Mips16ISelLowering.cpp revision 1e07de352947aaf2f9137113cc594d8204da2b77
1//===-- Mips16ISelLowering.h - Mips16 DAG Lowering Interface ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Subclass of MipsTargetLowering specialized for mips16.
11//
12//===----------------------------------------------------------------------===//
13#define DEBUG_TYPE "mips-lower"
14#include "Mips16ISelLowering.h"
15#include "MipsRegisterInfo.h"
16#include "MipsTargetMachine.h"
17#include "MCTargetDesc/MipsBaseInfo.h"
18#include "llvm/CodeGen/MachineInstrBuilder.h"
19#include "llvm/Support/CommandLine.h"
20#include "llvm/Target/TargetInstrInfo.h"
21
22using namespace llvm;
23
24static cl::opt<bool> DontExpandCondPseudos16(
25  "mips16-dont-expand-cond-pseudo",
26  cl::init(false),
27  cl::desc("Dont expand conditional move related "
28           "pseudos for Mips 16"),
29  cl::Hidden);
30
31namespace {
32struct Mips16Libcall {
33  RTLIB::Libcall Libcall;
34  const char *Name;
35
36  bool operator<(const Mips16Libcall &RHS) const {
37    return std::strcmp(Name, RHS.Name) < 0;
38  }
39};
40
41struct Mips16IntrinsicHelperType{
42  const char* Name;
43  const char* Helper;
44
45  bool operator<(const Mips16IntrinsicHelperType &RHS) const {
46    return std::strcmp(Name, RHS.Name) < 0;
47  }
48  bool operator==(const Mips16IntrinsicHelperType &RHS) const {
49    return std::strcmp(Name, RHS.Name) == 0;
50  }
51};
52}
53
54// Libcalls for which no helper is generated. Sorted by name for binary search.
55static const Mips16Libcall HardFloatLibCalls[] = {
56  { RTLIB::ADD_F64, "__mips16_adddf3" },
57  { RTLIB::ADD_F32, "__mips16_addsf3" },
58  { RTLIB::DIV_F64, "__mips16_divdf3" },
59  { RTLIB::DIV_F32, "__mips16_divsf3" },
60  { RTLIB::OEQ_F64, "__mips16_eqdf2" },
61  { RTLIB::OEQ_F32, "__mips16_eqsf2" },
62  { RTLIB::FPEXT_F32_F64, "__mips16_extendsfdf2" },
63  { RTLIB::FPTOSINT_F64_I32, "__mips16_fix_truncdfsi" },
64  { RTLIB::FPTOSINT_F32_I32, "__mips16_fix_truncsfsi" },
65  { RTLIB::SINTTOFP_I32_F64, "__mips16_floatsidf" },
66  { RTLIB::SINTTOFP_I32_F32, "__mips16_floatsisf" },
67  { RTLIB::UINTTOFP_I32_F64, "__mips16_floatunsidf" },
68  { RTLIB::UINTTOFP_I32_F32, "__mips16_floatunsisf" },
69  { RTLIB::OGE_F64, "__mips16_gedf2" },
70  { RTLIB::OGE_F32, "__mips16_gesf2" },
71  { RTLIB::OGT_F64, "__mips16_gtdf2" },
72  { RTLIB::OGT_F32, "__mips16_gtsf2" },
73  { RTLIB::OLE_F64, "__mips16_ledf2" },
74  { RTLIB::OLE_F32, "__mips16_lesf2" },
75  { RTLIB::OLT_F64, "__mips16_ltdf2" },
76  { RTLIB::OLT_F32, "__mips16_ltsf2" },
77  { RTLIB::MUL_F64, "__mips16_muldf3" },
78  { RTLIB::MUL_F32, "__mips16_mulsf3" },
79  { RTLIB::UNE_F64, "__mips16_nedf2" },
80  { RTLIB::UNE_F32, "__mips16_nesf2" },
81  { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_dc" }, // No associated libcall.
82  { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_df" }, // No associated libcall.
83  { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sc" }, // No associated libcall.
84  { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sf" }, // No associated libcall.
85  { RTLIB::SUB_F64, "__mips16_subdf3" },
86  { RTLIB::SUB_F32, "__mips16_subsf3" },
87  { RTLIB::FPROUND_F64_F32, "__mips16_truncdfsf2" },
88  { RTLIB::UO_F64, "__mips16_unorddf2" },
89  { RTLIB::UO_F32, "__mips16_unordsf2" }
90};
91
92static const Mips16IntrinsicHelperType Mips16IntrinsicHelper[] = {
93  {"__fixunsdfsi", "__mips16_call_stub_2" },
94  {"ceil",  "__mips16_call_stub_df_2"},
95  {"ceilf", "__mips16_call_stub_sf_1"},
96  {"copysign",  "__mips16_call_stub_df_10"},
97  {"copysignf", "__mips16_call_stub_sf_5"},
98  {"cos",  "__mips16_call_stub_df_2"},
99  {"cosf", "__mips16_call_stub_sf_1"},
100  {"exp2",  "__mips16_call_stub_df_2"},
101  {"exp2f", "__mips16_call_stub_sf_1"},
102  {"floor",  "__mips16_call_stub_df_2"},
103  {"floorf", "__mips16_call_stub_sf_1"},
104  {"log2",  "__mips16_call_stub_df_2"},
105  {"log2f", "__mips16_call_stub_sf_1"},
106  {"nearbyint",  "__mips16_call_stub_df_2"},
107  {"nearbyintf", "__mips16_call_stub_sf_1"},
108  {"rint",  "__mips16_call_stub_df_2"},
109  {"rintf", "__mips16_call_stub_sf_1"},
110  {"sin",  "__mips16_call_stub_df_2"},
111  {"sinf", "__mips16_call_stub_sf_1"},
112  {"sqrt",  "__mips16_call_stub_df_2"},
113  {"sqrtf", "__mips16_call_stub_sf_1"},
114  {"trunc",  "__mips16_call_stub_df_2"},
115  {"truncf", "__mips16_call_stub_sf_1"},
116};
117
118Mips16TargetLowering::Mips16TargetLowering(MipsTargetMachine &TM)
119  : MipsTargetLowering(TM) {
120  //
121  // set up as if mips32 and then revert so we can test the mechanism
122  // for switching
123  addRegisterClass(MVT::i32, &Mips::GPR32RegClass);
124  addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
125  computeRegisterProperties();
126  clearRegisterClasses();
127
128  // Set up the register classes
129  addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
130
131  if (Subtarget->inMips16HardFloat())
132    setMips16HardFloatLibCalls();
133
134  setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Expand);
135  setOperationAction(ISD::ATOMIC_CMP_SWAP,    MVT::i32,   Expand);
136  setOperationAction(ISD::ATOMIC_SWAP,        MVT::i32,   Expand);
137  setOperationAction(ISD::ATOMIC_LOAD_ADD,    MVT::i32,   Expand);
138  setOperationAction(ISD::ATOMIC_LOAD_SUB,    MVT::i32,   Expand);
139  setOperationAction(ISD::ATOMIC_LOAD_AND,    MVT::i32,   Expand);
140  setOperationAction(ISD::ATOMIC_LOAD_OR,     MVT::i32,   Expand);
141  setOperationAction(ISD::ATOMIC_LOAD_XOR,    MVT::i32,   Expand);
142  setOperationAction(ISD::ATOMIC_LOAD_NAND,   MVT::i32,   Expand);
143  setOperationAction(ISD::ATOMIC_LOAD_MIN,    MVT::i32,   Expand);
144  setOperationAction(ISD::ATOMIC_LOAD_MAX,    MVT::i32,   Expand);
145  setOperationAction(ISD::ATOMIC_LOAD_UMIN,   MVT::i32,   Expand);
146  setOperationAction(ISD::ATOMIC_LOAD_UMAX,   MVT::i32,   Expand);
147
148  computeRegisterProperties();
149}
150
151const MipsTargetLowering *
152llvm::createMips16TargetLowering(MipsTargetMachine &TM) {
153  return new Mips16TargetLowering(TM);
154}
155
156bool
157Mips16TargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
158  return false;
159}
160
161MachineBasicBlock *
162Mips16TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
163                                                  MachineBasicBlock *BB) const {
164  switch (MI->getOpcode()) {
165  default:
166    return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
167  case Mips::SelBeqZ:
168    return emitSel16(Mips::BeqzRxImm16, MI, BB);
169  case Mips::SelBneZ:
170    return emitSel16(Mips::BnezRxImm16, MI, BB);
171  case Mips::SelTBteqZCmpi:
172    return emitSeliT16(Mips::BteqzX16, Mips::CmpiRxImmX16, MI, BB);
173  case Mips::SelTBteqZSlti:
174    return emitSeliT16(Mips::BteqzX16, Mips::SltiRxImmX16, MI, BB);
175  case Mips::SelTBteqZSltiu:
176    return emitSeliT16(Mips::BteqzX16, Mips::SltiuRxImmX16, MI, BB);
177  case Mips::SelTBtneZCmpi:
178    return emitSeliT16(Mips::BtnezX16, Mips::CmpiRxImmX16, MI, BB);
179  case Mips::SelTBtneZSlti:
180    return emitSeliT16(Mips::BtnezX16, Mips::SltiRxImmX16, MI, BB);
181  case Mips::SelTBtneZSltiu:
182    return emitSeliT16(Mips::BtnezX16, Mips::SltiuRxImmX16, MI, BB);
183  case Mips::SelTBteqZCmp:
184    return emitSelT16(Mips::BteqzX16, Mips::CmpRxRy16, MI, BB);
185  case Mips::SelTBteqZSlt:
186    return emitSelT16(Mips::BteqzX16, Mips::SltRxRy16, MI, BB);
187  case Mips::SelTBteqZSltu:
188    return emitSelT16(Mips::BteqzX16, Mips::SltuRxRy16, MI, BB);
189  case Mips::SelTBtneZCmp:
190    return emitSelT16(Mips::BtnezX16, Mips::CmpRxRy16, MI, BB);
191  case Mips::SelTBtneZSlt:
192    return emitSelT16(Mips::BtnezX16, Mips::SltRxRy16, MI, BB);
193  case Mips::SelTBtneZSltu:
194    return emitSelT16(Mips::BtnezX16, Mips::SltuRxRy16, MI, BB);
195  case Mips::BteqzT8CmpX16:
196    return emitFEXT_T8I816_ins(Mips::BteqzX16, Mips::CmpRxRy16, MI, BB);
197  case Mips::BteqzT8SltX16:
198    return emitFEXT_T8I816_ins(Mips::BteqzX16, Mips::SltRxRy16, MI, BB);
199  case Mips::BteqzT8SltuX16:
200    // TBD: figure out a way to get this or remove the instruction
201    // altogether.
202    return emitFEXT_T8I816_ins(Mips::BteqzX16, Mips::SltuRxRy16, MI, BB);
203  case Mips::BtnezT8CmpX16:
204    return emitFEXT_T8I816_ins(Mips::BtnezX16, Mips::CmpRxRy16, MI, BB);
205  case Mips::BtnezT8SltX16:
206    return emitFEXT_T8I816_ins(Mips::BtnezX16, Mips::SltRxRy16, MI, BB);
207  case Mips::BtnezT8SltuX16:
208    // TBD: figure out a way to get this or remove the instruction
209    // altogether.
210    return emitFEXT_T8I816_ins(Mips::BtnezX16, Mips::SltuRxRy16, MI, BB);
211  case Mips::BteqzT8CmpiX16: return emitFEXT_T8I8I16_ins(
212    Mips::BteqzX16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB);
213  case Mips::BteqzT8SltiX16: return emitFEXT_T8I8I16_ins(
214    Mips::BteqzX16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB);
215  case Mips::BteqzT8SltiuX16: return emitFEXT_T8I8I16_ins(
216    Mips::BteqzX16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB);
217  case Mips::BtnezT8CmpiX16: return emitFEXT_T8I8I16_ins(
218    Mips::BtnezX16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB);
219  case Mips::BtnezT8SltiX16: return emitFEXT_T8I8I16_ins(
220    Mips::BtnezX16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB);
221  case Mips::BtnezT8SltiuX16: return emitFEXT_T8I8I16_ins(
222    Mips::BtnezX16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB);
223    break;
224  case Mips::SltCCRxRy16:
225    return emitFEXT_CCRX16_ins(Mips::SltRxRy16, MI, BB);
226    break;
227  case Mips::SltiCCRxImmX16:
228    return emitFEXT_CCRXI16_ins
229      (Mips::SltiRxImm16, Mips::SltiRxImmX16, MI, BB);
230  case Mips::SltiuCCRxImmX16:
231    return emitFEXT_CCRXI16_ins
232      (Mips::SltiuRxImm16, Mips::SltiuRxImmX16, MI, BB);
233  case Mips::SltuCCRxRy16:
234    return emitFEXT_CCRX16_ins
235      (Mips::SltuRxRy16, MI, BB);
236  }
237}
238
239bool Mips16TargetLowering::
240isEligibleForTailCallOptimization(const MipsCC &MipsCCInfo,
241                                  unsigned NextStackOffset,
242                                  const MipsFunctionInfo& FI) const {
243  // No tail call optimization for mips16.
244  return false;
245}
246
247void Mips16TargetLowering::setMips16HardFloatLibCalls() {
248  for (unsigned I = 0; I != array_lengthof(HardFloatLibCalls); ++I) {
249    assert((I == 0 || HardFloatLibCalls[I - 1] < HardFloatLibCalls[I]) &&
250           "Array not sorted!");
251    if (HardFloatLibCalls[I].Libcall != RTLIB::UNKNOWN_LIBCALL)
252      setLibcallName(HardFloatLibCalls[I].Libcall, HardFloatLibCalls[I].Name);
253  }
254
255  setLibcallName(RTLIB::O_F64, "__mips16_unorddf2");
256  setLibcallName(RTLIB::O_F32, "__mips16_unordsf2");
257}
258
259//
260// The Mips16 hard float is a crazy quilt inherited from gcc. I have a much
261// cleaner way to do all of this but it will have to wait until the traditional
262// gcc mechanism is completed.
263//
264// For Pic, in order for Mips16 code to call Mips32 code which according the abi
265// have either arguments or returned values placed in floating point registers,
266// we use a set of helper functions. (This includes functions which return type
267//  complex which on Mips are returned in a pair of floating point registers).
268//
269// This is an encoding that we inherited from gcc.
270// In Mips traditional O32, N32 ABI, floating point numbers are passed in
271// floating point argument registers 1,2 only when the first and optionally
272// the second arguments are float (sf) or double (df).
273// For Mips16 we are only concerned with the situations where floating point
274// arguments are being passed in floating point registers by the ABI, because
275// Mips16 mode code cannot execute floating point instructions to load those
276// values and hence helper functions are needed.
277// The possibilities are (), (sf), (sf, sf), (sf, df), (df), (df, sf), (df, df)
278// the helper function suffixs for these are:
279//                        0,  1,    5,        9,         2,   6,        10
280// this suffix can then be calculated as follows:
281// for a given argument Arg:
282//     Arg1x, Arg2x = 1 :  Arg is sf
283//                    2 :  Arg is df
284//                    0:   Arg is neither sf or df
285// So this stub is the string for number Arg1x + Arg2x*4.
286// However not all numbers between 0 and 10 are possible, we check anyway and
287// assert if the impossible exists.
288//
289
290unsigned int Mips16TargetLowering::getMips16HelperFunctionStubNumber
291  (ArgListTy &Args) const {
292  unsigned int resultNum = 0;
293  if (Args.size() >= 1) {
294    Type *t = Args[0].Ty;
295    if (t->isFloatTy()) {
296      resultNum = 1;
297    }
298    else if (t->isDoubleTy()) {
299      resultNum = 2;
300    }
301  }
302  if (resultNum) {
303    if (Args.size() >=2) {
304      Type *t = Args[1].Ty;
305      if (t->isFloatTy()) {
306        resultNum += 4;
307      }
308      else if (t->isDoubleTy()) {
309        resultNum += 8;
310      }
311    }
312  }
313  return resultNum;
314}
315
316//
317// prefixs are attached to stub numbers depending on the return type .
318// return type: float  sf_
319//              double df_
320//              single complex sc_
321//              double complext dc_
322//              others  NO PREFIX
323//
324//
325// The full name of a helper function is__mips16_call_stub +
326//    return type dependent prefix + stub number
327//
328//
329// This is something that probably should be in a different source file and
330// perhaps done differently but my main purpose is to not waste runtime
331// on something that we can enumerate in the source. Another possibility is
332// to have a python script to generate these mapping tables. This will do
333// for now. There are a whole series of helper function mapping arrays, one
334// for each return type class as outlined above. There there are 11 possible
335//  entries. Ones with 0 are ones which should never be selected
336//
337// All the arrays are similar except for ones which return neither
338// sf, df, sc, dc, in which only care about ones which have sf or df as a
339// first parameter.
340//
341#define P_ "__mips16_call_stub_"
342#define MAX_STUB_NUMBER 10
343#define T1 P "1", P "2", 0, 0, P "5", P "6", 0, 0, P "9", P "10"
344#define T P "0" , T1
345#define P P_
346static char const * vMips16Helper[MAX_STUB_NUMBER+1] =
347  {0, T1 };
348#undef P
349#define P P_ "sf_"
350static char const * sfMips16Helper[MAX_STUB_NUMBER+1] =
351  { T };
352#undef P
353#define P P_ "df_"
354static char const * dfMips16Helper[MAX_STUB_NUMBER+1] =
355  { T };
356#undef P
357#define P P_ "sc_"
358static char const * scMips16Helper[MAX_STUB_NUMBER+1] =
359  { T };
360#undef P
361#define P P_ "dc_"
362static char const * dcMips16Helper[MAX_STUB_NUMBER+1] =
363  { T };
364#undef P
365#undef P_
366
367
368const char* Mips16TargetLowering::
369  getMips16HelperFunction
370    (Type* RetTy, ArgListTy &Args, bool &needHelper) const {
371  const unsigned int stubNum = getMips16HelperFunctionStubNumber(Args);
372#ifndef NDEBUG
373  const unsigned int maxStubNum = 10;
374  assert(stubNum <= maxStubNum);
375  const bool validStubNum[maxStubNum+1] =
376    {true, true, true, false, false, true, true, false, false, true, true};
377  assert(validStubNum[stubNum]);
378#endif
379  const char *result;
380  if (RetTy->isFloatTy()) {
381    result = sfMips16Helper[stubNum];
382  }
383  else if (RetTy ->isDoubleTy()) {
384    result = dfMips16Helper[stubNum];
385  }
386  else if (RetTy->isStructTy()) {
387    // check if it's complex
388    if (RetTy->getNumContainedTypes() == 2) {
389      if ((RetTy->getContainedType(0)->isFloatTy()) &&
390          (RetTy->getContainedType(1)->isFloatTy())) {
391        result = scMips16Helper[stubNum];
392      }
393      else if ((RetTy->getContainedType(0)->isDoubleTy()) &&
394               (RetTy->getContainedType(1)->isDoubleTy())) {
395        result = dcMips16Helper[stubNum];
396      }
397      else {
398        llvm_unreachable("Uncovered condition");
399      }
400    }
401    else {
402      llvm_unreachable("Uncovered condition");
403    }
404  }
405  else {
406    if (stubNum == 0) {
407      needHelper = false;
408      return "";
409    }
410    result = vMips16Helper[stubNum];
411  }
412  needHelper = true;
413  return result;
414}
415
416void Mips16TargetLowering::
417getOpndList(SmallVectorImpl<SDValue> &Ops,
418            std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
419            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
420            CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
421  SelectionDAG &DAG = CLI.DAG;
422  const char* Mips16HelperFunction = 0;
423  bool NeedMips16Helper = false;
424
425  if (getTargetMachine().Options.UseSoftFloat &&
426      Subtarget->inMips16HardFloat()) {
427    //
428    // currently we don't have symbols tagged with the mips16 or mips32
429    // qualifier so we will assume that we don't know what kind it is.
430    // and generate the helper
431    //
432    bool LookupHelper = true;
433    if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(CLI.Callee)) {
434      Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL, S->getSymbol() };
435
436      if (std::binary_search(HardFloatLibCalls, array_endof(HardFloatLibCalls),
437                             Find))
438        LookupHelper = false;
439      else {
440        Mips16IntrinsicHelperType IntrinsicFind = {S->getSymbol(), ""};
441        // one more look at list of intrinsics
442        if (std::binary_search(Mips16IntrinsicHelper,
443            array_endof(Mips16IntrinsicHelper),
444                                     IntrinsicFind)) {
445          const Mips16IntrinsicHelperType *h =(std::find(Mips16IntrinsicHelper,
446              array_endof(Mips16IntrinsicHelper),
447                                       IntrinsicFind));
448          Mips16HelperFunction = h->Helper;
449          NeedMips16Helper = true;
450          LookupHelper = false;
451        }
452
453      }
454    } else if (GlobalAddressSDNode *G =
455                   dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
456      Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL,
457                             G->getGlobal()->getName().data() };
458
459      if (std::binary_search(HardFloatLibCalls, array_endof(HardFloatLibCalls),
460                             Find))
461        LookupHelper = false;
462    }
463    if (LookupHelper) Mips16HelperFunction =
464      getMips16HelperFunction(CLI.RetTy, CLI.Args, NeedMips16Helper);
465
466  }
467
468  SDValue JumpTarget = Callee;
469
470  // T9 should contain the address of the callee function if
471  // -reloction-model=pic or it is an indirect call.
472  if (IsPICCall || !GlobalOrExternal) {
473    unsigned V0Reg = Mips::V0;
474    if (NeedMips16Helper) {
475      RegsToPass.push_front(std::make_pair(V0Reg, Callee));
476      JumpTarget = DAG.getExternalSymbol(Mips16HelperFunction, getPointerTy());
477      JumpTarget = getAddrGlobal(JumpTarget, DAG, MipsII::MO_GOT);
478    } else
479      RegsToPass.push_front(std::make_pair((unsigned)Mips::T9, Callee));
480  }
481
482  Ops.push_back(JumpTarget);
483
484  MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
485                                  InternalLinkage, CLI, Callee, Chain);
486}
487
488MachineBasicBlock *Mips16TargetLowering::
489emitSel16(unsigned Opc, MachineInstr *MI, MachineBasicBlock *BB) const {
490  if (DontExpandCondPseudos16)
491    return BB;
492  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
493  DebugLoc DL = MI->getDebugLoc();
494  // To "insert" a SELECT_CC instruction, we actually have to insert the
495  // diamond control-flow pattern.  The incoming instruction knows the
496  // destination vreg to set, the condition code register to branch on, the
497  // true/false values to select between, and a branch opcode to use.
498  const BasicBlock *LLVM_BB = BB->getBasicBlock();
499  MachineFunction::iterator It = BB;
500  ++It;
501
502  //  thisMBB:
503  //  ...
504  //   TrueVal = ...
505  //   setcc r1, r2, r3
506  //   bNE   r1, r0, copy1MBB
507  //   fallthrough --> copy0MBB
508  MachineBasicBlock *thisMBB  = BB;
509  MachineFunction *F = BB->getParent();
510  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
511  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
512  F->insert(It, copy0MBB);
513  F->insert(It, sinkMBB);
514
515  // Transfer the remainder of BB and its successor edges to sinkMBB.
516  sinkMBB->splice(sinkMBB->begin(), BB,
517                  llvm::next(MachineBasicBlock::iterator(MI)),
518                  BB->end());
519  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
520
521  // Next, add the true and fallthrough blocks as its successors.
522  BB->addSuccessor(copy0MBB);
523  BB->addSuccessor(sinkMBB);
524
525  BuildMI(BB, DL, TII->get(Opc)).addReg(MI->getOperand(3).getReg())
526    .addMBB(sinkMBB);
527
528  //  copy0MBB:
529  //   %FalseValue = ...
530  //   # fallthrough to sinkMBB
531  BB = copy0MBB;
532
533  // Update machine-CFG edges
534  BB->addSuccessor(sinkMBB);
535
536  //  sinkMBB:
537  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
538  //  ...
539  BB = sinkMBB;
540
541  BuildMI(*BB, BB->begin(), DL,
542          TII->get(Mips::PHI), MI->getOperand(0).getReg())
543    .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
544    .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
545
546  MI->eraseFromParent();   // The pseudo instruction is gone now.
547  return BB;
548}
549
550MachineBasicBlock *Mips16TargetLowering::emitSelT16
551  (unsigned Opc1, unsigned Opc2,
552   MachineInstr *MI, MachineBasicBlock *BB) const {
553  if (DontExpandCondPseudos16)
554    return BB;
555  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
556  DebugLoc DL = MI->getDebugLoc();
557  // To "insert" a SELECT_CC instruction, we actually have to insert the
558  // diamond control-flow pattern.  The incoming instruction knows the
559  // destination vreg to set, the condition code register to branch on, the
560  // true/false values to select between, and a branch opcode to use.
561  const BasicBlock *LLVM_BB = BB->getBasicBlock();
562  MachineFunction::iterator It = BB;
563  ++It;
564
565  //  thisMBB:
566  //  ...
567  //   TrueVal = ...
568  //   setcc r1, r2, r3
569  //   bNE   r1, r0, copy1MBB
570  //   fallthrough --> copy0MBB
571  MachineBasicBlock *thisMBB  = BB;
572  MachineFunction *F = BB->getParent();
573  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
574  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
575  F->insert(It, copy0MBB);
576  F->insert(It, sinkMBB);
577
578  // Transfer the remainder of BB and its successor edges to sinkMBB.
579  sinkMBB->splice(sinkMBB->begin(), BB,
580                  llvm::next(MachineBasicBlock::iterator(MI)),
581                  BB->end());
582  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
583
584  // Next, add the true and fallthrough blocks as its successors.
585  BB->addSuccessor(copy0MBB);
586  BB->addSuccessor(sinkMBB);
587
588  BuildMI(BB, DL, TII->get(Opc2)).addReg(MI->getOperand(3).getReg())
589    .addReg(MI->getOperand(4).getReg());
590  BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);
591
592  //  copy0MBB:
593  //   %FalseValue = ...
594  //   # fallthrough to sinkMBB
595  BB = copy0MBB;
596
597  // Update machine-CFG edges
598  BB->addSuccessor(sinkMBB);
599
600  //  sinkMBB:
601  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
602  //  ...
603  BB = sinkMBB;
604
605  BuildMI(*BB, BB->begin(), DL,
606          TII->get(Mips::PHI), MI->getOperand(0).getReg())
607    .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
608    .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
609
610  MI->eraseFromParent();   // The pseudo instruction is gone now.
611  return BB;
612
613}
614
615MachineBasicBlock *Mips16TargetLowering::emitSeliT16
616  (unsigned Opc1, unsigned Opc2,
617   MachineInstr *MI, MachineBasicBlock *BB) const {
618  if (DontExpandCondPseudos16)
619    return BB;
620  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
621  DebugLoc DL = MI->getDebugLoc();
622  // To "insert" a SELECT_CC instruction, we actually have to insert the
623  // diamond control-flow pattern.  The incoming instruction knows the
624  // destination vreg to set, the condition code register to branch on, the
625  // true/false values to select between, and a branch opcode to use.
626  const BasicBlock *LLVM_BB = BB->getBasicBlock();
627  MachineFunction::iterator It = BB;
628  ++It;
629
630  //  thisMBB:
631  //  ...
632  //   TrueVal = ...
633  //   setcc r1, r2, r3
634  //   bNE   r1, r0, copy1MBB
635  //   fallthrough --> copy0MBB
636  MachineBasicBlock *thisMBB  = BB;
637  MachineFunction *F = BB->getParent();
638  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
639  MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
640  F->insert(It, copy0MBB);
641  F->insert(It, sinkMBB);
642
643  // Transfer the remainder of BB and its successor edges to sinkMBB.
644  sinkMBB->splice(sinkMBB->begin(), BB,
645                  llvm::next(MachineBasicBlock::iterator(MI)),
646                  BB->end());
647  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
648
649  // Next, add the true and fallthrough blocks as its successors.
650  BB->addSuccessor(copy0MBB);
651  BB->addSuccessor(sinkMBB);
652
653  BuildMI(BB, DL, TII->get(Opc2)).addReg(MI->getOperand(3).getReg())
654    .addImm(MI->getOperand(4).getImm());
655  BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);
656
657  //  copy0MBB:
658  //   %FalseValue = ...
659  //   # fallthrough to sinkMBB
660  BB = copy0MBB;
661
662  // Update machine-CFG edges
663  BB->addSuccessor(sinkMBB);
664
665  //  sinkMBB:
666  //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
667  //  ...
668  BB = sinkMBB;
669
670  BuildMI(*BB, BB->begin(), DL,
671          TII->get(Mips::PHI), MI->getOperand(0).getReg())
672    .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
673    .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
674
675  MI->eraseFromParent();   // The pseudo instruction is gone now.
676  return BB;
677
678}
679
680MachineBasicBlock
681  *Mips16TargetLowering::emitFEXT_T8I816_ins(unsigned BtOpc, unsigned CmpOpc,
682                                             MachineInstr *MI,
683                                             MachineBasicBlock *BB) const {
684  if (DontExpandCondPseudos16)
685    return BB;
686  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
687  unsigned regX = MI->getOperand(0).getReg();
688  unsigned regY = MI->getOperand(1).getReg();
689  MachineBasicBlock *target = MI->getOperand(2).getMBB();
690  BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(CmpOpc)).addReg(regX)
691    .addReg(regY);
692  BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(BtOpc)).addMBB(target);
693  MI->eraseFromParent();   // The pseudo instruction is gone now.
694  return BB;
695}
696
697MachineBasicBlock *Mips16TargetLowering::emitFEXT_T8I8I16_ins(
698  unsigned BtOpc, unsigned CmpiOpc, unsigned CmpiXOpc, bool ImmSigned,
699  MachineInstr *MI,  MachineBasicBlock *BB) const {
700  if (DontExpandCondPseudos16)
701    return BB;
702  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
703  unsigned regX = MI->getOperand(0).getReg();
704  int64_t imm = MI->getOperand(1).getImm();
705  MachineBasicBlock *target = MI->getOperand(2).getMBB();
706  unsigned CmpOpc;
707  if (isUInt<8>(imm))
708    CmpOpc = CmpiOpc;
709  else if ((!ImmSigned && isUInt<16>(imm)) ||
710           (ImmSigned && isInt<16>(imm)))
711    CmpOpc = CmpiXOpc;
712  else
713    llvm_unreachable("immediate field not usable");
714  BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(CmpOpc)).addReg(regX)
715    .addImm(imm);
716  BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(BtOpc)).addMBB(target);
717  MI->eraseFromParent();   // The pseudo instruction is gone now.
718  return BB;
719}
720
721static unsigned Mips16WhichOp8uOr16simm
722  (unsigned shortOp, unsigned longOp, int64_t Imm) {
723  if (isUInt<8>(Imm))
724    return shortOp;
725  else if (isInt<16>(Imm))
726    return longOp;
727  else
728    llvm_unreachable("immediate field not usable");
729}
730
731MachineBasicBlock *Mips16TargetLowering::emitFEXT_CCRX16_ins(
732  unsigned SltOpc,
733  MachineInstr *MI,  MachineBasicBlock *BB) const {
734  if (DontExpandCondPseudos16)
735    return BB;
736  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
737  unsigned CC = MI->getOperand(0).getReg();
738  unsigned regX = MI->getOperand(1).getReg();
739  unsigned regY = MI->getOperand(2).getReg();
740  BuildMI(*BB, MI, MI->getDebugLoc(),
741		  TII->get(SltOpc)).addReg(regX).addReg(regY);
742  BuildMI(*BB, MI, MI->getDebugLoc(),
743          TII->get(Mips::MoveR3216), CC).addReg(Mips::T8);
744  MI->eraseFromParent();   // The pseudo instruction is gone now.
745  return BB;
746}
747
748MachineBasicBlock *Mips16TargetLowering::emitFEXT_CCRXI16_ins(
749  unsigned SltiOpc, unsigned SltiXOpc,
750  MachineInstr *MI,  MachineBasicBlock *BB )const {
751  if (DontExpandCondPseudos16)
752    return BB;
753  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
754  unsigned CC = MI->getOperand(0).getReg();
755  unsigned regX = MI->getOperand(1).getReg();
756  int64_t Imm = MI->getOperand(2).getImm();
757  unsigned SltOpc = Mips16WhichOp8uOr16simm(SltiOpc, SltiXOpc, Imm);
758  BuildMI(*BB, MI, MI->getDebugLoc(),
759          TII->get(SltOpc)).addReg(regX).addImm(Imm);
760  BuildMI(*BB, MI, MI->getDebugLoc(),
761          TII->get(Mips::MoveR3216), CC).addReg(Mips::T8);
762  MI->eraseFromParent();   // The pseudo instruction is gone now.
763  return BB;
764
765}
766