HexagonInstrInfo.cpp revision 354362524a72b3fa43a6c09380b7ae3b2380cbba
1//===-- HexagonInstrInfo.cpp - Hexagon Instruction Information ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Hexagon implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "HexagonInstrInfo.h"
15#include "Hexagon.h"
16#include "HexagonRegisterInfo.h"
17#include "HexagonSubtarget.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/CodeGen/DFAPacketizer.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineMemOperand.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/CodeGen/PseudoSourceValue.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/raw_ostream.h"
29#define GET_INSTRINFO_CTOR_DTOR
30#define GET_INSTRMAP_INFO
31#include "HexagonGenInstrInfo.inc"
32#include "HexagonGenDFAPacketizer.inc"
33
34using namespace llvm;
35
36///
37/// Constants for Hexagon instructions.
38///
39const int Hexagon_MEMW_OFFSET_MAX = 4095;
40const int Hexagon_MEMW_OFFSET_MIN = -4096;
41const int Hexagon_MEMD_OFFSET_MAX = 8191;
42const int Hexagon_MEMD_OFFSET_MIN = -8192;
43const int Hexagon_MEMH_OFFSET_MAX = 2047;
44const int Hexagon_MEMH_OFFSET_MIN = -2048;
45const int Hexagon_MEMB_OFFSET_MAX = 1023;
46const int Hexagon_MEMB_OFFSET_MIN = -1024;
47const int Hexagon_ADDI_OFFSET_MAX = 32767;
48const int Hexagon_ADDI_OFFSET_MIN = -32768;
49const int Hexagon_MEMD_AUTOINC_MAX = 56;
50const int Hexagon_MEMD_AUTOINC_MIN = -64;
51const int Hexagon_MEMW_AUTOINC_MAX = 28;
52const int Hexagon_MEMW_AUTOINC_MIN = -32;
53const int Hexagon_MEMH_AUTOINC_MAX = 14;
54const int Hexagon_MEMH_AUTOINC_MIN = -16;
55const int Hexagon_MEMB_AUTOINC_MAX = 7;
56const int Hexagon_MEMB_AUTOINC_MIN = -8;
57
58// Pin the vtable to this file.
59void HexagonInstrInfo::anchor() {}
60
61HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
62  : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
63    RI(ST), Subtarget(ST) {
64}
65
66
67/// isLoadFromStackSlot - If the specified machine instruction is a direct
68/// load from a stack slot, return the virtual or physical register number of
69/// the destination along with the FrameIndex of the loaded stack slot.  If
70/// not, return 0.  This predicate must return 0 if the instruction has
71/// any side effects other than loading from the stack slot.
72unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
73                                             int &FrameIndex) const {
74
75
76  switch (MI->getOpcode()) {
77  default: break;
78  case Hexagon::LDriw:
79  case Hexagon::LDrid:
80  case Hexagon::LDrih:
81  case Hexagon::LDrib:
82  case Hexagon::LDriub:
83    if (MI->getOperand(2).isFI() &&
84        MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
85      FrameIndex = MI->getOperand(2).getIndex();
86      return MI->getOperand(0).getReg();
87    }
88    break;
89  }
90  return 0;
91}
92
93
94/// isStoreToStackSlot - If the specified machine instruction is a direct
95/// store to a stack slot, return the virtual or physical register number of
96/// the source reg along with the FrameIndex of the loaded stack slot.  If
97/// not, return 0.  This predicate must return 0 if the instruction has
98/// any side effects other than storing to the stack slot.
99unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
100                                            int &FrameIndex) const {
101  switch (MI->getOpcode()) {
102  default: break;
103  case Hexagon::STriw:
104  case Hexagon::STrid:
105  case Hexagon::STrih:
106  case Hexagon::STrib:
107    if (MI->getOperand(2).isFI() &&
108        MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
109      FrameIndex = MI->getOperand(0).getIndex();
110      return MI->getOperand(2).getReg();
111    }
112    break;
113  }
114  return 0;
115}
116
117
118unsigned
119HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,MachineBasicBlock *TBB,
120                             MachineBasicBlock *FBB,
121                             const SmallVectorImpl<MachineOperand> &Cond,
122                             DebugLoc DL) const{
123
124    int BOpc   = Hexagon::JMP;
125    int BccOpc = Hexagon::JMP_t;
126
127    assert(TBB && "InsertBranch must not be told to insert a fallthrough");
128
129    int regPos = 0;
130    // Check if ReverseBranchCondition has asked to reverse this branch
131    // If we want to reverse the branch an odd number of times, we want
132    // JMP_f.
133    if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
134      BccOpc = Hexagon::JMP_f;
135      regPos = 1;
136    }
137
138    if (FBB == 0) {
139      if (Cond.empty()) {
140        // Due to a bug in TailMerging/CFG Optimization, we need to add a
141        // special case handling of a predicated jump followed by an
142        // unconditional jump. If not, Tail Merging and CFG Optimization go
143        // into an infinite loop.
144        MachineBasicBlock *NewTBB, *NewFBB;
145        SmallVector<MachineOperand, 4> Cond;
146        MachineInstr *Term = MBB.getFirstTerminator();
147        if (isPredicated(Term) && !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond,
148                                                 false)) {
149          MachineBasicBlock *NextBB =
150            llvm::next(MachineFunction::iterator(&MBB));
151          if (NewTBB == NextBB) {
152            ReverseBranchCondition(Cond);
153            RemoveBranch(MBB);
154            return InsertBranch(MBB, TBB, 0, Cond, DL);
155          }
156        }
157        BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
158      } else {
159        BuildMI(&MBB, DL,
160                get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
161      }
162      return 1;
163    }
164
165    BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
166    BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
167
168    return 2;
169}
170
171
172bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
173                                     MachineBasicBlock *&TBB,
174                                 MachineBasicBlock *&FBB,
175                                 SmallVectorImpl<MachineOperand> &Cond,
176                                 bool AllowModify) const {
177  TBB = NULL;
178  FBB = NULL;
179
180  // If the block has no terminators, it just falls into the block after it.
181  MachineBasicBlock::instr_iterator I = MBB.instr_end();
182  if (I == MBB.instr_begin())
183    return false;
184
185  // A basic block may looks like this:
186  //
187  //  [   insn
188  //     EH_LABEL
189  //      insn
190  //      insn
191  //      insn
192  //     EH_LABEL
193  //      insn     ]
194  //
195  // It has two succs but does not have a terminator
196  // Don't know how to handle it.
197  do {
198    --I;
199    if (I->isEHLabel())
200      return true;
201  } while (I != MBB.instr_begin());
202
203  I = MBB.instr_end();
204  --I;
205
206  while (I->isDebugValue()) {
207    if (I == MBB.instr_begin())
208      return false;
209    --I;
210  }
211
212  // Delete the JMP if it's equivalent to a fall-through.
213  if (AllowModify && I->getOpcode() == Hexagon::JMP &&
214      MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
215    DEBUG(dbgs()<< "\nErasing the jump to successor block\n";);
216    I->eraseFromParent();
217    I = MBB.instr_end();
218    if (I == MBB.instr_begin())
219      return false;
220    --I;
221  }
222  if (!isUnpredicatedTerminator(I))
223    return false;
224
225  // Get the last instruction in the block.
226  MachineInstr *LastInst = I;
227  MachineInstr *SecondLastInst = NULL;
228  // Find one more terminator if present.
229  do {
230    if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(I)) {
231      if (!SecondLastInst)
232        SecondLastInst = I;
233      else
234        // This is a third branch.
235        return true;
236    }
237    if (I == MBB.instr_begin())
238      break;
239    --I;
240  } while(I);
241
242  int LastOpcode = LastInst->getOpcode();
243
244  bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
245  bool LastOpcodeHasNot = PredOpcodeHasNot(LastOpcode);
246
247  // If there is only one terminator instruction, process it.
248  if (LastInst && !SecondLastInst) {
249    if (LastOpcode == Hexagon::JMP) {
250      TBB = LastInst->getOperand(0).getMBB();
251      return false;
252    }
253    if (LastOpcode == Hexagon::ENDLOOP0) {
254      TBB = LastInst->getOperand(0).getMBB();
255      Cond.push_back(LastInst->getOperand(0));
256      return false;
257    }
258    if (LastOpcodeHasJMP_c) {
259      TBB = LastInst->getOperand(1).getMBB();
260      if (LastOpcodeHasNot) {
261        Cond.push_back(MachineOperand::CreateImm(0));
262      }
263      Cond.push_back(LastInst->getOperand(0));
264      return false;
265    }
266    // Otherwise, don't know what this is.
267    return true;
268  }
269
270  int SecLastOpcode = SecondLastInst->getOpcode();
271
272  bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
273  bool SecLastOpcodeHasNot = PredOpcodeHasNot(SecLastOpcode);
274  if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::JMP)) {
275    TBB =  SecondLastInst->getOperand(1).getMBB();
276    if (SecLastOpcodeHasNot)
277      Cond.push_back(MachineOperand::CreateImm(0));
278    Cond.push_back(SecondLastInst->getOperand(0));
279    FBB = LastInst->getOperand(0).getMBB();
280    return false;
281  }
282
283  // If the block ends with two Hexagon:JMPs, handle it.  The second one is not
284  // executed, so remove it.
285  if (SecLastOpcode == Hexagon::JMP && LastOpcode == Hexagon::JMP) {
286    TBB = SecondLastInst->getOperand(0).getMBB();
287    I = LastInst;
288    if (AllowModify)
289      I->eraseFromParent();
290    return false;
291  }
292
293  // If the block ends with an ENDLOOP, and JMP, handle it.
294  if (SecLastOpcode == Hexagon::ENDLOOP0 &&
295      LastOpcode == Hexagon::JMP) {
296    TBB = SecondLastInst->getOperand(0).getMBB();
297    Cond.push_back(SecondLastInst->getOperand(0));
298    FBB = LastInst->getOperand(0).getMBB();
299    return false;
300  }
301
302  // Otherwise, can't handle this.
303  return true;
304}
305
306
307unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
308  int BOpc   = Hexagon::JMP;
309  int BccOpc = Hexagon::JMP_t;
310  int BccOpcNot = Hexagon::JMP_f;
311
312  MachineBasicBlock::iterator I = MBB.end();
313  if (I == MBB.begin()) return 0;
314  --I;
315  if (I->getOpcode() != BOpc && I->getOpcode() != BccOpc &&
316      I->getOpcode() != BccOpcNot)
317    return 0;
318
319  // Remove the branch.
320  I->eraseFromParent();
321
322  I = MBB.end();
323
324  if (I == MBB.begin()) return 1;
325  --I;
326  if (I->getOpcode() != BccOpc && I->getOpcode() != BccOpcNot)
327    return 1;
328
329  // Remove the branch.
330  I->eraseFromParent();
331  return 2;
332}
333
334
335/// \brief For a comparison instruction, return the source registers in
336/// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
337/// compares against in CmpValue. Return true if the comparison instruction
338/// can be analyzed.
339bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI,
340                                      unsigned &SrcReg, unsigned &SrcReg2,
341                                      int &Mask, int &Value) const {
342  unsigned Opc = MI->getOpcode();
343
344  // Set mask and the first source register.
345  switch (Opc) {
346    case Hexagon::CMPEHexagon4rr:
347    case Hexagon::CMPEQri:
348    case Hexagon::CMPEQrr:
349    case Hexagon::CMPGT64rr:
350    case Hexagon::CMPGTU64rr:
351    case Hexagon::CMPGTUri:
352    case Hexagon::CMPGTUrr:
353    case Hexagon::CMPGTri:
354    case Hexagon::CMPGTrr:
355      SrcReg = MI->getOperand(1).getReg();
356      Mask = ~0;
357      break;
358    case Hexagon::CMPbEQri_V4:
359    case Hexagon::CMPbEQrr_sbsb_V4:
360    case Hexagon::CMPbEQrr_ubub_V4:
361    case Hexagon::CMPbGTUri_V4:
362    case Hexagon::CMPbGTUrr_V4:
363    case Hexagon::CMPbGTrr_V4:
364      SrcReg = MI->getOperand(1).getReg();
365      Mask = 0xFF;
366      break;
367    case Hexagon::CMPhEQri_V4:
368    case Hexagon::CMPhEQrr_shl_V4:
369    case Hexagon::CMPhEQrr_xor_V4:
370    case Hexagon::CMPhGTUri_V4:
371    case Hexagon::CMPhGTUrr_V4:
372    case Hexagon::CMPhGTrr_shl_V4:
373      SrcReg = MI->getOperand(1).getReg();
374      Mask = 0xFFFF;
375      break;
376  }
377
378  // Set the value/second source register.
379  switch (Opc) {
380    case Hexagon::CMPEHexagon4rr:
381    case Hexagon::CMPEQrr:
382    case Hexagon::CMPGT64rr:
383    case Hexagon::CMPGTU64rr:
384    case Hexagon::CMPGTUrr:
385    case Hexagon::CMPGTrr:
386    case Hexagon::CMPbEQrr_sbsb_V4:
387    case Hexagon::CMPbEQrr_ubub_V4:
388    case Hexagon::CMPbGTUrr_V4:
389    case Hexagon::CMPbGTrr_V4:
390    case Hexagon::CMPhEQrr_shl_V4:
391    case Hexagon::CMPhEQrr_xor_V4:
392    case Hexagon::CMPhGTUrr_V4:
393    case Hexagon::CMPhGTrr_shl_V4:
394      SrcReg2 = MI->getOperand(2).getReg();
395      return true;
396
397    case Hexagon::CMPEQri:
398    case Hexagon::CMPGTUri:
399    case Hexagon::CMPGTri:
400    case Hexagon::CMPbEQri_V4:
401    case Hexagon::CMPbGTUri_V4:
402    case Hexagon::CMPhEQri_V4:
403    case Hexagon::CMPhGTUri_V4:
404      SrcReg2 = 0;
405      Value = MI->getOperand(2).getImm();
406      return true;
407  }
408
409  return false;
410}
411
412
413void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
414                                 MachineBasicBlock::iterator I, DebugLoc DL,
415                                 unsigned DestReg, unsigned SrcReg,
416                                 bool KillSrc) const {
417  if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
418    BuildMI(MBB, I, DL, get(Hexagon::TFR), DestReg).addReg(SrcReg);
419    return;
420  }
421  if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
422    BuildMI(MBB, I, DL, get(Hexagon::TFR64), DestReg).addReg(SrcReg);
423    return;
424  }
425  if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
426    // Map Pd = Ps to Pd = or(Ps, Ps).
427    BuildMI(MBB, I, DL, get(Hexagon::OR_pp),
428            DestReg).addReg(SrcReg).addReg(SrcReg);
429    return;
430  }
431  if (Hexagon::DoubleRegsRegClass.contains(DestReg) &&
432      Hexagon::IntRegsRegClass.contains(SrcReg)) {
433    // We can have an overlap between single and double reg: r1:0 = r0.
434    if(SrcReg == RI.getSubReg(DestReg, Hexagon::subreg_loreg)) {
435        // r1:0 = r0
436        BuildMI(MBB, I, DL, get(Hexagon::TFRI), (RI.getSubReg(DestReg,
437                Hexagon::subreg_hireg))).addImm(0);
438    } else {
439        // r1:0 = r1 or no overlap.
440        BuildMI(MBB, I, DL, get(Hexagon::TFR), (RI.getSubReg(DestReg,
441                Hexagon::subreg_loreg))).addReg(SrcReg);
442        BuildMI(MBB, I, DL, get(Hexagon::TFRI), (RI.getSubReg(DestReg,
443                Hexagon::subreg_hireg))).addImm(0);
444    }
445    return;
446  }
447  if (Hexagon::CRRegsRegClass.contains(DestReg) &&
448      Hexagon::IntRegsRegClass.contains(SrcReg)) {
449    BuildMI(MBB, I, DL, get(Hexagon::TFCR), DestReg).addReg(SrcReg);
450    return;
451  }
452  if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
453      Hexagon::IntRegsRegClass.contains(DestReg)) {
454    BuildMI(MBB, I, DL, get(Hexagon::TFR_RsPd), DestReg).
455      addReg(SrcReg, getKillRegState(KillSrc));
456    return;
457  }
458  if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
459      Hexagon::PredRegsRegClass.contains(DestReg)) {
460    BuildMI(MBB, I, DL, get(Hexagon::TFR_PdRs), DestReg).
461      addReg(SrcReg, getKillRegState(KillSrc));
462    return;
463  }
464
465  llvm_unreachable("Unimplemented");
466}
467
468
469void HexagonInstrInfo::
470storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
471                    unsigned SrcReg, bool isKill, int FI,
472                    const TargetRegisterClass *RC,
473                    const TargetRegisterInfo *TRI) const {
474
475  DebugLoc DL = MBB.findDebugLoc(I);
476  MachineFunction &MF = *MBB.getParent();
477  MachineFrameInfo &MFI = *MF.getFrameInfo();
478  unsigned Align = MFI.getObjectAlignment(FI);
479
480  MachineMemOperand *MMO =
481      MF.getMachineMemOperand(
482                      MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
483                      MachineMemOperand::MOStore,
484                      MFI.getObjectSize(FI),
485                      Align);
486
487  if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
488    BuildMI(MBB, I, DL, get(Hexagon::STriw))
489          .addFrameIndex(FI).addImm(0)
490          .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
491  } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
492    BuildMI(MBB, I, DL, get(Hexagon::STrid))
493          .addFrameIndex(FI).addImm(0)
494          .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
495  } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
496    BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
497          .addFrameIndex(FI).addImm(0)
498          .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
499  } else {
500    llvm_unreachable("Unimplemented");
501  }
502}
503
504
505void HexagonInstrInfo::storeRegToAddr(
506                                 MachineFunction &MF, unsigned SrcReg,
507                                 bool isKill,
508                                 SmallVectorImpl<MachineOperand> &Addr,
509                                 const TargetRegisterClass *RC,
510                                 SmallVectorImpl<MachineInstr*> &NewMIs) const
511{
512  llvm_unreachable("Unimplemented");
513}
514
515
516void HexagonInstrInfo::
517loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
518                     unsigned DestReg, int FI,
519                     const TargetRegisterClass *RC,
520                     const TargetRegisterInfo *TRI) const {
521  DebugLoc DL = MBB.findDebugLoc(I);
522  MachineFunction &MF = *MBB.getParent();
523  MachineFrameInfo &MFI = *MF.getFrameInfo();
524  unsigned Align = MFI.getObjectAlignment(FI);
525
526  MachineMemOperand *MMO =
527      MF.getMachineMemOperand(
528                      MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
529                      MachineMemOperand::MOLoad,
530                      MFI.getObjectSize(FI),
531                      Align);
532  if (RC == &Hexagon::IntRegsRegClass) {
533    BuildMI(MBB, I, DL, get(Hexagon::LDriw), DestReg)
534          .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
535  } else if (RC == &Hexagon::DoubleRegsRegClass) {
536    BuildMI(MBB, I, DL, get(Hexagon::LDrid), DestReg)
537          .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
538  } else if (RC == &Hexagon::PredRegsRegClass) {
539    BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
540          .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
541  } else {
542    llvm_unreachable("Can't store this register to stack slot");
543  }
544}
545
546
547void HexagonInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
548                                        SmallVectorImpl<MachineOperand> &Addr,
549                                        const TargetRegisterClass *RC,
550                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
551  llvm_unreachable("Unimplemented");
552}
553
554
555MachineInstr *HexagonInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
556                                                    MachineInstr* MI,
557                                          const SmallVectorImpl<unsigned> &Ops,
558                                                    int FI) const {
559  // Hexagon_TODO: Implement.
560  return(0);
561}
562
563unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const {
564
565  MachineRegisterInfo &RegInfo = MF->getRegInfo();
566  const TargetRegisterClass *TRC;
567  if (VT == MVT::i1) {
568    TRC = &Hexagon::PredRegsRegClass;
569  } else if (VT == MVT::i32 || VT == MVT::f32) {
570    TRC = &Hexagon::IntRegsRegClass;
571  } else if (VT == MVT::i64 || VT == MVT::f64) {
572    TRC = &Hexagon::DoubleRegsRegClass;
573  } else {
574    llvm_unreachable("Cannot handle this register class");
575  }
576
577  unsigned NewReg = RegInfo.createVirtualRegister(TRC);
578  return NewReg;
579}
580
581bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const {
582  // Constant extenders are allowed only for V4 and above.
583  if (!Subtarget.hasV4TOps())
584    return false;
585
586  const MCInstrDesc &MID = MI->getDesc();
587  const uint64_t F = MID.TSFlags;
588  if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
589    return true;
590
591  // TODO: This is largely obsolete now. Will need to be removed
592  // in consecutive patches.
593  switch(MI->getOpcode()) {
594    // TFR_FI Remains a special case.
595    case Hexagon::TFR_FI:
596      return true;
597    default:
598      return false;
599  }
600  return  false;
601}
602
603// This returns true in two cases:
604// - The OP code itself indicates that this is an extended instruction.
605// - One of MOs has been marked with HMOTF_ConstExtended flag.
606bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const {
607  // First check if this is permanently extended op code.
608  const uint64_t F = MI->getDesc().TSFlags;
609  if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
610    return true;
611  // Use MO operand flags to determine if one of MI's operands
612  // has HMOTF_ConstExtended flag set.
613  for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
614       E = MI->operands_end(); I != E; ++I) {
615    if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended)
616      return true;
617  }
618  return  false;
619}
620
621bool HexagonInstrInfo::isBranch (const MachineInstr *MI) const {
622  return MI->getDesc().isBranch();
623}
624
625bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const {
626  if (isNewValueJump(MI))
627    return true;
628
629  if (isNewValueStore(MI))
630    return true;
631
632  return false;
633}
634
635bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const {
636  return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4;
637}
638
639bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const {
640  bool isPred = MI->getDesc().isPredicable();
641
642  if (!isPred)
643    return false;
644
645  const int Opc = MI->getOpcode();
646
647  switch(Opc) {
648  case Hexagon::TFRI:
649    return isInt<12>(MI->getOperand(1).getImm());
650
651  case Hexagon::STrid:
652  case Hexagon::STrid_indexed:
653    return isShiftedUInt<6,3>(MI->getOperand(1).getImm());
654
655  case Hexagon::STriw:
656  case Hexagon::STriw_indexed:
657  case Hexagon::STriw_nv_V4:
658    return isShiftedUInt<6,2>(MI->getOperand(1).getImm());
659
660  case Hexagon::STrih:
661  case Hexagon::STrih_indexed:
662  case Hexagon::STrih_nv_V4:
663    return isShiftedUInt<6,1>(MI->getOperand(1).getImm());
664
665  case Hexagon::STrib:
666  case Hexagon::STrib_indexed:
667  case Hexagon::STrib_nv_V4:
668    return isUInt<6>(MI->getOperand(1).getImm());
669
670  case Hexagon::LDrid:
671  case Hexagon::LDrid_indexed:
672    return isShiftedUInt<6,3>(MI->getOperand(2).getImm());
673
674  case Hexagon::LDriw:
675  case Hexagon::LDriw_indexed:
676    return isShiftedUInt<6,2>(MI->getOperand(2).getImm());
677
678  case Hexagon::LDrih:
679  case Hexagon::LDriuh:
680  case Hexagon::LDrih_indexed:
681  case Hexagon::LDriuh_indexed:
682    return isShiftedUInt<6,1>(MI->getOperand(2).getImm());
683
684  case Hexagon::LDrib:
685  case Hexagon::LDriub:
686  case Hexagon::LDrib_indexed:
687  case Hexagon::LDriub_indexed:
688    return isUInt<6>(MI->getOperand(2).getImm());
689
690  case Hexagon::POST_LDrid:
691    return isShiftedInt<4,3>(MI->getOperand(3).getImm());
692
693  case Hexagon::POST_LDriw:
694    return isShiftedInt<4,2>(MI->getOperand(3).getImm());
695
696  case Hexagon::POST_LDrih:
697  case Hexagon::POST_LDriuh:
698    return isShiftedInt<4,1>(MI->getOperand(3).getImm());
699
700  case Hexagon::POST_LDrib:
701  case Hexagon::POST_LDriub:
702    return isInt<4>(MI->getOperand(3).getImm());
703
704  case Hexagon::STrib_imm_V4:
705  case Hexagon::STrih_imm_V4:
706  case Hexagon::STriw_imm_V4:
707    return (isUInt<6>(MI->getOperand(1).getImm()) &&
708            isInt<6>(MI->getOperand(2).getImm()));
709
710  case Hexagon::ADD_ri:
711    return isInt<8>(MI->getOperand(2).getImm());
712
713  case Hexagon::ASLH:
714  case Hexagon::ASRH:
715  case Hexagon::SXTB:
716  case Hexagon::SXTH:
717  case Hexagon::ZXTB:
718  case Hexagon::ZXTH:
719    return Subtarget.hasV4TOps();
720  }
721
722  return true;
723}
724
725// This function performs the following inversiones:
726//
727//  cPt    ---> cNotPt
728//  cNotPt ---> cPt
729//
730unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
731  int InvPredOpcode;
732  InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
733                                        : Hexagon::getTruePredOpcode(Opc);
734  if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
735    return InvPredOpcode;
736
737  switch(Opc) {
738    default: llvm_unreachable("Unexpected predicated instruction");
739    case Hexagon::COMBINE_rr_cPt:
740      return Hexagon::COMBINE_rr_cNotPt;
741    case Hexagon::COMBINE_rr_cNotPt:
742      return Hexagon::COMBINE_rr_cPt;
743
744      // Dealloc_return.
745    case Hexagon::DEALLOC_RET_cPt_V4:
746      return Hexagon::DEALLOC_RET_cNotPt_V4;
747    case Hexagon::DEALLOC_RET_cNotPt_V4:
748      return Hexagon::DEALLOC_RET_cPt_V4;
749  }
750}
751
752// New Value Store instructions.
753bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const {
754  const uint64_t F = MI->getDesc().TSFlags;
755
756  return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
757}
758
759bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
760  const uint64_t F = get(Opcode).TSFlags;
761
762  return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
763}
764
765int HexagonInstrInfo::
766getMatchingCondBranchOpcode(int Opc, bool invertPredicate) const {
767  enum Hexagon::PredSense inPredSense;
768  inPredSense = invertPredicate ? Hexagon::PredSense_false :
769                                  Hexagon::PredSense_true;
770  int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
771  if (CondOpcode >= 0) // Valid Conditional opcode/instruction
772    return CondOpcode;
773
774  // This switch case will be removed once all the instructions have been
775  // modified to use relation maps.
776  switch(Opc) {
777  case Hexagon::TFRI_f:
778    return !invertPredicate ? Hexagon::TFRI_cPt_f :
779                              Hexagon::TFRI_cNotPt_f;
780  case Hexagon::COMBINE_rr:
781    return !invertPredicate ? Hexagon::COMBINE_rr_cPt :
782                              Hexagon::COMBINE_rr_cNotPt;
783
784  // Word.
785  case Hexagon::STriw_f:
786    return !invertPredicate ? Hexagon::STriw_cPt :
787                              Hexagon::STriw_cNotPt;
788  case Hexagon::STriw_indexed_f:
789    return !invertPredicate ? Hexagon::STriw_indexed_cPt :
790                              Hexagon::STriw_indexed_cNotPt;
791
792  // DEALLOC_RETURN.
793  case Hexagon::DEALLOC_RET_V4:
794    return !invertPredicate ? Hexagon::DEALLOC_RET_cPt_V4 :
795                              Hexagon::DEALLOC_RET_cNotPt_V4;
796  }
797  llvm_unreachable("Unexpected predicable instruction");
798}
799
800
801bool HexagonInstrInfo::
802PredicateInstruction(MachineInstr *MI,
803                     const SmallVectorImpl<MachineOperand> &Cond) const {
804  int Opc = MI->getOpcode();
805  assert (isPredicable(MI) && "Expected predicable instruction");
806  bool invertJump = (!Cond.empty() && Cond[0].isImm() &&
807                     (Cond[0].getImm() == 0));
808
809  // This will change MI's opcode to its predicate version.
810  // However, its operand list is still the old one, i.e. the
811  // non-predicate one.
812  MI->setDesc(get(getMatchingCondBranchOpcode(Opc, invertJump)));
813
814  int oper = -1;
815  unsigned int GAIdx = 0;
816
817  // Indicates whether the current MI has a GlobalAddress operand
818  bool hasGAOpnd = false;
819  std::vector<MachineOperand> tmpOpnds;
820
821  // Indicates whether we need to shift operands to right.
822  bool needShift = true;
823
824  // The predicate is ALWAYS the FIRST input operand !!!
825  if (MI->getNumOperands() == 0) {
826    // The non-predicate version of MI does not take any operands,
827    // i.e. no outs and no ins. In this condition, the predicate
828    // operand will be directly placed at Operands[0]. No operand
829    // shift is needed.
830    // Example: BARRIER
831    needShift = false;
832    oper = -1;
833  }
834  else if (   MI->getOperand(MI->getNumOperands()-1).isReg()
835           && MI->getOperand(MI->getNumOperands()-1).isDef()
836           && !MI->getOperand(MI->getNumOperands()-1).isImplicit()) {
837    // The non-predicate version of MI does not have any input operands.
838    // In this condition, we extend the length of Operands[] by one and
839    // copy the original last operand to the newly allocated slot.
840    // At this moment, it is just a place holder. Later, we will put
841    // predicate operand directly into it. No operand shift is needed.
842    // Example: r0=BARRIER (this is a faked insn used here for illustration)
843    MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
844    needShift = false;
845    oper = MI->getNumOperands() - 2;
846  }
847  else {
848    // We need to right shift all input operands by one. Duplicate the
849    // last operand into the newly allocated slot.
850    MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
851  }
852
853  if (needShift)
854  {
855    // Operands[ MI->getNumOperands() - 2 ] has been copied into
856    // Operands[ MI->getNumOperands() - 1 ], so we start from
857    // Operands[ MI->getNumOperands() - 3 ].
858    // oper is a signed int.
859    // It is ok if "MI->getNumOperands()-3" is -3, -2, or -1.
860    for (oper = MI->getNumOperands() - 3; oper >= 0; --oper)
861    {
862      MachineOperand &MO = MI->getOperand(oper);
863
864      // Opnd[0] Opnd[1] Opnd[2] Opnd[3] Opnd[4]   Opnd[5]   Opnd[6]   Opnd[7]
865      // <Def0>  <Def1>  <Use0>  <Use1>  <ImpDef0> <ImpDef1> <ImpUse0> <ImpUse1>
866      //               /\~
867      //              /||\~
868      //               ||
869      //        Predicate Operand here
870      if (MO.isReg() && !MO.isUse() && !MO.isImplicit()) {
871        break;
872      }
873      if (MO.isReg()) {
874        MI->getOperand(oper+1).ChangeToRegister(MO.getReg(), MO.isDef(),
875                                                MO.isImplicit(), MO.isKill(),
876                                                MO.isDead(), MO.isUndef(),
877                                                MO.isDebug());
878      }
879      else if (MO.isImm()) {
880        MI->getOperand(oper+1).ChangeToImmediate(MO.getImm());
881      }
882      else if (MO.isGlobal()) {
883        // MI can not have more than one GlobalAddress operand.
884        assert(hasGAOpnd == false && "MI can only have one GlobalAddress opnd");
885
886        // There is no member function called "ChangeToGlobalAddress" in the
887        // MachineOperand class (not like "ChangeToRegister" and
888        // "ChangeToImmediate"). So we have to remove them from Operands[] list
889        // first, and then add them back after we have inserted the predicate
890        // operand. tmpOpnds[] is to remember these operands before we remove
891        // them.
892        tmpOpnds.push_back(MO);
893
894        // Operands[oper] is a GlobalAddress operand;
895        // Operands[oper+1] has been copied into Operands[oper+2];
896        hasGAOpnd = true;
897        GAIdx = oper;
898        continue;
899      }
900      else {
901        assert(false && "Unexpected operand type");
902      }
903    }
904  }
905
906  int regPos = invertJump ? 1 : 0;
907  MachineOperand PredMO = Cond[regPos];
908
909  // [oper] now points to the last explicit Def. Predicate operand must be
910  // located at [oper+1]. See diagram above.
911  // This assumes that the predicate is always the first operand,
912  // i.e. Operands[0+numResults], in the set of inputs
913  // It is better to have an assert here to check this. But I don't know how
914  // to write this assert because findFirstPredOperandIdx() would return -1
915  if (oper < -1) oper = -1;
916
917  MI->getOperand(oper+1).ChangeToRegister(PredMO.getReg(), PredMO.isDef(),
918                                          PredMO.isImplicit(), false,
919                                          PredMO.isDead(), PredMO.isUndef(),
920                                          PredMO.isDebug());
921
922  MachineRegisterInfo &RegInfo = MI->getParent()->getParent()->getRegInfo();
923  RegInfo.clearKillFlags(PredMO.getReg());
924
925  if (hasGAOpnd)
926  {
927    unsigned int i;
928
929    // Operands[GAIdx] is the original GlobalAddress operand, which is
930    // already copied into tmpOpnds[0].
931    // Operands[GAIdx] now stores a copy of Operands[GAIdx-1]
932    // Operands[GAIdx+1] has already been copied into Operands[GAIdx+2],
933    // so we start from [GAIdx+2]
934    for (i = GAIdx + 2; i < MI->getNumOperands(); ++i)
935      tmpOpnds.push_back(MI->getOperand(i));
936
937    // Remove all operands in range [ (GAIdx+1) ... (MI->getNumOperands()-1) ]
938    // It is very important that we always remove from the end of Operands[]
939    // MI->getNumOperands() is at least 2 if program goes to here.
940    for (i = MI->getNumOperands() - 1; i > GAIdx; --i)
941      MI->RemoveOperand(i);
942
943    for (i = 0; i < tmpOpnds.size(); ++i)
944      MI->addOperand(tmpOpnds[i]);
945  }
946
947  return true;
948}
949
950
951bool
952HexagonInstrInfo::
953isProfitableToIfCvt(MachineBasicBlock &MBB,
954                    unsigned NumCycles,
955                    unsigned ExtraPredCycles,
956                    const BranchProbability &Probability) const {
957  return true;
958}
959
960
961bool
962HexagonInstrInfo::
963isProfitableToIfCvt(MachineBasicBlock &TMBB,
964                    unsigned NumTCycles,
965                    unsigned ExtraTCycles,
966                    MachineBasicBlock &FMBB,
967                    unsigned NumFCycles,
968                    unsigned ExtraFCycles,
969                    const BranchProbability &Probability) const {
970  return true;
971}
972
973// Returns true if an instruction is predicated irrespective of the predicate
974// sense. For example, all of the following will return true.
975// if (p0) R1 = add(R2, R3)
976// if (!p0) R1 = add(R2, R3)
977// if (p0.new) R1 = add(R2, R3)
978// if (!p0.new) R1 = add(R2, R3)
979bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const {
980  const uint64_t F = MI->getDesc().TSFlags;
981
982  return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
983}
984
985bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
986  const uint64_t F = get(Opcode).TSFlags;
987
988  return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
989}
990
991bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr *MI) const {
992  const uint64_t F = MI->getDesc().TSFlags;
993
994  assert(isPredicated(MI));
995  return (!((F >> HexagonII::PredicatedFalsePos) &
996            HexagonII::PredicatedFalseMask));
997}
998
999bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
1000  const uint64_t F = get(Opcode).TSFlags;
1001
1002  // Make sure that the instruction is predicated.
1003  assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
1004  return (!((F >> HexagonII::PredicatedFalsePos) &
1005            HexagonII::PredicatedFalseMask));
1006}
1007
1008bool HexagonInstrInfo::isPredicatedNew(const MachineInstr *MI) const {
1009  const uint64_t F = MI->getDesc().TSFlags;
1010
1011  assert(isPredicated(MI));
1012  return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
1013}
1014
1015bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
1016  const uint64_t F = get(Opcode).TSFlags;
1017
1018  assert(isPredicated(Opcode));
1019  return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
1020}
1021
1022// Returns true, if a ST insn can be promoted to a new-value store.
1023bool HexagonInstrInfo::mayBeNewStore(const MachineInstr *MI) const {
1024  const HexagonRegisterInfo& QRI = getRegisterInfo();
1025  const uint64_t F = MI->getDesc().TSFlags;
1026
1027  return ((F >> HexagonII::mayNVStorePos) &
1028           HexagonII::mayNVStoreMask &
1029           QRI.Subtarget.hasV4TOps());
1030}
1031
1032bool
1033HexagonInstrInfo::DefinesPredicate(MachineInstr *MI,
1034                                   std::vector<MachineOperand> &Pred) const {
1035  for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) {
1036    MachineOperand MO = MI->getOperand(oper);
1037    if (MO.isReg() && MO.isDef()) {
1038      const TargetRegisterClass* RC = RI.getMinimalPhysRegClass(MO.getReg());
1039      if (RC == &Hexagon::PredRegsRegClass) {
1040        Pred.push_back(MO);
1041        return true;
1042      }
1043    }
1044  }
1045  return false;
1046}
1047
1048
1049bool
1050HexagonInstrInfo::
1051SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
1052                  const SmallVectorImpl<MachineOperand> &Pred2) const {
1053  // TODO: Fix this
1054  return false;
1055}
1056
1057
1058//
1059// We indicate that we want to reverse the branch by
1060// inserting a 0 at the beginning of the Cond vector.
1061//
1062bool HexagonInstrInfo::
1063ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1064  if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
1065    Cond.erase(Cond.begin());
1066  } else {
1067    Cond.insert(Cond.begin(), MachineOperand::CreateImm(0));
1068  }
1069  return false;
1070}
1071
1072
1073bool HexagonInstrInfo::
1074isProfitableToDupForIfCvt(MachineBasicBlock &MBB,unsigned NumInstrs,
1075                          const BranchProbability &Probability) const {
1076  return (NumInstrs <= 4);
1077}
1078
1079bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const {
1080  switch (MI->getOpcode()) {
1081  default: return false;
1082  case Hexagon::DEALLOC_RET_V4 :
1083  case Hexagon::DEALLOC_RET_cPt_V4 :
1084  case Hexagon::DEALLOC_RET_cNotPt_V4 :
1085  case Hexagon::DEALLOC_RET_cdnPnt_V4 :
1086  case Hexagon::DEALLOC_RET_cNotdnPnt_V4 :
1087  case Hexagon::DEALLOC_RET_cdnPt_V4 :
1088  case Hexagon::DEALLOC_RET_cNotdnPt_V4 :
1089   return true;
1090  }
1091}
1092
1093
1094bool HexagonInstrInfo::
1095isValidOffset(const int Opcode, const int Offset) const {
1096  // This function is to check whether the "Offset" is in the correct range of
1097  // the given "Opcode". If "Offset" is not in the correct range, "ADD_ri" is
1098  // inserted to calculate the final address. Due to this reason, the function
1099  // assumes that the "Offset" has correct alignment.
1100  // We used to assert if the offset was not properly aligned, however,
1101  // there are cases where a misaligned pointer recast can cause this
1102  // problem, and we need to allow for it. The front end warns of such
1103  // misaligns with respect to load size.
1104
1105  switch(Opcode) {
1106
1107  case Hexagon::LDriw:
1108  case Hexagon::LDriw_indexed:
1109  case Hexagon::LDriw_f:
1110  case Hexagon::STriw_indexed:
1111  case Hexagon::STriw:
1112  case Hexagon::STriw_f:
1113    return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
1114      (Offset <= Hexagon_MEMW_OFFSET_MAX);
1115
1116  case Hexagon::LDrid:
1117  case Hexagon::LDrid_indexed:
1118  case Hexagon::LDrid_f:
1119  case Hexagon::STrid:
1120  case Hexagon::STrid_indexed:
1121  case Hexagon::STrid_f:
1122    return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
1123      (Offset <= Hexagon_MEMD_OFFSET_MAX);
1124
1125  case Hexagon::LDrih:
1126  case Hexagon::LDriuh:
1127  case Hexagon::STrih:
1128    return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
1129      (Offset <= Hexagon_MEMH_OFFSET_MAX);
1130
1131  case Hexagon::LDrib:
1132  case Hexagon::STrib:
1133  case Hexagon::LDriub:
1134    return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
1135      (Offset <= Hexagon_MEMB_OFFSET_MAX);
1136
1137  case Hexagon::ADD_ri:
1138  case Hexagon::TFR_FI:
1139    return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
1140      (Offset <= Hexagon_ADDI_OFFSET_MAX);
1141
1142  case Hexagon::MemOPw_ADDi_V4 :
1143  case Hexagon::MemOPw_SUBi_V4 :
1144  case Hexagon::MemOPw_ADDr_V4 :
1145  case Hexagon::MemOPw_SUBr_V4 :
1146  case Hexagon::MemOPw_ANDr_V4 :
1147  case Hexagon::MemOPw_ORr_V4 :
1148    return (0 <= Offset && Offset <= 255);
1149
1150  case Hexagon::MemOPh_ADDi_V4 :
1151  case Hexagon::MemOPh_SUBi_V4 :
1152  case Hexagon::MemOPh_ADDr_V4 :
1153  case Hexagon::MemOPh_SUBr_V4 :
1154  case Hexagon::MemOPh_ANDr_V4 :
1155  case Hexagon::MemOPh_ORr_V4 :
1156    return (0 <= Offset && Offset <= 127);
1157
1158  case Hexagon::MemOPb_ADDi_V4 :
1159  case Hexagon::MemOPb_SUBi_V4 :
1160  case Hexagon::MemOPb_ADDr_V4 :
1161  case Hexagon::MemOPb_SUBr_V4 :
1162  case Hexagon::MemOPb_ANDr_V4 :
1163  case Hexagon::MemOPb_ORr_V4 :
1164    return (0 <= Offset && Offset <= 63);
1165
1166  // LDri_pred and STriw_pred are pseudo operations, so it has to take offset of
1167  // any size. Later pass knows how to handle it.
1168  case Hexagon::STriw_pred:
1169  case Hexagon::LDriw_pred:
1170    return true;
1171
1172  case Hexagon::LOOP0_i:
1173    return isUInt<10>(Offset);
1174
1175  // INLINEASM is very special.
1176  case Hexagon::INLINEASM:
1177    return true;
1178  }
1179
1180  llvm_unreachable("No offset range is defined for this opcode. "
1181                   "Please define it in the above switch statement!");
1182}
1183
1184
1185//
1186// Check if the Offset is a valid auto-inc imm by Load/Store Type.
1187//
1188bool HexagonInstrInfo::
1189isValidAutoIncImm(const EVT VT, const int Offset) const {
1190
1191  if (VT == MVT::i64) {
1192      return (Offset >= Hexagon_MEMD_AUTOINC_MIN &&
1193              Offset <= Hexagon_MEMD_AUTOINC_MAX &&
1194              (Offset & 0x7) == 0);
1195  }
1196  if (VT == MVT::i32) {
1197      return (Offset >= Hexagon_MEMW_AUTOINC_MIN &&
1198              Offset <= Hexagon_MEMW_AUTOINC_MAX &&
1199              (Offset & 0x3) == 0);
1200  }
1201  if (VT == MVT::i16) {
1202      return (Offset >= Hexagon_MEMH_AUTOINC_MIN &&
1203              Offset <= Hexagon_MEMH_AUTOINC_MAX &&
1204              (Offset & 0x1) == 0);
1205  }
1206  if (VT == MVT::i8) {
1207      return (Offset >= Hexagon_MEMB_AUTOINC_MIN &&
1208              Offset <= Hexagon_MEMB_AUTOINC_MAX);
1209  }
1210  llvm_unreachable("Not an auto-inc opc!");
1211}
1212
1213
1214bool HexagonInstrInfo::
1215isMemOp(const MachineInstr *MI) const {
1216//  return MI->getDesc().mayLoad() && MI->getDesc().mayStore();
1217
1218  switch (MI->getOpcode())
1219  {
1220    default: return false;
1221    case Hexagon::MemOPw_ADDi_V4 :
1222    case Hexagon::MemOPw_SUBi_V4 :
1223    case Hexagon::MemOPw_ADDr_V4 :
1224    case Hexagon::MemOPw_SUBr_V4 :
1225    case Hexagon::MemOPw_ANDr_V4 :
1226    case Hexagon::MemOPw_ORr_V4 :
1227    case Hexagon::MemOPh_ADDi_V4 :
1228    case Hexagon::MemOPh_SUBi_V4 :
1229    case Hexagon::MemOPh_ADDr_V4 :
1230    case Hexagon::MemOPh_SUBr_V4 :
1231    case Hexagon::MemOPh_ANDr_V4 :
1232    case Hexagon::MemOPh_ORr_V4 :
1233    case Hexagon::MemOPb_ADDi_V4 :
1234    case Hexagon::MemOPb_SUBi_V4 :
1235    case Hexagon::MemOPb_ADDr_V4 :
1236    case Hexagon::MemOPb_SUBr_V4 :
1237    case Hexagon::MemOPb_ANDr_V4 :
1238    case Hexagon::MemOPb_ORr_V4 :
1239    case Hexagon::MemOPb_SETBITi_V4:
1240    case Hexagon::MemOPh_SETBITi_V4:
1241    case Hexagon::MemOPw_SETBITi_V4:
1242    case Hexagon::MemOPb_CLRBITi_V4:
1243    case Hexagon::MemOPh_CLRBITi_V4:
1244    case Hexagon::MemOPw_CLRBITi_V4:
1245    return true;
1246  }
1247  return false;
1248}
1249
1250
1251bool HexagonInstrInfo::
1252isSpillPredRegOp(const MachineInstr *MI) const {
1253  switch (MI->getOpcode()) {
1254    default: return false;
1255    case Hexagon::STriw_pred :
1256    case Hexagon::LDriw_pred :
1257      return true;
1258  }
1259}
1260
1261bool HexagonInstrInfo::isNewValueJumpCandidate(const MachineInstr *MI) const {
1262  switch (MI->getOpcode()) {
1263    default: return false;
1264    case Hexagon::CMPEQrr:
1265    case Hexagon::CMPEQri:
1266    case Hexagon::CMPGTrr:
1267    case Hexagon::CMPGTri:
1268    case Hexagon::CMPGTUrr:
1269    case Hexagon::CMPGTUri:
1270      return true;
1271  }
1272}
1273
1274bool HexagonInstrInfo::
1275isConditionalTransfer (const MachineInstr *MI) const {
1276  switch (MI->getOpcode()) {
1277    default: return false;
1278    case Hexagon::TFR_cPt:
1279    case Hexagon::TFR_cNotPt:
1280    case Hexagon::TFRI_cPt:
1281    case Hexagon::TFRI_cNotPt:
1282    case Hexagon::TFR_cdnPt:
1283    case Hexagon::TFR_cdnNotPt:
1284    case Hexagon::TFRI_cdnPt:
1285    case Hexagon::TFRI_cdnNotPt:
1286      return true;
1287  }
1288}
1289
1290bool HexagonInstrInfo::isConditionalALU32 (const MachineInstr* MI) const {
1291  const HexagonRegisterInfo& QRI = getRegisterInfo();
1292  switch (MI->getOpcode())
1293  {
1294    default: return false;
1295    case Hexagon::ADD_ri_cPt:
1296    case Hexagon::ADD_ri_cNotPt:
1297    case Hexagon::ADD_rr_cPt:
1298    case Hexagon::ADD_rr_cNotPt:
1299    case Hexagon::XOR_rr_cPt:
1300    case Hexagon::XOR_rr_cNotPt:
1301    case Hexagon::AND_rr_cPt:
1302    case Hexagon::AND_rr_cNotPt:
1303    case Hexagon::OR_rr_cPt:
1304    case Hexagon::OR_rr_cNotPt:
1305    case Hexagon::SUB_rr_cPt:
1306    case Hexagon::SUB_rr_cNotPt:
1307    case Hexagon::COMBINE_rr_cPt:
1308    case Hexagon::COMBINE_rr_cNotPt:
1309      return true;
1310    case Hexagon::ASLH_cPt_V4:
1311    case Hexagon::ASLH_cNotPt_V4:
1312    case Hexagon::ASRH_cPt_V4:
1313    case Hexagon::ASRH_cNotPt_V4:
1314    case Hexagon::SXTB_cPt_V4:
1315    case Hexagon::SXTB_cNotPt_V4:
1316    case Hexagon::SXTH_cPt_V4:
1317    case Hexagon::SXTH_cNotPt_V4:
1318    case Hexagon::ZXTB_cPt_V4:
1319    case Hexagon::ZXTB_cNotPt_V4:
1320    case Hexagon::ZXTH_cPt_V4:
1321    case Hexagon::ZXTH_cNotPt_V4:
1322      return QRI.Subtarget.hasV4TOps();
1323  }
1324}
1325
1326bool HexagonInstrInfo::
1327isConditionalLoad (const MachineInstr* MI) const {
1328  const HexagonRegisterInfo& QRI = getRegisterInfo();
1329  switch (MI->getOpcode())
1330  {
1331    default: return false;
1332    case Hexagon::LDrid_cPt :
1333    case Hexagon::LDrid_cNotPt :
1334    case Hexagon::LDrid_indexed_cPt :
1335    case Hexagon::LDrid_indexed_cNotPt :
1336    case Hexagon::LDriw_cPt :
1337    case Hexagon::LDriw_cNotPt :
1338    case Hexagon::LDriw_indexed_cPt :
1339    case Hexagon::LDriw_indexed_cNotPt :
1340    case Hexagon::LDrih_cPt :
1341    case Hexagon::LDrih_cNotPt :
1342    case Hexagon::LDrih_indexed_cPt :
1343    case Hexagon::LDrih_indexed_cNotPt :
1344    case Hexagon::LDrib_cPt :
1345    case Hexagon::LDrib_cNotPt :
1346    case Hexagon::LDrib_indexed_cPt :
1347    case Hexagon::LDrib_indexed_cNotPt :
1348    case Hexagon::LDriuh_cPt :
1349    case Hexagon::LDriuh_cNotPt :
1350    case Hexagon::LDriuh_indexed_cPt :
1351    case Hexagon::LDriuh_indexed_cNotPt :
1352    case Hexagon::LDriub_cPt :
1353    case Hexagon::LDriub_cNotPt :
1354    case Hexagon::LDriub_indexed_cPt :
1355    case Hexagon::LDriub_indexed_cNotPt :
1356      return true;
1357    case Hexagon::POST_LDrid_cPt :
1358    case Hexagon::POST_LDrid_cNotPt :
1359    case Hexagon::POST_LDriw_cPt :
1360    case Hexagon::POST_LDriw_cNotPt :
1361    case Hexagon::POST_LDrih_cPt :
1362    case Hexagon::POST_LDrih_cNotPt :
1363    case Hexagon::POST_LDrib_cPt :
1364    case Hexagon::POST_LDrib_cNotPt :
1365    case Hexagon::POST_LDriuh_cPt :
1366    case Hexagon::POST_LDriuh_cNotPt :
1367    case Hexagon::POST_LDriub_cPt :
1368    case Hexagon::POST_LDriub_cNotPt :
1369      return QRI.Subtarget.hasV4TOps();
1370    case Hexagon::LDrid_indexed_shl_cPt_V4 :
1371    case Hexagon::LDrid_indexed_shl_cNotPt_V4 :
1372    case Hexagon::LDrib_indexed_shl_cPt_V4 :
1373    case Hexagon::LDrib_indexed_shl_cNotPt_V4 :
1374    case Hexagon::LDriub_indexed_shl_cPt_V4 :
1375    case Hexagon::LDriub_indexed_shl_cNotPt_V4 :
1376    case Hexagon::LDrih_indexed_shl_cPt_V4 :
1377    case Hexagon::LDrih_indexed_shl_cNotPt_V4 :
1378    case Hexagon::LDriuh_indexed_shl_cPt_V4 :
1379    case Hexagon::LDriuh_indexed_shl_cNotPt_V4 :
1380    case Hexagon::LDriw_indexed_shl_cPt_V4 :
1381    case Hexagon::LDriw_indexed_shl_cNotPt_V4 :
1382      return QRI.Subtarget.hasV4TOps();
1383  }
1384}
1385
1386// Returns true if an instruction is a conditional store.
1387//
1388// Note: It doesn't include conditional new-value stores as they can't be
1389// converted to .new predicate.
1390//
1391//               p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
1392//                ^           ^
1393//               /             \ (not OK. it will cause new-value store to be
1394//              /               X conditional on p0.new while R2 producer is
1395//             /                 \ on p0)
1396//            /                   \.
1397//     p.new store                 p.old NV store
1398// [if(p0.new)memw(R0+#0)=R2]    [if(p0)memw(R0+#0)=R2.new]
1399//            ^                  ^
1400//             \                /
1401//              \              /
1402//               \            /
1403//                 p.old store
1404//             [if (p0)memw(R0+#0)=R2]
1405//
1406// The above diagram shows the steps involoved in the conversion of a predicated
1407// store instruction to its .new predicated new-value form.
1408//
1409// The following set of instructions further explains the scenario where
1410// conditional new-value store becomes invalid when promoted to .new predicate
1411// form.
1412//
1413// { 1) if (p0) r0 = add(r1, r2)
1414//   2) p0 = cmp.eq(r3, #0) }
1415//
1416//   3) if (p0) memb(r1+#0) = r0  --> this instruction can't be grouped with
1417// the first two instructions because in instr 1, r0 is conditional on old value
1418// of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
1419// is not valid for new-value stores.
1420bool HexagonInstrInfo::
1421isConditionalStore (const MachineInstr* MI) const {
1422  const HexagonRegisterInfo& QRI = getRegisterInfo();
1423  switch (MI->getOpcode())
1424  {
1425    default: return false;
1426    case Hexagon::STrib_imm_cPt_V4 :
1427    case Hexagon::STrib_imm_cNotPt_V4 :
1428    case Hexagon::STrib_indexed_shl_cPt_V4 :
1429    case Hexagon::STrib_indexed_shl_cNotPt_V4 :
1430    case Hexagon::STrib_cPt :
1431    case Hexagon::STrib_cNotPt :
1432    case Hexagon::POST_STbri_cPt :
1433    case Hexagon::POST_STbri_cNotPt :
1434    case Hexagon::STrid_indexed_cPt :
1435    case Hexagon::STrid_indexed_cNotPt :
1436    case Hexagon::STrid_indexed_shl_cPt_V4 :
1437    case Hexagon::POST_STdri_cPt :
1438    case Hexagon::POST_STdri_cNotPt :
1439    case Hexagon::STrih_cPt :
1440    case Hexagon::STrih_cNotPt :
1441    case Hexagon::STrih_indexed_cPt :
1442    case Hexagon::STrih_indexed_cNotPt :
1443    case Hexagon::STrih_imm_cPt_V4 :
1444    case Hexagon::STrih_imm_cNotPt_V4 :
1445    case Hexagon::STrih_indexed_shl_cPt_V4 :
1446    case Hexagon::STrih_indexed_shl_cNotPt_V4 :
1447    case Hexagon::POST_SThri_cPt :
1448    case Hexagon::POST_SThri_cNotPt :
1449    case Hexagon::STriw_cPt :
1450    case Hexagon::STriw_cNotPt :
1451    case Hexagon::STriw_indexed_cPt :
1452    case Hexagon::STriw_indexed_cNotPt :
1453    case Hexagon::STriw_imm_cPt_V4 :
1454    case Hexagon::STriw_imm_cNotPt_V4 :
1455    case Hexagon::STriw_indexed_shl_cPt_V4 :
1456    case Hexagon::STriw_indexed_shl_cNotPt_V4 :
1457    case Hexagon::POST_STwri_cPt :
1458    case Hexagon::POST_STwri_cNotPt :
1459      return QRI.Subtarget.hasV4TOps();
1460
1461    // V4 global address store before promoting to dot new.
1462    case Hexagon::STd_GP_cPt_V4 :
1463    case Hexagon::STd_GP_cNotPt_V4 :
1464    case Hexagon::STb_GP_cPt_V4 :
1465    case Hexagon::STb_GP_cNotPt_V4 :
1466    case Hexagon::STh_GP_cPt_V4 :
1467    case Hexagon::STh_GP_cNotPt_V4 :
1468    case Hexagon::STw_GP_cPt_V4 :
1469    case Hexagon::STw_GP_cNotPt_V4 :
1470      return QRI.Subtarget.hasV4TOps();
1471
1472    // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
1473    // from the "Conditional Store" list. Because a predicated new value store
1474    // would NOT be promoted to a double dot new store. See diagram below:
1475    // This function returns yes for those stores that are predicated but not
1476    // yet promoted to predicate dot new instructions.
1477    //
1478    //                          +---------------------+
1479    //                    /-----| if (p0) memw(..)=r0 |---------\~
1480    //                   ||     +---------------------+         ||
1481    //          promote  ||       /\       /\                   ||  promote
1482    //                   ||      /||\     /||\                  ||
1483    //                  \||/    demote     ||                  \||/
1484    //                   \/       ||       ||                   \/
1485    //       +-------------------------+   ||   +-------------------------+
1486    //       | if (p0.new) memw(..)=r0 |   ||   | if (p0) memw(..)=r0.new |
1487    //       +-------------------------+   ||   +-------------------------+
1488    //                        ||           ||         ||
1489    //                        ||         demote      \||/
1490    //                      promote        ||         \/ NOT possible
1491    //                        ||           ||         /\~
1492    //                       \||/          ||        /||\~
1493    //                        \/           ||         ||
1494    //                      +-----------------------------+
1495    //                      | if (p0.new) memw(..)=r0.new |
1496    //                      +-----------------------------+
1497    //                           Double Dot New Store
1498    //
1499  }
1500}
1501
1502
1503bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const {
1504  if (isNewValue(MI) && isBranch(MI))
1505    return true;
1506  return false;
1507}
1508
1509bool HexagonInstrInfo::isPostIncrement (const MachineInstr* MI) const {
1510  return (getAddrMode(MI) == HexagonII::PostInc);
1511}
1512
1513bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const {
1514  const uint64_t F = MI->getDesc().TSFlags;
1515  return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
1516}
1517
1518// Returns true, if any one of the operands is a dot new
1519// insn, whether it is predicated dot new or register dot new.
1520bool HexagonInstrInfo::isDotNewInst (const MachineInstr* MI) const {
1521  return (isNewValueInst(MI) ||
1522     (isPredicated(MI) && isPredicatedNew(MI)));
1523}
1524
1525// Returns the most basic instruction for the .new predicated instructions and
1526// new-value stores.
1527// For example, all of the following instructions will be converted back to the
1528// same instruction:
1529// 1) if (p0.new) memw(R0+#0) = R1.new  --->
1530// 2) if (p0) memw(R0+#0)= R1.new      -------> if (p0) memw(R0+#0) = R1
1531// 3) if (p0.new) memw(R0+#0) = R1      --->
1532//
1533
1534int HexagonInstrInfo::GetDotOldOp(const int opc) const {
1535  int NewOp = opc;
1536  if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
1537    NewOp = Hexagon::getPredOldOpcode(NewOp);
1538    if (NewOp < 0)
1539      assert(0 && "Couldn't change predicate new instruction to its old form.");
1540  }
1541
1542  if (isNewValueStore(NewOp)) { // Convert into non new-value format
1543    NewOp = Hexagon::getNonNVStore(NewOp);
1544    if (NewOp < 0)
1545      assert(0 && "Couldn't change new-value store to its old form.");
1546  }
1547  return NewOp;
1548}
1549
1550// Return the new value instruction for a given store.
1551int HexagonInstrInfo::GetDotNewOp(const MachineInstr* MI) const {
1552  int NVOpcode = Hexagon::getNewValueOpcode(MI->getOpcode());
1553  if (NVOpcode >= 0) // Valid new-value store instruction.
1554    return NVOpcode;
1555
1556  switch (MI->getOpcode()) {
1557  default: llvm_unreachable("Unknown .new type");
1558  // store new value byte
1559  case Hexagon::STrib_shl_V4:
1560    return Hexagon::STrib_shl_nv_V4;
1561
1562  case Hexagon::STrih_shl_V4:
1563    return Hexagon::STrih_shl_nv_V4;
1564
1565  case Hexagon::STriw_f:
1566    return Hexagon::STriw_nv_V4;
1567
1568  case Hexagon::STriw_indexed_f:
1569    return Hexagon::STriw_indexed_nv_V4;
1570
1571  case Hexagon::STriw_shl_V4:
1572    return Hexagon::STriw_shl_nv_V4;
1573
1574  }
1575  return 0;
1576}
1577
1578// Return .new predicate version for an instruction.
1579int HexagonInstrInfo::GetDotNewPredOp(MachineInstr *MI,
1580                                      const MachineBranchProbabilityInfo
1581                                      *MBPI) const {
1582
1583  int NewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
1584  if (NewOpcode >= 0) // Valid predicate new instruction
1585    return NewOpcode;
1586
1587  switch (MI->getOpcode()) {
1588  default: llvm_unreachable("Unknown .new type");
1589  // Condtional Jumps
1590  case Hexagon::JMP_t:
1591  case Hexagon::JMP_f:
1592    return getDotNewPredJumpOp(MI, MBPI);
1593
1594  case Hexagon::JMPR_t:
1595    return Hexagon::JMPR_tnew_tV3;
1596
1597  case Hexagon::JMPR_f:
1598    return Hexagon::JMPR_fnew_tV3;
1599
1600  case Hexagon::JMPret_t:
1601    return Hexagon::JMPret_tnew_tV3;
1602
1603  case Hexagon::JMPret_f:
1604    return Hexagon::JMPret_fnew_tV3;
1605
1606
1607  // Conditional combine
1608  case Hexagon::COMBINE_rr_cPt :
1609    return Hexagon::COMBINE_rr_cdnPt;
1610  case Hexagon::COMBINE_rr_cNotPt :
1611    return Hexagon::COMBINE_rr_cdnNotPt;
1612  }
1613}
1614
1615
1616unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const {
1617  const uint64_t F = MI->getDesc().TSFlags;
1618
1619  return((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask);
1620}
1621
1622/// immediateExtend - Changes the instruction in place to one using an immediate
1623/// extender.
1624void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const {
1625  assert((isExtendable(MI)||isConstExtended(MI)) &&
1626                               "Instruction must be extendable");
1627  // Find which operand is extendable.
1628  short ExtOpNum = getCExtOpNum(MI);
1629  MachineOperand &MO = MI->getOperand(ExtOpNum);
1630  // This needs to be something we understand.
1631  assert((MO.isMBB() || MO.isImm()) &&
1632         "Branch with unknown extendable field type");
1633  // Mark given operand as extended.
1634  MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
1635}
1636
1637DFAPacketizer *HexagonInstrInfo::
1638CreateTargetScheduleState(const TargetMachine *TM,
1639                           const ScheduleDAG *DAG) const {
1640  const InstrItineraryData *II = TM->getInstrItineraryData();
1641  return TM->getSubtarget<HexagonGenSubtargetInfo>().createDFAPacketizer(II);
1642}
1643
1644bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
1645                                            const MachineBasicBlock *MBB,
1646                                            const MachineFunction &MF) const {
1647  // Debug info is never a scheduling boundary. It's necessary to be explicit
1648  // due to the special treatment of IT instructions below, otherwise a
1649  // dbg_value followed by an IT will result in the IT instruction being
1650  // considered a scheduling hazard, which is wrong. It should be the actual
1651  // instruction preceding the dbg_value instruction(s), just like it is
1652  // when debug info is not present.
1653  if (MI->isDebugValue())
1654    return false;
1655
1656  // Terminators and labels can't be scheduled around.
1657  if (MI->getDesc().isTerminator() || MI->isLabel() || MI->isInlineAsm())
1658    return true;
1659
1660  return false;
1661}
1662
1663bool HexagonInstrInfo::isConstExtended(MachineInstr *MI) const {
1664
1665  // Constant extenders are allowed only for V4 and above.
1666  if (!Subtarget.hasV4TOps())
1667    return false;
1668
1669  const uint64_t F = MI->getDesc().TSFlags;
1670  unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
1671  if (isExtended) // Instruction must be extended.
1672    return true;
1673
1674  unsigned isExtendable = (F >> HexagonII::ExtendablePos)
1675                          & HexagonII::ExtendableMask;
1676  if (!isExtendable)
1677    return false;
1678
1679  short ExtOpNum = getCExtOpNum(MI);
1680  const MachineOperand &MO = MI->getOperand(ExtOpNum);
1681  // Use MO operand flags to determine if MO
1682  // has the HMOTF_ConstExtended flag set.
1683  if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended)
1684    return true;
1685  // If this is a Machine BB address we are talking about, and it is
1686  // not marked as extended, say so.
1687  if (MO.isMBB())
1688    return false;
1689
1690  // We could be using an instruction with an extendable immediate and shoehorn
1691  // a global address into it. If it is a global address it will be constant
1692  // extended. We do this for COMBINE.
1693  // We currently only handle isGlobal() because it is the only kind of
1694  // object we are going to end up with here for now.
1695  // In the future we probably should add isSymbol(), etc.
1696  if (MO.isGlobal() || MO.isSymbol())
1697    return true;
1698
1699  // If the extendable operand is not 'Immediate' type, the instruction should
1700  // have 'isExtended' flag set.
1701  assert(MO.isImm() && "Extendable operand must be Immediate type");
1702
1703  int MinValue = getMinValue(MI);
1704  int MaxValue = getMaxValue(MI);
1705  int ImmValue = MO.getImm();
1706
1707  return (ImmValue < MinValue || ImmValue > MaxValue);
1708}
1709
1710// Returns the opcode to use when converting MI, which is a conditional jump,
1711// into a conditional instruction which uses the .new value of the predicate.
1712// We also use branch probabilities to add a hint to the jump.
1713int
1714HexagonInstrInfo::getDotNewPredJumpOp(MachineInstr *MI,
1715                                  const
1716                                  MachineBranchProbabilityInfo *MBPI) const {
1717
1718  // We assume that block can have at most two successors.
1719  bool taken = false;
1720  MachineBasicBlock *Src = MI->getParent();
1721  MachineOperand *BrTarget = &MI->getOperand(1);
1722  MachineBasicBlock *Dst = BrTarget->getMBB();
1723
1724  const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst);
1725  if (Prediction >= BranchProbability(1,2))
1726    taken = true;
1727
1728  switch (MI->getOpcode()) {
1729  case Hexagon::JMP_t:
1730    return taken ? Hexagon::JMP_tnew_t : Hexagon::JMP_tnew_nt;
1731  case Hexagon::JMP_f:
1732    return taken ? Hexagon::JMP_fnew_t : Hexagon::JMP_fnew_nt;
1733
1734  default:
1735    llvm_unreachable("Unexpected jump instruction.");
1736  }
1737}
1738// Returns true if a particular operand is extendable for an instruction.
1739bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI,
1740                                         unsigned short OperandNum) const {
1741  // Constant extenders are allowed only for V4 and above.
1742  if (!Subtarget.hasV4TOps())
1743    return false;
1744
1745  const uint64_t F = MI->getDesc().TSFlags;
1746
1747  return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
1748          == OperandNum;
1749}
1750
1751// Returns Operand Index for the constant extended instruction.
1752unsigned short HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const {
1753  const uint64_t F = MI->getDesc().TSFlags;
1754  return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
1755}
1756
1757// Returns the min value that doesn't need to be extended.
1758int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const {
1759  const uint64_t F = MI->getDesc().TSFlags;
1760  unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
1761                    & HexagonII::ExtentSignedMask;
1762  unsigned bits =  (F >> HexagonII::ExtentBitsPos)
1763                    & HexagonII::ExtentBitsMask;
1764
1765  if (isSigned) // if value is signed
1766    return -1 << (bits - 1);
1767  else
1768    return 0;
1769}
1770
1771// Returns the max value that doesn't need to be extended.
1772int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const {
1773  const uint64_t F = MI->getDesc().TSFlags;
1774  unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
1775                    & HexagonII::ExtentSignedMask;
1776  unsigned bits =  (F >> HexagonII::ExtentBitsPos)
1777                    & HexagonII::ExtentBitsMask;
1778
1779  if (isSigned) // if value is signed
1780    return ~(-1 << (bits - 1));
1781  else
1782    return ~(-1 << bits);
1783}
1784
1785// Returns true if an instruction can be converted into a non-extended
1786// equivalent instruction.
1787bool HexagonInstrInfo::NonExtEquivalentExists (const MachineInstr *MI) const {
1788
1789  short NonExtOpcode;
1790  // Check if the instruction has a register form that uses register in place
1791  // of the extended operand, if so return that as the non-extended form.
1792  if (Hexagon::getRegForm(MI->getOpcode()) >= 0)
1793    return true;
1794
1795  if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
1796    // Check addressing mode and retreive non-ext equivalent instruction.
1797
1798    switch (getAddrMode(MI)) {
1799    case HexagonII::Absolute :
1800      // Load/store with absolute addressing mode can be converted into
1801      // base+offset mode.
1802      NonExtOpcode = Hexagon::getBasedWithImmOffset(MI->getOpcode());
1803      break;
1804    case HexagonII::BaseImmOffset :
1805      // Load/store with base+offset addressing mode can be converted into
1806      // base+register offset addressing mode. However left shift operand should
1807      // be set to 0.
1808      NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode());
1809      break;
1810    default:
1811      return false;
1812    }
1813    if (NonExtOpcode < 0)
1814      return false;
1815    return true;
1816  }
1817  return false;
1818}
1819
1820// Returns opcode of the non-extended equivalent instruction.
1821short HexagonInstrInfo::getNonExtOpcode (const MachineInstr *MI) const {
1822
1823  // Check if the instruction has a register form that uses register in place
1824  // of the extended operand, if so return that as the non-extended form.
1825  short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode());
1826    if (NonExtOpcode >= 0)
1827      return NonExtOpcode;
1828
1829  if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
1830    // Check addressing mode and retreive non-ext equivalent instruction.
1831    switch (getAddrMode(MI)) {
1832    case HexagonII::Absolute :
1833      return Hexagon::getBasedWithImmOffset(MI->getOpcode());
1834    case HexagonII::BaseImmOffset :
1835      return Hexagon::getBaseWithRegOffset(MI->getOpcode());
1836    default:
1837      return -1;
1838    }
1839  }
1840  return -1;
1841}
1842
1843bool HexagonInstrInfo::PredOpcodeHasJMP_c(Opcode_t Opcode) const {
1844  return (Opcode == Hexagon::JMP_t) ||
1845         (Opcode == Hexagon::JMP_f) ||
1846         (Opcode == Hexagon::JMP_tnew_t) ||
1847         (Opcode == Hexagon::JMP_fnew_t) ||
1848         (Opcode == Hexagon::JMP_tnew_nt) ||
1849         (Opcode == Hexagon::JMP_fnew_nt);
1850}
1851
1852bool HexagonInstrInfo::PredOpcodeHasNot(Opcode_t Opcode) const {
1853  return (Opcode == Hexagon::JMP_f) ||
1854         (Opcode == Hexagon::JMP_fnew_t) ||
1855         (Opcode == Hexagon::JMP_fnew_nt);
1856}
1857