HexagonVLIWPacketizer.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===----- HexagonPacketizer.cpp - vliw packetizer ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a simple VLIW packetizer using DFA. The packetizer works on
11// machine basic blocks. For each instruction I in BB, the packetizer consults
12// the DFA to see if machine resources are available to execute I. If so, the
13// packetizer checks if I depends on any instruction J in the current packet.
14// If no dependency is found, I is added to current packet and machine resource
15// is marked as taken. If any dependency is found, a target API call is made to
16// prune the dependence.
17//
18//===----------------------------------------------------------------------===//
19#define DEBUG_TYPE "packets"
20#include "llvm/CodeGen/DFAPacketizer.h"
21#include "Hexagon.h"
22#include "HexagonMachineFunctionInfo.h"
23#include "HexagonRegisterInfo.h"
24#include "HexagonSubtarget.h"
25#include "HexagonTargetMachine.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/Statistic.h"
28#include "llvm/CodeGen/LatencyPriorityQueue.h"
29#include "llvm/CodeGen/MachineDominators.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunctionAnalysis.h"
32#include "llvm/CodeGen/MachineFunctionPass.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineLoopInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/Passes.h"
37#include "llvm/CodeGen/ScheduleDAG.h"
38#include "llvm/CodeGen/ScheduleDAGInstrs.h"
39#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
40#include "llvm/CodeGen/SchedulerRegistry.h"
41#include "llvm/MC/MCInstrItineraries.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/Compiler.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Target/TargetInstrInfo.h"
47#include "llvm/Target/TargetMachine.h"
48#include "llvm/Target/TargetRegisterInfo.h"
49#include <map>
50#include <vector>
51
52using namespace llvm;
53
54static cl::opt<bool> PacketizeVolatiles("hexagon-packetize-volatiles",
55      cl::ZeroOrMore, cl::Hidden, cl::init(true),
56      cl::desc("Allow non-solo packetization of volatile memory references"));
57
58namespace llvm {
59  void initializeHexagonPacketizerPass(PassRegistry&);
60}
61
62
63namespace {
64  class HexagonPacketizer : public MachineFunctionPass {
65
66  public:
67    static char ID;
68    HexagonPacketizer() : MachineFunctionPass(ID) {
69      initializeHexagonPacketizerPass(*PassRegistry::getPassRegistry());
70    }
71
72    void getAnalysisUsage(AnalysisUsage &AU) const {
73      AU.setPreservesCFG();
74      AU.addRequired<MachineDominatorTree>();
75      AU.addRequired<MachineBranchProbabilityInfo>();
76      AU.addPreserved<MachineDominatorTree>();
77      AU.addRequired<MachineLoopInfo>();
78      AU.addPreserved<MachineLoopInfo>();
79      MachineFunctionPass::getAnalysisUsage(AU);
80    }
81
82    const char *getPassName() const {
83      return "Hexagon Packetizer";
84    }
85
86    bool runOnMachineFunction(MachineFunction &Fn);
87  };
88  char HexagonPacketizer::ID = 0;
89
90  class HexagonPacketizerList : public VLIWPacketizerList {
91
92  private:
93
94    // Has the instruction been promoted to a dot-new instruction.
95    bool PromotedToDotNew;
96
97    // Has the instruction been glued to allocframe.
98    bool GlueAllocframeStore;
99
100    // Has the feeder instruction been glued to new value jump.
101    bool GlueToNewValueJump;
102
103    // Check if there is a dependence between some instruction already in this
104    // packet and this instruction.
105    bool Dependence;
106
107    // Only check for dependence if there are resources available to
108    // schedule this instruction.
109    bool FoundSequentialDependence;
110
111    /// \brief A handle to the branch probability pass.
112   const MachineBranchProbabilityInfo *MBPI;
113
114   // Track MIs with ignored dependece.
115   std::vector<MachineInstr*> IgnoreDepMIs;
116
117  public:
118    // Ctor.
119    HexagonPacketizerList(MachineFunction &MF, MachineLoopInfo &MLI,
120                          MachineDominatorTree &MDT,
121                          const MachineBranchProbabilityInfo *MBPI);
122
123    // initPacketizerState - initialize some internal flags.
124    void initPacketizerState();
125
126    // ignorePseudoInstruction - Ignore bundling of pseudo instructions.
127    bool ignorePseudoInstruction(MachineInstr *MI, MachineBasicBlock *MBB);
128
129    // isSoloInstruction - return true if instruction MI can not be packetized
130    // with any other instruction, which means that MI itself is a packet.
131    bool isSoloInstruction(MachineInstr *MI);
132
133    // isLegalToPacketizeTogether - Is it legal to packetize SUI and SUJ
134    // together.
135    bool isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ);
136
137    // isLegalToPruneDependencies - Is it legal to prune dependece between SUI
138    // and SUJ.
139    bool isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ);
140
141    MachineBasicBlock::iterator addToPacket(MachineInstr *MI);
142  private:
143    bool IsCallDependent(MachineInstr* MI, SDep::Kind DepType, unsigned DepReg);
144    bool PromoteToDotNew(MachineInstr* MI, SDep::Kind DepType,
145                         MachineBasicBlock::iterator &MII,
146                         const TargetRegisterClass* RC);
147    bool CanPromoteToDotNew(MachineInstr* MI, SUnit* PacketSU,
148                            unsigned DepReg,
149                            std::map <MachineInstr*, SUnit*> MIToSUnit,
150                            MachineBasicBlock::iterator &MII,
151                            const TargetRegisterClass* RC);
152    bool CanPromoteToNewValue(MachineInstr* MI, SUnit* PacketSU,
153                              unsigned DepReg,
154                              std::map <MachineInstr*, SUnit*> MIToSUnit,
155                              MachineBasicBlock::iterator &MII);
156    bool CanPromoteToNewValueStore(MachineInstr* MI, MachineInstr* PacketMI,
157                                   unsigned DepReg,
158                                   std::map <MachineInstr*, SUnit*> MIToSUnit);
159    bool DemoteToDotOld(MachineInstr* MI);
160    bool ArePredicatesComplements(MachineInstr* MI1, MachineInstr* MI2,
161                    std::map <MachineInstr*, SUnit*> MIToSUnit);
162    bool RestrictingDepExistInPacket(MachineInstr*,
163                    unsigned, std::map <MachineInstr*, SUnit*>);
164    bool isNewifiable(MachineInstr* MI);
165    bool isCondInst(MachineInstr* MI);
166    bool tryAllocateResourcesForConstExt(MachineInstr* MI);
167    bool canReserveResourcesForConstExt(MachineInstr *MI);
168    void reserveResourcesForConstExt(MachineInstr* MI);
169    bool isNewValueInst(MachineInstr* MI);
170  };
171}
172
173INITIALIZE_PASS_BEGIN(HexagonPacketizer, "packets", "Hexagon Packetizer",
174                      false, false)
175INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
176INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
177INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
178INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
179INITIALIZE_PASS_END(HexagonPacketizer, "packets", "Hexagon Packetizer",
180                    false, false)
181
182
183// HexagonPacketizerList Ctor.
184HexagonPacketizerList::HexagonPacketizerList(
185  MachineFunction &MF, MachineLoopInfo &MLI,MachineDominatorTree &MDT,
186  const MachineBranchProbabilityInfo *MBPI)
187  : VLIWPacketizerList(MF, MLI, MDT, true){
188  this->MBPI = MBPI;
189}
190
191bool HexagonPacketizer::runOnMachineFunction(MachineFunction &Fn) {
192  const TargetInstrInfo *TII = Fn.getTarget().getInstrInfo();
193  MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
194  MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
195  const MachineBranchProbabilityInfo *MBPI =
196    &getAnalysis<MachineBranchProbabilityInfo>();
197  // Instantiate the packetizer.
198  HexagonPacketizerList Packetizer(Fn, MLI, MDT, MBPI);
199
200  // DFA state table should not be empty.
201  assert(Packetizer.getResourceTracker() && "Empty DFA table!");
202
203  //
204  // Loop over all basic blocks and remove KILL pseudo-instructions
205  // These instructions confuse the dependence analysis. Consider:
206  // D0 = ...   (Insn 0)
207  // R0 = KILL R0, D0 (Insn 1)
208  // R0 = ... (Insn 2)
209  // Here, Insn 1 will result in the dependence graph not emitting an output
210  // dependence between Insn 0 and Insn 2. This can lead to incorrect
211  // packetization
212  //
213  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
214       MBB != MBBe; ++MBB) {
215    MachineBasicBlock::iterator End = MBB->end();
216    MachineBasicBlock::iterator MI = MBB->begin();
217    while (MI != End) {
218      if (MI->isKill()) {
219        MachineBasicBlock::iterator DeleteMI = MI;
220        ++MI;
221        MBB->erase(DeleteMI);
222        End = MBB->end();
223        continue;
224      }
225      ++MI;
226    }
227  }
228
229  // Loop over all of the basic blocks.
230  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
231       MBB != MBBe; ++MBB) {
232    // Find scheduling regions and schedule / packetize each region.
233    unsigned RemainingCount = MBB->size();
234    for(MachineBasicBlock::iterator RegionEnd = MBB->end();
235        RegionEnd != MBB->begin();) {
236      // The next region starts above the previous region. Look backward in the
237      // instruction stream until we find the nearest boundary.
238      MachineBasicBlock::iterator I = RegionEnd;
239      for(;I != MBB->begin(); --I, --RemainingCount) {
240        if (TII->isSchedulingBoundary(std::prev(I), MBB, Fn))
241          break;
242      }
243      I = MBB->begin();
244
245      // Skip empty scheduling regions.
246      if (I == RegionEnd) {
247        RegionEnd = std::prev(RegionEnd);
248        --RemainingCount;
249        continue;
250      }
251      // Skip regions with one instruction.
252      if (I == std::prev(RegionEnd)) {
253        RegionEnd = std::prev(RegionEnd);
254        continue;
255      }
256
257      Packetizer.PacketizeMIs(MBB, I, RegionEnd);
258      RegionEnd = I;
259    }
260  }
261
262  return true;
263}
264
265
266static bool IsIndirectCall(MachineInstr* MI) {
267  return ((MI->getOpcode() == Hexagon::CALLR) ||
268          (MI->getOpcode() == Hexagon::CALLRv3));
269}
270
271// Reserve resources for constant extender. Trigure an assertion if
272// reservation fail.
273void HexagonPacketizerList::reserveResourcesForConstExt(MachineInstr* MI) {
274  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
275  MachineFunction *MF = MI->getParent()->getParent();
276  MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::IMMEXT_i),
277                                                  MI->getDebugLoc());
278
279  if (ResourceTracker->canReserveResources(PseudoMI)) {
280    ResourceTracker->reserveResources(PseudoMI);
281    MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
282  } else {
283    MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
284    llvm_unreachable("can not reserve resources for constant extender.");
285  }
286  return;
287}
288
289bool HexagonPacketizerList::canReserveResourcesForConstExt(MachineInstr *MI) {
290  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
291  assert((QII->isExtended(MI) || QII->isConstExtended(MI)) &&
292         "Should only be called for constant extended instructions");
293  MachineFunction *MF = MI->getParent()->getParent();
294  MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::IMMEXT_i),
295                                                  MI->getDebugLoc());
296  bool CanReserve = ResourceTracker->canReserveResources(PseudoMI);
297  MF->DeleteMachineInstr(PseudoMI);
298  return CanReserve;
299}
300
301// Allocate resources (i.e. 4 bytes) for constant extender. If succeed, return
302// true, otherwise, return false.
303bool HexagonPacketizerList::tryAllocateResourcesForConstExt(MachineInstr* MI) {
304  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
305  MachineFunction *MF = MI->getParent()->getParent();
306  MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::IMMEXT_i),
307                                                  MI->getDebugLoc());
308
309  if (ResourceTracker->canReserveResources(PseudoMI)) {
310    ResourceTracker->reserveResources(PseudoMI);
311    MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
312    return true;
313  } else {
314    MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
315    return false;
316  }
317}
318
319
320bool HexagonPacketizerList::IsCallDependent(MachineInstr* MI,
321                                          SDep::Kind DepType,
322                                          unsigned DepReg) {
323
324  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
325  const HexagonRegisterInfo* QRI =
326              (const HexagonRegisterInfo *) TM.getRegisterInfo();
327
328  // Check for lr dependence
329  if (DepReg == QRI->getRARegister()) {
330    return true;
331  }
332
333  if (QII->isDeallocRet(MI)) {
334    if (DepReg == QRI->getFrameRegister() ||
335        DepReg == QRI->getStackRegister())
336      return true;
337  }
338
339  // Check if this is a predicate dependence
340  const TargetRegisterClass* RC = QRI->getMinimalPhysRegClass(DepReg);
341  if (RC == &Hexagon::PredRegsRegClass) {
342    return true;
343  }
344
345  //
346  // Lastly check for an operand used in an indirect call
347  // If we had an attribute for checking if an instruction is an indirect call,
348  // then we could have avoided this relatively brittle implementation of
349  // IsIndirectCall()
350  //
351  // Assumes that the first operand of the CALLr is the function address
352  //
353  if (IsIndirectCall(MI) && (DepType == SDep::Data)) {
354    MachineOperand MO = MI->getOperand(0);
355    if (MO.isReg() && MO.isUse() && (MO.getReg() == DepReg)) {
356      return true;
357    }
358  }
359
360  return false;
361}
362
363static bool IsRegDependence(const SDep::Kind DepType) {
364  return (DepType == SDep::Data || DepType == SDep::Anti ||
365          DepType == SDep::Output);
366}
367
368static bool IsDirectJump(MachineInstr* MI) {
369  return (MI->getOpcode() == Hexagon::JMP);
370}
371
372static bool IsSchedBarrier(MachineInstr* MI) {
373  switch (MI->getOpcode()) {
374  case Hexagon::BARRIER:
375    return true;
376  }
377  return false;
378}
379
380static bool IsControlFlow(MachineInstr* MI) {
381  return (MI->getDesc().isTerminator() || MI->getDesc().isCall());
382}
383
384static bool IsLoopN(MachineInstr *MI) {
385  return (MI->getOpcode() == Hexagon::LOOP0_i ||
386          MI->getOpcode() == Hexagon::LOOP0_r);
387}
388
389/// DoesModifyCalleeSavedReg - Returns true if the instruction modifies a
390/// callee-saved register.
391static bool DoesModifyCalleeSavedReg(MachineInstr *MI,
392                                     const TargetRegisterInfo *TRI) {
393  for (const uint16_t *CSR = TRI->getCalleeSavedRegs(); *CSR; ++CSR) {
394    unsigned CalleeSavedReg = *CSR;
395    if (MI->modifiesRegister(CalleeSavedReg, TRI))
396      return true;
397  }
398  return false;
399}
400
401// Returns true if an instruction can be promoted to .new predicate
402// or new-value store.
403bool HexagonPacketizerList::isNewifiable(MachineInstr* MI) {
404  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
405  if ( isCondInst(MI) || QII->mayBeNewStore(MI))
406    return true;
407  else
408    return false;
409}
410
411bool HexagonPacketizerList::isCondInst (MachineInstr* MI) {
412  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
413  const MCInstrDesc& TID = MI->getDesc();
414                                    // bug 5670: until that is fixed,
415                                    // this portion is disabled.
416  if (   TID.isConditionalBranch()  // && !IsRegisterJump(MI)) ||
417      || QII->isConditionalTransfer(MI)
418      || QII->isConditionalALU32(MI)
419      || QII->isConditionalLoad(MI)
420      || QII->isConditionalStore(MI)) {
421    return true;
422  }
423  return false;
424}
425
426
427// Promote an instructiont to its .new form.
428// At this time, we have already made a call to CanPromoteToDotNew
429// and made sure that it can *indeed* be promoted.
430bool HexagonPacketizerList::PromoteToDotNew(MachineInstr* MI,
431                        SDep::Kind DepType, MachineBasicBlock::iterator &MII,
432                        const TargetRegisterClass* RC) {
433
434  assert (DepType == SDep::Data);
435  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
436
437  int NewOpcode;
438  if (RC == &Hexagon::PredRegsRegClass)
439    NewOpcode = QII->GetDotNewPredOp(MI, MBPI);
440  else
441    NewOpcode = QII->GetDotNewOp(MI);
442  MI->setDesc(QII->get(NewOpcode));
443
444  return true;
445}
446
447bool HexagonPacketizerList::DemoteToDotOld(MachineInstr* MI) {
448  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
449  int NewOpcode = QII->GetDotOldOp(MI->getOpcode());
450  MI->setDesc(QII->get(NewOpcode));
451  return true;
452}
453
454enum PredicateKind {
455  PK_False,
456  PK_True,
457  PK_Unknown
458};
459
460/// Returns true if an instruction is predicated on p0 and false if it's
461/// predicated on !p0.
462static PredicateKind getPredicateSense(MachineInstr* MI,
463                                       const HexagonInstrInfo *QII) {
464  if (!QII->isPredicated(MI))
465    return PK_Unknown;
466
467  if (QII->isPredicatedTrue(MI))
468    return PK_True;
469
470  return PK_False;
471}
472
473static MachineOperand& GetPostIncrementOperand(MachineInstr *MI,
474                                               const HexagonInstrInfo *QII) {
475  assert(QII->isPostIncrement(MI) && "Not a post increment operation.");
476#ifndef NDEBUG
477  // Post Increment means duplicates. Use dense map to find duplicates in the
478  // list. Caution: Densemap initializes with the minimum of 64 buckets,
479  // whereas there are at most 5 operands in the post increment.
480  DenseMap<unsigned,  unsigned> DefRegsSet;
481  for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++)
482    if (MI->getOperand(opNum).isReg() &&
483        MI->getOperand(opNum).isDef()) {
484      DefRegsSet[MI->getOperand(opNum).getReg()] = 1;
485    }
486
487  for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++)
488    if (MI->getOperand(opNum).isReg() &&
489        MI->getOperand(opNum).isUse()) {
490      if (DefRegsSet[MI->getOperand(opNum).getReg()]) {
491        return MI->getOperand(opNum);
492      }
493    }
494#else
495  if (MI->getDesc().mayLoad()) {
496    // The 2nd operand is always the post increment operand in load.
497    assert(MI->getOperand(1).isReg() &&
498                "Post increment operand has be to a register.");
499    return (MI->getOperand(1));
500  }
501  if (MI->getDesc().mayStore()) {
502    // The 1st operand is always the post increment operand in store.
503    assert(MI->getOperand(0).isReg() &&
504                "Post increment operand has be to a register.");
505    return (MI->getOperand(0));
506  }
507#endif
508  // we should never come here.
509  llvm_unreachable("mayLoad or mayStore not set for Post Increment operation");
510}
511
512// get the value being stored
513static MachineOperand& GetStoreValueOperand(MachineInstr *MI) {
514  // value being stored is always the last operand.
515  return (MI->getOperand(MI->getNumOperands()-1));
516}
517
518// can be new value store?
519// Following restrictions are to be respected in convert a store into
520// a new value store.
521// 1. If an instruction uses auto-increment, its address register cannot
522//    be a new-value register. Arch Spec 5.4.2.1
523// 2. If an instruction uses absolute-set addressing mode,
524//    its address register cannot be a new-value register.
525//    Arch Spec 5.4.2.1.TODO: This is not enabled as
526//    as absolute-set address mode patters are not implemented.
527// 3. If an instruction produces a 64-bit result, its registers cannot be used
528//    as new-value registers. Arch Spec 5.4.2.2.
529// 4. If the instruction that sets a new-value register is conditional, then
530//    the instruction that uses the new-value register must also be conditional,
531//    and both must always have their predicates evaluate identically.
532//    Arch Spec 5.4.2.3.
533// 5. There is an implied restriction of a packet can not have another store,
534//    if there is a  new value store in the packet. Corollary, if there is
535//    already a store in a packet, there can not be a new value store.
536//    Arch Spec: 3.4.4.2
537bool HexagonPacketizerList::CanPromoteToNewValueStore( MachineInstr *MI,
538                MachineInstr *PacketMI, unsigned DepReg,
539                std::map <MachineInstr*, SUnit*> MIToSUnit) {
540  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
541  // Make sure we are looking at the store, that can be promoted.
542  if (!QII->mayBeNewStore(MI))
543    return false;
544
545  // Make sure there is dependency and can be new value'ed
546  if (GetStoreValueOperand(MI).isReg() &&
547      GetStoreValueOperand(MI).getReg() != DepReg)
548    return false;
549
550  const HexagonRegisterInfo* QRI =
551                            (const HexagonRegisterInfo *) TM.getRegisterInfo();
552  const MCInstrDesc& MCID = PacketMI->getDesc();
553  // first operand is always the result
554
555  const TargetRegisterClass* PacketRC = QII->getRegClass(MCID, 0, QRI, MF);
556
557  // if there is already an store in the packet, no can do new value store
558  // Arch Spec 3.4.4.2.
559  for (std::vector<MachineInstr*>::iterator VI = CurrentPacketMIs.begin(),
560         VE = CurrentPacketMIs.end();
561       (VI != VE); ++VI) {
562    SUnit* PacketSU = MIToSUnit[*VI];
563    if (PacketSU->getInstr()->getDesc().mayStore() ||
564        // if we have mayStore = 1 set on ALLOCFRAME and DEALLOCFRAME,
565        // then we don't need this
566        PacketSU->getInstr()->getOpcode() == Hexagon::ALLOCFRAME ||
567        PacketSU->getInstr()->getOpcode() == Hexagon::DEALLOCFRAME)
568      return false;
569  }
570
571  if (PacketRC == &Hexagon::DoubleRegsRegClass) {
572    // new value store constraint: double regs can not feed into new value store
573    // arch spec section: 5.4.2.2
574    return false;
575  }
576
577  // Make sure it's NOT the post increment register that we are going to
578  // new value.
579  if (QII->isPostIncrement(MI) &&
580      MI->getDesc().mayStore() &&
581      GetPostIncrementOperand(MI, QII).getReg() == DepReg) {
582    return false;
583  }
584
585  if (QII->isPostIncrement(PacketMI) &&
586      PacketMI->getDesc().mayLoad() &&
587      GetPostIncrementOperand(PacketMI, QII).getReg() == DepReg) {
588    // if source is post_inc, or absolute-set addressing,
589    // it can not feed into new value store
590    //  r3 = memw(r2++#4)
591    //  memw(r30 + #-1404) = r2.new -> can not be new value store
592    // arch spec section: 5.4.2.1
593    return false;
594  }
595
596  // If the source that feeds the store is predicated, new value store must
597  // also be predicated.
598  if (QII->isPredicated(PacketMI)) {
599    if (!QII->isPredicated(MI))
600      return false;
601
602    // Check to make sure that they both will have their predicates
603    // evaluate identically
604    unsigned predRegNumSrc = 0;
605    unsigned predRegNumDst = 0;
606    const TargetRegisterClass* predRegClass = NULL;
607
608    // Get predicate register used in the source instruction
609    for(unsigned opNum = 0; opNum < PacketMI->getNumOperands(); opNum++) {
610      if ( PacketMI->getOperand(opNum).isReg())
611      predRegNumSrc = PacketMI->getOperand(opNum).getReg();
612      predRegClass = QRI->getMinimalPhysRegClass(predRegNumSrc);
613      if (predRegClass == &Hexagon::PredRegsRegClass) {
614        break;
615      }
616    }
617    assert ((predRegClass == &Hexagon::PredRegsRegClass ) &&
618        ("predicate register not found in a predicated PacketMI instruction"));
619
620    // Get predicate register used in new-value store instruction
621    for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) {
622      if ( MI->getOperand(opNum).isReg())
623      predRegNumDst = MI->getOperand(opNum).getReg();
624      predRegClass = QRI->getMinimalPhysRegClass(predRegNumDst);
625      if (predRegClass == &Hexagon::PredRegsRegClass) {
626        break;
627      }
628    }
629    assert ((predRegClass == &Hexagon::PredRegsRegClass ) &&
630            ("predicate register not found in a predicated MI instruction"));
631
632    // New-value register producer and user (store) need to satisfy these
633    // constraints:
634    // 1) Both instructions should be predicated on the same register.
635    // 2) If producer of the new-value register is .new predicated then store
636    // should also be .new predicated and if producer is not .new predicated
637    // then store should not be .new predicated.
638    // 3) Both new-value register producer and user should have same predicate
639    // sense, i.e, either both should be negated or both should be none negated.
640
641    if (( predRegNumDst != predRegNumSrc) ||
642          QII->isDotNewInst(PacketMI) != QII->isDotNewInst(MI)  ||
643          getPredicateSense(MI, QII) != getPredicateSense(PacketMI, QII)) {
644      return false;
645    }
646  }
647
648  // Make sure that other than the new-value register no other store instruction
649  // register has been modified in the same packet. Predicate registers can be
650  // modified by they should not be modified between the producer and the store
651  // instruction as it will make them both conditional on different values.
652  // We already know this to be true for all the instructions before and
653  // including PacketMI. Howerver, we need to perform the check for the
654  // remaining instructions in the packet.
655
656  std::vector<MachineInstr*>::iterator VI;
657  std::vector<MachineInstr*>::iterator VE;
658  unsigned StartCheck = 0;
659
660  for (VI=CurrentPacketMIs.begin(), VE = CurrentPacketMIs.end();
661      (VI != VE); ++VI) {
662    SUnit* TempSU = MIToSUnit[*VI];
663    MachineInstr* TempMI = TempSU->getInstr();
664
665    // Following condition is true for all the instructions until PacketMI is
666    // reached (StartCheck is set to 0 before the for loop).
667    // StartCheck flag is 1 for all the instructions after PacketMI.
668    if (TempMI != PacketMI && !StartCheck) // start processing only after
669      continue;                            // encountering PacketMI
670
671    StartCheck = 1;
672    if (TempMI == PacketMI) // We don't want to check PacketMI for dependence
673      continue;
674
675    for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) {
676      if (MI->getOperand(opNum).isReg() &&
677          TempSU->getInstr()->modifiesRegister(MI->getOperand(opNum).getReg(),
678                                               QRI))
679        return false;
680    }
681  }
682
683  // Make sure that for non-POST_INC stores:
684  // 1. The only use of reg is DepReg and no other registers.
685  //    This handles V4 base+index registers.
686  //    The following store can not be dot new.
687  //    Eg.   r0 = add(r0, #3)a
688  //          memw(r1+r0<<#2) = r0
689  if (!QII->isPostIncrement(MI) &&
690      GetStoreValueOperand(MI).isReg() &&
691      GetStoreValueOperand(MI).getReg() == DepReg) {
692    for(unsigned opNum = 0; opNum < MI->getNumOperands()-1; opNum++) {
693      if (MI->getOperand(opNum).isReg() &&
694          MI->getOperand(opNum).getReg() == DepReg) {
695        return false;
696      }
697    }
698    // 2. If data definition is because of implicit definition of the register,
699    //    do not newify the store. Eg.
700    //    %R9<def> = ZXTH %R12, %D6<imp-use>, %R12<imp-def>
701    //    STrih_indexed %R8, 2, %R12<kill>; mem:ST2[%scevgep343]
702    for(unsigned opNum = 0; opNum < PacketMI->getNumOperands(); opNum++) {
703      if (PacketMI->getOperand(opNum).isReg() &&
704          PacketMI->getOperand(opNum).getReg() == DepReg &&
705          PacketMI->getOperand(opNum).isDef() &&
706          PacketMI->getOperand(opNum).isImplicit()) {
707        return false;
708      }
709    }
710  }
711
712  // Can be dot new store.
713  return true;
714}
715
716// can this MI to promoted to either
717// new value store or new value jump
718bool HexagonPacketizerList::CanPromoteToNewValue( MachineInstr *MI,
719                SUnit *PacketSU, unsigned DepReg,
720                std::map <MachineInstr*, SUnit*> MIToSUnit,
721                MachineBasicBlock::iterator &MII)
722{
723
724  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
725  const HexagonRegisterInfo* QRI =
726                            (const HexagonRegisterInfo *) TM.getRegisterInfo();
727  if (!QRI->Subtarget.hasV4TOps() ||
728      !QII->mayBeNewStore(MI))
729    return false;
730
731  MachineInstr *PacketMI = PacketSU->getInstr();
732
733  // Check to see the store can be new value'ed.
734  if (CanPromoteToNewValueStore(MI, PacketMI, DepReg, MIToSUnit))
735    return true;
736
737  // Check to see the compare/jump can be new value'ed.
738  // This is done as a pass on its own. Don't need to check it here.
739  return false;
740}
741
742// Check to see if an instruction can be dot new
743// There are three kinds.
744// 1. dot new on predicate - V2/V3/V4
745// 2. dot new on stores NV/ST - V4
746// 3. dot new on jump NV/J - V4 -- This is generated in a pass.
747bool HexagonPacketizerList::CanPromoteToDotNew( MachineInstr *MI,
748                              SUnit *PacketSU, unsigned DepReg,
749                              std::map <MachineInstr*, SUnit*> MIToSUnit,
750                              MachineBasicBlock::iterator &MII,
751                              const TargetRegisterClass* RC )
752{
753  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
754  // Already a dot new instruction.
755  if (QII->isDotNewInst(MI) && !QII->mayBeNewStore(MI))
756    return false;
757
758  if (!isNewifiable(MI))
759    return false;
760
761  // predicate .new
762  if (RC == &Hexagon::PredRegsRegClass && isCondInst(MI))
763      return true;
764  else if (RC != &Hexagon::PredRegsRegClass &&
765      !QII->mayBeNewStore(MI)) // MI is not a new-value store
766    return false;
767  else {
768    // Create a dot new machine instruction to see if resources can be
769    // allocated. If not, bail out now.
770    int NewOpcode = QII->GetDotNewOp(MI);
771    const MCInstrDesc &desc = QII->get(NewOpcode);
772    DebugLoc dl;
773    MachineInstr *NewMI =
774                    MI->getParent()->getParent()->CreateMachineInstr(desc, dl);
775    bool ResourcesAvailable = ResourceTracker->canReserveResources(NewMI);
776    MI->getParent()->getParent()->DeleteMachineInstr(NewMI);
777
778    if (!ResourcesAvailable)
779      return false;
780
781    // new value store only
782    // new new value jump generated as a passes
783    if (!CanPromoteToNewValue(MI, PacketSU, DepReg, MIToSUnit, MII)) {
784      return false;
785    }
786  }
787  return true;
788}
789
790// Go through the packet instructions and search for anti dependency
791// between them and DepReg from MI
792// Consider this case:
793// Trying to add
794// a) %R1<def> = TFRI_cdNotPt %P3, 2
795// to this packet:
796// {
797//   b) %P0<def> = OR_pp %P3<kill>, %P0<kill>
798//   c) %P3<def> = TFR_PdRs %R23
799//   d) %R1<def> = TFRI_cdnPt %P3, 4
800//  }
801// The P3 from a) and d) will be complements after
802// a)'s P3 is converted to .new form
803// Anti Dep between c) and b) is irrelevant for this case
804bool HexagonPacketizerList::RestrictingDepExistInPacket (MachineInstr* MI,
805      unsigned DepReg,
806      std::map <MachineInstr*, SUnit*> MIToSUnit) {
807
808  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
809  SUnit* PacketSUDep = MIToSUnit[MI];
810
811  for (std::vector<MachineInstr*>::iterator VIN = CurrentPacketMIs.begin(),
812       VEN = CurrentPacketMIs.end(); (VIN != VEN); ++VIN) {
813
814    // We only care for dependencies to predicated instructions
815    if(!QII->isPredicated(*VIN)) continue;
816
817    // Scheduling Unit for current insn in the packet
818    SUnit* PacketSU = MIToSUnit[*VIN];
819
820    // Look at dependencies between current members of the packet
821    // and predicate defining instruction MI.
822    // Make sure that dependency is on the exact register
823    // we care about.
824    if (PacketSU->isSucc(PacketSUDep)) {
825      for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
826        if ((PacketSU->Succs[i].getSUnit() == PacketSUDep) &&
827            (PacketSU->Succs[i].getKind() == SDep::Anti) &&
828            (PacketSU->Succs[i].getReg() == DepReg)) {
829          return true;
830        }
831      }
832    }
833  }
834
835  return false;
836}
837
838
839/// Gets the predicate register of a predicated instruction.
840static unsigned getPredicatedRegister(MachineInstr *MI,
841                                      const HexagonInstrInfo *QII) {
842  /// We use the following rule: The first predicate register that is a use is
843  /// the predicate register of a predicated instruction.
844
845  assert(QII->isPredicated(MI) && "Must be predicated instruction");
846
847  for (MachineInstr::mop_iterator OI = MI->operands_begin(),
848       OE = MI->operands_end(); OI != OE; ++OI) {
849    MachineOperand &Op = *OI;
850    if (Op.isReg() && Op.getReg() && Op.isUse() &&
851        Hexagon::PredRegsRegClass.contains(Op.getReg()))
852      return Op.getReg();
853  }
854
855  llvm_unreachable("Unknown instruction operand layout");
856
857  return 0;
858}
859
860// Given two predicated instructions, this function detects whether
861// the predicates are complements
862bool HexagonPacketizerList::ArePredicatesComplements (MachineInstr* MI1,
863     MachineInstr* MI2, std::map <MachineInstr*, SUnit*> MIToSUnit) {
864
865  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
866
867  // If we don't know the predicate sense of the instructions bail out early, we
868  // need it later.
869  if (getPredicateSense(MI1, QII) == PK_Unknown ||
870      getPredicateSense(MI2, QII) == PK_Unknown)
871    return false;
872
873  // Scheduling unit for candidate
874  SUnit* SU = MIToSUnit[MI1];
875
876  // One corner case deals with the following scenario:
877  // Trying to add
878  // a) %R24<def> = TFR_cPt %P0, %R25
879  // to this packet:
880  //
881  // {
882  //   b) %R25<def> = TFR_cNotPt %P0, %R24
883  //   c) %P0<def> = CMPEQri %R26, 1
884  // }
885  //
886  // On general check a) and b) are complements, but
887  // presence of c) will convert a) to .new form, and
888  // then it is not a complement
889  // We attempt to detect it by analyzing  existing
890  // dependencies in the packet
891
892  // Analyze relationships between all existing members of the packet.
893  // Look for Anti dependecy on the same predicate reg
894  // as used in the candidate
895  for (std::vector<MachineInstr*>::iterator VIN = CurrentPacketMIs.begin(),
896       VEN = CurrentPacketMIs.end(); (VIN != VEN); ++VIN) {
897
898    // Scheduling Unit for current insn in the packet
899    SUnit* PacketSU = MIToSUnit[*VIN];
900
901    // If this instruction in the packet is succeeded by the candidate...
902    if (PacketSU->isSucc(SU)) {
903      for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
904        // The corner case exist when there is true data
905        // dependency between candidate and one of current
906        // packet members, this dep is on predicate reg, and
907        // there already exist anti dep on the same pred in
908        // the packet.
909        if (PacketSU->Succs[i].getSUnit() == SU &&
910            PacketSU->Succs[i].getKind() == SDep::Data &&
911            Hexagon::PredRegsRegClass.contains(
912              PacketSU->Succs[i].getReg()) &&
913            // Here I know that *VIN is predicate setting instruction
914            // with true data dep to candidate on the register
915            // we care about - c) in the above example.
916            // Now I need to see if there is an anti dependency
917            // from c) to any other instruction in the
918            // same packet on the pred reg of interest
919            RestrictingDepExistInPacket(*VIN,PacketSU->Succs[i].getReg(),
920                                        MIToSUnit)) {
921           return false;
922        }
923      }
924    }
925  }
926
927  // If the above case does not apply, check regular
928  // complement condition.
929  // Check that the predicate register is the same and
930  // that the predicate sense is different
931  // We also need to differentiate .old vs. .new:
932  // !p0 is not complimentary to p0.new
933  unsigned PReg1 = getPredicatedRegister(MI1, QII);
934  unsigned PReg2 = getPredicatedRegister(MI2, QII);
935  return ((PReg1 == PReg2) &&
936          Hexagon::PredRegsRegClass.contains(PReg1) &&
937          Hexagon::PredRegsRegClass.contains(PReg2) &&
938          (getPredicateSense(MI1, QII) != getPredicateSense(MI2, QII)) &&
939          (QII->isDotNewInst(MI1) == QII->isDotNewInst(MI2)));
940}
941
942// initPacketizerState - Initialize packetizer flags
943void HexagonPacketizerList::initPacketizerState() {
944
945  Dependence = false;
946  PromotedToDotNew = false;
947  GlueToNewValueJump = false;
948  GlueAllocframeStore = false;
949  FoundSequentialDependence = false;
950
951  return;
952}
953
954// ignorePseudoInstruction - Ignore bundling of pseudo instructions.
955bool HexagonPacketizerList::ignorePseudoInstruction(MachineInstr *MI,
956                                                    MachineBasicBlock *MBB) {
957  if (MI->isDebugValue())
958    return true;
959
960  // We must print out inline assembly
961  if (MI->isInlineAsm())
962    return false;
963
964  // We check if MI has any functional units mapped to it.
965  // If it doesn't, we ignore the instruction.
966  const MCInstrDesc& TID = MI->getDesc();
967  unsigned SchedClass = TID.getSchedClass();
968  const InstrStage* IS =
969                    ResourceTracker->getInstrItins()->beginStage(SchedClass);
970  unsigned FuncUnits = IS->getUnits();
971  return !FuncUnits;
972}
973
974// isSoloInstruction: - Returns true for instructions that must be
975// scheduled in their own packet.
976bool HexagonPacketizerList::isSoloInstruction(MachineInstr *MI) {
977
978  if (MI->isInlineAsm())
979    return true;
980
981  if (MI->isEHLabel())
982    return true;
983
984  // From Hexagon V4 Programmer's Reference Manual 3.4.4 Grouping constraints:
985  // trap, pause, barrier, icinva, isync, and syncht are solo instructions.
986  // They must not be grouped with other instructions in a packet.
987  if (IsSchedBarrier(MI))
988    return true;
989
990  return false;
991}
992
993// isLegalToPacketizeTogether:
994// SUI is the current instruction that is out side of the current packet.
995// SUJ is the current instruction inside the current packet against which that
996// SUI will be packetized.
997bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) {
998  MachineInstr *I = SUI->getInstr();
999  MachineInstr *J = SUJ->getInstr();
1000  assert(I && J && "Unable to packetize null instruction!");
1001
1002  const MCInstrDesc &MCIDI = I->getDesc();
1003  const MCInstrDesc &MCIDJ = J->getDesc();
1004
1005  MachineBasicBlock::iterator II = I;
1006
1007  const unsigned FrameSize = MF.getFrameInfo()->getStackSize();
1008  const HexagonRegisterInfo* QRI =
1009                      (const HexagonRegisterInfo *) TM.getRegisterInfo();
1010  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
1011
1012  // Inline asm cannot go in the packet.
1013  if (I->getOpcode() == Hexagon::INLINEASM)
1014    llvm_unreachable("Should not meet inline asm here!");
1015
1016  if (isSoloInstruction(I))
1017    llvm_unreachable("Should not meet solo instr here!");
1018
1019  // A save callee-save register function call can only be in a packet
1020  // with instructions that don't write to the callee-save registers.
1021  if ((QII->isSaveCalleeSavedRegsCall(I) &&
1022       DoesModifyCalleeSavedReg(J, QRI)) ||
1023      (QII->isSaveCalleeSavedRegsCall(J) &&
1024       DoesModifyCalleeSavedReg(I, QRI))) {
1025    Dependence = true;
1026    return false;
1027  }
1028
1029  // Two control flow instructions cannot go in the same packet.
1030  if (IsControlFlow(I) && IsControlFlow(J)) {
1031    Dependence = true;
1032    return false;
1033  }
1034
1035  // A LoopN instruction cannot appear in the same packet as a jump or call.
1036  if (IsLoopN(I) &&
1037     (IsDirectJump(J) || MCIDJ.isCall() || QII->isDeallocRet(J))) {
1038    Dependence = true;
1039    return false;
1040  }
1041  if (IsLoopN(J) &&
1042     (IsDirectJump(I) || MCIDI.isCall() || QII->isDeallocRet(I))) {
1043    Dependence = true;
1044    return false;
1045  }
1046
1047  // dealloc_return cannot appear in the same packet as a conditional or
1048  // unconditional jump.
1049  if (QII->isDeallocRet(I) &&
1050     (MCIDJ.isBranch() || MCIDJ.isCall() || MCIDJ.isBarrier())) {
1051    Dependence = true;
1052    return false;
1053  }
1054
1055
1056  // V4 allows dual store. But does not allow second store, if the
1057  // first store is not in SLOT0. New value store, new value jump,
1058  // dealloc_return and memop always take SLOT0.
1059  // Arch spec 3.4.4.2
1060  if (QRI->Subtarget.hasV4TOps()) {
1061    if (MCIDI.mayStore() && MCIDJ.mayStore() &&
1062       (QII->isNewValueInst(J) || QII->isMemOp(J) || QII->isMemOp(I))) {
1063      Dependence = true;
1064      return false;
1065    }
1066
1067    if ((QII->isMemOp(J) && MCIDI.mayStore())
1068        || (MCIDJ.mayStore() && QII->isMemOp(I))
1069        || (QII->isMemOp(J) && QII->isMemOp(I))) {
1070      Dependence = true;
1071      return false;
1072    }
1073
1074    //if dealloc_return
1075    if (MCIDJ.mayStore() && QII->isDeallocRet(I)) {
1076      Dependence = true;
1077      return false;
1078    }
1079
1080    // If an instruction feeds new value jump, glue it.
1081    MachineBasicBlock::iterator NextMII = I;
1082    ++NextMII;
1083    if (NextMII != I->getParent()->end() && QII->isNewValueJump(NextMII)) {
1084      MachineInstr *NextMI = NextMII;
1085
1086      bool secondRegMatch = false;
1087      bool maintainNewValueJump = false;
1088
1089      if (NextMI->getOperand(1).isReg() &&
1090          I->getOperand(0).getReg() == NextMI->getOperand(1).getReg()) {
1091        secondRegMatch = true;
1092        maintainNewValueJump = true;
1093      }
1094
1095      if (!secondRegMatch &&
1096           I->getOperand(0).getReg() == NextMI->getOperand(0).getReg()) {
1097        maintainNewValueJump = true;
1098      }
1099
1100      for (std::vector<MachineInstr*>::iterator
1101            VI = CurrentPacketMIs.begin(),
1102             VE = CurrentPacketMIs.end();
1103           (VI != VE && maintainNewValueJump); ++VI) {
1104        SUnit* PacketSU = MIToSUnit[*VI];
1105
1106        // NVJ can not be part of the dual jump - Arch Spec: section 7.8
1107        if (PacketSU->getInstr()->getDesc().isCall()) {
1108          Dependence = true;
1109          break;
1110        }
1111        // Validate
1112        // 1. Packet does not have a store in it.
1113        // 2. If the first operand of the nvj is newified, and the second
1114        //    operand is also a reg, it (second reg) is not defined in
1115        //    the same packet.
1116        // 3. If the second operand of the nvj is newified, (which means
1117        //    first operand is also a reg), first reg is not defined in
1118        //    the same packet.
1119        if (PacketSU->getInstr()->getDesc().mayStore()               ||
1120            PacketSU->getInstr()->getOpcode() == Hexagon::ALLOCFRAME ||
1121            // Check #2.
1122            (!secondRegMatch && NextMI->getOperand(1).isReg() &&
1123             PacketSU->getInstr()->modifiesRegister(
1124                               NextMI->getOperand(1).getReg(), QRI)) ||
1125            // Check #3.
1126            (secondRegMatch &&
1127             PacketSU->getInstr()->modifiesRegister(
1128                               NextMI->getOperand(0).getReg(), QRI))) {
1129          Dependence = true;
1130          break;
1131        }
1132      }
1133      if (!Dependence)
1134        GlueToNewValueJump = true;
1135      else
1136        return false;
1137    }
1138  }
1139
1140  if (SUJ->isSucc(SUI)) {
1141    for (unsigned i = 0;
1142         (i < SUJ->Succs.size()) && !FoundSequentialDependence;
1143         ++i) {
1144
1145      if (SUJ->Succs[i].getSUnit() != SUI) {
1146        continue;
1147      }
1148
1149      SDep::Kind DepType = SUJ->Succs[i].getKind();
1150
1151      // For direct calls:
1152      // Ignore register dependences for call instructions for
1153      // packetization purposes except for those due to r31 and
1154      // predicate registers.
1155      //
1156      // For indirect calls:
1157      // Same as direct calls + check for true dependences to the register
1158      // used in the indirect call.
1159      //
1160      // We completely ignore Order dependences for call instructions
1161      //
1162      // For returns:
1163      // Ignore register dependences for return instructions like jumpr,
1164      // dealloc return unless we have dependencies on the explicit uses
1165      // of the registers used by jumpr (like r31) or dealloc return
1166      // (like r29 or r30).
1167      //
1168      // TODO: Currently, jumpr is handling only return of r31. So, the
1169      // following logic (specificaly IsCallDependent) is working fine.
1170      // We need to enable jumpr for register other than r31 and then,
1171      // we need to rework the last part, where it handles indirect call
1172      // of that (IsCallDependent) function. Bug 6216 is opened for this.
1173      //
1174      unsigned DepReg = 0;
1175      const TargetRegisterClass* RC = NULL;
1176      if (DepType == SDep::Data) {
1177        DepReg = SUJ->Succs[i].getReg();
1178        RC = QRI->getMinimalPhysRegClass(DepReg);
1179      }
1180      if ((MCIDI.isCall() || MCIDI.isReturn()) &&
1181          (!IsRegDependence(DepType) ||
1182            !IsCallDependent(I, DepType, SUJ->Succs[i].getReg()))) {
1183        /* do nothing */
1184      }
1185
1186      // For instructions that can be promoted to dot-new, try to promote.
1187      else if ((DepType == SDep::Data) &&
1188               CanPromoteToDotNew(I, SUJ, DepReg, MIToSUnit, II, RC) &&
1189               PromoteToDotNew(I, DepType, II, RC)) {
1190        PromotedToDotNew = true;
1191        /* do nothing */
1192      }
1193
1194      else if ((DepType == SDep::Data) &&
1195               (QII->isNewValueJump(I))) {
1196        /* do nothing */
1197      }
1198
1199      // For predicated instructions, if the predicates are complements
1200      // then there can be no dependence.
1201      else if (QII->isPredicated(I) &&
1202               QII->isPredicated(J) &&
1203          ArePredicatesComplements(I, J, MIToSUnit)) {
1204        /* do nothing */
1205
1206      }
1207      else if (IsDirectJump(I) &&
1208               !MCIDJ.isBranch() &&
1209               !MCIDJ.isCall() &&
1210               (DepType == SDep::Order)) {
1211        // Ignore Order dependences between unconditional direct branches
1212        // and non-control-flow instructions
1213        /* do nothing */
1214      }
1215      else if (MCIDI.isConditionalBranch() && (DepType != SDep::Data) &&
1216               (DepType != SDep::Output)) {
1217        // Ignore all dependences for jumps except for true and output
1218        // dependences
1219        /* do nothing */
1220      }
1221
1222      // Ignore output dependences due to superregs. We can
1223      // write to two different subregisters of R1:0 for instance
1224      // in the same cycle
1225      //
1226
1227      //
1228      // Let the
1229      // If neither I nor J defines DepReg, then this is a
1230      // superfluous output dependence. The dependence must be of the
1231      // form:
1232      //  R0 = ...
1233      //  R1 = ...
1234      // and there is an output dependence between the two instructions
1235      // with
1236      // DepReg = D0
1237      // We want to ignore these dependences.
1238      // Ideally, the dependence constructor should annotate such
1239      // dependences. We can then avoid this relatively expensive check.
1240      //
1241      else if (DepType == SDep::Output) {
1242        // DepReg is the register that's responsible for the dependence.
1243        unsigned DepReg = SUJ->Succs[i].getReg();
1244
1245        // Check if I and J really defines DepReg.
1246        if (I->definesRegister(DepReg) ||
1247            J->definesRegister(DepReg)) {
1248          FoundSequentialDependence = true;
1249          break;
1250        }
1251      }
1252
1253      // We ignore Order dependences for
1254      // 1. Two loads unless they are volatile.
1255      // 2. Two stores in V4 unless they are volatile.
1256      else if ((DepType == SDep::Order) &&
1257               !I->hasOrderedMemoryRef() &&
1258               !J->hasOrderedMemoryRef()) {
1259        if (QRI->Subtarget.hasV4TOps() &&
1260            // hexagonv4 allows dual store.
1261            MCIDI.mayStore() && MCIDJ.mayStore()) {
1262          /* do nothing */
1263        }
1264        // store followed by store-- not OK on V2
1265        // store followed by load -- not OK on all (OK if addresses
1266        // are not aliased)
1267        // load followed by store -- OK on all
1268        // load followed by load  -- OK on all
1269        else if ( !MCIDJ.mayStore()) {
1270          /* do nothing */
1271        }
1272        else {
1273          FoundSequentialDependence = true;
1274          break;
1275        }
1276      }
1277
1278      // For V4, special case ALLOCFRAME. Even though there is dependency
1279      // between ALLOCAFRAME and subsequent store, allow it to be
1280      // packetized in a same packet. This implies that the store is using
1281      // caller's SP. Hense, offset needs to be updated accordingly.
1282      else if (DepType == SDep::Data
1283               && QRI->Subtarget.hasV4TOps()
1284               && J->getOpcode() == Hexagon::ALLOCFRAME
1285               && (I->getOpcode() == Hexagon::STrid
1286                   || I->getOpcode() == Hexagon::STriw
1287                   || I->getOpcode() == Hexagon::STrib)
1288               && I->getOperand(0).getReg() == QRI->getStackRegister()
1289               && QII->isValidOffset(I->getOpcode(),
1290                                     I->getOperand(1).getImm() -
1291                                     (FrameSize + HEXAGON_LRFP_SIZE)))
1292      {
1293        GlueAllocframeStore = true;
1294        // Since this store is to be glued with allocframe in the same
1295        // packet, it will use SP of the previous stack frame, i.e
1296        // caller's SP. Therefore, we need to recalculate offset according
1297        // to this change.
1298        I->getOperand(1).setImm(I->getOperand(1).getImm() -
1299                                        (FrameSize + HEXAGON_LRFP_SIZE));
1300      }
1301
1302      //
1303      // Skip over anti-dependences. Two instructions that are
1304      // anti-dependent can share a packet
1305      //
1306      else if (DepType != SDep::Anti) {
1307        FoundSequentialDependence = true;
1308        break;
1309      }
1310    }
1311
1312    if (FoundSequentialDependence) {
1313      Dependence = true;
1314      return false;
1315    }
1316  }
1317
1318  return true;
1319}
1320
1321// isLegalToPruneDependencies
1322bool HexagonPacketizerList::isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) {
1323  MachineInstr *I = SUI->getInstr();
1324  assert(I && SUJ->getInstr() && "Unable to packetize null instruction!");
1325
1326  const unsigned FrameSize = MF.getFrameInfo()->getStackSize();
1327
1328  if (Dependence) {
1329
1330    // Check if the instruction was promoted to a dot-new. If so, demote it
1331    // back into a dot-old.
1332    if (PromotedToDotNew) {
1333      DemoteToDotOld(I);
1334    }
1335
1336    // Check if the instruction (must be a store) was glued with an Allocframe
1337    // instruction. If so, restore its offset to its original value, i.e. use
1338    // curent SP instead of caller's SP.
1339    if (GlueAllocframeStore) {
1340      I->getOperand(1).setImm(I->getOperand(1).getImm() +
1341                                             FrameSize + HEXAGON_LRFP_SIZE);
1342    }
1343
1344    return false;
1345  }
1346  return true;
1347}
1348
1349MachineBasicBlock::iterator
1350HexagonPacketizerList::addToPacket(MachineInstr *MI) {
1351
1352    MachineBasicBlock::iterator MII = MI;
1353    MachineBasicBlock *MBB = MI->getParent();
1354
1355    const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
1356
1357    if (GlueToNewValueJump) {
1358
1359      ++MII;
1360      MachineInstr *nvjMI = MII;
1361      assert(ResourceTracker->canReserveResources(MI));
1362      ResourceTracker->reserveResources(MI);
1363      if ((QII->isExtended(MI) || QII->isConstExtended(MI)) &&
1364          !tryAllocateResourcesForConstExt(MI)) {
1365        endPacket(MBB, MI);
1366        ResourceTracker->reserveResources(MI);
1367        assert(canReserveResourcesForConstExt(MI) &&
1368               "Ensure that there is a slot");
1369        reserveResourcesForConstExt(MI);
1370        // Reserve resources for new value jump constant extender.
1371        assert(canReserveResourcesForConstExt(MI) &&
1372               "Ensure that there is a slot");
1373        reserveResourcesForConstExt(nvjMI);
1374        assert(ResourceTracker->canReserveResources(nvjMI) &&
1375               "Ensure that there is a slot");
1376
1377      } else if (   // Extended instruction takes two slots in the packet.
1378        // Try reserve and allocate 4-byte in the current packet first.
1379        (QII->isExtended(nvjMI)
1380            && (!tryAllocateResourcesForConstExt(nvjMI)
1381                || !ResourceTracker->canReserveResources(nvjMI)))
1382        || // For non-extended instruction, no need to allocate extra 4 bytes.
1383        (!QII->isExtended(nvjMI) &&
1384              !ResourceTracker->canReserveResources(nvjMI)))
1385      {
1386        endPacket(MBB, MI);
1387        // A new and empty packet starts.
1388        // We are sure that the resources requirements can be satisfied.
1389        // Therefore, do not need to call "canReserveResources" anymore.
1390        ResourceTracker->reserveResources(MI);
1391        if (QII->isExtended(nvjMI))
1392          reserveResourcesForConstExt(nvjMI);
1393      }
1394      // Here, we are sure that "reserveResources" would succeed.
1395      ResourceTracker->reserveResources(nvjMI);
1396      CurrentPacketMIs.push_back(MI);
1397      CurrentPacketMIs.push_back(nvjMI);
1398    } else {
1399      if (   (QII->isExtended(MI) || QII->isConstExtended(MI))
1400          && (   !tryAllocateResourcesForConstExt(MI)
1401              || !ResourceTracker->canReserveResources(MI)))
1402      {
1403        endPacket(MBB, MI);
1404        // Check if the instruction was promoted to a dot-new. If so, demote it
1405        // back into a dot-old
1406        if (PromotedToDotNew) {
1407          DemoteToDotOld(MI);
1408        }
1409        reserveResourcesForConstExt(MI);
1410      }
1411      // In case that "MI" is not an extended insn,
1412      // the resource availability has already been checked.
1413      ResourceTracker->reserveResources(MI);
1414      CurrentPacketMIs.push_back(MI);
1415    }
1416    return MII;
1417}
1418
1419//===----------------------------------------------------------------------===//
1420//                         Public Constructor Functions
1421//===----------------------------------------------------------------------===//
1422
1423FunctionPass *llvm::createHexagonPacketizer() {
1424  return new HexagonPacketizer();
1425}
1426
1427