal memory reg+offset.
1952    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1953    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1954    Inst.addOperand(MCOperand::CreateImm(Val));
1955  }
1956
1957  void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
1958    assert(N == 2 && "Invalid number of operands!");
1959    // If this is an immediate, it's a label reference.
1960    if (isImm()) {
1961      addExpr(Inst, getImm());
1962      Inst.addOperand(MCOperand::CreateImm(0));
1963      return;
1964    }
1965
1966    // Otherwise, it's a normal memory reg+offset.
1967    int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1968    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1969    Inst.addOperand(MCOperand::CreateImm(Val));
1970  }
1971
1972  void addMemTBBOperands(MCInst &Inst, unsigned N) const {
1973    assert(N == 2 && "Invalid number of operands!");
1974    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1975    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1976  }
1977
1978  void addMemTBHOperands(MCInst &Inst, unsigned N) const {
1979    assert(N == 2 && "Invalid number of operands!");
1980    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1981    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1982  }
1983
1984  void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
1985    assert(N == 3 && "Invalid number of operands!");
1986    unsigned Val =
1987      ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
1988                        Memory.ShiftImm, Memory.ShiftType);
1989    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1990    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1991    Inst.addOperand(MCOperand::CreateImm(Val));
1992  }
1993
1994  void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
1995    assert(N == 3 && "Invalid number of operands!");
1996    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1997    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1998    Inst.addOperand(MCOperand::CreateImm(Memory.ShiftImm));
1999  }
2000
2001  void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
2002    assert(N == 2 && "Invalid number of operands!");
2003    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2004    Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
2005  }
2006
2007  void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
2008    assert(N == 2 && "Invalid number of operands!");
2009    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
2010    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2011    Inst.addOperand(MCOperand::CreateImm(Val));
2012  }
2013
2014  void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
2015    assert(N == 2 && "Invalid number of operands!");
2016    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0;
2017    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2018    Inst.addOperand(MCOperand::CreateImm(Val));
2019  }
2020
2021  void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
2022    assert(N == 2 && "Invalid number of operands!");
2023    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0;
2024    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2025    Inst.addOperand(MCOperand::CreateImm(Val));
2026  }
2027
2028  void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
2029    assert(N == 2 && "Invalid number of operands!");
2030    int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
2031    Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
2032    Inst.addOperand(MCOperand::CreateImm(Val));
2033  }
2034
2035  void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
2036    assert(N == 1 && "Invalid number of operands!");
2037    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2038    assert(CE && "non-constant post-idx-imm8 operand!");
2039    int Imm = CE->getValue();
2040    bool isAdd = Imm >= 0;
2041    if (Imm == INT32_MIN) Imm = 0;
2042    Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
2043    Inst.addOperand(MCOperand::CreateImm(Imm));
2044  }
2045
2046  void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
2047    assert(N == 1 && "Invalid number of operands!");
2048    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2049    assert(CE && "non-constant post-idx-imm8s4 operand!");
2050    int Imm = CE->getValue();
2051    bool isAdd = Imm >= 0;
2052    if (Imm == INT32_MIN) Imm = 0;
2053    // Immediate is scaled by 4.
2054    Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
2055    Inst.addOperand(MCOperand::CreateImm(Imm));
2056  }
2057
2058  void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
2059    assert(N == 2 && "Invalid number of operands!");
2060    Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
2061    Inst.addOperand(MCOperand::CreateImm(PostIdxReg.isAdd));
2062  }
2063
2064  void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
2065    assert(N == 2 && "Invalid number of operands!");
2066    Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
2067    // The sign, shift type, and shift amount are encoded in a single operand
2068    // using the AM2 encoding helpers.
2069    ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
2070    unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
2071                                     PostIdxReg.ShiftTy);
2072    Inst.addOperand(MCOperand::CreateImm(Imm));
2073  }
2074
2075  void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
2076    assert(N == 1 && "Invalid number of operands!");
2077    Inst.addOperand(MCOperand::CreateImm(unsigned(getMSRMask())));
2078  }
2079
2080  void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
2081    assert(N == 1 && "Invalid number of operands!");
2082    Inst.addOperand(MCOperand::CreateImm(unsigned(getProcIFlags())));
2083  }
2084
2085  void addVecListOperands(MCInst &Inst, unsigned N) const {
2086    assert(N == 1 && "Invalid number of operands!");
2087    Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
2088  }
2089
2090  void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
2091    assert(N == 2 && "Invalid number of operands!");
2092    Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
2093    Inst.addOperand(MCOperand::CreateImm(VectorList.LaneIndex));
2094  }
2095
2096  void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
2097    assert(N == 1 && "Invalid number of operands!");
2098    Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
2099  }
2100
2101  void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
2102    assert(N == 1 && "Invalid number of operands!");
2103    Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
2104  }
2105
2106  void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
2107    assert(N == 1 && "Invalid number of operands!");
2108    Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
2109  }
2110
2111  void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
2112    assert(N == 1 && "Invalid number of operands!");
2113    // The immediate encodes the type of constant as well as the value.
2114    // Mask in that this is an i8 splat.
2115    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2116    Inst.addOperand(MCOperand::CreateImm(CE->getValue() | 0xe00));
2117  }
2118
2119  void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
2120    assert(N == 1 && "Invalid number of operands!");
2121    // The immediate encodes the type of constant as well as the value.
2122    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2123    unsigned Value = CE->getValue();
2124    if (Value >= 256)
2125      Value = (Value >> 8) | 0xa00;
2126    else
2127      Value |= 0x800;
2128    Inst.addOperand(MCOperand::CreateImm(Value));
2129  }
2130
2131  void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
2132    assert(N == 1 && "Invalid number of operands!");
2133    // The immediate encodes the type of constant as well as the value.
2134    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2135    unsigned Value = CE->getValue();
2136    if (Value >= 256 && Value <= 0xff00)
2137      Value = (Value >> 8) | 0x200;
2138    else if (Value > 0xffff && Value <= 0xff0000)
2139      Value = (Value >> 16) | 0x400;
2140    else if (Value > 0xffffff)
2141      Value = (Value >> 24) | 0x600;
2142    Inst.addOperand(MCOperand::CreateImm(Value));
2143  }
2144
2145  void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
2146    assert(N == 1 && "Invalid number of operands!");
2147    // The immediate encodes the type of constant as well as the value.
2148    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2149    unsigned Value = CE->getValue();
2150    if (Value >= 256 && Value <= 0xffff)
2151      Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
2152    else if (Value > 0xffff && Value <= 0xffffff)
2153      Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
2154    else if (Value > 0xffffff)
2155      Value = (Value >> 24) | 0x600;
2156    Inst.addOperand(MCOperand::CreateImm(Value));
2157  }
2158
2159  void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
2160    assert(N == 1 && "Invalid number of operands!");
2161    // The immediate encodes the type of constant as well as the value.
2162    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2163    unsigned Value = ~CE->getValue();
2164    if (Value >= 256 && Value <= 0xffff)
2165      Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
2166    else if (Value > 0xffff && Value <= 0xffffff)
2167      Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
2168    else if (Value > 0xffffff)
2169      Value = (Value >> 24) | 0x600;
2170    Inst.addOperand(MCOperand::CreateImm(Value));
2171  }
2172
2173  void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
2174    assert(N == 1 && "Invalid number of operands!");
2175    // The immediate encodes the type of constant as well as the value.
2176    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2177    uint64_t Value = CE->getValue();
2178    unsigned Imm = 0;
2179    for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
2180      Imm |= (Value & 1) << i;
2181    }
2182    Inst.addOperand(MCOperand::CreateImm(Imm | 0x1e00));
2183  }
2184
2185  virtual void print(raw_ostream &OS) const;
2186
2187  static ARMOperand *CreateITMask(unsigned Mask, SMLoc S) {
2188    ARMOperand *Op = new ARMOperand(k_ITCondMask);
2189    Op->ITMask.Mask = Mask;
2190    Op->StartLoc = S;
2191    Op->EndLoc = S;
2192    return Op;
2193  }
2194
2195  static ARMOperand *CreateCondCode(ARMCC::CondCodes CC, SMLoc S) {
2196    ARMOperand *Op = new ARMOperand(k_CondCode);
2197    Op->CC.Val = CC;
2198    Op->StartLoc = S;
2199    Op->EndLoc = S;
2200    return Op;
2201  }
2202
2203  static ARMOperand *CreateCoprocNum(unsigned CopVal, SMLoc S) {
2204    ARMOperand *Op = new ARMOperand(k_CoprocNum);
2205    Op->Cop.Val = CopVal;
2206    Op->StartLoc = S;
2207    Op->EndLoc = S;
2208    return Op;
2209  }
2210
2211  static ARMOperand *CreateCoprocReg(unsigned CopVal, SMLoc S) {
2212    ARMOperand *Op = new ARMOperand(k_CoprocReg);
2213    Op->Cop.Val = CopVal;
2214    Op->StartLoc = S;
2215    Op->EndLoc = S;
2216    return Op;
2217  }
2218
2219  static ARMOperand *CreateCoprocOption(unsigned Val, SMLoc S, SMLoc E) {
2220    ARMOperand *Op = new ARMOperand(k_CoprocOption);
2221    Op->Cop.Val = Val;
2222    Op->StartLoc = S;
2223    Op->EndLoc = E;
2224    return Op;
2225  }
2226
2227  static ARMOperand *CreateCCOut(unsigned RegNum, SMLoc S) {
2228    ARMOperand *Op = new ARMOperand(k_CCOut);
2229    Op->Reg.RegNum = RegNum;
2230    Op->StartLoc = S;
2231    Op->EndLoc = S;
2232    return Op;
2233  }
2234
2235  static ARMOperand *CreateToken(StringRef Str, SMLoc S) {
2236    ARMOperand *Op = new ARMOperand(k_Token);
2237    Op->Tok.Data = Str.data();
2238    Op->Tok.Length = Str.size();
2239    Op->StartLoc = S;
2240    Op->EndLoc = S;
2241    return Op;
2242  }
2243
2244  static ARMOperand *CreateReg(unsigned RegNum, SMLoc S, SMLoc E) {
2245    ARMOperand *Op = new ARMOperand(k_Register);
2246    Op->Reg.RegNum = RegNum;
2247    Op->StartLoc = S;
2248    Op->EndLoc = E;
2249    return Op;
2250  }
2251
2252  static ARMOperand *CreateShiftedRegister(ARM_AM::ShiftOpc ShTy,
2253                                           unsigned SrcReg,
2254                                           unsigned ShiftReg,
2255                                           unsigned ShiftImm,
2256                                           SMLoc S, SMLoc E) {
2257    ARMOperand *Op = new ARMOperand(k_ShiftedRegister);
2258    Op->RegShiftedReg.ShiftTy = ShTy;
2259    Op->RegShiftedReg.SrcReg = SrcReg;
2260    Op->RegShiftedReg.ShiftReg = ShiftReg;
2261    Op->RegShiftedReg.ShiftImm = ShiftImm;
2262    Op->StartLoc = S;
2263    Op->EndLoc = E;
2264    return Op;
2265  }
2266
2267  static ARMOperand *CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy,
2268                                            unsigned SrcReg,
2269                                            unsigned ShiftImm,
2270                                            SMLoc S, SMLoc E) {
2271    ARMOperand *Op = new ARMOperand(k_ShiftedImmediate);
2272    Op->RegShiftedImm.ShiftTy = ShTy;
2273    Op->RegShiftedImm.SrcReg = SrcReg;
2274    Op->RegShiftedImm.ShiftImm = ShiftImm;
2275    Op->StartLoc = S;
2276    Op->EndLoc = E;
2277    return Op;
2278  }
2279
2280  static ARMOperand *CreateShifterImm(bool isASR, unsigned Imm,
2281                                   SMLoc S, SMLoc E) {
2282    ARMOperand *Op = new ARMOperand(k_ShifterImmediate);
2283    Op->ShifterImm.isASR = isASR;
2284    Op->ShifterImm.Imm = Imm;
2285    Op->StartLoc = S;
2286    Op->EndLoc = E;
2287    return Op;
2288  }
2289
2290  static ARMOperand *CreateRotImm(unsigned Imm, SMLoc S, SMLoc E) {
2291    ARMOperand *Op = new ARMOperand(k_RotateImmediate);
2292    Op->RotImm.Imm = Imm;
2293    Op->StartLoc = S;
2294    Op->EndLoc = E;
2295    return Op;
2296  }
2297
2298  static ARMOperand *CreateBitfield(unsigned LSB, unsigned Width,
2299                                    SMLoc S, SMLoc E) {
2300    ARMOperand *Op = new ARMOperand(k_BitfieldDescriptor);
2301    Op->Bitfield.LSB = LSB;
2302    Op->Bitfield.Width = Width;
2303    Op->StartLoc = S;
2304    Op->EndLoc = E;
2305    return Op;
2306  }
2307
2308  static ARMOperand *
2309  CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned> > &Regs,
2310                SMLoc StartLoc, SMLoc EndLoc) {
2311    assert (Regs.size() > 0 && "RegList contains no registers?");
2312    KindTy Kind = k_RegisterList;
2313
2314    if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second))
2315      Kind = k_DPRRegisterList;
2316    else if (ARMMCRegisterClasses[ARM::SPRRegClassID].
2317             contains(Regs.front().second))
2318      Kind = k_SPRRegisterList;
2319
2320    // Sort based on the register encoding values.
2321    array_pod_sort(Regs.begin(), Regs.end());
2322
2323    ARMOperand *Op = new ARMOperand(Kind);
2324    for (SmallVectorImpl<std::pair<unsigned, unsigned> >::const_iterator
2325           I = Regs.begin(), E = Regs.end(); I != E; ++I)
2326      Op->Registers.push_back(I->second);
2327    Op->StartLoc = StartLoc;
2328    Op->EndLoc = EndLoc;
2329    return Op;
2330  }
2331
2332  static ARMOperand *CreateVectorList(unsigned RegNum, unsigned Count,
2333                                      bool isDoubleSpaced, SMLoc S, SMLoc E) {
2334    ARMOperand *Op = new ARMOperand(k_VectorList);
2335    Op->VectorList.RegNum = RegNum;
2336    Op->VectorList.Count = Count;
2337    Op->VectorList.isDoubleSpaced = isDoubleSpaced;
2338    Op->StartLoc = S;
2339    Op->EndLoc = E;
2340    return Op;
2341  }
2342
2343  static ARMOperand *CreateVectorListAllLanes(unsigned RegNum, unsigned Count,
2344                                              bool isDoubleSpaced,
2345                                              SMLoc S, SMLoc E) {
2346    ARMOperand *Op = new ARMOperand(k_VectorListAllLanes);
2347    Op->VectorList.RegNum = RegNum;
2348    Op->VectorList.Count = Count;
2349    Op->VectorList.isDoubleSpaced = isDoubleSpaced;
2350    Op->StartLoc = S;
2351    Op->EndLoc = E;
2352    return Op;
2353  }
2354
2355  static ARMOperand *CreateVectorListIndexed(unsigned RegNum, unsigned Count,
2356                                             unsigned Index,
2357                                             bool isDoubleSpaced,
2358                                             SMLoc S, SMLoc E) {
2359    ARMOperand *Op = new ARMOperand(k_VectorListIndexed);
2360    Op->VectorList.RegNum = RegNum;
2361    Op->VectorList.Count = Count;
2362    Op->VectorList.LaneIndex = Index;
2363    Op->VectorList.isDoubleSpaced = isDoubleSpaced;
2364    Op->StartLoc = S;
2365    Op->EndLoc = E;
2366    return Op;
2367  }
2368
2369  static ARMOperand *CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E,
2370                                       MCContext &Ctx) {
2371    ARMOperand *Op = new ARMOperand(k_VectorIndex);
2372    Op->VectorIndex.Val = Idx;
2373    Op->StartLoc = S;
2374    Op->EndLoc = E;
2375    return Op;
2376  }
2377
2378  static ARMOperand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) {
2379    ARMOperand *Op = new ARMOperand(k_Immediate);
2380    Op->Imm.Val = Val;
2381    Op->StartLoc = S;
2382    Op->EndLoc = E;
2383    return Op;
2384  }
2385
2386  static ARMOperand *CreateMem(unsigned BaseRegNum,
2387                               const MCConstantExpr *OffsetImm,
2388                               unsigned OffsetRegNum,
2389                               ARM_AM::ShiftOpc ShiftType,
2390                               unsigned ShiftImm,
2391                               unsigned Alignment,
2392                               bool isNegative,
2393                               SMLoc S, SMLoc E) {
2394    ARMOperand *Op = new ARMOperand(k_Memory);
2395    Op->Memory.BaseRegNum = BaseRegNum;
2396    Op->Memory.OffsetImm = OffsetImm;
2397    Op->Memory.OffsetRegNum = OffsetRegNum;
2398    Op->Memory.ShiftType = ShiftType;
2399    Op->Memory.ShiftImm = ShiftImm;
2400    Op->Memory.Alignment = Alignment;
2401    Op->Memory.isNegative = isNegative;
2402    Op->StartLoc = S;
2403    Op->EndLoc = E;
2404    return Op;
2405  }
2406
2407  static ARMOperand *CreatePostIdxReg(unsigned RegNum, bool isAdd,
2408                                      ARM_AM::ShiftOpc ShiftTy,
2409                                      unsigned ShiftImm,
2410                                      SMLoc S, SMLoc E) {
2411    ARMOperand *Op = new ARMOperand(k_PostIndexRegister);
2412    Op->PostIdxReg.RegNum = RegNum;
2413    Op->PostIdxReg.isAdd = isAdd;
2414    Op->PostIdxReg.ShiftTy = ShiftTy;
2415    Op->PostIdxReg.ShiftImm = ShiftImm;
2416    Op->StartLoc = S;
2417    Op->EndLoc = E;
2418    return Op;
2419  }
2420
2421  static ARMOperand *CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, SMLoc S) {
2422    ARMOperand *Op = new ARMOperand(k_MemBarrierOpt);
2423    Op->MBOpt.Val = Opt;
2424    Op->StartLoc = S;
2425    Op->EndLoc = S;
2426    return Op;
2427  }
2428
2429  static ARMOperand *CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt,
2430                                              SMLoc S) {
2431    ARMOperand *Op = new ARMOperand(k_InstSyncBarrierOpt);
2432    Op->ISBOpt.Val = Opt;
2433    Op->StartLoc = S;
2434    Op->EndLoc = S;
2435    return Op;
2436  }
2437
2438  static ARMOperand *CreateProcIFlags(ARM_PROC::IFlags IFlags, SMLoc S) {
2439    ARMOperand *Op = new ARMOperand(k_ProcIFlags);
2440    Op->IFlags.Val = IFlags;
2441    Op->StartLoc = S;
2442    Op->EndLoc = S;
2443    return Op;
2444  }
2445
2446  static ARMOperand *CreateMSRMask(unsigned MMask, SMLoc S) {
2447    ARMOperand *Op = new ARMOperand(k_MSRMask);
2448    Op->MMask.Val = MMask;
2449    Op->StartLoc = S;
2450    Op->EndLoc = S;
2451    return Op;
2452  }
2453};
2454
2455} // end anonymous namespace.
2456
2457void ARMOperand::print(raw_ostream &OS) const {
2458  switch (Kind) {
2459  case k_CondCode:
2460    OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
2461    break;
2462  case k_CCOut:
2463    OS << "<ccout " << getReg() << ">";
2464    break;
2465  case k_ITCondMask: {
2466    static const char *const MaskStr[] = {
2467      "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)",
2468      "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)"
2469    };
2470    assert((ITMask.Mask & 0xf) == ITMask.Mask);
2471    OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
2472    break;
2473  }
2474  case k_CoprocNum:
2475    OS << "<coprocessor number: " << getCoproc() << ">";
2476    break;
2477  case k_CoprocReg:
2478    OS << "<coprocessor register: " << getCoproc() << ">";
2479    break;
2480  case k_CoprocOption:
2481    OS << "<coprocessor option: " << CoprocOption.Val << ">";
2482    break;
2483  case k_MSRMask:
2484    OS << "<mask: " << getMSRMask() << ">";
2485    break;
2486  case k_Immediate:
2487    getImm()->print(OS);
2488    break;
2489  case k_MemBarrierOpt:
2490    OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt()) << ">";
2491    break;
2492  case k_InstSyncBarrierOpt:
2493    OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
2494    break;
2495  case k_Memory:
2496    OS << "<memory "
2497       << " base:" << Memory.BaseRegNum;
2498    OS << ">";
2499    break;
2500  case k_PostIndexRegister:
2501    OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
2502       << PostIdxReg.RegNum;
2503    if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
2504      OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
2505         << PostIdxReg.ShiftImm;
2506    OS << ">";
2507    break;
2508  case k_ProcIFlags: {
2509    OS << "<ARM_PROC::";
2510    unsigned IFlags = getProcIFlags();
2511    for (int i=2; i >= 0; --i)
2512      if (IFlags & (1 << i))
2513        OS << ARM_PROC::IFlagsToString(1 << i);
2514    OS << ">";
2515    break;
2516  }
2517  case k_Register:
2518    OS << "<register " << getReg() << ">";
2519    break;
2520  case k_ShifterImmediate:
2521    OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
2522       << " #" << ShifterImm.Imm << ">";
2523    break;
2524  case k_ShiftedRegister:
2525    OS << "<so_reg_reg "
2526       << RegShiftedReg.SrcReg << " "
2527       << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy)
2528       << " " << RegShiftedReg.ShiftReg << ">";
2529    break;
2530  case k_ShiftedImmediate:
2531    OS << "<so_reg_imm "
2532       << RegShiftedImm.SrcReg << " "
2533       << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy)
2534       << " #" << RegShiftedImm.ShiftImm << ">";
2535    break;
2536  case k_RotateImmediate:
2537    OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
2538    break;
2539  case k_BitfieldDescriptor:
2540    OS << "<bitfield " << "lsb: " << Bitfield.LSB
2541       << ", width: " << Bitfield.Width << ">";
2542    break;
2543  case k_RegisterList:
2544  case k_DPRRegisterList:
2545  case k_SPRRegisterList: {
2546    OS << "<register_list ";
2547
2548    const SmallVectorImpl<unsigned> &RegList = getRegList();
2549    for (SmallVectorImpl<unsigned>::const_iterator
2550           I = RegList.begin(), E = RegList.end(); I != E; ) {
2551      OS << *I;
2552      if (++I < E) OS << ", ";
2553    }
2554
2555    OS << ">";
2556    break;
2557  }
2558  case k_VectorList:
2559    OS << "<vector_list " << VectorList.Count << " * "
2560       << VectorList.RegNum << ">";
2561    break;
2562  case k_VectorListAllLanes:
2563    OS << "<vector_list(all lanes) " << VectorList.Count << " * "
2564       << VectorList.RegNum << ">";
2565    break;
2566  case k_VectorListIndexed:
2567    OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
2568       << VectorList.Count << " * " << VectorList.RegNum << ">";
2569    break;
2570  case k_Token:
2571    OS << "'" << getToken() << "'";
2572    break;
2573  case k_VectorIndex:
2574    OS << "<vectorindex " << getVectorIndex() << ">";
2575    break;
2576  }
2577}
2578
2579/// @name Auto-generated Match Functions
2580/// {
2581
2582static unsigned MatchRegisterName(StringRef Name);
2583
2584/// }
2585
2586bool ARMAsmParser::ParseRegister(unsigned &RegNo,
2587                                 SMLoc &StartLoc, SMLoc &EndLoc) {
2588  StartLoc = Parser.getTok().getLoc();
2589  EndLoc = Parser.getTok().getEndLoc();
2590  RegNo = tryParseRegister();
2591
2592  return (RegNo == (unsigned)-1);
2593}
2594
2595/// Try to parse a register name.  The token must be an Identifier when called,
2596/// and if it is a register name the token is eaten and the register number is
2597/// returned.  Otherwise return -1.
2598///
2599int ARMAsmParser::tryParseRegister() {
2600  const AsmToken &Tok = Parser.getTok();
2601  if (Tok.isNot(AsmToken::Identifier)) return -1;
2602
2603  std::string lowerCase = Tok.getString().lower();
2604  unsigned RegNum = MatchRegisterName(lowerCase);
2605  if (!RegNum) {
2606    RegNum = StringSwitch<unsigned>(lowerCase)
2607      .Case("r13", ARM::SP)
2608      .Case("r14", ARM::LR)
2609      .Case("r15", ARM::PC)
2610      .Case("ip", ARM::R12)
2611      // Additional register name aliases for 'gas' compatibility.
2612      .Case("a1", ARM::R0)
2613      .Case("a2", ARM::R1)
2614      .Case("a3", ARM::R2)
2615      .Case("a4", ARM::R3)
2616      .Case("v1", ARM::R4)
2617      .Case("v2", ARM::R5)
2618      .Case("v3", ARM::R6)
2619      .Case("v4", ARM::R7)
2620      .Case("v5", ARM::R8)
2621      .Case("v6", ARM::R9)
2622      .Case("v7", ARM::R10)
2623      .Case("v8", ARM::R11)
2624      .Case("sb", ARM::R9)
2625      .Case("sl", ARM::R10)
2626      .Case("fp", ARM::R11)
2627      .Default(0);
2628  }
2629  if (!RegNum) {
2630    // Check for aliases registered via .req. Canonicalize to lower case.
2631    // That's more consistent since register names are case insensitive, and
2632    // it's how the original entry was passed in from MC/MCParser/AsmParser.
2633    StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
2634    // If no match, return failure.
2635    if (Entry == RegisterReqs.end())
2636      return -1;
2637    Parser.Lex(); // Eat identifier token.
2638    return Entry->getValue();
2639  }
2640
2641  Parser.Lex(); // Eat identifier token.
2642
2643  return RegNum;
2644}
2645
2646// Try to parse a shifter  (e.g., "lsl <amt>"). On success, return 0.
2647// If a recoverable error occurs, return 1. If an irrecoverable error
2648// occurs, return -1. An irrecoverable error is one where tokens have been
2649// consumed in the process of trying to parse the shifter (i.e., when it is
2650// indeed a shifter operand, but malformed).
2651int ARMAsmParser::tryParseShiftRegister(
2652                               SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2653  SMLoc S = Parser.getTok().getLoc();
2654  const AsmToken &Tok = Parser.getTok();
2655  assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
2656
2657  std::string lowerCase = Tok.getString().lower();
2658  ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
2659      .Case("asl", ARM_AM::lsl)
2660      .Case("lsl", ARM_AM::lsl)
2661      .Case("lsr", ARM_AM::lsr)
2662      .Case("asr", ARM_AM::asr)
2663      .Case("ror", ARM_AM::ror)
2664      .Case("rrx", ARM_AM::rrx)
2665      .Default(ARM_AM::no_shift);
2666
2667  if (ShiftTy == ARM_AM::no_shift)
2668    return 1;
2669
2670  Parser.Lex(); // Eat the operator.
2671
2672  // The source register for the shift has already been added to the
2673  // operand list, so we need to pop it off and combine it into the shifted
2674  // register operand instead.
2675  OwningPtr<ARMOperand> PrevOp((ARMOperand*)Operands.pop_back_val());
2676  if (!PrevOp->isReg())
2677    return Error(PrevOp->getStartLoc(), "shift must be of a register");
2678  int SrcReg = PrevOp->getReg();
2679
2680  SMLoc EndLoc;
2681  int64_t Imm = 0;
2682  int ShiftReg = 0;
2683  if (ShiftTy == ARM_AM::rrx) {
2684    // RRX Doesn't have an explicit shift amount. The encoder expects
2685    // the shift register to be the same as the source register. Seems odd,
2686    // but OK.
2687    ShiftReg = SrcReg;
2688  } else {
2689    // Figure out if this is shifted by a constant or a register (for non-RRX).
2690    if (Parser.getTok().is(AsmToken::Hash) ||
2691        Parser.getTok().is(AsmToken::Dollar)) {
2692      Parser.Lex(); // Eat hash.
2693      SMLoc ImmLoc = Parser.getTok().getLoc();
2694      const MCExpr *ShiftExpr = 0;
2695      if (getParser().parseExpression(ShiftExpr, EndLoc)) {
2696        Error(ImmLoc, "invalid immediate shift value");
2697        return -1;
2698      }
2699      // The expression must be evaluatable as an immediate.
2700      const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
2701      if (!CE) {
2702        Error(ImmLoc, "invalid immediate shift value");
2703        return -1;
2704      }
2705      // Range check the immediate.
2706      // lsl, ror: 0 <= imm <= 31
2707      // lsr, asr: 0 <= imm <= 32
2708      Imm = CE->getValue();
2709      if (Imm < 0 ||
2710          ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
2711          ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
2712        Error(ImmLoc, "immediate shift value out of range");
2713        return -1;
2714      }
2715      // shift by zero is a nop. Always send it through as lsl.
2716      // ('as' compatibility)
2717      if (Imm == 0)
2718        ShiftTy = ARM_AM::lsl;
2719    } else if (Parser.getTok().is(AsmToken::Identifier)) {
2720      SMLoc L = Parser.getTok().getLoc();
2721      EndLoc = Parser.getTok().getEndLoc();
2722      ShiftReg = tryParseRegister();
2723      if (ShiftReg == -1) {
2724        Error (L, "expected immediate or register in shift operand");
2725        return -1;
2726      }
2727    } else {
2728      Error (Parser.getTok().getLoc(),
2729                    "expected immediate or register in shift operand");
2730      return -1;
2731    }
2732  }
2733
2734  if (ShiftReg && ShiftTy != ARM_AM::rrx)
2735    Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
2736                                                         ShiftReg, Imm,
2737                                                         S, EndLoc));
2738  else
2739    Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
2740                                                          S, EndLoc));
2741
2742  return 0;
2743}
2744
2745
2746/// Try to parse a register name.  The token must be an Identifier when called.
2747/// If it's a register, an AsmOperand is created. Another AsmOperand is created
2748/// if there is a "writeback". 'true' if it's not a register.
2749///
2750/// TODO this is likely to change to allow different register types and or to
2751/// parse for a specific register type.
2752bool ARMAsmParser::
2753tryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2754  const AsmToken &RegTok = Parser.getTok();
2755  int RegNo = tryParseRegister();
2756  if (RegNo == -1)
2757    return true;
2758
2759  Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(),
2760                                           RegTok.getEndLoc()));
2761
2762  const AsmToken &ExclaimTok = Parser.getTok();
2763  if (ExclaimTok.is(AsmToken::Exclaim)) {
2764    Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
2765                                               ExclaimTok.getLoc()));
2766    Parser.Lex(); // Eat exclaim token
2767    return false;
2768  }
2769
2770  // Also check for an index operand. This is only legal for vector registers,
2771  // but that'll get caught OK in operand matching, so we don't need to
2772  // explicitly filter everything else out here.
2773  if (Parser.getTok().is(AsmToken::LBrac)) {
2774    SMLoc SIdx = Parser.getTok().getLoc();
2775    Parser.Lex(); // Eat left bracket token.
2776
2777    const MCExpr *ImmVal;
2778    if (getParser().parseExpression(ImmVal))
2779      return true;
2780    const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
2781    if (!MCE)
2782      return TokError("immediate value expected for vector index");
2783
2784    if (Parser.getTok().isNot(AsmToken::RBrac))
2785      return Error(Parser.getTok().getLoc(), "']' expected");
2786
2787    SMLoc E = Parser.getTok().getEndLoc();
2788    Parser.Lex(); // Eat right bracket token.
2789
2790    Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
2791                                                     SIdx, E,
2792                                                     getContext()));
2793  }
2794
2795  return false;
2796}
2797
2798/// MatchCoprocessorOperandName - Try to parse an coprocessor related
2799/// instruction with a symbolic operand name. Example: "p1", "p7", "c3",
2800/// "c5", ...
2801static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
2802  // Use the same layout as the tablegen'erated register name matcher. Ugly,
2803  // but efficient.
2804  switch (Name.size()) {
2805  default: return -1;
2806  case 2:
2807    if (Name[0] != CoprocOp)
2808      return -1;
2809    switch (Name[1]) {
2810    default:  return -1;
2811    case '0': return 0;
2812    case '1': return 1;
2813    case '2': return 2;
2814    case '3': return 3;
2815    case '4': return 4;
2816    case '5': return 5;
2817    case '6': return 6;
2818    case '7': return 7;
2819    case '8': return 8;
2820    case '9': return 9;
2821    }
2822  case 3:
2823    if (Name[0] != CoprocOp || Name[1] != '1')
2824      return -1;
2825    switch (Name[2]) {
2826    default:  return -1;
2827    case '0': return 10;
2828    case '1': return 11;
2829    case '2': return 12;
2830    case '3': return 13;
2831    case '4': return 14;
2832    case '5': return 15;
2833    }
2834  }
2835}
2836
2837/// parseITCondCode - Try to parse a condition code for an IT instruction.
2838ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2839parseITCondCode(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2840  SMLoc S = Parser.getTok().getLoc();
2841  const AsmToken &Tok = Parser.getTok();
2842  if (!Tok.is(AsmToken::Identifier))
2843    return MatchOperand_NoMatch;
2844  unsigned CC = StringSwitch<unsigned>(Tok.getString().lower())
2845    .Case("eq", ARMCC::EQ)
2846    .Case("ne", ARMCC::NE)
2847    .Case("hs", ARMCC::HS)
2848    .Case("cs", ARMCC::HS)
2849    .Case("lo", ARMCC::LO)
2850    .Case("cc", ARMCC::LO)
2851    .Case("mi", ARMCC::MI)
2852    .Case("pl", ARMCC::PL)
2853    .Case("vs", ARMCC::VS)
2854    .Case("vc", ARMCC::VC)
2855    .Case("hi", ARMCC::HI)
2856    .Case("ls", ARMCC::LS)
2857    .Case("ge", ARMCC::GE)
2858    .Case("lt", ARMCC::LT)
2859    .Case("gt", ARMCC::GT)
2860    .Case("le", ARMCC::LE)
2861    .Case("al", ARMCC::AL)
2862    .Default(~0U);
2863  if (CC == ~0U)
2864    return MatchOperand_NoMatch;
2865  Parser.Lex(); // Eat the token.
2866
2867  Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
2868
2869  return MatchOperand_Success;
2870}
2871
2872/// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
2873/// token must be an Identifier when called, and if it is a coprocessor
2874/// number, the token is eaten and the operand is added to the operand list.
2875ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2876parseCoprocNumOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2877  SMLoc S = Parser.getTok().getLoc();
2878  const AsmToken &Tok = Parser.getTok();
2879  if (Tok.isNot(AsmToken::Identifier))
2880    return MatchOperand_NoMatch;
2881
2882  int Num = MatchCoprocessorOperandName(Tok.getString(), 'p');
2883  if (Num == -1)
2884    return MatchOperand_NoMatch;
2885
2886  Parser.Lex(); // Eat identifier token.
2887  Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
2888  return MatchOperand_Success;
2889}
2890
2891/// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
2892/// token must be an Identifier when called, and if it is a coprocessor
2893/// number, the token is eaten and the operand is added to the operand list.
2894ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2895parseCoprocRegOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2896  SMLoc S = Parser.getTok().getLoc();
2897  const AsmToken &Tok = Parser.getTok();
2898  if (Tok.isNot(AsmToken::Identifier))
2899    return MatchOperand_NoMatch;
2900
2901  int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c');
2902  if (Reg == -1)
2903    return MatchOperand_NoMatch;
2904
2905  Parser.Lex(); // Eat identifier token.
2906  Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
2907  return MatchOperand_Success;
2908}
2909
2910/// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
2911/// coproc_option : '{' imm0_255 '}'
2912ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2913parseCoprocOptionOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2914  SMLoc S = Parser.getTok().getLoc();
2915
2916  // If this isn't a '{', this isn't a coprocessor immediate operand.
2917  if (Parser.getTok().isNot(AsmToken::LCurly))
2918    return MatchOperand_NoMatch;
2919  Parser.Lex(); // Eat the '{'
2920
2921  const MCExpr *Expr;
2922  SMLoc Loc = Parser.getTok().getLoc();
2923  if (getParser().parseExpression(Expr)) {
2924    Error(Loc, "illegal expression");
2925    return MatchOperand_ParseFail;
2926  }
2927  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
2928  if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
2929    Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
2930    return MatchOperand_ParseFail;
2931  }
2932  int Val = CE->getValue();
2933
2934  // Check for and consume the closing '}'
2935  if (Parser.getTok().isNot(AsmToken::RCurly))
2936    return MatchOperand_ParseFail;
2937  SMLoc E = Parser.getTok().getEndLoc();
2938  Parser.Lex(); // Eat the '}'
2939
2940  Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
2941  return MatchOperand_Success;
2942}
2943
2944// For register list parsing, we need to map from raw GPR register numbering
2945// to the enumeration values. The enumeration values aren't sorted by
2946// register number due to our using "sp", "lr" and "pc" as canonical names.
2947static unsigned getNextRegister(unsigned Reg) {
2948  // If this is a GPR, we need to do it manually, otherwise we can rely
2949  // on the sort ordering of the enumeration since the other reg-classes
2950  // are sane.
2951  if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
2952    return Reg + 1;
2953  switch(Reg) {
2954  default: llvm_unreachable("Invalid GPR number!");
2955  case ARM::R0:  return ARM::R1;  case ARM::R1:  return ARM::R2;
2956  case ARM::R2:  return ARM::R3;  case ARM::R3:  return ARM::R4;
2957  case ARM::R4:  return ARM::R5;  case ARM::R5:  return ARM::R6;
2958  case ARM::R6:  return ARM::R7;  case ARM::R7:  return ARM::R8;
2959  case ARM::R8:  return ARM::R9;  case ARM::R9:  return ARM::R10;
2960  case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
2961  case ARM::R12: return ARM::SP;  case ARM::SP:  return ARM::LR;
2962  case ARM::LR:  return ARM::PC;  case ARM::PC:  return ARM::R0;
2963  }
2964}
2965
2966// Return the low-subreg of a given Q register.
2967static unsigned getDRegFromQReg(unsigned QReg) {
2968  switch (QReg) {
2969  default: llvm_unreachable("expected a Q register!");
2970  case ARM::Q0:  return ARM::D0;
2971  case ARM::Q1:  return ARM::D2;
2972  case ARM::Q2:  return ARM::D4;
2973  case ARM::Q3:  return ARM::D6;
2974  case ARM::Q4:  return ARM::D8;
2975  case ARM::Q5:  return ARM::D10;
2976  case ARM::Q6:  return ARM::D12;
2977  case ARM::Q7:  return ARM::D14;
2978  case ARM::Q8:  return ARM::D16;
2979  case ARM::Q9:  return ARM::D18;
2980  case ARM::Q10: return ARM::D20;
2981  case ARM::Q11: return ARM::D22;
2982  case ARM::Q12: return ARM::D24;
2983  case ARM::Q13: return ARM::D26;
2984  case ARM::Q14: return ARM::D28;
2985  case ARM::Q15: return ARM::D30;
2986  }
2987}
2988
2989/// Parse a register list.
2990bool ARMAsmParser::
2991parseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2992  assert(Parser.getTok().is(AsmToken::LCurly) &&
2993         "Token is not a Left Curly Brace");
2994  SMLoc S = Parser.getTok().getLoc();
2995  Parser.Lex(); // Eat '{' token.
2996  SMLoc RegLoc = Parser.getTok().getLoc();
2997
2998  // Check the first register in the list to see what register class
2999  // this is a list of.
3000  int Reg = tryParseRegister();
3001  if (Reg == -1)
3002    return Error(RegLoc, "register expected");
3003
3004  // The reglist instructions have at most 16 registers, so reserve
3005  // space for that many.
3006  int EReg = 0;
3007  SmallVector<std::pair<unsigned, unsigned>, 16> Registers;
3008
3009  // Allow Q regs and just interpret them as the two D sub-registers.
3010  if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3011    Reg = getDRegFromQReg(Reg);
3012    EReg = MRI->getEncodingValue(Reg);
3013    Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3014    ++Reg;
3015  }
3016  const MCRegisterClass *RC;
3017  if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
3018    RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
3019  else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
3020    RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
3021  else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
3022    RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
3023  else
3024    return Error(RegLoc, "invalid register in register list");
3025
3026  // Store the register.
3027  EReg = MRI->getEncodingValue(Reg);
3028  Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3029
3030  // This starts immediately after the first register token in the list,
3031  // so we can see either a comma or a minus (range separator) as a legal
3032  // next token.
3033  while (Parser.getTok().is(AsmToken::Comma) ||
3034         Parser.getTok().is(AsmToken::Minus)) {
3035    if (Parser.getTok().is(AsmToken::Minus)) {
3036      Parser.Lex(); // Eat the minus.
3037      SMLoc AfterMinusLoc = Parser.getTok().getLoc();
3038      int EndReg = tryParseRegister();
3039      if (EndReg == -1)
3040        return Error(AfterMinusLoc, "register expected");
3041      // Allow Q regs and just interpret them as the two D sub-registers.
3042      if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
3043        EndReg = getDRegFromQReg(EndReg) + 1;
3044      // If the register is the same as the start reg, there's nothing
3045      // more to do.
3046      if (Reg == EndReg)
3047        continue;
3048      // The register must be in the same register class as the first.
3049      if (!RC->contains(EndReg))
3050        return Error(AfterMinusLoc, "invalid register in register list");
3051      // Ranges must go from low to high.
3052      if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
3053        return Error(AfterMinusLoc, "bad range in register list");
3054
3055      // Add all the registers in the range to the register list.
3056      while (Reg != EndReg) {
3057        Reg = getNextRegister(Reg);
3058        EReg = MRI->getEncodingValue(Reg);
3059        Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3060      }
3061      continue;
3062    }
3063    Parser.Lex(); // Eat the comma.
3064    RegLoc = Parser.getTok().getLoc();
3065    int OldReg = Reg;
3066    const AsmToken RegTok = Parser.getTok();
3067    Reg = tryParseRegister();
3068    if (Reg == -1)
3069      return Error(RegLoc, "register expected");
3070    // Allow Q regs and just interpret them as the two D sub-registers.
3071    bool isQReg = false;
3072    if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3073      Reg = getDRegFromQReg(Reg);
3074      isQReg = true;
3075    }
3076    // The register must be in the same register class as the first.
3077    if (!RC->contains(Reg))
3078      return Error(RegLoc, "invalid register in register list");
3079    // List must be monotonically increasing.
3080    if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
3081      if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
3082        Warning(RegLoc, "register list not in ascending order");
3083      else
3084        return Error(RegLoc, "register list not in ascending order");
3085    }
3086    if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) {
3087      Warning(RegLoc, "duplicated register (" + RegTok.getString() +
3088              ") in register list");
3089      continue;
3090    }
3091    // VFP register lists must also be contiguous.
3092    if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
3093        Reg != OldReg + 1)
3094      return Error(RegLoc, "non-contiguous register range");
3095    EReg = MRI->getEncodingValue(Reg);
3096    Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3097    if (isQReg) {
3098      EReg = MRI->getEncodingValue(++Reg);
3099      Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3100    }
3101  }
3102
3103  if (Parser.getTok().isNot(AsmToken::RCurly))
3104    return Error(Parser.getTok().getLoc(), "'}' expected");
3105  SMLoc E = Parser.getTok().getEndLoc();
3106  Parser.Lex(); // Eat '}' token.
3107
3108  // Push the register list operand.
3109  Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
3110
3111  // The ARM system instruction variants for LDM/STM have a '^' token here.
3112  if (Parser.getTok().is(AsmToken::Caret)) {
3113    Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
3114    Parser.Lex(); // Eat '^' token.
3115  }
3116
3117  return false;
3118}
3119
3120// Helper function to parse the lane index for vector lists.
3121ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3122parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
3123  Index = 0; // Always return a defined index value.
3124  if (Parser.getTok().is(AsmToken::LBrac)) {
3125    Parser.Lex(); // Eat the '['.
3126    if (Parser.getTok().is(AsmToken::RBrac)) {
3127      // "Dn[]" is the 'all lanes' syntax.
3128      LaneKind = AllLanes;
3129      EndLoc = Parser.getTok().getEndLoc();
3130      Parser.Lex(); // Eat the ']'.
3131      return MatchOperand_Success;
3132    }
3133
3134    // There's an optional '#' token here. Normally there wouldn't be, but
3135    // inline assemble puts one in, and it's friendly to accept that.
3136    if (Parser.getTok().is(AsmToken::Hash))
3137      Parser.Lex(); // Eat '#' or '$'.
3138
3139    const MCExpr *LaneIndex;
3140    SMLoc Loc = Parser.getTok().getLoc();
3141    if (getParser().parseExpression(LaneIndex)) {
3142      Error(Loc, "illegal expression");
3143      return MatchOperand_ParseFail;
3144    }
3145    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
3146    if (!CE) {
3147      Error(Loc, "lane index must be empty or an integer");
3148      return MatchOperand_ParseFail;
3149    }
3150    if (Parser.getTok().isNot(AsmToken::RBrac)) {
3151      Error(Parser.getTok().getLoc(), "']' expected");
3152      return MatchOperand_ParseFail;
3153    }
3154    EndLoc = Parser.getTok().getEndLoc();
3155    Parser.Lex(); // Eat the ']'.
3156    int64_t Val = CE->getValue();
3157
3158    // FIXME: Make this range check context sensitive for .8, .16, .32.
3159    if (Val < 0 || Val > 7) {
3160      Error(Parser.getTok().getLoc(), "lane index out of range");
3161      return MatchOperand_ParseFail;
3162    }
3163    Index = Val;
3164    LaneKind = IndexedLane;
3165    return MatchOperand_Success;
3166  }
3167  LaneKind = NoLanes;
3168  return MatchOperand_Success;
3169}
3170
3171// parse a vector register list
3172ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3173parseVectorList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3174  VectorLaneTy LaneKind;
3175  unsigned LaneIndex;
3176  SMLoc S = Parser.getTok().getLoc();
3177  // As an extension (to match gas), support a plain D register or Q register
3178  // (without encosing curly braces) as a single or double entry list,
3179  // respectively.
3180  if (Parser.getTok().is(AsmToken::Identifier)) {
3181    SMLoc E = Parser.getTok().getEndLoc();
3182    int Reg = tryParseRegister();
3183    if (Reg == -1)
3184      return MatchOperand_NoMatch;
3185    if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
3186      OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
3187      if (Res != MatchOperand_Success)
3188        return Res;
3189      switch (LaneKind) {
3190      case NoLanes:
3191        Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
3192        break;
3193      case AllLanes:
3194        Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
3195                                                                S, E));
3196        break;
3197      case IndexedLane:
3198        Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
3199                                                               LaneIndex,
3200                                                               false, S, E));
3201        break;
3202      }
3203      return MatchOperand_Success;
3204    }
3205    if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3206      Reg = getDRegFromQReg(Reg);
3207      OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
3208      if (Res != MatchOperand_Success)
3209        return Res;
3210      switch (LaneKind) {
3211      case NoLanes:
3212        Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
3213                                   &ARMMCRegisterClasses[ARM::DPairRegClassID]);
3214        Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
3215        break;
3216      case AllLanes:
3217        Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
3218                                   &ARMMCRegisterClasses[ARM::DPairRegClassID]);
3219        Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
3220                                                                S, E));
3221        break;
3222      case IndexedLane:
3223        Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
3224                                                               LaneIndex,
3225                                                               false, S, E));
3226        break;
3227      }
3228      return MatchOperand_Success;
3229    }
3230    Error(S, "vector register expected");
3231    return MatchOperand_ParseFail;
3232  }
3233
3234  if (Parser.getTok().isNot(AsmToken::LCurly))
3235    return MatchOperand_NoMatch;
3236
3237  Parser.Lex(); // Eat '{' token.
3238  SMLoc RegLoc = Parser.getTok().getLoc();
3239
3240  int Reg = tryParseRegister();
3241  if (Reg == -1) {
3242    Error(RegLoc, "register expected");
3243    return MatchOperand_ParseFail;
3244  }
3245  unsigned Count = 1;
3246  int Spacing = 0;
3247  unsigned FirstReg = Reg;
3248  // The list is of D registers, but we also allow Q regs and just interpret
3249  // them as the two D sub-registers.
3250  if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3251    FirstReg = Reg = getDRegFromQReg(Reg);
3252    Spacing = 1; // double-spacing requires explicit D registers, otherwise
3253                 // it's ambiguous with four-register single spaced.
3254    ++Reg;
3255    ++Count;
3256  }
3257
3258  SMLoc E;
3259  if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success)
3260    return MatchOperand_ParseFail;
3261
3262  while (Parser.getTok().is(AsmToken::Comma) ||
3263         Parser.getTok().is(AsmToken::Minus)) {
3264    if (Parser.getTok().is(AsmToken::Minus)) {
3265      if (!Spacing)
3266        Spacing = 1; // Register range implies a single spaced list.
3267      else if (Spacing == 2) {
3268        Error(Parser.getTok().getLoc(),
3269              "sequential registers in double spaced list");
3270        return MatchOperand_ParseFail;
3271      }
3272      Parser.Lex(); // Eat the minus.
3273      SMLoc AfterMinusLoc = Parser.getTok().getLoc();
3274      int EndReg = tryParseRegister();
3275      if (EndReg == -1) {
3276        Error(AfterMinusLoc, "register expected");
3277        return MatchOperand_ParseFail;
3278      }
3279      // Allow Q regs and just interpret them as the two D sub-registers.
3280      if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
3281        EndReg = getDRegFromQReg(EndReg) + 1;
3282      // If the register is the same as the start reg, there's nothing
3283      // more to do.
3284      if (Reg == EndReg)
3285        continue;
3286      // The register must be in the same register class as the first.
3287      if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) {
3288        Error(AfterMinusLoc, "invalid register in register list");
3289        return MatchOperand_ParseFail;
3290      }
3291      // Ranges must go from low to high.
3292      if (Reg > EndReg) {
3293        Error(AfterMinusLoc, "bad range in register list");
3294        return MatchOperand_ParseFail;
3295      }
3296      // Parse the lane specifier if present.
3297      VectorLaneTy NextLaneKind;
3298      unsigned NextLaneIndex;
3299      if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
3300          MatchOperand_Success)
3301        return MatchOperand_ParseFail;
3302      if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
3303        Error(AfterMinusLoc, "mismatched lane index in register list");
3304        return MatchOperand_ParseFail;
3305      }
3306
3307      // Add all the registers in the range to the register list.
3308      Count += EndReg - Reg;
3309      Reg = EndReg;
3310      continue;
3311    }
3312    Parser.Lex(); // Eat the comma.
3313    RegLoc = Parser.getTok().getLoc();
3314    int OldReg = Reg;
3315    Reg = tryParseRegister();
3316    if (Reg == -1) {
3317      Error(RegLoc, "register expected");
3318      return MatchOperand_ParseFail;
3319    }
3320    // vector register lists must be contiguous.
3321    // It's OK to use the enumeration values directly here rather, as the
3322    // VFP register classes have the enum sorted properly.
3323    //
3324    // The list is of D registers, but we also allow Q regs and just interpret
3325    // them as the two D sub-registers.
3326    if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3327      if (!Spacing)
3328        Spacing = 1; // Register range implies a single spaced list.
3329      else if (Spacing == 2) {
3330        Error(RegLoc,
3331              "invalid register in double-spaced list (must be 'D' register')");
3332        return MatchOperand_ParseFail;
3333      }
3334      Reg = getDRegFromQReg(Reg);
3335      if (Reg != OldReg + 1) {
3336        Error(RegLoc, "non-contiguous register range");
3337        return MatchOperand_ParseFail;
3338      }
3339      ++Reg;
3340      Count += 2;
3341      // Parse the lane specifier if present.
3342      VectorLaneTy NextLaneKind;
3343      unsigned NextLaneIndex;
3344      SMLoc LaneLoc = Parser.getTok().getLoc();
3345      if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
3346          MatchOperand_Success)
3347        return MatchOperand_ParseFail;
3348      if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
3349        Error(LaneLoc, "mismatched lane index in register list");
3350        return MatchOperand_ParseFail;
3351      }
3352      continue;
3353    }
3354    // Normal D register.
3355    // Figure out the register spacing (single or double) of the list if
3356    // we don't know it already.
3357    if (!Spacing)
3358      Spacing = 1 + (Reg == OldReg + 2);
3359
3360    // Just check that it's contiguous and keep going.
3361    if (Reg != OldReg + Spacing) {
3362      Error(RegLoc, "non-contiguous register range");
3363      return MatchOperand_ParseFail;
3364    }
3365    ++Count;
3366    // Parse the lane specifier if present.
3367    VectorLaneTy NextLaneKind;
3368    unsigned NextLaneIndex;
3369    SMLoc EndLoc = Parser.getTok().getLoc();
3370    if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success)
3371      return MatchOperand_ParseFail;
3372    if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
3373      Error(EndLoc, "mismatched lane index in register list");
3374      return MatchOperand_ParseFail;
3375    }
3376  }
3377
3378  if (Parser.getTok().isNot(AsmToken::RCurly)) {
3379    Error(Parser.getTok().getLoc(), "'}' expected");
3380    return MatchOperand_ParseFail;
3381  }
3382  E = Parser.getTok().getEndLoc();
3383  Parser.Lex(); // Eat '}' token.
3384
3385  switch (LaneKind) {
3386  case NoLanes:
3387    // Two-register operands have been converted to the
3388    // composite register classes.
3389    if (Count == 2) {
3390      const MCRegisterClass *RC = (Spacing == 1) ?
3391        &ARMMCRegisterClasses[ARM::DPairRegClassID] :
3392        &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
3393      FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
3394    }
3395
3396    Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count,
3397                                                    (Spacing == 2), S, E));
3398    break;
3399  case AllLanes:
3400    // Two-register operands have been converted to the
3401    // composite register classes.
3402    if (Count == 2) {
3403      const MCRegisterClass *RC = (Spacing == 1) ?
3404        &ARMMCRegisterClasses[ARM::DPairRegClassID] :
3405        &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
3406      FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
3407    }
3408    Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count,
3409                                                            (Spacing == 2),
3410                                                            S, E));
3411    break;
3412  case IndexedLane:
3413    Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
3414                                                           LaneIndex,
3415                                                           (Spacing == 2),
3416                                                           S, E));
3417    break;
3418  }
3419  return MatchOperand_Success;
3420}
3421
3422/// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
3423ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3424parseMemBarrierOptOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3425  SMLoc S = Parser.getTok().getLoc();
3426  const AsmToken &Tok = Parser.getTok();
3427  unsigned Opt;
3428
3429  if (Tok.is(AsmToken::Identifier)) {
3430    StringRef OptStr = Tok.getString();
3431
3432    Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
3433      .Case("sy",    ARM_MB::SY)
3434      .Case("st",    ARM_MB::ST)
3435      .Case("sh",    ARM_MB::ISH)
3436      .Case("ish",   ARM_MB::ISH)
3437      .Case("shst",  ARM_MB::ISHST)
3438      .Case("ishst", ARM_MB::ISHST)
3439      .Case("nsh",   ARM_MB::NSH)
3440      .Case("un",    ARM_MB::NSH)
3441      .Case("nshst", ARM_MB::NSHST)
3442      .Case("unst",  ARM_MB::NSHST)
3443      .Case("osh",   ARM_MB::OSH)
3444      .Case("oshst", ARM_MB::OSHST)
3445      .Default(~0U);
3446
3447    if (Opt == ~0U)
3448      return MatchOperand_NoMatch;
3449
3450    Parser.Lex(); // Eat identifier token.
3451  } else if (Tok.is(AsmToken::Hash) ||
3452             Tok.is(AsmToken::Dollar) ||
3453             Tok.is(AsmToken::Integer)) {
3454    if (Parser.getTok().isNot(AsmToken::Integer))
3455      Parser.Lex(); // Eat '#' or '$'.
3456    SMLoc Loc = Parser.getTok().getLoc();
3457
3458    const MCExpr *MemBarrierID;
3459    if (getParser().parseExpression(MemBarrierID)) {
3460      Error(Loc, "illegal expression");
3461      return MatchOperand_ParseFail;
3462    }
3463
3464    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
3465    if (!CE) {
3466      Error(Loc, "constant expression expected");
3467      return MatchOperand_ParseFail;
3468    }
3469
3470    int Val = CE->getValue();
3471    if (Val & ~0xf) {
3472      Error(Loc, "immediate value out of range");
3473      return MatchOperand_ParseFail;
3474    }
3475
3476    Opt = ARM_MB::RESERVED_0 + Val;
3477  } else
3478    return MatchOperand_ParseFail;
3479
3480  Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
3481  return MatchOperand_Success;
3482}
3483
3484/// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
3485ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3486parseInstSyncBarrierOptOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3487  SMLoc S = Parser.getTok().getLoc();
3488  const AsmToken &Tok = Parser.getTok();
3489  unsigned Opt;
3490
3491  if (Tok.is(AsmToken::Identifier)) {
3492    StringRef OptStr = Tok.getString();
3493
3494    if (OptStr.lower() == "sy")
3495      Opt = ARM_ISB::SY;
3496    else
3497      return MatchOperand_NoMatch;
3498
3499    Parser.Lex(); // Eat identifier token.
3500  } else if (Tok.is(AsmToken::Hash) ||
3501             Tok.is(AsmToken::Dollar) ||
3502             Tok.is(AsmToken::Integer)) {
3503    if (Parser.getTok().isNot(AsmToken::Integer))
3504      Parser.Lex(); // Eat '#' or '$'.
3505    SMLoc Loc = Parser.getTok().getLoc();
3506
3507    const MCExpr *ISBarrierID;
3508    if (getParser().parseExpression(ISBarrierID)) {
3509      Error(Loc, "illegal expression");
3510      return MatchOperand_ParseFail;
3511    }
3512
3513    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID);
3514    if (!CE) {
3515      Error(Loc, "constant expression expected");
3516      return MatchOperand_ParseFail;
3517    }
3518
3519    int Val = CE->getValue();
3520    if (Val & ~0xf) {
3521      Error(Loc, "immediate value out of range");
3522      return MatchOperand_ParseFail;
3523    }
3524
3525    Opt = ARM_ISB::RESERVED_0 + Val;
3526  } else
3527    return MatchOperand_ParseFail;
3528
3529  Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt(
3530          (ARM_ISB::InstSyncBOpt)Opt, S));
3531  return MatchOperand_Success;
3532}
3533
3534
3535/// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
3536ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3537parseProcIFlagsOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3538  SMLoc S = Parser.getTok().getLoc();
3539  const AsmToken &Tok = Parser.getTok();
3540  if (!Tok.is(AsmToken::Identifier))
3541    return MatchOperand_NoMatch;
3542  StringRef IFlagsStr = Tok.getString();
3543
3544  // An iflags string of "none" is interpreted to mean that none of the AIF
3545  // bits are set.  Not a terribly useful instruction, but a valid encoding.
3546  unsigned IFlags = 0;
3547  if (IFlagsStr != "none") {
3548        for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
3549      unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1))
3550        .Case("a", ARM_PROC::A)
3551        .Case("i", ARM_PROC::I)
3552        .Case("f", ARM_PROC::F)
3553        .Default(~0U);
3554
3555      // If some specific iflag is already set, it means that some letter is
3556      // present more than once, this is not acceptable.
3557      if (Flag == ~0U || (IFlags & Flag))
3558        return MatchOperand_NoMatch;
3559
3560      IFlags |= Flag;
3561    }
3562  }
3563
3564  Parser.Lex(); // Eat identifier token.
3565  Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
3566  return MatchOperand_Success;
3567}
3568
3569/// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
3570ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3571parseMSRMaskOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3572  SMLoc S = Parser.getTok().getLoc();
3573  const AsmToken &Tok = Parser.getTok();
3574  if (!Tok.is(AsmToken::Identifier))
3575    return MatchOperand_NoMatch;
3576  StringRef Mask = Tok.getString();
3577
3578  if (isMClass()) {
3579    // See ARMv6-M 10.1.1
3580    std::string Name = Mask.lower();
3581    unsigned FlagsVal = StringSwitch<unsigned>(Name)
3582      // Note: in the documentation:
3583      //  ARM deprecates using MSR APSR without a _<bits> qualifier as an alias
3584      //  for MSR APSR_nzcvq.
3585      // but we do make it an alias here.  This is so to get the "mask encoding"
3586      // bits correct on MSR APSR writes.
3587      //
3588      // FIXME: Note the 0xc00 "mask encoding" bits version of the registers
3589      // should really only be allowed when writing a special register.  Note
3590      // they get dropped in the MRS instruction reading a special register as
3591      // the SYSm field is only 8 bits.
3592      //
3593      // FIXME: the _g and _nzcvqg versions are only allowed if the processor
3594      // includes the DSP extension but that is not checked.
3595      .Case("apsr", 0x800)
3596      .Case("apsr_nzcvq", 0x800)
3597      .Case("apsr_g", 0x400)
3598      .Case("apsr_nzcvqg", 0xc00)
3599      .Case("iapsr", 0x801)
3600      .Case("iapsr_nzcvq", 0x801)
3601      .Case("iapsr_g", 0x401)
3602      .Case("iapsr_nzcvqg", 0xc01)
3603      .Case("eapsr", 0x802)
3604      .Case("eapsr_nzcvq", 0x802)
3605      .Case("eapsr_g", 0x402)
3606      .Case("eapsr_nzcvqg", 0xc02)
3607      .Case("xpsr", 0x803)
3608      .Case("xpsr_nzcvq", 0x803)
3609      .Case("xpsr_g", 0x403)
3610      .Case("xpsr_nzcvqg", 0xc03)
3611      .Case("ipsr", 0x805)
3612      .Case("epsr", 0x806)
3613      .Case("iepsr", 0x807)
3614      .Case("msp", 0x808)
3615      .Case("psp", 0x809)
3616      .Case("primask", 0x810)
3617      .Case("basepri", 0x811)
3618      .Case("basepri_max", 0x812)
3619      .Case("faultmask", 0x813)
3620      .Case("control", 0x814)
3621      .Default(~0U);
3622
3623    if (FlagsVal == ~0U)
3624      return MatchOperand_NoMatch;
3625
3626    if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813)
3627      // basepri, basepri_max and faultmask only valid for V7m.
3628      return MatchOperand_NoMatch;
3629
3630    Parser.Lex(); // Eat identifier token.
3631    Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
3632    return MatchOperand_Success;
3633  }
3634
3635  // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
3636  size_t Start = 0, Next = Mask.find('_');
3637  StringRef Flags = "";
3638  std::string SpecReg = Mask.slice(Start, Next).lower();
3639  if (Next != StringRef::npos)
3640    Flags = Mask.slice(Next+1, Mask.size());
3641
3642  // FlagsVal contains the complete mask:
3643  // 3-0: Mask
3644  // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
3645  unsigned FlagsVal = 0;
3646
3647  if (SpecReg == "apsr") {
3648    FlagsVal = StringSwitch<unsigned>(Flags)
3649    .Case("nzcvq",  0x8) // same as CPSR_f
3650    .Case("g",      0x4) // same as CPSR_s
3651    .Case("nzcvqg", 0xc) // same as CPSR_fs
3652    .Default(~0U);
3653
3654    if (FlagsVal == ~0U) {
3655      if (!Flags.empty())
3656        return MatchOperand_NoMatch;
3657      else
3658        FlagsVal = 8; // No flag
3659    }
3660  } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
3661    // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
3662    if (Flags == "all" || Flags == "")
3663      Flags = "fc";
3664    for (int i = 0, e = Flags.size(); i != e; ++i) {
3665      unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
3666      .Case("c", 1)
3667      .Case("x", 2)
3668      .Case("s", 4)
3669      .Case("f", 8)
3670      .Default(~0U);
3671
3672      // If some specific flag is already set, it means that some letter is
3673      // present more than once, this is not acceptable.
3674      if (FlagsVal == ~0U || (FlagsVal & Flag))
3675        return MatchOperand_NoMatch;
3676      FlagsVal |= Flag;
3677    }
3678  } else // No match for special register.
3679    return MatchOperand_NoMatch;
3680
3681  // Special register without flags is NOT equivalent to "fc" flags.
3682  // NOTE: This is a divergence from gas' behavior.  Uncommenting the following
3683  // two lines would enable gas compatibility at the expense of breaking
3684  // round-tripping.
3685  //
3686  // if (!FlagsVal)
3687  //  FlagsVal = 0x9;
3688
3689  // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
3690  if (SpecReg == "spsr")
3691    FlagsVal |= 16;
3692
3693  Parser.Lex(); // Eat identifier token.
3694  Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
3695  return MatchOperand_Success;
3696}
3697
3698ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3699parsePKHImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands, StringRef Op,
3700            int Low, int High) {
3701  const AsmToken &Tok = Parser.getTok();
3702  if (Tok.isNot(AsmToken::Identifier)) {
3703    Error(Parser.getTok().getLoc(), Op + " operand expected.");
3704    return MatchOperand_ParseFail;
3705  }
3706  StringRef ShiftName = Tok.getString();
3707  std::string LowerOp = Op.lower();
3708  std::string UpperOp = Op.upper();
3709  if (ShiftName != LowerOp && ShiftName != UpperOp) {
3710    Error(Parser.getTok().getLoc(), Op + " operand expected.");
3711    return MatchOperand_ParseFail;
3712  }
3713  Parser.Lex(); // Eat shift type token.
3714
3715  // There must be a '#' and a shift amount.
3716  if (Parser.getTok().isNot(AsmToken::Hash) &&
3717      Parser.getTok().isNot(AsmToken::Dollar)) {
3718    Error(Parser.getTok().getLoc(), "'#' expected");
3719    return MatchOperand_ParseFail;
3720  }
3721  Parser.Lex(); // Eat hash token.
3722
3723  const MCExpr *ShiftAmount;
3724  SMLoc Loc = Parser.getTok().getLoc();
3725  SMLoc EndLoc;
3726  if (getParser().parseExpression(ShiftAmount, EndLoc)) {
3727    Error(Loc, "illegal expression");
3728    return MatchOperand_ParseFail;
3729  }
3730  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
3731  if (!CE) {
3732    Error(Loc, "constant expression expected");
3733    return MatchOperand_ParseFail;
3734  }
3735  int Val = CE->getValue();
3736  if (Val < Low || Val > High) {
3737    Error(Loc, "immediate value out of range");
3738    return MatchOperand_ParseFail;
3739  }
3740
3741  Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc));
3742
3743  return MatchOperand_Success;
3744}
3745
3746ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3747parseSetEndImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3748  const AsmToken &Tok = Parser.getTok();
3749  SMLoc S = Tok.getLoc();
3750  if (Tok.isNot(AsmToken::Identifier)) {
3751    Error(S, "'be' or 'le' operand expected");
3752    return MatchOperand_ParseFail;
3753  }
3754  int Val = StringSwitch<int>(Tok.getString().lower())
3755    .Case("be", 1)
3756    .Case("le", 0)
3757    .Default(-1);
3758  Parser.Lex(); // Eat the token.
3759
3760  if (Val == -1) {
3761    Error(S, "'be' or 'le' operand expected");
3762    return MatchOperand_ParseFail;
3763  }
3764  Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::Create(Val,
3765                                                                  getContext()),
3766                                           S, Tok.getEndLoc()));
3767  return MatchOperand_Success;
3768}
3769
3770/// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
3771/// instructions. Legal values are:
3772///     lsl #n  'n' in [0,31]
3773///     asr #n  'n' in [1,32]
3774///             n == 32 encoded as n == 0.
3775ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3776parseShifterImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3777  const AsmToken &Tok = Parser.getTok();
3778  SMLoc S = Tok.getLoc();
3779  if (Tok.isNot(AsmToken::Identifier)) {
3780    Error(S, "shift operator 'asr' or 'lsl' expected");
3781    return MatchOperand_ParseFail;
3782  }
3783  StringRef ShiftName = Tok.getString();
3784  bool isASR;
3785  if (ShiftName == "lsl" || ShiftName == "LSL")
3786    isASR = false;
3787  else if (ShiftName == "asr" || ShiftName == "ASR")
3788    isASR = true;
3789  else {
3790    Error(S, "shift operator 'asr' or 'lsl' expected");
3791    return MatchOperand_ParseFail;
3792  }
3793  Parser.Lex(); // Eat the operator.
3794
3795  // A '#' and a shift amount.
3796  if (Parser.getTok().isNot(AsmToken::Hash) &&
3797      Parser.getTok().isNot(AsmToken::Dollar)) {
3798    Error(Parser.getTok().getLoc(), "'#' expected");
3799    return MatchOperand_ParseFail;
3800  }
3801  Parser.Lex(); // Eat hash token.
3802  SMLoc ExLoc = Parser.getTok().getLoc();
3803
3804  const MCExpr *ShiftAmount;
3805  SMLoc EndLoc;
3806  if (getParser().parseExpression(ShiftAmount, EndLoc)) {
3807    Error(ExLoc, "malformed shift expression");
3808    return MatchOperand_ParseFail;
3809  }
3810  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
3811  if (!CE) {
3812    Error(ExLoc, "shift amount must be an immediate");
3813    return MatchOperand_ParseFail;
3814  }
3815
3816  int64_t Val = CE->getValue();
3817  if (isASR) {
3818    // Shift amount must be in [1,32]
3819    if (Val < 1 || Val > 32) {
3820      Error(ExLoc, "'asr' shift amount must be in range [1,32]");
3821      return MatchOperand_ParseFail;
3822    }
3823    // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
3824    if (isThumb() && Val == 32) {
3825      Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode");
3826      return MatchOperand_ParseFail;
3827    }
3828    if (Val == 32) Val = 0;
3829  } else {
3830    // Shift amount must be in [1,32]
3831    if (Val < 0 || Val > 31) {
3832      Error(ExLoc, "'lsr' shift amount must be in range [0,31]");
3833      return MatchOperand_ParseFail;
3834    }
3835  }
3836
3837  Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc));
3838
3839  return MatchOperand_Success;
3840}
3841
3842/// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
3843/// of instructions. Legal values are:
3844///     ror #n  'n' in {0, 8, 16, 24}
3845ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3846parseRotImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3847  const AsmToken &Tok = Parser.getTok();
3848  SMLoc S = Tok.getLoc();
3849  if (Tok.isNot(AsmToken::Identifier))
3850    return MatchOperand_NoMatch;
3851  StringRef ShiftName = Tok.getString();
3852  if (ShiftName != "ror" && ShiftName != "ROR")
3853    return MatchOperand_NoMatch;
3854  Parser.Lex(); // Eat the operator.
3855
3856  // A '#' and a rotate amount.
3857  if (Parser.getTok().isNot(AsmToken::Hash) &&
3858      Parser.getTok().isNot(AsmToken::Dollar)) {
3859    Error(Parser.getTok().getLoc(), "'#' expected");
3860    return MatchOperand_ParseFail;
3861  }
3862  Parser.Lex(); // Eat hash token.
3863  SMLoc ExLoc = Parser.getTok().getLoc();
3864
3865  const MCExpr *ShiftAmount;
3866  SMLoc EndLoc;
3867  if (getParser().parseExpression(ShiftAmount, EndLoc)) {
3868    Error(ExLoc, "malformed rotate expression");
3869    return MatchOperand_ParseFail;
3870  }
3871  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
3872  if (!CE) {
3873    Error(ExLoc, "rotate amount must be an immediate");
3874    return MatchOperand_ParseFail;
3875  }
3876
3877  int64_t Val = CE->getValue();
3878  // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
3879  // normally, zero is represented in asm by omitting the rotate operand
3880  // entirely.
3881  if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
3882    Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24");
3883    return MatchOperand_ParseFail;
3884  }
3885
3886  Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc));
3887
3888  return MatchOperand_Success;
3889}
3890
3891ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3892parseBitfield(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3893  SMLoc S = Parser.getTok().getLoc();
3894  // The bitfield descriptor is really two operands, the LSB and the width.
3895  if (Parser.getTok().isNot(AsmToken::Hash) &&
3896      Parser.getTok().isNot(AsmToken::Dollar)) {
3897    Error(Parser.getTok().getLoc(), "'#' expected");
3898    return MatchOperand_ParseFail;
3899  }
3900  Parser.Lex(); // Eat hash token.
3901
3902  const MCExpr *LSBExpr;
3903  SMLoc E = Parser.getTok().getLoc();
3904  if (getParser().parseExpression(LSBExpr)) {
3905    Error(E, "malformed immediate expression");
3906    return MatchOperand_ParseFail;
3907  }
3908  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
3909  if (!CE) {
3910    Error(E, "'lsb' operand must be an immediate");
3911    return MatchOperand_ParseFail;
3912  }
3913
3914  int64_t LSB = CE->getValue();
3915  // The LSB must be in the range [0,31]
3916  if (LSB < 0 || LSB > 31) {
3917    Error(E, "'lsb' operand must be in the range [0,31]");
3918    return MatchOperand_ParseFail;
3919  }
3920  E = Parser.getTok().getLoc();
3921
3922  // Expect another immediate operand.
3923  if (Parser.getTok().isNot(AsmToken::Comma)) {
3924    Error(Parser.getTok().getLoc(), "too few operands");
3925    return MatchOperand_ParseFail;
3926  }
3927  Parser.Lex(); // Eat hash token.
3928  if (Parser.getTok().isNot(AsmToken::Hash) &&
3929      Parser.getTok().isNot(AsmToken::Dollar)) {
3930    Error(Parser.getTok().getLoc(), "'#' expected");
3931    return MatchOperand_ParseFail;
3932  }
3933  Parser.Lex(); // Eat hash token.
3934
3935  const MCExpr *WidthExpr;
3936  SMLoc EndLoc;
3937  if (getParser().parseExpression(WidthExpr, EndLoc)) {
3938    Error(E, "malformed immediate expression");
3939    return MatchOperand_ParseFail;
3940  }
3941  CE = dyn_cast<MCConstantExpr>(WidthExpr);
3942  if (!CE) {
3943    Error(E, "'width' operand must be an immediate");
3944    return MatchOperand_ParseFail;
3945  }
3946
3947  int64_t Width = CE->getValue();
3948  // The LSB must be in the range [1,32-lsb]
3949  if (Width < 1 || Width > 32 - LSB) {
3950    Error(E, "'width' operand must be in the range [1,32-lsb]");
3951    return MatchOperand_ParseFail;
3952  }
3953
3954  Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc));
3955
3956  return MatchOperand_Success;
3957}
3958
3959ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3960parsePostIdxReg(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3961  // Check for a post-index addressing register operand. Specifically:
3962  // postidx_reg := '+' register {, shift}
3963  //              | '-' register {, shift}
3964  //              | register {, shift}
3965
3966  // This method must return MatchOperand_NoMatch without consuming any tokens
3967  // in the case where there is no match, as other alternatives take other
3968  // parse methods.
3969  AsmToken Tok = Parser.getTok();
3970  SMLoc S = Tok.getLoc();
3971  bool haveEaten = false;
3972  bool isAdd = true;
3973  if (Tok.is(AsmToken::Plus)) {
3974    Parser.Lex(); // Eat the '+' token.
3975    haveEaten = true;
3976  } else if (Tok.is(AsmToken::Minus)) {
3977    Parser.Lex(); // Eat the '-' token.
3978    isAdd = false;
3979    haveEaten = true;
3980  }
3981
3982  SMLoc E = Parser.getTok().getEndLoc();
3983  int Reg = tryParseRegister();
3984  if (Reg == -1) {
3985    if (!haveEaten)
3986      return MatchOperand_NoMatch;
3987    Error(Parser.getTok().getLoc(), "register expected");
3988    return MatchOperand_ParseFail;
3989  }
3990
3991  ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
3992  unsigned ShiftImm = 0;
3993  if (Parser.getTok().is(AsmToken::Comma)) {
3994    Parser.Lex(); // Eat the ','.
3995    if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
3996      return MatchOperand_ParseFail;
3997
3998    // FIXME: Only approximates end...may include intervening whitespace.
3999    E = Parser.getTok().getLoc();
4000  }
4001
4002  Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
4003                                                  ShiftImm, S, E));
4004
4005  return MatchOperand_Success;
4006}
4007
4008ARMAsmParser::OperandMatchResultTy ARMAsmParser::
4009parseAM3Offset(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4010  // Check for a post-index addressing register operand. Specifically:
4011  // am3offset := '+' register
4012  //              | '-' register
4013  //              | register
4014  //              | # imm
4015  //              | # + imm
4016  //              | # - imm
4017
4018  // This method must return MatchOperand_NoMatch without consuming any tokens
4019  // in the case where there is no match, as other alternatives take other
4020  // parse methods.
4021  AsmToken Tok = Parser.getTok();
4022  SMLoc S = Tok.getLoc();
4023
4024  // Do immediates first, as we always parse those if we have a '#'.
4025  if (Parser.getTok().is(AsmToken::Hash) ||
4026      Parser.getTok().is(AsmToken::Dollar)) {
4027    Parser.Lex(); // Eat '#' or '$'.
4028    // Explicitly look for a '-', as we need to encode negative zero
4029    // differently.
4030    bool isNegative = Parser.getTok().is(AsmToken::Minus);
4031    const MCExpr *Offset;
4032    SMLoc E;
4033    if (getParser().parseExpression(Offset, E))
4034      return MatchOperand_ParseFail;
4035    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
4036    if (!CE) {
4037      Error(S, "constant expression expected");
4038      return MatchOperand_ParseFail;
4039    }
4040    // Negative zero is encoded as the flag value INT32_MIN.
4041    int32_t Val = CE->getValue();
4042    if (isNegative && Val == 0)
4043      Val = INT32_MIN;
4044
4045    Operands.push_back(
4046      ARMOperand::CreateImm(MCConstantExpr::Create(Val, getContext()), S, E));
4047
4048    return MatchOperand_Success;
4049  }
4050
4051
4052  bool haveEaten = false;
4053  bool isAdd = true;
4054  if (Tok.is(AsmToken::Plus)) {
4055    Parser.Lex(); // Eat the '+' token.
4056    haveEaten = true;
4057  } else if (Tok.is(AsmToken::Minus)) {
4058    Parser.Lex(); // Eat the '-' token.
4059    isAdd = false;
4060    haveEaten = true;
4061  }
4062
4063  Tok = Parser.getTok();
4064  int Reg = tryParseRegister();
4065  if (Reg == -1) {
4066    if (!haveEaten)
4067      return MatchOperand_NoMatch;
4068    Error(Tok.getLoc(), "register expected");
4069    return MatchOperand_ParseFail;
4070  }
4071
4072  Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
4073                                                  0, S, Tok.getEndLoc()));
4074
4075  return MatchOperand_Success;
4076}
4077
4078/// cvtT2LdrdPre - Convert parsed operands to MCInst.
4079/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4080/// when they refer multiple MIOperands inside a single one.
4081void ARMAsmParser::
4082cvtT2LdrdPre(MCInst &Inst,
4083             const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4084  // Rt, Rt2
4085  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4086  ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
4087  // Create a writeback register dummy placeholder.
4088  Inst.addOperand(MCOperand::CreateReg(0));
4089  // addr
4090  ((ARMOperand*)Operands[4])->addMemImm8s4OffsetOperands(Inst, 2);
4091  // pred
4092  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4093}
4094
4095/// cvtT2StrdPre - Convert parsed operands to MCInst.
4096/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4097/// when they refer multiple MIOperands inside a single one.
4098void ARMAsmParser::
4099cvtT2StrdPre(MCInst &Inst,
4100             const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4101  // Create a writeback register dummy placeholder.
4102  Inst.addOperand(MCOperand::CreateReg(0));
4103  // Rt, Rt2
4104  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4105  ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
4106  // addr
4107  ((ARMOperand*)Operands[4])->addMemImm8s4OffsetOperands(Inst, 2);
4108  // pred
4109  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4110}
4111
4112/// cvtLdWriteBackRegT2AddrModeImm8 - Convert parsed operands to MCInst.
4113/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4114/// when they refer multiple MIOperands inside a single one.
4115void ARMAsmParser::
4116cvtLdWriteBackRegT2AddrModeImm8(MCInst &Inst,
4117                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4118  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4119
4120  // Create a writeback register dummy placeholder.
4121  Inst.addOperand(MCOperand::CreateImm(0));
4122
4123  ((ARMOperand*)Operands[3])->addMemImm8OffsetOperands(Inst, 2);
4124  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4125}
4126
4127/// cvtStWriteBackRegT2AddrModeImm8 - Convert parsed operands to MCInst.
4128/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4129/// when they refer multiple MIOperands inside a single one.
4130void ARMAsmParser::
4131cvtStWriteBackRegT2AddrModeImm8(MCInst &Inst,
4132                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4133  // Create a writeback register dummy placeholder.
4134  Inst.addOperand(MCOperand::CreateImm(0));
4135  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4136  ((ARMOperand*)Operands[3])->addMemImm8OffsetOperands(Inst, 2);
4137  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4138}
4139
4140/// cvtLdWriteBackRegAddrMode2 - Convert parsed operands to MCInst.
4141/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4142/// when they refer multiple MIOperands inside a single one.
4143void ARMAsmParser::
4144cvtLdWriteBackRegAddrMode2(MCInst &Inst,
4145                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4146  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4147
4148  // Create a writeback register dummy placeholder.
4149  Inst.addOperand(MCOperand::CreateImm(0));
4150
4151  ((ARMOperand*)Operands[3])->addAddrMode2Operands(Inst, 3);
4152  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4153}
4154
4155/// cvtLdWriteBackRegAddrModeImm12 - Convert parsed operands to MCInst.
4156/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4157/// when they refer multiple MIOperands inside a single one.
4158void ARMAsmParser::
4159cvtLdWriteBackRegAddrModeImm12(MCInst &Inst,
4160                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4161  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4162
4163  // Create a writeback register dummy placeholder.
4164  Inst.addOperand(MCOperand::CreateImm(0));
4165
4166  ((ARMOperand*)Operands[3])->addMemImm12OffsetOperands(Inst, 2);
4167  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4168}
4169
4170
4171/// cvtStWriteBackRegAddrModeImm12 - Convert parsed operands to MCInst.
4172/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4173/// when they refer multiple MIOperands inside a single one.
4174void ARMAsmParser::
4175cvtStWriteBackRegAddrModeImm12(MCInst &Inst,
4176                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4177  // Create a writeback register dummy placeholder.
4178  Inst.addOperand(MCOperand::CreateImm(0));
4179  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4180  ((ARMOperand*)Operands[3])->addMemImm12OffsetOperands(Inst, 2);
4181  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4182}
4183
4184/// cvtStWriteBackRegAddrMode2 - Convert parsed operands to MCInst.
4185/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4186/// when they refer multiple MIOperands inside a single one.
4187void ARMAsmParser::
4188cvtStWriteBackRegAddrMode2(MCInst &Inst,
4189                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4190  // Create a writeback register dummy placeholder.
4191  Inst.addOperand(MCOperand::CreateImm(0));
4192  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4193  ((ARMOperand*)Operands[3])->addAddrMode2Operands(Inst, 3);
4194  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4195}
4196
4197/// cvtStWriteBackRegAddrMode3 - Convert parsed operands to MCInst.
4198/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4199/// when they refer multiple MIOperands inside a single one.
4200void ARMAsmParser::
4201cvtStWriteBackRegAddrMode3(MCInst &Inst,
4202                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4203  // Create a writeback register dummy placeholder.
4204  Inst.addOperand(MCOperand::CreateImm(0));
4205  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4206  ((ARMOperand*)Operands[3])->addAddrMode3Operands(Inst, 3);
4207  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4208}
4209
4210/// cvtLdExtTWriteBackImm - Convert parsed operands to MCInst.
4211/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4212/// when they refer multiple MIOperands inside a single one.
4213void ARMAsmParser::
4214cvtLdExtTWriteBackImm(MCInst &Inst,
4215                      const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4216  // Rt
4217  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4218  // Create a writeback register dummy placeholder.
4219  Inst.addOperand(MCOperand::CreateImm(0));
4220  // addr
4221  ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
4222  // offset
4223  ((ARMOperand*)Operands[4])->addPostIdxImm8Operands(Inst, 1);
4224  // pred
4225  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4226}
4227
4228/// cvtLdExtTWriteBackReg - Convert parsed operands to MCInst.
4229/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4230/// when they refer multiple MIOperands inside a single one.
4231void ARMAsmParser::
4232cvtLdExtTWriteBackReg(MCInst &Inst,
4233                      const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4234  // Rt
4235  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4236  // Create a writeback register dummy placeholder.
4237  Inst.addOperand(MCOperand::CreateImm(0));
4238  // addr
4239  ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
4240  // offset
4241  ((ARMOperand*)Operands[4])->addPostIdxRegOperands(Inst, 2);
4242  // pred
4243  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4244}
4245
4246/// cvtStExtTWriteBackImm - Convert parsed operands to MCInst.
4247/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4248/// when they refer multiple MIOperands inside a single one.
4249void ARMAsmParser::
4250cvtStExtTWriteBackImm(MCInst &Inst,
4251                      const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4252  // Create a writeback register dummy placeholder.
4253  Inst.addOperand(MCOperand::CreateImm(0));
4254  // Rt
4255  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4256  // addr
4257  ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
4258  // offset
4259  ((ARMOperand*)Operands[4])->addPostIdxImm8Operands(Inst, 1);
4260  // pred
4261  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4262}
4263
4264/// cvtStExtTWriteBackReg - Convert parsed operands to MCInst.
4265/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4266/// when they refer multiple MIOperands inside a single one.
4267void ARMAsmParser::
4268cvtStExtTWriteBackReg(MCInst &Inst,
4269                      const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4270  // Create a writeback register dummy placeholder.
4271  Inst.addOperand(MCOperand::CreateImm(0));
4272  // Rt
4273  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4274  // addr
4275  ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
4276  // offset
4277  ((ARMOperand*)Operands[4])->addPostIdxRegOperands(Inst, 2);
4278  // pred
4279  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4280}
4281
4282/// cvtLdrdPre - Convert parsed operands to MCInst.
4283/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4284/// when they refer multiple MIOperands inside a single one.
4285void ARMAsmParser::
4286cvtLdrdPre(MCInst &Inst,
4287           const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4288  // Rt, Rt2
4289  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4290  ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
4291  // Create a writeback register dummy placeholder.
4292  Inst.addOperand(MCOperand::CreateImm(0));
4293  // addr
4294  ((ARMOperand*)Operands[4])->addAddrMode3Operands(Inst, 3);
4295  // pred
4296  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4297}
4298
4299/// cvtStrdPre - Convert parsed operands to MCInst.
4300/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4301/// when they refer multiple MIOperands inside a single one.
4302void ARMAsmParser::
4303cvtStrdPre(MCInst &Inst,
4304           const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4305  // Create a writeback register dummy placeholder.
4306  Inst.addOperand(MCOperand::CreateImm(0));
4307  // Rt, Rt2
4308  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4309  ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
4310  // addr
4311  ((ARMOperand*)Operands[4])->addAddrMode3Operands(Inst, 3);
4312  // pred
4313  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4314}
4315
4316/// cvtLdWriteBackRegAddrMode3 - Convert parsed operands to MCInst.
4317/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4318/// when they refer multiple MIOperands inside a single one.
4319void ARMAsmParser::
4320cvtLdWriteBackRegAddrMode3(MCInst &Inst,
4321                         const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4322  ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4323  // Create a writeback register dummy placeholder.
4324  Inst.addOperand(MCOperand::CreateImm(0));
4325  ((ARMOperand*)Operands[3])->addAddrMode3Operands(Inst, 3);
4326  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4327}
4328
4329/// cvtThumbMultiply - Convert parsed operands to MCInst.
4330/// Needed here because the Asm Gen Matcher can't handle properly tied operands
4331/// when they refer multiple MIOperands inside a single one.
4332void ARMAsmParser::
4333cvtThumbMultiply(MCInst &Inst,
4334           const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4335  ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
4336  ((ARMOperand*)Operands[1])->addCCOutOperands(Inst, 1);
4337  // If we have a three-operand form, make sure to set Rn to be the operand
4338  // that isn't the same as Rd.
4339  unsigned RegOp = 4;
4340  if (Operands.size() == 6 &&
4341      ((ARMOperand*)Operands[4])->getReg() ==
4342        ((ARMOperand*)Operands[3])->getReg())
4343    RegOp = 5;
4344  ((ARMOperand*)Operands[RegOp])->addRegOperands(Inst, 1);
4345  Inst.addOperand(Inst.getOperand(0));
4346  ((ARMOperand*)Operands[2])->addCondCodeOperands(Inst, 2);
4347}
4348
4349void ARMAsmParser::
4350cvtVLDwbFixed(MCInst &Inst,
4351              const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4352  // Vd
4353  ((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1);
4354  // Create a writeback register dummy placeholder.
4355  Inst.addOperand(MCOperand::CreateImm(0));
4356  // Vn
4357  ((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
4358  // pred
4359  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4360}
4361
4362void ARMAsmParser::
4363cvtVLDwbRegister(MCInst &Inst,
4364                 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4365  // Vd
4366  ((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1);
4367  // Create a writeback register dummy placeholder.
4368  Inst.addOperand(MCOperand::CreateImm(0));
4369  // Vn
4370  ((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
4371  // Vm
4372  ((ARMOperand*)Operands[5])->addRegOperands(Inst, 1);
4373  // pred
4374  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4375}
4376
4377void ARMAsmParser::
4378cvtVSTwbFixed(MCInst &Inst,
4379              const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4380  // Create a writeback register dummy placeholder.
4381  Inst.addOperand(MCOperand::CreateImm(0));
4382  // Vn
4383  ((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
4384  // Vt
4385  ((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1);
4386  // pred
4387  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4388}
4389
4390void ARMAsmParser::
4391cvtVSTwbRegister(MCInst &Inst,
4392                 const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4393  // Create a writeback register dummy placeholder.
4394  Inst.addOperand(MCOperand::CreateImm(0));
4395  // Vn
4396  ((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
4397  // Vm
4398  ((ARMOperand*)Operands[5])->addRegOperands(Inst, 1);
4399  // Vt
4400  ((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1);
4401  // pred
4402  ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4403}
4404
4405/// Parse an ARM memory expression, return false if successful else return true
4406/// or an error.  The first token must be a '[' when called.
4407bool ARMAsmParser::
4408parseMemory(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4409  SMLoc S, E;
4410  assert(Parser.getTok().is(AsmToken::LBrac) &&
4411         "Token is not a Left Bracket");
4412  S = Parser.getTok().getLoc();
4413  Parser.Lex(); // Eat left bracket token.
4414
4415  const AsmToken &BaseRegTok = Parser.getTok();
4416  int BaseRegNum = tryParseRegister();
4417  if (BaseRegNum == -1)
4418    return Error(BaseRegTok.getLoc(), "register expected");
4419
4420  // The next token must either be a comma, a colon or a closing bracket.
4421  const AsmToken &Tok = Parser.getTok();
4422  if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) &&
4423      !Tok.is(AsmToken::RBrac))
4424    return Error(Tok.getLoc(), "malformed memory operand");
4425
4426  if (Tok.is(AsmToken::RBrac)) {
4427    E = Tok.getEndLoc();
4428    Parser.Lex(); // Eat right bracket token.
4429
4430    Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, 0, ARM_AM::no_shift,
4431                                             0, 0, false, S, E));
4432
4433    // If there's a pre-indexing writeback marker, '!', just add it as a token
4434    // operand. It's rather odd, but syntactically valid.
4435    if (Parser.getTok().is(AsmToken::Exclaim)) {
4436      Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4437      Parser.Lex(); // Eat the '!'.
4438    }
4439
4440    return false;
4441  }
4442
4443  assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) &&
4444         "Lost colon or comma in memory operand?!");
4445  if (Tok.is(AsmToken::Comma)) {
4446    Parser.Lex(); // Eat the comma.
4447  }
4448
4449  // If we have a ':', it's an alignment specifier.
4450  if (Parser.getTok().is(AsmToken::Colon)) {
4451    Parser.Lex(); // Eat the ':'.
4452    E = Parser.getTok().getLoc();
4453
4454    const MCExpr *Expr;
4455    if (getParser().parseExpression(Expr))
4456     return true;
4457
4458    // The expression has to be a constant. Memory references with relocations
4459    // don't come through here, as they use the <label> forms of the relevant
4460    // instructions.
4461    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
4462    if (!CE)
4463      return Error (E, "constant expression expected");
4464
4465    unsigned Align = 0;
4466    switch (CE->getValue()) {
4467    default:
4468      return Error(E,
4469                   "alignment specifier must be 16, 32, 64, 128, or 256 bits");
4470    case 16:  Align = 2; break;
4471    case 32:  Align = 4; break;
4472    case 64:  Align = 8; break;
4473    case 128: Align = 16; break;
4474    case 256: Align = 32; break;
4475    }
4476
4477    // Now we should have the closing ']'
4478    if (Parser.getTok().isNot(AsmToken::RBrac))
4479      return Error(Parser.getTok().getLoc(), "']' expected");
4480    E = Parser.getTok().getEndLoc();
4481    Parser.Lex(); // Eat right bracket token.
4482
4483    // Don't worry about range checking the value here. That's handled by
4484    // the is*() predicates.
4485    Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, 0,
4486                                             ARM_AM::no_shift, 0, Align,
4487                                             false, S, E));
4488
4489    // If there's a pre-indexing writeback marker, '!', just add it as a token
4490    // operand.
4491    if (Parser.getTok().is(AsmToken::Exclaim)) {
4492      Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4493      Parser.Lex(); // Eat the '!'.
4494    }
4495
4496    return false;
4497  }
4498
4499  // If we have a '#', it's an immediate offset, else assume it's a register
4500  // offset. Be friendly and also accept a plain integer (without a leading
4501  // hash) for gas compatibility.
4502  if (Parser.getTok().is(AsmToken::Hash) ||
4503      Parser.getTok().is(AsmToken::Dollar) ||
4504      Parser.getTok().is(AsmToken::Integer)) {
4505    if (Parser.getTok().isNot(AsmToken::Integer))
4506      Parser.Lex(); // Eat '#' or '$'.
4507    E = Parser.getTok().getLoc();
4508
4509    bool isNegative = getParser().getTok().is(AsmToken::Minus);
4510    const MCExpr *Offset;
4511    if (getParser().parseExpression(Offset))
4512     return true;
4513
4514    // The expression has to be a constant. Memory references with relocations
4515    // don't come through here, as they use the <label> forms of the relevant
4516    // instructions.
4517    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
4518    if (!CE)
4519      return Error (E, "constant expression expected");
4520
4521    // If the constant was #-0, represent it as INT32_MIN.
4522    int32_t Val = CE->getValue();
4523    if (isNegative && Val == 0)
4524      CE = MCConstantExpr::Create(INT32_MIN, getContext());
4525
4526    // Now we should have the closing ']'
4527    if (Parser.getTok().isNot(AsmToken::RBrac))
4528      return Error(Parser.getTok().getLoc(), "']' expected");
4529    E = Parser.getTok().getEndLoc();
4530    Parser.Lex(); // Eat right bracket token.
4531
4532    // Don't worry about range checking the value here. That's handled by
4533    // the is*() predicates.
4534    Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0,
4535                                             ARM_AM::no_shift, 0, 0,
4536                                             false, S, E));
4537
4538    // If there's a pre-indexing writeback marker, '!', just add it as a token
4539    // operand.
4540    if (Parser.getTok().is(AsmToken::Exclaim)) {
4541      Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4542      Parser.Lex(); // Eat the '!'.
4543    }
4544
4545    return false;
4546  }
4547
4548  // The register offset is optionally preceded by a '+' or '-'
4549  bool isNegative = false;
4550  if (Parser.getTok().is(AsmToken::Minus)) {
4551    isNegative = true;
4552    Parser.Lex(); // Eat the '-'.
4553  } else if (Parser.getTok().is(AsmToken::Plus)) {
4554    // Nothing to do.
4555    Parser.Lex(); // Eat the '+'.
4556  }
4557
4558  E = Parser.getTok().getLoc();
4559  int OffsetRegNum = tryParseRegister();
4560  if (OffsetRegNum == -1)
4561    return Error(E, "register expected");
4562
4563  // If there's a shift operator, handle it.
4564  ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
4565  unsigned ShiftImm = 0;
4566  if (Parser.getTok().is(AsmToken::Comma)) {
4567    Parser.Lex(); // Eat the ','.
4568    if (parseMemRegOffsetShift(ShiftType, ShiftImm))
4569      return true;
4570  }
4571
4572  // Now we should have the closing ']'
4573  if (Parser.getTok().isNot(AsmToken::RBrac))
4574    return Error(Parser.getTok().getLoc(), "']' expected");
4575  E = Parser.getTok().getEndLoc();
4576  Parser.Lex(); // Eat right bracket token.
4577
4578  Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, OffsetRegNum,
4579                                           ShiftType, ShiftImm, 0, isNegative,
4580                                           S, E));
4581
4582  // If there's a pre-indexing writeback marker, '!', just add it as a token
4583  // operand.
4584  if (Parser.getTok().is(AsmToken::Exclaim)) {
4585    Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4586    Parser.Lex(); // Eat the '!'.
4587  }
4588
4589  return false;
4590}
4591
4592/// parseMemRegOffsetShift - one of these two:
4593///   ( lsl | lsr | asr | ror ) , # shift_amount
4594///   rrx
4595/// return true if it parses a shift otherwise it returns false.
4596bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
4597                                          unsigned &Amount) {
4598  SMLoc Loc = Parser.getTok().getLoc();
4599  const AsmToken &Tok = Parser.getTok();
4600  if (Tok.isNot(AsmToken::Identifier))
4601    return true;
4602  StringRef ShiftName = Tok.getString();
4603  if (ShiftName == "lsl" || ShiftName == "LSL" ||
4604      ShiftName == "asl" || ShiftName == "ASL")
4605    St = ARM_AM::lsl;
4606  else if (ShiftName == "lsr" || ShiftName == "LSR")
4607    St = ARM_AM::lsr;
4608  else if (ShiftName == "asr" || ShiftName == "ASR")
4609    St = ARM_AM::asr;
4610  else if (ShiftName == "ror" || ShiftName == "ROR")
4611    St = ARM_AM::ror;
4612  else if (ShiftName == "rrx" || ShiftName == "RRX")
4613    St = ARM_AM::rrx;
4614  else
4615    return Error(Loc, "illegal shift operator");
4616  Parser.Lex(); // Eat shift type token.
4617
4618  // rrx stands alone.
4619  Amount = 0;
4620  if (St != ARM_AM::rrx) {
4621    Loc = Parser.getTok().getLoc();
4622    // A '#' and a shift amount.
4623    const AsmToken &HashTok = Parser.getTok();
4624    if (HashTok.isNot(AsmToken::Hash) &&
4625        HashTok.isNot(AsmToken::Dollar))
4626      return Error(HashTok.getLoc(), "'#' expected");
4627    Parser.Lex(); // Eat hash token.
4628
4629    const MCExpr *Expr;
4630    if (getParser().parseExpression(Expr))
4631      return true;
4632    // Range check the immediate.
4633    // lsl, ror: 0 <= imm <= 31
4634    // lsr, asr: 0 <= imm <= 32
4635    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
4636    if (!CE)
4637      return Error(Loc, "shift amount must be an immediate");
4638    int64_t Imm = CE->getValue();
4639    if (Imm < 0 ||
4640        ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
4641        ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
4642      return Error(Loc, "immediate shift value out of range");
4643    // If <ShiftTy> #0, turn it into a no_shift.
4644    if (Imm == 0)
4645      St = ARM_AM::lsl;
4646    // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
4647    if (Imm == 32)
4648      Imm = 0;
4649    Amount = Imm;
4650  }
4651
4652  return false;
4653}
4654
4655/// parseFPImm - A floating point immediate expression operand.
4656ARMAsmParser::OperandMatchResultTy ARMAsmParser::
4657parseFPImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4658  // Anything that can accept a floating point constant as an operand
4659  // needs to go through here, as the regular parseExpression is
4660  // integer only.
4661  //
4662  // This routine still creates a generic Immediate operand, containing
4663  // a bitcast of the 64-bit floating point value. The various operands
4664  // that accept floats can check whether the value is valid for them
4665  // via the standard is*() predicates.
4666
4667  SMLoc S = Parser.getTok().getLoc();
4668
4669  if (Parser.getTok().isNot(AsmToken::Hash) &&
4670      Parser.getTok().isNot(AsmToken::Dollar))
4671    return MatchOperand_NoMatch;
4672
4673  // Disambiguate the VMOV forms that can accept an FP immediate.
4674  // vmov.f32 <sreg>, #imm
4675  // vmov.f64 <dreg>, #imm
4676  // vmov.f32 <dreg>, #imm  @ vector f32x2
4677  // vmov.f32 <qreg>, #imm  @ vector f32x4
4678  //
4679  // There are also the NEON VMOV instructions which expect an
4680  // integer constant. Make sure we don't try to parse an FPImm
4681  // for these:
4682  // vmov.i{8|16|32|64} <dreg|qreg>, #imm
4683  ARMOperand *TyOp = static_cast<ARMOperand*>(Operands[2]);
4684  if (!TyOp->isToken() || (TyOp->getToken() != ".f32" &&
4685                           TyOp->getToken() != ".f64"))
4686    return MatchOperand_NoMatch;
4687
4688  Parser.Lex(); // Eat '#' or '$'.
4689
4690  // Handle negation, as that still comes through as a separate token.
4691  bool isNegative = false;
4692  if (Parser.getTok().is(AsmToken::Minus)) {
4693    isNegative = true;
4694    Parser.Lex();
4695  }
4696  const AsmToken &Tok = Parser.getTok();
4697  SMLoc Loc = Tok.getLoc();
4698  if (Tok.is(AsmToken::Real)) {
4699    APFloat RealVal(APFloat::IEEEsingle, Tok.getString());
4700    uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
4701    // If we had a '-' in front, toggle the sign bit.
4702    IntVal ^= (uint64_t)isNegative << 31;
4703    Parser.Lex(); // Eat the token.
4704    Operands.push_back(ARMOperand::CreateImm(
4705          MCConstantExpr::Create(IntVal, getContext()),
4706          S, Parser.getTok().getLoc()));
4707    return MatchOperand_Success;
4708  }
4709  // Also handle plain integers. Instructions which allow floating point
4710  // immediates also allow a raw encoded 8-bit value.
4711  if (Tok.is(AsmToken::Integer)) {
4712    int64_t Val = Tok.getIntVal();
4713    Parser.Lex(); // Eat the token.
4714    if (Val > 255 || Val < 0) {
4715      Error(Loc, "encoded floating point value out of range");
4716      return MatchOperand_ParseFail;
4717    }
4718    double RealVal = ARM_AM::getFPImmFloat(Val);
4719    Val = APFloat(APFloat::IEEEdouble, RealVal).bitcastToAPInt().getZExtValue();
4720    Operands.push_back(ARMOperand::CreateImm(
4721        MCConstantExpr::Create(Val, getContext()), S,
4722        Parser.getTok().getLoc()));
4723    return MatchOperand_Success;
4724  }
4725
4726  Error(Loc, "invalid floating point immediate");
4727  return MatchOperand_ParseFail;
4728}
4729
4730/// Parse a arm instruction operand.  For now this parses the operand regardless
4731/// of the mnemonic.
4732bool ARMAsmParser::parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
4733                                StringRef Mnemonic) {
4734  SMLoc S, E;
4735
4736  // Check if the current operand has a custom associated parser, if so, try to
4737  // custom parse the operand, or fallback to the general approach.
4738  OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
4739  if (ResTy == MatchOperand_Success)
4740    return false;
4741  // If there wasn't a custom match, try the generic matcher below. Otherwise,
4742  // there was a match, but an error occurred, in which case, just return that
4743  // the operand parsing failed.
4744  if (ResTy == MatchOperand_ParseFail)
4745    return true;
4746
4747  switch (getLexer().getKind()) {
4748  default:
4749    Error(Parser.getTok().getLoc(), "unexpected token in operand");
4750    return true;
4751  case AsmToken::Identifier: {
4752    // If we've seen a branch mnemonic, the next operand must be a label.  This
4753    // is true even if the label is a register name.  So "br r1" means branch to
4754    // label "r1".
4755    bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl";
4756    if (!ExpectLabel) {
4757      if (!tryParseRegisterWithWriteBack(Operands))
4758        return false;
4759      int Res = tryParseShiftRegister(Operands);
4760      if (Res == 0) // success
4761        return false;
4762      else if (Res == -1) // irrecoverable error
4763        return true;
4764      // If this is VMRS, check for the apsr_nzcv operand.
4765      if (Mnemonic == "vmrs" &&
4766          Parser.getTok().getString().equals_lower("apsr_nzcv")) {
4767        S = Parser.getTok().getLoc();
4768        Parser.Lex();
4769        Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
4770        return false;
4771      }
4772    }
4773
4774    // Fall though for the Identifier case that is not a register or a
4775    // special name.
4776  }
4777  case AsmToken::LParen:  // parenthesized expressions like (_strcmp-4)
4778  case AsmToken::Integer: // things like 1f and 2b as a branch targets
4779  case AsmToken::String:  // quoted label names.
4780  case AsmToken::Dot: {   // . as a branch target
4781    // This was not a register so parse other operands that start with an
4782    // identifier (like labels) as expressions and create them as immediates.
4783    const MCExpr *IdVal;
4784    S = Parser.getTok().getLoc();
4785    if (getParser().parseExpression(IdVal))
4786      return true;
4787    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
4788    Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
4789    return false;
4790  }
4791  case AsmToken::LBrac:
4792    return parseMemory(Operands);
4793  case AsmToken::LCurly:
4794    return parseRegisterList(Operands);
4795  case AsmToken::Dollar:
4796  case AsmToken::Hash: {
4797    // #42 -> immediate.
4798    S = Parser.getTok().getLoc();
4799    Parser.Lex();
4800
4801    if (Parser.getTok().isNot(AsmToken::Colon)) {
4802      bool isNegative = Parser.getTok().is(AsmToken::Minus);
4803      const MCExpr *ImmVal;
4804      if (getParser().parseExpression(ImmVal))
4805        return true;
4806      const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
4807      if (CE) {
4808        int32_t Val = CE->getValue();
4809        if (isNegative && Val == 0)
4810          ImmVal = MCConstantExpr::Create(INT32_MIN, getContext());
4811      }
4812      E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
4813      Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
4814
4815      // There can be a trailing '!' on operands that we want as a separate
4816      // '!' Token operand. Handle that here. For example, the compatibilty
4817      // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
4818      if (Parser.getTok().is(AsmToken::Exclaim)) {
4819        Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(),
4820                                                   Parser.getTok().getLoc()));
4821        Parser.Lex(); // Eat exclaim token
4822      }
4823      return false;
4824    }
4825    // w/ a ':' after the '#', it's just like a plain ':'.
4826    // FALLTHROUGH
4827  }
4828  case AsmToken::Colon: {
4829    // ":lower16:" and ":upper16:" expression prefixes
4830    // FIXME: Check it's an expression prefix,
4831    // e.g. (FOO - :lower16:BAR) isn't legal.
4832    ARMMCExpr::VariantKind RefKind;
4833    if (parsePrefix(RefKind))
4834      return true;
4835
4836    const MCExpr *SubExprVal;
4837    if (getParser().parseExpression(SubExprVal))
4838      return true;
4839
4840    const MCExpr *ExprVal = ARMMCExpr::Create(RefKind, SubExprVal,
4841                                              getContext());
4842    E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
4843    Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
4844    return false;
4845  }
4846  }
4847}
4848
4849// parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
4850//  :lower16: and :upper16:.
4851bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
4852  RefKind = ARMMCExpr::VK_ARM_None;
4853
4854  // :lower16: and :upper16: modifiers
4855  assert(getLexer().is(AsmToken::Colon) && "expected a :");
4856  Parser.Lex(); // Eat ':'
4857
4858  if (getLexer().isNot(AsmToken::Identifier)) {
4859    Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
4860    return true;
4861  }
4862
4863  StringRef IDVal = Parser.getTok().getIdentifier();
4864  if (IDVal == "lower16") {
4865    RefKind = ARMMCExpr::VK_ARM_LO16;
4866  } else if (IDVal == "upper16") {
4867    RefKind = ARMMCExpr::VK_ARM_HI16;
4868  } else {
4869    Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
4870    return true;
4871  }
4872  Parser.Lex();
4873
4874  if (getLexer().isNot(AsmToken::Colon)) {
4875    Error(Parser.getTok().getLoc(), "unexpected token after prefix");
4876    return true;
4877  }
4878  Parser.Lex(); // Eat the last ':'
4879  return false;
4880}
4881
4882/// \brief Given a mnemonic, split out possible predication code and carry
4883/// setting letters to form a canonical mnemonic and flags.
4884//
4885// FIXME: Would be nice to autogen this.
4886// FIXME: This is a bit of a maze of special cases.
4887StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
4888                                      unsigned &PredicationCode,
4889                                      bool &CarrySetting,
4890                                      unsigned &ProcessorIMod,
4891                                      StringRef &ITMask) {
4892  PredicationCode = ARMCC::AL;
4893  CarrySetting = false;
4894  ProcessorIMod = 0;
4895
4896  // Ignore some mnemonics we know aren't predicated forms.
4897  //
4898  // FIXME: Would be nice to autogen this.
4899  if ((Mnemonic == "movs" && isThumb()) ||
4900      Mnemonic == "teq"   || Mnemonic == "vceq"   || Mnemonic == "svc"   ||
4901      Mnemonic == "mls"   || Mnemonic == "smmls"  || Mnemonic == "vcls"  ||
4902      Mnemonic == "vmls"  || Mnemonic == "vnmls"  || Mnemonic == "vacge" ||
4903      Mnemonic == "vcge"  || Mnemonic == "vclt"   || Mnemonic == "vacgt" ||
4904      Mnemonic == "vaclt" || Mnemonic == "vacle"  ||
4905      Mnemonic == "vcgt"  || Mnemonic == "vcle"   || Mnemonic == "smlal" ||
4906      Mnemonic == "umaal" || Mnemonic == "umlal"  || Mnemonic == "vabal" ||
4907      Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
4908      Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" ||
4909      Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" ||
4910      Mnemonic == "vcvtm" || Mnemonic.startswith("vsel"))
4911    return Mnemonic;
4912
4913  // First, split out any predication code. Ignore mnemonics we know aren't
4914  // predicated but do have a carry-set and so weren't caught above.
4915  if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
4916      Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
4917      Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
4918      Mnemonic != "sbcs" && Mnemonic != "rscs") {
4919    unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2))
4920      .Case("eq", ARMCC::EQ)
4921      .Case("ne", ARMCC::NE)
4922      .Case("hs", ARMCC::HS)
4923      .Case("cs", ARMCC::HS)
4924      .Case("lo", ARMCC::LO)
4925      .Case("cc", ARMCC::LO)
4926      .Case("mi", ARMCC::MI)
4927      .Case("pl", ARMCC::PL)
4928      .Case("vs", ARMCC::VS)
4929      .Case("vc", ARMCC::VC)
4930      .Case("hi", ARMCC::HI)
4931      .Case("ls", ARMCC::LS)
4932      .Case("ge", ARMCC::GE)
4933      .Case("lt", ARMCC::LT)
4934      .Case("gt", ARMCC::GT)
4935      .Case("le", ARMCC::LE)
4936      .Case("al", ARMCC::AL)
4937      .Default(~0U);
4938    if (CC != ~0U) {
4939      Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
4940      PredicationCode = CC;
4941    }
4942  }
4943
4944  // Next, determine if we have a carry setting bit. We explicitly ignore all
4945  // the instructions we know end in 's'.
4946  if (Mnemonic.endswith("s") &&
4947      !(Mnemonic == "cps" || Mnemonic == "mls" ||
4948        Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
4949        Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
4950        Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
4951        Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
4952        Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
4953        Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
4954        Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
4955        Mnemonic == "vfms" || Mnemonic == "vfnms" ||
4956        (Mnemonic == "movs" && isThumb()))) {
4957    Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
4958    CarrySetting = true;
4959  }
4960
4961  // The "cps" instruction can have a interrupt mode operand which is glued into
4962  // the mnemonic. Check if this is the case, split it and parse the imod op
4963  if (Mnemonic.startswith("cps")) {
4964    // Split out any imod code.
4965    unsigned IMod =
4966      StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
4967      .Case("ie", ARM_PROC::IE)
4968      .Case("id", ARM_PROC::ID)
4969      .Default(~0U);
4970    if (IMod != ~0U) {
4971      Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
4972      ProcessorIMod = IMod;
4973    }
4974  }
4975
4976  // The "it" instruction has the condition mask on the end of the mnemonic.
4977  if (Mnemonic.startswith("it")) {
4978    ITMask = Mnemonic.slice(2, Mnemonic.size());
4979    Mnemonic = Mnemonic.slice(0, 2);
4980  }
4981
4982  return Mnemonic;
4983}
4984
4985/// \brief Given a canonical mnemonic, determine if the instruction ever allows
4986/// inclusion of carry set or predication code operands.
4987//
4988// FIXME: It would be nice to autogen this.
4989void ARMAsmParser::
4990getMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
4991                      bool &CanAcceptPredicationCode) {
4992  if (Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
4993      Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
4994      Mnemonic == "add" || Mnemonic == "adc" ||
4995      Mnemonic == "mul" || Mnemonic == "bic" || Mnemonic == "asr" ||
4996      Mnemonic == "orr" || Mnemonic == "mvn" ||
4997      Mnemonic == "rsb" || Mnemonic == "rsc" || Mnemonic == "orn" ||
4998      Mnemonic == "sbc" || Mnemonic == "eor" || Mnemonic == "neg" ||
4999      Mnemonic == "vfm" || Mnemonic == "vfnm" ||
5000      (!isThumb() && (Mnemonic == "smull" || Mnemonic == "mov" ||
5001                      Mnemonic == "mla" || Mnemonic == "smlal" ||
5002                      Mnemonic == "umlal" || Mnemonic == "umull"))) {
5003    CanAcceptCarrySet = true;
5004  } else
5005    CanAcceptCarrySet = false;
5006
5007  if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" ||
5008      Mnemonic == "cps" ||  Mnemonic == "it" ||  Mnemonic == "cbz" ||
5009      Mnemonic == "trap" || Mnemonic == "setend" ||
5010      Mnemonic.startswith("cps") || Mnemonic.startswith("vsel") ||
5011      Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || Mnemonic == "vcvta" ||
5012      Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || Mnemonic == "vcvtm") {
5013    // These mnemonics are never predicable
5014    CanAcceptPredicationCode = false;
5015  } else if (!isThumb()) {
5016    // Some instructions are only predicable in Thumb mode
5017    CanAcceptPredicationCode
5018      = Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" &&
5019        Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" &&
5020        Mnemonic != "dmb" && Mnemonic != "dsb" && Mnemonic != "isb" &&
5021        Mnemonic != "pld" && Mnemonic != "pli" && Mnemonic != "pldw" &&
5022        Mnemonic != "ldc2" && Mnemonic != "ldc2l" &&
5023        Mnemonic != "stc2" && Mnemonic != "stc2l" &&
5024        !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs");
5025  } else if (isThumbOne()) {
5026    CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs";
5027  } else
5028    CanAcceptPredicationCode = true;
5029}
5030
5031bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
5032                               SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
5033  // FIXME: This is all horribly hacky. We really need a better way to deal
5034  // with optional operands like this in the matcher table.
5035
5036  // The 'mov' mnemonic is special. One variant has a cc_out operand, while
5037  // another does not. Specifically, the MOVW instruction does not. So we
5038  // special case it here and remove the defaulted (non-setting) cc_out
5039  // operand if that's the instruction we're trying to match.
5040  //
5041  // We do this as post-processing of the explicit operands rather than just
5042  // conditionally adding the cc_out in the first place because we need
5043  // to check the type of the parsed immediate operand.
5044  if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
5045      !static_cast<ARMOperand*>(Operands[4])->isARMSOImm() &&
5046      static_cast<ARMOperand*>(Operands[4])->isImm0_65535Expr() &&
5047      static_cast<ARMOperand*>(Operands[1])->getReg() == 0)
5048    return true;
5049
5050  // Register-register 'add' for thumb does not have a cc_out operand
5051  // when there are only two register operands.
5052  if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
5053      static_cast<ARMOperand*>(Operands[3])->isReg() &&
5054      static_cast<ARMOperand*>(Operands[4])->isReg() &&
5055      static_cast<ARMOperand*>(Operands[1])->getReg() == 0)
5056    return true;
5057  // Register-register 'add' for thumb does not have a cc_out operand
5058  // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
5059  // have to check the immediate range here since Thumb2 has a variant
5060  // that can handle a different range and has a cc_out operand.
5061  if (((isThumb() && Mnemonic == "add") ||
5062       (isThumbTwo() && Mnemonic == "sub")) &&
5063      Operands.size() == 6 &&
5064      static_cast<ARMOperand*>(Operands[3])->isReg() &&
5065      static_cast<ARMOperand*>(Operands[4])->isReg() &&
5066      static_cast<ARMOperand*>(Operands[4])->getReg() == ARM::SP &&
5067      static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
5068      ((Mnemonic == "add" &&static_cast<ARMOperand*>(Operands[5])->isReg()) ||
5069       static_cast<ARMOperand*>(Operands[5])->isImm0_1020s4()))
5070    return true;
5071  // For Thumb2, add/sub immediate does not have a cc_out operand for the
5072  // imm0_4095 variant. That's the least-preferred variant when
5073  // selecting via the generic "add" mnemonic, so to know that we
5074  // should remove the cc_out operand, we have to explicitly check that
5075  // it's not one of the other variants. Ugh.
5076  if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
5077      Operands.size() == 6 &&
5078      static_cast<ARMOperand*>(Operands[3])->isReg() &&
5079      static_cast<ARMOperand*>(Operands[4])->isReg() &&
5080      static_cast<ARMOperand*>(Operands[5])->isImm()) {
5081    // Nest conditions rather than one big 'if' statement for readability.
5082    //
5083    // If both registers are low, we're in an IT block, and the immediate is
5084    // in range, we should use encoding T1 instead, which has a cc_out.
5085    if (inITBlock() &&
5086        isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) &&
5087        isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) &&
5088        static_cast<ARMOperand*>(Operands[5])->isImm0_7())
5089      return false;
5090    // Check against T3. If the second register is the PC, this is an
5091    // alternate form of ADR, which uses encoding T4, so check for that too.
5092    if (static_cast<ARMOperand*>(Operands[4])->getReg() != ARM::PC &&
5093        static_cast<ARMOperand*>(Operands[5])->isT2SOImm())
5094      return false;
5095
5096    // Otherwise, we use encoding T4, which does not have a cc_out
5097    // operand.
5098    return true;
5099  }
5100
5101  // The thumb2 multiply instruction doesn't have a CCOut register, so
5102  // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
5103  // use the 16-bit encoding or not.
5104  if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
5105      static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
5106      static_cast<ARMOperand*>(Operands[3])->isReg() &&
5107      static_cast<ARMOperand*>(Operands[4])->isReg() &&
5108      static_cast<ARMOperand*>(Operands[5])->isReg() &&
5109      // If the registers aren't low regs, the destination reg isn't the
5110      // same as one of the source regs, or the cc_out operand is zero
5111      // outside of an IT block, we have to use the 32-bit encoding, so
5112      // remove the cc_out operand.
5113      (!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
5114       !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) ||
5115       !isARMLowRegister(static_cast<ARMOperand*>(Operands[5])->getReg()) ||
5116       !inITBlock() ||
5117       (static_cast<ARMOperand*>(Operands[3])->getReg() !=
5118        static_cast<ARMOperand*>(Operands[5])->getReg() &&
5119        static_cast<ARMOperand*>(Operands[3])->getReg() !=
5120        static_cast<ARMOperand*>(Operands[4])->getReg())))
5121    return true;
5122
5123  // Also check the 'mul' syntax variant that doesn't specify an explicit
5124  // destination register.
5125  if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
5126      static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
5127      static_cast<ARMOperand*>(Operands[3])->isReg() &&
5128      static_cast<ARMOperand*>(Operands[4])->isReg() &&
5129      // If the registers aren't low regs  or the cc_out operand is zero
5130      // outside of an IT block, we have to use the 32-bit encoding, so
5131      // remove the cc_out operand.
5132      (!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
5133       !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) ||
5134       !inITBlock()))
5135    return true;
5136
5137
5138
5139  // Register-register 'add/sub' for thumb does not have a cc_out operand
5140  // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
5141  // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
5142  // right, this will result in better diagnostics (which operand is off)
5143  // anyway.
5144  if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
5145      (Operands.size() == 5 || Operands.size() == 6) &&
5146      static_cast<ARMOperand*>(Operands[3])->isReg() &&
5147      static_cast<ARMOperand*>(Operands[3])->getReg() == ARM::SP &&
5148      static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
5149      (static_cast<ARMOperand*>(Operands[4])->isImm() ||
5150       (Operands.size() == 6 &&
5151        static_cast<ARMOperand*>(Operands[5])->isImm())))
5152    return true;
5153
5154  return false;
5155}
5156
5157static bool isDataTypeToken(StringRef Tok) {
5158  return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
5159    Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
5160    Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
5161    Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
5162    Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
5163    Tok == ".f" || Tok == ".d";
5164}
5165
5166// FIXME: This bit should probably be handled via an explicit match class
5167// in the .td files that matches the suffix instead of having it be
5168// a literal string token the way it is now.
5169static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
5170  return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
5171}
5172static void applyMnemonicAliases(StringRef &Mnemonic, unsigned Features,
5173                                 unsigned VariantID);
5174/// Parse an arm instruction mnemonic followed by its operands.
5175bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
5176                                    SMLoc NameLoc,
5177                               SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
5178  // Apply mnemonic aliases before doing anything else, as the destination
5179  // mnemnonic may include suffices and we want to handle them normally.
5180  // The generic tblgen'erated code does this later, at the start of
5181  // MatchInstructionImpl(), but that's too late for aliases that include
5182  // any sort of suffix.
5183  unsigned AvailableFeatures = getAvailableFeatures();
5184  unsigned AssemblerDialect = getParser().getAssemblerDialect();
5185  applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect);
5186
5187  // First check for the ARM-specific .req directive.
5188  if (Parser.getTok().is(AsmToken::Identifier) &&
5189      Parser.getTok().getIdentifier() == ".req") {
5190    parseDirectiveReq(Name, NameLoc);
5191    // We always return 'error' for this, as we're done with this
5192    // statement and don't need to match the 'instruction."
5193    return true;
5194  }
5195
5196  // Create the leading tokens for the mnemonic, split by '.' characters.
5197  size_t Start = 0, Next = Name.find('.');
5198  StringRef Mnemonic = Name.slice(Start, Next);
5199
5200  // Split out the predication code and carry setting flag from the mnemonic.
5201  unsigned PredicationCode;
5202  unsigned ProcessorIMod;
5203  bool CarrySetting;
5204  StringRef ITMask;
5205  Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting,
5206                           ProcessorIMod, ITMask);
5207
5208  // In Thumb1, only the branch (B) instruction can be predicated.
5209  if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
5210    Parser.eatToEndOfStatement();
5211    return Error(NameLoc, "conditional execution not supported in Thumb1");
5212  }
5213
5214  Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
5215
5216  // Handle the IT instruction ITMask. Convert it to a bitmask. This
5217  // is the mask as it will be for the IT encoding if the conditional
5218  // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case
5219  // where the conditional bit0 is zero, the instruction post-processing
5220  // will adjust the mask accordingly.
5221  if (Mnemonic == "it") {
5222    SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2);
5223    if (ITMask.size() > 3) {
5224      Parser.eatToEndOfStatement();
5225      return Error(Loc, "too many conditions on IT instruction");
5226    }
5227    unsigned Mask = 8;
5228    for (unsigned i = ITMask.size(); i != 0; --i) {
5229      char pos = ITMask[i - 1];
5230      if (pos != 't' && pos != 'e') {
5231        Parser.eatToEndOfStatement();
5232        return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
5233      }
5234      Mask >>= 1;
5235      if (ITMask[i - 1] == 't')
5236        Mask |= 8;
5237    }
5238    Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
5239  }
5240
5241  // FIXME: This is all a pretty gross hack. We should automatically handle
5242  // optional operands like this via tblgen.
5243
5244  // Next, add the CCOut and ConditionCode operands, if needed.
5245  //
5246  // For mnemonics which can ever incorporate a carry setting bit or predication
5247  // code, our matching model involves us always generating CCOut and
5248  // ConditionCode operands to match the mnemonic "as written" and then we let
5249  // the matcher deal with finding the right instruction or generating an
5250  // appropriate error.
5251  bool CanAcceptCarrySet, CanAcceptPredicationCode;
5252  getMnemonicAcceptInfo(Mnemonic, CanAcceptCarrySet, CanAcceptPredicationCode);
5253
5254  // If we had a carry-set on an instruction that can't do that, issue an
5255  // error.
5256  if (!CanAcceptCarrySet && CarrySetting) {
5257    Parser.eatToEndOfStatement();
5258    return Error(NameLoc, "instruction '" + Mnemonic +
5259                 "' can not set flags, but 's' suffix specified");
5260  }
5261  // If we had a predication code on an instruction that can't do that, issue an
5262  // error.
5263  if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
5264    Parser.eatToEndOfStatement();
5265    return Error(NameLoc, "instruction '" + Mnemonic +
5266                 "' is not predicable, but condition code specified");
5267  }
5268
5269  // Add the carry setting operand, if necessary.
5270  if (CanAcceptCarrySet) {
5271    SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
5272    Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
5273                                               Loc));
5274  }
5275
5276  // Add the predication code operand, if necessary.
5277  if (CanAcceptPredicationCode) {
5278    SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
5279                                      CarrySetting);
5280    Operands.push_back(ARMOperand::CreateCondCode(
5281                         ARMCC::CondCodes(PredicationCode), Loc));
5282  }
5283
5284  // Add the processor imod operand, if necessary.
5285  if (ProcessorIMod) {
5286    Operands.push_back(ARMOperand::CreateImm(
5287          MCConstantExpr::Create(ProcessorIMod, getContext()),
5288                                 NameLoc, NameLoc));
5289  }
5290
5291  // Add the remaining tokens in the mnemonic.
5292  while (Next != StringRef::npos) {
5293    Start = Next;
5294    Next = Name.find('.', Start + 1);
5295    StringRef ExtraToken = Name.slice(Start, Next);
5296
5297    // Some NEON instructions have an optional datatype suffix that is
5298    // completely ignored. Check for that.
5299    if (isDataTypeToken(ExtraToken) &&
5300        doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
5301      continue;
5302
5303    // For for ARM mode generate an error if the .n qualifier is used.
5304    if (ExtraToken == ".n" && !isThumb()) {
5305      SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
5306      return Error(Loc, "instruction with .n (narrow) qualifier not allowed in "
5307                   "arm mode");
5308    }
5309
5310    // The .n qualifier is always discarded as that is what the tables
5311    // and matcher expect.  In ARM mode the .w qualifier has no effect,
5312    // so discard it to avoid errors that can be caused by the matcher.
5313    if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) {
5314      SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
5315      Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
5316    }
5317  }
5318
5319  // Read the remaining operands.
5320  if (getLexer().isNot(AsmToken::EndOfStatement)) {
5321    // Read the first operand.
5322    if (parseOperand(Operands, Mnemonic)) {
5323      Parser.eatToEndOfStatement();
5324      return true;
5325    }
5326
5327    while (getLexer().is(AsmToken::Comma)) {
5328      Parser.Lex();  // Eat the comma.
5329
5330      // Parse and remember the operand.
5331      if (parseOperand(Operands, Mnemonic)) {
5332        Parser.eatToEndOfStatement();
5333        return true;
5334      }
5335    }
5336  }
5337
5338  if (getLexer().isNot(AsmToken::EndOfStatement)) {
5339    SMLoc Loc = getLexer().getLoc();
5340    Parser.eatToEndOfStatement();
5341    return Error(Loc, "unexpected token in argument list");
5342  }
5343
5344  Parser.Lex(); // Consume the EndOfStatement
5345
5346  // Some instructions, mostly Thumb, have forms for the same mnemonic that
5347  // do and don't have a cc_out optional-def operand. With some spot-checks
5348  // of the operand list, we can figure out which variant we're trying to
5349  // parse and adjust accordingly before actually matching. We shouldn't ever
5350  // try to remove a cc_out operand that was explicitly set on the the
5351  // mnemonic, of course (CarrySetting == true). Reason number #317 the
5352  // table driven matcher doesn't fit well with the ARM instruction set.
5353  if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) {
5354    ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
5355    Operands.erase(Operands.begin() + 1);
5356    delete Op;
5357  }
5358
5359  // ARM mode 'blx' need special handling, as the register operand version
5360  // is predicable, but the label operand version is not. So, we can't rely
5361  // on the Mnemonic based checking to correctly figure out when to put
5362  // a k_CondCode operand in the list. If we're trying to match the label
5363  // version, remove the k_CondCode operand here.
5364  if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
5365      static_cast<ARMOperand*>(Operands[2])->isImm()) {
5366    ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
5367    Operands.erase(Operands.begin() + 1);
5368    delete Op;
5369  }
5370
5371  // Adjust operands of ldrexd/strexd to MCK_GPRPair.
5372  // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
5373  // a single GPRPair reg operand is used in the .td file to replace the two
5374  // GPRs. However, when parsing from asm, the two GRPs cannot be automatically
5375  // expressed as a GPRPair, so we have to manually merge them.
5376  // FIXME: We would really like to be able to tablegen'erate this.
5377  if (!isThumb() && Operands.size() > 4 &&
5378      (Mnemonic == "ldrexd" || Mnemonic == "strexd")) {
5379    bool isLoad = (Mnemonic == "ldrexd");
5380    unsigned Idx = isLoad ? 2 : 3;
5381    ARMOperand* Op1 = static_cast<ARMOperand*>(Operands[Idx]);
5382    ARMOperand* Op2 = static_cast<ARMOperand*>(Operands[Idx+1]);
5383
5384    const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID);
5385    // Adjust only if Op1 and Op2 are GPRs.
5386    if (Op1->isReg() && Op2->isReg() && MRC.contains(Op1->getReg()) &&
5387        MRC.contains(Op2->getReg())) {
5388      unsigned Reg1 = Op1->getReg();
5389      unsigned Reg2 = Op2->getReg();
5390      unsigned Rt = MRI->getEncodingValue(Reg1);
5391      unsigned Rt2 = MRI->getEncodingValue(Reg2);
5392
5393      // Rt2 must be Rt + 1 and Rt must be even.
5394      if (Rt + 1 != Rt2 || (Rt & 1)) {
5395        Error(Op2->getStartLoc(), isLoad ?
5396            "destination operands must be sequential" :
5397            "source operands must be sequential");
5398        return true;
5399      }
5400      unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0,
5401          &(MRI->getRegClass(ARM::GPRPairRegClassID)));
5402      Operands.erase(Operands.begin() + Idx, Operands.begin() + Idx + 2);
5403      Operands.insert(Operands.begin() + Idx, ARMOperand::CreateReg(
5404            NewReg, Op1->getStartLoc(), Op2->getEndLoc()));
5405      delete Op1;
5406      delete Op2;
5407    }
5408  }
5409
5410  return false;
5411}
5412
5413// Validate context-sensitive operand constraints.
5414
5415// return 'true' if register list contains non-low GPR registers,
5416// 'false' otherwise. If Reg is in the register list or is HiReg, set
5417// 'containsReg' to true.
5418static bool checkLowRegisterList(MCInst Inst, unsigned OpNo, unsigned Reg,
5419                                 unsigned HiReg, bool &containsReg) {
5420  containsReg = false;
5421  for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
5422    unsigned OpReg = Inst.getOperand(i).getReg();
5423    if (OpReg == Reg)
5424      containsReg = true;
5425    // Anything other than a low register isn't legal here.
5426    if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
5427      return true;
5428  }
5429  return false;
5430}
5431
5432// Check if the specified regisgter is in the register list of the inst,
5433// starting at the indicated operand number.
5434static bool listContainsReg(MCInst &Inst, unsigned OpNo, unsigned Reg) {
5435  for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
5436    unsigned OpReg = Inst.getOperand(i).getReg();
5437    if (OpReg == Reg)
5438      return true;
5439  }
5440  return false;
5441}
5442
5443// FIXME: We would really prefer to have MCInstrInfo (the wrapper around
5444// the ARMInsts array) instead. Getting that here requires awkward
5445// API changes, though. Better way?
5446namespace llvm {
5447extern const MCInstrDesc ARMInsts[];
5448}
5449static const MCInstrDesc &getInstDesc(unsigned Opcode) {
5450  return ARMInsts[Opcode];
5451}
5452
5453// FIXME: We would really like to be able to tablegen'erate this.
5454bool ARMAsmParser::
5455validateInstruction(MCInst &Inst,
5456                    const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
5457  const MCInstrDesc &MCID = getInstDesc(Inst.getOpcode());
5458  SMLoc Loc = Operands[0]->getStartLoc();
5459  // Check the IT block state first.
5460  // NOTE: BKPT instruction has the interesting property of being
5461  // allowed in IT blocks, but not being predicable.  It just always
5462  // executes.
5463  if (inITBlock() && Inst.getOpcode() != ARM::tBKPT &&
5464      Inst.getOpcode() != ARM::BKPT) {
5465    unsigned bit = 1;
5466    if (ITState.FirstCond)
5467      ITState.FirstCond = false;
5468    else
5469      bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1;
5470    // The instruction must be predicable.
5471    if (!MCID.isPredicable())
5472      return Error(Loc, "instructions in IT block must be predicable");
5473    unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm();
5474    unsigned ITCond = bit ? ITState.Cond :
5475      ARMCC::getOppositeCondition(ITState.Cond);
5476    if (Cond != ITCond) {
5477      // Find the condition code Operand to get its SMLoc information.
5478      SMLoc CondLoc;
5479      for (unsigned i = 1; i < Operands.size(); ++i)
5480        if (static_cast<ARMOperand*>(Operands[i])->isCondCode())
5481          CondLoc = Operands[i]->getStartLoc();
5482      return Error(CondLoc, "incorrect condition in IT block; got '" +
5483                   StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) +
5484                   "', but expected '" +
5485                   ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'");
5486    }
5487  // Check for non-'al' condition codes outside of the IT block.
5488  } else if (isThumbTwo() && MCID.isPredicable() &&
5489             Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
5490             ARMCC::AL && Inst.getOpcode() != ARM::tB &&
5491             Inst.getOpcode() != ARM::t2B)
5492    return Error(Loc, "predicated instructions must be in IT block");
5493
5494  switch (Inst.getOpcode()) {
5495  case ARM::LDRD:
5496  case ARM::LDRD_PRE:
5497  case ARM::LDRD_POST: {
5498    // Rt2 must be Rt + 1.
5499    unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
5500    unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
5501    if (Rt2 != Rt + 1)
5502      return Error(Operands[3]->getStartLoc(),
5503                   "destination operands must be sequential");
5504    return false;
5505  }
5506  case ARM::STRD: {
5507    // Rt2 must be Rt + 1.
5508    unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
5509    unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
5510    if (Rt2 != Rt + 1)
5511      return Error(Operands[3]->getStartLoc(),
5512                   "source operands must be sequential");
5513    return false;
5514  }
5515  case ARM::STRD_PRE:
5516  case ARM::STRD_POST: {
5517    // Rt2 must be Rt + 1.
5518    unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
5519    unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg());
5520    if (Rt2 != Rt + 1)
5521      return Error(Operands[3]->getStartLoc(),
5522                   "source operands must be sequential");
5523    return false;
5524  }
5525  case ARM::SBFX:
5526  case ARM::UBFX: {
5527    // width must be in range [1, 32-lsb]
5528    unsigned lsb = Inst.getOperand(2).getImm();
5529    unsigned widthm1 = Inst.getOperand(3).getImm();
5530    if (widthm1 >= 32 - lsb)
5531      return Error(Operands[5]->getStartLoc(),
5532                   "bitfield width must be in range [1,32-lsb]");
5533    return false;
5534  }
5535  case ARM::tLDMIA: {
5536    // If we're parsing Thumb2, the .w variant is available and handles
5537    // most cases that are normally illegal for a Thumb1 LDM
5538    // instruction. We'll make the transformation in processInstruction()
5539    // if necessary.
5540    //
5541    // Thumb LDM instructions are writeback iff the base register is not
5542    // in the register list.
5543    unsigned Rn = Inst.getOperand(0).getReg();
5544    bool hasWritebackToken =
5545      (static_cast<ARMOperand*>(Operands[3])->isToken() &&
5546       static_cast<ARMOperand*>(Operands[3])->getToken() == "!");
5547    bool listContainsBase;
5548    if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) && !isThumbTwo())
5549      return Error(Operands[3 + hasWritebackToken]->getStartLoc(),
5550                   "registers must be in range r0-r7");
5551    // If we should have writeback, then there should be a '!' token.
5552    if (!listContainsBase && !hasWritebackToken && !isThumbTwo())
5553      return Error(Operands[2]->getStartLoc(),
5554                   "writeback operator '!' expected");
5555    // If we should not have writeback, there must not be a '!'. This is
5556    // true even for the 32-bit wide encodings.
5557    if (listContainsBase && hasWritebackToken)
5558      return Error(Operands[3]->getStartLoc(),
5559                   "writeback operator '!' not allowed when base register "
5560                   "in register list");
5561
5562    break;
5563  }
5564  case ARM::t2LDMIA_UPD: {
5565    if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
5566      return Error(Operands[4]->getStartLoc(),
5567                   "writeback operator '!' not allowed when base register "
5568                   "in register list");
5569    break;
5570  }
5571  case ARM::tMUL: {
5572    // The second source operand must be the same register as the destination
5573    // operand.
5574    //
5575    // In this case, we must directly check the parsed operands because the
5576    // cvtThumbMultiply() function is written in such a way that it guarantees
5577    // this first statement is always true for the new Inst.  Essentially, the
5578    // destination is unconditionally copied into the second source operand
5579    // without checking to see if it matches what we actually parsed.
5580    if (Operands.size() == 6 &&
5581        (((ARMOperand*)Operands[3])->getReg() !=
5582         ((ARMOperand*)Operands[5])->getReg()) &&
5583        (((ARMOperand*)Operands[3])->getReg() !=
5584         ((ARMOperand*)Operands[4])->getReg())) {
5585      return Error(Operands[3]->getStartLoc(),
5586                   "destination register must match source register");
5587    }
5588    break;
5589  }
5590  // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
5591  // so only issue a diagnostic for thumb1. The instructions will be
5592  // switched to the t2 encodings in processInstruction() if necessary.
5593  case ARM::tPOP: {
5594    bool listContainsBase;
5595    if (checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase) &&
5596        !isThumbTwo())
5597      return Error(Operands[2]->getStartLoc(),
5598                   "registers must be in range r0-r7 or pc");
5599    break;
5600  }
5601  case ARM::tPUSH: {
5602    bool listContainsBase;
5603    if (checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase) &&
5604        !isThumbTwo())
5605      return Error(Operands[2]->getStartLoc(),
5606                   "registers must be in range r0-r7 or lr");
5607    break;
5608  }
5609  case ARM::tSTMIA_UPD: {
5610    bool listContainsBase;
5611    if (checkLowRegisterList(Inst, 4, 0, 0, listContainsBase) && !isThumbTwo())
5612      return Error(Operands[4]->getStartLoc(),
5613                   "registers must be in range r0-r7");
5614    break;
5615  }
5616  case ARM::tADDrSP: {
5617    // If the non-SP source operand and the destination operand are not the
5618    // same, we need thumb2 (for the wide encoding), or we have an error.
5619    if (!isThumbTwo() &&
5620        Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
5621      return Error(Operands[4]->getStartLoc(),
5622                   "source register must be the same as destination");
5623    }
5624    break;
5625  }
5626  }
5627
5628  return false;
5629}
5630
5631static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
5632  switch(Opc) {
5633  default: llvm_unreachable("unexpected opcode!");
5634  // VST1LN
5635  case ARM::VST1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
5636  case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
5637  case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
5638  case ARM::VST1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
5639  case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
5640  case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
5641  case ARM::VST1LNdAsm_8:  Spacing = 1; return ARM::VST1LNd8;
5642  case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
5643  case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
5644
5645  // VST2LN
5646  case ARM::VST2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
5647  case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
5648  case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
5649  case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
5650  case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
5651
5652  case ARM::VST2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
5653  case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
5654  case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
5655  case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
5656  case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
5657
5658  case ARM::VST2LNdAsm_8:  Spacing = 1; return ARM::VST2LNd8;
5659  case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
5660  case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
5661  case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
5662  case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
5663
5664  // VST3LN
5665  case ARM::VST3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
5666  case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
5667  case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
5668  case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
5669  case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
5670  case ARM::VST3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
5671  case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
5672  case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
5673  case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
5674  case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
5675  case ARM::VST3LNdAsm_8:  Spacing = 1; return ARM::VST3LNd8;
5676  case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
5677  case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
5678  case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
5679  case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
5680
5681  // VST3
5682  case ARM::VST3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
5683  case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
5684  case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
5685  case ARM::VST3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
5686  case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
5687  case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
5688  case ARM::VST3dWB_register_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
5689  case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
5690  case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
5691  case ARM::VST3qWB_register_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
5692  case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
5693  case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
5694  case ARM::VST3dAsm_8:  Spacing = 1; return ARM::VST3d8;
5695  case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
5696  case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
5697  case ARM::VST3qAsm_8:  Spacing = 2; return ARM::VST3q8;
5698  case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
5699  case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
5700
5701  // VST4LN
5702  case ARM::VST4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
5703  case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
5704  case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
5705  case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
5706  case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
5707  case ARM::VST4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
5708  case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
5709  case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
5710  case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
5711  case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
5712  case ARM::VST4LNdAsm_8:  Spacing = 1; return ARM::VST4LNd8;
5713  case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
5714  case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
5715  case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
5716  case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
5717
5718  // VST4
5719  case ARM::VST4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
5720  case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
5721  case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
5722  case ARM::VST4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
5723  case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
5724  case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
5725  case ARM::VST4dWB_register_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
5726  case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
5727  case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
5728  case ARM::VST4qWB_register_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
5729  case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
5730  case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
5731  case ARM::VST4dAsm_8:  Spacing = 1; return ARM::VST4d8;
5732  case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
5733  case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
5734  case ARM::VST4qAsm_8:  Spacing = 2; return ARM::VST4q8;
5735  case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
5736  case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
5737  }
5738}
5739
5740static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
5741  switch(Opc) {
5742  default: llvm_unreachable("unexpected opcode!");
5743  // VLD1LN
5744  case ARM::VLD1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
5745  case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
5746  case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
5747  case ARM::VLD1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
5748  case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
5749  case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
5750  case ARM::VLD1LNdAsm_8:  Spacing = 1; return ARM::VLD1LNd8;
5751  case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
5752  case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
5753
5754  // VLD2LN
5755  case ARM::VLD2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
5756  case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
5757  case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
5758  case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
5759  case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
5760  case ARM::VLD2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
5761  case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
5762  case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
5763  case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
5764  case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
5765  case ARM::VLD2LNdAsm_8:  Spacing = 1; return ARM::VLD2LNd8;
5766  case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
5767  case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
5768  case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
5769  case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
5770
5771  // VLD3DUP
5772  case ARM::VLD3DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
5773  case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
5774  case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
5775  case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
5776  case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPq16_UPD;
5777  case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
5778  case ARM::VLD3DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
5779  case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
5780  case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
5781  case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
5782  case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
5783  case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
5784  case ARM::VLD3DUPdAsm_8:  Spacing = 1; return ARM::VLD3DUPd8;
5785  case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
5786  case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
5787  case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
5788  case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
5789  case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
5790
5791  // VLD3LN
5792  case ARM::VLD3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
5793  case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
5794  case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
5795  case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
5796  case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
5797  case ARM::VLD3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
5798  case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
5799  case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
5800  case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
5801  case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
5802  case ARM::VLD3LNdAsm_8:  Spacing = 1; return ARM::VLD3LNd8;
5803  case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
5804  case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
5805  case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
5806  case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
5807
5808  // VLD3
5809  case ARM::VLD3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
5810  case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
5811  case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
5812  case ARM::VLD3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
5813  case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
5814  case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
5815  case ARM::VLD3dWB_register_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
5816  case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
5817  case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
5818  case ARM::VLD3qWB_register_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
5819  case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
5820  case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
5821  case ARM::VLD3dAsm_8:  Spacing = 1; return ARM::VLD3d8;
5822  case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
5823  case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
5824  case ARM::VLD3qAsm_8:  Spacing = 2; return ARM::VLD3q8;
5825  case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
5826  case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
5827
5828  // VLD4LN
5829  case ARM::VLD4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
5830  case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
5831  case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
5832  case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNq16_UPD;
5833  case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
5834  case ARM::VLD4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
5835  case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
5836  case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
5837  case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
5838  case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
5839  case ARM::VLD4LNdAsm_8:  Spacing = 1; return ARM::VLD4LNd8;
5840  case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
5841  case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
5842  case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
5843  case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
5844
5845  // VLD4DUP
5846  case ARM::VLD4DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
5847  case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
5848  case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
5849  case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
5850  case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
5851  case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
5852  case ARM::VLD4DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
5853  case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
5854  case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
5855  case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
5856  case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
5857  case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
5858  case ARM::VLD4DUPdAsm_8:  Spacing = 1; return ARM::VLD4DUPd8;
5859  case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
5860  case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
5861  case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
5862  case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
5863  case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
5864
5865  // VLD4
5866  case ARM::VLD4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
5867  case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
5868  case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
5869  case ARM::VLD4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
5870  case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
5871  case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
5872  case ARM::VLD4dWB_register_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
5873  case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
5874  case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
5875  case ARM::VLD4qWB_register_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
5876  case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
5877  case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
5878  case ARM::VLD4dAsm_8:  Spacing = 1; return ARM::VLD4d8;
5879  case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
5880  case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
5881  case ARM::VLD4qAsm_8:  Spacing = 2; return ARM::VLD4q8;
5882  case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
5883  case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
5884  }
5885}
5886
5887bool ARMAsmParser::
5888processInstruction(MCInst &Inst,
5889                   const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
5890  switch (Inst.getOpcode()) {
5891  // Alias for alternate form of 'ADR Rd, #imm' instruction.
5892  case ARM::ADDri: {
5893    if (Inst.getOperand(1).getReg() != ARM::PC ||
5894        Inst.getOperand(5).getReg() != 0)
5895      return false;
5896    MCInst TmpInst;
5897    TmpInst.setOpcode(ARM::ADR);
5898    TmpInst.addOperand(Inst.getOperand(0));
5899    TmpInst.addOperand(Inst.getOperand(2));
5900    TmpInst.addOperand(Inst.getOperand(3));
5901    TmpInst.addOperand(Inst.getOperand(4));
5902    Inst = TmpInst;
5903    return true;
5904  }
5905  // Aliases for alternate PC+imm syntax of LDR instructions.
5906  case ARM::t2LDRpcrel:
5907    // Select the narrow version if the immediate will fit.
5908    if (Inst.getOperand(1).getImm() > 0 &&
5909        Inst.getOperand(1).getImm() <= 0xff &&
5910        !(static_cast<ARMOperand*>(Operands[2])->isToken() &&
5911         static_cast<ARMOperand*>(Operands[2])->getToken() == ".w"))
5912      Inst.setOpcode(ARM::tLDRpci);
5913    else
5914      Inst.setOpcode(ARM::t2LDRpci);
5915    return true;
5916  case ARM::t2LDRBpcrel:
5917    Inst.setOpcode(ARM::t2LDRBpci);
5918    return true;
5919  case ARM::t2LDRHpcrel:
5920    Inst.setOpcode(ARM::t2LDRHpci);
5921    return true;
5922  case ARM::t2LDRSBpcrel:
5923    Inst.setOpcode(ARM::t2LDRSBpci);
5924    return true;
5925  case ARM::t2LDRSHpcrel:
5926    Inst.setOpcode(ARM::t2LDRSHpci);
5927    return true;
5928  // Handle NEON VST complex aliases.
5929  case ARM::VST1LNdWB_register_Asm_8:
5930  case ARM::VST1LNdWB_register_Asm_16:
5931  case ARM::VST1LNdWB_register_Asm_32: {
5932    MCInst TmpInst;
5933    // Shuffle the operands around so the lane index operand is in the
5934    // right place.
5935    unsigned Spacing;
5936    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5937    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5938    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5939    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5940    TmpInst.addOperand(Inst.getOperand(4)); // Rm
5941    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5942    TmpInst.addOperand(Inst.getOperand(1)); // lane
5943    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5944    TmpInst.addOperand(Inst.getOperand(6));
5945    Inst = TmpInst;
5946    return true;
5947  }
5948
5949  case ARM::VST2LNdWB_register_Asm_8:
5950  case ARM::VST2LNdWB_register_Asm_16:
5951  case ARM::VST2LNdWB_register_Asm_32:
5952  case ARM::VST2LNqWB_register_Asm_16:
5953  case ARM::VST2LNqWB_register_Asm_32: {
5954    MCInst TmpInst;
5955    // Shuffle the operands around so the lane index operand is in the
5956    // right place.
5957    unsigned Spacing;
5958    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5959    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5960    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5961    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5962    TmpInst.addOperand(Inst.getOperand(4)); // Rm
5963    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5964    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5965                                            Spacing));
5966    TmpInst.addOperand(Inst.getOperand(1)); // lane
5967    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5968    TmpInst.addOperand(Inst.getOperand(6));
5969    Inst = TmpInst;
5970    return true;
5971  }
5972
5973  case ARM::VST3LNdWB_register_Asm_8:
5974  case ARM::VST3LNdWB_register_Asm_16:
5975  case ARM::VST3LNdWB_register_Asm_32:
5976  case ARM::VST3LNqWB_register_Asm_16:
5977  case ARM::VST3LNqWB_register_Asm_32: {
5978    MCInst TmpInst;
5979    // Shuffle the operands around so the lane index operand is in the
5980    // right place.
5981    unsigned Spacing;
5982    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5983    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5984    TmpInst.addOperand(Inst.getOperand(2)); // Rn
5985    TmpInst.addOperand(Inst.getOperand(3)); // alignment
5986    TmpInst.addOperand(Inst.getOperand(4)); // Rm
5987    TmpInst.addOperand(Inst.getOperand(0)); // Vd
5988    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5989                                            Spacing));
5990    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5991                                            Spacing * 2));
5992    TmpInst.addOperand(Inst.getOperand(1)); // lane
5993    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5994    TmpInst.addOperand(Inst.getOperand(6));
5995    Inst = TmpInst;
5996    return true;
5997  }
5998
5999  case ARM::VST4LNdWB_register_Asm_8:
6000  case ARM::VST4LNdWB_register_Asm_16:
6001  case ARM::VST4LNdWB_register_Asm_32:
6002  case ARM::VST4LNqWB_register_Asm_16:
6003  case ARM::VST4LNqWB_register_Asm_32: {
6004    MCInst TmpInst;
6005    // Shuffle the operands around so the lane index operand is in the
6006    // right place.
6007    unsigned Spacing;
6008    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6009    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6010    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6011    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6012    TmpInst.addOperand(Inst.getOperand(4)); // Rm
6013    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6014    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6015                                            Spacing));
6016    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6017                                            Spacing * 2));
6018    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6019                                            Spacing * 3));
6020    TmpInst.addOperand(Inst.getOperand(1)); // lane
6021    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6022    TmpInst.addOperand(Inst.getOperand(6));
6023    Inst = TmpInst;
6024    return true;
6025  }
6026
6027  case ARM::VST1LNdWB_fixed_Asm_8:
6028  case ARM::VST1LNdWB_fixed_Asm_16:
6029  case ARM::VST1LNdWB_fixed_Asm_32: {
6030    MCInst TmpInst;
6031    // Shuffle the operands around so the lane index operand is in the
6032    // right place.
6033    unsigned Spacing;
6034    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6035    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6036    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6037    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6038    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6039    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6040    TmpInst.addOperand(Inst.getOperand(1)); // lane
6041    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6042    TmpInst.addOperand(Inst.getOperand(5));
6043    Inst = TmpInst;
6044    return true;
6045  }
6046
6047  case ARM::VST2LNdWB_fixed_Asm_8:
6048  case ARM::VST2LNdWB_fixed_Asm_16:
6049  case ARM::VST2LNdWB_fixed_Asm_32:
6050  case ARM::VST2LNqWB_fixed_Asm_16:
6051  case ARM::VST2LNqWB_fixed_Asm_32: {
6052    MCInst TmpInst;
6053    // Shuffle the operands around so the lane index operand is in the
6054    // right place.
6055    unsigned Spacing;
6056    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6057    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6058    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6059    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6060    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6061    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6062    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6063                                            Spacing));
6064    TmpInst.addOperand(Inst.getOperand(1)); // lane
6065    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6066    TmpInst.addOperand(Inst.getOperand(5));
6067    Inst = TmpInst;
6068    return true;
6069  }
6070
6071  case ARM::VST3LNdWB_fixed_Asm_8:
6072  case ARM::VST3LNdWB_fixed_Asm_16:
6073  case ARM::VST3LNdWB_fixed_Asm_32:
6074  case ARM::VST3LNqWB_fixed_Asm_16:
6075  case ARM::VST3LNqWB_fixed_Asm_32: {
6076    MCInst TmpInst;
6077    // Shuffle the operands around so the lane index operand is in the
6078    // right place.
6079    unsigned Spacing;
6080    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6081    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6082    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6083    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6084    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6085    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6086    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6087                                            Spacing));
6088    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6089                                            Spacing * 2));
6090    TmpInst.addOperand(Inst.getOperand(1)); // lane
6091    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6092    TmpInst.addOperand(Inst.getOperand(5));
6093    Inst = TmpInst;
6094    return true;
6095  }
6096
6097  case ARM::VST4LNdWB_fixed_Asm_8:
6098  case ARM::VST4LNdWB_fixed_Asm_16:
6099  case ARM::VST4LNdWB_fixed_Asm_32:
6100  case ARM::VST4LNqWB_fixed_Asm_16:
6101  case ARM::VST4LNqWB_fixed_Asm_32: {
6102    MCInst TmpInst;
6103    // Shuffle the operands around so the lane index operand is in the
6104    // right place.
6105    unsigned Spacing;
6106    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6107    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6108    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6109    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6110    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6111    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6112    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6113                                            Spacing));
6114    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6115                                            Spacing * 2));
6116    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6117                                            Spacing * 3));
6118    TmpInst.addOperand(Inst.getOperand(1)); // lane
6119    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6120    TmpInst.addOperand(Inst.getOperand(5));
6121    Inst = TmpInst;
6122    return true;
6123  }
6124
6125  case ARM::VST1LNdAsm_8:
6126  case ARM::VST1LNdAsm_16:
6127  case ARM::VST1LNdAsm_32: {
6128    MCInst TmpInst;
6129    // Shuffle the operands around so the lane index operand is in the
6130    // right place.
6131    unsigned Spacing;
6132    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6133    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6134    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6135    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6136    TmpInst.addOperand(Inst.getOperand(1)); // lane
6137    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6138    TmpInst.addOperand(Inst.getOperand(5));
6139    Inst = TmpInst;
6140    return true;
6141  }
6142
6143  case ARM::VST2LNdAsm_8:
6144  case ARM::VST2LNdAsm_16:
6145  case ARM::VST2LNdAsm_32:
6146  case ARM::VST2LNqAsm_16:
6147  case ARM::VST2LNqAsm_32: {
6148    MCInst TmpInst;
6149    // Shuffle the operands around so the lane index operand is in the
6150    // right place.
6151    unsigned Spacing;
6152    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6153    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6154    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6155    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6156    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6157                                            Spacing));
6158    TmpInst.addOperand(Inst.getOperand(1)); // lane
6159    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6160    TmpInst.addOperand(Inst.getOperand(5));
6161    Inst = TmpInst;
6162    return true;
6163  }
6164
6165  case ARM::VST3LNdAsm_8:
6166  case ARM::VST3LNdAsm_16:
6167  case ARM::VST3LNdAsm_32:
6168  case ARM::VST3LNqAsm_16:
6169  case ARM::VST3LNqAsm_32: {
6170    MCInst TmpInst;
6171    // Shuffle the operands around so the lane index operand is in the
6172    // right place.
6173    unsigned Spacing;
6174    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6175    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6176    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6177    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6178    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6179                                            Spacing));
6180    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6181                                            Spacing * 2));
6182    TmpInst.addOperand(Inst.getOperand(1)); // lane
6183    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6184    TmpInst.addOperand(Inst.getOperand(5));
6185    Inst = TmpInst;
6186    return true;
6187  }
6188
6189  case ARM::VST4LNdAsm_8:
6190  case ARM::VST4LNdAsm_16:
6191  case ARM::VST4LNdAsm_32:
6192  case ARM::VST4LNqAsm_16:
6193  case ARM::VST4LNqAsm_32: {
6194    MCInst TmpInst;
6195    // Shuffle the operands around so the lane index operand is in the
6196    // right place.
6197    unsigned Spacing;
6198    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6199    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6200    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6201    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6202    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6203                                            Spacing));
6204    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6205                                            Spacing * 2));
6206    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6207                                            Spacing * 3));
6208    TmpInst.addOperand(Inst.getOperand(1)); // lane
6209    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6210    TmpInst.addOperand(Inst.getOperand(5));
6211    Inst = TmpInst;
6212    return true;
6213  }
6214
6215  // Handle NEON VLD complex aliases.
6216  case ARM::VLD1LNdWB_register_Asm_8:
6217  case ARM::VLD1LNdWB_register_Asm_16:
6218  case ARM::VLD1LNdWB_register_Asm_32: {
6219    MCInst TmpInst;
6220    // Shuffle the operands around so the lane index operand is in the
6221    // right place.
6222    unsigned Spacing;
6223    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6224    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6225    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6226    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6227    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6228    TmpInst.addOperand(Inst.getOperand(4)); // Rm
6229    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6230    TmpInst.addOperand(Inst.getOperand(1)); // lane
6231    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6232    TmpInst.addOperand(Inst.getOperand(6));
6233    Inst = TmpInst;
6234    return true;
6235  }
6236
6237  case ARM::VLD2LNdWB_register_Asm_8:
6238  case ARM::VLD2LNdWB_register_Asm_16:
6239  case ARM::VLD2LNdWB_register_Asm_32:
6240  case ARM::VLD2LNqWB_register_Asm_16:
6241  case ARM::VLD2LNqWB_register_Asm_32: {
6242    MCInst TmpInst;
6243    // Shuffle the operands around so the lane index operand is in the
6244    // right place.
6245    unsigned Spacing;
6246    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6247    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6248    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6249                                            Spacing));
6250    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6251    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6252    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6253    TmpInst.addOperand(Inst.getOperand(4)); // Rm
6254    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6255    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6256                                            Spacing));
6257    TmpInst.addOperand(Inst.getOperand(1)); // lane
6258    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6259    TmpInst.addOperand(Inst.getOperand(6));
6260    Inst = TmpInst;
6261    return true;
6262  }
6263
6264  case ARM::VLD3LNdWB_register_Asm_8:
6265  case ARM::VLD3LNdWB_register_Asm_16:
6266  case ARM::VLD3LNdWB_register_Asm_32:
6267  case ARM::VLD3LNqWB_register_Asm_16:
6268  case ARM::VLD3LNqWB_register_Asm_32: {
6269    MCInst TmpInst;
6270    // Shuffle the operands around so the lane index operand is in the
6271    // right place.
6272    unsigned Spacing;
6273    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6274    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6275    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6276                                            Spacing));
6277    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6278                                            Spacing * 2));
6279    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6280    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6281    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6282    TmpInst.addOperand(Inst.getOperand(4)); // Rm
6283    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6284    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6285                                            Spacing));
6286    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6287                                            Spacing * 2));
6288    TmpInst.addOperand(Inst.getOperand(1)); // lane
6289    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6290    TmpInst.addOperand(Inst.getOperand(6));
6291    Inst = TmpInst;
6292    return true;
6293  }
6294
6295  case ARM::VLD4LNdWB_register_Asm_8:
6296  case ARM::VLD4LNdWB_register_Asm_16:
6297  case ARM::VLD4LNdWB_register_Asm_32:
6298  case ARM::VLD4LNqWB_register_Asm_16:
6299  case ARM::VLD4LNqWB_register_Asm_32: {
6300    MCInst TmpInst;
6301    // Shuffle the operands around so the lane index operand is in the
6302    // right place.
6303    unsigned Spacing;
6304    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6305    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6306    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6307                                            Spacing));
6308    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6309                                            Spacing * 2));
6310    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6311                                            Spacing * 3));
6312    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6313    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6314    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6315    TmpInst.addOperand(Inst.getOperand(4)); // Rm
6316    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6317    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6318                                            Spacing));
6319    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6320                                            Spacing * 2));
6321    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6322                                            Spacing * 3));
6323    TmpInst.addOperand(Inst.getOperand(1)); // lane
6324    TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6325    TmpInst.addOperand(Inst.getOperand(6));
6326    Inst = TmpInst;
6327    return true;
6328  }
6329
6330  case ARM::VLD1LNdWB_fixed_Asm_8:
6331  case ARM::VLD1LNdWB_fixed_Asm_16:
6332  case ARM::VLD1LNdWB_fixed_Asm_32: {
6333    MCInst TmpInst;
6334    // Shuffle the operands around so the lane index operand is in the
6335    // right place.
6336    unsigned Spacing;
6337    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6338    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6339    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6340    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6341    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6342    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6343    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6344    TmpInst.addOperand(Inst.getOperand(1)); // lane
6345    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6346    TmpInst.addOperand(Inst.getOperand(5));
6347    Inst = TmpInst;
6348    return true;
6349  }
6350
6351  case ARM::VLD2LNdWB_fixed_Asm_8:
6352  case ARM::VLD2LNdWB_fixed_Asm_16:
6353  case ARM::VLD2LNdWB_fixed_Asm_32:
6354  case ARM::VLD2LNqWB_fixed_Asm_16:
6355  case ARM::VLD2LNqWB_fixed_Asm_32: {
6356    MCInst TmpInst;
6357    // Shuffle the operands around so the lane index operand is in the
6358    // right place.
6359    unsigned Spacing;
6360    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6361    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6362    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6363                                            Spacing));
6364    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6365    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6366    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6367    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6368    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6369    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6370                                            Spacing));
6371    TmpInst.addOperand(Inst.getOperand(1)); // lane
6372    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6373    TmpInst.addOperand(Inst.getOperand(5));
6374    Inst = TmpInst;
6375    return true;
6376  }
6377
6378  case ARM::VLD3LNdWB_fixed_Asm_8:
6379  case ARM::VLD3LNdWB_fixed_Asm_16:
6380  case ARM::VLD3LNdWB_fixed_Asm_32:
6381  case ARM::VLD3LNqWB_fixed_Asm_16:
6382  case ARM::VLD3LNqWB_fixed_Asm_32: {
6383    MCInst TmpInst;
6384    // Shuffle the operands around so the lane index operand is in the
6385    // right place.
6386    unsigned Spacing;
6387    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6388    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6389    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6390                                            Spacing));
6391    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6392                                            Spacing * 2));
6393    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6394    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6395    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6396    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6397    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6398    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6399                                            Spacing));
6400    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6401                                            Spacing * 2));
6402    TmpInst.addOperand(Inst.getOperand(1)); // lane
6403    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6404    TmpInst.addOperand(Inst.getOperand(5));
6405    Inst = TmpInst;
6406    return true;
6407  }
6408
6409  case ARM::VLD4LNdWB_fixed_Asm_8:
6410  case ARM::VLD4LNdWB_fixed_Asm_16:
6411  case ARM::VLD4LNdWB_fixed_Asm_32:
6412  case ARM::VLD4LNqWB_fixed_Asm_16:
6413  case ARM::VLD4LNqWB_fixed_Asm_32: {
6414    MCInst TmpInst;
6415    // Shuffle the operands around so the lane index operand is in the
6416    // right place.
6417    unsigned Spacing;
6418    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6419    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6420    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6421                                            Spacing));
6422    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6423                                            Spacing * 2));
6424    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6425                                            Spacing * 3));
6426    TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6427    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6428    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6429    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6430    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6431    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6432                                            Spacing));
6433    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6434                                            Spacing * 2));
6435    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6436                                            Spacing * 3));
6437    TmpInst.addOperand(Inst.getOperand(1)); // lane
6438    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6439    TmpInst.addOperand(Inst.getOperand(5));
6440    Inst = TmpInst;
6441    return true;
6442  }
6443
6444  case ARM::VLD1LNdAsm_8:
6445  case ARM::VLD1LNdAsm_16:
6446  case ARM::VLD1LNdAsm_32: {
6447    MCInst TmpInst;
6448    // Shuffle the operands around so the lane index operand is in the
6449    // right place.
6450    unsigned Spacing;
6451    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6452    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6453    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6454    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6455    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6456    TmpInst.addOperand(Inst.getOperand(1)); // lane
6457    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6458    TmpInst.addOperand(Inst.getOperand(5));
6459    Inst = TmpInst;
6460    return true;
6461  }
6462
6463  case ARM::VLD2LNdAsm_8:
6464  case ARM::VLD2LNdAsm_16:
6465  case ARM::VLD2LNdAsm_32:
6466  case ARM::VLD2LNqAsm_16:
6467  case ARM::VLD2LNqAsm_32: {
6468    MCInst TmpInst;
6469    // Shuffle the operands around so the lane index operand is in the
6470    // right place.
6471    unsigned Spacing;
6472    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6473    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6474    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6475                                            Spacing));
6476    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6477    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6478    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6479    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6480                                            Spacing));
6481    TmpInst.addOperand(Inst.getOperand(1)); // lane
6482    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6483    TmpInst.addOperand(Inst.getOperand(5));
6484    Inst = TmpInst;
6485    return true;
6486  }
6487
6488  case ARM::VLD3LNdAsm_8:
6489  case ARM::VLD3LNdAsm_16:
6490  case ARM::VLD3LNdAsm_32:
6491  case ARM::VLD3LNqAsm_16:
6492  case ARM::VLD3LNqAsm_32: {
6493    MCInst TmpInst;
6494    // Shuffle the operands around so the lane index operand is in the
6495    // right place.
6496    unsigned Spacing;
6497    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6498    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6499    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6500                                            Spacing));
6501    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6502                                            Spacing * 2));
6503    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6504    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6505    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6506    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6507                                            Spacing));
6508    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6509                                            Spacing * 2));
6510    TmpInst.addOperand(Inst.getOperand(1)); // lane
6511    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6512    TmpInst.addOperand(Inst.getOperand(5));
6513    Inst = TmpInst;
6514    return true;
6515  }
6516
6517  case ARM::VLD4LNdAsm_8:
6518  case ARM::VLD4LNdAsm_16:
6519  case ARM::VLD4LNdAsm_32:
6520  case ARM::VLD4LNqAsm_16:
6521  case ARM::VLD4LNqAsm_32: {
6522    MCInst TmpInst;
6523    // Shuffle the operands around so the lane index operand is in the
6524    // right place.
6525    unsigned Spacing;
6526    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6527    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6528    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6529                                            Spacing));
6530    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6531                                            Spacing * 2));
6532    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6533                                            Spacing * 3));
6534    TmpInst.addOperand(Inst.getOperand(2)); // Rn
6535    TmpInst.addOperand(Inst.getOperand(3)); // alignment
6536    TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6537    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6538                                            Spacing));
6539    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6540                                            Spacing * 2));
6541    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6542                                            Spacing * 3));
6543    TmpInst.addOperand(Inst.getOperand(1)); // lane
6544    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6545    TmpInst.addOperand(Inst.getOperand(5));
6546    Inst = TmpInst;
6547    return true;
6548  }
6549
6550  // VLD3DUP single 3-element structure to all lanes instructions.
6551  case ARM::VLD3DUPdAsm_8:
6552  case ARM::VLD3DUPdAsm_16:
6553  case ARM::VLD3DUPdAsm_32:
6554  case ARM::VLD3DUPqAsm_8:
6555  case ARM::VLD3DUPqAsm_16:
6556  case ARM::VLD3DUPqAsm_32: {
6557    MCInst TmpInst;
6558    unsigned Spacing;
6559    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6560    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6561    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6562                                            Spacing));
6563    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6564                                            Spacing * 2));
6565    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6566    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6567    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6568    TmpInst.addOperand(Inst.getOperand(4));
6569    Inst = TmpInst;
6570    return true;
6571  }
6572
6573  case ARM::VLD3DUPdWB_fixed_Asm_8:
6574  case ARM::VLD3DUPdWB_fixed_Asm_16:
6575  case ARM::VLD3DUPdWB_fixed_Asm_32:
6576  case ARM::VLD3DUPqWB_fixed_Asm_8:
6577  case ARM::VLD3DUPqWB_fixed_Asm_16:
6578  case ARM::VLD3DUPqWB_fixed_Asm_32: {
6579    MCInst TmpInst;
6580    unsigned Spacing;
6581    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6582    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6583    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6584                                            Spacing));
6585    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6586                                            Spacing * 2));
6587    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6588    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6589    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6590    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6591    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6592    TmpInst.addOperand(Inst.getOperand(4));
6593    Inst = TmpInst;
6594    return true;
6595  }
6596
6597  case ARM::VLD3DUPdWB_register_Asm_8:
6598  case ARM::VLD3DUPdWB_register_Asm_16:
6599  case ARM::VLD3DUPdWB_register_Asm_32:
6600  case ARM::VLD3DUPqWB_register_Asm_8:
6601  case ARM::VLD3DUPqWB_register_Asm_16:
6602  case ARM::VLD3DUPqWB_register_Asm_32: {
6603    MCInst TmpInst;
6604    unsigned Spacing;
6605    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6606    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6607    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6608                                            Spacing));
6609    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6610                                            Spacing * 2));
6611    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6612    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6613    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6614    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6615    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6616    TmpInst.addOperand(Inst.getOperand(5));
6617    Inst = TmpInst;
6618    return true;
6619  }
6620
6621  // VLD3 multiple 3-element structure instructions.
6622  case ARM::VLD3dAsm_8:
6623  case ARM::VLD3dAsm_16:
6624  case ARM::VLD3dAsm_32:
6625  case ARM::VLD3qAsm_8:
6626  case ARM::VLD3qAsm_16:
6627  case ARM::VLD3qAsm_32: {
6628    MCInst TmpInst;
6629    unsigned Spacing;
6630    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6631    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6632    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6633                                            Spacing));
6634    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6635                                            Spacing * 2));
6636    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6637    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6638    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6639    TmpInst.addOperand(Inst.getOperand(4));
6640    Inst = TmpInst;
6641    return true;
6642  }
6643
6644  case ARM::VLD3dWB_fixed_Asm_8:
6645  case ARM::VLD3dWB_fixed_Asm_16:
6646  case ARM::VLD3dWB_fixed_Asm_32:
6647  case ARM::VLD3qWB_fixed_Asm_8:
6648  case ARM::VLD3qWB_fixed_Asm_16:
6649  case ARM::VLD3qWB_fixed_Asm_32: {
6650    MCInst TmpInst;
6651    unsigned Spacing;
6652    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6653    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6654    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6655                                            Spacing));
6656    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6657                                            Spacing * 2));
6658    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6659    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6660    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6661    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6662    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6663    TmpInst.addOperand(Inst.getOperand(4));
6664    Inst = TmpInst;
6665    return true;
6666  }
6667
6668  case ARM::VLD3dWB_register_Asm_8:
6669  case ARM::VLD3dWB_register_Asm_16:
6670  case ARM::VLD3dWB_register_Asm_32:
6671  case ARM::VLD3qWB_register_Asm_8:
6672  case ARM::VLD3qWB_register_Asm_16:
6673  case ARM::VLD3qWB_register_Asm_32: {
6674    MCInst TmpInst;
6675    unsigned Spacing;
6676    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6677    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6678    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6679                                            Spacing));
6680    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6681                                            Spacing * 2));
6682    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6683    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6684    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6685    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6686    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6687    TmpInst.addOperand(Inst.getOperand(5));
6688    Inst = TmpInst;
6689    return true;
6690  }
6691
6692  // VLD4DUP single 3-element structure to all lanes instructions.
6693  case ARM::VLD4DUPdAsm_8:
6694  case ARM::VLD4DUPdAsm_16:
6695  case ARM::VLD4DUPdAsm_32:
6696  case ARM::VLD4DUPqAsm_8:
6697  case ARM::VLD4DUPqAsm_16:
6698  case ARM::VLD4DUPqAsm_32: {
6699    MCInst TmpInst;
6700    unsigned Spacing;
6701    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6702    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6703    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6704                                            Spacing));
6705    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6706                                            Spacing * 2));
6707    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6708                                            Spacing * 3));
6709    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6710    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6711    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6712    TmpInst.addOperand(Inst.getOperand(4));
6713    Inst = TmpInst;
6714    return true;
6715  }
6716
6717  case ARM::VLD4DUPdWB_fixed_Asm_8:
6718  case ARM::VLD4DUPdWB_fixed_Asm_16:
6719  case ARM::VLD4DUPdWB_fixed_Asm_32:
6720  case ARM::VLD4DUPqWB_fixed_Asm_8:
6721  case ARM::VLD4DUPqWB_fixed_Asm_16:
6722  case ARM::VLD4DUPqWB_fixed_Asm_32: {
6723    MCInst TmpInst;
6724    unsigned Spacing;
6725    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6726    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6727    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6728                                            Spacing));
6729    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6730                                            Spacing * 2));
6731    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6732                                            Spacing * 3));
6733    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6734    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6735    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6736    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6737    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6738    TmpInst.addOperand(Inst.getOperand(4));
6739    Inst = TmpInst;
6740    return true;
6741  }
6742
6743  case ARM::VLD4DUPdWB_register_Asm_8:
6744  case ARM::VLD4DUPdWB_register_Asm_16:
6745  case ARM::VLD4DUPdWB_register_Asm_32:
6746  case ARM::VLD4DUPqWB_register_Asm_8:
6747  case ARM::VLD4DUPqWB_register_Asm_16:
6748  case ARM::VLD4DUPqWB_register_Asm_32: {
6749    MCInst TmpInst;
6750    unsigned Spacing;
6751    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6752    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6753    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6754                                            Spacing));
6755    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6756                                            Spacing * 2));
6757    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6758                                            Spacing * 3));
6759    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6760    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6761    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6762    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6763    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6764    TmpInst.addOperand(Inst.getOperand(5));
6765    Inst = TmpInst;
6766    return true;
6767  }
6768
6769  // VLD4 multiple 4-element structure instructions.
6770  case ARM::VLD4dAsm_8:
6771  case ARM::VLD4dAsm_16:
6772  case ARM::VLD4dAsm_32:
6773  case ARM::VLD4qAsm_8:
6774  case ARM::VLD4qAsm_16:
6775  case ARM::VLD4qAsm_32: {
6776    MCInst TmpInst;
6777    unsigned Spacing;
6778    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6779    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6780    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6781                                            Spacing));
6782    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6783                                            Spacing * 2));
6784    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6785                                            Spacing * 3));
6786    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6787    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6788    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6789    TmpInst.addOperand(Inst.getOperand(4));
6790    Inst = TmpInst;
6791    return true;
6792  }
6793
6794  case ARM::VLD4dWB_fixed_Asm_8:
6795  case ARM::VLD4dWB_fixed_Asm_16:
6796  case ARM::VLD4dWB_fixed_Asm_32:
6797  case ARM::VLD4qWB_fixed_Asm_8:
6798  case ARM::VLD4qWB_fixed_Asm_16:
6799  case ARM::VLD4qWB_fixed_Asm_32: {
6800    MCInst TmpInst;
6801    unsigned Spacing;
6802    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6803    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6804    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6805                                            Spacing));
6806    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6807                                            Spacing * 2));
6808    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6809                                            Spacing * 3));
6810    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6811    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6812    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6813    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6814    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6815    TmpInst.addOperand(Inst.getOperand(4));
6816    Inst = TmpInst;
6817    return true;
6818  }
6819
6820  case ARM::VLD4dWB_register_Asm_8:
6821  case ARM::VLD4dWB_register_Asm_16:
6822  case ARM::VLD4dWB_register_Asm_32:
6823  case ARM::VLD4qWB_register_Asm_8:
6824  case ARM::VLD4qWB_register_Asm_16:
6825  case ARM::VLD4qWB_register_Asm_32: {
6826    MCInst TmpInst;
6827    unsigned Spacing;
6828    TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6829    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6830    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6831                                            Spacing));
6832    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6833                                            Spacing * 2));
6834    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6835                                            Spacing * 3));
6836    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6837    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6838    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6839    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6840    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6841    TmpInst.addOperand(Inst.getOperand(5));
6842    Inst = TmpInst;
6843    return true;
6844  }
6845
6846  // VST3 multiple 3-element structure instructions.
6847  case ARM::VST3dAsm_8:
6848  case ARM::VST3dAsm_16:
6849  case ARM::VST3dAsm_32:
6850  case ARM::VST3qAsm_8:
6851  case ARM::VST3qAsm_16:
6852  case ARM::VST3qAsm_32: {
6853    MCInst TmpInst;
6854    unsigned Spacing;
6855    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6856    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6857    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6858    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6859    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6860                                            Spacing));
6861    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6862                                            Spacing * 2));
6863    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6864    TmpInst.addOperand(Inst.getOperand(4));
6865    Inst = TmpInst;
6866    return true;
6867  }
6868
6869  case ARM::VST3dWB_fixed_Asm_8:
6870  case ARM::VST3dWB_fixed_Asm_16:
6871  case ARM::VST3dWB_fixed_Asm_32:
6872  case ARM::VST3qWB_fixed_Asm_8:
6873  case ARM::VST3qWB_fixed_Asm_16:
6874  case ARM::VST3qWB_fixed_Asm_32: {
6875    MCInst TmpInst;
6876    unsigned Spacing;
6877    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6878    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6879    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6880    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6881    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6882    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6883    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6884                                            Spacing));
6885    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6886                                            Spacing * 2));
6887    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6888    TmpInst.addOperand(Inst.getOperand(4));
6889    Inst = TmpInst;
6890    return true;
6891  }
6892
6893  case ARM::VST3dWB_register_Asm_8:
6894  case ARM::VST3dWB_register_Asm_16:
6895  case ARM::VST3dWB_register_Asm_32:
6896  case ARM::VST3qWB_register_Asm_8:
6897  case ARM::VST3qWB_register_Asm_16:
6898  case ARM::VST3qWB_register_Asm_32: {
6899    MCInst TmpInst;
6900    unsigned Spacing;
6901    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6902    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6903    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6904    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6905    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6906    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6907    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6908                                            Spacing));
6909    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6910                                            Spacing * 2));
6911    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6912    TmpInst.addOperand(Inst.getOperand(5));
6913    Inst = TmpInst;
6914    return true;
6915  }
6916
6917  // VST4 multiple 3-element structure instructions.
6918  case ARM::VST4dAsm_8:
6919  case ARM::VST4dAsm_16:
6920  case ARM::VST4dAsm_32:
6921  case ARM::VST4qAsm_8:
6922  case ARM::VST4qAsm_16:
6923  case ARM::VST4qAsm_32: {
6924    MCInst TmpInst;
6925    unsigned Spacing;
6926    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6927    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6928    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6929    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6930    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6931                                            Spacing));
6932    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6933                                            Spacing * 2));
6934    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6935                                            Spacing * 3));
6936    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6937    TmpInst.addOperand(Inst.getOperand(4));
6938    Inst = TmpInst;
6939    return true;
6940  }
6941
6942  case ARM::VST4dWB_fixed_Asm_8:
6943  case ARM::VST4dWB_fixed_Asm_16:
6944  case ARM::VST4dWB_fixed_Asm_32:
6945  case ARM::VST4qWB_fixed_Asm_8:
6946  case ARM::VST4qWB_fixed_Asm_16:
6947  case ARM::VST4qWB_fixed_Asm_32: {
6948    MCInst TmpInst;
6949    unsigned Spacing;
6950    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6951    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6952    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6953    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6954    TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6955    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6956    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6957                                            Spacing));
6958    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6959                                            Spacing * 2));
6960    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6961                                            Spacing * 3));
6962    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6963    TmpInst.addOperand(Inst.getOperand(4));
6964    Inst = TmpInst;
6965    return true;
6966  }
6967
6968  case ARM::VST4dWB_register_Asm_8:
6969  case ARM::VST4dWB_register_Asm_16:
6970  case ARM::VST4dWB_register_Asm_32:
6971  case ARM::VST4qWB_register_Asm_8:
6972  case ARM::VST4qWB_register_Asm_16:
6973  case ARM::VST4qWB_register_Asm_32: {
6974    MCInst TmpInst;
6975    unsigned Spacing;
6976    TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6977    TmpInst.addOperand(Inst.getOperand(1)); // Rn
6978    TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6979    TmpInst.addOperand(Inst.getOperand(2)); // alignment
6980    TmpInst.addOperand(Inst.getOperand(3)); // Rm
6981    TmpInst.addOperand(Inst.getOperand(0)); // Vd
6982    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6983                                            Spacing));
6984    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6985                                            Spacing * 2));
6986    TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6987                                            Spacing * 3));
6988    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6989    TmpInst.addOperand(Inst.getOperand(5));
6990    Inst = TmpInst;
6991    return true;
6992  }
6993
6994  // Handle encoding choice for the shift-immediate instructions.
6995  case ARM::t2LSLri:
6996  case ARM::t2LSRri:
6997  case ARM::t2ASRri: {
6998    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
6999        Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
7000        Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
7001        !(static_cast<ARMOperand*>(Operands[3])->isToken() &&
7002         static_cast<ARMOperand*>(Operands[3])->getToken() == ".w")) {
7003      unsigned NewOpc;
7004      switch (Inst.getOpcode()) {
7005      default: llvm_unreachable("unexpected opcode");
7006      case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
7007      case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
7008      case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
7009      }
7010      // The Thumb1 operands aren't in the same order. Awesome, eh?
7011      MCInst TmpInst;
7012      TmpInst.setOpcode(NewOpc);
7013      TmpInst.addOperand(Inst.getOperand(0));
7014      TmpInst.addOperand(Inst.getOperand(5));
7015      TmpInst.addOperand(Inst.getOperand(1));
7016      TmpInst.addOperand(Inst.getOperand(2));
7017      TmpInst.addOperand(Inst.getOperand(3));
7018      TmpInst.addOperand(Inst.getOperand(4));
7019      Inst = TmpInst;
7020      return true;
7021    }
7022    return false;
7023  }
7024
7025  // Handle the Thumb2 mode MOV complex aliases.
7026  case ARM::t2MOVsr:
7027  case ARM::t2MOVSsr: {
7028    // Which instruction to expand to depends on the CCOut operand and
7029    // whether we're in an IT block if the register operands are low
7030    // registers.
7031    bool isNarrow = false;
7032    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7033        isARMLowRegister(Inst.getOperand(1).getReg()) &&
7034        isARMLowRegister(Inst.getOperand(2).getReg()) &&
7035        Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
7036        inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr))
7037      isNarrow = true;
7038    MCInst TmpInst;
7039    unsigned newOpc;
7040    switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
7041    default: llvm_unreachable("unexpected opcode!");
7042    case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
7043    case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
7044    case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
7045    case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR   : ARM::t2RORrr; break;
7046    }
7047    TmpInst.setOpcode(newOpc);
7048    TmpInst.addOperand(Inst.getOperand(0)); // Rd
7049    if (isNarrow)
7050      TmpInst.addOperand(MCOperand::CreateReg(
7051          Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
7052    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7053    TmpInst.addOperand(Inst.getOperand(2)); // Rm
7054    TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7055    TmpInst.addOperand(Inst.getOperand(5));
7056    if (!isNarrow)
7057      TmpInst.addOperand(MCOperand::CreateReg(
7058          Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
7059    Inst = TmpInst;
7060    return true;
7061  }
7062  case ARM::t2MOVsi:
7063  case ARM::t2MOVSsi: {
7064    // Which instruction to expand to depends on the CCOut operand and
7065    // whether we're in an IT block if the register operands are low
7066    // registers.
7067    bool isNarrow = false;
7068    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7069        isARMLowRegister(Inst.getOperand(1).getReg()) &&
7070        inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi))
7071      isNarrow = true;
7072    MCInst TmpInst;
7073    unsigned newOpc;
7074    switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) {
7075    default: llvm_unreachable("unexpected opcode!");
7076    case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
7077    case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
7078    case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
7079    case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
7080    case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
7081    }
7082    unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
7083    if (Amount == 32) Amount = 0;
7084    TmpInst.setOpcode(newOpc);
7085    TmpInst.addOperand(Inst.getOperand(0)); // Rd
7086    if (isNarrow)
7087      TmpInst.addOperand(MCOperand::CreateReg(
7088          Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
7089    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7090    if (newOpc != ARM::t2RRX)
7091      TmpInst.addOperand(MCOperand::CreateImm(Amount));
7092    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7093    TmpInst.addOperand(Inst.getOperand(4));
7094    if (!isNarrow)
7095      TmpInst.addOperand(MCOperand::CreateReg(
7096          Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
7097    Inst = TmpInst;
7098    return true;
7099  }
7100  // Handle the ARM mode MOV complex aliases.
7101  case ARM::ASRr:
7102  case ARM::LSRr:
7103  case ARM::LSLr:
7104  case ARM::RORr: {
7105    ARM_AM::ShiftOpc ShiftTy;
7106    switch(Inst.getOpcode()) {
7107    default: llvm_unreachable("unexpected opcode!");
7108    case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
7109    case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
7110    case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
7111    case ARM::RORr: ShiftTy = ARM_AM::ror; break;
7112    }
7113    unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
7114    MCInst TmpInst;
7115    TmpInst.setOpcode(ARM::MOVsr);
7116    TmpInst.addOperand(Inst.getOperand(0)); // Rd
7117    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7118    TmpInst.addOperand(Inst.getOperand(2)); // Rm
7119    TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
7120    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7121    TmpInst.addOperand(Inst.getOperand(4));
7122    TmpInst.addOperand(Inst.getOperand(5)); // cc_out
7123    Inst = TmpInst;
7124    return true;
7125  }
7126  case ARM::ASRi:
7127  case ARM::LSRi:
7128  case ARM::LSLi:
7129  case ARM::RORi: {
7130    ARM_AM::ShiftOpc ShiftTy;
7131    switch(Inst.getOpcode()) {
7132    default: llvm_unreachable("unexpected opcode!");
7133    case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
7134    case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
7135    case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
7136    case ARM::RORi: ShiftTy = ARM_AM::ror; break;
7137    }
7138    // A shift by zero is a plain MOVr, not a MOVsi.
7139    unsigned Amt = Inst.getOperand(2).getImm();
7140    unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
7141    // A shift by 32 should be encoded as 0 when permitted
7142    if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
7143      Amt = 0;
7144    unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
7145    MCInst TmpInst;
7146    TmpInst.setOpcode(Opc);
7147    TmpInst.addOperand(Inst.getOperand(0)); // Rd
7148    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7149    if (Opc == ARM::MOVsi)
7150      TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
7151    TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7152    TmpInst.addOperand(Inst.getOperand(4));
7153    TmpInst.addOperand(Inst.getOperand(5)); // cc_out
7154    Inst = TmpInst;
7155    return true;
7156  }
7157  case ARM::RRXi: {
7158    unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
7159    MCInst TmpInst;
7160    TmpInst.setOpcode(ARM::MOVsi);
7161    TmpInst.addOperand(Inst.getOperand(0)); // Rd
7162    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7163    TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
7164    TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7165    TmpInst.addOperand(Inst.getOperand(3));
7166    TmpInst.addOperand(Inst.getOperand(4)); // cc_out
7167    Inst = TmpInst;
7168    return true;
7169  }
7170  case ARM::t2LDMIA_UPD: {
7171    // If this is a load of a single register, then we should use
7172    // a post-indexed LDR instruction instead, per the ARM ARM.
7173    if (Inst.getNumOperands() != 5)
7174      return false;
7175    MCInst TmpInst;
7176    TmpInst.setOpcode(ARM::t2LDR_POST);
7177    TmpInst.addOperand(Inst.getOperand(4)); // Rt
7178    TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
7179    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7180    TmpInst.addOperand(MCOperand::CreateImm(4));
7181    TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7182    TmpInst.addOperand(Inst.getOperand(3));
7183    Inst = TmpInst;
7184    return true;
7185  }
7186  case ARM::t2STMDB_UPD: {
7187    // If this is a store of a single register, then we should use
7188    // a pre-indexed STR instruction instead, per the ARM ARM.
7189    if (Inst.getNumOperands() != 5)
7190      return false;
7191    MCInst TmpInst;
7192    TmpInst.setOpcode(ARM::t2STR_PRE);
7193    TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
7194    TmpInst.addOperand(Inst.getOperand(4)); // Rt
7195    TmpInst.addOperand(Inst.getOperand(1)); // Rn
7196    TmpInst.addOperand(MCOperand::CreateImm(-4));
7197    TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7198    TmpInst.addOperand(Inst.getOperand(3));
7199    Inst = TmpInst;
7200    return true;
7201  }
7202  case ARM::LDMIA_UPD:
7203    // If this is a load of a single register via a 'pop', then we should use
7204    // a post-indexed LDR instruction instead, per the ARM ARM.
7205    if (static_cast<ARMOperand*>(Operands[0])->getToken() == "pop" &&
7206        Inst.getNumOperands() == 5) {
7207      MCInst TmpInst;
7208      TmpInst.setOpcode(ARM::LDR_POST_IMM);
7209      TmpInst.addOperand(Inst.getOperand(4)); // Rt
7210      TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
7211      TmpInst.addOperand(Inst.getOperand(1)); // Rn
7212      TmpInst.addOperand(MCOperand::CreateReg(0));  // am2offset
7213      TmpInst.addOperand(MCOperand::CreateImm(4));
7214      TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7215      TmpInst.addOperand(Inst.getOperand(3));
7216      Inst = TmpInst;
7217      return true;
7218    }
7219    break;
7220  case ARM::STMDB_UPD:
7221    // If this is a store of a single register via a 'push', then we should use
7222    // a pre-indexed STR instruction instead, per the ARM ARM.
7223    if (static_cast<ARMOperand*>(Operands[0])->getToken() == "push" &&
7224        Inst.getNumOperands() == 5) {
7225      MCInst TmpInst;
7226      TmpInst.setOpcode(ARM::STR_PRE_IMM);
7227      TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
7228      TmpInst.addOperand(Inst.getOperand(4)); // Rt
7229      TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
7230      TmpInst.addOperand(MCOperand::CreateImm(-4));
7231      TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7232      TmpInst.addOperand(Inst.getOperand(3));
7233      Inst = TmpInst;
7234    }
7235    break;
7236  case ARM::t2ADDri12:
7237    // If the immediate fits for encoding T3 (t2ADDri) and the generic "add"
7238    // mnemonic was used (not "addw"), encoding T3 is preferred.
7239    if (static_cast<ARMOperand*>(Operands[0])->getToken() != "add" ||
7240        ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
7241      break;
7242    Inst.setOpcode(ARM::t2ADDri);
7243    Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
7244    break;
7245  case ARM::t2SUBri12:
7246    // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub"
7247    // mnemonic was used (not "subw"), encoding T3 is preferred.
7248    if (static_cast<ARMOperand*>(Operands[0])->getToken() != "sub" ||
7249        ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
7250      break;
7251    Inst.setOpcode(ARM::t2SUBri);
7252    Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
7253    break;
7254  case ARM::tADDi8:
7255    // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
7256    // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
7257    // to encoding T2 if <Rd> is specified and encoding T2 is preferred
7258    // to encoding T1 if <Rd> is omitted."
7259    if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
7260      Inst.setOpcode(ARM::tADDi3);
7261      return true;
7262    }
7263    break;
7264  case ARM::tSUBi8:
7265    // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
7266    // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
7267    // to encoding T2 if <Rd> is specified and encoding T2 is preferred
7268    // to encoding T1 if <Rd> is omitted."
7269    if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
7270      Inst.setOpcode(ARM::tSUBi3);
7271      return true;
7272    }
7273    break;
7274  case ARM::t2ADDri:
7275  case ARM::t2SUBri: {
7276    // If the destination and first source operand are the same, and
7277    // the flags are compatible with the current IT status, use encoding T2
7278    // instead of T3. For compatibility with the system 'as'. Make sure the
7279    // wide encoding wasn't explicit.
7280    if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
7281        !isARMLowRegister(Inst.getOperand(0).getReg()) ||
7282        (unsigned)Inst.getOperand(2).getImm() > 255 ||
7283        ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) ||
7284        (inITBlock() && Inst.getOperand(5).getReg() != 0)) ||
7285        (static_cast<ARMOperand*>(Operands[3])->isToken() &&
7286         static_cast<ARMOperand*>(Operands[3])->getToken() == ".w"))
7287      break;
7288    MCInst TmpInst;
7289    TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
7290                      ARM::tADDi8 : ARM::tSUBi8);
7291    TmpInst.addOperand(Inst.getOperand(0));
7292    TmpInst.addOperand(Inst.getOperand(5));
7293    TmpInst.addOperand(Inst.getOperand(0));
7294    TmpInst.addOperand(Inst.getOperand(2));
7295    TmpInst.addOperand(Inst.getOperand(3));
7296    TmpInst.addOperand(Inst.getOperand(4));
7297    Inst = TmpInst;
7298    return true;
7299  }
7300  case ARM::t2ADDrr: {
7301    // If the destination and first source operand are the same, and
7302    // there's no setting of the flags, use encoding T2 instead of T3.
7303    // Note that this is only for ADD, not SUB. This mirrors the system
7304    // 'as' behaviour. Make sure the wide encoding wasn't explicit.
7305    if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
7306        Inst.getOperand(5).getReg() != 0 ||
7307        (static_cast<ARMOperand*>(Operands[3])->isToken() &&
7308         static_cast<ARMOperand*>(Operands[3])->getToken() == ".w"))
7309      break;
7310    MCInst TmpInst;
7311    TmpInst.setOpcode(ARM::tADDhirr);
7312    TmpInst.addOperand(Inst.getOperand(0));
7313    TmpInst.addOperand(Inst.getOperand(0));
7314    TmpInst.addOperand(Inst.getOperand(2));
7315    TmpInst.addOperand(Inst.getOperand(3));
7316    TmpInst.addOperand(Inst.getOperand(4));
7317    Inst = TmpInst;
7318    return true;
7319  }
7320  case ARM::tADDrSP: {
7321    // If the non-SP source operand and the destination operand are not the
7322    // same, we need to use the 32-bit encoding if it's available.
7323    if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
7324      Inst.setOpcode(ARM::t2ADDrr);
7325      Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
7326      return true;
7327    }
7328    break;
7329  }
7330  case ARM::tB:
7331    // A Thumb conditional branch outside of an IT block is a tBcc.
7332    if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
7333      Inst.setOpcode(ARM::tBcc);
7334      return true;
7335    }
7336    break;
7337  case ARM::t2B:
7338    // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
7339    if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
7340      Inst.setOpcode(ARM::t2Bcc);
7341      return true;
7342    }
7343    break;
7344  case ARM::t2Bcc:
7345    // If the conditional is AL or we're in an IT block, we really want t2B.
7346    if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
7347      Inst.setOpcode(ARM::t2B);
7348      return true;
7349    }
7350    break;
7351  case ARM::tBcc:
7352    // If the conditional is AL, we really want tB.
7353    if (Inst.getOperand(1).getImm() == ARMCC::AL) {
7354      Inst.setOpcode(ARM::tB);
7355      return true;
7356    }
7357    break;
7358  case ARM::tLDMIA: {
7359    // If the register list contains any high registers, or if the writeback
7360    // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
7361    // instead if we're in Thumb2. Otherwise, this should have generated
7362    // an error in validateInstruction().
7363    unsigned Rn = Inst.getOperand(0).getReg();
7364    bool hasWritebackToken =
7365      (static_cast<ARMOperand*>(Operands[3])->isToken() &&
7366       static_cast<ARMOperand*>(Operands[3])->getToken() == "!");
7367    bool listContainsBase;
7368    if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
7369        (!listContainsBase && !hasWritebackToken) ||
7370        (listContainsBase && hasWritebackToken)) {
7371      // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
7372      assert (isThumbTwo());
7373      Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
7374      // If we're switching to the updating version, we need to insert
7375      // the writeback tied operand.
7376      if (hasWritebackToken)
7377        Inst.insert(Inst.begin(),
7378                    MCOperand::CreateReg(Inst.getOperand(0).getReg()));
7379      return true;
7380    }
7381    break;
7382  }
7383  case ARM::tSTMIA_UPD: {
7384    // If the register list contains any high registers, we need to use
7385    // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
7386    // should have generated an error in validateInstruction().
7387    unsigned Rn = Inst.getOperand(0).getReg();
7388    bool listContainsBase;
7389    if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
7390      // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
7391      assert (isThumbTwo());
7392      Inst.setOpcode(ARM::t2STMIA_UPD);
7393      return true;
7394    }
7395    break;
7396  }
7397  case ARM::tPOP: {
7398    bool listContainsBase;
7399    // If the register list contains any high registers, we need to use
7400    // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
7401    // should have generated an error in validateInstruction().
7402    if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
7403      return false;
7404    assert (isThumbTwo());
7405    Inst.setOpcode(ARM::t2LDMIA_UPD);
7406    // Add the base register and writeback operands.
7407    Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7408    Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7409    return true;
7410  }
7411  case ARM::tPUSH: {
7412    bool listContainsBase;
7413    if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
7414      return false;
7415    assert (isThumbTwo());
7416    Inst.setOpcode(ARM::t2STMDB_UPD);
7417    // Add the base register and writeback operands.
7418    Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7419    Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7420    return true;
7421  }
7422  case ARM::t2MOVi: {
7423    // If we can use the 16-bit encoding and the user didn't explicitly
7424    // request the 32-bit variant, transform it here.
7425    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7426        (unsigned)Inst.getOperand(1).getImm() <= 255 &&
7427        ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL &&
7428         Inst.getOperand(4).getReg() == ARM::CPSR) ||
7429        (inITBlock() && Inst.getOperand(4).getReg() == 0)) &&
7430        (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
7431         static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
7432      // The operands aren't in the same order for tMOVi8...
7433      MCInst TmpInst;
7434      TmpInst.setOpcode(ARM::tMOVi8);
7435      TmpInst.addOperand(Inst.getOperand(0));
7436      TmpInst.addOperand(Inst.getOperand(4));
7437      TmpInst.addOperand(Inst.getOperand(1));
7438      TmpInst.addOperand(Inst.getOperand(2));
7439      TmpInst.addOperand(Inst.getOperand(3));
7440      Inst = TmpInst;
7441      return true;
7442    }
7443    break;
7444  }
7445  case ARM::t2MOVr: {
7446    // If we can use the 16-bit encoding and the user didn't explicitly
7447    // request the 32-bit variant, transform it here.
7448    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7449        isARMLowRegister(Inst.getOperand(1).getReg()) &&
7450        Inst.getOperand(2).getImm() == ARMCC::AL &&
7451        Inst.getOperand(4).getReg() == ARM::CPSR &&
7452        (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
7453         static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
7454      // The operands aren't the same for tMOV[S]r... (no cc_out)
7455      MCInst TmpInst;
7456      TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr);
7457      TmpInst.addOperand(Inst.getOperand(0));
7458      TmpInst.addOperand(Inst.getOperand(1));
7459      TmpInst.addOperand(Inst.getOperand(2));
7460      TmpInst.addOperand(Inst.getOperand(3));
7461      Inst = TmpInst;
7462      return true;
7463    }
7464    break;
7465  }
7466  case ARM::t2SXTH:
7467  case ARM::t2SXTB:
7468  case ARM::t2UXTH:
7469  case ARM::t2UXTB: {
7470    // If we can use the 16-bit encoding and the user didn't explicitly
7471    // request the 32-bit variant, transform it here.
7472    if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7473        isARMLowRegister(Inst.getOperand(1).getReg()) &&
7474        Inst.getOperand(2).getImm() == 0 &&
7475        (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
7476         static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
7477      unsigned NewOpc;
7478      switch (Inst.getOpcode()) {
7479      default: llvm_unreachable("Illegal opcode!");
7480      case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
7481      case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
7482      case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
7483      case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
7484      }
7485      // The operands aren't the same for thumb1 (no rotate operand).
7486      MCInst TmpInst;
7487      TmpInst.setOpcode(NewOpc);
7488      TmpInst.addOperand(Inst.getOperand(0));
7489      TmpInst.addOperand(Inst.getOperand(1));
7490      TmpInst.addOperand(Inst.getOperand(3));
7491      TmpInst.addOperand(Inst.getOperand(4));
7492      Inst = TmpInst;
7493      return true;
7494    }
7495    break;
7496  }
7497  case ARM::MOVsi: {
7498    ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
7499    // rrx shifts and asr/lsr of #32 is encoded as 0
7500    if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr)
7501      return false;
7502    if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
7503      // Shifting by zero is accepted as a vanilla 'MOVr'
7504      MCInst TmpInst;
7505      TmpInst.setOpcode(ARM::MOVr);
7506      TmpInst.addOperand(Inst.getOperand(0));
7507      TmpInst.addOperand(Inst.getOperand(1));
7508      TmpInst.addOperand(Inst.getOperand(3));
7509      TmpInst.addOperand(Inst.getOperand(4));
7510      TmpInst.addOperand(Inst.getOperand(5));
7511      Inst = TmpInst;
7512      return true;
7513    }
7514    return false;
7515  }
7516  case ARM::ANDrsi:
7517  case ARM::ORRrsi:
7518  case ARM::EORrsi:
7519  case ARM::BICrsi:
7520  case ARM::SUBrsi:
7521  case ARM::ADDrsi: {
7522    unsigned newOpc;
7523    ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
7524    if (SOpc == ARM_AM::rrx) return false;
7525    switch (Inst.getOpcode()) {
7526    default: llvm_unreachable("unexpected opcode!");
7527    case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
7528    case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
7529    case ARM::EORrsi: newOpc = ARM::EORrr; break;
7530    case ARM::BICrsi: newOpc = ARM::BICrr; break;
7531    case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
7532    case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
7533    }
7534    // If the shift is by zero, use the non-shifted instruction definition.
7535    // The exception is for right shifts, where 0 == 32
7536    if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
7537        !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
7538      MCInst TmpInst;
7539      TmpInst.setOpcode(newOpc);
7540      TmpInst.addOperand(Inst.getOperand(0));
7541      TmpInst.addOperand(Inst.getOperand(1));
7542      TmpInst.addOperand(Inst.getOperand(2));
7543      TmpInst.addOperand(Inst.getOperand(4));
7544      TmpInst.addOperand(Inst.getOperand(5));
7545      TmpInst.addOperand(Inst.getOperand(6));
7546      Inst = TmpInst;
7547      return true;
7548    }
7549    return false;
7550  }
7551  case ARM::ITasm:
7552  case ARM::t2IT: {
7553    // The mask bits for all but the first condition are represented as
7554    // the low bit of the condition code value implies 't'. We currently
7555    // always have 1 implies 't', so XOR toggle the bits if the low bit
7556    // of the condition code is zero.
7557    MCOperand &MO = Inst.getOperand(1);
7558    unsigned Mask = MO.getImm();
7559    unsigned OrigMask = Mask;
7560    unsigned TZ = countTrailingZeros(Mask);
7561    if ((Inst.getOperand(0).getImm() & 1) == 0) {
7562      assert(Mask && TZ <= 3 && "illegal IT mask value!");
7563      Mask ^= (0xE << TZ) & 0xF;
7564    }
7565    MO.setImm(Mask);
7566
7567    // Set up the IT block state according to the IT instruction we just
7568    // matched.
7569    assert(!inITBlock() && "nested IT blocks?!");
7570    ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm());
7571    ITState.Mask = OrigMask; // Use the original mask, not the updated one.
7572    ITState.CurPosition = 0;
7573    ITState.FirstCond = true;
7574    break;
7575  }
7576  case ARM::t2LSLrr:
7577  case ARM::t2LSRrr:
7578  case ARM::t2ASRrr:
7579  case ARM::t2SBCrr:
7580  case ARM::t2RORrr:
7581  case ARM::t2BICrr:
7582  {
7583    // Assemblers should use the narrow encodings of these instructions when permissible.
7584    if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
7585         isARMLowRegister(Inst.getOperand(2).getReg())) &&
7586        Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
7587        ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
7588         (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) &&
7589        (!static_cast<ARMOperand*>(Operands[3])->isToken() ||
7590         !static_cast<ARMOperand*>(Operands[3])->getToken().equals_lower(".w"))) {
7591      unsigned NewOpc;
7592      switch (Inst.getOpcode()) {
7593        default: llvm_unreachable("unexpected opcode");
7594        case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
7595        case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
7596        case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
7597        case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
7598        case ARM::t2RORrr: NewOpc = ARM::tROR; break;
7599        case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
7600      }
7601      MCInst TmpInst;
7602      TmpInst.setOpcode(NewOpc);
7603      TmpInst.addOperand(Inst.getOperand(0));
7604      TmpInst.addOperand(Inst.getOperand(5));
7605      TmpInst.addOperand(Inst.getOperand(1));
7606      TmpInst.addOperand(Inst.getOperand(2));
7607      TmpInst.addOperand(Inst.getOperand(3));
7608      TmpInst.addOperand(Inst.getOperand(4));
7609      Inst = TmpInst;
7610      return true;
7611    }
7612    return false;
7613  }
7614  case ARM::t2ANDrr:
7615  case ARM::t2EORrr:
7616  case ARM::t2ADCrr:
7617  case ARM::t2ORRrr:
7618  {
7619    // Assemblers should use the narrow encodings of these instructions when permissible.
7620    // These instructions are special in that they are commutable, so shorter encodings
7621    // are available more often.
7622    if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
7623         isARMLowRegister(Inst.getOperand(2).getReg())) &&
7624        (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
7625         Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
7626        ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
7627         (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) &&
7628        (!static_cast<ARMOperand*>(Operands[3])->isToken() ||
7629         !static_cast<ARMOperand*>(Operands[3])->getToken().equals_lower(".w"))) {
7630      unsigned NewOpc;
7631      switch (Inst.getOpcode()) {
7632        default: llvm_unreachable("unexpected opcode");
7633        case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
7634        case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
7635        case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
7636        case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
7637      }
7638      MCInst TmpInst;
7639      TmpInst.setOpcode(NewOpc);
7640      TmpInst.addOperand(Inst.getOperand(0));
7641      TmpInst.addOperand(Inst.getOperand(5));
7642      if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
7643        TmpInst.addOperand(Inst.getOperand(1));
7644        TmpInst.addOperand(Inst.getOperand(2));
7645      } else {
7646        TmpInst.addOperand(Inst.getOperand(2));
7647        TmpInst.addOperand(Inst.getOperand(1));
7648      }
7649      TmpInst.addOperand(Inst.getOperand(3));
7650      TmpInst.addOperand(Inst.getOperand(4));
7651      Inst = TmpInst;
7652      return true;
7653    }
7654    return false;
7655  }
7656  }
7657  return false;
7658}
7659
7660unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
7661  // 16-bit thumb arithmetic instructions either require or preclude the 'S'
7662  // suffix depending on whether they're in an IT block or not.
7663  unsigned Opc = Inst.getOpcode();
7664  const MCInstrDesc &MCID = getInstDesc(Opc);
7665  if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
7666    assert(MCID.hasOptionalDef() &&
7667           "optionally flag setting instruction missing optional def operand");
7668    assert(MCID.NumOperands == Inst.getNumOperands() &&
7669           "operand count mismatch!");
7670    // Find the optional-def operand (cc_out).
7671    unsigned OpNo;
7672    for (OpNo = 0;
7673         !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
7674         ++OpNo)
7675      ;
7676    // If we're parsing Thumb1, reject it completely.
7677    if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
7678      return Match_MnemonicFail;
7679    // If we're parsing Thumb2, which form is legal depends on whether we're
7680    // in an IT block.
7681    if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
7682        !inITBlock())
7683      return Match_RequiresITBlock;
7684    if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
7685        inITBlock())
7686      return Match_RequiresNotITBlock;
7687  }
7688  // Some high-register supporting Thumb1 encodings only allow both registers
7689  // to be from r0-r7 when in Thumb2.
7690  else if (Opc == ARM::tADDhirr && isThumbOne() &&
7691           isARMLowRegister(Inst.getOperand(1).getReg()) &&
7692           isARMLowRegister(Inst.getOperand(2).getReg()))
7693    return Match_RequiresThumb2;
7694  // Others only require ARMv6 or later.
7695  else if (Opc == ARM::tMOVr && isThumbOne() && !hasV6Ops() &&
7696           isARMLowRegister(Inst.getOperand(0).getReg()) &&
7697           isARMLowRegister(Inst.getOperand(1).getReg()))
7698    return Match_RequiresV6;
7699  return Match_Success;
7700}
7701
7702static const char *getSubtargetFeatureName(unsigned Val);
7703bool ARMAsmParser::
7704MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
7705                        SmallVectorImpl<MCParsedAsmOperand*> &Operands,
7706                        MCStreamer &Out, unsigned &ErrorInfo,
7707                        bool MatchingInlineAsm) {
7708  MCInst Inst;
7709  unsigned MatchResult;
7710
7711  MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
7712                                     MatchingInlineAsm);
7713  switch (MatchResult) {
7714  default: break;
7715  case Match_Success:
7716    // Context sensitive operand constraints aren't handled by the matcher,
7717    // so check them here.
7718    if (validateInstruction(Inst, Operands)) {
7719      // Still progress the IT block, otherwise one wrong condition causes
7720      // nasty cascading errors.
7721      forwardITPosition();
7722      return true;
7723    }
7724
7725    // Some instructions need post-processing to, for example, tweak which
7726    // encoding is selected. Loop on it while changes happen so the
7727    // individual transformations can chain off each other. E.g.,
7728    // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
7729    while (processInstruction(Inst, Operands))
7730      ;
7731
7732    // Only move forward at the very end so that everything in validate
7733    // and process gets a consistent answer about whether we're in an IT
7734    // block.
7735    forwardITPosition();
7736
7737    // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
7738    // doesn't actually encode.
7739    if (Inst.getOpcode() == ARM::ITasm)
7740      return false;
7741
7742    Inst.setLoc(IDLoc);
7743    Out.EmitInstruction(Inst);
7744    return false;
7745  case Match_MissingFeature: {
7746    assert(ErrorInfo && "Unknown missing feature!");
7747    // Special case the error message for the very common case where only
7748    // a single subtarget feature is missing (Thumb vs. ARM, e.g.).
7749    std::string Msg = "instruction requires:";
7750    unsigned Mask = 1;
7751    for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
7752      if (ErrorInfo & Mask) {
7753        Msg += " ";
7754        Msg += getSubtargetFeatureName(ErrorInfo & Mask);
7755      }
7756      Mask <<= 1;
7757    }
7758    return Error(IDLoc, Msg);
7759  }
7760  case Match_InvalidOperand: {
7761    SMLoc ErrorLoc = IDLoc;
7762    if (ErrorInfo != ~0U) {
7763      if (ErrorInfo >= Operands.size())
7764        return Error(IDLoc, "too few operands for instruction");
7765
7766      ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
7767      if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
7768    }
7769
7770    return Error(ErrorLoc, "invalid operand for instruction");
7771  }
7772  case Match_MnemonicFail:
7773    return Error(IDLoc, "invalid instruction",
7774                 ((ARMOperand*)Operands[0])->getLocRange());
7775  case Match_RequiresNotITBlock:
7776    return Error(IDLoc, "flag setting instruction only valid outside IT block");
7777  case Match_RequiresITBlock:
7778    return Error(IDLoc, "instruction only valid inside IT block");
7779  case Match_RequiresV6:
7780    return Error(IDLoc, "instruction variant requires ARMv6 or later");
7781  case Match_RequiresThumb2:
7782    return Error(IDLoc, "instruction variant requires Thumb2");
7783  case Match_ImmRange0_4: {
7784    SMLoc ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
7785    if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
7786    return Error(ErrorLoc, "immediate operand must be in the range [0,4]");
7787  }
7788  case Match_ImmRange0_15: {
7789    SMLoc ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
7790    if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
7791    return Error(ErrorLoc, "immediate operand must be in the range [0,15]");
7792  }
7793  }
7794
7795  llvm_unreachable("Implement any new match types added!");
7796}
7797
7798/// parseDirective parses the arm specific directives
7799bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
7800  StringRef IDVal = DirectiveID.getIdentifier();
7801  if (IDVal == ".word")
7802    return parseDirectiveWord(4, DirectiveID.getLoc());
7803  else if (IDVal == ".thumb")
7804    return parseDirectiveThumb(DirectiveID.getLoc());
7805  else if (IDVal == ".arm")
7806    return parseDirectiveARM(DirectiveID.getLoc());
7807  else if (IDVal == ".thumb_func")
7808    return parseDirectiveThumbFunc(DirectiveID.getLoc());
7809  else if (IDVal == ".code")
7810    return parseDirectiveCode(DirectiveID.getLoc());
7811  else if (IDVal == ".syntax")
7812    return parseDirectiveSyntax(DirectiveID.getLoc());
7813  else if (IDVal == ".unreq")
7814    return parseDirectiveUnreq(DirectiveID.getLoc());
7815  else if (IDVal == ".arch")
7816    return parseDirectiveArch(DirectiveID.getLoc());
7817  else if (IDVal == ".eabi_attribute")
7818    return parseDirectiveEabiAttr(DirectiveID.getLoc());
7819  else if (IDVal == ".fnstart")
7820    return parseDirectiveFnStart(DirectiveID.getLoc());
7821  else if (IDVal == ".fnend")
7822    return parseDirectiveFnEnd(DirectiveID.getLoc());
7823  else if (IDVal == ".cantunwind")
7824    return parseDirectiveCantUnwind(DirectiveID.getLoc());
7825  else if (IDVal == ".personality")
7826    return parseDirectivePersonality(DirectiveID.getLoc());
7827  else if (IDVal == ".handlerdata")
7828    return parseDirectiveHandlerData(DirectiveID.getLoc());
7829  else if (IDVal == ".setfp")
7830    return parseDirectiveSetFP(DirectiveID.getLoc());
7831  else if (IDVal == ".pad")
7832    return parseDirectivePad(DirectiveID.getLoc());
7833  else if (IDVal == ".save")
7834    return parseDirectiveRegSave(DirectiveID.getLoc(), false);
7835  else if (IDVal == ".vsave")
7836    return parseDirectiveRegSave(DirectiveID.getLoc(), true);
7837  return true;
7838}
7839
7840/// parseDirectiveWord
7841///  ::= .word [ expression (, expression)* ]
7842bool ARMAsmParser::parseDirectiveWord(unsigned Size, SMLoc L) {
7843  if (getLexer().isNot(AsmToken::EndOfStatement)) {
7844    for (;;) {
7845      const MCExpr *Value;
7846      if (getParser().parseExpression(Value))
7847        return true;
7848
7849      getParser().getStreamer().EmitValue(Value, Size);
7850
7851      if (getLexer().is(AsmToken::EndOfStatement))
7852        break;
7853
7854      // FIXME: Improve diagnostic.
7855      if (getLexer().isNot(AsmToken::Comma))
7856        return Error(L, "unexpected token in directive");
7857      Parser.Lex();
7858    }
7859  }
7860
7861  Parser.Lex();
7862  return false;
7863}
7864
7865/// parseDirectiveThumb
7866///  ::= .thumb
7867bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
7868  if (getLexer().isNot(AsmToken::EndOfStatement))
7869    return Error(L, "unexpected token in directive");
7870  Parser.Lex();
7871
7872  if (!hasThumb())
7873    return Error(L, "target does not support Thumb mode");
7874
7875  if (!isThumb())
7876    SwitchMode();
7877  getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
7878  return false;
7879}
7880
7881/// parseDirectiveARM
7882///  ::= .arm
7883bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
7884  if (getLexer().isNot(AsmToken::EndOfStatement))
7885    return Error(L, "unexpected token in directive");
7886  Parser.Lex();
7887
7888  if (!hasARM())
7889    return Error(L, "target does not support ARM mode");
7890
7891  if (isThumb())
7892    SwitchMode();
7893  getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
7894  return false;
7895}
7896
7897/// parseDirectiveThumbFunc
7898///  ::= .thumbfunc symbol_name
7899bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
7900  const MCAsmInfo *MAI = getParser().getStreamer().getContext().getAsmInfo();
7901  bool isMachO = MAI->hasSubsectionsViaSymbols();
7902  StringRef Name;
7903  bool needFuncName = true;
7904
7905  // Darwin asm has (optionally) function name after .thumb_func direction
7906  // ELF doesn't
7907  if (isMachO) {
7908    const AsmToken &Tok = Parser.getTok();
7909    if (Tok.isNot(AsmToken::EndOfStatement)) {
7910      if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String))
7911        return Error(L, "unexpected token in .thumb_func directive");
7912      Name = Tok.getIdentifier();
7913      Parser.Lex(); // Consume the identifier token.
7914      needFuncName = false;
7915    }
7916  }
7917
7918  if (getLexer().isNot(AsmToken::EndOfStatement))
7919    return Error(L, "unexpected token in directive");
7920
7921  // Eat the end of statement and any blank lines that follow.
7922  while (getLexer().is(AsmToken::EndOfStatement))
7923    Parser.Lex();
7924
7925  // FIXME: assuming function name will be the line following .thumb_func
7926  // We really should be checking the next symbol definition even if there's
7927  // stuff in between.
7928  if (needFuncName) {
7929    Name = Parser.getTok().getIdentifier();
7930  }
7931
7932  // Mark symbol as a thumb symbol.
7933  MCSymbol *Func = getParser().getContext().GetOrCreateSymbol(Name);
7934  getParser().getStreamer().EmitThumbFunc(Func);
7935  return false;
7936}
7937
7938/// parseDirectiveSyntax
7939///  ::= .syntax unified | divided
7940bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
7941  const AsmToken &Tok = Parser.getTok();
7942  if (Tok.isNot(AsmToken::Identifier))
7943    return Error(L, "unexpected token in .syntax directive");
7944  StringRef Mode = Tok.getString();
7945  if (Mode == "unified" || Mode == "UNIFIED")
7946    Parser.Lex();
7947  else if (Mode == "divided" || Mode == "DIVIDED")
7948    return Error(L, "'.syntax divided' arm asssembly not supported");
7949  else
7950    return Error(L, "unrecognized syntax mode in .syntax directive");
7951
7952  if (getLexer().isNot(AsmToken::EndOfStatement))
7953    return Error(Parser.getTok().getLoc(), "unexpected token in directive");
7954  Parser.Lex();
7955
7956  // TODO tell the MC streamer the mode
7957  // getParser().getStreamer().Emit???();
7958  return false;
7959}
7960
7961/// parseDirectiveCode
7962///  ::= .code 16 | 32
7963bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
7964  const AsmToken &Tok = Parser.getTok();
7965  if (Tok.isNot(AsmToken::Integer))
7966    return Error(L, "unexpected token in .code directive");
7967  int64_t Val = Parser.getTok().getIntVal();
7968  if (Val == 16)
7969    Parser.Lex();
7970  else if (Val == 32)
7971    Parser.Lex();
7972  else
7973    return Error(L, "invalid operand to .code directive");
7974
7975  if (getLexer().isNot(AsmToken::EndOfStatement))
7976    return Error(Parser.getTok().getLoc(), "unexpected token in directive");
7977  Parser.Lex();
7978
7979  if (Val == 16) {
7980    if (!hasThumb())
7981      return Error(L, "target does not support Thumb mode");
7982
7983    if (!isThumb())
7984      SwitchMode();
7985    getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
7986  } else {
7987    if (!hasARM())
7988      return Error(L, "target does not support ARM mode");
7989
7990    if (isThumb())
7991      SwitchMode();
7992    getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
7993  }
7994
7995  return false;
7996}
7997
7998/// parseDirectiveReq
7999///  ::= name .req registername
8000bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
8001  Parser.Lex(); // Eat the '.req' token.
8002  unsigned Reg;
8003  SMLoc SRegLoc, ERegLoc;
8004  if (ParseRegister(Reg, SRegLoc, ERegLoc)) {
8005    Parser.eatToEndOfStatement();
8006    return Error(SRegLoc, "register name expected");
8007  }
8008
8009  // Shouldn't be anything else.
8010  if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
8011    Parser.eatToEndOfStatement();
8012    return Error(Parser.getTok().getLoc(),
8013                 "unexpected input in .req directive.");
8014  }
8015
8016  Parser.Lex(); // Consume the EndOfStatement
8017
8018  if (RegisterReqs.GetOrCreateValue(Name, Reg).getValue() != Reg)
8019    return Error(SRegLoc, "redefinition of '" + Name +
8020                          "' does not match original.");
8021
8022  return false;
8023}
8024
8025/// parseDirectiveUneq
8026///  ::= .unreq registername
8027bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
8028  if (Parser.getTok().isNot(AsmToken::Identifier)) {
8029    Parser.eatToEndOfStatement();
8030    return Error(L, "unexpected input in .unreq directive.");
8031  }
8032  RegisterReqs.erase(Parser.getTok().getIdentifier());
8033  Parser.Lex(); // Eat the identifier.
8034  return false;
8035}
8036
8037/// parseDirectiveArch
8038///  ::= .arch token
8039bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
8040  return true;
8041}
8042
8043/// parseDirectiveEabiAttr
8044///  ::= .eabi_attribute int, int
8045bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
8046  return true;
8047}
8048
8049/// parseDirectiveFnStart
8050///  ::= .fnstart
8051bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) {
8052  if (FnStartLoc.isValid()) {
8053    Error(L, ".fnstart starts before the end of previous one");
8054    Error(FnStartLoc, "previous .fnstart starts here");
8055    return true;
8056  }
8057
8058  FnStartLoc = L;
8059  getParser().getStreamer().EmitFnStart();
8060  return false;
8061}
8062
8063/// parseDirectiveFnEnd
8064///  ::= .fnend
8065bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) {
8066  // Check the ordering of unwind directives
8067  if (!FnStartLoc.isValid())
8068    return Error(L, ".fnstart must precede .fnend directive");
8069
8070  // Reset the unwind directives parser state
8071  resetUnwindDirectiveParserState();
8072
8073  getParser().getStreamer().EmitFnEnd();
8074  return false;
8075}
8076
8077/// parseDirectiveCantUnwind
8078///  ::= .cantunwind
8079bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) {
8080  // Check the ordering of unwind directives
8081  CantUnwindLoc = L;
8082  if (!FnStartLoc.isValid())
8083    return Error(L, ".fnstart must precede .cantunwind directive");
8084  if (HandlerDataLoc.isValid()) {
8085    Error(L, ".cantunwind can't be used with .handlerdata directive");
8086    Error(HandlerDataLoc, ".handlerdata was specified here");
8087    return true;
8088  }
8089  if (PersonalityLoc.isValid()) {
8090    Error(L, ".cantunwind can't be used with .personality directive");
8091    Error(PersonalityLoc, ".personality was specified here");
8092    return true;
8093  }
8094
8095  getParser().getStreamer().EmitCantUnwind();
8096  return false;
8097}
8098
8099/// parseDirectivePersonality
8100///  ::= .personality name
8101bool ARMAsmParser::parseDirectivePersonality(SMLoc L) {
8102  // Check the ordering of unwind directives
8103  PersonalityLoc = L;
8104  if (!FnStartLoc.isValid())
8105    return Error(L, ".fnstart must precede .personality directive");
8106  if (CantUnwindLoc.isValid()) {
8107    Error(L, ".personality can't be used with .cantunwind directive");
8108    Error(CantUnwindLoc, ".cantunwind was specified here");
8109    return true;
8110  }
8111  if (HandlerDataLoc.isValid()) {
8112    Error(L, ".personality must precede .handlerdata directive");
8113    Error(HandlerDataLoc, ".handlerdata was specified here");
8114    return true;
8115  }
8116
8117  // Parse the name of the personality routine
8118  if (Parser.getTok().isNot(AsmToken::Identifier)) {
8119    Parser.eatToEndOfStatement();
8120    return Error(L, "unexpected input in .personality directive.");
8121  }
8122  StringRef Name(Parser.getTok().getIdentifier());
8123  Parser.Lex();
8124
8125  MCSymbol *PR = getParser().getContext().GetOrCreateSymbol(Name);
8126  getParser().getStreamer().EmitPersonality(PR);
8127  return false;
8128}
8129
8130/// parseDirectiveHandlerData
8131///  ::= .handlerdata
8132bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) {
8133  // Check the ordering of unwind directives
8134  HandlerDataLoc = L;
8135  if (!FnStartLoc.isValid())
8136    return Error(L, ".fnstart must precede .personality directive");
8137  if (CantUnwindLoc.isValid()) {
8138    Error(L, ".handlerdata can't be used with .cantunwind directive");
8139    Error(CantUnwindLoc, ".cantunwind was specified here");
8140    return true;
8141  }
8142
8143  getParser().getStreamer().EmitHandlerData();
8144  return false;
8145}
8146
8147/// parseDirectiveSetFP
8148///  ::= .setfp fpreg, spreg [, offset]
8149bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) {
8150  // Check the ordering of unwind directives
8151  if (!FnStartLoc.isValid())
8152    return Error(L, ".fnstart must precede .setfp directive");
8153  if (HandlerDataLoc.isValid())
8154    return Error(L, ".setfp must precede .handlerdata directive");
8155
8156  // Parse fpreg
8157  SMLoc NewFPRegLoc = Parser.getTok().getLoc();
8158  int NewFPReg = tryParseRegister();
8159  if (NewFPReg == -1)
8160    return Error(NewFPRegLoc, "frame pointer register expected");
8161
8162  // Consume comma
8163  if (!Parser.getTok().is(AsmToken::Comma))
8164    return Error(Parser.getTok().getLoc(), "comma expected");
8165  Parser.Lex(); // skip comma
8166
8167  // Parse spreg
8168  SMLoc NewSPRegLoc = Parser.getTok().getLoc();
8169  int NewSPReg = tryParseRegister();
8170  if (NewSPReg == -1)
8171    return Error(NewSPRegLoc, "stack pointer register expected");
8172
8173  if (NewSPReg != ARM::SP && NewSPReg != FPReg)
8174    return Error(NewSPRegLoc,
8175                 "register should be either $sp or the latest fp register");
8176
8177  // Update the frame pointer register
8178  FPReg = NewFPReg;
8179
8180  // Parse offset
8181  int64_t Offset = 0;
8182  if (Parser.getTok().is(AsmToken::Comma)) {
8183    Parser.Lex(); // skip comma
8184
8185    if (Parser.getTok().isNot(AsmToken::Hash) &&
8186        Parser.getTok().isNot(AsmToken::Dollar)) {
8187      return Error(Parser.getTok().getLoc(), "'#' expected");
8188    }
8189    Parser.Lex(); // skip hash token.
8190
8191    const MCExpr *OffsetExpr;
8192    SMLoc ExLoc = Parser.getTok().getLoc();
8193    SMLoc EndLoc;
8194    if (getParser().parseExpression(OffsetExpr, EndLoc))
8195      return Error(ExLoc, "malformed setfp offset");
8196    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
8197    if (!CE)
8198      return Error(ExLoc, "setfp offset must be an immediate");
8199
8200    Offset = CE->getValue();
8201  }
8202
8203  getParser().getStreamer().EmitSetFP(static_cast<unsigned>(NewFPReg),
8204                                      static_cast<unsigned>(NewSPReg),
8205                                      Offset);
8206  return false;
8207}
8208
8209/// parseDirective
8210///  ::= .pad offset
8211bool ARMAsmParser::parseDirectivePad(SMLoc L) {
8212  // Check the ordering of unwind directives
8213  if (!FnStartLoc.isValid())
8214    return Error(L, ".fnstart must precede .pad directive");
8215  if (HandlerDataLoc.isValid())
8216    return Error(L, ".pad must precede .handlerdata directive");
8217
8218  // Parse the offset
8219  if (Parser.getTok().isNot(AsmToken::Hash) &&
8220      Parser.getTok().isNot(AsmToken::Dollar)) {
8221    return Error(Parser.getTok().getLoc(), "'#' expected");
8222  }
8223  Parser.Lex(); // skip hash token.
8224
8225  const MCExpr *OffsetExpr;
8226  SMLoc ExLoc = Parser.getTok().getLoc();
8227  SMLoc EndLoc;
8228  if (getParser().parseExpression(OffsetExpr, EndLoc))
8229    return Error(ExLoc, "malformed pad offset");
8230  const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
8231  if (!CE)
8232    return Error(ExLoc, "pad offset must be an immediate");
8233
8234  getParser().getStreamer().EmitPad(CE->getValue());
8235  return false;
8236}
8237
8238/// parseDirectiveRegSave
8239///  ::= .save  { registers }
8240///  ::= .vsave { registers }
8241bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) {
8242  // Check the ordering of unwind directives
8243  if (!FnStartLoc.isValid())
8244    return Error(L, ".fnstart must precede .save or .vsave directives");
8245  if (HandlerDataLoc.isValid())
8246    return Error(L, ".save or .vsave must precede .handlerdata directive");
8247
8248  // Parse the register list
8249  SmallVector<MCParsedAsmOperand*, 1> Operands;
8250  if (parseRegisterList(Operands))
8251    return true;
8252  ARMOperand *Op = (ARMOperand*)Operands[0];
8253  if (!IsVector && !Op->isRegList())
8254    return Error(L, ".save expects GPR registers");
8255  if (IsVector && !Op->isDPRRegList())
8256    return Error(L, ".vsave expects DPR registers");
8257
8258  getParser().getStreamer().EmitRegSave(Op->getRegList(), IsVector);
8259  return false;
8260}
8261
8262/// Force static initialization.
8263extern "C" void LLVMInitializeARMAsmParser() {
8264  RegisterMCAsmParser<ARMAsmParser> X(TheARMTarget);
8265  RegisterMCAsmParser<ARMAsmParser> Y(TheThumbTarget);
8266}
8267
8268#define GET_REGISTER_MATCHER
8269#define GET_SUBTARGET_FEATURE_NAME
8270#define GET_MATCHER_IMPLEMENTATION
8271#include "ARMGenAsmMatcher.inc"
8272
8273// Define this matcher function after the auto-generated include so we
8274// have the match class enum definitions.
8275unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand *AsmOp,
8276                                                  unsigned Kind) {
8277  ARMOperand *Op = static_cast<ARMOperand*>(AsmOp);
8278  // If the kind is a token for a literal immediate, check if our asm
8279  // operand matches. This is for InstAliases which have a fixed-value
8280  // immediate in the syntax.
8281  if (Kind == MCK__35_0 && Op->isImm()) {
8282    const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op->getImm());
8283    if (!CE)
8284      return Match_InvalidOperand;
8285    if (CE->getValue() == 0)
8286      return Match_Success;
8287  }
8288  return Match_InvalidOperand;
8289}
8290