CPPBackend.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===-- CPPBackend.cpp - Library for converting LLVM code to C++ code -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the writing of the LLVM IR as a set of C++ calls to the
11// LLVM IR interface. The input module is assumed to be verified.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CPPTargetMachine.h"
16#include "llvm/ADT/SmallPtrSet.h"
17#include "llvm/ADT/StringExtras.h"
18#include "llvm/Config/config.h"
19#include "llvm/IR/CallingConv.h"
20#include "llvm/IR/Constants.h"
21#include "llvm/IR/DerivedTypes.h"
22#include "llvm/IR/InlineAsm.h"
23#include "llvm/IR/Instruction.h"
24#include "llvm/IR/Instructions.h"
25#include "llvm/IR/Module.h"
26#include "llvm/MC/MCAsmInfo.h"
27#include "llvm/MC/MCInstrInfo.h"
28#include "llvm/MC/MCSubtargetInfo.h"
29#include "llvm/Pass.h"
30#include "llvm/PassManager.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/FormattedStream.h"
34#include "llvm/Support/TargetRegistry.h"
35#include <algorithm>
36#include <cctype>
37#include <cstdio>
38#include <map>
39#include <set>
40using namespace llvm;
41
42static cl::opt<std::string>
43FuncName("cppfname", cl::desc("Specify the name of the generated function"),
44         cl::value_desc("function name"));
45
46enum WhatToGenerate {
47  GenProgram,
48  GenModule,
49  GenContents,
50  GenFunction,
51  GenFunctions,
52  GenInline,
53  GenVariable,
54  GenType
55};
56
57static cl::opt<WhatToGenerate> GenerationType("cppgen", cl::Optional,
58  cl::desc("Choose what kind of output to generate"),
59  cl::init(GenProgram),
60  cl::values(
61    clEnumValN(GenProgram,  "program",   "Generate a complete program"),
62    clEnumValN(GenModule,   "module",    "Generate a module definition"),
63    clEnumValN(GenContents, "contents",  "Generate contents of a module"),
64    clEnumValN(GenFunction, "function",  "Generate a function definition"),
65    clEnumValN(GenFunctions,"functions", "Generate all function definitions"),
66    clEnumValN(GenInline,   "inline",    "Generate an inline function"),
67    clEnumValN(GenVariable, "variable",  "Generate a variable definition"),
68    clEnumValN(GenType,     "type",      "Generate a type definition"),
69    clEnumValEnd
70  )
71);
72
73static cl::opt<std::string> NameToGenerate("cppfor", cl::Optional,
74  cl::desc("Specify the name of the thing to generate"),
75  cl::init("!bad!"));
76
77extern "C" void LLVMInitializeCppBackendTarget() {
78  // Register the target.
79  RegisterTargetMachine<CPPTargetMachine> X(TheCppBackendTarget);
80}
81
82namespace {
83  typedef std::vector<Type*> TypeList;
84  typedef std::map<Type*,std::string> TypeMap;
85  typedef std::map<const Value*,std::string> ValueMap;
86  typedef std::set<std::string> NameSet;
87  typedef std::set<Type*> TypeSet;
88  typedef std::set<const Value*> ValueSet;
89  typedef std::map<const Value*,std::string> ForwardRefMap;
90
91  /// CppWriter - This class is the main chunk of code that converts an LLVM
92  /// module to a C++ translation unit.
93  class CppWriter : public ModulePass {
94    formatted_raw_ostream &Out;
95    const Module *TheModule;
96    uint64_t uniqueNum;
97    TypeMap TypeNames;
98    ValueMap ValueNames;
99    NameSet UsedNames;
100    TypeSet DefinedTypes;
101    ValueSet DefinedValues;
102    ForwardRefMap ForwardRefs;
103    bool is_inline;
104    unsigned indent_level;
105
106  public:
107    static char ID;
108    explicit CppWriter(formatted_raw_ostream &o) :
109      ModulePass(ID), Out(o), uniqueNum(0), is_inline(false), indent_level(0){}
110
111    const char *getPassName() const override { return "C++ backend"; }
112
113    bool runOnModule(Module &M) override;
114
115    void printProgram(const std::string& fname, const std::string& modName );
116    void printModule(const std::string& fname, const std::string& modName );
117    void printContents(const std::string& fname, const std::string& modName );
118    void printFunction(const std::string& fname, const std::string& funcName );
119    void printFunctions();
120    void printInline(const std::string& fname, const std::string& funcName );
121    void printVariable(const std::string& fname, const std::string& varName );
122    void printType(const std::string& fname, const std::string& typeName );
123
124    void error(const std::string& msg);
125
126
127    formatted_raw_ostream& nl(formatted_raw_ostream &Out, int delta = 0);
128    inline void in() { indent_level++; }
129    inline void out() { if (indent_level >0) indent_level--; }
130
131  private:
132    void printLinkageType(GlobalValue::LinkageTypes LT);
133    void printVisibilityType(GlobalValue::VisibilityTypes VisTypes);
134    void printDLLStorageClassType(GlobalValue::DLLStorageClassTypes DSCType);
135    void printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM);
136    void printCallingConv(CallingConv::ID cc);
137    void printEscapedString(const std::string& str);
138    void printCFP(const ConstantFP* CFP);
139
140    std::string getCppName(Type* val);
141    inline void printCppName(Type* val);
142
143    std::string getCppName(const Value* val);
144    inline void printCppName(const Value* val);
145
146    void printAttributes(const AttributeSet &PAL, const std::string &name);
147    void printType(Type* Ty);
148    void printTypes(const Module* M);
149
150    void printConstant(const Constant *CPV);
151    void printConstants(const Module* M);
152
153    void printVariableUses(const GlobalVariable *GV);
154    void printVariableHead(const GlobalVariable *GV);
155    void printVariableBody(const GlobalVariable *GV);
156
157    void printFunctionUses(const Function *F);
158    void printFunctionHead(const Function *F);
159    void printFunctionBody(const Function *F);
160    void printInstruction(const Instruction *I, const std::string& bbname);
161    std::string getOpName(const Value*);
162
163    void printModuleBody();
164  };
165} // end anonymous namespace.
166
167formatted_raw_ostream &CppWriter::nl(formatted_raw_ostream &Out, int delta) {
168  Out << '\n';
169  if (delta >= 0 || indent_level >= unsigned(-delta))
170    indent_level += delta;
171  Out.indent(indent_level);
172  return Out;
173}
174
175static inline void sanitize(std::string &str) {
176  for (size_t i = 0; i < str.length(); ++i)
177    if (!isalnum(str[i]) && str[i] != '_')
178      str[i] = '_';
179}
180
181static std::string getTypePrefix(Type *Ty) {
182  switch (Ty->getTypeID()) {
183  case Type::VoidTyID:     return "void_";
184  case Type::IntegerTyID:
185    return "int" + utostr(cast<IntegerType>(Ty)->getBitWidth()) + "_";
186  case Type::FloatTyID:    return "float_";
187  case Type::DoubleTyID:   return "double_";
188  case Type::LabelTyID:    return "label_";
189  case Type::FunctionTyID: return "func_";
190  case Type::StructTyID:   return "struct_";
191  case Type::ArrayTyID:    return "array_";
192  case Type::PointerTyID:  return "ptr_";
193  case Type::VectorTyID:   return "packed_";
194  default:                 return "other_";
195  }
196}
197
198void CppWriter::error(const std::string& msg) {
199  report_fatal_error(msg);
200}
201
202static inline std::string ftostr(const APFloat& V) {
203  std::string Buf;
204  if (&V.getSemantics() == &APFloat::IEEEdouble) {
205    raw_string_ostream(Buf) << V.convertToDouble();
206    return Buf;
207  } else if (&V.getSemantics() == &APFloat::IEEEsingle) {
208    raw_string_ostream(Buf) << (double)V.convertToFloat();
209    return Buf;
210  }
211  return "<unknown format in ftostr>"; // error
212}
213
214// printCFP - Print a floating point constant .. very carefully :)
215// This makes sure that conversion to/from floating yields the same binary
216// result so that we don't lose precision.
217void CppWriter::printCFP(const ConstantFP *CFP) {
218  bool ignored;
219  APFloat APF = APFloat(CFP->getValueAPF());  // copy
220  if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
221    APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
222  Out << "ConstantFP::get(mod->getContext(), ";
223  Out << "APFloat(";
224#if HAVE_PRINTF_A
225  char Buffer[100];
226  sprintf(Buffer, "%A", APF.convertToDouble());
227  if ((!strncmp(Buffer, "0x", 2) ||
228       !strncmp(Buffer, "-0x", 3) ||
229       !strncmp(Buffer, "+0x", 3)) &&
230      APF.bitwiseIsEqual(APFloat(atof(Buffer)))) {
231    if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
232      Out << "BitsToDouble(" << Buffer << ")";
233    else
234      Out << "BitsToFloat((float)" << Buffer << ")";
235    Out << ")";
236  } else {
237#endif
238    std::string StrVal = ftostr(CFP->getValueAPF());
239
240    while (StrVal[0] == ' ')
241      StrVal.erase(StrVal.begin());
242
243    // Check to make sure that the stringized number is not some string like
244    // "Inf" or NaN.  Check that the string matches the "[-+]?[0-9]" regex.
245    if (((StrVal[0] >= '0' && StrVal[0] <= '9') ||
246         ((StrVal[0] == '-' || StrVal[0] == '+') &&
247          (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
248        (CFP->isExactlyValue(atof(StrVal.c_str())))) {
249      if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
250        Out <<  StrVal;
251      else
252        Out << StrVal << "f";
253    } else if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
254      Out << "BitsToDouble(0x"
255          << utohexstr(CFP->getValueAPF().bitcastToAPInt().getZExtValue())
256          << "ULL) /* " << StrVal << " */";
257    else
258      Out << "BitsToFloat(0x"
259          << utohexstr((uint32_t)CFP->getValueAPF().
260                                      bitcastToAPInt().getZExtValue())
261          << "U) /* " << StrVal << " */";
262    Out << ")";
263#if HAVE_PRINTF_A
264  }
265#endif
266  Out << ")";
267}
268
269void CppWriter::printCallingConv(CallingConv::ID cc){
270  // Print the calling convention.
271  switch (cc) {
272  case CallingConv::C:     Out << "CallingConv::C"; break;
273  case CallingConv::Fast:  Out << "CallingConv::Fast"; break;
274  case CallingConv::Cold:  Out << "CallingConv::Cold"; break;
275  case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
276  default:                 Out << cc; break;
277  }
278}
279
280void CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
281  switch (LT) {
282  case GlobalValue::InternalLinkage:
283    Out << "GlobalValue::InternalLinkage"; break;
284  case GlobalValue::PrivateLinkage:
285    Out << "GlobalValue::PrivateLinkage"; break;
286  case GlobalValue::AvailableExternallyLinkage:
287    Out << "GlobalValue::AvailableExternallyLinkage "; break;
288  case GlobalValue::LinkOnceAnyLinkage:
289    Out << "GlobalValue::LinkOnceAnyLinkage "; break;
290  case GlobalValue::LinkOnceODRLinkage:
291    Out << "GlobalValue::LinkOnceODRLinkage "; break;
292  case GlobalValue::WeakAnyLinkage:
293    Out << "GlobalValue::WeakAnyLinkage"; break;
294  case GlobalValue::WeakODRLinkage:
295    Out << "GlobalValue::WeakODRLinkage"; break;
296  case GlobalValue::AppendingLinkage:
297    Out << "GlobalValue::AppendingLinkage"; break;
298  case GlobalValue::ExternalLinkage:
299    Out << "GlobalValue::ExternalLinkage"; break;
300  case GlobalValue::ExternalWeakLinkage:
301    Out << "GlobalValue::ExternalWeakLinkage"; break;
302  case GlobalValue::CommonLinkage:
303    Out << "GlobalValue::CommonLinkage"; break;
304  }
305}
306
307void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType) {
308  switch (VisType) {
309  case GlobalValue::DefaultVisibility:
310    Out << "GlobalValue::DefaultVisibility";
311    break;
312  case GlobalValue::HiddenVisibility:
313    Out << "GlobalValue::HiddenVisibility";
314    break;
315  case GlobalValue::ProtectedVisibility:
316    Out << "GlobalValue::ProtectedVisibility";
317    break;
318  }
319}
320
321void CppWriter::printDLLStorageClassType(
322                                    GlobalValue::DLLStorageClassTypes DSCType) {
323  switch (DSCType) {
324  case GlobalValue::DefaultStorageClass:
325    Out << "GlobalValue::DefaultStorageClass";
326    break;
327  case GlobalValue::DLLImportStorageClass:
328    Out << "GlobalValue::DLLImportStorageClass";
329    break;
330  case GlobalValue::DLLExportStorageClass:
331    Out << "GlobalValue::DLLExportStorageClass";
332    break;
333  }
334}
335
336void CppWriter::printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM) {
337  switch (TLM) {
338    case GlobalVariable::NotThreadLocal:
339      Out << "GlobalVariable::NotThreadLocal";
340      break;
341    case GlobalVariable::GeneralDynamicTLSModel:
342      Out << "GlobalVariable::GeneralDynamicTLSModel";
343      break;
344    case GlobalVariable::LocalDynamicTLSModel:
345      Out << "GlobalVariable::LocalDynamicTLSModel";
346      break;
347    case GlobalVariable::InitialExecTLSModel:
348      Out << "GlobalVariable::InitialExecTLSModel";
349      break;
350    case GlobalVariable::LocalExecTLSModel:
351      Out << "GlobalVariable::LocalExecTLSModel";
352      break;
353  }
354}
355
356// printEscapedString - Print each character of the specified string, escaping
357// it if it is not printable or if it is an escape char.
358void CppWriter::printEscapedString(const std::string &Str) {
359  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
360    unsigned char C = Str[i];
361    if (isprint(C) && C != '"' && C != '\\') {
362      Out << C;
363    } else {
364      Out << "\\x"
365          << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
366          << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
367    }
368  }
369}
370
371std::string CppWriter::getCppName(Type* Ty) {
372  switch (Ty->getTypeID()) {
373  default:
374    break;
375  case Type::VoidTyID:
376    return "Type::getVoidTy(mod->getContext())";
377  case Type::IntegerTyID: {
378    unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
379    return "IntegerType::get(mod->getContext(), " + utostr(BitWidth) + ")";
380  }
381  case Type::X86_FP80TyID:
382    return "Type::getX86_FP80Ty(mod->getContext())";
383  case Type::FloatTyID:
384    return "Type::getFloatTy(mod->getContext())";
385  case Type::DoubleTyID:
386    return "Type::getDoubleTy(mod->getContext())";
387  case Type::LabelTyID:
388    return "Type::getLabelTy(mod->getContext())";
389  case Type::X86_MMXTyID:
390    return "Type::getX86_MMXTy(mod->getContext())";
391  }
392
393  // Now, see if we've seen the type before and return that
394  TypeMap::iterator I = TypeNames.find(Ty);
395  if (I != TypeNames.end())
396    return I->second;
397
398  // Okay, let's build a new name for this type. Start with a prefix
399  const char* prefix = nullptr;
400  switch (Ty->getTypeID()) {
401  case Type::FunctionTyID:    prefix = "FuncTy_"; break;
402  case Type::StructTyID:      prefix = "StructTy_"; break;
403  case Type::ArrayTyID:       prefix = "ArrayTy_"; break;
404  case Type::PointerTyID:     prefix = "PointerTy_"; break;
405  case Type::VectorTyID:      prefix = "VectorTy_"; break;
406  default:                    prefix = "OtherTy_"; break; // prevent breakage
407  }
408
409  // See if the type has a name in the symboltable and build accordingly
410  std::string name;
411  if (StructType *STy = dyn_cast<StructType>(Ty))
412    if (STy->hasName())
413      name = STy->getName();
414
415  if (name.empty())
416    name = utostr(uniqueNum++);
417
418  name = std::string(prefix) + name;
419  sanitize(name);
420
421  // Save the name
422  return TypeNames[Ty] = name;
423}
424
425void CppWriter::printCppName(Type* Ty) {
426  printEscapedString(getCppName(Ty));
427}
428
429std::string CppWriter::getCppName(const Value* val) {
430  std::string name;
431  ValueMap::iterator I = ValueNames.find(val);
432  if (I != ValueNames.end() && I->first == val)
433    return  I->second;
434
435  if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) {
436    name = std::string("gvar_") +
437      getTypePrefix(GV->getType()->getElementType());
438  } else if (isa<Function>(val)) {
439    name = std::string("func_");
440  } else if (const Constant* C = dyn_cast<Constant>(val)) {
441    name = std::string("const_") + getTypePrefix(C->getType());
442  } else if (const Argument* Arg = dyn_cast<Argument>(val)) {
443    if (is_inline) {
444      unsigned argNum = std::distance(Arg->getParent()->arg_begin(),
445                                      Function::const_arg_iterator(Arg)) + 1;
446      name = std::string("arg_") + utostr(argNum);
447      NameSet::iterator NI = UsedNames.find(name);
448      if (NI != UsedNames.end())
449        name += std::string("_") + utostr(uniqueNum++);
450      UsedNames.insert(name);
451      return ValueNames[val] = name;
452    } else {
453      name = getTypePrefix(val->getType());
454    }
455  } else {
456    name = getTypePrefix(val->getType());
457  }
458  if (val->hasName())
459    name += val->getName();
460  else
461    name += utostr(uniqueNum++);
462  sanitize(name);
463  NameSet::iterator NI = UsedNames.find(name);
464  if (NI != UsedNames.end())
465    name += std::string("_") + utostr(uniqueNum++);
466  UsedNames.insert(name);
467  return ValueNames[val] = name;
468}
469
470void CppWriter::printCppName(const Value* val) {
471  printEscapedString(getCppName(val));
472}
473
474void CppWriter::printAttributes(const AttributeSet &PAL,
475                                const std::string &name) {
476  Out << "AttributeSet " << name << "_PAL;";
477  nl(Out);
478  if (!PAL.isEmpty()) {
479    Out << '{'; in(); nl(Out);
480    Out << "SmallVector<AttributeSet, 4> Attrs;"; nl(Out);
481    Out << "AttributeSet PAS;"; in(); nl(Out);
482    for (unsigned i = 0; i < PAL.getNumSlots(); ++i) {
483      unsigned index = PAL.getSlotIndex(i);
484      AttrBuilder attrs(PAL.getSlotAttributes(i), index);
485      Out << "{"; in(); nl(Out);
486      Out << "AttrBuilder B;"; nl(Out);
487
488#define HANDLE_ATTR(X)                                                  \
489      if (attrs.contains(Attribute::X)) {                               \
490        Out << "B.addAttribute(Attribute::" #X ");"; nl(Out);           \
491        attrs.removeAttribute(Attribute::X);                            \
492      }
493
494      HANDLE_ATTR(SExt);
495      HANDLE_ATTR(ZExt);
496      HANDLE_ATTR(NoReturn);
497      HANDLE_ATTR(InReg);
498      HANDLE_ATTR(StructRet);
499      HANDLE_ATTR(NoUnwind);
500      HANDLE_ATTR(NoAlias);
501      HANDLE_ATTR(ByVal);
502      HANDLE_ATTR(InAlloca);
503      HANDLE_ATTR(Nest);
504      HANDLE_ATTR(ReadNone);
505      HANDLE_ATTR(ReadOnly);
506      HANDLE_ATTR(NoInline);
507      HANDLE_ATTR(AlwaysInline);
508      HANDLE_ATTR(OptimizeNone);
509      HANDLE_ATTR(OptimizeForSize);
510      HANDLE_ATTR(StackProtect);
511      HANDLE_ATTR(StackProtectReq);
512      HANDLE_ATTR(StackProtectStrong);
513      HANDLE_ATTR(NoCapture);
514      HANDLE_ATTR(NoRedZone);
515      HANDLE_ATTR(NoImplicitFloat);
516      HANDLE_ATTR(Naked);
517      HANDLE_ATTR(InlineHint);
518      HANDLE_ATTR(ReturnsTwice);
519      HANDLE_ATTR(UWTable);
520      HANDLE_ATTR(NonLazyBind);
521      HANDLE_ATTR(MinSize);
522#undef HANDLE_ATTR
523
524      if (attrs.contains(Attribute::StackAlignment)) {
525        Out << "B.addStackAlignmentAttr(" << attrs.getStackAlignment()<<')';
526        nl(Out);
527        attrs.removeAttribute(Attribute::StackAlignment);
528      }
529
530      Out << "PAS = AttributeSet::get(mod->getContext(), ";
531      if (index == ~0U)
532        Out << "~0U,";
533      else
534        Out << index << "U,";
535      Out << " B);"; out(); nl(Out);
536      Out << "}"; out(); nl(Out);
537      nl(Out);
538      Out << "Attrs.push_back(PAS);"; nl(Out);
539    }
540    Out << name << "_PAL = AttributeSet::get(mod->getContext(), Attrs);";
541    nl(Out);
542    out(); nl(Out);
543    Out << '}'; nl(Out);
544  }
545}
546
547void CppWriter::printType(Type* Ty) {
548  // We don't print definitions for primitive types
549  if (Ty->isFloatingPointTy() || Ty->isX86_MMXTy() || Ty->isIntegerTy() ||
550      Ty->isLabelTy() || Ty->isMetadataTy() || Ty->isVoidTy())
551    return;
552
553  // If we already defined this type, we don't need to define it again.
554  if (DefinedTypes.find(Ty) != DefinedTypes.end())
555    return;
556
557  // Everything below needs the name for the type so get it now.
558  std::string typeName(getCppName(Ty));
559
560  // Print the type definition
561  switch (Ty->getTypeID()) {
562  case Type::FunctionTyID:  {
563    FunctionType* FT = cast<FunctionType>(Ty);
564    Out << "std::vector<Type*>" << typeName << "_args;";
565    nl(Out);
566    FunctionType::param_iterator PI = FT->param_begin();
567    FunctionType::param_iterator PE = FT->param_end();
568    for (; PI != PE; ++PI) {
569      Type* argTy = static_cast<Type*>(*PI);
570      printType(argTy);
571      std::string argName(getCppName(argTy));
572      Out << typeName << "_args.push_back(" << argName;
573      Out << ");";
574      nl(Out);
575    }
576    printType(FT->getReturnType());
577    std::string retTypeName(getCppName(FT->getReturnType()));
578    Out << "FunctionType* " << typeName << " = FunctionType::get(";
579    in(); nl(Out) << "/*Result=*/" << retTypeName;
580    Out << ",";
581    nl(Out) << "/*Params=*/" << typeName << "_args,";
582    nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");";
583    out();
584    nl(Out);
585    break;
586  }
587  case Type::StructTyID: {
588    StructType* ST = cast<StructType>(Ty);
589    if (!ST->isLiteral()) {
590      Out << "StructType *" << typeName << " = mod->getTypeByName(\"";
591      printEscapedString(ST->getName());
592      Out << "\");";
593      nl(Out);
594      Out << "if (!" << typeName << ") {";
595      nl(Out);
596      Out << typeName << " = ";
597      Out << "StructType::create(mod->getContext(), \"";
598      printEscapedString(ST->getName());
599      Out << "\");";
600      nl(Out);
601      Out << "}";
602      nl(Out);
603      // Indicate that this type is now defined.
604      DefinedTypes.insert(Ty);
605    }
606
607    Out << "std::vector<Type*>" << typeName << "_fields;";
608    nl(Out);
609    StructType::element_iterator EI = ST->element_begin();
610    StructType::element_iterator EE = ST->element_end();
611    for (; EI != EE; ++EI) {
612      Type* fieldTy = static_cast<Type*>(*EI);
613      printType(fieldTy);
614      std::string fieldName(getCppName(fieldTy));
615      Out << typeName << "_fields.push_back(" << fieldName;
616      Out << ");";
617      nl(Out);
618    }
619
620    if (ST->isLiteral()) {
621      Out << "StructType *" << typeName << " = ";
622      Out << "StructType::get(" << "mod->getContext(), ";
623    } else {
624      Out << "if (" << typeName << "->isOpaque()) {";
625      nl(Out);
626      Out << typeName << "->setBody(";
627    }
628
629    Out << typeName << "_fields, /*isPacked=*/"
630        << (ST->isPacked() ? "true" : "false") << ");";
631    nl(Out);
632    if (!ST->isLiteral()) {
633      Out << "}";
634      nl(Out);
635    }
636    break;
637  }
638  case Type::ArrayTyID: {
639    ArrayType* AT = cast<ArrayType>(Ty);
640    Type* ET = AT->getElementType();
641    printType(ET);
642    if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
643      std::string elemName(getCppName(ET));
644      Out << "ArrayType* " << typeName << " = ArrayType::get("
645          << elemName
646          << ", " << utostr(AT->getNumElements()) << ");";
647      nl(Out);
648    }
649    break;
650  }
651  case Type::PointerTyID: {
652    PointerType* PT = cast<PointerType>(Ty);
653    Type* ET = PT->getElementType();
654    printType(ET);
655    if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
656      std::string elemName(getCppName(ET));
657      Out << "PointerType* " << typeName << " = PointerType::get("
658          << elemName
659          << ", " << utostr(PT->getAddressSpace()) << ");";
660      nl(Out);
661    }
662    break;
663  }
664  case Type::VectorTyID: {
665    VectorType* PT = cast<VectorType>(Ty);
666    Type* ET = PT->getElementType();
667    printType(ET);
668    if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
669      std::string elemName(getCppName(ET));
670      Out << "VectorType* " << typeName << " = VectorType::get("
671          << elemName
672          << ", " << utostr(PT->getNumElements()) << ");";
673      nl(Out);
674    }
675    break;
676  }
677  default:
678    error("Invalid TypeID");
679  }
680
681  // Indicate that this type is now defined.
682  DefinedTypes.insert(Ty);
683
684  // Finally, separate the type definition from other with a newline.
685  nl(Out);
686}
687
688void CppWriter::printTypes(const Module* M) {
689  // Add all of the global variables to the value table.
690  for (Module::const_global_iterator I = TheModule->global_begin(),
691         E = TheModule->global_end(); I != E; ++I) {
692    if (I->hasInitializer())
693      printType(I->getInitializer()->getType());
694    printType(I->getType());
695  }
696
697  // Add all the functions to the table
698  for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
699       FI != FE; ++FI) {
700    printType(FI->getReturnType());
701    printType(FI->getFunctionType());
702    // Add all the function arguments
703    for (Function::const_arg_iterator AI = FI->arg_begin(),
704           AE = FI->arg_end(); AI != AE; ++AI) {
705      printType(AI->getType());
706    }
707
708    // Add all of the basic blocks and instructions
709    for (Function::const_iterator BB = FI->begin(),
710           E = FI->end(); BB != E; ++BB) {
711      printType(BB->getType());
712      for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
713           ++I) {
714        printType(I->getType());
715        for (unsigned i = 0; i < I->getNumOperands(); ++i)
716          printType(I->getOperand(i)->getType());
717      }
718    }
719  }
720}
721
722
723// printConstant - Print out a constant pool entry...
724void CppWriter::printConstant(const Constant *CV) {
725  // First, if the constant is actually a GlobalValue (variable or function)
726  // or its already in the constant list then we've printed it already and we
727  // can just return.
728  if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end())
729    return;
730
731  std::string constName(getCppName(CV));
732  std::string typeName(getCppName(CV->getType()));
733
734  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
735    std::string constValue = CI->getValue().toString(10, true);
736    Out << "ConstantInt* " << constName
737        << " = ConstantInt::get(mod->getContext(), APInt("
738        << cast<IntegerType>(CI->getType())->getBitWidth()
739        << ", StringRef(\"" <<  constValue << "\"), 10));";
740  } else if (isa<ConstantAggregateZero>(CV)) {
741    Out << "ConstantAggregateZero* " << constName
742        << " = ConstantAggregateZero::get(" << typeName << ");";
743  } else if (isa<ConstantPointerNull>(CV)) {
744    Out << "ConstantPointerNull* " << constName
745        << " = ConstantPointerNull::get(" << typeName << ");";
746  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
747    Out << "ConstantFP* " << constName << " = ";
748    printCFP(CFP);
749    Out << ";";
750  } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
751    Out << "std::vector<Constant*> " << constName << "_elems;";
752    nl(Out);
753    unsigned N = CA->getNumOperands();
754    for (unsigned i = 0; i < N; ++i) {
755      printConstant(CA->getOperand(i)); // recurse to print operands
756      Out << constName << "_elems.push_back("
757          << getCppName(CA->getOperand(i)) << ");";
758      nl(Out);
759    }
760    Out << "Constant* " << constName << " = ConstantArray::get("
761        << typeName << ", " << constName << "_elems);";
762  } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
763    Out << "std::vector<Constant*> " << constName << "_fields;";
764    nl(Out);
765    unsigned N = CS->getNumOperands();
766    for (unsigned i = 0; i < N; i++) {
767      printConstant(CS->getOperand(i));
768      Out << constName << "_fields.push_back("
769          << getCppName(CS->getOperand(i)) << ");";
770      nl(Out);
771    }
772    Out << "Constant* " << constName << " = ConstantStruct::get("
773        << typeName << ", " << constName << "_fields);";
774  } else if (const ConstantVector *CVec = dyn_cast<ConstantVector>(CV)) {
775    Out << "std::vector<Constant*> " << constName << "_elems;";
776    nl(Out);
777    unsigned N = CVec->getNumOperands();
778    for (unsigned i = 0; i < N; ++i) {
779      printConstant(CVec->getOperand(i));
780      Out << constName << "_elems.push_back("
781          << getCppName(CVec->getOperand(i)) << ");";
782      nl(Out);
783    }
784    Out << "Constant* " << constName << " = ConstantVector::get("
785        << typeName << ", " << constName << "_elems);";
786  } else if (isa<UndefValue>(CV)) {
787    Out << "UndefValue* " << constName << " = UndefValue::get("
788        << typeName << ");";
789  } else if (const ConstantDataSequential *CDS =
790               dyn_cast<ConstantDataSequential>(CV)) {
791    if (CDS->isString()) {
792      Out << "Constant *" << constName <<
793      " = ConstantDataArray::getString(mod->getContext(), \"";
794      StringRef Str = CDS->getAsString();
795      bool nullTerminate = false;
796      if (Str.back() == 0) {
797        Str = Str.drop_back();
798        nullTerminate = true;
799      }
800      printEscapedString(Str);
801      // Determine if we want null termination or not.
802      if (nullTerminate)
803        Out << "\", true);";
804      else
805        Out << "\", false);";// No null terminator
806    } else {
807      // TODO: Could generate more efficient code generating CDS calls instead.
808      Out << "std::vector<Constant*> " << constName << "_elems;";
809      nl(Out);
810      for (unsigned i = 0; i != CDS->getNumElements(); ++i) {
811        Constant *Elt = CDS->getElementAsConstant(i);
812        printConstant(Elt);
813        Out << constName << "_elems.push_back(" << getCppName(Elt) << ");";
814        nl(Out);
815      }
816      Out << "Constant* " << constName;
817
818      if (isa<ArrayType>(CDS->getType()))
819        Out << " = ConstantArray::get(";
820      else
821        Out << " = ConstantVector::get(";
822      Out << typeName << ", " << constName << "_elems);";
823    }
824  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
825    if (CE->getOpcode() == Instruction::GetElementPtr) {
826      Out << "std::vector<Constant*> " << constName << "_indices;";
827      nl(Out);
828      printConstant(CE->getOperand(0));
829      for (unsigned i = 1; i < CE->getNumOperands(); ++i ) {
830        printConstant(CE->getOperand(i));
831        Out << constName << "_indices.push_back("
832            << getCppName(CE->getOperand(i)) << ");";
833        nl(Out);
834      }
835      Out << "Constant* " << constName
836          << " = ConstantExpr::getGetElementPtr("
837          << getCppName(CE->getOperand(0)) << ", "
838          << constName << "_indices);";
839    } else if (CE->isCast()) {
840      printConstant(CE->getOperand(0));
841      Out << "Constant* " << constName << " = ConstantExpr::getCast(";
842      switch (CE->getOpcode()) {
843      default: llvm_unreachable("Invalid cast opcode");
844      case Instruction::Trunc: Out << "Instruction::Trunc"; break;
845      case Instruction::ZExt:  Out << "Instruction::ZExt"; break;
846      case Instruction::SExt:  Out << "Instruction::SExt"; break;
847      case Instruction::FPTrunc:  Out << "Instruction::FPTrunc"; break;
848      case Instruction::FPExt:  Out << "Instruction::FPExt"; break;
849      case Instruction::FPToUI:  Out << "Instruction::FPToUI"; break;
850      case Instruction::FPToSI:  Out << "Instruction::FPToSI"; break;
851      case Instruction::UIToFP:  Out << "Instruction::UIToFP"; break;
852      case Instruction::SIToFP:  Out << "Instruction::SIToFP"; break;
853      case Instruction::PtrToInt:  Out << "Instruction::PtrToInt"; break;
854      case Instruction::IntToPtr:  Out << "Instruction::IntToPtr"; break;
855      case Instruction::BitCast:  Out << "Instruction::BitCast"; break;
856      }
857      Out << ", " << getCppName(CE->getOperand(0)) << ", "
858          << getCppName(CE->getType()) << ");";
859    } else {
860      unsigned N = CE->getNumOperands();
861      for (unsigned i = 0; i < N; ++i ) {
862        printConstant(CE->getOperand(i));
863      }
864      Out << "Constant* " << constName << " = ConstantExpr::";
865      switch (CE->getOpcode()) {
866      case Instruction::Add:    Out << "getAdd(";  break;
867      case Instruction::FAdd:   Out << "getFAdd(";  break;
868      case Instruction::Sub:    Out << "getSub("; break;
869      case Instruction::FSub:   Out << "getFSub("; break;
870      case Instruction::Mul:    Out << "getMul("; break;
871      case Instruction::FMul:   Out << "getFMul("; break;
872      case Instruction::UDiv:   Out << "getUDiv("; break;
873      case Instruction::SDiv:   Out << "getSDiv("; break;
874      case Instruction::FDiv:   Out << "getFDiv("; break;
875      case Instruction::URem:   Out << "getURem("; break;
876      case Instruction::SRem:   Out << "getSRem("; break;
877      case Instruction::FRem:   Out << "getFRem("; break;
878      case Instruction::And:    Out << "getAnd("; break;
879      case Instruction::Or:     Out << "getOr("; break;
880      case Instruction::Xor:    Out << "getXor("; break;
881      case Instruction::ICmp:
882        Out << "getICmp(ICmpInst::ICMP_";
883        switch (CE->getPredicate()) {
884        case ICmpInst::ICMP_EQ:  Out << "EQ"; break;
885        case ICmpInst::ICMP_NE:  Out << "NE"; break;
886        case ICmpInst::ICMP_SLT: Out << "SLT"; break;
887        case ICmpInst::ICMP_ULT: Out << "ULT"; break;
888        case ICmpInst::ICMP_SGT: Out << "SGT"; break;
889        case ICmpInst::ICMP_UGT: Out << "UGT"; break;
890        case ICmpInst::ICMP_SLE: Out << "SLE"; break;
891        case ICmpInst::ICMP_ULE: Out << "ULE"; break;
892        case ICmpInst::ICMP_SGE: Out << "SGE"; break;
893        case ICmpInst::ICMP_UGE: Out << "UGE"; break;
894        default: error("Invalid ICmp Predicate");
895        }
896        break;
897      case Instruction::FCmp:
898        Out << "getFCmp(FCmpInst::FCMP_";
899        switch (CE->getPredicate()) {
900        case FCmpInst::FCMP_FALSE: Out << "FALSE"; break;
901        case FCmpInst::FCMP_ORD:   Out << "ORD"; break;
902        case FCmpInst::FCMP_UNO:   Out << "UNO"; break;
903        case FCmpInst::FCMP_OEQ:   Out << "OEQ"; break;
904        case FCmpInst::FCMP_UEQ:   Out << "UEQ"; break;
905        case FCmpInst::FCMP_ONE:   Out << "ONE"; break;
906        case FCmpInst::FCMP_UNE:   Out << "UNE"; break;
907        case FCmpInst::FCMP_OLT:   Out << "OLT"; break;
908        case FCmpInst::FCMP_ULT:   Out << "ULT"; break;
909        case FCmpInst::FCMP_OGT:   Out << "OGT"; break;
910        case FCmpInst::FCMP_UGT:   Out << "UGT"; break;
911        case FCmpInst::FCMP_OLE:   Out << "OLE"; break;
912        case FCmpInst::FCMP_ULE:   Out << "ULE"; break;
913        case FCmpInst::FCMP_OGE:   Out << "OGE"; break;
914        case FCmpInst::FCMP_UGE:   Out << "UGE"; break;
915        case FCmpInst::FCMP_TRUE:  Out << "TRUE"; break;
916        default: error("Invalid FCmp Predicate");
917        }
918        break;
919      case Instruction::Shl:     Out << "getShl("; break;
920      case Instruction::LShr:    Out << "getLShr("; break;
921      case Instruction::AShr:    Out << "getAShr("; break;
922      case Instruction::Select:  Out << "getSelect("; break;
923      case Instruction::ExtractElement: Out << "getExtractElement("; break;
924      case Instruction::InsertElement:  Out << "getInsertElement("; break;
925      case Instruction::ShuffleVector:  Out << "getShuffleVector("; break;
926      default:
927        error("Invalid constant expression");
928        break;
929      }
930      Out << getCppName(CE->getOperand(0));
931      for (unsigned i = 1; i < CE->getNumOperands(); ++i)
932        Out << ", " << getCppName(CE->getOperand(i));
933      Out << ");";
934    }
935  } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
936    Out << "Constant* " << constName << " = ";
937    Out << "BlockAddress::get(" << getOpName(BA->getBasicBlock()) << ");";
938  } else {
939    error("Bad Constant");
940    Out << "Constant* " << constName << " = 0; ";
941  }
942  nl(Out);
943}
944
945void CppWriter::printConstants(const Module* M) {
946  // Traverse all the global variables looking for constant initializers
947  for (Module::const_global_iterator I = TheModule->global_begin(),
948         E = TheModule->global_end(); I != E; ++I)
949    if (I->hasInitializer())
950      printConstant(I->getInitializer());
951
952  // Traverse the LLVM functions looking for constants
953  for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
954       FI != FE; ++FI) {
955    // Add all of the basic blocks and instructions
956    for (Function::const_iterator BB = FI->begin(),
957           E = FI->end(); BB != E; ++BB) {
958      for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
959           ++I) {
960        for (unsigned i = 0; i < I->getNumOperands(); ++i) {
961          if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) {
962            printConstant(C);
963          }
964        }
965      }
966    }
967  }
968}
969
970void CppWriter::printVariableUses(const GlobalVariable *GV) {
971  nl(Out) << "// Type Definitions";
972  nl(Out);
973  printType(GV->getType());
974  if (GV->hasInitializer()) {
975    const Constant *Init = GV->getInitializer();
976    printType(Init->getType());
977    if (const Function *F = dyn_cast<Function>(Init)) {
978      nl(Out)<< "/ Function Declarations"; nl(Out);
979      printFunctionHead(F);
980    } else if (const GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
981      nl(Out) << "// Global Variable Declarations"; nl(Out);
982      printVariableHead(gv);
983
984      nl(Out) << "// Global Variable Definitions"; nl(Out);
985      printVariableBody(gv);
986    } else  {
987      nl(Out) << "// Constant Definitions"; nl(Out);
988      printConstant(Init);
989    }
990  }
991}
992
993void CppWriter::printVariableHead(const GlobalVariable *GV) {
994  nl(Out) << "GlobalVariable* " << getCppName(GV);
995  if (is_inline) {
996    Out << " = mod->getGlobalVariable(mod->getContext(), ";
997    printEscapedString(GV->getName());
998    Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)";
999    nl(Out) << "if (!" << getCppName(GV) << ") {";
1000    in(); nl(Out) << getCppName(GV);
1001  }
1002  Out << " = new GlobalVariable(/*Module=*/*mod, ";
1003  nl(Out) << "/*Type=*/";
1004  printCppName(GV->getType()->getElementType());
1005  Out << ",";
1006  nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false");
1007  Out << ",";
1008  nl(Out) << "/*Linkage=*/";
1009  printLinkageType(GV->getLinkage());
1010  Out << ",";
1011  nl(Out) << "/*Initializer=*/0, ";
1012  if (GV->hasInitializer()) {
1013    Out << "// has initializer, specified below";
1014  }
1015  nl(Out) << "/*Name=*/\"";
1016  printEscapedString(GV->getName());
1017  Out << "\");";
1018  nl(Out);
1019
1020  if (GV->hasSection()) {
1021    printCppName(GV);
1022    Out << "->setSection(\"";
1023    printEscapedString(GV->getSection());
1024    Out << "\");";
1025    nl(Out);
1026  }
1027  if (GV->getAlignment()) {
1028    printCppName(GV);
1029    Out << "->setAlignment(" << utostr(GV->getAlignment()) << ");";
1030    nl(Out);
1031  }
1032  if (GV->getVisibility() != GlobalValue::DefaultVisibility) {
1033    printCppName(GV);
1034    Out << "->setVisibility(";
1035    printVisibilityType(GV->getVisibility());
1036    Out << ");";
1037    nl(Out);
1038  }
1039  if (GV->getDLLStorageClass() != GlobalValue::DefaultStorageClass) {
1040    printCppName(GV);
1041    Out << "->setDLLStorageClass(";
1042    printDLLStorageClassType(GV->getDLLStorageClass());
1043    Out << ");";
1044    nl(Out);
1045  }
1046  if (GV->isThreadLocal()) {
1047    printCppName(GV);
1048    Out << "->setThreadLocalMode(";
1049    printThreadLocalMode(GV->getThreadLocalMode());
1050    Out << ");";
1051    nl(Out);
1052  }
1053  if (is_inline) {
1054    out(); Out << "}"; nl(Out);
1055  }
1056}
1057
1058void CppWriter::printVariableBody(const GlobalVariable *GV) {
1059  if (GV->hasInitializer()) {
1060    printCppName(GV);
1061    Out << "->setInitializer(";
1062    Out << getCppName(GV->getInitializer()) << ");";
1063    nl(Out);
1064  }
1065}
1066
1067std::string CppWriter::getOpName(const Value* V) {
1068  if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end())
1069    return getCppName(V);
1070
1071  // See if its alread in the map of forward references, if so just return the
1072  // name we already set up for it
1073  ForwardRefMap::const_iterator I = ForwardRefs.find(V);
1074  if (I != ForwardRefs.end())
1075    return I->second;
1076
1077  // This is a new forward reference. Generate a unique name for it
1078  std::string result(std::string("fwdref_") + utostr(uniqueNum++));
1079
1080  // Yes, this is a hack. An Argument is the smallest instantiable value that
1081  // we can make as a placeholder for the real value. We'll replace these
1082  // Argument instances later.
1083  Out << "Argument* " << result << " = new Argument("
1084      << getCppName(V->getType()) << ");";
1085  nl(Out);
1086  ForwardRefs[V] = result;
1087  return result;
1088}
1089
1090static StringRef ConvertAtomicOrdering(AtomicOrdering Ordering) {
1091  switch (Ordering) {
1092    case NotAtomic: return "NotAtomic";
1093    case Unordered: return "Unordered";
1094    case Monotonic: return "Monotonic";
1095    case Acquire: return "Acquire";
1096    case Release: return "Release";
1097    case AcquireRelease: return "AcquireRelease";
1098    case SequentiallyConsistent: return "SequentiallyConsistent";
1099  }
1100  llvm_unreachable("Unknown ordering");
1101}
1102
1103static StringRef ConvertAtomicSynchScope(SynchronizationScope SynchScope) {
1104  switch (SynchScope) {
1105    case SingleThread: return "SingleThread";
1106    case CrossThread: return "CrossThread";
1107  }
1108  llvm_unreachable("Unknown synch scope");
1109}
1110
1111// printInstruction - This member is called for each Instruction in a function.
1112void CppWriter::printInstruction(const Instruction *I,
1113                                 const std::string& bbname) {
1114  std::string iName(getCppName(I));
1115
1116  // Before we emit this instruction, we need to take care of generating any
1117  // forward references. So, we get the names of all the operands in advance
1118  const unsigned Ops(I->getNumOperands());
1119  std::string* opNames = new std::string[Ops];
1120  for (unsigned i = 0; i < Ops; i++)
1121    opNames[i] = getOpName(I->getOperand(i));
1122
1123  switch (I->getOpcode()) {
1124  default:
1125    error("Invalid instruction");
1126    break;
1127
1128  case Instruction::Ret: {
1129    const ReturnInst* ret =  cast<ReturnInst>(I);
1130    Out << "ReturnInst::Create(mod->getContext(), "
1131        << (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");";
1132    break;
1133  }
1134  case Instruction::Br: {
1135    const BranchInst* br = cast<BranchInst>(I);
1136    Out << "BranchInst::Create(" ;
1137    if (br->getNumOperands() == 3) {
1138      Out << opNames[2] << ", "
1139          << opNames[1] << ", "
1140          << opNames[0] << ", ";
1141
1142    } else if (br->getNumOperands() == 1) {
1143      Out << opNames[0] << ", ";
1144    } else {
1145      error("Branch with 2 operands?");
1146    }
1147    Out << bbname << ");";
1148    break;
1149  }
1150  case Instruction::Switch: {
1151    const SwitchInst *SI = cast<SwitchInst>(I);
1152    Out << "SwitchInst* " << iName << " = SwitchInst::Create("
1153        << getOpName(SI->getCondition()) << ", "
1154        << getOpName(SI->getDefaultDest()) << ", "
1155        << SI->getNumCases() << ", " << bbname << ");";
1156    nl(Out);
1157    for (SwitchInst::ConstCaseIt i = SI->case_begin(), e = SI->case_end();
1158         i != e; ++i) {
1159      const ConstantInt* CaseVal = i.getCaseValue();
1160      const BasicBlock *BB = i.getCaseSuccessor();
1161      Out << iName << "->addCase("
1162          << getOpName(CaseVal) << ", "
1163          << getOpName(BB) << ");";
1164      nl(Out);
1165    }
1166    break;
1167  }
1168  case Instruction::IndirectBr: {
1169    const IndirectBrInst *IBI = cast<IndirectBrInst>(I);
1170    Out << "IndirectBrInst *" << iName << " = IndirectBrInst::Create("
1171        << opNames[0] << ", " << IBI->getNumDestinations() << ");";
1172    nl(Out);
1173    for (unsigned i = 1; i != IBI->getNumOperands(); ++i) {
1174      Out << iName << "->addDestination(" << opNames[i] << ");";
1175      nl(Out);
1176    }
1177    break;
1178  }
1179  case Instruction::Resume: {
1180    Out << "ResumeInst::Create(" << opNames[0] << ", " << bbname << ");";
1181    break;
1182  }
1183  case Instruction::Invoke: {
1184    const InvokeInst* inv = cast<InvokeInst>(I);
1185    Out << "std::vector<Value*> " << iName << "_params;";
1186    nl(Out);
1187    for (unsigned i = 0; i < inv->getNumArgOperands(); ++i) {
1188      Out << iName << "_params.push_back("
1189          << getOpName(inv->getArgOperand(i)) << ");";
1190      nl(Out);
1191    }
1192    // FIXME: This shouldn't use magic numbers -3, -2, and -1.
1193    Out << "InvokeInst *" << iName << " = InvokeInst::Create("
1194        << getOpName(inv->getCalledValue()) << ", "
1195        << getOpName(inv->getNormalDest()) << ", "
1196        << getOpName(inv->getUnwindDest()) << ", "
1197        << iName << "_params, \"";
1198    printEscapedString(inv->getName());
1199    Out << "\", " << bbname << ");";
1200    nl(Out) << iName << "->setCallingConv(";
1201    printCallingConv(inv->getCallingConv());
1202    Out << ");";
1203    printAttributes(inv->getAttributes(), iName);
1204    Out << iName << "->setAttributes(" << iName << "_PAL);";
1205    nl(Out);
1206    break;
1207  }
1208  case Instruction::Unreachable: {
1209    Out << "new UnreachableInst("
1210        << "mod->getContext(), "
1211        << bbname << ");";
1212    break;
1213  }
1214  case Instruction::Add:
1215  case Instruction::FAdd:
1216  case Instruction::Sub:
1217  case Instruction::FSub:
1218  case Instruction::Mul:
1219  case Instruction::FMul:
1220  case Instruction::UDiv:
1221  case Instruction::SDiv:
1222  case Instruction::FDiv:
1223  case Instruction::URem:
1224  case Instruction::SRem:
1225  case Instruction::FRem:
1226  case Instruction::And:
1227  case Instruction::Or:
1228  case Instruction::Xor:
1229  case Instruction::Shl:
1230  case Instruction::LShr:
1231  case Instruction::AShr:{
1232    Out << "BinaryOperator* " << iName << " = BinaryOperator::Create(";
1233    switch (I->getOpcode()) {
1234    case Instruction::Add: Out << "Instruction::Add"; break;
1235    case Instruction::FAdd: Out << "Instruction::FAdd"; break;
1236    case Instruction::Sub: Out << "Instruction::Sub"; break;
1237    case Instruction::FSub: Out << "Instruction::FSub"; break;
1238    case Instruction::Mul: Out << "Instruction::Mul"; break;
1239    case Instruction::FMul: Out << "Instruction::FMul"; break;
1240    case Instruction::UDiv:Out << "Instruction::UDiv"; break;
1241    case Instruction::SDiv:Out << "Instruction::SDiv"; break;
1242    case Instruction::FDiv:Out << "Instruction::FDiv"; break;
1243    case Instruction::URem:Out << "Instruction::URem"; break;
1244    case Instruction::SRem:Out << "Instruction::SRem"; break;
1245    case Instruction::FRem:Out << "Instruction::FRem"; break;
1246    case Instruction::And: Out << "Instruction::And"; break;
1247    case Instruction::Or:  Out << "Instruction::Or";  break;
1248    case Instruction::Xor: Out << "Instruction::Xor"; break;
1249    case Instruction::Shl: Out << "Instruction::Shl"; break;
1250    case Instruction::LShr:Out << "Instruction::LShr"; break;
1251    case Instruction::AShr:Out << "Instruction::AShr"; break;
1252    default: Out << "Instruction::BadOpCode"; break;
1253    }
1254    Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1255    printEscapedString(I->getName());
1256    Out << "\", " << bbname << ");";
1257    break;
1258  }
1259  case Instruction::FCmp: {
1260    Out << "FCmpInst* " << iName << " = new FCmpInst(*" << bbname << ", ";
1261    switch (cast<FCmpInst>(I)->getPredicate()) {
1262    case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break;
1263    case FCmpInst::FCMP_OEQ  : Out << "FCmpInst::FCMP_OEQ"; break;
1264    case FCmpInst::FCMP_OGT  : Out << "FCmpInst::FCMP_OGT"; break;
1265    case FCmpInst::FCMP_OGE  : Out << "FCmpInst::FCMP_OGE"; break;
1266    case FCmpInst::FCMP_OLT  : Out << "FCmpInst::FCMP_OLT"; break;
1267    case FCmpInst::FCMP_OLE  : Out << "FCmpInst::FCMP_OLE"; break;
1268    case FCmpInst::FCMP_ONE  : Out << "FCmpInst::FCMP_ONE"; break;
1269    case FCmpInst::FCMP_ORD  : Out << "FCmpInst::FCMP_ORD"; break;
1270    case FCmpInst::FCMP_UNO  : Out << "FCmpInst::FCMP_UNO"; break;
1271    case FCmpInst::FCMP_UEQ  : Out << "FCmpInst::FCMP_UEQ"; break;
1272    case FCmpInst::FCMP_UGT  : Out << "FCmpInst::FCMP_UGT"; break;
1273    case FCmpInst::FCMP_UGE  : Out << "FCmpInst::FCMP_UGE"; break;
1274    case FCmpInst::FCMP_ULT  : Out << "FCmpInst::FCMP_ULT"; break;
1275    case FCmpInst::FCMP_ULE  : Out << "FCmpInst::FCMP_ULE"; break;
1276    case FCmpInst::FCMP_UNE  : Out << "FCmpInst::FCMP_UNE"; break;
1277    case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break;
1278    default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break;
1279    }
1280    Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1281    printEscapedString(I->getName());
1282    Out << "\");";
1283    break;
1284  }
1285  case Instruction::ICmp: {
1286    Out << "ICmpInst* " << iName << " = new ICmpInst(*" << bbname << ", ";
1287    switch (cast<ICmpInst>(I)->getPredicate()) {
1288    case ICmpInst::ICMP_EQ:  Out << "ICmpInst::ICMP_EQ";  break;
1289    case ICmpInst::ICMP_NE:  Out << "ICmpInst::ICMP_NE";  break;
1290    case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break;
1291    case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break;
1292    case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break;
1293    case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break;
1294    case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break;
1295    case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break;
1296    case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break;
1297    case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break;
1298    default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break;
1299    }
1300    Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1301    printEscapedString(I->getName());
1302    Out << "\");";
1303    break;
1304  }
1305  case Instruction::Alloca: {
1306    const AllocaInst* allocaI = cast<AllocaInst>(I);
1307    Out << "AllocaInst* " << iName << " = new AllocaInst("
1308        << getCppName(allocaI->getAllocatedType()) << ", ";
1309    if (allocaI->isArrayAllocation())
1310      Out << opNames[0] << ", ";
1311    Out << "\"";
1312    printEscapedString(allocaI->getName());
1313    Out << "\", " << bbname << ");";
1314    if (allocaI->getAlignment())
1315      nl(Out) << iName << "->setAlignment("
1316          << allocaI->getAlignment() << ");";
1317    break;
1318  }
1319  case Instruction::Load: {
1320    const LoadInst* load = cast<LoadInst>(I);
1321    Out << "LoadInst* " << iName << " = new LoadInst("
1322        << opNames[0] << ", \"";
1323    printEscapedString(load->getName());
1324    Out << "\", " << (load->isVolatile() ? "true" : "false" )
1325        << ", " << bbname << ");";
1326    if (load->getAlignment())
1327      nl(Out) << iName << "->setAlignment("
1328              << load->getAlignment() << ");";
1329    if (load->isAtomic()) {
1330      StringRef Ordering = ConvertAtomicOrdering(load->getOrdering());
1331      StringRef CrossThread = ConvertAtomicSynchScope(load->getSynchScope());
1332      nl(Out) << iName << "->setAtomic("
1333              << Ordering << ", " << CrossThread << ");";
1334    }
1335    break;
1336  }
1337  case Instruction::Store: {
1338    const StoreInst* store = cast<StoreInst>(I);
1339    Out << "StoreInst* " << iName << " = new StoreInst("
1340        << opNames[0] << ", "
1341        << opNames[1] << ", "
1342        << (store->isVolatile() ? "true" : "false")
1343        << ", " << bbname << ");";
1344    if (store->getAlignment())
1345      nl(Out) << iName << "->setAlignment("
1346              << store->getAlignment() << ");";
1347    if (store->isAtomic()) {
1348      StringRef Ordering = ConvertAtomicOrdering(store->getOrdering());
1349      StringRef CrossThread = ConvertAtomicSynchScope(store->getSynchScope());
1350      nl(Out) << iName << "->setAtomic("
1351              << Ordering << ", " << CrossThread << ");";
1352    }
1353    break;
1354  }
1355  case Instruction::GetElementPtr: {
1356    const GetElementPtrInst* gep = cast<GetElementPtrInst>(I);
1357    if (gep->getNumOperands() <= 2) {
1358      Out << "GetElementPtrInst* " << iName << " = GetElementPtrInst::Create("
1359          << opNames[0];
1360      if (gep->getNumOperands() == 2)
1361        Out << ", " << opNames[1];
1362    } else {
1363      Out << "std::vector<Value*> " << iName << "_indices;";
1364      nl(Out);
1365      for (unsigned i = 1; i < gep->getNumOperands(); ++i ) {
1366        Out << iName << "_indices.push_back("
1367            << opNames[i] << ");";
1368        nl(Out);
1369      }
1370      Out << "Instruction* " << iName << " = GetElementPtrInst::Create("
1371          << opNames[0] << ", " << iName << "_indices";
1372    }
1373    Out << ", \"";
1374    printEscapedString(gep->getName());
1375    Out << "\", " << bbname << ");";
1376    break;
1377  }
1378  case Instruction::PHI: {
1379    const PHINode* phi = cast<PHINode>(I);
1380
1381    Out << "PHINode* " << iName << " = PHINode::Create("
1382        << getCppName(phi->getType()) << ", "
1383        << phi->getNumIncomingValues() << ", \"";
1384    printEscapedString(phi->getName());
1385    Out << "\", " << bbname << ");";
1386    nl(Out);
1387    for (unsigned i = 0; i < phi->getNumIncomingValues(); ++i) {
1388      Out << iName << "->addIncoming("
1389          << opNames[PHINode::getOperandNumForIncomingValue(i)] << ", "
1390          << getOpName(phi->getIncomingBlock(i)) << ");";
1391      nl(Out);
1392    }
1393    break;
1394  }
1395  case Instruction::Trunc:
1396  case Instruction::ZExt:
1397  case Instruction::SExt:
1398  case Instruction::FPTrunc:
1399  case Instruction::FPExt:
1400  case Instruction::FPToUI:
1401  case Instruction::FPToSI:
1402  case Instruction::UIToFP:
1403  case Instruction::SIToFP:
1404  case Instruction::PtrToInt:
1405  case Instruction::IntToPtr:
1406  case Instruction::BitCast: {
1407    const CastInst* cst = cast<CastInst>(I);
1408    Out << "CastInst* " << iName << " = new ";
1409    switch (I->getOpcode()) {
1410    case Instruction::Trunc:    Out << "TruncInst"; break;
1411    case Instruction::ZExt:     Out << "ZExtInst"; break;
1412    case Instruction::SExt:     Out << "SExtInst"; break;
1413    case Instruction::FPTrunc:  Out << "FPTruncInst"; break;
1414    case Instruction::FPExt:    Out << "FPExtInst"; break;
1415    case Instruction::FPToUI:   Out << "FPToUIInst"; break;
1416    case Instruction::FPToSI:   Out << "FPToSIInst"; break;
1417    case Instruction::UIToFP:   Out << "UIToFPInst"; break;
1418    case Instruction::SIToFP:   Out << "SIToFPInst"; break;
1419    case Instruction::PtrToInt: Out << "PtrToIntInst"; break;
1420    case Instruction::IntToPtr: Out << "IntToPtrInst"; break;
1421    case Instruction::BitCast:  Out << "BitCastInst"; break;
1422    default: llvm_unreachable("Unreachable");
1423    }
1424    Out << "(" << opNames[0] << ", "
1425        << getCppName(cst->getType()) << ", \"";
1426    printEscapedString(cst->getName());
1427    Out << "\", " << bbname << ");";
1428    break;
1429  }
1430  case Instruction::Call: {
1431    const CallInst* call = cast<CallInst>(I);
1432    if (const InlineAsm* ila = dyn_cast<InlineAsm>(call->getCalledValue())) {
1433      Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get("
1434          << getCppName(ila->getFunctionType()) << ", \""
1435          << ila->getAsmString() << "\", \""
1436          << ila->getConstraintString() << "\","
1437          << (ila->hasSideEffects() ? "true" : "false") << ");";
1438      nl(Out);
1439    }
1440    if (call->getNumArgOperands() > 1) {
1441      Out << "std::vector<Value*> " << iName << "_params;";
1442      nl(Out);
1443      for (unsigned i = 0; i < call->getNumArgOperands(); ++i) {
1444        Out << iName << "_params.push_back(" << opNames[i] << ");";
1445        nl(Out);
1446      }
1447      Out << "CallInst* " << iName << " = CallInst::Create("
1448          << opNames[call->getNumArgOperands()] << ", "
1449          << iName << "_params, \"";
1450    } else if (call->getNumArgOperands() == 1) {
1451      Out << "CallInst* " << iName << " = CallInst::Create("
1452          << opNames[call->getNumArgOperands()] << ", " << opNames[0] << ", \"";
1453    } else {
1454      Out << "CallInst* " << iName << " = CallInst::Create("
1455          << opNames[call->getNumArgOperands()] << ", \"";
1456    }
1457    printEscapedString(call->getName());
1458    Out << "\", " << bbname << ");";
1459    nl(Out) << iName << "->setCallingConv(";
1460    printCallingConv(call->getCallingConv());
1461    Out << ");";
1462    nl(Out) << iName << "->setTailCall("
1463        << (call->isTailCall() ? "true" : "false");
1464    Out << ");";
1465    nl(Out);
1466    printAttributes(call->getAttributes(), iName);
1467    Out << iName << "->setAttributes(" << iName << "_PAL);";
1468    nl(Out);
1469    break;
1470  }
1471  case Instruction::Select: {
1472    const SelectInst* sel = cast<SelectInst>(I);
1473    Out << "SelectInst* " << getCppName(sel) << " = SelectInst::Create(";
1474    Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1475    printEscapedString(sel->getName());
1476    Out << "\", " << bbname << ");";
1477    break;
1478  }
1479  case Instruction::UserOp1:
1480    /// FALL THROUGH
1481  case Instruction::UserOp2: {
1482    /// FIXME: What should be done here?
1483    break;
1484  }
1485  case Instruction::VAArg: {
1486    const VAArgInst* va = cast<VAArgInst>(I);
1487    Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst("
1488        << opNames[0] << ", " << getCppName(va->getType()) << ", \"";
1489    printEscapedString(va->getName());
1490    Out << "\", " << bbname << ");";
1491    break;
1492  }
1493  case Instruction::ExtractElement: {
1494    const ExtractElementInst* eei = cast<ExtractElementInst>(I);
1495    Out << "ExtractElementInst* " << getCppName(eei)
1496        << " = new ExtractElementInst(" << opNames[0]
1497        << ", " << opNames[1] << ", \"";
1498    printEscapedString(eei->getName());
1499    Out << "\", " << bbname << ");";
1500    break;
1501  }
1502  case Instruction::InsertElement: {
1503    const InsertElementInst* iei = cast<InsertElementInst>(I);
1504    Out << "InsertElementInst* " << getCppName(iei)
1505        << " = InsertElementInst::Create(" << opNames[0]
1506        << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1507    printEscapedString(iei->getName());
1508    Out << "\", " << bbname << ");";
1509    break;
1510  }
1511  case Instruction::ShuffleVector: {
1512    const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I);
1513    Out << "ShuffleVectorInst* " << getCppName(svi)
1514        << " = new ShuffleVectorInst(" << opNames[0]
1515        << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1516    printEscapedString(svi->getName());
1517    Out << "\", " << bbname << ");";
1518    break;
1519  }
1520  case Instruction::ExtractValue: {
1521    const ExtractValueInst *evi = cast<ExtractValueInst>(I);
1522    Out << "std::vector<unsigned> " << iName << "_indices;";
1523    nl(Out);
1524    for (unsigned i = 0; i < evi->getNumIndices(); ++i) {
1525      Out << iName << "_indices.push_back("
1526          << evi->idx_begin()[i] << ");";
1527      nl(Out);
1528    }
1529    Out << "ExtractValueInst* " << getCppName(evi)
1530        << " = ExtractValueInst::Create(" << opNames[0]
1531        << ", "
1532        << iName << "_indices, \"";
1533    printEscapedString(evi->getName());
1534    Out << "\", " << bbname << ");";
1535    break;
1536  }
1537  case Instruction::InsertValue: {
1538    const InsertValueInst *ivi = cast<InsertValueInst>(I);
1539    Out << "std::vector<unsigned> " << iName << "_indices;";
1540    nl(Out);
1541    for (unsigned i = 0; i < ivi->getNumIndices(); ++i) {
1542      Out << iName << "_indices.push_back("
1543          << ivi->idx_begin()[i] << ");";
1544      nl(Out);
1545    }
1546    Out << "InsertValueInst* " << getCppName(ivi)
1547        << " = InsertValueInst::Create(" << opNames[0]
1548        << ", " << opNames[1] << ", "
1549        << iName << "_indices, \"";
1550    printEscapedString(ivi->getName());
1551    Out << "\", " << bbname << ");";
1552    break;
1553  }
1554  case Instruction::Fence: {
1555    const FenceInst *fi = cast<FenceInst>(I);
1556    StringRef Ordering = ConvertAtomicOrdering(fi->getOrdering());
1557    StringRef CrossThread = ConvertAtomicSynchScope(fi->getSynchScope());
1558    Out << "FenceInst* " << iName
1559        << " = new FenceInst(mod->getContext(), "
1560        << Ordering << ", " << CrossThread << ", " << bbname
1561        << ");";
1562    break;
1563  }
1564  case Instruction::AtomicCmpXchg: {
1565    const AtomicCmpXchgInst *cxi = cast<AtomicCmpXchgInst>(I);
1566    StringRef SuccessOrdering =
1567        ConvertAtomicOrdering(cxi->getSuccessOrdering());
1568    StringRef FailureOrdering =
1569        ConvertAtomicOrdering(cxi->getFailureOrdering());
1570    StringRef CrossThread = ConvertAtomicSynchScope(cxi->getSynchScope());
1571    Out << "AtomicCmpXchgInst* " << iName
1572        << " = new AtomicCmpXchgInst("
1573        << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", "
1574        << SuccessOrdering << ", " << FailureOrdering << ", "
1575        << CrossThread << ", " << bbname
1576        << ");";
1577    nl(Out) << iName << "->setName(\"";
1578    printEscapedString(cxi->getName());
1579    Out << "\");";
1580    break;
1581  }
1582  case Instruction::AtomicRMW: {
1583    const AtomicRMWInst *rmwi = cast<AtomicRMWInst>(I);
1584    StringRef Ordering = ConvertAtomicOrdering(rmwi->getOrdering());
1585    StringRef CrossThread = ConvertAtomicSynchScope(rmwi->getSynchScope());
1586    StringRef Operation;
1587    switch (rmwi->getOperation()) {
1588      case AtomicRMWInst::Xchg: Operation = "AtomicRMWInst::Xchg"; break;
1589      case AtomicRMWInst::Add:  Operation = "AtomicRMWInst::Add"; break;
1590      case AtomicRMWInst::Sub:  Operation = "AtomicRMWInst::Sub"; break;
1591      case AtomicRMWInst::And:  Operation = "AtomicRMWInst::And"; break;
1592      case AtomicRMWInst::Nand: Operation = "AtomicRMWInst::Nand"; break;
1593      case AtomicRMWInst::Or:   Operation = "AtomicRMWInst::Or"; break;
1594      case AtomicRMWInst::Xor:  Operation = "AtomicRMWInst::Xor"; break;
1595      case AtomicRMWInst::Max:  Operation = "AtomicRMWInst::Max"; break;
1596      case AtomicRMWInst::Min:  Operation = "AtomicRMWInst::Min"; break;
1597      case AtomicRMWInst::UMax: Operation = "AtomicRMWInst::UMax"; break;
1598      case AtomicRMWInst::UMin: Operation = "AtomicRMWInst::UMin"; break;
1599      case AtomicRMWInst::BAD_BINOP: llvm_unreachable("Bad atomic operation");
1600    }
1601    Out << "AtomicRMWInst* " << iName
1602        << " = new AtomicRMWInst("
1603        << Operation << ", "
1604        << opNames[0] << ", " << opNames[1] << ", "
1605        << Ordering << ", " << CrossThread << ", " << bbname
1606        << ");";
1607    nl(Out) << iName << "->setName(\"";
1608    printEscapedString(rmwi->getName());
1609    Out << "\");";
1610    break;
1611  }
1612  case Instruction::LandingPad: {
1613    const LandingPadInst *lpi = cast<LandingPadInst>(I);
1614    Out << "LandingPadInst* " << iName << " = LandingPadInst::Create(";
1615    printCppName(lpi->getType());
1616    Out << ", " << opNames[0] << ", " << lpi->getNumClauses() << ", \"";
1617    printEscapedString(lpi->getName());
1618    Out << "\", " << bbname << ");";
1619    nl(Out) << iName << "->setCleanup("
1620            << (lpi->isCleanup() ? "true" : "false")
1621            << ");";
1622    for (unsigned i = 0, e = lpi->getNumClauses(); i != e; ++i)
1623      nl(Out) << iName << "->addClause(" << opNames[i+1] << ");";
1624    break;
1625  }
1626  }
1627  DefinedValues.insert(I);
1628  nl(Out);
1629  delete [] opNames;
1630}
1631
1632// Print out the types, constants and declarations needed by one function
1633void CppWriter::printFunctionUses(const Function* F) {
1634  nl(Out) << "// Type Definitions"; nl(Out);
1635  if (!is_inline) {
1636    // Print the function's return type
1637    printType(F->getReturnType());
1638
1639    // Print the function's function type
1640    printType(F->getFunctionType());
1641
1642    // Print the types of each of the function's arguments
1643    for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1644         AI != AE; ++AI) {
1645      printType(AI->getType());
1646    }
1647  }
1648
1649  // Print type definitions for every type referenced by an instruction and
1650  // make a note of any global values or constants that are referenced
1651  SmallPtrSet<GlobalValue*,64> gvs;
1652  SmallPtrSet<Constant*,64> consts;
1653  for (Function::const_iterator BB = F->begin(), BE = F->end();
1654       BB != BE; ++BB){
1655    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1656         I != E; ++I) {
1657      // Print the type of the instruction itself
1658      printType(I->getType());
1659
1660      // Print the type of each of the instruction's operands
1661      for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1662        Value* operand = I->getOperand(i);
1663        printType(operand->getType());
1664
1665        // If the operand references a GVal or Constant, make a note of it
1666        if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
1667          gvs.insert(GV);
1668          if (GenerationType != GenFunction)
1669            if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1670              if (GVar->hasInitializer())
1671                consts.insert(GVar->getInitializer());
1672        } else if (Constant* C = dyn_cast<Constant>(operand)) {
1673          consts.insert(C);
1674          for (unsigned j = 0; j < C->getNumOperands(); ++j) {
1675            // If the operand references a GVal or Constant, make a note of it
1676            Value* operand = C->getOperand(j);
1677            printType(operand->getType());
1678            if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
1679              gvs.insert(GV);
1680              if (GenerationType != GenFunction)
1681                if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1682                  if (GVar->hasInitializer())
1683                    consts.insert(GVar->getInitializer());
1684            }
1685          }
1686        }
1687      }
1688    }
1689  }
1690
1691  // Print the function declarations for any functions encountered
1692  nl(Out) << "// Function Declarations"; nl(Out);
1693  for (auto *GV : gvs) {
1694    if (Function *Fun = dyn_cast<Function>(GV)) {
1695      if (!is_inline || Fun != F)
1696        printFunctionHead(Fun);
1697    }
1698  }
1699
1700  // Print the global variable declarations for any variables encountered
1701  nl(Out) << "// Global Variable Declarations"; nl(Out);
1702  for (auto *GV : gvs) {
1703    if (GlobalVariable *F = dyn_cast<GlobalVariable>(GV))
1704      printVariableHead(F);
1705  }
1706
1707  // Print the constants found
1708  nl(Out) << "// Constant Definitions"; nl(Out);
1709  for (const auto *C : consts) {
1710    printConstant(C);
1711  }
1712
1713  // Process the global variables definitions now that all the constants have
1714  // been emitted. These definitions just couple the gvars with their constant
1715  // initializers.
1716  if (GenerationType != GenFunction) {
1717    nl(Out) << "// Global Variable Definitions"; nl(Out);
1718    for (const auto &GV : gvs) {
1719      if (GlobalVariable *Var = dyn_cast<GlobalVariable>(GV))
1720        printVariableBody(Var);
1721    }
1722  }
1723}
1724
1725void CppWriter::printFunctionHead(const Function* F) {
1726  nl(Out) << "Function* " << getCppName(F);
1727  Out << " = mod->getFunction(\"";
1728  printEscapedString(F->getName());
1729  Out << "\");";
1730  nl(Out) << "if (!" << getCppName(F) << ") {";
1731  nl(Out) << getCppName(F);
1732
1733  Out<< " = Function::Create(";
1734  nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ",";
1735  nl(Out) << "/*Linkage=*/";
1736  printLinkageType(F->getLinkage());
1737  Out << ",";
1738  nl(Out) << "/*Name=*/\"";
1739  printEscapedString(F->getName());
1740  Out << "\", mod); " << (F->isDeclaration()? "// (external, no body)" : "");
1741  nl(Out,-1);
1742  printCppName(F);
1743  Out << "->setCallingConv(";
1744  printCallingConv(F->getCallingConv());
1745  Out << ");";
1746  nl(Out);
1747  if (F->hasSection()) {
1748    printCppName(F);
1749    Out << "->setSection(\"" << F->getSection() << "\");";
1750    nl(Out);
1751  }
1752  if (F->getAlignment()) {
1753    printCppName(F);
1754    Out << "->setAlignment(" << F->getAlignment() << ");";
1755    nl(Out);
1756  }
1757  if (F->getVisibility() != GlobalValue::DefaultVisibility) {
1758    printCppName(F);
1759    Out << "->setVisibility(";
1760    printVisibilityType(F->getVisibility());
1761    Out << ");";
1762    nl(Out);
1763  }
1764  if (F->getDLLStorageClass() != GlobalValue::DefaultStorageClass) {
1765    printCppName(F);
1766    Out << "->setDLLStorageClass(";
1767    printDLLStorageClassType(F->getDLLStorageClass());
1768    Out << ");";
1769    nl(Out);
1770  }
1771  if (F->hasGC()) {
1772    printCppName(F);
1773    Out << "->setGC(\"" << F->getGC() << "\");";
1774    nl(Out);
1775  }
1776  Out << "}";
1777  nl(Out);
1778  printAttributes(F->getAttributes(), getCppName(F));
1779  printCppName(F);
1780  Out << "->setAttributes(" << getCppName(F) << "_PAL);";
1781  nl(Out);
1782}
1783
1784void CppWriter::printFunctionBody(const Function *F) {
1785  if (F->isDeclaration())
1786    return; // external functions have no bodies.
1787
1788  // Clear the DefinedValues and ForwardRefs maps because we can't have
1789  // cross-function forward refs
1790  ForwardRefs.clear();
1791  DefinedValues.clear();
1792
1793  // Create all the argument values
1794  if (!is_inline) {
1795    if (!F->arg_empty()) {
1796      Out << "Function::arg_iterator args = " << getCppName(F)
1797          << "->arg_begin();";
1798      nl(Out);
1799    }
1800    for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1801         AI != AE; ++AI) {
1802      Out << "Value* " << getCppName(AI) << " = args++;";
1803      nl(Out);
1804      if (AI->hasName()) {
1805        Out << getCppName(AI) << "->setName(\"";
1806        printEscapedString(AI->getName());
1807        Out << "\");";
1808        nl(Out);
1809      }
1810    }
1811  }
1812
1813  // Create all the basic blocks
1814  nl(Out);
1815  for (Function::const_iterator BI = F->begin(), BE = F->end();
1816       BI != BE; ++BI) {
1817    std::string bbname(getCppName(BI));
1818    Out << "BasicBlock* " << bbname <<
1819           " = BasicBlock::Create(mod->getContext(), \"";
1820    if (BI->hasName())
1821      printEscapedString(BI->getName());
1822    Out << "\"," << getCppName(BI->getParent()) << ",0);";
1823    nl(Out);
1824  }
1825
1826  // Output all of its basic blocks... for the function
1827  for (Function::const_iterator BI = F->begin(), BE = F->end();
1828       BI != BE; ++BI) {
1829    std::string bbname(getCppName(BI));
1830    nl(Out) << "// Block " << BI->getName() << " (" << bbname << ")";
1831    nl(Out);
1832
1833    // Output all of the instructions in the basic block...
1834    for (BasicBlock::const_iterator I = BI->begin(), E = BI->end();
1835         I != E; ++I) {
1836      printInstruction(I,bbname);
1837    }
1838  }
1839
1840  // Loop over the ForwardRefs and resolve them now that all instructions
1841  // are generated.
1842  if (!ForwardRefs.empty()) {
1843    nl(Out) << "// Resolve Forward References";
1844    nl(Out);
1845  }
1846
1847  while (!ForwardRefs.empty()) {
1848    ForwardRefMap::iterator I = ForwardRefs.begin();
1849    Out << I->second << "->replaceAllUsesWith("
1850        << getCppName(I->first) << "); delete " << I->second << ";";
1851    nl(Out);
1852    ForwardRefs.erase(I);
1853  }
1854}
1855
1856void CppWriter::printInline(const std::string& fname,
1857                            const std::string& func) {
1858  const Function* F = TheModule->getFunction(func);
1859  if (!F) {
1860    error(std::string("Function '") + func + "' not found in input module");
1861    return;
1862  }
1863  if (F->isDeclaration()) {
1864    error(std::string("Function '") + func + "' is external!");
1865    return;
1866  }
1867  nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *"
1868          << getCppName(F);
1869  unsigned arg_count = 1;
1870  for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1871       AI != AE; ++AI) {
1872    Out << ", Value* arg_" << arg_count++;
1873  }
1874  Out << ") {";
1875  nl(Out);
1876  is_inline = true;
1877  printFunctionUses(F);
1878  printFunctionBody(F);
1879  is_inline = false;
1880  Out << "return " << getCppName(F->begin()) << ";";
1881  nl(Out) << "}";
1882  nl(Out);
1883}
1884
1885void CppWriter::printModuleBody() {
1886  // Print out all the type definitions
1887  nl(Out) << "// Type Definitions"; nl(Out);
1888  printTypes(TheModule);
1889
1890  // Functions can call each other and global variables can reference them so
1891  // define all the functions first before emitting their function bodies.
1892  nl(Out) << "// Function Declarations"; nl(Out);
1893  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1894       I != E; ++I)
1895    printFunctionHead(I);
1896
1897  // Process the global variables declarations. We can't initialze them until
1898  // after the constants are printed so just print a header for each global
1899  nl(Out) << "// Global Variable Declarations\n"; nl(Out);
1900  for (Module::const_global_iterator I = TheModule->global_begin(),
1901         E = TheModule->global_end(); I != E; ++I) {
1902    printVariableHead(I);
1903  }
1904
1905  // Print out all the constants definitions. Constants don't recurse except
1906  // through GlobalValues. All GlobalValues have been declared at this point
1907  // so we can proceed to generate the constants.
1908  nl(Out) << "// Constant Definitions"; nl(Out);
1909  printConstants(TheModule);
1910
1911  // Process the global variables definitions now that all the constants have
1912  // been emitted. These definitions just couple the gvars with their constant
1913  // initializers.
1914  nl(Out) << "// Global Variable Definitions"; nl(Out);
1915  for (Module::const_global_iterator I = TheModule->global_begin(),
1916         E = TheModule->global_end(); I != E; ++I) {
1917    printVariableBody(I);
1918  }
1919
1920  // Finally, we can safely put out all of the function bodies.
1921  nl(Out) << "// Function Definitions"; nl(Out);
1922  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1923       I != E; ++I) {
1924    if (!I->isDeclaration()) {
1925      nl(Out) << "// Function: " << I->getName() << " (" << getCppName(I)
1926              << ")";
1927      nl(Out) << "{";
1928      nl(Out,1);
1929      printFunctionBody(I);
1930      nl(Out,-1) << "}";
1931      nl(Out);
1932    }
1933  }
1934}
1935
1936void CppWriter::printProgram(const std::string& fname,
1937                             const std::string& mName) {
1938  Out << "#include <llvm/Pass.h>\n";
1939  Out << "#include <llvm/PassManager.h>\n";
1940
1941  Out << "#include <llvm/ADT/SmallVector.h>\n";
1942  Out << "#include <llvm/Analysis/Verifier.h>\n";
1943  Out << "#include <llvm/IR/BasicBlock.h>\n";
1944  Out << "#include <llvm/IR/CallingConv.h>\n";
1945  Out << "#include <llvm/IR/Constants.h>\n";
1946  Out << "#include <llvm/IR/DerivedTypes.h>\n";
1947  Out << "#include <llvm/IR/Function.h>\n";
1948  Out << "#include <llvm/IR/GlobalVariable.h>\n";
1949  Out << "#include <llvm/IR/IRPrintingPasses.h>\n";
1950  Out << "#include <llvm/IR/InlineAsm.h>\n";
1951  Out << "#include <llvm/IR/Instructions.h>\n";
1952  Out << "#include <llvm/IR/LLVMContext.h>\n";
1953  Out << "#include <llvm/IR/Module.h>\n";
1954  Out << "#include <llvm/Support/FormattedStream.h>\n";
1955  Out << "#include <llvm/Support/MathExtras.h>\n";
1956  Out << "#include <algorithm>\n";
1957  Out << "using namespace llvm;\n\n";
1958  Out << "Module* " << fname << "();\n\n";
1959  Out << "int main(int argc, char**argv) {\n";
1960  Out << "  Module* Mod = " << fname << "();\n";
1961  Out << "  verifyModule(*Mod, PrintMessageAction);\n";
1962  Out << "  PassManager PM;\n";
1963  Out << "  PM.add(createPrintModulePass(&outs()));\n";
1964  Out << "  PM.run(*Mod);\n";
1965  Out << "  return 0;\n";
1966  Out << "}\n\n";
1967  printModule(fname,mName);
1968}
1969
1970void CppWriter::printModule(const std::string& fname,
1971                            const std::string& mName) {
1972  nl(Out) << "Module* " << fname << "() {";
1973  nl(Out,1) << "// Module Construction";
1974  nl(Out) << "Module* mod = new Module(\"";
1975  printEscapedString(mName);
1976  Out << "\", getGlobalContext());";
1977  if (!TheModule->getTargetTriple().empty()) {
1978    nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayout() << "\");";
1979  }
1980  if (!TheModule->getTargetTriple().empty()) {
1981    nl(Out) << "mod->setTargetTriple(\"" << TheModule->getTargetTriple()
1982            << "\");";
1983  }
1984
1985  if (!TheModule->getModuleInlineAsm().empty()) {
1986    nl(Out) << "mod->setModuleInlineAsm(\"";
1987    printEscapedString(TheModule->getModuleInlineAsm());
1988    Out << "\");";
1989  }
1990  nl(Out);
1991
1992  printModuleBody();
1993  nl(Out) << "return mod;";
1994  nl(Out,-1) << "}";
1995  nl(Out);
1996}
1997
1998void CppWriter::printContents(const std::string& fname,
1999                              const std::string& mName) {
2000  Out << "\nModule* " << fname << "(Module *mod) {\n";
2001  Out << "\nmod->setModuleIdentifier(\"";
2002  printEscapedString(mName);
2003  Out << "\");\n";
2004  printModuleBody();
2005  Out << "\nreturn mod;\n";
2006  Out << "\n}\n";
2007}
2008
2009void CppWriter::printFunction(const std::string& fname,
2010                              const std::string& funcName) {
2011  const Function* F = TheModule->getFunction(funcName);
2012  if (!F) {
2013    error(std::string("Function '") + funcName + "' not found in input module");
2014    return;
2015  }
2016  Out << "\nFunction* " << fname << "(Module *mod) {\n";
2017  printFunctionUses(F);
2018  printFunctionHead(F);
2019  printFunctionBody(F);
2020  Out << "return " << getCppName(F) << ";\n";
2021  Out << "}\n";
2022}
2023
2024void CppWriter::printFunctions() {
2025  const Module::FunctionListType &funcs = TheModule->getFunctionList();
2026  Module::const_iterator I  = funcs.begin();
2027  Module::const_iterator IE = funcs.end();
2028
2029  for (; I != IE; ++I) {
2030    const Function &func = *I;
2031    if (!func.isDeclaration()) {
2032      std::string name("define_");
2033      name += func.getName();
2034      printFunction(name, func.getName());
2035    }
2036  }
2037}
2038
2039void CppWriter::printVariable(const std::string& fname,
2040                              const std::string& varName) {
2041  const GlobalVariable* GV = TheModule->getNamedGlobal(varName);
2042
2043  if (!GV) {
2044    error(std::string("Variable '") + varName + "' not found in input module");
2045    return;
2046  }
2047  Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n";
2048  printVariableUses(GV);
2049  printVariableHead(GV);
2050  printVariableBody(GV);
2051  Out << "return " << getCppName(GV) << ";\n";
2052  Out << "}\n";
2053}
2054
2055void CppWriter::printType(const std::string &fname,
2056                          const std::string &typeName) {
2057  Type* Ty = TheModule->getTypeByName(typeName);
2058  if (!Ty) {
2059    error(std::string("Type '") + typeName + "' not found in input module");
2060    return;
2061  }
2062  Out << "\nType* " << fname << "(Module *mod) {\n";
2063  printType(Ty);
2064  Out << "return " << getCppName(Ty) << ";\n";
2065  Out << "}\n";
2066}
2067
2068bool CppWriter::runOnModule(Module &M) {
2069  TheModule = &M;
2070
2071  // Emit a header
2072  Out << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n";
2073
2074  // Get the name of the function we're supposed to generate
2075  std::string fname = FuncName.getValue();
2076
2077  // Get the name of the thing we are to generate
2078  std::string tgtname = NameToGenerate.getValue();
2079  if (GenerationType == GenModule ||
2080      GenerationType == GenContents ||
2081      GenerationType == GenProgram ||
2082      GenerationType == GenFunctions) {
2083    if (tgtname == "!bad!") {
2084      if (M.getModuleIdentifier() == "-")
2085        tgtname = "<stdin>";
2086      else
2087        tgtname = M.getModuleIdentifier();
2088    }
2089  } else if (tgtname == "!bad!")
2090    error("You must use the -for option with -gen-{function,variable,type}");
2091
2092  switch (WhatToGenerate(GenerationType)) {
2093   case GenProgram:
2094    if (fname.empty())
2095      fname = "makeLLVMModule";
2096    printProgram(fname,tgtname);
2097    break;
2098   case GenModule:
2099    if (fname.empty())
2100      fname = "makeLLVMModule";
2101    printModule(fname,tgtname);
2102    break;
2103   case GenContents:
2104    if (fname.empty())
2105      fname = "makeLLVMModuleContents";
2106    printContents(fname,tgtname);
2107    break;
2108   case GenFunction:
2109    if (fname.empty())
2110      fname = "makeLLVMFunction";
2111    printFunction(fname,tgtname);
2112    break;
2113   case GenFunctions:
2114    printFunctions();
2115    break;
2116   case GenInline:
2117    if (fname.empty())
2118      fname = "makeLLVMInline";
2119    printInline(fname,tgtname);
2120    break;
2121   case GenVariable:
2122    if (fname.empty())
2123      fname = "makeLLVMVariable";
2124    printVariable(fname,tgtname);
2125    break;
2126   case GenType:
2127    if (fname.empty())
2128      fname = "makeLLVMType";
2129    printType(fname,tgtname);
2130    break;
2131  }
2132
2133  return false;
2134}
2135
2136char CppWriter::ID = 0;
2137
2138//===----------------------------------------------------------------------===//
2139//                       External Interface declaration
2140//===----------------------------------------------------------------------===//
2141
2142bool CPPTargetMachine::addPassesToEmitFile(PassManagerBase &PM,
2143                                           formatted_raw_ostream &o,
2144                                           CodeGenFileType FileType,
2145                                           bool DisableVerify,
2146                                           AnalysisID StartAfter,
2147                                           AnalysisID StopAfter) {
2148  if (FileType != TargetMachine::CGFT_AssemblyFile) return true;
2149  PM.add(new CppWriter(o));
2150  return false;
2151}
2152