1//===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the interfaces that Hexagon uses to lower LLVM code
11// into a selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "HexagonISelLowering.h"
16#include "HexagonMachineFunctionInfo.h"
17#include "HexagonSubtarget.h"
18#include "HexagonTargetMachine.h"
19#include "HexagonTargetObjectFile.h"
20#include "llvm/CodeGen/CallingConvLower.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineJumpTableInfo.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/SelectionDAGISel.h"
27#include "llvm/CodeGen/ValueTypes.h"
28#include "llvm/IR/CallingConv.h"
29#include "llvm/IR/DerivedTypes.h"
30#include "llvm/IR/Function.h"
31#include "llvm/IR/GlobalAlias.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/IR/InlineAsm.h"
34#include "llvm/IR/Intrinsics.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/ErrorHandling.h"
38#include "llvm/Support/raw_ostream.h"
39
40using namespace llvm;
41
42#define DEBUG_TYPE "hexagon-lowering"
43
44static cl::opt<bool>
45EmitJumpTables("hexagon-emit-jump-tables", cl::init(true), cl::Hidden,
46               cl::desc("Control jump table emission on Hexagon target"));
47
48namespace {
49class HexagonCCState : public CCState {
50  int NumNamedVarArgParams;
51
52public:
53  HexagonCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
54                 const TargetMachine &TM, SmallVectorImpl<CCValAssign> &locs,
55                 LLVMContext &C, int NumNamedVarArgParams)
56      : CCState(CC, isVarArg, MF, TM, locs, C),
57        NumNamedVarArgParams(NumNamedVarArgParams) {}
58
59  int getNumNamedVarArgParams() const { return NumNamedVarArgParams; }
60};
61}
62
63// Implement calling convention for Hexagon.
64static bool
65CC_Hexagon(unsigned ValNo, MVT ValVT,
66           MVT LocVT, CCValAssign::LocInfo LocInfo,
67           ISD::ArgFlagsTy ArgFlags, CCState &State);
68
69static bool
70CC_Hexagon32(unsigned ValNo, MVT ValVT,
71             MVT LocVT, CCValAssign::LocInfo LocInfo,
72             ISD::ArgFlagsTy ArgFlags, CCState &State);
73
74static bool
75CC_Hexagon64(unsigned ValNo, MVT ValVT,
76             MVT LocVT, CCValAssign::LocInfo LocInfo,
77             ISD::ArgFlagsTy ArgFlags, CCState &State);
78
79static bool
80RetCC_Hexagon(unsigned ValNo, MVT ValVT,
81              MVT LocVT, CCValAssign::LocInfo LocInfo,
82              ISD::ArgFlagsTy ArgFlags, CCState &State);
83
84static bool
85RetCC_Hexagon32(unsigned ValNo, MVT ValVT,
86                MVT LocVT, CCValAssign::LocInfo LocInfo,
87                ISD::ArgFlagsTy ArgFlags, CCState &State);
88
89static bool
90RetCC_Hexagon64(unsigned ValNo, MVT ValVT,
91                MVT LocVT, CCValAssign::LocInfo LocInfo,
92                ISD::ArgFlagsTy ArgFlags, CCState &State);
93
94static bool
95CC_Hexagon_VarArg (unsigned ValNo, MVT ValVT,
96            MVT LocVT, CCValAssign::LocInfo LocInfo,
97            ISD::ArgFlagsTy ArgFlags, CCState &State) {
98  HexagonCCState &HState = static_cast<HexagonCCState &>(State);
99
100  // NumNamedVarArgParams can not be zero for a VarArg function.
101  assert((HState.getNumNamedVarArgParams() > 0) &&
102         "NumNamedVarArgParams is not bigger than zero.");
103
104  if ((int)ValNo < HState.getNumNamedVarArgParams()) {
105    // Deal with named arguments.
106    return CC_Hexagon(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State);
107  }
108
109  // Deal with un-named arguments.
110  unsigned ofst;
111  if (ArgFlags.isByVal()) {
112    // If pass-by-value, the size allocated on stack is decided
113    // by ArgFlags.getByValSize(), not by the size of LocVT.
114    assert ((ArgFlags.getByValSize() > 8) &&
115            "ByValSize must be bigger than 8 bytes");
116    ofst = State.AllocateStack(ArgFlags.getByValSize(), 4);
117    State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
118    return false;
119  }
120  if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) {
121    LocVT = MVT::i32;
122    ValVT = MVT::i32;
123    if (ArgFlags.isSExt())
124      LocInfo = CCValAssign::SExt;
125    else if (ArgFlags.isZExt())
126      LocInfo = CCValAssign::ZExt;
127    else
128      LocInfo = CCValAssign::AExt;
129  }
130  if (LocVT == MVT::i32 || LocVT == MVT::f32) {
131    ofst = State.AllocateStack(4, 4);
132    State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
133    return false;
134  }
135  if (LocVT == MVT::i64 || LocVT == MVT::f64) {
136    ofst = State.AllocateStack(8, 8);
137    State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
138    return false;
139  }
140  llvm_unreachable(nullptr);
141}
142
143
144static bool
145CC_Hexagon (unsigned ValNo, MVT ValVT,
146            MVT LocVT, CCValAssign::LocInfo LocInfo,
147            ISD::ArgFlagsTy ArgFlags, CCState &State) {
148
149  if (ArgFlags.isByVal()) {
150    // Passed on stack.
151    assert ((ArgFlags.getByValSize() > 8) &&
152            "ByValSize must be bigger than 8 bytes");
153    unsigned Offset = State.AllocateStack(ArgFlags.getByValSize(), 4);
154    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
155    return false;
156  }
157
158  if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) {
159    LocVT = MVT::i32;
160    ValVT = MVT::i32;
161    if (ArgFlags.isSExt())
162      LocInfo = CCValAssign::SExt;
163    else if (ArgFlags.isZExt())
164      LocInfo = CCValAssign::ZExt;
165    else
166      LocInfo = CCValAssign::AExt;
167  }
168
169  if (LocVT == MVT::i32 || LocVT == MVT::f32) {
170    if (!CC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
171      return false;
172  }
173
174  if (LocVT == MVT::i64 || LocVT == MVT::f64) {
175    if (!CC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
176      return false;
177  }
178
179  return true;  // CC didn't match.
180}
181
182
183static bool CC_Hexagon32(unsigned ValNo, MVT ValVT,
184                         MVT LocVT, CCValAssign::LocInfo LocInfo,
185                         ISD::ArgFlagsTy ArgFlags, CCState &State) {
186
187  static const MCPhysReg RegList[] = {
188    Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3, Hexagon::R4,
189    Hexagon::R5
190  };
191  if (unsigned Reg = State.AllocateReg(RegList, 6)) {
192    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
193    return false;
194  }
195
196  unsigned Offset = State.AllocateStack(4, 4);
197  State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
198  return false;
199}
200
201static bool CC_Hexagon64(unsigned ValNo, MVT ValVT,
202                         MVT LocVT, CCValAssign::LocInfo LocInfo,
203                         ISD::ArgFlagsTy ArgFlags, CCState &State) {
204
205  if (unsigned Reg = State.AllocateReg(Hexagon::D0)) {
206    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
207    return false;
208  }
209
210  static const MCPhysReg RegList1[] = {
211    Hexagon::D1, Hexagon::D2
212  };
213  static const MCPhysReg RegList2[] = {
214    Hexagon::R1, Hexagon::R3
215  };
216  if (unsigned Reg = State.AllocateReg(RegList1, RegList2, 2)) {
217    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
218    return false;
219  }
220
221  unsigned Offset = State.AllocateStack(8, 8, Hexagon::D2);
222  State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
223  return false;
224}
225
226static bool RetCC_Hexagon(unsigned ValNo, MVT ValVT,
227                          MVT LocVT, CCValAssign::LocInfo LocInfo,
228                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
229
230
231  if (LocVT == MVT::i1 ||
232      LocVT == MVT::i8 ||
233      LocVT == MVT::i16) {
234    LocVT = MVT::i32;
235    ValVT = MVT::i32;
236    if (ArgFlags.isSExt())
237      LocInfo = CCValAssign::SExt;
238    else if (ArgFlags.isZExt())
239      LocInfo = CCValAssign::ZExt;
240    else
241      LocInfo = CCValAssign::AExt;
242  }
243
244  if (LocVT == MVT::i32 || LocVT == MVT::f32) {
245    if (!RetCC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
246    return false;
247  }
248
249  if (LocVT == MVT::i64 || LocVT == MVT::f64) {
250    if (!RetCC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
251    return false;
252  }
253
254  return true;  // CC didn't match.
255}
256
257static bool RetCC_Hexagon32(unsigned ValNo, MVT ValVT,
258                            MVT LocVT, CCValAssign::LocInfo LocInfo,
259                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
260
261  if (LocVT == MVT::i32 || LocVT == MVT::f32) {
262    if (unsigned Reg = State.AllocateReg(Hexagon::R0)) {
263      State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
264      return false;
265    }
266  }
267
268  unsigned Offset = State.AllocateStack(4, 4);
269  State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
270  return false;
271}
272
273static bool RetCC_Hexagon64(unsigned ValNo, MVT ValVT,
274                            MVT LocVT, CCValAssign::LocInfo LocInfo,
275                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
276  if (LocVT == MVT::i64 || LocVT == MVT::f64) {
277    if (unsigned Reg = State.AllocateReg(Hexagon::D0)) {
278      State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
279      return false;
280    }
281  }
282
283  unsigned Offset = State.AllocateStack(8, 8);
284  State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
285  return false;
286}
287
288SDValue
289HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
290const {
291  return SDValue();
292}
293
294/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
295/// by "Src" to address "Dst" of size "Size".  Alignment information is
296/// specified by the specific parameter attribute. The copy will be passed as
297/// a byval function parameter.  Sometimes what we are copying is the end of a
298/// larger object, the part that does not fit in registers.
299static SDValue
300CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
301                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
302                          SDLoc dl) {
303
304  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
305  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
306                       /*isVolatile=*/false, /*AlwaysInline=*/false,
307                       MachinePointerInfo(), MachinePointerInfo());
308}
309
310
311// LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
312// passed by value, the function prototype is modified to return void and
313// the value is stored in memory pointed by a pointer passed by caller.
314SDValue
315HexagonTargetLowering::LowerReturn(SDValue Chain,
316                                   CallingConv::ID CallConv, bool isVarArg,
317                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
318                                   const SmallVectorImpl<SDValue> &OutVals,
319                                   SDLoc dl, SelectionDAG &DAG) const {
320
321  // CCValAssign - represent the assignment of the return value to locations.
322  SmallVector<CCValAssign, 16> RVLocs;
323
324  // CCState - Info about the registers and stack slot.
325  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
326                 getTargetMachine(), RVLocs, *DAG.getContext());
327
328  // Analyze return values of ISD::RET
329  CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);
330
331  SDValue Flag;
332  SmallVector<SDValue, 4> RetOps(1, Chain);
333
334  // Copy the result values into the output registers.
335  for (unsigned i = 0; i != RVLocs.size(); ++i) {
336    CCValAssign &VA = RVLocs[i];
337
338    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
339
340    // Guarantee that all emitted copies are stuck together with flags.
341    Flag = Chain.getValue(1);
342    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
343  }
344
345  RetOps[0] = Chain;  // Update chain.
346
347  // Add the flag if we have it.
348  if (Flag.getNode())
349    RetOps.push_back(Flag);
350
351  return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps);
352}
353
354
355
356
357/// LowerCallResult - Lower the result values of an ISD::CALL into the
358/// appropriate copies out of appropriate physical registers.  This assumes that
359/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
360/// being lowered. Returns a SDNode with the same number of values as the
361/// ISD::CALL.
362SDValue
363HexagonTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
364                                       CallingConv::ID CallConv, bool isVarArg,
365                                       const
366                                       SmallVectorImpl<ISD::InputArg> &Ins,
367                                       SDLoc dl, SelectionDAG &DAG,
368                                       SmallVectorImpl<SDValue> &InVals,
369                                       const SmallVectorImpl<SDValue> &OutVals,
370                                       SDValue Callee) const {
371
372  // Assign locations to each value returned by this call.
373  SmallVector<CCValAssign, 16> RVLocs;
374
375  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
376                 getTargetMachine(), RVLocs, *DAG.getContext());
377
378  CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);
379
380  // Copy all of the result registers out of their specified physreg.
381  for (unsigned i = 0; i != RVLocs.size(); ++i) {
382    Chain = DAG.getCopyFromReg(Chain, dl,
383                               RVLocs[i].getLocReg(),
384                               RVLocs[i].getValVT(), InFlag).getValue(1);
385    InFlag = Chain.getValue(2);
386    InVals.push_back(Chain.getValue(0));
387  }
388
389  return Chain;
390}
391
392/// LowerCall - Functions arguments are copied from virtual regs to
393/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
394SDValue
395HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
396                                 SmallVectorImpl<SDValue> &InVals) const {
397  SelectionDAG &DAG                     = CLI.DAG;
398  SDLoc &dl                             = CLI.DL;
399  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
400  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
401  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
402  SDValue Chain                         = CLI.Chain;
403  SDValue Callee                        = CLI.Callee;
404  bool &isTailCall                      = CLI.IsTailCall;
405  CallingConv::ID CallConv              = CLI.CallConv;
406  bool isVarArg                         = CLI.IsVarArg;
407
408  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
409
410  // Check for varargs.
411  int NumNamedVarArgParams = -1;
412  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Callee))
413  {
414    const Function* CalleeFn = nullptr;
415    Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, MVT::i32);
416    if ((CalleeFn = dyn_cast<Function>(GA->getGlobal())))
417    {
418      // If a function has zero args and is a vararg function, that's
419      // disallowed so it must be an undeclared function.  Do not assume
420      // varargs if the callee is undefined.
421      if (CalleeFn->isVarArg() &&
422          CalleeFn->getFunctionType()->getNumParams() != 0) {
423        NumNamedVarArgParams = CalleeFn->getFunctionType()->getNumParams();
424      }
425    }
426  }
427
428  // Analyze operands of the call, assigning locations to each operand.
429  SmallVector<CCValAssign, 16> ArgLocs;
430  HexagonCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
431                        getTargetMachine(), ArgLocs, *DAG.getContext(),
432                        NumNamedVarArgParams);
433
434  if (NumNamedVarArgParams > 0)
435    CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_VarArg);
436  else
437    CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);
438
439
440  if(isTailCall) {
441    bool StructAttrFlag =
442      DAG.getMachineFunction().getFunction()->hasStructRetAttr();
443    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
444                                                   isVarArg, IsStructRet,
445                                                   StructAttrFlag,
446                                                   Outs, OutVals, Ins, DAG);
447    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i){
448      CCValAssign &VA = ArgLocs[i];
449      if (VA.isMemLoc()) {
450        isTailCall = false;
451        break;
452      }
453    }
454    if (isTailCall) {
455      DEBUG(dbgs () << "Eligible for Tail Call\n");
456    } else {
457      DEBUG(dbgs () <<
458            "Argument must be passed on stack. Not eligible for Tail Call\n");
459    }
460  }
461  // Get a count of how many bytes are to be pushed on the stack.
462  unsigned NumBytes = CCInfo.getNextStackOffset();
463  SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
464  SmallVector<SDValue, 8> MemOpChains;
465
466  const HexagonRegisterInfo *QRI = static_cast<const HexagonRegisterInfo *>(
467      DAG.getTarget().getRegisterInfo());
468  SDValue StackPtr =
469      DAG.getCopyFromReg(Chain, dl, QRI->getStackRegister(), getPointerTy());
470
471  // Walk the register/memloc assignments, inserting copies/loads.
472  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
473    CCValAssign &VA = ArgLocs[i];
474    SDValue Arg = OutVals[i];
475    ISD::ArgFlagsTy Flags = Outs[i].Flags;
476
477    // Promote the value if needed.
478    switch (VA.getLocInfo()) {
479      default:
480        // Loc info must be one of Full, SExt, ZExt, or AExt.
481        llvm_unreachable("Unknown loc info!");
482      case CCValAssign::Full:
483        break;
484      case CCValAssign::SExt:
485        Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
486        break;
487      case CCValAssign::ZExt:
488        Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
489        break;
490      case CCValAssign::AExt:
491        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
492        break;
493    }
494
495    if (VA.isMemLoc()) {
496      unsigned LocMemOffset = VA.getLocMemOffset();
497      SDValue PtrOff = DAG.getConstant(LocMemOffset, StackPtr.getValueType());
498      PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
499
500      if (Flags.isByVal()) {
501        // The argument is a struct passed by value. According to LLVM, "Arg"
502        // is is pointer.
503        MemOpChains.push_back(CreateCopyOfByValArgument(Arg, PtrOff, Chain,
504                                                        Flags, DAG, dl));
505      } else {
506        // The argument is not passed by value. "Arg" is a buildin type. It is
507        // not a pointer.
508        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
509                                           MachinePointerInfo(),false, false,
510                                           0));
511      }
512      continue;
513    }
514
515    // Arguments that can be passed on register must be kept at RegsToPass
516    // vector.
517    if (VA.isRegLoc()) {
518      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
519    }
520  }
521
522  // Transform all store nodes into one single node because all store
523  // nodes are independent of each other.
524  if (!MemOpChains.empty()) {
525    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
526  }
527
528  if (!isTailCall)
529    Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes,
530                                                        getPointerTy(), true),
531                                 dl);
532
533  // Build a sequence of copy-to-reg nodes chained together with token
534  // chain and flag operands which copy the outgoing args into registers.
535  // The InFlag in necessary since all emitted instructions must be
536  // stuck together.
537  SDValue InFlag;
538  if (!isTailCall) {
539    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
540      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
541                               RegsToPass[i].second, InFlag);
542      InFlag = Chain.getValue(1);
543    }
544  }
545
546  // For tail calls lower the arguments to the 'real' stack slot.
547  if (isTailCall) {
548    // Force all the incoming stack arguments to be loaded from the stack
549    // before any new outgoing arguments are stored to the stack, because the
550    // outgoing stack slots may alias the incoming argument stack slots, and
551    // the alias isn't otherwise explicit. This is slightly more conservative
552    // than necessary, because it means that each store effectively depends
553    // on every argument instead of just those arguments it would clobber.
554    //
555    // Do not flag preceding copytoreg stuff together with the following stuff.
556    InFlag = SDValue();
557    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
558      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
559                               RegsToPass[i].second, InFlag);
560      InFlag = Chain.getValue(1);
561    }
562    InFlag =SDValue();
563  }
564
565  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
566  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
567  // node so that legalize doesn't hack it.
568  if (flag_aligned_memcpy) {
569    const char *MemcpyName =
570      "__hexagon_memcpy_likely_aligned_min32bytes_mult8bytes";
571    Callee =
572      DAG.getTargetExternalSymbol(MemcpyName, getPointerTy());
573    flag_aligned_memcpy = false;
574  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
575    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy());
576  } else if (ExternalSymbolSDNode *S =
577             dyn_cast<ExternalSymbolSDNode>(Callee)) {
578    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
579  }
580
581  // Returns a chain & a flag for retval copy to use.
582  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
583  SmallVector<SDValue, 8> Ops;
584  Ops.push_back(Chain);
585  Ops.push_back(Callee);
586
587  // Add argument registers to the end of the list so that they are
588  // known live into the call.
589  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
590    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
591                                  RegsToPass[i].second.getValueType()));
592  }
593
594  if (InFlag.getNode()) {
595    Ops.push_back(InFlag);
596  }
597
598  if (isTailCall)
599    return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops);
600
601  Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, Ops);
602  InFlag = Chain.getValue(1);
603
604  // Create the CALLSEQ_END node.
605  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
606                             DAG.getIntPtrConstant(0, true), InFlag, dl);
607  InFlag = Chain.getValue(1);
608
609  // Handle result values, copying them out of physregs into vregs that we
610  // return.
611  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
612                         InVals, OutVals, Callee);
613}
614
615static bool getIndexedAddressParts(SDNode *Ptr, EVT VT,
616                                   bool isSEXTLoad, SDValue &Base,
617                                   SDValue &Offset, bool &isInc,
618                                   SelectionDAG &DAG) {
619  if (Ptr->getOpcode() != ISD::ADD)
620  return false;
621
622  if (VT == MVT::i64 || VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
623    isInc = (Ptr->getOpcode() == ISD::ADD);
624    Base = Ptr->getOperand(0);
625    Offset = Ptr->getOperand(1);
626    // Ensure that Offset is a constant.
627    return (isa<ConstantSDNode>(Offset));
628  }
629
630  return false;
631}
632
633// TODO: Put this function along with the other isS* functions in
634// HexagonISelDAGToDAG.cpp into a common file. Or better still, use the
635// functions defined in HexagonOperands.td.
636static bool Is_PostInc_S4_Offset(SDNode * S, int ShiftAmount) {
637  ConstantSDNode *N = cast<ConstantSDNode>(S);
638
639  // immS4 predicate - True if the immediate fits in a 4-bit sign extended.
640  // field.
641  int64_t v = (int64_t)N->getSExtValue();
642  int64_t m = 0;
643  if (ShiftAmount > 0) {
644    m = v % ShiftAmount;
645    v = v >> ShiftAmount;
646  }
647  return (v <= 7) && (v >= -8) && (m == 0);
648}
649
650/// getPostIndexedAddressParts - returns true by value, base pointer and
651/// offset pointer and addressing mode by reference if this node can be
652/// combined with a load / store to form a post-indexed load / store.
653bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
654                                                       SDValue &Base,
655                                                       SDValue &Offset,
656                                                       ISD::MemIndexedMode &AM,
657                                                       SelectionDAG &DAG) const
658{
659  EVT VT;
660  SDValue Ptr;
661  bool isSEXTLoad = false;
662
663  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
664    VT  = LD->getMemoryVT();
665    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
666  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
667    VT  = ST->getMemoryVT();
668    if (ST->getValue().getValueType() == MVT::i64 && ST->isTruncatingStore()) {
669      return false;
670    }
671  } else {
672    return false;
673  }
674
675  bool isInc = false;
676  bool isLegal = getIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
677                                        isInc, DAG);
678  // ShiftAmount = number of left-shifted bits in the Hexagon instruction.
679  int ShiftAmount = VT.getSizeInBits() / 16;
680  if (isLegal && Is_PostInc_S4_Offset(Offset.getNode(), ShiftAmount)) {
681    AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
682    return true;
683  }
684
685  return false;
686}
687
688SDValue HexagonTargetLowering::LowerINLINEASM(SDValue Op,
689                                              SelectionDAG &DAG) const {
690  SDNode *Node = Op.getNode();
691  MachineFunction &MF = DAG.getMachineFunction();
692  HexagonMachineFunctionInfo *FuncInfo =
693    MF.getInfo<HexagonMachineFunctionInfo>();
694  switch (Node->getOpcode()) {
695    case ISD::INLINEASM: {
696      unsigned NumOps = Node->getNumOperands();
697      if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
698        --NumOps;  // Ignore the flag operand.
699
700      for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
701        if (FuncInfo->hasClobberLR())
702          break;
703        unsigned Flags =
704          cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
705        unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
706        ++i;  // Skip the ID value.
707
708        switch (InlineAsm::getKind(Flags)) {
709        default: llvm_unreachable("Bad flags!");
710          case InlineAsm::Kind_RegDef:
711          case InlineAsm::Kind_RegUse:
712          case InlineAsm::Kind_Imm:
713          case InlineAsm::Kind_Clobber:
714          case InlineAsm::Kind_Mem: {
715            for (; NumVals; --NumVals, ++i) {}
716            break;
717          }
718          case InlineAsm::Kind_RegDefEarlyClobber: {
719            for (; NumVals; --NumVals, ++i) {
720              unsigned Reg =
721                cast<RegisterSDNode>(Node->getOperand(i))->getReg();
722
723              // Check it to be lr
724              const HexagonRegisterInfo *QRI =
725                  static_cast<const HexagonRegisterInfo *>(
726                      DAG.getTarget().getRegisterInfo());
727              if (Reg == QRI->getRARegister()) {
728                FuncInfo->setHasClobberLR(true);
729                break;
730              }
731            }
732            break;
733          }
734        }
735      }
736    }
737  } // Node->getOpcode
738  return Op;
739}
740
741
742//
743// Taken from the XCore backend.
744//
745SDValue HexagonTargetLowering::
746LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
747{
748  SDValue Chain = Op.getOperand(0);
749  SDValue Table = Op.getOperand(1);
750  SDValue Index = Op.getOperand(2);
751  SDLoc dl(Op);
752  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
753  unsigned JTI = JT->getIndex();
754  MachineFunction &MF = DAG.getMachineFunction();
755  const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
756  SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
757
758  // Mark all jump table targets as address taken.
759  const std::vector<MachineJumpTableEntry> &JTE = MJTI->getJumpTables();
760  const std::vector<MachineBasicBlock*> &JTBBs = JTE[JTI].MBBs;
761  for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
762    MachineBasicBlock *MBB = JTBBs[i];
763    MBB->setHasAddressTaken();
764    // This line is needed to set the hasAddressTaken flag on the BasicBlock
765    // object.
766    BlockAddress::get(const_cast<BasicBlock *>(MBB->getBasicBlock()));
767  }
768
769  SDValue JumpTableBase = DAG.getNode(HexagonISD::WrapperJT, dl,
770                                      getPointerTy(), TargetJT);
771  SDValue ShiftIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
772                                   DAG.getConstant(2, MVT::i32));
773  SDValue JTAddress = DAG.getNode(ISD::ADD, dl, MVT::i32, JumpTableBase,
774                                  ShiftIndex);
775  SDValue LoadTarget = DAG.getLoad(MVT::i32, dl, Chain, JTAddress,
776                                   MachinePointerInfo(), false, false, false,
777                                   0);
778  return DAG.getNode(HexagonISD::BR_JT, dl, MVT::Other, Chain, LoadTarget);
779}
780
781
782SDValue
783HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
784                                               SelectionDAG &DAG) const {
785  SDValue Chain = Op.getOperand(0);
786  SDValue Size = Op.getOperand(1);
787  SDLoc dl(Op);
788
789  unsigned SPReg = getStackPointerRegisterToSaveRestore();
790
791  // Get a reference to the stack pointer.
792  SDValue StackPointer = DAG.getCopyFromReg(Chain, dl, SPReg, MVT::i32);
793
794  // Subtract the dynamic size from the actual stack size to
795  // obtain the new stack size.
796  SDValue Sub = DAG.getNode(ISD::SUB, dl, MVT::i32, StackPointer, Size);
797
798  //
799  // For Hexagon, the outgoing memory arguments area should be on top of the
800  // alloca area on the stack i.e., the outgoing memory arguments should be
801  // at a lower address than the alloca area. Move the alloca area down the
802  // stack by adding back the space reserved for outgoing arguments to SP
803  // here.
804  //
805  // We do not know what the size of the outgoing args is at this point.
806  // So, we add a pseudo instruction ADJDYNALLOC that will adjust the
807  // stack pointer. We patch this instruction with the correct, known
808  // offset in emitPrologue().
809  //
810  // Use a placeholder immediate (zero) for now. This will be patched up
811  // by emitPrologue().
812  SDValue ArgAdjust = DAG.getNode(HexagonISD::ADJDYNALLOC, dl,
813                                  MVT::i32,
814                                  Sub,
815                                  DAG.getConstant(0, MVT::i32));
816
817  // The Sub result contains the new stack start address, so it
818  // must be placed in the stack pointer register.
819  const HexagonRegisterInfo *QRI = static_cast<const HexagonRegisterInfo *>(
820      DAG.getTarget().getRegisterInfo());
821  SDValue CopyChain = DAG.getCopyToReg(Chain, dl, QRI->getStackRegister(), Sub);
822
823  SDValue Ops[2] = { ArgAdjust, CopyChain };
824  return DAG.getMergeValues(Ops, dl);
825}
826
827SDValue
828HexagonTargetLowering::LowerFormalArguments(SDValue Chain,
829                                            CallingConv::ID CallConv,
830                                            bool isVarArg,
831                                            const
832                                            SmallVectorImpl<ISD::InputArg> &Ins,
833                                            SDLoc dl, SelectionDAG &DAG,
834                                            SmallVectorImpl<SDValue> &InVals)
835const {
836
837  MachineFunction &MF = DAG.getMachineFunction();
838  MachineFrameInfo *MFI = MF.getFrameInfo();
839  MachineRegisterInfo &RegInfo = MF.getRegInfo();
840  HexagonMachineFunctionInfo *FuncInfo =
841    MF.getInfo<HexagonMachineFunctionInfo>();
842
843
844  // Assign locations to all of the incoming arguments.
845  SmallVector<CCValAssign, 16> ArgLocs;
846  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
847                 getTargetMachine(), ArgLocs, *DAG.getContext());
848
849  CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);
850
851  // For LLVM, in the case when returning a struct by value (>8byte),
852  // the first argument is a pointer that points to the location on caller's
853  // stack where the return value will be stored. For Hexagon, the location on
854  // caller's stack is passed only when the struct size is smaller than (and
855  // equal to) 8 bytes. If not, no address will be passed into callee and
856  // callee return the result direclty through R0/R1.
857
858  SmallVector<SDValue, 4> MemOps;
859
860  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
861    CCValAssign &VA = ArgLocs[i];
862    ISD::ArgFlagsTy Flags = Ins[i].Flags;
863    unsigned ObjSize;
864    unsigned StackLocation;
865    int FI;
866
867    if (   (VA.isRegLoc() && !Flags.isByVal())
868        || (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() > 8)) {
869      // Arguments passed in registers
870      // 1. int, long long, ptr args that get allocated in register.
871      // 2. Large struct that gets an register to put its address in.
872      EVT RegVT = VA.getLocVT();
873      if (RegVT == MVT::i8 || RegVT == MVT::i16 ||
874          RegVT == MVT::i32 || RegVT == MVT::f32) {
875        unsigned VReg =
876          RegInfo.createVirtualRegister(&Hexagon::IntRegsRegClass);
877        RegInfo.addLiveIn(VA.getLocReg(), VReg);
878        InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
879      } else if (RegVT == MVT::i64) {
880        unsigned VReg =
881          RegInfo.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
882        RegInfo.addLiveIn(VA.getLocReg(), VReg);
883        InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
884      } else {
885        assert (0);
886      }
887    } else if (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() <= 8) {
888      assert (0 && "ByValSize must be bigger than 8 bytes");
889    } else {
890      // Sanity check.
891      assert(VA.isMemLoc());
892
893      if (Flags.isByVal()) {
894        // If it's a byval parameter, then we need to compute the
895        // "real" size, not the size of the pointer.
896        ObjSize = Flags.getByValSize();
897      } else {
898        ObjSize = VA.getLocVT().getStoreSizeInBits() >> 3;
899      }
900
901      StackLocation = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
902      // Create the frame index object for this incoming parameter...
903      FI = MFI->CreateFixedObject(ObjSize, StackLocation, true);
904
905      // Create the SelectionDAG nodes cordl, responding to a load
906      // from this parameter.
907      SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
908
909      if (Flags.isByVal()) {
910        // If it's a pass-by-value aggregate, then do not dereference the stack
911        // location. Instead, we should generate a reference to the stack
912        // location.
913        InVals.push_back(FIN);
914      } else {
915        InVals.push_back(DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
916                                     MachinePointerInfo(), false, false,
917                                     false, 0));
918      }
919    }
920  }
921
922  if (!MemOps.empty())
923    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
924
925  if (isVarArg) {
926    // This will point to the next argument passed via stack.
927    int FrameIndex = MFI->CreateFixedObject(Hexagon_PointerSize,
928                                            HEXAGON_LRFP_SIZE +
929                                            CCInfo.getNextStackOffset(),
930                                            true);
931    FuncInfo->setVarArgsFrameIndex(FrameIndex);
932  }
933
934  return Chain;
935}
936
937SDValue
938HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
939  // VASTART stores the address of the VarArgsFrameIndex slot into the
940  // memory location argument.
941  MachineFunction &MF = DAG.getMachineFunction();
942  HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
943  SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
944  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
945  return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr,
946                      Op.getOperand(1), MachinePointerInfo(SV), false,
947                      false, 0);
948}
949
950SDValue
951HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
952  EVT ValTy = Op.getValueType();
953  SDLoc dl(Op);
954  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
955  SDValue Res;
956  if (CP->isMachineConstantPoolEntry())
957    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), ValTy,
958                                    CP->getAlignment());
959  else
960    Res = DAG.getTargetConstantPool(CP->getConstVal(), ValTy,
961                                    CP->getAlignment());
962  return DAG.getNode(HexagonISD::CONST32, dl, ValTy, Res);
963}
964
965SDValue
966HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
967  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
968  MachineFunction &MF = DAG.getMachineFunction();
969  MachineFrameInfo *MFI = MF.getFrameInfo();
970  MFI->setReturnAddressIsTaken(true);
971
972  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
973    return SDValue();
974
975  EVT VT = Op.getValueType();
976  SDLoc dl(Op);
977  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
978  if (Depth) {
979    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
980    SDValue Offset = DAG.getConstant(4, MVT::i32);
981    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
982                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
983                       MachinePointerInfo(), false, false, false, 0);
984  }
985
986  // Return LR, which contains the return address. Mark it an implicit live-in.
987  unsigned Reg = MF.addLiveIn(TRI->getRARegister(), getRegClassFor(MVT::i32));
988  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
989}
990
991SDValue
992HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
993  const HexagonRegisterInfo *TRI =
994      static_cast<const HexagonRegisterInfo *>(DAG.getTarget().getRegisterInfo());
995  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
996  MFI->setFrameAddressIsTaken(true);
997
998  EVT VT = Op.getValueType();
999  SDLoc dl(Op);
1000  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1001  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1002                                         TRI->getFrameRegister(), VT);
1003  while (Depth--)
1004    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
1005                            MachinePointerInfo(),
1006                            false, false, false, 0);
1007  return FrameAddr;
1008}
1009
1010SDValue HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op,
1011                                                 SelectionDAG& DAG) const {
1012  SDLoc dl(Op);
1013  return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
1014}
1015
1016
1017SDValue HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op,
1018                                                  SelectionDAG &DAG) const {
1019  SDValue Result;
1020  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1021  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
1022  SDLoc dl(Op);
1023  Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
1024
1025  const HexagonTargetObjectFile &TLOF =
1026      static_cast<const HexagonTargetObjectFile &>(getObjFileLowering());
1027  if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1028    return DAG.getNode(HexagonISD::CONST32_GP, dl, getPointerTy(), Result);
1029  }
1030
1031  return DAG.getNode(HexagonISD::CONST32, dl, getPointerTy(), Result);
1032}
1033
1034SDValue
1035HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
1036  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1037  SDValue BA_SD =  DAG.getTargetBlockAddress(BA, MVT::i32);
1038  SDLoc dl(Op);
1039  return DAG.getNode(HexagonISD::CONST32_GP, dl, getPointerTy(), BA_SD);
1040}
1041
1042//===----------------------------------------------------------------------===//
1043// TargetLowering Implementation
1044//===----------------------------------------------------------------------===//
1045
1046HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &targetmachine)
1047    : TargetLowering(targetmachine, new HexagonTargetObjectFile()),
1048      TM(targetmachine) {
1049
1050  const HexagonSubtarget &Subtarget = TM.getSubtarget<HexagonSubtarget>();
1051
1052  // Set up the register classes.
1053  addRegisterClass(MVT::i32, &Hexagon::IntRegsRegClass);
1054  addRegisterClass(MVT::i64, &Hexagon::DoubleRegsRegClass);
1055
1056  if (Subtarget.hasV5TOps()) {
1057    addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass);
1058    addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass);
1059  }
1060
1061  addRegisterClass(MVT::i1, &Hexagon::PredRegsRegClass);
1062
1063  computeRegisterProperties();
1064
1065  // Align loop entry
1066  setPrefLoopAlignment(4);
1067
1068  // Limits for inline expansion of memcpy/memmove
1069  MaxStoresPerMemcpy = 6;
1070  MaxStoresPerMemmove = 6;
1071
1072  //
1073  // Library calls for unsupported operations
1074  //
1075
1076  setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf");
1077  setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf");
1078
1079  setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti");
1080  setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti");
1081
1082  setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti");
1083  setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti");
1084
1085  setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
1086  setOperationAction(ISD::SDIV, MVT::i32, Expand);
1087  setLibcallName(RTLIB::SREM_I32, "__hexagon_umodsi3");
1088  setOperationAction(ISD::SREM, MVT::i32, Expand);
1089
1090  setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
1091  setOperationAction(ISD::SDIV, MVT::i64, Expand);
1092  setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
1093  setOperationAction(ISD::SREM, MVT::i64, Expand);
1094
1095  setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
1096  setOperationAction(ISD::UDIV, MVT::i32, Expand);
1097
1098  setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
1099  setOperationAction(ISD::UDIV, MVT::i64, Expand);
1100
1101  setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
1102  setOperationAction(ISD::UREM, MVT::i32, Expand);
1103
1104  setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");
1105  setOperationAction(ISD::UREM, MVT::i64, Expand);
1106
1107  setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
1108  setOperationAction(ISD::FDIV, MVT::f32, Expand);
1109
1110  setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
1111  setOperationAction(ISD::FDIV, MVT::f64, Expand);
1112
1113  setOperationAction(ISD::FSQRT, MVT::f32, Expand);
1114  setOperationAction(ISD::FSQRT, MVT::f64, Expand);
1115  setOperationAction(ISD::FSIN, MVT::f32, Expand);
1116  setOperationAction(ISD::FSIN, MVT::f64, Expand);
1117
1118  if (Subtarget.hasV5TOps()) {
1119    // Hexagon V5 Support.
1120    setOperationAction(ISD::FADD, MVT::f32, Legal);
1121    setOperationAction(ISD::FADD, MVT::f64, Legal);
1122    setOperationAction(ISD::FP_EXTEND, MVT::f32, Legal);
1123    setCondCodeAction(ISD::SETOEQ, MVT::f32, Legal);
1124    setCondCodeAction(ISD::SETOEQ, MVT::f64, Legal);
1125    setCondCodeAction(ISD::SETUEQ, MVT::f32, Legal);
1126    setCondCodeAction(ISD::SETUEQ, MVT::f64, Legal);
1127
1128    setCondCodeAction(ISD::SETOGE, MVT::f32, Legal);
1129    setCondCodeAction(ISD::SETOGE, MVT::f64, Legal);
1130    setCondCodeAction(ISD::SETUGE, MVT::f32, Legal);
1131    setCondCodeAction(ISD::SETUGE, MVT::f64, Legal);
1132
1133    setCondCodeAction(ISD::SETOGT, MVT::f32, Legal);
1134    setCondCodeAction(ISD::SETOGT, MVT::f64, Legal);
1135    setCondCodeAction(ISD::SETUGT, MVT::f32, Legal);
1136    setCondCodeAction(ISD::SETUGT, MVT::f64, Legal);
1137
1138    setCondCodeAction(ISD::SETOLE, MVT::f32, Legal);
1139    setCondCodeAction(ISD::SETOLE, MVT::f64, Legal);
1140    setCondCodeAction(ISD::SETOLT, MVT::f32, Legal);
1141    setCondCodeAction(ISD::SETOLT, MVT::f64, Legal);
1142
1143    setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
1144    setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
1145
1146    setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
1147    setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
1148    setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
1149    setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
1150
1151    setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote);
1152    setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote);
1153    setOperationAction(ISD::UINT_TO_FP, MVT::i8, Promote);
1154    setOperationAction(ISD::SINT_TO_FP, MVT::i8, Promote);
1155
1156    setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
1157    setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
1158    setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
1159    setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
1160
1161    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
1162    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
1163    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
1164    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
1165
1166    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Legal);
1167    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Legal);
1168    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Legal);
1169    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Legal);
1170
1171    setOperationAction(ISD::FABS, MVT::f32, Legal);
1172    setOperationAction(ISD::FABS, MVT::f64, Expand);
1173
1174    setOperationAction(ISD::FNEG, MVT::f32, Legal);
1175    setOperationAction(ISD::FNEG, MVT::f64, Expand);
1176  } else {
1177
1178    // Expand fp<->uint.
1179    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Expand);
1180    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
1181
1182    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
1183    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
1184
1185    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__hexagon_floatdisf");
1186    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__hexagon_floatundisf");
1187
1188    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__hexagon_floatunsisf");
1189    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__hexagon_floatsisf");
1190
1191    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__hexagon_floatdidf");
1192    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__hexagon_floatundidf");
1193
1194    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__hexagon_floatunsidf");
1195    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__hexagon_floatsidf");
1196
1197    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__hexagon_fixunssfsi");
1198    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__hexagon_fixunssfdi");
1199
1200    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__hexagon_fixdfdi");
1201    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__hexagon_fixsfdi");
1202
1203    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__hexagon_fixunsdfsi");
1204    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__hexagon_fixunsdfdi");
1205
1206    setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
1207    setOperationAction(ISD::FADD, MVT::f64, Expand);
1208
1209    setLibcallName(RTLIB::ADD_F32, "__hexagon_addsf3");
1210    setOperationAction(ISD::FADD, MVT::f32, Expand);
1211
1212    setLibcallName(RTLIB::FPEXT_F32_F64, "__hexagon_extendsfdf2");
1213    setOperationAction(ISD::FP_EXTEND, MVT::f32, Expand);
1214
1215    setLibcallName(RTLIB::OEQ_F32, "__hexagon_eqsf2");
1216    setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
1217
1218    setLibcallName(RTLIB::OEQ_F64, "__hexagon_eqdf2");
1219    setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
1220
1221    setLibcallName(RTLIB::OGE_F32, "__hexagon_gesf2");
1222    setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
1223
1224    setLibcallName(RTLIB::OGE_F64, "__hexagon_gedf2");
1225    setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
1226
1227    setLibcallName(RTLIB::OGT_F32, "__hexagon_gtsf2");
1228    setCondCodeAction(ISD::SETOGT, MVT::f32, Expand);
1229
1230    setLibcallName(RTLIB::OGT_F64, "__hexagon_gtdf2");
1231    setCondCodeAction(ISD::SETOGT, MVT::f64, Expand);
1232
1233    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__hexagon_fixdfsi");
1234    setOperationAction(ISD::FP_TO_SINT, MVT::f64, Expand);
1235
1236    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__hexagon_fixsfsi");
1237    setOperationAction(ISD::FP_TO_SINT, MVT::f32, Expand);
1238
1239    setLibcallName(RTLIB::OLE_F64, "__hexagon_ledf2");
1240    setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
1241
1242    setLibcallName(RTLIB::OLE_F32, "__hexagon_lesf2");
1243    setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
1244
1245    setLibcallName(RTLIB::OLT_F64, "__hexagon_ltdf2");
1246    setCondCodeAction(ISD::SETOLT, MVT::f64, Expand);
1247
1248    setLibcallName(RTLIB::OLT_F32, "__hexagon_ltsf2");
1249    setCondCodeAction(ISD::SETOLT, MVT::f32, Expand);
1250
1251    setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
1252    setOperationAction(ISD::FMUL, MVT::f64, Expand);
1253
1254    setLibcallName(RTLIB::MUL_F32, "__hexagon_mulsf3");
1255    setOperationAction(ISD::MUL, MVT::f32, Expand);
1256
1257    setLibcallName(RTLIB::UNE_F64, "__hexagon_nedf2");
1258    setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
1259
1260    setLibcallName(RTLIB::UNE_F32, "__hexagon_nesf2");
1261
1262    setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
1263    setOperationAction(ISD::SUB, MVT::f64, Expand);
1264
1265    setLibcallName(RTLIB::SUB_F32, "__hexagon_subsf3");
1266    setOperationAction(ISD::SUB, MVT::f32, Expand);
1267
1268    setLibcallName(RTLIB::FPROUND_F64_F32, "__hexagon_truncdfsf2");
1269    setOperationAction(ISD::FP_ROUND, MVT::f64, Expand);
1270
1271    setLibcallName(RTLIB::UO_F64, "__hexagon_unorddf2");
1272    setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
1273
1274    setLibcallName(RTLIB::O_F64, "__hexagon_unorddf2");
1275    setCondCodeAction(ISD::SETO, MVT::f64, Expand);
1276
1277    setLibcallName(RTLIB::O_F32, "__hexagon_unordsf2");
1278    setCondCodeAction(ISD::SETO, MVT::f32, Expand);
1279
1280    setLibcallName(RTLIB::UO_F32, "__hexagon_unordsf2");
1281    setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
1282
1283    setOperationAction(ISD::FABS, MVT::f32, Expand);
1284    setOperationAction(ISD::FABS, MVT::f64, Expand);
1285    setOperationAction(ISD::FNEG, MVT::f32, Expand);
1286    setOperationAction(ISD::FNEG, MVT::f64, Expand);
1287  }
1288
1289  setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
1290  setOperationAction(ISD::SREM, MVT::i32, Expand);
1291
1292  setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
1293  setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
1294  setIndexedLoadAction(ISD::POST_INC, MVT::i32, Legal);
1295  setIndexedLoadAction(ISD::POST_INC, MVT::i64, Legal);
1296
1297  setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal);
1298  setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal);
1299  setIndexedStoreAction(ISD::POST_INC, MVT::i32, Legal);
1300  setIndexedStoreAction(ISD::POST_INC, MVT::i64, Legal);
1301
1302  setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
1303
1304  // Turn FP extload into load/fextend.
1305  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
1306  // Hexagon has a i1 sign extending load.
1307  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Expand);
1308  // Turn FP truncstore into trunc + store.
1309  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1310
1311  // Custom legalize GlobalAddress nodes into CONST32.
1312  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
1313  setOperationAction(ISD::GlobalAddress, MVT::i8, Custom);
1314  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
1315  // Truncate action?
1316  setOperationAction(ISD::TRUNCATE, MVT::i64, Expand);
1317
1318  // Hexagon doesn't have sext_inreg, replace them with shl/sra.
1319  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1320
1321  // Hexagon has no REM or DIVREM operations.
1322  setOperationAction(ISD::UREM, MVT::i32, Expand);
1323  setOperationAction(ISD::SREM, MVT::i32, Expand);
1324  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
1325  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
1326  setOperationAction(ISD::SREM, MVT::i64, Expand);
1327  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
1328  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
1329
1330  setOperationAction(ISD::BSWAP, MVT::i64, Expand);
1331
1332  // Lower SELECT_CC to SETCC and SELECT.
1333  setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
1334  setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
1335  setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
1336
1337  if (Subtarget.hasV5TOps()) {
1338
1339    // We need to make the operation type of SELECT node to be Custom,
1340    // such that we don't go into the infinite loop of
1341    // select ->  setcc -> select_cc -> select loop.
1342    setOperationAction(ISD::SELECT, MVT::f32, Custom);
1343    setOperationAction(ISD::SELECT, MVT::f64, Custom);
1344
1345    setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
1346    setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
1347
1348  } else {
1349
1350    // Hexagon has no select or setcc: expand to SELECT_CC.
1351    setOperationAction(ISD::SELECT, MVT::f32, Expand);
1352    setOperationAction(ISD::SELECT, MVT::f64, Expand);
1353  }
1354
1355  if (EmitJumpTables) {
1356    setOperationAction(ISD::BR_JT, MVT::Other, Custom);
1357  } else {
1358    setOperationAction(ISD::BR_JT, MVT::Other, Expand);
1359  }
1360  // Increase jump tables cutover to 5, was 4.
1361  setMinimumJumpTableEntries(5);
1362
1363  setOperationAction(ISD::BR_CC, MVT::f32, Expand);
1364  setOperationAction(ISD::BR_CC, MVT::f64, Expand);
1365  setOperationAction(ISD::BR_CC, MVT::i1, Expand);
1366  setOperationAction(ISD::BR_CC, MVT::i32, Expand);
1367  setOperationAction(ISD::BR_CC, MVT::i64, Expand);
1368
1369  setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
1370
1371  setOperationAction(ISD::FSIN, MVT::f64, Expand);
1372  setOperationAction(ISD::FCOS, MVT::f64, Expand);
1373  setOperationAction(ISD::FREM, MVT::f64, Expand);
1374  setOperationAction(ISD::FSIN, MVT::f32, Expand);
1375  setOperationAction(ISD::FCOS, MVT::f32, Expand);
1376  setOperationAction(ISD::FREM, MVT::f32, Expand);
1377  setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
1378  setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
1379
1380  // In V4, we have double word add/sub with carry. The problem with
1381  // modelling this instruction is that it produces 2 results - Rdd and Px.
1382  // To model update of Px, we will have to use Defs[p0..p3] which will
1383  // cause any predicate live range to spill. So, we pretend we dont't
1384  // have these instructions.
1385  setOperationAction(ISD::ADDE, MVT::i8, Expand);
1386  setOperationAction(ISD::ADDE, MVT::i16, Expand);
1387  setOperationAction(ISD::ADDE, MVT::i32, Expand);
1388  setOperationAction(ISD::ADDE, MVT::i64, Expand);
1389  setOperationAction(ISD::SUBE, MVT::i8, Expand);
1390  setOperationAction(ISD::SUBE, MVT::i16, Expand);
1391  setOperationAction(ISD::SUBE, MVT::i32, Expand);
1392  setOperationAction(ISD::SUBE, MVT::i64, Expand);
1393  setOperationAction(ISD::ADDC, MVT::i8, Expand);
1394  setOperationAction(ISD::ADDC, MVT::i16, Expand);
1395  setOperationAction(ISD::ADDC, MVT::i32, Expand);
1396  setOperationAction(ISD::ADDC, MVT::i64, Expand);
1397  setOperationAction(ISD::SUBC, MVT::i8, Expand);
1398  setOperationAction(ISD::SUBC, MVT::i16, Expand);
1399  setOperationAction(ISD::SUBC, MVT::i32, Expand);
1400  setOperationAction(ISD::SUBC, MVT::i64, Expand);
1401
1402  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
1403  setOperationAction(ISD::CTPOP, MVT::i64, Expand);
1404  setOperationAction(ISD::CTTZ, MVT::i32, Expand);
1405  setOperationAction(ISD::CTTZ, MVT::i64, Expand);
1406  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
1407  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
1408  setOperationAction(ISD::CTLZ, MVT::i32, Expand);
1409  setOperationAction(ISD::CTLZ, MVT::i64, Expand);
1410  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
1411  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
1412  setOperationAction(ISD::ROTL, MVT::i32, Expand);
1413  setOperationAction(ISD::ROTR, MVT::i32, Expand);
1414  setOperationAction(ISD::BSWAP, MVT::i32, Expand);
1415  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
1416  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
1417  setOperationAction(ISD::FPOW, MVT::f64, Expand);
1418  setOperationAction(ISD::FPOW, MVT::f32, Expand);
1419
1420  setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
1421  setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
1422  setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
1423
1424  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
1425  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
1426
1427  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
1428  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
1429
1430  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
1431
1432  if (Subtarget.isSubtargetV2()) {
1433    setExceptionPointerRegister(Hexagon::R20);
1434    setExceptionSelectorRegister(Hexagon::R21);
1435  } else {
1436    setExceptionPointerRegister(Hexagon::R0);
1437    setExceptionSelectorRegister(Hexagon::R1);
1438  }
1439
1440  // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
1441  setOperationAction(ISD::VASTART, MVT::Other, Custom);
1442
1443  // Use the default implementation.
1444  setOperationAction(ISD::VAARG, MVT::Other, Expand);
1445  setOperationAction(ISD::VACOPY, MVT::Other, Expand);
1446  setOperationAction(ISD::VAEND, MVT::Other, Expand);
1447  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
1448  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
1449
1450  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1451  setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
1452
1453  setMinFunctionAlignment(2);
1454
1455  // Needed for DYNAMIC_STACKALLOC expansion.
1456  const HexagonRegisterInfo *QRI =
1457      static_cast<const HexagonRegisterInfo *>(TM.getRegisterInfo());
1458  setStackPointerRegisterToSaveRestore(QRI->getStackRegister());
1459  setSchedulingPreference(Sched::VLIW);
1460}
1461
1462const char*
1463HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
1464  switch (Opcode) {
1465    default: return nullptr;
1466    case HexagonISD::CONST32:     return "HexagonISD::CONST32";
1467    case HexagonISD::CONST32_GP: return "HexagonISD::CONST32_GP";
1468    case HexagonISD::CONST32_Int_Real: return "HexagonISD::CONST32_Int_Real";
1469    case HexagonISD::ADJDYNALLOC: return "HexagonISD::ADJDYNALLOC";
1470    case HexagonISD::CMPICC:      return "HexagonISD::CMPICC";
1471    case HexagonISD::CMPFCC:      return "HexagonISD::CMPFCC";
1472    case HexagonISD::BRICC:       return "HexagonISD::BRICC";
1473    case HexagonISD::BRFCC:       return "HexagonISD::BRFCC";
1474    case HexagonISD::SELECT_ICC:  return "HexagonISD::SELECT_ICC";
1475    case HexagonISD::SELECT_FCC:  return "HexagonISD::SELECT_FCC";
1476    case HexagonISD::Hi:          return "HexagonISD::Hi";
1477    case HexagonISD::Lo:          return "HexagonISD::Lo";
1478    case HexagonISD::FTOI:        return "HexagonISD::FTOI";
1479    case HexagonISD::ITOF:        return "HexagonISD::ITOF";
1480    case HexagonISD::CALL:        return "HexagonISD::CALL";
1481    case HexagonISD::RET_FLAG:    return "HexagonISD::RET_FLAG";
1482    case HexagonISD::BR_JT:       return "HexagonISD::BR_JT";
1483    case HexagonISD::TC_RETURN:   return "HexagonISD::TC_RETURN";
1484  case HexagonISD::EH_RETURN: return "HexagonISD::EH_RETURN";
1485  }
1486}
1487
1488bool
1489HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
1490  EVT MTy1 = EVT::getEVT(Ty1);
1491  EVT MTy2 = EVT::getEVT(Ty2);
1492  if (!MTy1.isSimple() || !MTy2.isSimple()) {
1493    return false;
1494  }
1495  return ((MTy1.getSimpleVT() == MVT::i64) && (MTy2.getSimpleVT() == MVT::i32));
1496}
1497
1498bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
1499  if (!VT1.isSimple() || !VT2.isSimple()) {
1500    return false;
1501  }
1502  return ((VT1.getSimpleVT() == MVT::i64) && (VT2.getSimpleVT() == MVT::i32));
1503}
1504
1505bool
1506HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
1507  // Assuming the caller does not have either a signext or zeroext modifier, and
1508  // only one value is accepted, any reasonable truncation is allowed.
1509  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
1510    return false;
1511
1512  // FIXME: in principle up to 64-bit could be made safe, but it would be very
1513  // fragile at the moment: any support for multiple value returns would be
1514  // liable to disallow tail calls involving i64 -> iN truncation in many cases.
1515  return Ty1->getPrimitiveSizeInBits() <= 32;
1516}
1517
1518SDValue
1519HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
1520  SDValue Chain     = Op.getOperand(0);
1521  SDValue Offset    = Op.getOperand(1);
1522  SDValue Handler   = Op.getOperand(2);
1523  SDLoc dl(Op);
1524
1525  // Mark function as containing a call to EH_RETURN.
1526  HexagonMachineFunctionInfo *FuncInfo =
1527    DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>();
1528  FuncInfo->setHasEHReturn();
1529
1530  unsigned OffsetReg = Hexagon::R28;
1531
1532  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(),
1533                                  DAG.getRegister(Hexagon::R30, getPointerTy()),
1534                                  DAG.getIntPtrConstant(4));
1535  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
1536                       false, false, 0);
1537  Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset);
1538
1539  // Not needed we already use it as explict input to EH_RETURN.
1540  // MF.getRegInfo().addLiveOut(OffsetReg);
1541
1542  return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain);
1543}
1544
1545SDValue
1546HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
1547  switch (Op.getOpcode()) {
1548    default: llvm_unreachable("Should not custom lower this!");
1549    case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
1550    case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
1551      // Frame & Return address.  Currently unimplemented.
1552    case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
1553    case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
1554    case ISD::GlobalTLSAddress:
1555                          llvm_unreachable("TLS not implemented for Hexagon.");
1556    case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
1557    case ISD::GlobalAddress:      return LowerGLOBALADDRESS(Op, DAG);
1558    case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
1559    case ISD::VASTART:            return LowerVASTART(Op, DAG);
1560    case ISD::BR_JT:              return LowerBR_JT(Op, DAG);
1561
1562    case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
1563    case ISD::SELECT:             return Op;
1564    case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1565    case ISD::INLINEASM:          return LowerINLINEASM(Op, DAG);
1566
1567  }
1568}
1569
1570
1571
1572//===----------------------------------------------------------------------===//
1573//                           Hexagon Scheduler Hooks
1574//===----------------------------------------------------------------------===//
1575MachineBasicBlock *
1576HexagonTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1577                                                   MachineBasicBlock *BB)
1578const {
1579  switch (MI->getOpcode()) {
1580    case Hexagon::ADJDYNALLOC: {
1581      MachineFunction *MF = BB->getParent();
1582      HexagonMachineFunctionInfo *FuncInfo =
1583        MF->getInfo<HexagonMachineFunctionInfo>();
1584      FuncInfo->addAllocaAdjustInst(MI);
1585      return BB;
1586    }
1587    default: llvm_unreachable("Unexpected instr type to insert");
1588  } // switch
1589}
1590
1591//===----------------------------------------------------------------------===//
1592// Inline Assembly Support
1593//===----------------------------------------------------------------------===//
1594
1595std::pair<unsigned, const TargetRegisterClass*>
1596HexagonTargetLowering::getRegForInlineAsmConstraint(const
1597                                                    std::string &Constraint,
1598                                                    MVT VT) const {
1599  if (Constraint.size() == 1) {
1600    switch (Constraint[0]) {
1601    case 'r':   // R0-R31
1602       switch (VT.SimpleTy) {
1603       default:
1604         llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type");
1605       case MVT::i32:
1606       case MVT::i16:
1607       case MVT::i8:
1608       case MVT::f32:
1609         return std::make_pair(0U, &Hexagon::IntRegsRegClass);
1610       case MVT::i64:
1611       case MVT::f64:
1612         return std::make_pair(0U, &Hexagon::DoubleRegsRegClass);
1613      }
1614    default:
1615      llvm_unreachable("Unknown asm register class");
1616    }
1617  }
1618
1619  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
1620}
1621
1622/// isFPImmLegal - Returns true if the target can instruction select the
1623/// specified FP immediate natively. If false, the legalizer will
1624/// materialize the FP immediate as a load from a constant pool.
1625bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
1626  return TM.getSubtarget<HexagonSubtarget>().hasV5TOps();
1627}
1628
1629/// isLegalAddressingMode - Return true if the addressing mode represented by
1630/// AM is legal for this target, for a load/store of the specified type.
1631bool HexagonTargetLowering::isLegalAddressingMode(const AddrMode &AM,
1632                                                  Type *Ty) const {
1633  // Allows a signed-extended 11-bit immediate field.
1634  if (AM.BaseOffs <= -(1LL << 13) || AM.BaseOffs >= (1LL << 13)-1) {
1635    return false;
1636  }
1637
1638  // No global is ever allowed as a base.
1639  if (AM.BaseGV) {
1640    return false;
1641  }
1642
1643  int Scale = AM.Scale;
1644  if (Scale < 0) Scale = -Scale;
1645  switch (Scale) {
1646  case 0:  // No scale reg, "r+i", "r", or just "i".
1647    break;
1648  default: // No scaled addressing mode.
1649    return false;
1650  }
1651  return true;
1652}
1653
1654/// isLegalICmpImmediate - Return true if the specified immediate is legal
1655/// icmp immediate, that is the target has icmp instructions which can compare
1656/// a register against the immediate without having to materialize the
1657/// immediate into a register.
1658bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1659  return Imm >= -512 && Imm <= 511;
1660}
1661
1662/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1663/// for tail call optimization. Targets which want to do tail call
1664/// optimization should implement this function.
1665bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
1666                                 SDValue Callee,
1667                                 CallingConv::ID CalleeCC,
1668                                 bool isVarArg,
1669                                 bool isCalleeStructRet,
1670                                 bool isCallerStructRet,
1671                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
1672                                 const SmallVectorImpl<SDValue> &OutVals,
1673                                 const SmallVectorImpl<ISD::InputArg> &Ins,
1674                                 SelectionDAG& DAG) const {
1675  const Function *CallerF = DAG.getMachineFunction().getFunction();
1676  CallingConv::ID CallerCC = CallerF->getCallingConv();
1677  bool CCMatch = CallerCC == CalleeCC;
1678
1679  // ***************************************************************************
1680  //  Look for obvious safe cases to perform tail call optimization that do not
1681  //  require ABI changes.
1682  // ***************************************************************************
1683
1684  // If this is a tail call via a function pointer, then don't do it!
1685  if (!(dyn_cast<GlobalAddressSDNode>(Callee))
1686      && !(dyn_cast<ExternalSymbolSDNode>(Callee))) {
1687    return false;
1688  }
1689
1690  // Do not optimize if the calling conventions do not match.
1691  if (!CCMatch)
1692    return false;
1693
1694  // Do not tail call optimize vararg calls.
1695  if (isVarArg)
1696    return false;
1697
1698  // Also avoid tail call optimization if either caller or callee uses struct
1699  // return semantics.
1700  if (isCalleeStructRet || isCallerStructRet)
1701    return false;
1702
1703  // In addition to the cases above, we also disable Tail Call Optimization if
1704  // the calling convention code that at least one outgoing argument needs to
1705  // go on the stack. We cannot check that here because at this point that
1706  // information is not available.
1707  return true;
1708}
1709