HexagonHardwareLoops.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===-- HexagonHardwareLoops.cpp - Identify and generate hardware loops ---===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass identifies loops where we can generate the Hexagon hardware
11// loop instruction.  The hardware loop can perform loop branches with a
12// zero-cycle overhead.
13//
14// The pattern that defines the induction variable can changed depending on
15// prior optimizations.  For example, the IndVarSimplify phase run by 'opt'
16// normalizes induction variables, and the Loop Strength Reduction pass
17// run by 'llc' may also make changes to the induction variable.
18// The pattern detected by this phase is due to running Strength Reduction.
19//
20// Criteria for hardware loops:
21//  - Countable loops (w/ ind. var for a trip count)
22//  - Assumes loops are normalized by IndVarSimplify
23//  - Try inner-most loops first
24//  - No nested hardware loops.
25//  - No function calls in loops.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/ADT/SmallSet.h"
30#include "Hexagon.h"
31#include "HexagonTargetMachine.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/CodeGen/MachineDominators.h"
34#include "llvm/CodeGen/MachineFunction.h"
35#include "llvm/CodeGen/MachineFunctionPass.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineLoopInfo.h"
38#include "llvm/CodeGen/MachineRegisterInfo.h"
39#include "llvm/PassSupport.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/Target/TargetInstrInfo.h"
44#include <algorithm>
45#include <vector>
46
47using namespace llvm;
48
49#define DEBUG_TYPE "hwloops"
50
51#ifndef NDEBUG
52static cl::opt<int> HWLoopLimit("max-hwloop", cl::Hidden, cl::init(-1));
53#endif
54
55STATISTIC(NumHWLoops, "Number of loops converted to hardware loops");
56
57namespace llvm {
58  void initializeHexagonHardwareLoopsPass(PassRegistry&);
59}
60
61namespace {
62  class CountValue;
63  struct HexagonHardwareLoops : public MachineFunctionPass {
64    MachineLoopInfo            *MLI;
65    MachineRegisterInfo        *MRI;
66    MachineDominatorTree       *MDT;
67    const HexagonTargetMachine *TM;
68    const HexagonInstrInfo     *TII;
69    const HexagonRegisterInfo  *TRI;
70#ifndef NDEBUG
71    static int Counter;
72#endif
73
74  public:
75    static char ID;
76
77    HexagonHardwareLoops() : MachineFunctionPass(ID) {
78      initializeHexagonHardwareLoopsPass(*PassRegistry::getPassRegistry());
79    }
80
81    bool runOnMachineFunction(MachineFunction &MF) override;
82
83    const char *getPassName() const override { return "Hexagon Hardware Loops"; }
84
85    void getAnalysisUsage(AnalysisUsage &AU) const override {
86      AU.addRequired<MachineDominatorTree>();
87      AU.addRequired<MachineLoopInfo>();
88      MachineFunctionPass::getAnalysisUsage(AU);
89    }
90
91  private:
92    /// Kinds of comparisons in the compare instructions.
93    struct Comparison {
94      enum Kind {
95        EQ  = 0x01,
96        NE  = 0x02,
97        L   = 0x04, // Less-than property.
98        G   = 0x08, // Greater-than property.
99        U   = 0x40, // Unsigned property.
100        LTs = L,
101        LEs = L | EQ,
102        GTs = G,
103        GEs = G | EQ,
104        LTu = L      | U,
105        LEu = L | EQ | U,
106        GTu = G      | U,
107        GEu = G | EQ | U
108      };
109
110      static Kind getSwappedComparison(Kind Cmp) {
111        assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator");
112        if ((Cmp & L) || (Cmp & G))
113          return (Kind)(Cmp ^ (L|G));
114        return Cmp;
115      }
116    };
117
118    /// \brief Find the register that contains the loop controlling
119    /// induction variable.
120    /// If successful, it will return true and set the \p Reg, \p IVBump
121    /// and \p IVOp arguments.  Otherwise it will return false.
122    /// The returned induction register is the register R that follows the
123    /// following induction pattern:
124    /// loop:
125    ///   R = phi ..., [ R.next, LatchBlock ]
126    ///   R.next = R + #bump
127    ///   if (R.next < #N) goto loop
128    /// IVBump is the immediate value added to R, and IVOp is the instruction
129    /// "R.next = R + #bump".
130    bool findInductionRegister(MachineLoop *L, unsigned &Reg,
131                               int64_t &IVBump, MachineInstr *&IVOp) const;
132
133    /// \brief Analyze the statements in a loop to determine if the loop
134    /// has a computable trip count and, if so, return a value that represents
135    /// the trip count expression.
136    CountValue *getLoopTripCount(MachineLoop *L,
137                                 SmallVectorImpl<MachineInstr *> &OldInsts);
138
139    /// \brief Return the expression that represents the number of times
140    /// a loop iterates.  The function takes the operands that represent the
141    /// loop start value, loop end value, and induction value.  Based upon
142    /// these operands, the function attempts to compute the trip count.
143    /// If the trip count is not directly available (as an immediate value,
144    /// or a register), the function will attempt to insert computation of it
145    /// to the loop's preheader.
146    CountValue *computeCount(MachineLoop *Loop,
147                             const MachineOperand *Start,
148                             const MachineOperand *End,
149                             unsigned IVReg,
150                             int64_t IVBump,
151                             Comparison::Kind Cmp) const;
152
153    /// \brief Return true if the instruction is not valid within a hardware
154    /// loop.
155    bool isInvalidLoopOperation(const MachineInstr *MI) const;
156
157    /// \brief Return true if the loop contains an instruction that inhibits
158    /// using the hardware loop.
159    bool containsInvalidInstruction(MachineLoop *L) const;
160
161    /// \brief Given a loop, check if we can convert it to a hardware loop.
162    /// If so, then perform the conversion and return true.
163    bool convertToHardwareLoop(MachineLoop *L);
164
165    /// \brief Return true if the instruction is now dead.
166    bool isDead(const MachineInstr *MI,
167                SmallVectorImpl<MachineInstr *> &DeadPhis) const;
168
169    /// \brief Remove the instruction if it is now dead.
170    void removeIfDead(MachineInstr *MI);
171
172    /// \brief Make sure that the "bump" instruction executes before the
173    /// compare.  We need that for the IV fixup, so that the compare
174    /// instruction would not use a bumped value that has not yet been
175    /// defined.  If the instructions are out of order, try to reorder them.
176    bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI);
177
178    /// \brief Get the instruction that loads an immediate value into \p R,
179    /// or 0 if such an instruction does not exist.
180    MachineInstr *defWithImmediate(unsigned R);
181
182    /// \brief Get the immediate value referenced to by \p MO, either for
183    /// immediate operands, or for register operands, where the register
184    /// was defined with an immediate value.
185    int64_t getImmediate(MachineOperand &MO);
186
187    /// \brief Reset the given machine operand to now refer to a new immediate
188    /// value.  Assumes that the operand was already referencing an immediate
189    /// value, either directly, or via a register.
190    void setImmediate(MachineOperand &MO, int64_t Val);
191
192    /// \brief Fix the data flow of the induction varible.
193    /// The desired flow is: phi ---> bump -+-> comparison-in-latch.
194    ///                                     |
195    ///                                     +-> back to phi
196    /// where "bump" is the increment of the induction variable:
197    ///   iv = iv + #const.
198    /// Due to some prior code transformations, the actual flow may look
199    /// like this:
200    ///   phi -+-> bump ---> back to phi
201    ///        |
202    ///        +-> comparison-in-latch (against upper_bound-bump),
203    /// i.e. the comparison that controls the loop execution may be using
204    /// the value of the induction variable from before the increment.
205    ///
206    /// Return true if the loop's flow is the desired one (i.e. it's
207    /// either been fixed, or no fixing was necessary).
208    /// Otherwise, return false.  This can happen if the induction variable
209    /// couldn't be identified, or if the value in the latch's comparison
210    /// cannot be adjusted to reflect the post-bump value.
211    bool fixupInductionVariable(MachineLoop *L);
212
213    /// \brief Given a loop, if it does not have a preheader, create one.
214    /// Return the block that is the preheader.
215    MachineBasicBlock *createPreheaderForLoop(MachineLoop *L);
216  };
217
218  char HexagonHardwareLoops::ID = 0;
219#ifndef NDEBUG
220  int HexagonHardwareLoops::Counter = 0;
221#endif
222
223  /// \brief Abstraction for a trip count of a loop. A smaller vesrsion
224  /// of the MachineOperand class without the concerns of changing the
225  /// operand representation.
226  class CountValue {
227  public:
228    enum CountValueType {
229      CV_Register,
230      CV_Immediate
231    };
232  private:
233    CountValueType Kind;
234    union Values {
235      struct {
236        unsigned Reg;
237        unsigned Sub;
238      } R;
239      unsigned ImmVal;
240    } Contents;
241
242  public:
243    explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) {
244      Kind = t;
245      if (Kind == CV_Register) {
246        Contents.R.Reg = v;
247        Contents.R.Sub = u;
248      } else {
249        Contents.ImmVal = v;
250      }
251    }
252    bool isReg() const { return Kind == CV_Register; }
253    bool isImm() const { return Kind == CV_Immediate; }
254
255    unsigned getReg() const {
256      assert(isReg() && "Wrong CountValue accessor");
257      return Contents.R.Reg;
258    }
259    unsigned getSubReg() const {
260      assert(isReg() && "Wrong CountValue accessor");
261      return Contents.R.Sub;
262    }
263    unsigned getImm() const {
264      assert(isImm() && "Wrong CountValue accessor");
265      return Contents.ImmVal;
266    }
267
268    void print(raw_ostream &OS, const TargetMachine *TM = nullptr) const {
269      const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : nullptr;
270      if (isReg()) { OS << PrintReg(Contents.R.Reg, TRI, Contents.R.Sub); }
271      if (isImm()) { OS << Contents.ImmVal; }
272    }
273  };
274} // end anonymous namespace
275
276
277INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops",
278                      "Hexagon Hardware Loops", false, false)
279INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
280INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
281INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops",
282                    "Hexagon Hardware Loops", false, false)
283
284
285/// \brief Returns true if the instruction is a hardware loop instruction.
286static bool isHardwareLoop(const MachineInstr *MI) {
287  return MI->getOpcode() == Hexagon::LOOP0_r ||
288    MI->getOpcode() == Hexagon::LOOP0_i;
289}
290
291FunctionPass *llvm::createHexagonHardwareLoops() {
292  return new HexagonHardwareLoops();
293}
294
295
296bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) {
297  DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n");
298
299  bool Changed = false;
300
301  MLI = &getAnalysis<MachineLoopInfo>();
302  MRI = &MF.getRegInfo();
303  MDT = &getAnalysis<MachineDominatorTree>();
304  TM  = static_cast<const HexagonTargetMachine*>(&MF.getTarget());
305  TII = static_cast<const HexagonInstrInfo*>(TM->getInstrInfo());
306  TRI = static_cast<const HexagonRegisterInfo*>(TM->getRegisterInfo());
307
308  for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end();
309       I != E; ++I) {
310    MachineLoop *L = *I;
311    if (!L->getParentLoop())
312      Changed |= convertToHardwareLoop(L);
313  }
314
315  return Changed;
316}
317
318
319bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L,
320                                                 unsigned &Reg,
321                                                 int64_t &IVBump,
322                                                 MachineInstr *&IVOp
323                                                 ) const {
324  MachineBasicBlock *Header = L->getHeader();
325  MachineBasicBlock *Preheader = L->getLoopPreheader();
326  MachineBasicBlock *Latch = L->getLoopLatch();
327  if (!Header || !Preheader || !Latch)
328    return false;
329
330  // This pair represents an induction register together with an immediate
331  // value that will be added to it in each loop iteration.
332  typedef std::pair<unsigned,int64_t> RegisterBump;
333
334  // Mapping:  R.next -> (R, bump), where R, R.next and bump are derived
335  // from an induction operation
336  //   R.next = R + bump
337  // where bump is an immediate value.
338  typedef std::map<unsigned,RegisterBump> InductionMap;
339
340  InductionMap IndMap;
341
342  typedef MachineBasicBlock::instr_iterator instr_iterator;
343  for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
344       I != E && I->isPHI(); ++I) {
345    MachineInstr *Phi = &*I;
346
347    // Have a PHI instruction.  Get the operand that corresponds to the
348    // latch block, and see if is a result of an addition of form "reg+imm",
349    // where the "reg" is defined by the PHI node we are looking at.
350    for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
351      if (Phi->getOperand(i+1).getMBB() != Latch)
352        continue;
353
354      unsigned PhiOpReg = Phi->getOperand(i).getReg();
355      MachineInstr *DI = MRI->getVRegDef(PhiOpReg);
356      unsigned UpdOpc = DI->getOpcode();
357      bool isAdd = (UpdOpc == Hexagon::ADD_ri);
358
359      if (isAdd) {
360        // If the register operand to the add is the PHI we're
361        // looking at, this meets the induction pattern.
362        unsigned IndReg = DI->getOperand(1).getReg();
363        if (MRI->getVRegDef(IndReg) == Phi) {
364          unsigned UpdReg = DI->getOperand(0).getReg();
365          int64_t V = DI->getOperand(2).getImm();
366          IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
367        }
368      }
369    }  // for (i)
370  }  // for (instr)
371
372  SmallVector<MachineOperand,2> Cond;
373  MachineBasicBlock *TB = nullptr, *FB = nullptr;
374  bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false);
375  if (NotAnalyzed)
376    return false;
377
378  unsigned CSz = Cond.size();
379  assert (CSz == 1 || CSz == 2);
380  unsigned PredR = Cond[CSz-1].getReg();
381
382  MachineInstr *PredI = MRI->getVRegDef(PredR);
383  if (!PredI->isCompare())
384    return false;
385
386  unsigned CmpReg1 = 0, CmpReg2 = 0;
387  int CmpImm = 0, CmpMask = 0;
388  bool CmpAnalyzed = TII->analyzeCompare(PredI, CmpReg1, CmpReg2,
389                                         CmpMask, CmpImm);
390  // Fail if the compare was not analyzed, or it's not comparing a register
391  // with an immediate value.  Not checking the mask here, since we handle
392  // the individual compare opcodes (including CMPb) later on.
393  if (!CmpAnalyzed)
394    return false;
395
396  // Exactly one of the input registers to the comparison should be among
397  // the induction registers.
398  InductionMap::iterator IndMapEnd = IndMap.end();
399  InductionMap::iterator F = IndMapEnd;
400  if (CmpReg1 != 0) {
401    InductionMap::iterator F1 = IndMap.find(CmpReg1);
402    if (F1 != IndMapEnd)
403      F = F1;
404  }
405  if (CmpReg2 != 0) {
406    InductionMap::iterator F2 = IndMap.find(CmpReg2);
407    if (F2 != IndMapEnd) {
408      if (F != IndMapEnd)
409        return false;
410      F = F2;
411    }
412  }
413  if (F == IndMapEnd)
414    return false;
415
416  Reg = F->second.first;
417  IVBump = F->second.second;
418  IVOp = MRI->getVRegDef(F->first);
419  return true;
420}
421
422
423/// \brief Analyze the statements in a loop to determine if the loop has
424/// a computable trip count and, if so, return a value that represents
425/// the trip count expression.
426///
427/// This function iterates over the phi nodes in the loop to check for
428/// induction variable patterns that are used in the calculation for
429/// the number of time the loop is executed.
430CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L,
431                                    SmallVectorImpl<MachineInstr *> &OldInsts) {
432  MachineBasicBlock *TopMBB = L->getTopBlock();
433  MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
434  assert(PI != TopMBB->pred_end() &&
435         "Loop must have more than one incoming edge!");
436  MachineBasicBlock *Backedge = *PI++;
437  if (PI == TopMBB->pred_end())  // dead loop?
438    return nullptr;
439  MachineBasicBlock *Incoming = *PI++;
440  if (PI != TopMBB->pred_end())  // multiple backedges?
441    return nullptr;
442
443  // Make sure there is one incoming and one backedge and determine which
444  // is which.
445  if (L->contains(Incoming)) {
446    if (L->contains(Backedge))
447      return nullptr;
448    std::swap(Incoming, Backedge);
449  } else if (!L->contains(Backedge))
450    return nullptr;
451
452  // Look for the cmp instruction to determine if we can get a useful trip
453  // count.  The trip count can be either a register or an immediate.  The
454  // location of the value depends upon the type (reg or imm).
455  MachineBasicBlock *Latch = L->getLoopLatch();
456  if (!Latch)
457    return nullptr;
458
459  unsigned IVReg = 0;
460  int64_t IVBump = 0;
461  MachineInstr *IVOp;
462  bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp);
463  if (!FoundIV)
464    return nullptr;
465
466  MachineBasicBlock *Preheader = L->getLoopPreheader();
467
468  MachineOperand *InitialValue = nullptr;
469  MachineInstr *IV_Phi = MRI->getVRegDef(IVReg);
470  for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) {
471    MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB();
472    if (MBB == Preheader)
473      InitialValue = &IV_Phi->getOperand(i);
474    else if (MBB == Latch)
475      IVReg = IV_Phi->getOperand(i).getReg();  // Want IV reg after bump.
476  }
477  if (!InitialValue)
478    return nullptr;
479
480  SmallVector<MachineOperand,2> Cond;
481  MachineBasicBlock *TB = nullptr, *FB = nullptr;
482  bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false);
483  if (NotAnalyzed)
484    return nullptr;
485
486  MachineBasicBlock *Header = L->getHeader();
487  // TB must be non-null.  If FB is also non-null, one of them must be
488  // the header.  Otherwise, branch to TB could be exiting the loop, and
489  // the fall through can go to the header.
490  assert (TB && "Latch block without a branch?");
491  assert ((!FB || TB == Header || FB == Header) && "Branches not to header?");
492  if (!TB || (FB && TB != Header && FB != Header))
493    return nullptr;
494
495  // Branches of form "if (!P) ..." cause HexagonInstrInfo::AnalyzeBranch
496  // to put imm(0), followed by P in the vector Cond.
497  // If TB is not the header, it means that the "not-taken" path must lead
498  // to the header.
499  bool Negated = (Cond.size() > 1) ^ (TB != Header);
500  unsigned PredReg = Cond[Cond.size()-1].getReg();
501  MachineInstr *CondI = MRI->getVRegDef(PredReg);
502  unsigned CondOpc = CondI->getOpcode();
503
504  unsigned CmpReg1 = 0, CmpReg2 = 0;
505  int Mask = 0, ImmValue = 0;
506  bool AnalyzedCmp = TII->analyzeCompare(CondI, CmpReg1, CmpReg2,
507                                         Mask, ImmValue);
508  if (!AnalyzedCmp)
509    return nullptr;
510
511  // The comparison operator type determines how we compute the loop
512  // trip count.
513  OldInsts.push_back(CondI);
514  OldInsts.push_back(IVOp);
515
516  // Sadly, the following code gets information based on the position
517  // of the operands in the compare instruction.  This has to be done
518  // this way, because the comparisons check for a specific relationship
519  // between the operands (e.g. is-less-than), rather than to find out
520  // what relationship the operands are in (as on PPC).
521  Comparison::Kind Cmp;
522  bool isSwapped = false;
523  const MachineOperand &Op1 = CondI->getOperand(1);
524  const MachineOperand &Op2 = CondI->getOperand(2);
525  const MachineOperand *EndValue = nullptr;
526
527  if (Op1.isReg()) {
528    if (Op2.isImm() || Op1.getReg() == IVReg)
529      EndValue = &Op2;
530    else {
531      EndValue = &Op1;
532      isSwapped = true;
533    }
534  }
535
536  if (!EndValue)
537    return nullptr;
538
539  switch (CondOpc) {
540    case Hexagon::CMPEQri:
541    case Hexagon::CMPEQrr:
542      Cmp = !Negated ? Comparison::EQ : Comparison::NE;
543      break;
544    case Hexagon::CMPGTUri:
545    case Hexagon::CMPGTUrr:
546      Cmp = !Negated ? Comparison::GTu : Comparison::LEu;
547      break;
548    case Hexagon::CMPGTri:
549    case Hexagon::CMPGTrr:
550      Cmp = !Negated ? Comparison::GTs : Comparison::LEs;
551      break;
552    // Very limited support for byte/halfword compares.
553    case Hexagon::CMPbEQri_V4:
554    case Hexagon::CMPhEQri_V4: {
555      if (IVBump != 1)
556        return nullptr;
557
558      int64_t InitV, EndV;
559      // Since the comparisons are "ri", the EndValue should be an
560      // immediate.  Check it just in case.
561      assert(EndValue->isImm() && "Unrecognized latch comparison");
562      EndV = EndValue->getImm();
563      // Allow InitialValue to be a register defined with an immediate.
564      if (InitialValue->isReg()) {
565        if (!defWithImmediate(InitialValue->getReg()))
566          return nullptr;
567        InitV = getImmediate(*InitialValue);
568      } else {
569        assert(InitialValue->isImm());
570        InitV = InitialValue->getImm();
571      }
572      if (InitV >= EndV)
573        return nullptr;
574      if (CondOpc == Hexagon::CMPbEQri_V4) {
575        if (!isInt<8>(InitV) || !isInt<8>(EndV))
576          return nullptr;
577      } else {  // Hexagon::CMPhEQri_V4
578        if (!isInt<16>(InitV) || !isInt<16>(EndV))
579          return nullptr;
580      }
581      Cmp = !Negated ? Comparison::EQ : Comparison::NE;
582      break;
583    }
584    default:
585      return nullptr;
586  }
587
588  if (isSwapped)
589   Cmp = Comparison::getSwappedComparison(Cmp);
590
591  if (InitialValue->isReg()) {
592    unsigned R = InitialValue->getReg();
593    MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
594    if (!MDT->properlyDominates(DefBB, Header))
595      return nullptr;
596    OldInsts.push_back(MRI->getVRegDef(R));
597  }
598  if (EndValue->isReg()) {
599    unsigned R = EndValue->getReg();
600    MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
601    if (!MDT->properlyDominates(DefBB, Header))
602      return nullptr;
603  }
604
605  return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp);
606}
607
608/// \brief Helper function that returns the expression that represents the
609/// number of times a loop iterates.  The function takes the operands that
610/// represent the loop start value, loop end value, and induction value.
611/// Based upon these operands, the function attempts to compute the trip count.
612CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
613                                               const MachineOperand *Start,
614                                               const MachineOperand *End,
615                                               unsigned IVReg,
616                                               int64_t IVBump,
617                                               Comparison::Kind Cmp) const {
618  // Cannot handle comparison EQ, i.e. while (A == B).
619  if (Cmp == Comparison::EQ)
620    return nullptr;
621
622  // Check if either the start or end values are an assignment of an immediate.
623  // If so, use the immediate value rather than the register.
624  if (Start->isReg()) {
625    const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg());
626    if (StartValInstr && StartValInstr->getOpcode() == Hexagon::TFRI)
627      Start = &StartValInstr->getOperand(1);
628  }
629  if (End->isReg()) {
630    const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
631    if (EndValInstr && EndValInstr->getOpcode() == Hexagon::TFRI)
632      End = &EndValInstr->getOperand(1);
633  }
634
635  assert (Start->isReg() || Start->isImm());
636  assert (End->isReg() || End->isImm());
637
638  bool CmpLess =     Cmp & Comparison::L;
639  bool CmpGreater =  Cmp & Comparison::G;
640  bool CmpHasEqual = Cmp & Comparison::EQ;
641
642  // Avoid certain wrap-arounds.  This doesn't detect all wrap-arounds.
643  // If loop executes while iv is "less" with the iv value going down, then
644  // the iv must wrap.
645  if (CmpLess && IVBump < 0)
646    return nullptr;
647  // If loop executes while iv is "greater" with the iv value going up, then
648  // the iv must wrap.
649  if (CmpGreater && IVBump > 0)
650    return nullptr;
651
652  if (Start->isImm() && End->isImm()) {
653    // Both, start and end are immediates.
654    int64_t StartV = Start->getImm();
655    int64_t EndV = End->getImm();
656    int64_t Dist = EndV - StartV;
657    if (Dist == 0)
658      return nullptr;
659
660    bool Exact = (Dist % IVBump) == 0;
661
662    if (Cmp == Comparison::NE) {
663      if (!Exact)
664        return nullptr;
665      if ((Dist < 0) ^ (IVBump < 0))
666        return nullptr;
667    }
668
669    // For comparisons that include the final value (i.e. include equality
670    // with the final value), we need to increase the distance by 1.
671    if (CmpHasEqual)
672      Dist = Dist > 0 ? Dist+1 : Dist-1;
673
674    // assert (CmpLess => Dist > 0);
675    assert ((!CmpLess || Dist > 0) && "Loop should never iterate!");
676    // assert (CmpGreater => Dist < 0);
677    assert ((!CmpGreater || Dist < 0) && "Loop should never iterate!");
678
679    // "Normalized" distance, i.e. with the bump set to +-1.
680    int64_t Dist1 = (IVBump > 0) ? (Dist +  (IVBump-1)) /   IVBump
681                               :  (-Dist + (-IVBump-1)) / (-IVBump);
682    assert (Dist1 > 0 && "Fishy thing.  Both operands have the same sign.");
683
684    uint64_t Count = Dist1;
685
686    if (Count > 0xFFFFFFFFULL)
687      return nullptr;
688
689    return new CountValue(CountValue::CV_Immediate, Count);
690  }
691
692  // A general case: Start and End are some values, but the actual
693  // iteration count may not be available.  If it is not, insert
694  // a computation of it into the preheader.
695
696  // If the induction variable bump is not a power of 2, quit.
697  // Othwerise we'd need a general integer division.
698  if (!isPowerOf2_64(abs64(IVBump)))
699    return nullptr;
700
701  MachineBasicBlock *PH = Loop->getLoopPreheader();
702  assert (PH && "Should have a preheader by now");
703  MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator();
704  DebugLoc DL = (InsertPos != PH->end()) ? InsertPos->getDebugLoc()
705                                         : DebugLoc();
706
707  // If Start is an immediate and End is a register, the trip count
708  // will be "reg - imm".  Hexagon's "subtract immediate" instruction
709  // is actually "reg + -imm".
710
711  // If the loop IV is going downwards, i.e. if the bump is negative,
712  // then the iteration count (computed as End-Start) will need to be
713  // negated.  To avoid the negation, just swap Start and End.
714  if (IVBump < 0) {
715    std::swap(Start, End);
716    IVBump = -IVBump;
717  }
718  // Cmp may now have a wrong direction, e.g.  LEs may now be GEs.
719  // Signedness, and "including equality" are preserved.
720
721  bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm)
722  bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg)
723
724  int64_t StartV = 0, EndV = 0;
725  if (Start->isImm())
726    StartV = Start->getImm();
727  if (End->isImm())
728    EndV = End->getImm();
729
730  int64_t AdjV = 0;
731  // To compute the iteration count, we would need this computation:
732  //   Count = (End - Start + (IVBump-1)) / IVBump
733  // or, when CmpHasEqual:
734  //   Count = (End - Start + (IVBump-1)+1) / IVBump
735  // The "IVBump-1" part is the adjustment (AdjV).  We can avoid
736  // generating an instruction specifically to add it if we can adjust
737  // the immediate values for Start or End.
738
739  if (CmpHasEqual) {
740    // Need to add 1 to the total iteration count.
741    if (Start->isImm())
742      StartV--;
743    else if (End->isImm())
744      EndV++;
745    else
746      AdjV += 1;
747  }
748
749  if (Cmp != Comparison::NE) {
750    if (Start->isImm())
751      StartV -= (IVBump-1);
752    else if (End->isImm())
753      EndV += (IVBump-1);
754    else
755      AdjV += (IVBump-1);
756  }
757
758  unsigned R = 0, SR = 0;
759  if (Start->isReg()) {
760    R = Start->getReg();
761    SR = Start->getSubReg();
762  } else {
763    R = End->getReg();
764    SR = End->getSubReg();
765  }
766  const TargetRegisterClass *RC = MRI->getRegClass(R);
767  // Hardware loops cannot handle 64-bit registers.  If it's a double
768  // register, it has to have a subregister.
769  if (!SR && RC == &Hexagon::DoubleRegsRegClass)
770    return nullptr;
771  const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;
772
773  // Compute DistR (register with the distance between Start and End).
774  unsigned DistR, DistSR;
775
776  // Avoid special case, where the start value is an imm(0).
777  if (Start->isImm() && StartV == 0) {
778    DistR = End->getReg();
779    DistSR = End->getSubReg();
780  } else {
781    const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::SUB_rr) :
782                              (RegToImm ? TII->get(Hexagon::SUB_ri) :
783                                          TII->get(Hexagon::ADD_ri));
784    unsigned SubR = MRI->createVirtualRegister(IntRC);
785    MachineInstrBuilder SubIB =
786      BuildMI(*PH, InsertPos, DL, SubD, SubR);
787
788    if (RegToReg) {
789      SubIB.addReg(End->getReg(), 0, End->getSubReg())
790           .addReg(Start->getReg(), 0, Start->getSubReg());
791    } else if (RegToImm) {
792      SubIB.addImm(EndV)
793           .addReg(Start->getReg(), 0, Start->getSubReg());
794    } else { // ImmToReg
795      SubIB.addReg(End->getReg(), 0, End->getSubReg())
796           .addImm(-StartV);
797    }
798    DistR = SubR;
799    DistSR = 0;
800  }
801
802  // From DistR, compute AdjR (register with the adjusted distance).
803  unsigned AdjR, AdjSR;
804
805  if (AdjV == 0) {
806    AdjR = DistR;
807    AdjSR = DistSR;
808  } else {
809    // Generate CountR = ADD DistR, AdjVal
810    unsigned AddR = MRI->createVirtualRegister(IntRC);
811    const MCInstrDesc &AddD = TII->get(Hexagon::ADD_ri);
812    BuildMI(*PH, InsertPos, DL, AddD, AddR)
813      .addReg(DistR, 0, DistSR)
814      .addImm(AdjV);
815
816    AdjR = AddR;
817    AdjSR = 0;
818  }
819
820  // From AdjR, compute CountR (register with the final count).
821  unsigned CountR, CountSR;
822
823  if (IVBump == 1) {
824    CountR = AdjR;
825    CountSR = AdjSR;
826  } else {
827    // The IV bump is a power of two. Log_2(IV bump) is the shift amount.
828    unsigned Shift = Log2_32(IVBump);
829
830    // Generate NormR = LSR DistR, Shift.
831    unsigned LsrR = MRI->createVirtualRegister(IntRC);
832    const MCInstrDesc &LsrD = TII->get(Hexagon::LSR_ri);
833    BuildMI(*PH, InsertPos, DL, LsrD, LsrR)
834      .addReg(AdjR, 0, AdjSR)
835      .addImm(Shift);
836
837    CountR = LsrR;
838    CountSR = 0;
839  }
840
841  return new CountValue(CountValue::CV_Register, CountR, CountSR);
842}
843
844
845/// \brief Return true if the operation is invalid within hardware loop.
846bool HexagonHardwareLoops::isInvalidLoopOperation(
847      const MachineInstr *MI) const {
848
849  // call is not allowed because the callee may use a hardware loop
850  if (MI->getDesc().isCall())
851    return true;
852
853  // do not allow nested hardware loops
854  if (isHardwareLoop(MI))
855    return true;
856
857  // check if the instruction defines a hardware loop register
858  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
859    const MachineOperand &MO = MI->getOperand(i);
860    if (!MO.isReg() || !MO.isDef())
861      continue;
862    unsigned R = MO.getReg();
863    if (R == Hexagon::LC0 || R == Hexagon::LC1 ||
864        R == Hexagon::SA0 || R == Hexagon::SA1)
865      return true;
866  }
867  return false;
868}
869
870
871/// \brief - Return true if the loop contains an instruction that inhibits
872/// the use of the hardware loop function.
873bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L) const {
874  const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks();
875  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
876    MachineBasicBlock *MBB = Blocks[i];
877    for (MachineBasicBlock::iterator
878           MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) {
879      const MachineInstr *MI = &*MII;
880      if (isInvalidLoopOperation(MI))
881        return true;
882    }
883  }
884  return false;
885}
886
887
888/// \brief Returns true if the instruction is dead.  This was essentially
889/// copied from DeadMachineInstructionElim::isDead, but with special cases
890/// for inline asm, physical registers and instructions with side effects
891/// removed.
892bool HexagonHardwareLoops::isDead(const MachineInstr *MI,
893                              SmallVectorImpl<MachineInstr *> &DeadPhis) const {
894  // Examine each operand.
895  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
896    const MachineOperand &MO = MI->getOperand(i);
897    if (!MO.isReg() || !MO.isDef())
898      continue;
899
900    unsigned Reg = MO.getReg();
901    if (MRI->use_nodbg_empty(Reg))
902      continue;
903
904    typedef MachineRegisterInfo::use_nodbg_iterator use_nodbg_iterator;
905
906    // This instruction has users, but if the only user is the phi node for the
907    // parent block, and the only use of that phi node is this instruction, then
908    // this instruction is dead: both it (and the phi node) can be removed.
909    use_nodbg_iterator I = MRI->use_nodbg_begin(Reg);
910    use_nodbg_iterator End = MRI->use_nodbg_end();
911    if (std::next(I) != End || !I->getParent()->isPHI())
912      return false;
913
914    MachineInstr *OnePhi = I->getParent();
915    for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) {
916      const MachineOperand &OPO = OnePhi->getOperand(j);
917      if (!OPO.isReg() || !OPO.isDef())
918        continue;
919
920      unsigned OPReg = OPO.getReg();
921      use_nodbg_iterator nextJ;
922      for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg);
923           J != End; J = nextJ) {
924        nextJ = std::next(J);
925        MachineOperand &Use = *J;
926        MachineInstr *UseMI = Use.getParent();
927
928        // If the phi node has a user that is not MI, bail...
929        if (MI != UseMI)
930          return false;
931      }
932    }
933    DeadPhis.push_back(OnePhi);
934  }
935
936  // If there are no defs with uses, the instruction is dead.
937  return true;
938}
939
940void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) {
941  // This procedure was essentially copied from DeadMachineInstructionElim.
942
943  SmallVector<MachineInstr*, 1> DeadPhis;
944  if (isDead(MI, DeadPhis)) {
945    DEBUG(dbgs() << "HW looping will remove: " << *MI);
946
947    // It is possible that some DBG_VALUE instructions refer to this
948    // instruction.  Examine each def operand for such references;
949    // if found, mark the DBG_VALUE as undef (but don't delete it).
950    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
951      const MachineOperand &MO = MI->getOperand(i);
952      if (!MO.isReg() || !MO.isDef())
953        continue;
954      unsigned Reg = MO.getReg();
955      MachineRegisterInfo::use_iterator nextI;
956      for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg),
957           E = MRI->use_end(); I != E; I = nextI) {
958        nextI = std::next(I);  // I is invalidated by the setReg
959        MachineOperand &Use = *I;
960        MachineInstr *UseMI = I->getParent();
961        if (UseMI == MI)
962          continue;
963        if (Use.isDebug())
964          UseMI->getOperand(0).setReg(0U);
965        // This may also be a "instr -> phi -> instr" case which can
966        // be removed too.
967      }
968    }
969
970    MI->eraseFromParent();
971    for (unsigned i = 0; i < DeadPhis.size(); ++i)
972      DeadPhis[i]->eraseFromParent();
973  }
974}
975
976/// \brief Check if the loop is a candidate for converting to a hardware
977/// loop.  If so, then perform the transformation.
978///
979/// This function works on innermost loops first.  A loop can be converted
980/// if it is a counting loop; either a register value or an immediate.
981///
982/// The code makes several assumptions about the representation of the loop
983/// in llvm.
984bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) {
985  // This is just for sanity.
986  assert(L->getHeader() && "Loop without a header?");
987
988  bool Changed = false;
989  // Process nested loops first.
990  for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
991    Changed |= convertToHardwareLoop(*I);
992
993  // If a nested loop has been converted, then we can't convert this loop.
994  if (Changed)
995    return Changed;
996
997#ifndef NDEBUG
998  // Stop trying after reaching the limit (if any).
999  int Limit = HWLoopLimit;
1000  if (Limit >= 0) {
1001    if (Counter >= HWLoopLimit)
1002      return false;
1003    Counter++;
1004  }
1005#endif
1006
1007  // Does the loop contain any invalid instructions?
1008  if (containsInvalidInstruction(L))
1009    return false;
1010
1011  // Is the induction variable bump feeding the latch condition?
1012  if (!fixupInductionVariable(L))
1013    return false;
1014
1015  MachineBasicBlock *LastMBB = L->getExitingBlock();
1016  // Don't generate hw loop if the loop has more than one exit.
1017  if (!LastMBB)
1018    return false;
1019
1020  MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
1021  if (LastI == LastMBB->end())
1022    return false;
1023
1024  // Ensure the loop has a preheader: the loop instruction will be
1025  // placed there.
1026  bool NewPreheader = false;
1027  MachineBasicBlock *Preheader = L->getLoopPreheader();
1028  if (!Preheader) {
1029    Preheader = createPreheaderForLoop(L);
1030    if (!Preheader)
1031      return false;
1032    NewPreheader = true;
1033  }
1034  MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();
1035
1036  SmallVector<MachineInstr*, 2> OldInsts;
1037  // Are we able to determine the trip count for the loop?
1038  CountValue *TripCount = getLoopTripCount(L, OldInsts);
1039  if (!TripCount)
1040    return false;
1041
1042  // Is the trip count available in the preheader?
1043  if (TripCount->isReg()) {
1044    // There will be a use of the register inserted into the preheader,
1045    // so make sure that the register is actually defined at that point.
1046    MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg());
1047    MachineBasicBlock *BBDef = TCDef->getParent();
1048    if (!NewPreheader) {
1049      if (!MDT->dominates(BBDef, Preheader))
1050        return false;
1051    } else {
1052      // If we have just created a preheader, the dominator tree won't be
1053      // aware of it.  Check if the definition of the register dominates
1054      // the header, but is not the header itself.
1055      if (!MDT->properlyDominates(BBDef, L->getHeader()))
1056        return false;
1057    }
1058  }
1059
1060  // Determine the loop start.
1061  MachineBasicBlock *LoopStart = L->getTopBlock();
1062  if (L->getLoopLatch() != LastMBB) {
1063    // When the exit and latch are not the same, use the latch block as the
1064    // start.
1065    // The loop start address is used only after the 1st iteration, and the
1066    // loop latch may contains instrs. that need to be executed after the
1067    // first iteration.
1068    LoopStart = L->getLoopLatch();
1069    // Make sure the latch is a successor of the exit, otherwise it won't work.
1070    if (!LastMBB->isSuccessor(LoopStart))
1071      return false;
1072  }
1073
1074  // Convert the loop to a hardware loop.
1075  DEBUG(dbgs() << "Change to hardware loop at "; L->dump());
1076  DebugLoc DL;
1077  if (InsertPos != Preheader->end())
1078    DL = InsertPos->getDebugLoc();
1079
1080  if (TripCount->isReg()) {
1081    // Create a copy of the loop count register.
1082    unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
1083    BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg)
1084      .addReg(TripCount->getReg(), 0, TripCount->getSubReg());
1085    // Add the Loop instruction to the beginning of the loop.
1086    BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_r))
1087      .addMBB(LoopStart)
1088      .addReg(CountReg);
1089  } else {
1090    assert(TripCount->isImm() && "Expecting immediate value for trip count");
1091    // Add the Loop immediate instruction to the beginning of the loop,
1092    // if the immediate fits in the instructions.  Otherwise, we need to
1093    // create a new virtual register.
1094    int64_t CountImm = TripCount->getImm();
1095    if (!TII->isValidOffset(Hexagon::LOOP0_i, CountImm)) {
1096      unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
1097      BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::TFRI), CountReg)
1098        .addImm(CountImm);
1099      BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_r))
1100        .addMBB(LoopStart).addReg(CountReg);
1101    } else
1102      BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_i))
1103        .addMBB(LoopStart).addImm(CountImm);
1104  }
1105
1106  // Make sure the loop start always has a reference in the CFG.  We need
1107  // to create a BlockAddress operand to get this mechanism to work both the
1108  // MachineBasicBlock and BasicBlock objects need the flag set.
1109  LoopStart->setHasAddressTaken();
1110  // This line is needed to set the hasAddressTaken flag on the BasicBlock
1111  // object.
1112  BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock()));
1113
1114  // Replace the loop branch with an endloop instruction.
1115  DebugLoc LastIDL = LastI->getDebugLoc();
1116  BuildMI(*LastMBB, LastI, LastIDL,
1117          TII->get(Hexagon::ENDLOOP0)).addMBB(LoopStart);
1118
1119  // The loop ends with either:
1120  //  - a conditional branch followed by an unconditional branch, or
1121  //  - a conditional branch to the loop start.
1122  if (LastI->getOpcode() == Hexagon::JMP_t ||
1123      LastI->getOpcode() == Hexagon::JMP_f) {
1124    // Delete one and change/add an uncond. branch to out of the loop.
1125    MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB();
1126    LastI = LastMBB->erase(LastI);
1127    if (!L->contains(BranchTarget)) {
1128      if (LastI != LastMBB->end())
1129        LastI = LastMBB->erase(LastI);
1130      SmallVector<MachineOperand, 0> Cond;
1131      TII->InsertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL);
1132    }
1133  } else {
1134    // Conditional branch to loop start; just delete it.
1135    LastMBB->erase(LastI);
1136  }
1137  delete TripCount;
1138
1139  // The induction operation and the comparison may now be
1140  // unneeded. If these are unneeded, then remove them.
1141  for (unsigned i = 0; i < OldInsts.size(); ++i)
1142    removeIfDead(OldInsts[i]);
1143
1144  ++NumHWLoops;
1145  return true;
1146}
1147
1148
1149bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI,
1150                                            MachineInstr *CmpI) {
1151  assert (BumpI != CmpI && "Bump and compare in the same instruction?");
1152
1153  MachineBasicBlock *BB = BumpI->getParent();
1154  if (CmpI->getParent() != BB)
1155    return false;
1156
1157  typedef MachineBasicBlock::instr_iterator instr_iterator;
1158  // Check if things are in order to begin with.
1159  for (instr_iterator I = BumpI, E = BB->instr_end(); I != E; ++I)
1160    if (&*I == CmpI)
1161      return true;
1162
1163  // Out of order.
1164  unsigned PredR = CmpI->getOperand(0).getReg();
1165  bool FoundBump = false;
1166  instr_iterator CmpIt = CmpI, NextIt = std::next(CmpIt);
1167  for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) {
1168    MachineInstr *In = &*I;
1169    for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) {
1170      MachineOperand &MO = In->getOperand(i);
1171      if (MO.isReg() && MO.isUse()) {
1172        if (MO.getReg() == PredR)  // Found an intervening use of PredR.
1173          return false;
1174      }
1175    }
1176
1177    if (In == BumpI) {
1178      instr_iterator After = BumpI;
1179      instr_iterator From = CmpI;
1180      BB->splice(std::next(After), BB, From);
1181      FoundBump = true;
1182      break;
1183    }
1184  }
1185  assert (FoundBump && "Cannot determine instruction order");
1186  return FoundBump;
1187}
1188
1189
1190MachineInstr *HexagonHardwareLoops::defWithImmediate(unsigned R) {
1191  MachineInstr *DI = MRI->getVRegDef(R);
1192  unsigned DOpc = DI->getOpcode();
1193  switch (DOpc) {
1194    case Hexagon::TFRI:
1195    case Hexagon::TFRI64:
1196    case Hexagon::CONST32_Int_Real:
1197    case Hexagon::CONST64_Int_Real:
1198      return DI;
1199  }
1200  return nullptr;
1201}
1202
1203
1204int64_t HexagonHardwareLoops::getImmediate(MachineOperand &MO) {
1205  if (MO.isImm())
1206    return MO.getImm();
1207  assert(MO.isReg());
1208  unsigned R = MO.getReg();
1209  MachineInstr *DI = defWithImmediate(R);
1210  assert(DI && "Need an immediate operand");
1211  // All currently supported "define-with-immediate" instructions have the
1212  // actual immediate value in the operand(1).
1213  int64_t v = DI->getOperand(1).getImm();
1214  return v;
1215}
1216
1217
1218void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) {
1219  if (MO.isImm()) {
1220    MO.setImm(Val);
1221    return;
1222  }
1223
1224  assert(MO.isReg());
1225  unsigned R = MO.getReg();
1226  MachineInstr *DI = defWithImmediate(R);
1227  if (MRI->hasOneNonDBGUse(R)) {
1228    // If R has only one use, then just change its defining instruction to
1229    // the new immediate value.
1230    DI->getOperand(1).setImm(Val);
1231    return;
1232  }
1233
1234  const TargetRegisterClass *RC = MRI->getRegClass(R);
1235  unsigned NewR = MRI->createVirtualRegister(RC);
1236  MachineBasicBlock &B = *DI->getParent();
1237  DebugLoc DL = DI->getDebugLoc();
1238  BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR)
1239    .addImm(Val);
1240  MO.setReg(NewR);
1241}
1242
1243
1244bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
1245  MachineBasicBlock *Header = L->getHeader();
1246  MachineBasicBlock *Preheader = L->getLoopPreheader();
1247  MachineBasicBlock *Latch = L->getLoopLatch();
1248
1249  if (!Header || !Preheader || !Latch)
1250    return false;
1251
1252  // These data structures follow the same concept as the corresponding
1253  // ones in findInductionRegister (where some comments are).
1254  typedef std::pair<unsigned,int64_t> RegisterBump;
1255  typedef std::pair<unsigned,RegisterBump> RegisterInduction;
1256  typedef std::set<RegisterInduction> RegisterInductionSet;
1257
1258  // Register candidates for induction variables, with their associated bumps.
1259  RegisterInductionSet IndRegs;
1260
1261  // Look for induction patterns:
1262  //   vreg1 = PHI ..., [ latch, vreg2 ]
1263  //   vreg2 = ADD vreg1, imm
1264  typedef MachineBasicBlock::instr_iterator instr_iterator;
1265  for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1266       I != E && I->isPHI(); ++I) {
1267    MachineInstr *Phi = &*I;
1268
1269    // Have a PHI instruction.
1270    for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
1271      if (Phi->getOperand(i+1).getMBB() != Latch)
1272        continue;
1273
1274      unsigned PhiReg = Phi->getOperand(i).getReg();
1275      MachineInstr *DI = MRI->getVRegDef(PhiReg);
1276      unsigned UpdOpc = DI->getOpcode();
1277      bool isAdd = (UpdOpc == Hexagon::ADD_ri);
1278
1279      if (isAdd) {
1280        // If the register operand to the add/sub is the PHI we are looking
1281        // at, this meets the induction pattern.
1282        unsigned IndReg = DI->getOperand(1).getReg();
1283        if (MRI->getVRegDef(IndReg) == Phi) {
1284          unsigned UpdReg = DI->getOperand(0).getReg();
1285          int64_t V = DI->getOperand(2).getImm();
1286          IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
1287        }
1288      }
1289    }  // for (i)
1290  }  // for (instr)
1291
1292  if (IndRegs.empty())
1293    return false;
1294
1295  MachineBasicBlock *TB = nullptr, *FB = nullptr;
1296  SmallVector<MachineOperand,2> Cond;
1297  // AnalyzeBranch returns true if it fails to analyze branch.
1298  bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false);
1299  if (NotAnalyzed)
1300    return false;
1301
1302  // Check if the latch branch is unconditional.
1303  if (Cond.empty())
1304    return false;
1305
1306  if (TB != Header && FB != Header)
1307    // The latch does not go back to the header.  Not a latch we know and love.
1308    return false;
1309
1310  // Expecting a predicate register as a condition.  It won't be a hardware
1311  // predicate register at this point yet, just a vreg.
1312  // HexagonInstrInfo::AnalyzeBranch for negated branches inserts imm(0)
1313  // into Cond, followed by the predicate register.  For non-negated branches
1314  // it's just the register.
1315  unsigned CSz = Cond.size();
1316  if (CSz != 1 && CSz != 2)
1317    return false;
1318
1319  unsigned P = Cond[CSz-1].getReg();
1320  MachineInstr *PredDef = MRI->getVRegDef(P);
1321
1322  if (!PredDef->isCompare())
1323    return false;
1324
1325  SmallSet<unsigned,2> CmpRegs;
1326  MachineOperand *CmpImmOp = nullptr;
1327
1328  // Go over all operands to the compare and look for immediate and register
1329  // operands.  Assume that if the compare has a single register use and a
1330  // single immediate operand, then the register is being compared with the
1331  // immediate value.
1332  for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
1333    MachineOperand &MO = PredDef->getOperand(i);
1334    if (MO.isReg()) {
1335      // Skip all implicit references.  In one case there was:
1336      //   %vreg140<def> = FCMPUGT32_rr %vreg138, %vreg139, %USR<imp-use>
1337      if (MO.isImplicit())
1338        continue;
1339      if (MO.isUse()) {
1340        unsigned R = MO.getReg();
1341        if (!defWithImmediate(R)) {
1342          CmpRegs.insert(MO.getReg());
1343          continue;
1344        }
1345        // Consider the register to be the "immediate" operand.
1346        if (CmpImmOp)
1347          return false;
1348        CmpImmOp = &MO;
1349      }
1350    } else if (MO.isImm()) {
1351      if (CmpImmOp)    // A second immediate argument?  Confusing.  Bail out.
1352        return false;
1353      CmpImmOp = &MO;
1354    }
1355  }
1356
1357  if (CmpRegs.empty())
1358    return false;
1359
1360  // Check if the compared register follows the order we want.  Fix if needed.
1361  for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end();
1362       I != E; ++I) {
1363    // This is a success.  If the register used in the comparison is one that
1364    // we have identified as a bumped (updated) induction register, there is
1365    // nothing to do.
1366    if (CmpRegs.count(I->first))
1367      return true;
1368
1369    // Otherwise, if the register being compared comes out of a PHI node,
1370    // and has been recognized as following the induction pattern, and is
1371    // compared against an immediate, we can fix it.
1372    const RegisterBump &RB = I->second;
1373    if (CmpRegs.count(RB.first)) {
1374      if (!CmpImmOp)
1375        return false;
1376
1377      int64_t CmpImm = getImmediate(*CmpImmOp);
1378      int64_t V = RB.second;
1379      if (V > 0 && CmpImm+V < CmpImm)  // Overflow (64-bit).
1380        return false;
1381      if (V < 0 && CmpImm+V > CmpImm)  // Overflow (64-bit).
1382        return false;
1383      CmpImm += V;
1384      // Some forms of cmp-immediate allow u9 and s10.  Assume the worst case
1385      // scenario, i.e. an 8-bit value.
1386      if (CmpImmOp->isImm() && !isInt<8>(CmpImm))
1387        return false;
1388
1389      // Make sure that the compare happens after the bump.  Otherwise,
1390      // after the fixup, the compare would use a yet-undefined register.
1391      MachineInstr *BumpI = MRI->getVRegDef(I->first);
1392      bool Order = orderBumpCompare(BumpI, PredDef);
1393      if (!Order)
1394        return false;
1395
1396      // Finally, fix the compare instruction.
1397      setImmediate(*CmpImmOp, CmpImm);
1398      for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
1399        MachineOperand &MO = PredDef->getOperand(i);
1400        if (MO.isReg() && MO.getReg() == RB.first) {
1401          MO.setReg(I->first);
1402          return true;
1403        }
1404      }
1405    }
1406  }
1407
1408  return false;
1409}
1410
1411
1412/// \brief Create a preheader for a given loop.
1413MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop(
1414      MachineLoop *L) {
1415  if (MachineBasicBlock *TmpPH = L->getLoopPreheader())
1416    return TmpPH;
1417
1418  MachineBasicBlock *Header = L->getHeader();
1419  MachineBasicBlock *Latch = L->getLoopLatch();
1420  MachineFunction *MF = Header->getParent();
1421  DebugLoc DL;
1422
1423  if (!Latch || Header->hasAddressTaken())
1424    return nullptr;
1425
1426  typedef MachineBasicBlock::instr_iterator instr_iterator;
1427
1428  // Verify that all existing predecessors have analyzable branches
1429  // (or no branches at all).
1430  typedef std::vector<MachineBasicBlock*> MBBVector;
1431  MBBVector Preds(Header->pred_begin(), Header->pred_end());
1432  SmallVector<MachineOperand,2> Tmp1;
1433  MachineBasicBlock *TB = nullptr, *FB = nullptr;
1434
1435  if (TII->AnalyzeBranch(*Latch, TB, FB, Tmp1, false))
1436    return nullptr;
1437
1438  for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) {
1439    MachineBasicBlock *PB = *I;
1440    if (PB != Latch) {
1441      bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp1, false);
1442      if (NotAnalyzed)
1443        return nullptr;
1444    }
1445  }
1446
1447  MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock();
1448  MF->insert(Header, NewPH);
1449
1450  if (Header->pred_size() > 2) {
1451    // Ensure that the header has only two predecessors: the preheader and
1452    // the loop latch.  Any additional predecessors of the header should
1453    // join at the newly created preheader.  Inspect all PHI nodes from the
1454    // header and create appropriate corresponding PHI nodes in the preheader.
1455
1456    for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1457         I != E && I->isPHI(); ++I) {
1458      MachineInstr *PN = &*I;
1459
1460      const MCInstrDesc &PD = TII->get(TargetOpcode::PHI);
1461      MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL);
1462      NewPH->insert(NewPH->end(), NewPN);
1463
1464      unsigned PR = PN->getOperand(0).getReg();
1465      const TargetRegisterClass *RC = MRI->getRegClass(PR);
1466      unsigned NewPR = MRI->createVirtualRegister(RC);
1467      NewPN->addOperand(MachineOperand::CreateReg(NewPR, true));
1468
1469      // Copy all non-latch operands of a header's PHI node to the newly
1470      // created PHI node in the preheader.
1471      for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
1472        unsigned PredR = PN->getOperand(i).getReg();
1473        MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
1474        if (PredB == Latch)
1475          continue;
1476
1477        NewPN->addOperand(MachineOperand::CreateReg(PredR, false));
1478        NewPN->addOperand(MachineOperand::CreateMBB(PredB));
1479      }
1480
1481      // Remove copied operands from the old PHI node and add the value
1482      // coming from the preheader's PHI.
1483      for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
1484        MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
1485        if (PredB != Latch) {
1486          PN->RemoveOperand(i+1);
1487          PN->RemoveOperand(i);
1488        }
1489      }
1490      PN->addOperand(MachineOperand::CreateReg(NewPR, false));
1491      PN->addOperand(MachineOperand::CreateMBB(NewPH));
1492    }
1493
1494  } else {
1495    assert(Header->pred_size() == 2);
1496
1497    // The header has only two predecessors, but the non-latch predecessor
1498    // is not a preheader (e.g. it has other successors, etc.)
1499    // In such a case we don't need any extra PHI nodes in the new preheader,
1500    // all we need is to adjust existing PHIs in the header to now refer to
1501    // the new preheader.
1502    for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1503         I != E && I->isPHI(); ++I) {
1504      MachineInstr *PN = &*I;
1505      for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
1506        MachineOperand &MO = PN->getOperand(i+1);
1507        if (MO.getMBB() != Latch)
1508          MO.setMBB(NewPH);
1509      }
1510    }
1511  }
1512
1513  // "Reroute" the CFG edges to link in the new preheader.
1514  // If any of the predecessors falls through to the header, insert a branch
1515  // to the new preheader in that place.
1516  SmallVector<MachineOperand,1> Tmp2;
1517  SmallVector<MachineOperand,1> EmptyCond;
1518
1519  TB = FB = nullptr;
1520
1521  for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) {
1522    MachineBasicBlock *PB = *I;
1523    if (PB != Latch) {
1524      Tmp2.clear();
1525      bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp2, false);
1526      (void)NotAnalyzed; // suppress compiler warning
1527      assert (!NotAnalyzed && "Should be analyzable!");
1528      if (TB != Header && (Tmp2.empty() || FB != Header))
1529        TII->InsertBranch(*PB, NewPH, nullptr, EmptyCond, DL);
1530      PB->ReplaceUsesOfBlockWith(Header, NewPH);
1531    }
1532  }
1533
1534  // It can happen that the latch block will fall through into the header.
1535  // Insert an unconditional branch to the header.
1536  TB = FB = nullptr;
1537  bool LatchNotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Tmp2, false);
1538  (void)LatchNotAnalyzed; // suppress compiler warning
1539  assert (!LatchNotAnalyzed && "Should be analyzable!");
1540  if (!TB && !FB)
1541    TII->InsertBranch(*Latch, Header, nullptr, EmptyCond, DL);
1542
1543  // Finally, the branch from the preheader to the header.
1544  TII->InsertBranch(*NewPH, Header, nullptr, EmptyCond, DL);
1545  NewPH->addSuccessor(Header);
1546
1547  return NewPH;
1548}
1549