ARMAsmBackend.cpp revision 9c3dd1b0d1e96ef408b68da3b06c6ebd6c943601
1//===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "MCTargetDesc/ARMMCTargetDesc.h"
11#include "MCTargetDesc/ARMAddressingModes.h"
12#include "MCTargetDesc/ARMBaseInfo.h"
13#include "MCTargetDesc/ARMFixupKinds.h"
14#include "llvm/ADT/StringSwitch.h"
15#include "llvm/MC/MCAsmBackend.h"
16#include "llvm/MC/MCAssembler.h"
17#include "llvm/MC/MCContext.h"
18#include "llvm/MC/MCDirectives.h"
19#include "llvm/MC/MCELFObjectWriter.h"
20#include "llvm/MC/MCExpr.h"
21#include "llvm/MC/MCFixupKindInfo.h"
22#include "llvm/MC/MCMachObjectWriter.h"
23#include "llvm/MC/MCObjectWriter.h"
24#include "llvm/MC/MCSectionELF.h"
25#include "llvm/MC/MCSectionMachO.h"
26#include "llvm/MC/MCSubtargetInfo.h"
27#include "llvm/MC/MCValue.h"
28#include "llvm/Support/ELF.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/MachO.h"
31#include "llvm/Support/raw_ostream.h"
32using namespace llvm;
33
34namespace {
35class ARMELFObjectWriter : public MCELFObjectTargetWriter {
36public:
37  ARMELFObjectWriter(uint8_t OSABI)
38    : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM,
39                              /*HasRelocationAddend*/ false) {}
40};
41
42class ARMAsmBackend : public MCAsmBackend {
43  const MCSubtargetInfo* STI;
44  bool isThumbMode;  // Currently emitting Thumb code.
45public:
46  ARMAsmBackend(const Target &T, const StringRef TT)
47    : MCAsmBackend(), STI(ARM_MC::createARMMCSubtargetInfo(TT, "", "")),
48      isThumbMode(TT.startswith("thumb")) {}
49
50  ~ARMAsmBackend() {
51    delete STI;
52  }
53
54  unsigned getNumFixupKinds() const { return ARM::NumTargetFixupKinds; }
55
56  bool hasNOP() const {
57    return (STI->getFeatureBits() & ARM::HasV6T2Ops) != 0;
58  }
59
60  const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
61    const static MCFixupKindInfo Infos[ARM::NumTargetFixupKinds] = {
62// This table *must* be in the order that the fixup_* kinds are defined in
63// ARMFixupKinds.h.
64//
65// Name                      Offset (bits) Size (bits)     Flags
66{ "fixup_arm_ldst_pcrel_12", 0,            32,  MCFixupKindInfo::FKF_IsPCRel },
67{ "fixup_t2_ldst_pcrel_12",  0,            32,  MCFixupKindInfo::FKF_IsPCRel |
68                                   MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
69{ "fixup_arm_pcrel_10_unscaled", 0,        32,  MCFixupKindInfo::FKF_IsPCRel },
70{ "fixup_arm_pcrel_10",      0,            32,  MCFixupKindInfo::FKF_IsPCRel },
71{ "fixup_t2_pcrel_10",       0,            32,  MCFixupKindInfo::FKF_IsPCRel |
72                                   MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
73{ "fixup_thumb_adr_pcrel_10",0,            8,   MCFixupKindInfo::FKF_IsPCRel |
74                                   MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
75{ "fixup_arm_adr_pcrel_12",  0,            32,  MCFixupKindInfo::FKF_IsPCRel },
76{ "fixup_t2_adr_pcrel_12",   0,            32,  MCFixupKindInfo::FKF_IsPCRel |
77                                   MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
78{ "fixup_arm_condbranch",    0,            24,  MCFixupKindInfo::FKF_IsPCRel },
79{ "fixup_arm_uncondbranch",  0,            24,  MCFixupKindInfo::FKF_IsPCRel },
80{ "fixup_t2_condbranch",     0,            32,  MCFixupKindInfo::FKF_IsPCRel },
81{ "fixup_t2_uncondbranch",   0,            32,  MCFixupKindInfo::FKF_IsPCRel },
82{ "fixup_arm_thumb_br",      0,            16,  MCFixupKindInfo::FKF_IsPCRel },
83{ "fixup_arm_uncondbl",      0,            24,  MCFixupKindInfo::FKF_IsPCRel },
84{ "fixup_arm_condbl",        0,            24,  MCFixupKindInfo::FKF_IsPCRel },
85{ "fixup_arm_blx",           0,            24,  MCFixupKindInfo::FKF_IsPCRel },
86{ "fixup_arm_thumb_bl",      0,            32,  MCFixupKindInfo::FKF_IsPCRel },
87{ "fixup_arm_thumb_blx",     0,            32,  MCFixupKindInfo::FKF_IsPCRel },
88{ "fixup_arm_thumb_cb",      0,            16,  MCFixupKindInfo::FKF_IsPCRel },
89{ "fixup_arm_thumb_cp",      0,             8,  MCFixupKindInfo::FKF_IsPCRel |
90                                   MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
91{ "fixup_arm_thumb_bcc",     0,             8,  MCFixupKindInfo::FKF_IsPCRel },
92// movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16 - 19.
93{ "fixup_arm_movt_hi16",     0,            20,  0 },
94{ "fixup_arm_movw_lo16",     0,            20,  0 },
95{ "fixup_t2_movt_hi16",      0,            20,  0 },
96{ "fixup_t2_movw_lo16",      0,            20,  0 },
97{ "fixup_arm_movt_hi16_pcrel", 0,          20,  MCFixupKindInfo::FKF_IsPCRel },
98{ "fixup_arm_movw_lo16_pcrel", 0,          20,  MCFixupKindInfo::FKF_IsPCRel },
99{ "fixup_t2_movt_hi16_pcrel", 0,           20,  MCFixupKindInfo::FKF_IsPCRel },
100{ "fixup_t2_movw_lo16_pcrel", 0,           20,  MCFixupKindInfo::FKF_IsPCRel },
101    };
102
103    if (Kind < FirstTargetFixupKind)
104      return MCAsmBackend::getFixupKindInfo(Kind);
105
106    assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
107           "Invalid kind!");
108    return Infos[Kind - FirstTargetFixupKind];
109  }
110
111  /// processFixupValue - Target hook to process the literal value of a fixup
112  /// if necessary.
113  void processFixupValue(const MCAssembler &Asm, const MCAsmLayout &Layout,
114                         const MCFixup &Fixup, const MCFragment *DF,
115                         MCValue &Target, uint64_t &Value,
116                         bool &IsResolved);
117
118
119  void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
120                  uint64_t Value) const;
121
122  bool mayNeedRelaxation(const MCInst &Inst) const;
123
124  bool fixupNeedsRelaxation(const MCFixup &Fixup,
125                            uint64_t Value,
126                            const MCRelaxableFragment *DF,
127                            const MCAsmLayout &Layout) const;
128
129  void relaxInstruction(const MCInst &Inst, MCInst &Res) const;
130
131  bool writeNopData(uint64_t Count, MCObjectWriter *OW) const;
132
133  void handleAssemblerFlag(MCAssemblerFlag Flag) {
134    switch (Flag) {
135    default: break;
136    case MCAF_Code16:
137      setIsThumb(true);
138      break;
139    case MCAF_Code32:
140      setIsThumb(false);
141      break;
142    }
143  }
144
145  unsigned getPointerSize() const { return 4; }
146  bool isThumb() const { return isThumbMode; }
147  void setIsThumb(bool it) { isThumbMode = it; }
148};
149} // end anonymous namespace
150
151static unsigned getRelaxedOpcode(unsigned Op) {
152  switch (Op) {
153  default: return Op;
154  case ARM::tBcc:       return ARM::t2Bcc;
155  case ARM::tLDRpci:    return ARM::t2LDRpci;
156  case ARM::tADR:       return ARM::t2ADR;
157  case ARM::tB:         return ARM::t2B;
158  }
159}
160
161bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
162  if (getRelaxedOpcode(Inst.getOpcode()) != Inst.getOpcode())
163    return true;
164  return false;
165}
166
167bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
168                                         uint64_t Value,
169                                         const MCRelaxableFragment *DF,
170                                         const MCAsmLayout &Layout) const {
171  switch ((unsigned)Fixup.getKind()) {
172  case ARM::fixup_arm_thumb_br: {
173    // Relaxing tB to t2B. tB has a signed 12-bit displacement with the
174    // low bit being an implied zero. There's an implied +4 offset for the
175    // branch, so we adjust the other way here to determine what's
176    // encodable.
177    //
178    // Relax if the value is too big for a (signed) i8.
179    int64_t Offset = int64_t(Value) - 4;
180    return Offset > 2046 || Offset < -2048;
181  }
182  case ARM::fixup_arm_thumb_bcc: {
183    // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the
184    // low bit being an implied zero. There's an implied +4 offset for the
185    // branch, so we adjust the other way here to determine what's
186    // encodable.
187    //
188    // Relax if the value is too big for a (signed) i8.
189    int64_t Offset = int64_t(Value) - 4;
190    return Offset > 254 || Offset < -256;
191  }
192  case ARM::fixup_thumb_adr_pcrel_10:
193  case ARM::fixup_arm_thumb_cp: {
194    // If the immediate is negative, greater than 1020, or not a multiple
195    // of four, the wide version of the instruction must be used.
196    int64_t Offset = int64_t(Value) - 4;
197    return Offset > 1020 || Offset < 0 || Offset & 3;
198  }
199  }
200  llvm_unreachable("Unexpected fixup kind in fixupNeedsRelaxation()!");
201}
202
203void ARMAsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const {
204  unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
205
206  // Sanity check w/ diagnostic if we get here w/ a bogus instruction.
207  if (RelaxedOp == Inst.getOpcode()) {
208    SmallString<256> Tmp;
209    raw_svector_ostream OS(Tmp);
210    Inst.dump_pretty(OS);
211    OS << "\n";
212    report_fatal_error("unexpected instruction to relax: " + OS.str());
213  }
214
215  // The instructions we're relaxing have (so far) the same operands.
216  // We just need to update to the proper opcode.
217  Res = Inst;
218  Res.setOpcode(RelaxedOp);
219}
220
221bool ARMAsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
222  const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8
223  const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP
224  const uint32_t ARMv4_NopEncoding = 0xe1a00000; // using MOV r0,r0
225  const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP
226  if (isThumb()) {
227    const uint16_t nopEncoding = hasNOP() ? Thumb2_16bitNopEncoding
228                                          : Thumb1_16bitNopEncoding;
229    uint64_t NumNops = Count / 2;
230    for (uint64_t i = 0; i != NumNops; ++i)
231      OW->Write16(nopEncoding);
232    if (Count & 1)
233      OW->Write8(0);
234    return true;
235  }
236  // ARM mode
237  const uint32_t nopEncoding = hasNOP() ? ARMv6T2_NopEncoding
238                                        : ARMv4_NopEncoding;
239  uint64_t NumNops = Count / 4;
240  for (uint64_t i = 0; i != NumNops; ++i)
241    OW->Write32(nopEncoding);
242  // FIXME: should this function return false when unable to write exactly
243  // 'Count' bytes with NOP encodings?
244  switch (Count % 4) {
245  default: break; // No leftover bytes to write
246  case 1: OW->Write8(0); break;
247  case 2: OW->Write16(0); break;
248  case 3: OW->Write16(0); OW->Write8(0xa0); break;
249  }
250
251  return true;
252}
253
254static unsigned adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
255                                 MCContext *Ctx = NULL) {
256  unsigned Kind = Fixup.getKind();
257  switch (Kind) {
258  default:
259    llvm_unreachable("Unknown fixup kind!");
260  case FK_Data_1:
261  case FK_Data_2:
262  case FK_Data_4:
263    return Value;
264  case ARM::fixup_arm_movt_hi16:
265    Value >>= 16;
266    // Fallthrough
267  case ARM::fixup_arm_movw_lo16:
268  case ARM::fixup_arm_movt_hi16_pcrel:
269  case ARM::fixup_arm_movw_lo16_pcrel: {
270    unsigned Hi4 = (Value & 0xF000) >> 12;
271    unsigned Lo12 = Value & 0x0FFF;
272    // inst{19-16} = Hi4;
273    // inst{11-0} = Lo12;
274    Value = (Hi4 << 16) | (Lo12);
275    return Value;
276  }
277  case ARM::fixup_t2_movt_hi16:
278    Value >>= 16;
279    // Fallthrough
280  case ARM::fixup_t2_movw_lo16:
281  case ARM::fixup_t2_movt_hi16_pcrel:  //FIXME: Shouldn't this be shifted like
282                                       // the other hi16 fixup?
283  case ARM::fixup_t2_movw_lo16_pcrel: {
284    unsigned Hi4 = (Value & 0xF000) >> 12;
285    unsigned i = (Value & 0x800) >> 11;
286    unsigned Mid3 = (Value & 0x700) >> 8;
287    unsigned Lo8 = Value & 0x0FF;
288    // inst{19-16} = Hi4;
289    // inst{26} = i;
290    // inst{14-12} = Mid3;
291    // inst{7-0} = Lo8;
292    Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8);
293    uint64_t swapped = (Value & 0xFFFF0000) >> 16;
294    swapped |= (Value & 0x0000FFFF) << 16;
295    return swapped;
296  }
297  case ARM::fixup_arm_ldst_pcrel_12:
298    // ARM PC-relative values are offset by 8.
299    Value -= 4;
300    // FALLTHROUGH
301  case ARM::fixup_t2_ldst_pcrel_12: {
302    // Offset by 4, adjusted by two due to the half-word ordering of thumb.
303    Value -= 4;
304    bool isAdd = true;
305    if ((int64_t)Value < 0) {
306      Value = -Value;
307      isAdd = false;
308    }
309    if (Ctx && Value >= 4096)
310      Ctx->FatalError(Fixup.getLoc(), "out of range pc-relative fixup value");
311    Value |= isAdd << 23;
312
313    // Same addressing mode as fixup_arm_pcrel_10,
314    // but with 16-bit halfwords swapped.
315    if (Kind == ARM::fixup_t2_ldst_pcrel_12) {
316      uint64_t swapped = (Value & 0xFFFF0000) >> 16;
317      swapped |= (Value & 0x0000FFFF) << 16;
318      return swapped;
319    }
320
321    return Value;
322  }
323  case ARM::fixup_thumb_adr_pcrel_10:
324    return ((Value - 4) >> 2) & 0xff;
325  case ARM::fixup_arm_adr_pcrel_12: {
326    // ARM PC-relative values are offset by 8.
327    Value -= 8;
328    unsigned opc = 4; // bits {24-21}. Default to add: 0b0100
329    if ((int64_t)Value < 0) {
330      Value = -Value;
331      opc = 2; // 0b0010
332    }
333    if (Ctx && ARM_AM::getSOImmVal(Value) == -1)
334      Ctx->FatalError(Fixup.getLoc(), "out of range pc-relative fixup value");
335    // Encode the immediate and shift the opcode into place.
336    return ARM_AM::getSOImmVal(Value) | (opc << 21);
337  }
338
339  case ARM::fixup_t2_adr_pcrel_12: {
340    Value -= 4;
341    unsigned opc = 0;
342    if ((int64_t)Value < 0) {
343      Value = -Value;
344      opc = 5;
345    }
346
347    uint32_t out = (opc << 21);
348    out |= (Value & 0x800) << 15;
349    out |= (Value & 0x700) << 4;
350    out |= (Value & 0x0FF);
351
352    uint64_t swapped = (out & 0xFFFF0000) >> 16;
353    swapped |= (out & 0x0000FFFF) << 16;
354    return swapped;
355  }
356
357  case ARM::fixup_arm_condbranch:
358  case ARM::fixup_arm_uncondbranch:
359  case ARM::fixup_arm_uncondbl:
360  case ARM::fixup_arm_condbl:
361  case ARM::fixup_arm_blx:
362    // These values don't encode the low two bits since they're always zero.
363    // Offset by 8 just as above.
364    return 0xffffff & ((Value - 8) >> 2);
365  case ARM::fixup_t2_uncondbranch: {
366    Value = Value - 4;
367    Value >>= 1; // Low bit is not encoded.
368
369    uint32_t out = 0;
370    bool I =  Value & 0x800000;
371    bool J1 = Value & 0x400000;
372    bool J2 = Value & 0x200000;
373    J1 ^= I;
374    J2 ^= I;
375
376    out |= I  << 26; // S bit
377    out |= !J1 << 13; // J1 bit
378    out |= !J2 << 11; // J2 bit
379    out |= (Value & 0x1FF800)  << 5; // imm6 field
380    out |= (Value & 0x0007FF);        // imm11 field
381
382    uint64_t swapped = (out & 0xFFFF0000) >> 16;
383    swapped |= (out & 0x0000FFFF) << 16;
384    return swapped;
385  }
386  case ARM::fixup_t2_condbranch: {
387    Value = Value - 4;
388    Value >>= 1; // Low bit is not encoded.
389
390    uint64_t out = 0;
391    out |= (Value & 0x80000) << 7; // S bit
392    out |= (Value & 0x40000) >> 7; // J2 bit
393    out |= (Value & 0x20000) >> 4; // J1 bit
394    out |= (Value & 0x1F800) << 5; // imm6 field
395    out |= (Value & 0x007FF);      // imm11 field
396
397    uint32_t swapped = (out & 0xFFFF0000) >> 16;
398    swapped |= (out & 0x0000FFFF) << 16;
399    return swapped;
400  }
401  case ARM::fixup_arm_thumb_bl: {
402     // The value doesn't encode the low bit (always zero) and is offset by
403     // four. The 32-bit immediate value is encoded as
404     //   imm32 = SignExtend(S:I1:I2:imm10:imm11:0)
405     // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
406     // The value is encoded into disjoint bit positions in the destination
407     // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
408     // J = either J1 or J2 bit
409     //
410     //   BL:  xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII
411     //
412     // Note that the halfwords are stored high first, low second; so we need
413     // to transpose the fixup value here to map properly.
414     uint32_t offset = (Value - 4) >> 1;
415     uint32_t signBit = (offset & 0x800000) >> 23;
416     uint32_t I1Bit = (offset & 0x400000) >> 22;
417     uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
418     uint32_t I2Bit = (offset & 0x200000) >> 21;
419     uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
420     uint32_t imm10Bits = (offset & 0x1FF800) >> 11;
421     uint32_t imm11Bits = (offset & 0x000007FF);
422
423     uint32_t Binary = 0;
424     uint32_t firstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits);
425     uint32_t secondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
426                           (uint16_t)imm11Bits);
427     Binary |= secondHalf << 16;
428     Binary |= firstHalf;
429     return Binary;
430
431  }
432  case ARM::fixup_arm_thumb_blx: {
433     // The value doesn't encode the low two bits (always zero) and is offset by
434     // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as
435     //   imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00)
436     // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
437     // The value is encoded into disjoint bit positions in the destination
438     // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
439     // J = either J1 or J2 bit, 0 = zero.
440     //
441     //   BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0
442     //
443     // Note that the halfwords are stored high first, low second; so we need
444     // to transpose the fixup value here to map properly.
445     uint32_t offset = (Value - 2) >> 2;
446     uint32_t signBit = (offset & 0x400000) >> 22;
447     uint32_t I1Bit = (offset & 0x200000) >> 21;
448     uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
449     uint32_t I2Bit = (offset & 0x100000) >> 20;
450     uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
451     uint32_t imm10HBits = (offset & 0xFFC00) >> 10;
452     uint32_t imm10LBits = (offset & 0x3FF);
453
454     uint32_t Binary = 0;
455     uint32_t firstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits);
456     uint32_t secondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
457                           ((uint16_t)imm10LBits) << 1);
458     Binary |= secondHalf << 16;
459     Binary |= firstHalf;
460     return Binary;
461  }
462  case ARM::fixup_arm_thumb_cp:
463    // Offset by 4, and don't encode the low two bits. Two bytes of that
464    // 'off by 4' is implicitly handled by the half-word ordering of the
465    // Thumb encoding, so we only need to adjust by 2 here.
466    return ((Value - 2) >> 2) & 0xff;
467  case ARM::fixup_arm_thumb_cb: {
468    // Offset by 4 and don't encode the lower bit, which is always 0.
469    uint32_t Binary = (Value - 4) >> 1;
470    return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3);
471  }
472  case ARM::fixup_arm_thumb_br:
473    // Offset by 4 and don't encode the lower bit, which is always 0.
474    return ((Value - 4) >> 1) & 0x7ff;
475  case ARM::fixup_arm_thumb_bcc:
476    // Offset by 4 and don't encode the lower bit, which is always 0.
477    return ((Value - 4) >> 1) & 0xff;
478  case ARM::fixup_arm_pcrel_10_unscaled: {
479    Value = Value - 8; // ARM fixups offset by an additional word and don't
480                       // need to adjust for the half-word ordering.
481    bool isAdd = true;
482    if ((int64_t)Value < 0) {
483      Value = -Value;
484      isAdd = false;
485    }
486    // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8].
487    if (Ctx && Value >= 256)
488      Ctx->FatalError(Fixup.getLoc(), "out of range pc-relative fixup value");
489    Value = (Value & 0xf) | ((Value & 0xf0) << 4);
490    return Value | (isAdd << 23);
491  }
492  case ARM::fixup_arm_pcrel_10:
493    Value = Value - 4; // ARM fixups offset by an additional word and don't
494                       // need to adjust for the half-word ordering.
495    // Fall through.
496  case ARM::fixup_t2_pcrel_10: {
497    // Offset by 4, adjusted by two due to the half-word ordering of thumb.
498    Value = Value - 4;
499    bool isAdd = true;
500    if ((int64_t)Value < 0) {
501      Value = -Value;
502      isAdd = false;
503    }
504    // These values don't encode the low two bits since they're always zero.
505    Value >>= 2;
506    if (Ctx && Value >= 256)
507      Ctx->FatalError(Fixup.getLoc(), "out of range pc-relative fixup value");
508    Value |= isAdd << 23;
509
510    // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords
511    // swapped.
512    if (Kind == ARM::fixup_t2_pcrel_10) {
513      uint32_t swapped = (Value & 0xFFFF0000) >> 16;
514      swapped |= (Value & 0x0000FFFF) << 16;
515      return swapped;
516    }
517
518    return Value;
519  }
520  }
521}
522
523void ARMAsmBackend::processFixupValue(const MCAssembler &Asm,
524                                      const MCAsmLayout &Layout,
525                                      const MCFixup &Fixup,
526                                      const MCFragment *DF,
527                                      MCValue &Target, uint64_t &Value,
528                                      bool &IsResolved) {
529  const MCSymbolRefExpr *A = Target.getSymA();
530  // Some fixups to thumb function symbols need the low bit (thumb bit)
531  // twiddled.
532  if ((unsigned)Fixup.getKind() != ARM::fixup_arm_ldst_pcrel_12 &&
533      (unsigned)Fixup.getKind() != ARM::fixup_t2_ldst_pcrel_12 &&
534      (unsigned)Fixup.getKind() != ARM::fixup_arm_adr_pcrel_12 &&
535      (unsigned)Fixup.getKind() != ARM::fixup_thumb_adr_pcrel_10 &&
536      (unsigned)Fixup.getKind() != ARM::fixup_t2_adr_pcrel_12 &&
537      (unsigned)Fixup.getKind() != ARM::fixup_arm_thumb_cp) {
538    if (A) {
539      const MCSymbol &Sym = A->getSymbol().AliasedSymbol();
540      if (Asm.isThumbFunc(&Sym))
541        Value |= 1;
542    }
543  }
544  // We must always generate a relocation for BL/BLX instructions if we have
545  // a symbol to reference, as the linker relies on knowing the destination
546  // symbol's thumb-ness to get interworking right.
547  if (A && ((unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_blx ||
548            (unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_bl ||
549            (unsigned)Fixup.getKind() == ARM::fixup_arm_blx ||
550            (unsigned)Fixup.getKind() == ARM::fixup_arm_uncondbl ||
551            (unsigned)Fixup.getKind() == ARM::fixup_arm_condbl))
552    IsResolved = false;
553
554  // Try to get the encoded value for the fixup as-if we're mapping it into
555  // the instruction. This allows adjustFixupValue() to issue a diagnostic
556  // if the value aren't invalid.
557  (void)adjustFixupValue(Fixup, Value, &Asm.getContext());
558}
559
560/// getFixupKindNumBytes - The number of bytes the fixup may change.
561static unsigned getFixupKindNumBytes(unsigned Kind) {
562  switch (Kind) {
563  default:
564    llvm_unreachable("Unknown fixup kind!");
565
566  case FK_Data_1:
567  case ARM::fixup_arm_thumb_bcc:
568  case ARM::fixup_arm_thumb_cp:
569  case ARM::fixup_thumb_adr_pcrel_10:
570    return 1;
571
572  case FK_Data_2:
573  case ARM::fixup_arm_thumb_br:
574  case ARM::fixup_arm_thumb_cb:
575    return 2;
576
577  case ARM::fixup_arm_pcrel_10_unscaled:
578  case ARM::fixup_arm_ldst_pcrel_12:
579  case ARM::fixup_arm_pcrel_10:
580  case ARM::fixup_arm_adr_pcrel_12:
581  case ARM::fixup_arm_uncondbl:
582  case ARM::fixup_arm_condbl:
583  case ARM::fixup_arm_blx:
584  case ARM::fixup_arm_condbranch:
585  case ARM::fixup_arm_uncondbranch:
586    return 3;
587
588  case FK_Data_4:
589  case ARM::fixup_t2_ldst_pcrel_12:
590  case ARM::fixup_t2_condbranch:
591  case ARM::fixup_t2_uncondbranch:
592  case ARM::fixup_t2_pcrel_10:
593  case ARM::fixup_t2_adr_pcrel_12:
594  case ARM::fixup_arm_thumb_bl:
595  case ARM::fixup_arm_thumb_blx:
596  case ARM::fixup_arm_movt_hi16:
597  case ARM::fixup_arm_movw_lo16:
598  case ARM::fixup_arm_movt_hi16_pcrel:
599  case ARM::fixup_arm_movw_lo16_pcrel:
600  case ARM::fixup_t2_movt_hi16:
601  case ARM::fixup_t2_movw_lo16:
602  case ARM::fixup_t2_movt_hi16_pcrel:
603  case ARM::fixup_t2_movw_lo16_pcrel:
604    return 4;
605  }
606}
607
608void ARMAsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
609                               unsigned DataSize, uint64_t Value) const {
610  unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
611  Value = adjustFixupValue(Fixup, Value);
612  if (!Value) return;           // Doesn't change encoding.
613
614  unsigned Offset = Fixup.getOffset();
615  assert(Offset + NumBytes <= DataSize && "Invalid fixup offset!");
616
617  // For each byte of the fragment that the fixup touches, mask in the bits from
618  // the fixup value. The Value has been "split up" into the appropriate
619  // bitfields above.
620  for (unsigned i = 0; i != NumBytes; ++i)
621    Data[Offset + i] |= uint8_t((Value >> (i * 8)) & 0xff);
622}
623
624namespace {
625
626// FIXME: This should be in a separate file.
627// ELF is an ELF of course...
628class ELFARMAsmBackend : public ARMAsmBackend {
629public:
630  uint8_t OSABI;
631  ELFARMAsmBackend(const Target &T, const StringRef TT,
632                   uint8_t _OSABI)
633    : ARMAsmBackend(T, TT), OSABI(_OSABI) { }
634
635  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
636    return createARMELFObjectWriter(OS, OSABI);
637  }
638};
639
640// FIXME: This should be in a separate file.
641class DarwinARMAsmBackend : public ARMAsmBackend {
642public:
643  const MachO::CPUSubTypeARM Subtype;
644  DarwinARMAsmBackend(const Target &T, const StringRef TT,
645                      MachO::CPUSubTypeARM st)
646    : ARMAsmBackend(T, TT), Subtype(st) {
647      HasDataInCodeSupport = true;
648    }
649
650  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
651    return createARMMachObjectWriter(OS, /*Is64Bit=*/false,
652                                     MachO::CPU_TYPE_ARM,
653                                     Subtype);
654  }
655
656  virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
657    return false;
658  }
659};
660
661} // end anonymous namespace
662
663MCAsmBackend *llvm::createARMAsmBackend(const Target &T, StringRef TT, StringRef CPU) {
664  Triple TheTriple(TT);
665
666  if (TheTriple.isOSDarwin()) {
667    MachO::CPUSubTypeARM CS =
668      StringSwitch<MachO::CPUSubTypeARM>(TheTriple.getArchName())
669      .Cases("armv4t", "thumbv4t", MachO::CPU_SUBTYPE_ARM_V4T)
670      .Cases("armv5e", "thumbv5e", MachO::CPU_SUBTYPE_ARM_V5TEJ)
671      .Cases("armv6", "thumbv6", MachO::CPU_SUBTYPE_ARM_V6)
672      .Cases("armv6m", "thumbv6m", MachO::CPU_SUBTYPE_ARM_V6M)
673      .Cases("armv7em", "thumbv7em", MachO::CPU_SUBTYPE_ARM_V7EM)
674      .Cases("armv7f", "thumbv7f", MachO::CPU_SUBTYPE_ARM_V7F)
675      .Cases("armv7k", "thumbv7k", MachO::CPU_SUBTYPE_ARM_V7K)
676      .Cases("armv7m", "thumbv7m", MachO::CPU_SUBTYPE_ARM_V7M)
677      .Cases("armv7s", "thumbv7s", MachO::CPU_SUBTYPE_ARM_V7S)
678      .Default(MachO::CPU_SUBTYPE_ARM_V7);
679
680    return new DarwinARMAsmBackend(T, TT, CS);
681  }
682
683#if 0
684  // FIXME: Introduce yet another checker but assert(0).
685  if (TheTriple.isOSBinFormatCOFF())
686    assert(0 && "Windows not supported on ARM");
687#endif
688
689  uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(Triple(TT).getOS());
690  return new ELFARMAsmBackend(T, TT, OSABI);
691}
692