HexagonInstrInfo.cpp revision b21ab43cfc3fa0dacf5c95f04e58b6d804b59a16
1//===-- HexagonInstrInfo.cpp - Hexagon Instruction Information ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Hexagon implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "HexagonInstrInfo.h"
15#include "Hexagon.h"
16#include "HexagonRegisterInfo.h"
17#include "HexagonSubtarget.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/CodeGen/DFAPacketizer.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineMemOperand.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/CodeGen/PseudoSourceValue.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/raw_ostream.h"
29#define GET_INSTRINFO_CTOR
30#define GET_INSTRMAP_INFO
31#include "HexagonGenInstrInfo.inc"
32#include "HexagonGenDFAPacketizer.inc"
33
34using namespace llvm;
35
36///
37/// Constants for Hexagon instructions.
38///
39const int Hexagon_MEMW_OFFSET_MAX = 4095;
40const int Hexagon_MEMW_OFFSET_MIN = -4096;
41const int Hexagon_MEMD_OFFSET_MAX = 8191;
42const int Hexagon_MEMD_OFFSET_MIN = -8192;
43const int Hexagon_MEMH_OFFSET_MAX = 2047;
44const int Hexagon_MEMH_OFFSET_MIN = -2048;
45const int Hexagon_MEMB_OFFSET_MAX = 1023;
46const int Hexagon_MEMB_OFFSET_MIN = -1024;
47const int Hexagon_ADDI_OFFSET_MAX = 32767;
48const int Hexagon_ADDI_OFFSET_MIN = -32768;
49const int Hexagon_MEMD_AUTOINC_MAX = 56;
50const int Hexagon_MEMD_AUTOINC_MIN = -64;
51const int Hexagon_MEMW_AUTOINC_MAX = 28;
52const int Hexagon_MEMW_AUTOINC_MIN = -32;
53const int Hexagon_MEMH_AUTOINC_MAX = 14;
54const int Hexagon_MEMH_AUTOINC_MIN = -16;
55const int Hexagon_MEMB_AUTOINC_MAX = 7;
56const int Hexagon_MEMB_AUTOINC_MIN = -8;
57
58
59HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
60  : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
61    RI(ST), Subtarget(ST) {
62}
63
64
65/// isLoadFromStackSlot - If the specified machine instruction is a direct
66/// load from a stack slot, return the virtual or physical register number of
67/// the destination along with the FrameIndex of the loaded stack slot.  If
68/// not, return 0.  This predicate must return 0 if the instruction has
69/// any side effects other than loading from the stack slot.
70unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
71                                             int &FrameIndex) const {
72
73
74  switch (MI->getOpcode()) {
75  default: break;
76  case Hexagon::LDriw:
77  case Hexagon::LDrid:
78  case Hexagon::LDrih:
79  case Hexagon::LDrib:
80  case Hexagon::LDriub:
81    if (MI->getOperand(2).isFI() &&
82        MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
83      FrameIndex = MI->getOperand(2).getIndex();
84      return MI->getOperand(0).getReg();
85    }
86    break;
87  }
88  return 0;
89}
90
91
92/// isStoreToStackSlot - If the specified machine instruction is a direct
93/// store to a stack slot, return the virtual or physical register number of
94/// the source reg along with the FrameIndex of the loaded stack slot.  If
95/// not, return 0.  This predicate must return 0 if the instruction has
96/// any side effects other than storing to the stack slot.
97unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
98                                            int &FrameIndex) const {
99  switch (MI->getOpcode()) {
100  default: break;
101  case Hexagon::STriw:
102  case Hexagon::STrid:
103  case Hexagon::STrih:
104  case Hexagon::STrib:
105    if (MI->getOperand(2).isFI() &&
106        MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
107      FrameIndex = MI->getOperand(0).getIndex();
108      return MI->getOperand(2).getReg();
109    }
110    break;
111  }
112  return 0;
113}
114
115
116unsigned
117HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,MachineBasicBlock *TBB,
118                             MachineBasicBlock *FBB,
119                             const SmallVectorImpl<MachineOperand> &Cond,
120                             DebugLoc DL) const{
121
122    int BOpc   = Hexagon::JMP;
123    int BccOpc = Hexagon::JMP_t;
124
125    assert(TBB && "InsertBranch must not be told to insert a fallthrough");
126
127    int regPos = 0;
128    // Check if ReverseBranchCondition has asked to reverse this branch
129    // If we want to reverse the branch an odd number of times, we want
130    // JMP_f.
131    if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
132      BccOpc = Hexagon::JMP_f;
133      regPos = 1;
134    }
135
136    if (FBB == 0) {
137      if (Cond.empty()) {
138        // Due to a bug in TailMerging/CFG Optimization, we need to add a
139        // special case handling of a predicated jump followed by an
140        // unconditional jump. If not, Tail Merging and CFG Optimization go
141        // into an infinite loop.
142        MachineBasicBlock *NewTBB, *NewFBB;
143        SmallVector<MachineOperand, 4> Cond;
144        MachineInstr *Term = MBB.getFirstTerminator();
145        if (isPredicated(Term) && !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond,
146                                                 false)) {
147          MachineBasicBlock *NextBB =
148            llvm::next(MachineFunction::iterator(&MBB));
149          if (NewTBB == NextBB) {
150            ReverseBranchCondition(Cond);
151            RemoveBranch(MBB);
152            return InsertBranch(MBB, TBB, 0, Cond, DL);
153          }
154        }
155        BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
156      } else {
157        BuildMI(&MBB, DL,
158                get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
159      }
160      return 1;
161    }
162
163    BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
164    BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
165
166    return 2;
167}
168
169
170bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
171                                     MachineBasicBlock *&TBB,
172                                 MachineBasicBlock *&FBB,
173                                 SmallVectorImpl<MachineOperand> &Cond,
174                                 bool AllowModify) const {
175  TBB = NULL;
176  FBB = NULL;
177
178  // If the block has no terminators, it just falls into the block after it.
179  MachineBasicBlock::instr_iterator I = MBB.instr_end();
180  if (I == MBB.instr_begin())
181    return false;
182
183  // A basic block may looks like this:
184  //
185  //  [   insn
186  //     EH_LABEL
187  //      insn
188  //      insn
189  //      insn
190  //     EH_LABEL
191  //      insn     ]
192  //
193  // It has two succs but does not have a terminator
194  // Don't know how to handle it.
195  do {
196    --I;
197    if (I->isEHLabel())
198      return true;
199  } while (I != MBB.instr_begin());
200
201  I = MBB.instr_end();
202  --I;
203
204  while (I->isDebugValue()) {
205    if (I == MBB.instr_begin())
206      return false;
207    --I;
208  }
209
210  // Delete the JMP if it's equivalent to a fall-through.
211  if (AllowModify && I->getOpcode() == Hexagon::JMP &&
212      MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
213    DEBUG(dbgs()<< "\nErasing the jump to successor block\n";);
214    I->eraseFromParent();
215    I = MBB.instr_end();
216    if (I == MBB.instr_begin())
217      return false;
218    --I;
219  }
220  if (!isUnpredicatedTerminator(I))
221    return false;
222
223  // Get the last instruction in the block.
224  MachineInstr *LastInst = I;
225  MachineInstr *SecondLastInst = NULL;
226  // Find one more terminator if present.
227  do {
228    if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(I)) {
229      if (!SecondLastInst)
230        SecondLastInst = I;
231      else
232        // This is a third branch.
233        return true;
234    }
235    if (I == MBB.instr_begin())
236      break;
237    --I;
238  } while(I);
239
240  int LastOpcode = LastInst->getOpcode();
241
242  bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
243  bool LastOpcodeHasNot = PredOpcodeHasNot(LastOpcode);
244
245  // If there is only one terminator instruction, process it.
246  if (LastInst && !SecondLastInst) {
247    if (LastOpcode == Hexagon::JMP) {
248      TBB = LastInst->getOperand(0).getMBB();
249      return false;
250    }
251    if (LastOpcode == Hexagon::ENDLOOP0) {
252      TBB = LastInst->getOperand(0).getMBB();
253      Cond.push_back(LastInst->getOperand(0));
254      return false;
255    }
256    if (LastOpcodeHasJMP_c) {
257      TBB = LastInst->getOperand(1).getMBB();
258      if (LastOpcodeHasNot) {
259        Cond.push_back(MachineOperand::CreateImm(0));
260      }
261      Cond.push_back(LastInst->getOperand(0));
262      return false;
263    }
264    // Otherwise, don't know what this is.
265    return true;
266  }
267
268  int SecLastOpcode = SecondLastInst->getOpcode();
269
270  bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
271  bool SecLastOpcodeHasNot = PredOpcodeHasNot(SecLastOpcode);
272  if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::JMP)) {
273    TBB =  SecondLastInst->getOperand(1).getMBB();
274    if (SecLastOpcodeHasNot)
275      Cond.push_back(MachineOperand::CreateImm(0));
276    Cond.push_back(SecondLastInst->getOperand(0));
277    FBB = LastInst->getOperand(0).getMBB();
278    return false;
279  }
280
281  // If the block ends with two Hexagon:JMPs, handle it.  The second one is not
282  // executed, so remove it.
283  if (SecLastOpcode == Hexagon::JMP && LastOpcode == Hexagon::JMP) {
284    TBB = SecondLastInst->getOperand(0).getMBB();
285    I = LastInst;
286    if (AllowModify)
287      I->eraseFromParent();
288    return false;
289  }
290
291  // If the block ends with an ENDLOOP, and JMP, handle it.
292  if (SecLastOpcode == Hexagon::ENDLOOP0 &&
293      LastOpcode == Hexagon::JMP) {
294    TBB = SecondLastInst->getOperand(0).getMBB();
295    Cond.push_back(SecondLastInst->getOperand(0));
296    FBB = LastInst->getOperand(0).getMBB();
297    return false;
298  }
299
300  // Otherwise, can't handle this.
301  return true;
302}
303
304
305unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
306  int BOpc   = Hexagon::JMP;
307  int BccOpc = Hexagon::JMP_t;
308  int BccOpcNot = Hexagon::JMP_f;
309
310  MachineBasicBlock::iterator I = MBB.end();
311  if (I == MBB.begin()) return 0;
312  --I;
313  if (I->getOpcode() != BOpc && I->getOpcode() != BccOpc &&
314      I->getOpcode() != BccOpcNot)
315    return 0;
316
317  // Remove the branch.
318  I->eraseFromParent();
319
320  I = MBB.end();
321
322  if (I == MBB.begin()) return 1;
323  --I;
324  if (I->getOpcode() != BccOpc && I->getOpcode() != BccOpcNot)
325    return 1;
326
327  // Remove the branch.
328  I->eraseFromParent();
329  return 2;
330}
331
332
333/// \brief For a comparison instruction, return the source registers in
334/// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
335/// compares against in CmpValue. Return true if the comparison instruction
336/// can be analyzed.
337bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI,
338                                      unsigned &SrcReg, unsigned &SrcReg2,
339                                      int &Mask, int &Value) const {
340  unsigned Opc = MI->getOpcode();
341
342  // Set mask and the first source register.
343  switch (Opc) {
344    case Hexagon::CMPEHexagon4rr:
345    case Hexagon::CMPEQri:
346    case Hexagon::CMPEQrr:
347    case Hexagon::CMPGT64rr:
348    case Hexagon::CMPGTU64rr:
349    case Hexagon::CMPGTUri:
350    case Hexagon::CMPGTUrr:
351    case Hexagon::CMPGTri:
352    case Hexagon::CMPGTrr:
353      SrcReg = MI->getOperand(1).getReg();
354      Mask = ~0;
355      break;
356    case Hexagon::CMPbEQri_V4:
357    case Hexagon::CMPbEQrr_sbsb_V4:
358    case Hexagon::CMPbEQrr_ubub_V4:
359    case Hexagon::CMPbGTUri_V4:
360    case Hexagon::CMPbGTUrr_V4:
361    case Hexagon::CMPbGTrr_V4:
362      SrcReg = MI->getOperand(1).getReg();
363      Mask = 0xFF;
364      break;
365    case Hexagon::CMPhEQri_V4:
366    case Hexagon::CMPhEQrr_shl_V4:
367    case Hexagon::CMPhEQrr_xor_V4:
368    case Hexagon::CMPhGTUri_V4:
369    case Hexagon::CMPhGTUrr_V4:
370    case Hexagon::CMPhGTrr_shl_V4:
371      SrcReg = MI->getOperand(1).getReg();
372      Mask = 0xFFFF;
373      break;
374  }
375
376  // Set the value/second source register.
377  switch (Opc) {
378    case Hexagon::CMPEHexagon4rr:
379    case Hexagon::CMPEQrr:
380    case Hexagon::CMPGT64rr:
381    case Hexagon::CMPGTU64rr:
382    case Hexagon::CMPGTUrr:
383    case Hexagon::CMPGTrr:
384    case Hexagon::CMPbEQrr_sbsb_V4:
385    case Hexagon::CMPbEQrr_ubub_V4:
386    case Hexagon::CMPbGTUrr_V4:
387    case Hexagon::CMPbGTrr_V4:
388    case Hexagon::CMPhEQrr_shl_V4:
389    case Hexagon::CMPhEQrr_xor_V4:
390    case Hexagon::CMPhGTUrr_V4:
391    case Hexagon::CMPhGTrr_shl_V4:
392      SrcReg2 = MI->getOperand(2).getReg();
393      return true;
394
395    case Hexagon::CMPEQri:
396    case Hexagon::CMPGTUri:
397    case Hexagon::CMPGTri:
398    case Hexagon::CMPbEQri_V4:
399    case Hexagon::CMPbGTUri_V4:
400    case Hexagon::CMPhEQri_V4:
401    case Hexagon::CMPhGTUri_V4:
402      SrcReg2 = 0;
403      Value = MI->getOperand(2).getImm();
404      return true;
405  }
406
407  return false;
408}
409
410
411void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
412                                 MachineBasicBlock::iterator I, DebugLoc DL,
413                                 unsigned DestReg, unsigned SrcReg,
414                                 bool KillSrc) const {
415  if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
416    BuildMI(MBB, I, DL, get(Hexagon::TFR), DestReg).addReg(SrcReg);
417    return;
418  }
419  if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
420    BuildMI(MBB, I, DL, get(Hexagon::TFR64), DestReg).addReg(SrcReg);
421    return;
422  }
423  if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
424    // Map Pd = Ps to Pd = or(Ps, Ps).
425    BuildMI(MBB, I, DL, get(Hexagon::OR_pp),
426            DestReg).addReg(SrcReg).addReg(SrcReg);
427    return;
428  }
429  if (Hexagon::DoubleRegsRegClass.contains(DestReg) &&
430      Hexagon::IntRegsRegClass.contains(SrcReg)) {
431    // We can have an overlap between single and double reg: r1:0 = r0.
432    if(SrcReg == RI.getSubReg(DestReg, Hexagon::subreg_loreg)) {
433        // r1:0 = r0
434        BuildMI(MBB, I, DL, get(Hexagon::TFRI), (RI.getSubReg(DestReg,
435                Hexagon::subreg_hireg))).addImm(0);
436    } else {
437        // r1:0 = r1 or no overlap.
438        BuildMI(MBB, I, DL, get(Hexagon::TFR), (RI.getSubReg(DestReg,
439                Hexagon::subreg_loreg))).addReg(SrcReg);
440        BuildMI(MBB, I, DL, get(Hexagon::TFRI), (RI.getSubReg(DestReg,
441                Hexagon::subreg_hireg))).addImm(0);
442    }
443    return;
444  }
445  if (Hexagon::CRRegsRegClass.contains(DestReg) &&
446      Hexagon::IntRegsRegClass.contains(SrcReg)) {
447    BuildMI(MBB, I, DL, get(Hexagon::TFCR), DestReg).addReg(SrcReg);
448    return;
449  }
450  if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
451      Hexagon::IntRegsRegClass.contains(DestReg)) {
452    BuildMI(MBB, I, DL, get(Hexagon::TFR_RsPd), DestReg).
453      addReg(SrcReg, getKillRegState(KillSrc));
454    return;
455  }
456  if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
457      Hexagon::PredRegsRegClass.contains(DestReg)) {
458    BuildMI(MBB, I, DL, get(Hexagon::TFR_PdRs), DestReg).
459      addReg(SrcReg, getKillRegState(KillSrc));
460    return;
461  }
462
463  llvm_unreachable("Unimplemented");
464}
465
466
467void HexagonInstrInfo::
468storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
469                    unsigned SrcReg, bool isKill, int FI,
470                    const TargetRegisterClass *RC,
471                    const TargetRegisterInfo *TRI) const {
472
473  DebugLoc DL = MBB.findDebugLoc(I);
474  MachineFunction &MF = *MBB.getParent();
475  MachineFrameInfo &MFI = *MF.getFrameInfo();
476  unsigned Align = MFI.getObjectAlignment(FI);
477
478  MachineMemOperand *MMO =
479      MF.getMachineMemOperand(
480                      MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
481                      MachineMemOperand::MOStore,
482                      MFI.getObjectSize(FI),
483                      Align);
484
485  if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
486    BuildMI(MBB, I, DL, get(Hexagon::STriw))
487          .addFrameIndex(FI).addImm(0)
488          .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
489  } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
490    BuildMI(MBB, I, DL, get(Hexagon::STrid))
491          .addFrameIndex(FI).addImm(0)
492          .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
493  } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
494    BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
495          .addFrameIndex(FI).addImm(0)
496          .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
497  } else {
498    llvm_unreachable("Unimplemented");
499  }
500}
501
502
503void HexagonInstrInfo::storeRegToAddr(
504                                 MachineFunction &MF, unsigned SrcReg,
505                                 bool isKill,
506                                 SmallVectorImpl<MachineOperand> &Addr,
507                                 const TargetRegisterClass *RC,
508                                 SmallVectorImpl<MachineInstr*> &NewMIs) const
509{
510  llvm_unreachable("Unimplemented");
511}
512
513
514void HexagonInstrInfo::
515loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
516                     unsigned DestReg, int FI,
517                     const TargetRegisterClass *RC,
518                     const TargetRegisterInfo *TRI) const {
519  DebugLoc DL = MBB.findDebugLoc(I);
520  MachineFunction &MF = *MBB.getParent();
521  MachineFrameInfo &MFI = *MF.getFrameInfo();
522  unsigned Align = MFI.getObjectAlignment(FI);
523
524  MachineMemOperand *MMO =
525      MF.getMachineMemOperand(
526                      MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
527                      MachineMemOperand::MOLoad,
528                      MFI.getObjectSize(FI),
529                      Align);
530  if (RC == &Hexagon::IntRegsRegClass) {
531    BuildMI(MBB, I, DL, get(Hexagon::LDriw), DestReg)
532          .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
533  } else if (RC == &Hexagon::DoubleRegsRegClass) {
534    BuildMI(MBB, I, DL, get(Hexagon::LDrid), DestReg)
535          .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
536  } else if (RC == &Hexagon::PredRegsRegClass) {
537    BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
538          .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
539  } else {
540    llvm_unreachable("Can't store this register to stack slot");
541  }
542}
543
544
545void HexagonInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
546                                        SmallVectorImpl<MachineOperand> &Addr,
547                                        const TargetRegisterClass *RC,
548                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
549  llvm_unreachable("Unimplemented");
550}
551
552
553MachineInstr *HexagonInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
554                                                    MachineInstr* MI,
555                                          const SmallVectorImpl<unsigned> &Ops,
556                                                    int FI) const {
557  // Hexagon_TODO: Implement.
558  return(0);
559}
560
561unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const {
562
563  MachineRegisterInfo &RegInfo = MF->getRegInfo();
564  const TargetRegisterClass *TRC;
565  if (VT == MVT::i1) {
566    TRC = &Hexagon::PredRegsRegClass;
567  } else if (VT == MVT::i32 || VT == MVT::f32) {
568    TRC = &Hexagon::IntRegsRegClass;
569  } else if (VT == MVT::i64 || VT == MVT::f64) {
570    TRC = &Hexagon::DoubleRegsRegClass;
571  } else {
572    llvm_unreachable("Cannot handle this register class");
573  }
574
575  unsigned NewReg = RegInfo.createVirtualRegister(TRC);
576  return NewReg;
577}
578
579bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const {
580  // Constant extenders are allowed only for V4 and above.
581  if (!Subtarget.hasV4TOps())
582    return false;
583
584  const MCInstrDesc &MID = MI->getDesc();
585  const uint64_t F = MID.TSFlags;
586  if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
587    return true;
588
589  // TODO: This is largely obsolete now. Will need to be removed
590  // in consecutive patches.
591  switch(MI->getOpcode()) {
592    // TFR_FI Remains a special case.
593    case Hexagon::TFR_FI:
594      return true;
595    default:
596      return false;
597  }
598  return  false;
599}
600
601// This returns true in two cases:
602// - The OP code itself indicates that this is an extended instruction.
603// - One of MOs has been marked with HMOTF_ConstExtended flag.
604bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const {
605  // First check if this is permanently extended op code.
606  const uint64_t F = MI->getDesc().TSFlags;
607  if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
608    return true;
609  // Use MO operand flags to determine if one of MI's operands
610  // has HMOTF_ConstExtended flag set.
611  for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
612       E = MI->operands_end(); I != E; ++I) {
613    if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended)
614      return true;
615  }
616  return  false;
617}
618
619bool HexagonInstrInfo::isBranch (const MachineInstr *MI) const {
620  return MI->getDesc().isBranch();
621}
622
623bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const {
624  if (isNewValueJump(MI))
625    return true;
626
627  if (isNewValueStore(MI))
628    return true;
629
630  return false;
631}
632
633bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const {
634  return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4;
635}
636
637bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const {
638  bool isPred = MI->getDesc().isPredicable();
639
640  if (!isPred)
641    return false;
642
643  const int Opc = MI->getOpcode();
644
645  switch(Opc) {
646  case Hexagon::TFRI:
647    return isInt<12>(MI->getOperand(1).getImm());
648
649  case Hexagon::STrid:
650  case Hexagon::STrid_indexed:
651    return isShiftedUInt<6,3>(MI->getOperand(1).getImm());
652
653  case Hexagon::STriw:
654  case Hexagon::STriw_indexed:
655  case Hexagon::STriw_nv_V4:
656    return isShiftedUInt<6,2>(MI->getOperand(1).getImm());
657
658  case Hexagon::STrih:
659  case Hexagon::STrih_indexed:
660  case Hexagon::STrih_nv_V4:
661    return isShiftedUInt<6,1>(MI->getOperand(1).getImm());
662
663  case Hexagon::STrib:
664  case Hexagon::STrib_indexed:
665  case Hexagon::STrib_nv_V4:
666    return isUInt<6>(MI->getOperand(1).getImm());
667
668  case Hexagon::LDrid:
669  case Hexagon::LDrid_indexed:
670    return isShiftedUInt<6,3>(MI->getOperand(2).getImm());
671
672  case Hexagon::LDriw:
673  case Hexagon::LDriw_indexed:
674    return isShiftedUInt<6,2>(MI->getOperand(2).getImm());
675
676  case Hexagon::LDrih:
677  case Hexagon::LDriuh:
678  case Hexagon::LDrih_indexed:
679  case Hexagon::LDriuh_indexed:
680    return isShiftedUInt<6,1>(MI->getOperand(2).getImm());
681
682  case Hexagon::LDrib:
683  case Hexagon::LDriub:
684  case Hexagon::LDrib_indexed:
685  case Hexagon::LDriub_indexed:
686    return isUInt<6>(MI->getOperand(2).getImm());
687
688  case Hexagon::POST_LDrid:
689    return isShiftedInt<4,3>(MI->getOperand(3).getImm());
690
691  case Hexagon::POST_LDriw:
692    return isShiftedInt<4,2>(MI->getOperand(3).getImm());
693
694  case Hexagon::POST_LDrih:
695  case Hexagon::POST_LDriuh:
696    return isShiftedInt<4,1>(MI->getOperand(3).getImm());
697
698  case Hexagon::POST_LDrib:
699  case Hexagon::POST_LDriub:
700    return isInt<4>(MI->getOperand(3).getImm());
701
702  case Hexagon::STrib_imm_V4:
703  case Hexagon::STrih_imm_V4:
704  case Hexagon::STriw_imm_V4:
705    return (isUInt<6>(MI->getOperand(1).getImm()) &&
706            isInt<6>(MI->getOperand(2).getImm()));
707
708  case Hexagon::ADD_ri:
709    return isInt<8>(MI->getOperand(2).getImm());
710
711  case Hexagon::ASLH:
712  case Hexagon::ASRH:
713  case Hexagon::SXTB:
714  case Hexagon::SXTH:
715  case Hexagon::ZXTB:
716  case Hexagon::ZXTH:
717    return Subtarget.hasV4TOps();
718  }
719
720  return true;
721}
722
723// This function performs the following inversiones:
724//
725//  cPt    ---> cNotPt
726//  cNotPt ---> cPt
727//
728unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
729  int InvPredOpcode;
730  InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
731                                        : Hexagon::getTruePredOpcode(Opc);
732  if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
733    return InvPredOpcode;
734
735  switch(Opc) {
736    default: llvm_unreachable("Unexpected predicated instruction");
737    case Hexagon::COMBINE_rr_cPt:
738      return Hexagon::COMBINE_rr_cNotPt;
739    case Hexagon::COMBINE_rr_cNotPt:
740      return Hexagon::COMBINE_rr_cPt;
741
742      // Dealloc_return.
743    case Hexagon::DEALLOC_RET_cPt_V4:
744      return Hexagon::DEALLOC_RET_cNotPt_V4;
745    case Hexagon::DEALLOC_RET_cNotPt_V4:
746      return Hexagon::DEALLOC_RET_cPt_V4;
747  }
748}
749
750// New Value Store instructions.
751bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const {
752  const uint64_t F = MI->getDesc().TSFlags;
753
754  return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
755}
756
757bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
758  const uint64_t F = get(Opcode).TSFlags;
759
760  return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
761}
762
763int HexagonInstrInfo::
764getMatchingCondBranchOpcode(int Opc, bool invertPredicate) const {
765  enum Hexagon::PredSense inPredSense;
766  inPredSense = invertPredicate ? Hexagon::PredSense_false :
767                                  Hexagon::PredSense_true;
768  int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
769  if (CondOpcode >= 0) // Valid Conditional opcode/instruction
770    return CondOpcode;
771
772  // This switch case will be removed once all the instructions have been
773  // modified to use relation maps.
774  switch(Opc) {
775  case Hexagon::TFRI_f:
776    return !invertPredicate ? Hexagon::TFRI_cPt_f :
777                              Hexagon::TFRI_cNotPt_f;
778  case Hexagon::COMBINE_rr:
779    return !invertPredicate ? Hexagon::COMBINE_rr_cPt :
780                              Hexagon::COMBINE_rr_cNotPt;
781
782  // Word.
783  case Hexagon::STriw_f:
784    return !invertPredicate ? Hexagon::STriw_cPt :
785                              Hexagon::STriw_cNotPt;
786  case Hexagon::STriw_indexed_f:
787    return !invertPredicate ? Hexagon::STriw_indexed_cPt :
788                              Hexagon::STriw_indexed_cNotPt;
789
790  // DEALLOC_RETURN.
791  case Hexagon::DEALLOC_RET_V4:
792    return !invertPredicate ? Hexagon::DEALLOC_RET_cPt_V4 :
793                              Hexagon::DEALLOC_RET_cNotPt_V4;
794  }
795  llvm_unreachable("Unexpected predicable instruction");
796}
797
798
799bool HexagonInstrInfo::
800PredicateInstruction(MachineInstr *MI,
801                     const SmallVectorImpl<MachineOperand> &Cond) const {
802  int Opc = MI->getOpcode();
803  assert (isPredicable(MI) && "Expected predicable instruction");
804  bool invertJump = (!Cond.empty() && Cond[0].isImm() &&
805                     (Cond[0].getImm() == 0));
806
807  // This will change MI's opcode to its predicate version.
808  // However, its operand list is still the old one, i.e. the
809  // non-predicate one.
810  MI->setDesc(get(getMatchingCondBranchOpcode(Opc, invertJump)));
811
812  int oper = -1;
813  unsigned int GAIdx = 0;
814
815  // Indicates whether the current MI has a GlobalAddress operand
816  bool hasGAOpnd = false;
817  std::vector<MachineOperand> tmpOpnds;
818
819  // Indicates whether we need to shift operands to right.
820  bool needShift = true;
821
822  // The predicate is ALWAYS the FIRST input operand !!!
823  if (MI->getNumOperands() == 0) {
824    // The non-predicate version of MI does not take any operands,
825    // i.e. no outs and no ins. In this condition, the predicate
826    // operand will be directly placed at Operands[0]. No operand
827    // shift is needed.
828    // Example: BARRIER
829    needShift = false;
830    oper = -1;
831  }
832  else if (   MI->getOperand(MI->getNumOperands()-1).isReg()
833           && MI->getOperand(MI->getNumOperands()-1).isDef()
834           && !MI->getOperand(MI->getNumOperands()-1).isImplicit()) {
835    // The non-predicate version of MI does not have any input operands.
836    // In this condition, we extend the length of Operands[] by one and
837    // copy the original last operand to the newly allocated slot.
838    // At this moment, it is just a place holder. Later, we will put
839    // predicate operand directly into it. No operand shift is needed.
840    // Example: r0=BARRIER (this is a faked insn used here for illustration)
841    MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
842    needShift = false;
843    oper = MI->getNumOperands() - 2;
844  }
845  else {
846    // We need to right shift all input operands by one. Duplicate the
847    // last operand into the newly allocated slot.
848    MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
849  }
850
851  if (needShift)
852  {
853    // Operands[ MI->getNumOperands() - 2 ] has been copied into
854    // Operands[ MI->getNumOperands() - 1 ], so we start from
855    // Operands[ MI->getNumOperands() - 3 ].
856    // oper is a signed int.
857    // It is ok if "MI->getNumOperands()-3" is -3, -2, or -1.
858    for (oper = MI->getNumOperands() - 3; oper >= 0; --oper)
859    {
860      MachineOperand &MO = MI->getOperand(oper);
861
862      // Opnd[0] Opnd[1] Opnd[2] Opnd[3] Opnd[4]   Opnd[5]   Opnd[6]   Opnd[7]
863      // <Def0>  <Def1>  <Use0>  <Use1>  <ImpDef0> <ImpDef1> <ImpUse0> <ImpUse1>
864      //               /\~
865      //              /||\~
866      //               ||
867      //        Predicate Operand here
868      if (MO.isReg() && !MO.isUse() && !MO.isImplicit()) {
869        break;
870      }
871      if (MO.isReg()) {
872        MI->getOperand(oper+1).ChangeToRegister(MO.getReg(), MO.isDef(),
873                                                MO.isImplicit(), MO.isKill(),
874                                                MO.isDead(), MO.isUndef(),
875                                                MO.isDebug());
876      }
877      else if (MO.isImm()) {
878        MI->getOperand(oper+1).ChangeToImmediate(MO.getImm());
879      }
880      else if (MO.isGlobal()) {
881        // MI can not have more than one GlobalAddress operand.
882        assert(hasGAOpnd == false && "MI can only have one GlobalAddress opnd");
883
884        // There is no member function called "ChangeToGlobalAddress" in the
885        // MachineOperand class (not like "ChangeToRegister" and
886        // "ChangeToImmediate"). So we have to remove them from Operands[] list
887        // first, and then add them back after we have inserted the predicate
888        // operand. tmpOpnds[] is to remember these operands before we remove
889        // them.
890        tmpOpnds.push_back(MO);
891
892        // Operands[oper] is a GlobalAddress operand;
893        // Operands[oper+1] has been copied into Operands[oper+2];
894        hasGAOpnd = true;
895        GAIdx = oper;
896        continue;
897      }
898      else {
899        assert(false && "Unexpected operand type");
900      }
901    }
902  }
903
904  int regPos = invertJump ? 1 : 0;
905  MachineOperand PredMO = Cond[regPos];
906
907  // [oper] now points to the last explicit Def. Predicate operand must be
908  // located at [oper+1]. See diagram above.
909  // This assumes that the predicate is always the first operand,
910  // i.e. Operands[0+numResults], in the set of inputs
911  // It is better to have an assert here to check this. But I don't know how
912  // to write this assert because findFirstPredOperandIdx() would return -1
913  if (oper < -1) oper = -1;
914
915  MI->getOperand(oper+1).ChangeToRegister(PredMO.getReg(), PredMO.isDef(),
916                                          PredMO.isImplicit(), false,
917                                          PredMO.isDead(), PredMO.isUndef(),
918                                          PredMO.isDebug());
919
920  MachineRegisterInfo &RegInfo = MI->getParent()->getParent()->getRegInfo();
921  RegInfo.clearKillFlags(PredMO.getReg());
922
923  if (hasGAOpnd)
924  {
925    unsigned int i;
926
927    // Operands[GAIdx] is the original GlobalAddress operand, which is
928    // already copied into tmpOpnds[0].
929    // Operands[GAIdx] now stores a copy of Operands[GAIdx-1]
930    // Operands[GAIdx+1] has already been copied into Operands[GAIdx+2],
931    // so we start from [GAIdx+2]
932    for (i = GAIdx + 2; i < MI->getNumOperands(); ++i)
933      tmpOpnds.push_back(MI->getOperand(i));
934
935    // Remove all operands in range [ (GAIdx+1) ... (MI->getNumOperands()-1) ]
936    // It is very important that we always remove from the end of Operands[]
937    // MI->getNumOperands() is at least 2 if program goes to here.
938    for (i = MI->getNumOperands() - 1; i > GAIdx; --i)
939      MI->RemoveOperand(i);
940
941    for (i = 0; i < tmpOpnds.size(); ++i)
942      MI->addOperand(tmpOpnds[i]);
943  }
944
945  return true;
946}
947
948
949bool
950HexagonInstrInfo::
951isProfitableToIfCvt(MachineBasicBlock &MBB,
952                    unsigned NumCycles,
953                    unsigned ExtraPredCycles,
954                    const BranchProbability &Probability) const {
955  return true;
956}
957
958
959bool
960HexagonInstrInfo::
961isProfitableToIfCvt(MachineBasicBlock &TMBB,
962                    unsigned NumTCycles,
963                    unsigned ExtraTCycles,
964                    MachineBasicBlock &FMBB,
965                    unsigned NumFCycles,
966                    unsigned ExtraFCycles,
967                    const BranchProbability &Probability) const {
968  return true;
969}
970
971// Returns true if an instruction is predicated irrespective of the predicate
972// sense. For example, all of the following will return true.
973// if (p0) R1 = add(R2, R3)
974// if (!p0) R1 = add(R2, R3)
975// if (p0.new) R1 = add(R2, R3)
976// if (!p0.new) R1 = add(R2, R3)
977bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const {
978  const uint64_t F = MI->getDesc().TSFlags;
979
980  return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
981}
982
983bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
984  const uint64_t F = get(Opcode).TSFlags;
985
986  return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
987}
988
989bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr *MI) const {
990  const uint64_t F = MI->getDesc().TSFlags;
991
992  assert(isPredicated(MI));
993  return (!((F >> HexagonII::PredicatedFalsePos) &
994            HexagonII::PredicatedFalseMask));
995}
996
997bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
998  const uint64_t F = get(Opcode).TSFlags;
999
1000  // Make sure that the instruction is predicated.
1001  assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
1002  return (!((F >> HexagonII::PredicatedFalsePos) &
1003            HexagonII::PredicatedFalseMask));
1004}
1005
1006bool HexagonInstrInfo::isPredicatedNew(const MachineInstr *MI) const {
1007  const uint64_t F = MI->getDesc().TSFlags;
1008
1009  assert(isPredicated(MI));
1010  return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
1011}
1012
1013bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
1014  const uint64_t F = get(Opcode).TSFlags;
1015
1016  assert(isPredicated(Opcode));
1017  return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
1018}
1019
1020// Returns true, if a ST insn can be promoted to a new-value store.
1021bool HexagonInstrInfo::mayBeNewStore(const MachineInstr *MI) const {
1022  const HexagonRegisterInfo& QRI = getRegisterInfo();
1023  const uint64_t F = MI->getDesc().TSFlags;
1024
1025  return ((F >> HexagonII::mayNVStorePos) &
1026           HexagonII::mayNVStoreMask &
1027           QRI.Subtarget.hasV4TOps());
1028}
1029
1030bool
1031HexagonInstrInfo::DefinesPredicate(MachineInstr *MI,
1032                                   std::vector<MachineOperand> &Pred) const {
1033  for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) {
1034    MachineOperand MO = MI->getOperand(oper);
1035    if (MO.isReg() && MO.isDef()) {
1036      const TargetRegisterClass* RC = RI.getMinimalPhysRegClass(MO.getReg());
1037      if (RC == &Hexagon::PredRegsRegClass) {
1038        Pred.push_back(MO);
1039        return true;
1040      }
1041    }
1042  }
1043  return false;
1044}
1045
1046
1047bool
1048HexagonInstrInfo::
1049SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
1050                  const SmallVectorImpl<MachineOperand> &Pred2) const {
1051  // TODO: Fix this
1052  return false;
1053}
1054
1055
1056//
1057// We indicate that we want to reverse the branch by
1058// inserting a 0 at the beginning of the Cond vector.
1059//
1060bool HexagonInstrInfo::
1061ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1062  if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
1063    Cond.erase(Cond.begin());
1064  } else {
1065    Cond.insert(Cond.begin(), MachineOperand::CreateImm(0));
1066  }
1067  return false;
1068}
1069
1070
1071bool HexagonInstrInfo::
1072isProfitableToDupForIfCvt(MachineBasicBlock &MBB,unsigned NumInstrs,
1073                          const BranchProbability &Probability) const {
1074  return (NumInstrs <= 4);
1075}
1076
1077bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const {
1078  switch (MI->getOpcode()) {
1079  default: return false;
1080  case Hexagon::DEALLOC_RET_V4 :
1081  case Hexagon::DEALLOC_RET_cPt_V4 :
1082  case Hexagon::DEALLOC_RET_cNotPt_V4 :
1083  case Hexagon::DEALLOC_RET_cdnPnt_V4 :
1084  case Hexagon::DEALLOC_RET_cNotdnPnt_V4 :
1085  case Hexagon::DEALLOC_RET_cdnPt_V4 :
1086  case Hexagon::DEALLOC_RET_cNotdnPt_V4 :
1087   return true;
1088  }
1089}
1090
1091
1092bool HexagonInstrInfo::
1093isValidOffset(const int Opcode, const int Offset) const {
1094  // This function is to check whether the "Offset" is in the correct range of
1095  // the given "Opcode". If "Offset" is not in the correct range, "ADD_ri" is
1096  // inserted to calculate the final address. Due to this reason, the function
1097  // assumes that the "Offset" has correct alignment.
1098  // We used to assert if the offset was not properly aligned, however,
1099  // there are cases where a misaligned pointer recast can cause this
1100  // problem, and we need to allow for it. The front end warns of such
1101  // misaligns with respect to load size.
1102
1103  switch(Opcode) {
1104
1105  case Hexagon::LDriw:
1106  case Hexagon::LDriw_indexed:
1107  case Hexagon::LDriw_f:
1108  case Hexagon::STriw_indexed:
1109  case Hexagon::STriw:
1110  case Hexagon::STriw_f:
1111    return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
1112      (Offset <= Hexagon_MEMW_OFFSET_MAX);
1113
1114  case Hexagon::LDrid:
1115  case Hexagon::LDrid_indexed:
1116  case Hexagon::LDrid_f:
1117  case Hexagon::STrid:
1118  case Hexagon::STrid_indexed:
1119  case Hexagon::STrid_f:
1120    return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
1121      (Offset <= Hexagon_MEMD_OFFSET_MAX);
1122
1123  case Hexagon::LDrih:
1124  case Hexagon::LDriuh:
1125  case Hexagon::STrih:
1126    return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
1127      (Offset <= Hexagon_MEMH_OFFSET_MAX);
1128
1129  case Hexagon::LDrib:
1130  case Hexagon::STrib:
1131  case Hexagon::LDriub:
1132    return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
1133      (Offset <= Hexagon_MEMB_OFFSET_MAX);
1134
1135  case Hexagon::ADD_ri:
1136  case Hexagon::TFR_FI:
1137    return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
1138      (Offset <= Hexagon_ADDI_OFFSET_MAX);
1139
1140  case Hexagon::MemOPw_ADDi_V4 :
1141  case Hexagon::MemOPw_SUBi_V4 :
1142  case Hexagon::MemOPw_ADDr_V4 :
1143  case Hexagon::MemOPw_SUBr_V4 :
1144  case Hexagon::MemOPw_ANDr_V4 :
1145  case Hexagon::MemOPw_ORr_V4 :
1146    return (0 <= Offset && Offset <= 255);
1147
1148  case Hexagon::MemOPh_ADDi_V4 :
1149  case Hexagon::MemOPh_SUBi_V4 :
1150  case Hexagon::MemOPh_ADDr_V4 :
1151  case Hexagon::MemOPh_SUBr_V4 :
1152  case Hexagon::MemOPh_ANDr_V4 :
1153  case Hexagon::MemOPh_ORr_V4 :
1154    return (0 <= Offset && Offset <= 127);
1155
1156  case Hexagon::MemOPb_ADDi_V4 :
1157  case Hexagon::MemOPb_SUBi_V4 :
1158  case Hexagon::MemOPb_ADDr_V4 :
1159  case Hexagon::MemOPb_SUBr_V4 :
1160  case Hexagon::MemOPb_ANDr_V4 :
1161  case Hexagon::MemOPb_ORr_V4 :
1162    return (0 <= Offset && Offset <= 63);
1163
1164  // LDri_pred and STriw_pred are pseudo operations, so it has to take offset of
1165  // any size. Later pass knows how to handle it.
1166  case Hexagon::STriw_pred:
1167  case Hexagon::LDriw_pred:
1168    return true;
1169
1170  case Hexagon::LOOP0_i:
1171    return isUInt<10>(Offset);
1172
1173  // INLINEASM is very special.
1174  case Hexagon::INLINEASM:
1175    return true;
1176  }
1177
1178  llvm_unreachable("No offset range is defined for this opcode. "
1179                   "Please define it in the above switch statement!");
1180}
1181
1182
1183//
1184// Check if the Offset is a valid auto-inc imm by Load/Store Type.
1185//
1186bool HexagonInstrInfo::
1187isValidAutoIncImm(const EVT VT, const int Offset) const {
1188
1189  if (VT == MVT::i64) {
1190      return (Offset >= Hexagon_MEMD_AUTOINC_MIN &&
1191              Offset <= Hexagon_MEMD_AUTOINC_MAX &&
1192              (Offset & 0x7) == 0);
1193  }
1194  if (VT == MVT::i32) {
1195      return (Offset >= Hexagon_MEMW_AUTOINC_MIN &&
1196              Offset <= Hexagon_MEMW_AUTOINC_MAX &&
1197              (Offset & 0x3) == 0);
1198  }
1199  if (VT == MVT::i16) {
1200      return (Offset >= Hexagon_MEMH_AUTOINC_MIN &&
1201              Offset <= Hexagon_MEMH_AUTOINC_MAX &&
1202              (Offset & 0x1) == 0);
1203  }
1204  if (VT == MVT::i8) {
1205      return (Offset >= Hexagon_MEMB_AUTOINC_MIN &&
1206              Offset <= Hexagon_MEMB_AUTOINC_MAX);
1207  }
1208  llvm_unreachable("Not an auto-inc opc!");
1209}
1210
1211
1212bool HexagonInstrInfo::
1213isMemOp(const MachineInstr *MI) const {
1214//  return MI->getDesc().mayLoad() && MI->getDesc().mayStore();
1215
1216  switch (MI->getOpcode())
1217  {
1218    default: return false;
1219    case Hexagon::MemOPw_ADDi_V4 :
1220    case Hexagon::MemOPw_SUBi_V4 :
1221    case Hexagon::MemOPw_ADDr_V4 :
1222    case Hexagon::MemOPw_SUBr_V4 :
1223    case Hexagon::MemOPw_ANDr_V4 :
1224    case Hexagon::MemOPw_ORr_V4 :
1225    case Hexagon::MemOPh_ADDi_V4 :
1226    case Hexagon::MemOPh_SUBi_V4 :
1227    case Hexagon::MemOPh_ADDr_V4 :
1228    case Hexagon::MemOPh_SUBr_V4 :
1229    case Hexagon::MemOPh_ANDr_V4 :
1230    case Hexagon::MemOPh_ORr_V4 :
1231    case Hexagon::MemOPb_ADDi_V4 :
1232    case Hexagon::MemOPb_SUBi_V4 :
1233    case Hexagon::MemOPb_ADDr_V4 :
1234    case Hexagon::MemOPb_SUBr_V4 :
1235    case Hexagon::MemOPb_ANDr_V4 :
1236    case Hexagon::MemOPb_ORr_V4 :
1237    case Hexagon::MemOPb_SETBITi_V4:
1238    case Hexagon::MemOPh_SETBITi_V4:
1239    case Hexagon::MemOPw_SETBITi_V4:
1240    case Hexagon::MemOPb_CLRBITi_V4:
1241    case Hexagon::MemOPh_CLRBITi_V4:
1242    case Hexagon::MemOPw_CLRBITi_V4:
1243    return true;
1244  }
1245  return false;
1246}
1247
1248
1249bool HexagonInstrInfo::
1250isSpillPredRegOp(const MachineInstr *MI) const {
1251  switch (MI->getOpcode()) {
1252    default: return false;
1253    case Hexagon::STriw_pred :
1254    case Hexagon::LDriw_pred :
1255      return true;
1256  }
1257}
1258
1259bool HexagonInstrInfo::isNewValueJumpCandidate(const MachineInstr *MI) const {
1260  switch (MI->getOpcode()) {
1261    default: return false;
1262    case Hexagon::CMPEQrr:
1263    case Hexagon::CMPEQri:
1264    case Hexagon::CMPGTrr:
1265    case Hexagon::CMPGTri:
1266    case Hexagon::CMPGTUrr:
1267    case Hexagon::CMPGTUri:
1268      return true;
1269  }
1270}
1271
1272bool HexagonInstrInfo::
1273isConditionalTransfer (const MachineInstr *MI) const {
1274  switch (MI->getOpcode()) {
1275    default: return false;
1276    case Hexagon::TFR_cPt:
1277    case Hexagon::TFR_cNotPt:
1278    case Hexagon::TFRI_cPt:
1279    case Hexagon::TFRI_cNotPt:
1280    case Hexagon::TFR_cdnPt:
1281    case Hexagon::TFR_cdnNotPt:
1282    case Hexagon::TFRI_cdnPt:
1283    case Hexagon::TFRI_cdnNotPt:
1284      return true;
1285  }
1286}
1287
1288bool HexagonInstrInfo::isConditionalALU32 (const MachineInstr* MI) const {
1289  const HexagonRegisterInfo& QRI = getRegisterInfo();
1290  switch (MI->getOpcode())
1291  {
1292    default: return false;
1293    case Hexagon::ADD_ri_cPt:
1294    case Hexagon::ADD_ri_cNotPt:
1295    case Hexagon::ADD_rr_cPt:
1296    case Hexagon::ADD_rr_cNotPt:
1297    case Hexagon::XOR_rr_cPt:
1298    case Hexagon::XOR_rr_cNotPt:
1299    case Hexagon::AND_rr_cPt:
1300    case Hexagon::AND_rr_cNotPt:
1301    case Hexagon::OR_rr_cPt:
1302    case Hexagon::OR_rr_cNotPt:
1303    case Hexagon::SUB_rr_cPt:
1304    case Hexagon::SUB_rr_cNotPt:
1305    case Hexagon::COMBINE_rr_cPt:
1306    case Hexagon::COMBINE_rr_cNotPt:
1307      return true;
1308    case Hexagon::ASLH_cPt_V4:
1309    case Hexagon::ASLH_cNotPt_V4:
1310    case Hexagon::ASRH_cPt_V4:
1311    case Hexagon::ASRH_cNotPt_V4:
1312    case Hexagon::SXTB_cPt_V4:
1313    case Hexagon::SXTB_cNotPt_V4:
1314    case Hexagon::SXTH_cPt_V4:
1315    case Hexagon::SXTH_cNotPt_V4:
1316    case Hexagon::ZXTB_cPt_V4:
1317    case Hexagon::ZXTB_cNotPt_V4:
1318    case Hexagon::ZXTH_cPt_V4:
1319    case Hexagon::ZXTH_cNotPt_V4:
1320      return QRI.Subtarget.hasV4TOps();
1321  }
1322}
1323
1324bool HexagonInstrInfo::
1325isConditionalLoad (const MachineInstr* MI) const {
1326  const HexagonRegisterInfo& QRI = getRegisterInfo();
1327  switch (MI->getOpcode())
1328  {
1329    default: return false;
1330    case Hexagon::LDrid_cPt :
1331    case Hexagon::LDrid_cNotPt :
1332    case Hexagon::LDrid_indexed_cPt :
1333    case Hexagon::LDrid_indexed_cNotPt :
1334    case Hexagon::LDriw_cPt :
1335    case Hexagon::LDriw_cNotPt :
1336    case Hexagon::LDriw_indexed_cPt :
1337    case Hexagon::LDriw_indexed_cNotPt :
1338    case Hexagon::LDrih_cPt :
1339    case Hexagon::LDrih_cNotPt :
1340    case Hexagon::LDrih_indexed_cPt :
1341    case Hexagon::LDrih_indexed_cNotPt :
1342    case Hexagon::LDrib_cPt :
1343    case Hexagon::LDrib_cNotPt :
1344    case Hexagon::LDrib_indexed_cPt :
1345    case Hexagon::LDrib_indexed_cNotPt :
1346    case Hexagon::LDriuh_cPt :
1347    case Hexagon::LDriuh_cNotPt :
1348    case Hexagon::LDriuh_indexed_cPt :
1349    case Hexagon::LDriuh_indexed_cNotPt :
1350    case Hexagon::LDriub_cPt :
1351    case Hexagon::LDriub_cNotPt :
1352    case Hexagon::LDriub_indexed_cPt :
1353    case Hexagon::LDriub_indexed_cNotPt :
1354      return true;
1355    case Hexagon::POST_LDrid_cPt :
1356    case Hexagon::POST_LDrid_cNotPt :
1357    case Hexagon::POST_LDriw_cPt :
1358    case Hexagon::POST_LDriw_cNotPt :
1359    case Hexagon::POST_LDrih_cPt :
1360    case Hexagon::POST_LDrih_cNotPt :
1361    case Hexagon::POST_LDrib_cPt :
1362    case Hexagon::POST_LDrib_cNotPt :
1363    case Hexagon::POST_LDriuh_cPt :
1364    case Hexagon::POST_LDriuh_cNotPt :
1365    case Hexagon::POST_LDriub_cPt :
1366    case Hexagon::POST_LDriub_cNotPt :
1367      return QRI.Subtarget.hasV4TOps();
1368    case Hexagon::LDrid_indexed_shl_cPt_V4 :
1369    case Hexagon::LDrid_indexed_shl_cNotPt_V4 :
1370    case Hexagon::LDrib_indexed_shl_cPt_V4 :
1371    case Hexagon::LDrib_indexed_shl_cNotPt_V4 :
1372    case Hexagon::LDriub_indexed_shl_cPt_V4 :
1373    case Hexagon::LDriub_indexed_shl_cNotPt_V4 :
1374    case Hexagon::LDrih_indexed_shl_cPt_V4 :
1375    case Hexagon::LDrih_indexed_shl_cNotPt_V4 :
1376    case Hexagon::LDriuh_indexed_shl_cPt_V4 :
1377    case Hexagon::LDriuh_indexed_shl_cNotPt_V4 :
1378    case Hexagon::LDriw_indexed_shl_cPt_V4 :
1379    case Hexagon::LDriw_indexed_shl_cNotPt_V4 :
1380      return QRI.Subtarget.hasV4TOps();
1381  }
1382}
1383
1384// Returns true if an instruction is a conditional store.
1385//
1386// Note: It doesn't include conditional new-value stores as they can't be
1387// converted to .new predicate.
1388//
1389//               p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
1390//                ^           ^
1391//               /             \ (not OK. it will cause new-value store to be
1392//              /               X conditional on p0.new while R2 producer is
1393//             /                 \ on p0)
1394//            /                   \.
1395//     p.new store                 p.old NV store
1396// [if(p0.new)memw(R0+#0)=R2]    [if(p0)memw(R0+#0)=R2.new]
1397//            ^                  ^
1398//             \                /
1399//              \              /
1400//               \            /
1401//                 p.old store
1402//             [if (p0)memw(R0+#0)=R2]
1403//
1404// The above diagram shows the steps involoved in the conversion of a predicated
1405// store instruction to its .new predicated new-value form.
1406//
1407// The following set of instructions further explains the scenario where
1408// conditional new-value store becomes invalid when promoted to .new predicate
1409// form.
1410//
1411// { 1) if (p0) r0 = add(r1, r2)
1412//   2) p0 = cmp.eq(r3, #0) }
1413//
1414//   3) if (p0) memb(r1+#0) = r0  --> this instruction can't be grouped with
1415// the first two instructions because in instr 1, r0 is conditional on old value
1416// of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
1417// is not valid for new-value stores.
1418bool HexagonInstrInfo::
1419isConditionalStore (const MachineInstr* MI) const {
1420  const HexagonRegisterInfo& QRI = getRegisterInfo();
1421  switch (MI->getOpcode())
1422  {
1423    default: return false;
1424    case Hexagon::STrib_imm_cPt_V4 :
1425    case Hexagon::STrib_imm_cNotPt_V4 :
1426    case Hexagon::STrib_indexed_shl_cPt_V4 :
1427    case Hexagon::STrib_indexed_shl_cNotPt_V4 :
1428    case Hexagon::STrib_cPt :
1429    case Hexagon::STrib_cNotPt :
1430    case Hexagon::POST_STbri_cPt :
1431    case Hexagon::POST_STbri_cNotPt :
1432    case Hexagon::STrid_indexed_cPt :
1433    case Hexagon::STrid_indexed_cNotPt :
1434    case Hexagon::STrid_indexed_shl_cPt_V4 :
1435    case Hexagon::POST_STdri_cPt :
1436    case Hexagon::POST_STdri_cNotPt :
1437    case Hexagon::STrih_cPt :
1438    case Hexagon::STrih_cNotPt :
1439    case Hexagon::STrih_indexed_cPt :
1440    case Hexagon::STrih_indexed_cNotPt :
1441    case Hexagon::STrih_imm_cPt_V4 :
1442    case Hexagon::STrih_imm_cNotPt_V4 :
1443    case Hexagon::STrih_indexed_shl_cPt_V4 :
1444    case Hexagon::STrih_indexed_shl_cNotPt_V4 :
1445    case Hexagon::POST_SThri_cPt :
1446    case Hexagon::POST_SThri_cNotPt :
1447    case Hexagon::STriw_cPt :
1448    case Hexagon::STriw_cNotPt :
1449    case Hexagon::STriw_indexed_cPt :
1450    case Hexagon::STriw_indexed_cNotPt :
1451    case Hexagon::STriw_imm_cPt_V4 :
1452    case Hexagon::STriw_imm_cNotPt_V4 :
1453    case Hexagon::STriw_indexed_shl_cPt_V4 :
1454    case Hexagon::STriw_indexed_shl_cNotPt_V4 :
1455    case Hexagon::POST_STwri_cPt :
1456    case Hexagon::POST_STwri_cNotPt :
1457      return QRI.Subtarget.hasV4TOps();
1458
1459    // V4 global address store before promoting to dot new.
1460    case Hexagon::STd_GP_cPt_V4 :
1461    case Hexagon::STd_GP_cNotPt_V4 :
1462    case Hexagon::STb_GP_cPt_V4 :
1463    case Hexagon::STb_GP_cNotPt_V4 :
1464    case Hexagon::STh_GP_cPt_V4 :
1465    case Hexagon::STh_GP_cNotPt_V4 :
1466    case Hexagon::STw_GP_cPt_V4 :
1467    case Hexagon::STw_GP_cNotPt_V4 :
1468      return QRI.Subtarget.hasV4TOps();
1469
1470    // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
1471    // from the "Conditional Store" list. Because a predicated new value store
1472    // would NOT be promoted to a double dot new store. See diagram below:
1473    // This function returns yes for those stores that are predicated but not
1474    // yet promoted to predicate dot new instructions.
1475    //
1476    //                          +---------------------+
1477    //                    /-----| if (p0) memw(..)=r0 |---------\~
1478    //                   ||     +---------------------+         ||
1479    //          promote  ||       /\       /\                   ||  promote
1480    //                   ||      /||\     /||\                  ||
1481    //                  \||/    demote     ||                  \||/
1482    //                   \/       ||       ||                   \/
1483    //       +-------------------------+   ||   +-------------------------+
1484    //       | if (p0.new) memw(..)=r0 |   ||   | if (p0) memw(..)=r0.new |
1485    //       +-------------------------+   ||   +-------------------------+
1486    //                        ||           ||         ||
1487    //                        ||         demote      \||/
1488    //                      promote        ||         \/ NOT possible
1489    //                        ||           ||         /\~
1490    //                       \||/          ||        /||\~
1491    //                        \/           ||         ||
1492    //                      +-----------------------------+
1493    //                      | if (p0.new) memw(..)=r0.new |
1494    //                      +-----------------------------+
1495    //                           Double Dot New Store
1496    //
1497  }
1498}
1499
1500
1501bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const {
1502  if (isNewValue(MI) && isBranch(MI))
1503    return true;
1504  return false;
1505}
1506
1507bool HexagonInstrInfo::isPostIncrement (const MachineInstr* MI) const {
1508  return (getAddrMode(MI) == HexagonII::PostInc);
1509}
1510
1511bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const {
1512  const uint64_t F = MI->getDesc().TSFlags;
1513  return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
1514}
1515
1516// Returns true, if any one of the operands is a dot new
1517// insn, whether it is predicated dot new or register dot new.
1518bool HexagonInstrInfo::isDotNewInst (const MachineInstr* MI) const {
1519  return (isNewValueInst(MI) ||
1520     (isPredicated(MI) && isPredicatedNew(MI)));
1521}
1522
1523// Returns the most basic instruction for the .new predicated instructions and
1524// new-value stores.
1525// For example, all of the following instructions will be converted back to the
1526// same instruction:
1527// 1) if (p0.new) memw(R0+#0) = R1.new  --->
1528// 2) if (p0) memw(R0+#0)= R1.new      -------> if (p0) memw(R0+#0) = R1
1529// 3) if (p0.new) memw(R0+#0) = R1      --->
1530//
1531
1532int HexagonInstrInfo::GetDotOldOp(const int opc) const {
1533  int NewOp = opc;
1534  if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
1535    NewOp = Hexagon::getPredOldOpcode(NewOp);
1536    if (NewOp < 0)
1537      assert(0 && "Couldn't change predicate new instruction to its old form.");
1538  }
1539
1540  if (isNewValueStore(NewOp)) { // Convert into non new-value format
1541    NewOp = Hexagon::getNonNVStore(NewOp);
1542    if (NewOp < 0)
1543      assert(0 && "Couldn't change new-value store to its old form.");
1544  }
1545  return NewOp;
1546}
1547
1548// Return the new value instruction for a given store.
1549int HexagonInstrInfo::GetDotNewOp(const MachineInstr* MI) const {
1550  int NVOpcode = Hexagon::getNewValueOpcode(MI->getOpcode());
1551  if (NVOpcode >= 0) // Valid new-value store instruction.
1552    return NVOpcode;
1553
1554  switch (MI->getOpcode()) {
1555  default: llvm_unreachable("Unknown .new type");
1556  // store new value byte
1557  case Hexagon::STrib_shl_V4:
1558    return Hexagon::STrib_shl_nv_V4;
1559
1560  case Hexagon::STrih_shl_V4:
1561    return Hexagon::STrih_shl_nv_V4;
1562
1563  case Hexagon::STriw_f:
1564    return Hexagon::STriw_nv_V4;
1565
1566  case Hexagon::STriw_indexed_f:
1567    return Hexagon::STriw_indexed_nv_V4;
1568
1569  case Hexagon::STriw_shl_V4:
1570    return Hexagon::STriw_shl_nv_V4;
1571
1572  }
1573  return 0;
1574}
1575
1576// Return .new predicate version for an instruction.
1577int HexagonInstrInfo::GetDotNewPredOp(MachineInstr *MI,
1578                                      const MachineBranchProbabilityInfo
1579                                      *MBPI) const {
1580
1581  int NewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
1582  if (NewOpcode >= 0) // Valid predicate new instruction
1583    return NewOpcode;
1584
1585  switch (MI->getOpcode()) {
1586  default: llvm_unreachable("Unknown .new type");
1587  // Condtional Jumps
1588  case Hexagon::JMP_t:
1589  case Hexagon::JMP_f:
1590    return getDotNewPredJumpOp(MI, MBPI);
1591
1592  case Hexagon::JMPR_t:
1593    return Hexagon::JMPR_tnew_tV3;
1594
1595  case Hexagon::JMPR_f:
1596    return Hexagon::JMPR_fnew_tV3;
1597
1598  case Hexagon::JMPret_t:
1599    return Hexagon::JMPret_tnew_tV3;
1600
1601  case Hexagon::JMPret_f:
1602    return Hexagon::JMPret_fnew_tV3;
1603
1604
1605  // Conditional combine
1606  case Hexagon::COMBINE_rr_cPt :
1607    return Hexagon::COMBINE_rr_cdnPt;
1608  case Hexagon::COMBINE_rr_cNotPt :
1609    return Hexagon::COMBINE_rr_cdnNotPt;
1610  }
1611}
1612
1613
1614unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const {
1615  const uint64_t F = MI->getDesc().TSFlags;
1616
1617  return((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask);
1618}
1619
1620/// immediateExtend - Changes the instruction in place to one using an immediate
1621/// extender.
1622void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const {
1623  assert((isExtendable(MI)||isConstExtended(MI)) &&
1624                               "Instruction must be extendable");
1625  // Find which operand is extendable.
1626  short ExtOpNum = getCExtOpNum(MI);
1627  MachineOperand &MO = MI->getOperand(ExtOpNum);
1628  // This needs to be something we understand.
1629  assert((MO.isMBB() || MO.isImm()) &&
1630         "Branch with unknown extendable field type");
1631  // Mark given operand as extended.
1632  MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
1633}
1634
1635DFAPacketizer *HexagonInstrInfo::
1636CreateTargetScheduleState(const TargetMachine *TM,
1637                           const ScheduleDAG *DAG) const {
1638  const InstrItineraryData *II = TM->getInstrItineraryData();
1639  return TM->getSubtarget<HexagonGenSubtargetInfo>().createDFAPacketizer(II);
1640}
1641
1642bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
1643                                            const MachineBasicBlock *MBB,
1644                                            const MachineFunction &MF) const {
1645  // Debug info is never a scheduling boundary. It's necessary to be explicit
1646  // due to the special treatment of IT instructions below, otherwise a
1647  // dbg_value followed by an IT will result in the IT instruction being
1648  // considered a scheduling hazard, which is wrong. It should be the actual
1649  // instruction preceding the dbg_value instruction(s), just like it is
1650  // when debug info is not present.
1651  if (MI->isDebugValue())
1652    return false;
1653
1654  // Terminators and labels can't be scheduled around.
1655  if (MI->getDesc().isTerminator() || MI->isLabel() || MI->isInlineAsm())
1656    return true;
1657
1658  return false;
1659}
1660
1661bool HexagonInstrInfo::isConstExtended(MachineInstr *MI) const {
1662
1663  // Constant extenders are allowed only for V4 and above.
1664  if (!Subtarget.hasV4TOps())
1665    return false;
1666
1667  const uint64_t F = MI->getDesc().TSFlags;
1668  unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
1669  if (isExtended) // Instruction must be extended.
1670    return true;
1671
1672  unsigned isExtendable = (F >> HexagonII::ExtendablePos)
1673                          & HexagonII::ExtendableMask;
1674  if (!isExtendable)
1675    return false;
1676
1677  short ExtOpNum = getCExtOpNum(MI);
1678  const MachineOperand &MO = MI->getOperand(ExtOpNum);
1679  // Use MO operand flags to determine if MO
1680  // has the HMOTF_ConstExtended flag set.
1681  if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended)
1682    return true;
1683  // If this is a Machine BB address we are talking about, and it is
1684  // not marked as extended, say so.
1685  if (MO.isMBB())
1686    return false;
1687
1688  // We could be using an instruction with an extendable immediate and shoehorn
1689  // a global address into it. If it is a global address it will be constant
1690  // extended. We do this for COMBINE.
1691  // We currently only handle isGlobal() because it is the only kind of
1692  // object we are going to end up with here for now.
1693  // In the future we probably should add isSymbol(), etc.
1694  if (MO.isGlobal() || MO.isSymbol())
1695    return true;
1696
1697  // If the extendable operand is not 'Immediate' type, the instruction should
1698  // have 'isExtended' flag set.
1699  assert(MO.isImm() && "Extendable operand must be Immediate type");
1700
1701  int MinValue = getMinValue(MI);
1702  int MaxValue = getMaxValue(MI);
1703  int ImmValue = MO.getImm();
1704
1705  return (ImmValue < MinValue || ImmValue > MaxValue);
1706}
1707
1708// Returns the opcode to use when converting MI, which is a conditional jump,
1709// into a conditional instruction which uses the .new value of the predicate.
1710// We also use branch probabilities to add a hint to the jump.
1711int
1712HexagonInstrInfo::getDotNewPredJumpOp(MachineInstr *MI,
1713                                  const
1714                                  MachineBranchProbabilityInfo *MBPI) const {
1715
1716  // We assume that block can have at most two successors.
1717  bool taken = false;
1718  MachineBasicBlock *Src = MI->getParent();
1719  MachineOperand *BrTarget = &MI->getOperand(1);
1720  MachineBasicBlock *Dst = BrTarget->getMBB();
1721
1722  const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst);
1723  if (Prediction >= BranchProbability(1,2))
1724    taken = true;
1725
1726  switch (MI->getOpcode()) {
1727  case Hexagon::JMP_t:
1728    return taken ? Hexagon::JMP_tnew_t : Hexagon::JMP_tnew_nt;
1729  case Hexagon::JMP_f:
1730    return taken ? Hexagon::JMP_fnew_t : Hexagon::JMP_fnew_nt;
1731
1732  default:
1733    llvm_unreachable("Unexpected jump instruction.");
1734  }
1735}
1736// Returns true if a particular operand is extendable for an instruction.
1737bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI,
1738                                         unsigned short OperandNum) const {
1739  // Constant extenders are allowed only for V4 and above.
1740  if (!Subtarget.hasV4TOps())
1741    return false;
1742
1743  const uint64_t F = MI->getDesc().TSFlags;
1744
1745  return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
1746          == OperandNum;
1747}
1748
1749// Returns Operand Index for the constant extended instruction.
1750unsigned short HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const {
1751  const uint64_t F = MI->getDesc().TSFlags;
1752  return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
1753}
1754
1755// Returns the min value that doesn't need to be extended.
1756int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const {
1757  const uint64_t F = MI->getDesc().TSFlags;
1758  unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
1759                    & HexagonII::ExtentSignedMask;
1760  unsigned bits =  (F >> HexagonII::ExtentBitsPos)
1761                    & HexagonII::ExtentBitsMask;
1762
1763  if (isSigned) // if value is signed
1764    return -1 << (bits - 1);
1765  else
1766    return 0;
1767}
1768
1769// Returns the max value that doesn't need to be extended.
1770int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const {
1771  const uint64_t F = MI->getDesc().TSFlags;
1772  unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
1773                    & HexagonII::ExtentSignedMask;
1774  unsigned bits =  (F >> HexagonII::ExtentBitsPos)
1775                    & HexagonII::ExtentBitsMask;
1776
1777  if (isSigned) // if value is signed
1778    return ~(-1 << (bits - 1));
1779  else
1780    return ~(-1 << bits);
1781}
1782
1783// Returns true if an instruction can be converted into a non-extended
1784// equivalent instruction.
1785bool HexagonInstrInfo::NonExtEquivalentExists (const MachineInstr *MI) const {
1786
1787  short NonExtOpcode;
1788  // Check if the instruction has a register form that uses register in place
1789  // of the extended operand, if so return that as the non-extended form.
1790  if (Hexagon::getRegForm(MI->getOpcode()) >= 0)
1791    return true;
1792
1793  if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
1794    // Check addressing mode and retreive non-ext equivalent instruction.
1795
1796    switch (getAddrMode(MI)) {
1797    case HexagonII::Absolute :
1798      // Load/store with absolute addressing mode can be converted into
1799      // base+offset mode.
1800      NonExtOpcode = Hexagon::getBasedWithImmOffset(MI->getOpcode());
1801      break;
1802    case HexagonII::BaseImmOffset :
1803      // Load/store with base+offset addressing mode can be converted into
1804      // base+register offset addressing mode. However left shift operand should
1805      // be set to 0.
1806      NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode());
1807      break;
1808    default:
1809      return false;
1810    }
1811    if (NonExtOpcode < 0)
1812      return false;
1813    return true;
1814  }
1815  return false;
1816}
1817
1818// Returns opcode of the non-extended equivalent instruction.
1819short HexagonInstrInfo::getNonExtOpcode (const MachineInstr *MI) const {
1820
1821  // Check if the instruction has a register form that uses register in place
1822  // of the extended operand, if so return that as the non-extended form.
1823  short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode());
1824    if (NonExtOpcode >= 0)
1825      return NonExtOpcode;
1826
1827  if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
1828    // Check addressing mode and retreive non-ext equivalent instruction.
1829    switch (getAddrMode(MI)) {
1830    case HexagonII::Absolute :
1831      return Hexagon::getBasedWithImmOffset(MI->getOpcode());
1832    case HexagonII::BaseImmOffset :
1833      return Hexagon::getBaseWithRegOffset(MI->getOpcode());
1834    default:
1835      return -1;
1836    }
1837  }
1838  return -1;
1839}
1840
1841bool HexagonInstrInfo::PredOpcodeHasJMP_c(Opcode_t Opcode) const {
1842  return (Opcode == Hexagon::JMP_t) ||
1843         (Opcode == Hexagon::JMP_f) ||
1844         (Opcode == Hexagon::JMP_tnew_t) ||
1845         (Opcode == Hexagon::JMP_fnew_t) ||
1846         (Opcode == Hexagon::JMP_tnew_nt) ||
1847         (Opcode == Hexagon::JMP_fnew_nt);
1848}
1849
1850bool HexagonInstrInfo::PredOpcodeHasNot(Opcode_t Opcode) const {
1851  return (Opcode == Hexagon::JMP_f) ||
1852         (Opcode == Hexagon::JMP_fnew_t) ||
1853         (Opcode == Hexagon::JMP_fnew_nt);
1854}
1855